CINXE.COM
Paolo Vitolo - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Paolo Vitolo - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="c3VSc1ogMmAJh80AJeiYZLgaOScm2UQycKTxf5yF7CIXkf+Q5ZcEoL7MpwMDkwe7Kfj16gaE1ziLQ8MkRCFgJg==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-1c712297ae3ac71207193b1bae0ecf1aae125886850f62c9c0139dd867630797.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="paolo vitolo" /> <meta name="description" content="Paolo Vitolo: 13 Followers, 4 Following, 43 Research papers. Research interests: Functional Analysis, Pure Mathematics, and MATEMATICAS." /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = 'c7ac46e400875c3b13c788ad246730fe5f6b36cc'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15272,"monthly_visitors":"113 million","monthly_visitor_count":113784677,"monthly_visitor_count_in_millions":113,"user_count":277494675,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1732754012000); window.Aedu.timeDifference = new Date().getTime() - 1732754012000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-296162c7af6fd81dcdd76f1a94f1fad04fb5f647401337d136fe8b68742170b1.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-7734a8b54dedb8fefe75ef934203d0ef41d066c1c5cfa6ba2a13dd7ec8bce449.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-9eaa790b1139e2d88eb4ac931dcbc6d7cea4403a763db5cc5a695dd2eaa34151.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://independent.academia.edu/PaoloVitolo" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-533ab26e53b28997c1064a839643ef40d866d497c665279ed26b743aacb62042.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":56988471,"first_name":"Paolo","middle_initials":null,"last_name":"Vitolo","page_name":"PaoloVitolo","domain_name":"independent","created_at":"2016-11-21T03:50:46.663-08:00","display_name":"Paolo Vitolo","url":"https://independent.academia.edu/PaoloVitolo","photo":"/images/s65_no_pic.png","has_photo":false,"is_analytics_public":false,"interests":[{"id":371,"name":"Functional Analysis","url":"https://www.academia.edu/Documents/in/Functional_Analysis"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":273232,"name":"MATEMATICAS","url":"https://www.academia.edu/Documents/in/MATEMATICAS"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"},{"id":126799,"name":"Measure","url":"https://www.academia.edu/Documents/in/Measure"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://independent.academia.edu/PaoloVitolo","location":"/PaoloVitolo","scheme":"https","host":"independent.academia.edu","port":null,"pathname":"/PaoloVitolo","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-cf7a7fd1-f28c-4612-a3cb-187f9966c0e9"></div> <div id="ProfileCheckPaperUpdate-react-component-cf7a7fd1-f28c-4612-a3cb-187f9966c0e9"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Paolo Vitolo</h1><div class="affiliations-container fake-truncate js-profile-affiliations"></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Paolo" data-follow-user-id="56988471" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="56988471"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">13</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">4</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">4</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="56988471" href="https://www.academia.edu/Documents/in/Functional_Analysis"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://independent.academia.edu/PaoloVitolo","location":"/PaoloVitolo","scheme":"https","host":"independent.academia.edu","port":null,"pathname":"/PaoloVitolo","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Functional Analysis"]}" data-trace="false" data-dom-id="Pill-react-component-4f578ecc-fadb-4837-8adc-a986273d0303"></div> <div id="Pill-react-component-4f578ecc-fadb-4837-8adc-a986273d0303"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="56988471" href="https://www.academia.edu/Documents/in/Pure_Mathematics"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Pure Mathematics"]}" data-trace="false" data-dom-id="Pill-react-component-19c3e5cb-6828-470b-9a45-757625ae4db4"></div> <div id="Pill-react-component-19c3e5cb-6828-470b-9a45-757625ae4db4"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="56988471" href="https://www.academia.edu/Documents/in/MATEMATICAS"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["MATEMATICAS"]}" data-trace="false" data-dom-id="Pill-react-component-1f356509-571e-414a-8bba-3806bc53d5e1"></div> <div id="Pill-react-component-1f356509-571e-414a-8bba-3806bc53d5e1"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="56988471" href="https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Electrical And Electronic Engineering"]}" data-trace="false" data-dom-id="Pill-react-component-e3137863-84e8-4026-9dde-9ecca84ef4b5"></div> <div id="Pill-react-component-e3137863-84e8-4026-9dde-9ecca84ef4b5"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="56988471" href="https://www.academia.edu/Documents/in/Measure"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Measure"]}" data-trace="false" data-dom-id="Pill-react-component-2ac53b89-6a97-4bce-9edd-26756f923cb8"></div> <div id="Pill-react-component-2ac53b89-6a97-4bce-9edd-26756f923cb8"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Paolo Vitolo</h3></div><div class="js-work-strip profile--work_container" data-work-id="30082919"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30082919/When_is_Kuratowski_convergence_topological"><img alt="Research paper thumbnail of When is Kuratowski convergence topological?" class="work-thumbnail" src="https://attachments.academia-assets.com/50534228/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30082919/When_is_Kuratowski_convergence_topological">When is Kuratowski convergence topological?</a></div><div class="wp-workCard_item"><span>Filomat</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="021b1d4d8ec805156c74ef29094765c9" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":50534228,"asset_id":30082919,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/50534228/download_file?st=MTczMjc1NDAxMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30082919"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30082919"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30082919; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30082919]").text(description); $(".js-view-count[data-work-id=30082919]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30082919; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30082919']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30082919, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "021b1d4d8ec805156c74ef29094765c9" } } $('.js-work-strip[data-work-id=30082919]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30082919,"title":"When is Kuratowski convergence topological?","translated_title":"","metadata":{"grobid_abstract":"It is known that if a topological space X is locally compact then the Kuratowski convergence on the closed subsets of X is topological. We show that the converse is true, provided that X is quasi-sober.","publication_name":"Filomat","grobid_abstract_attachment_id":50534228},"translated_abstract":null,"internal_url":"https://www.academia.edu/30082919/When_is_Kuratowski_convergence_topological","translated_internal_url":"","created_at":"2016-11-25T01:58:25.207-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56988471,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":50534228,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50534228/thumbnails/1.jpg","file_name":"When_is_Kuratowski_convergence_topologic20161125-27184-1lbxqmx.pdf","download_url":"https://www.academia.edu/attachments/50534228/download_file?st=MTczMjc1NDAxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"When_is_Kuratowski_convergence_topologic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50534228/When_is_Kuratowski_convergence_topologic20161125-27184-1lbxqmx-libre.pdf?1480068173=\u0026response-content-disposition=attachment%3B+filename%3DWhen_is_Kuratowski_convergence_topologic.pdf\u0026Expires=1732757610\u0026Signature=QOmMXAeSByWf9mk~~jRiQJ55o7pkzChffLsSZuVSwMZcqON09ts~0lfjiAEpqsQ4AO038yNtC~CVA7GzqZqBhPhqy~nR1pOt0wA7ek9c7Xr92a64Ilrypp14qnhoPGAjaBxFyOPBbLnG887WgWZbNBfExXV4viv5k5JEK47dlEkCn56tTJVImB0J3jplo7aPf-bwQdw57p~ZEbhvv9n1vvJkB25Ss4UioqXOn-orifxIm0VRh8~9yEeTcBQomyQQhmmls1wMyLFRCFgH1OEWmMnVu8~aGspWjTxTyaKlqRVEv7q9fWa6E2nYzab2jkSezhi3WVTkVcAU1GTIebYQqQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"When_is_Kuratowski_convergence_topological","translated_slug":"","page_count":19,"language":"en","content_type":"Work","owner":{"id":56988471,"first_name":"Paolo","middle_initials":null,"last_name":"Vitolo","page_name":"PaoloVitolo","domain_name":"independent","created_at":"2016-11-21T03:50:46.663-08:00","display_name":"Paolo Vitolo","url":"https://independent.academia.edu/PaoloVitolo"},"attachments":[{"id":50534228,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50534228/thumbnails/1.jpg","file_name":"When_is_Kuratowski_convergence_topologic20161125-27184-1lbxqmx.pdf","download_url":"https://www.academia.edu/attachments/50534228/download_file?st=MTczMjc1NDAxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"When_is_Kuratowski_convergence_topologic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50534228/When_is_Kuratowski_convergence_topologic20161125-27184-1lbxqmx-libre.pdf?1480068173=\u0026response-content-disposition=attachment%3B+filename%3DWhen_is_Kuratowski_convergence_topologic.pdf\u0026Expires=1732757610\u0026Signature=QOmMXAeSByWf9mk~~jRiQJ55o7pkzChffLsSZuVSwMZcqON09ts~0lfjiAEpqsQ4AO038yNtC~CVA7GzqZqBhPhqy~nR1pOt0wA7ek9c7Xr92a64Ilrypp14qnhoPGAjaBxFyOPBbLnG887WgWZbNBfExXV4viv5k5JEK47dlEkCn56tTJVImB0J3jplo7aPf-bwQdw57p~ZEbhvv9n1vvJkB25Ss4UioqXOn-orifxIm0VRh8~9yEeTcBQomyQQhmmls1wMyLFRCFgH1OEWmMnVu8~aGspWjTxTyaKlqRVEv7q9fWa6E2nYzab2jkSezhi3WVTkVcAU1GTIebYQqQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30082918"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30082918/The_reconstruction_of_simply_disconnected_tournaments"><img alt="Research paper thumbnail of The reconstruction of simply disconnected tournaments" class="work-thumbnail" src="https://attachments.academia-assets.com/50534227/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30082918/The_reconstruction_of_simply_disconnected_tournaments">The reconstruction of simply disconnected tournaments</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper we will prove that simply disconnected tournaments of order at least 7 are reconstr...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper we will prove that simply disconnected tournaments of order at least 7 are reconstructible, i.e. they are determined (up to isomorphisms) by their subtournaments.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="12dd5216780152648485520214cb191e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":50534227,"asset_id":30082918,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/50534227/download_file?st=MTczMjc1NDAxMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30082918"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30082918"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30082918; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30082918]").text(description); $(".js-view-count[data-work-id=30082918]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30082918; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30082918']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30082918, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "12dd5216780152648485520214cb191e" } } $('.js-work-strip[data-work-id=30082918]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30082918,"title":"The reconstruction of simply disconnected tournaments","translated_title":"","metadata":{"abstract":"In this paper we will prove that simply disconnected tournaments of order at least 7 are reconstructible, i.e. they are determined (up to isomorphisms) by their subtournaments."},"translated_abstract":"In this paper we will prove that simply disconnected tournaments of order at least 7 are reconstructible, i.e. they are determined (up to isomorphisms) by their subtournaments.","internal_url":"https://www.academia.edu/30082918/The_reconstruction_of_simply_disconnected_tournaments","translated_internal_url":"","created_at":"2016-11-25T01:58:25.104-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56988471,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":50534227,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50534227/thumbnails/1.jpg","file_name":"The_reconstruction_of_simply_disconnecte20161125-27180-1uz0two.pdf","download_url":"https://www.academia.edu/attachments/50534227/download_file?st=MTczMjc1NDAxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_reconstruction_of_simply_disconnecte.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50534227/The_reconstruction_of_simply_disconnecte20161125-27180-1uz0two-libre.pdf?1480068174=\u0026response-content-disposition=attachment%3B+filename%3DThe_reconstruction_of_simply_disconnecte.pdf\u0026Expires=1732757610\u0026Signature=cgbz4aeRESNUaAlAzIGi1hRrf3ne8UYcL0RHLz9-AzoSxwCSbFbhLaiOsqRTY00JlRO0bb2BYhjaJ0rhbkXsHKM7m3kM89-36q5fMvJ1KbB7LASd~ZToiQgi4DmCaGNJ3AlpfgwFot-j925lO60FfnVHa987qLVOqK~jtv53Vw2YgVERrYSd6FDRj4ThLoIAPJ1N~JAWh4WpUddmsxapr4ayvHaph59bDmBrhY2O6dOc-mngGN0w2MxH246vxHLbx0PlEFP1uSfzuMUzBftncY7fIStvhA-DpMEdB8QJ-sq2Np6NPfvfvNM0eKBvxTtuX3OaK6zXNZQWU3oLa4K7Pw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_reconstruction_of_simply_disconnected_tournaments","translated_slug":"","page_count":13,"language":"en","content_type":"Work","owner":{"id":56988471,"first_name":"Paolo","middle_initials":null,"last_name":"Vitolo","page_name":"PaoloVitolo","domain_name":"independent","created_at":"2016-11-21T03:50:46.663-08:00","display_name":"Paolo Vitolo","url":"https://independent.academia.edu/PaoloVitolo"},"attachments":[{"id":50534227,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50534227/thumbnails/1.jpg","file_name":"The_reconstruction_of_simply_disconnecte20161125-27180-1uz0two.pdf","download_url":"https://www.academia.edu/attachments/50534227/download_file?st=MTczMjc1NDAxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_reconstruction_of_simply_disconnecte.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50534227/The_reconstruction_of_simply_disconnecte20161125-27180-1uz0two-libre.pdf?1480068174=\u0026response-content-disposition=attachment%3B+filename%3DThe_reconstruction_of_simply_disconnecte.pdf\u0026Expires=1732757610\u0026Signature=cgbz4aeRESNUaAlAzIGi1hRrf3ne8UYcL0RHLz9-AzoSxwCSbFbhLaiOsqRTY00JlRO0bb2BYhjaJ0rhbkXsHKM7m3kM89-36q5fMvJ1KbB7LASd~ZToiQgi4DmCaGNJ3AlpfgwFot-j925lO60FfnVHa987qLVOqK~jtv53Vw2YgVERrYSd6FDRj4ThLoIAPJ1N~JAWh4WpUddmsxapr4ayvHaph59bDmBrhY2O6dOc-mngGN0w2MxH246vxHLbx0PlEFP1uSfzuMUzBftncY7fIStvhA-DpMEdB8QJ-sq2Np6NPfvfvNM0eKBvxTtuX3OaK6zXNZQWU3oLa4K7Pw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30082917"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30082917/Decomposition_of_topologies_on_lattices_and_hyperspaces"><img alt="Research paper thumbnail of Decomposition of topologies on lattices and hyperspaces" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30082917/Decomposition_of_topologies_on_lattices_and_hyperspaces">Decomposition of topologies on lattices and hyperspaces</a></div><div class="wp-workCard_item"><span>Dissertationes Mathematicae</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30082917"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30082917"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30082917; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30082917]").text(description); $(".js-view-count[data-work-id=30082917]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30082917; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30082917']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30082917, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30082917]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30082917,"title":"Decomposition of topologies on lattices and hyperspaces","translated_title":"","metadata":{"publication_name":"Dissertationes Mathematicae"},"translated_abstract":null,"internal_url":"https://www.academia.edu/30082917/Decomposition_of_topologies_on_lattices_and_hyperspaces","translated_internal_url":"","created_at":"2016-11-25T01:58:24.994-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56988471,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Decomposition_of_topologies_on_lattices_and_hyperspaces","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":56988471,"first_name":"Paolo","middle_initials":null,"last_name":"Vitolo","page_name":"PaoloVitolo","domain_name":"independent","created_at":"2016-11-21T03:50:46.663-08:00","display_name":"Paolo Vitolo","url":"https://independent.academia.edu/PaoloVitolo"},"attachments":[],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30082916"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30082916/The_representation_of_weighted_quasi_metric_spaces"><img alt="Research paper thumbnail of The representation of weighted quasi-metric spaces" class="work-thumbnail" src="https://attachments.academia-assets.com/50534226/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30082916/The_representation_of_weighted_quasi_metric_spaces">The representation of weighted quasi-metric spaces</a></div><div class="wp-workCard_item"><span>Rendiconti dell'Istituto di Matematica dell'Universita di Trieste</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this note we continue the investigation carried out in [Topology Appl. 65, No. 1, 101-104 (199...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this note we continue the investigation carried out in [Topology Appl. 65, No. 1, 101-104 (1995; Zbl 0828.54024)]. We show that every weighted quasi-metric space can be identified with a subspace of a space of some canonical type, which is constructed from a metric space. We also present a very simple method to construct a weighted quasi-metric space, as the graph of a function defined on a metric space, and show that every weighted quasi-metric space arises in this way. Similar results may be obtained if we drop the requirement that the weight function have nonnegative values.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f0d9e7cf9803f9c5ba4e1628aab10a83" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":50534226,"asset_id":30082916,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/50534226/download_file?st=MTczMjc1NDAxMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30082916"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30082916"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30082916; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30082916]").text(description); $(".js-view-count[data-work-id=30082916]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30082916; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30082916']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30082916, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f0d9e7cf9803f9c5ba4e1628aab10a83" } } $('.js-work-strip[data-work-id=30082916]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30082916,"title":"The representation of weighted quasi-metric spaces","translated_title":"","metadata":{"abstract":"In this note we continue the investigation carried out in [Topology Appl. 65, No. 1, 101-104 (1995; Zbl 0828.54024)]. We show that every weighted quasi-metric space can be identified with a subspace of a space of some canonical type, which is constructed from a metric space. We also present a very simple method to construct a weighted quasi-metric space, as the graph of a function defined on a metric space, and show that every weighted quasi-metric space arises in this way. Similar results may be obtained if we drop the requirement that the weight function have nonnegative values.","publication_name":"Rendiconti dell'Istituto di Matematica dell'Universita di Trieste"},"translated_abstract":"In this note we continue the investigation carried out in [Topology Appl. 65, No. 1, 101-104 (1995; Zbl 0828.54024)]. We show that every weighted quasi-metric space can be identified with a subspace of a space of some canonical type, which is constructed from a metric space. We also present a very simple method to construct a weighted quasi-metric space, as the graph of a function defined on a metric space, and show that every weighted quasi-metric space arises in this way. Similar results may be obtained if we drop the requirement that the weight function have nonnegative values.","internal_url":"https://www.academia.edu/30082916/The_representation_of_weighted_quasi_metric_spaces","translated_internal_url":"","created_at":"2016-11-25T01:58:24.889-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56988471,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":50534226,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50534226/thumbnails/1.jpg","file_name":"The_representation_of_weighted_quasi-met20161125-27180-gwjm88.pdf","download_url":"https://www.academia.edu/attachments/50534226/download_file?st=MTczMjc1NDAxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_representation_of_weighted_quasi_met.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50534226/The_representation_of_weighted_quasi-met20161125-27180-gwjm88-libre.pdf?1480068172=\u0026response-content-disposition=attachment%3B+filename%3DThe_representation_of_weighted_quasi_met.pdf\u0026Expires=1732757610\u0026Signature=EcJXWojBEaj7J7xuXY6sW6y7Jk96uzIgyTKd~iqpX01XfU0Y89JGJ-JwuaoPambBmm7xwkQz8xHOz8MlZ~JS1w85dr06-ov4sYsixK1lmvHfBVENti-yrLJtfYeefGutgbjP2pDS~h7PCnuuamCulRqff049xC4b47vmpYmuJsgDblPBiOQYo~DhBU8MFl2ZnoPphAtewZ9j-PStFDJlxRWX5xxAa9lArtRg104HNqX0vlwl5Bx9dzykdUr0IKLNlGNP-GzHwFmLmrJQmHIMbi24TE~QBUwRbuoxw6AVuyJ66yJ7FtzjJ6Hs8yWE5NPCvJnW4xZwVSwW3q3WFG0PZQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_representation_of_weighted_quasi_metric_spaces","translated_slug":"","page_count":6,"language":"lv","content_type":"Work","owner":{"id":56988471,"first_name":"Paolo","middle_initials":null,"last_name":"Vitolo","page_name":"PaoloVitolo","domain_name":"independent","created_at":"2016-11-21T03:50:46.663-08:00","display_name":"Paolo Vitolo","url":"https://independent.academia.edu/PaoloVitolo"},"attachments":[{"id":50534226,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50534226/thumbnails/1.jpg","file_name":"The_representation_of_weighted_quasi-met20161125-27180-gwjm88.pdf","download_url":"https://www.academia.edu/attachments/50534226/download_file?st=MTczMjc1NDAxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_representation_of_weighted_quasi_met.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50534226/The_representation_of_weighted_quasi-met20161125-27180-gwjm88-libre.pdf?1480068172=\u0026response-content-disposition=attachment%3B+filename%3DThe_representation_of_weighted_quasi_met.pdf\u0026Expires=1732757610\u0026Signature=EcJXWojBEaj7J7xuXY6sW6y7Jk96uzIgyTKd~iqpX01XfU0Y89JGJ-JwuaoPambBmm7xwkQz8xHOz8MlZ~JS1w85dr06-ov4sYsixK1lmvHfBVENti-yrLJtfYeefGutgbjP2pDS~h7PCnuuamCulRqff049xC4b47vmpYmuJsgDblPBiOQYo~DhBU8MFl2ZnoPphAtewZ9j-PStFDJlxRWX5xxAa9lArtRg104HNqX0vlwl5Bx9dzykdUr0IKLNlGNP-GzHwFmLmrJQmHIMbi24TE~QBUwRbuoxw6AVuyJ66yJ7FtzjJ6Hs8yWE5NPCvJnW4xZwVSwW3q3WFG0PZQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":237878,"name":"Fuzzy Metric Space","url":"https://www.academia.edu/Documents/in/Fuzzy_Metric_Space"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30082915"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30082915/Compatibility_and_central_elements_in_pseudo_effect_algebras"><img alt="Research paper thumbnail of Compatibility and central elements in pseudo-effect algebras" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30082915/Compatibility_and_central_elements_in_pseudo_effect_algebras">Compatibility and central elements in pseudo-effect algebras</a></div><div class="wp-workCard_item"><span>Kybernetika -Praha-</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30082915"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30082915"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30082915; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30082915]").text(description); $(".js-view-count[data-work-id=30082915]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30082915; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30082915']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30082915, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30082915]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30082915,"title":"Compatibility and central elements in pseudo-effect algebras","translated_title":"","metadata":{"publication_name":"Kybernetika -Praha-"},"translated_abstract":null,"internal_url":"https://www.academia.edu/30082915/Compatibility_and_central_elements_in_pseudo_effect_algebras","translated_internal_url":"","created_at":"2016-11-25T01:58:24.777-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56988471,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Compatibility_and_central_elements_in_pseudo_effect_algebras","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":56988471,"first_name":"Paolo","middle_initials":null,"last_name":"Vitolo","page_name":"PaoloVitolo","domain_name":"independent","created_at":"2016-11-21T03:50:46.663-08:00","display_name":"Paolo Vitolo","url":"https://independent.academia.edu/PaoloVitolo"},"attachments":[],"research_interests":[{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics"},{"id":7936,"name":"Quantum Mechanics","url":"https://www.academia.edu/Documents/in/Quantum_Mechanics"},{"id":28422,"name":"Quantum Computation","url":"https://www.academia.edu/Documents/in/Quantum_Computation"},{"id":230427,"name":"Lattice","url":"https://www.academia.edu/Documents/in/Lattice"},{"id":348250,"name":"Algebraic Logic","url":"https://www.academia.edu/Documents/in/Algebraic_Logic"},{"id":1002691,"name":"Compatibility","url":"https://www.academia.edu/Documents/in/Compatibility"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30082914"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30082914/A_representation_theorem_for_quasi_metric_spaces"><img alt="Research paper thumbnail of A representation theorem for quasi-metric spaces" class="work-thumbnail" src="https://attachments.academia-assets.com/50534224/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30082914/A_representation_theorem_for_quasi_metric_spaces">A representation theorem for quasi-metric spaces</a></div><div class="wp-workCard_item"><span>Topology and its Applications</span><span>, 1995</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="20b6bc86343438b4ed8773a8934d6327" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":50534224,"asset_id":30082914,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/50534224/download_file?st=MTczMjc1NDAxMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30082914"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30082914"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30082914; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30082914]").text(description); $(".js-view-count[data-work-id=30082914]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30082914; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30082914']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30082914, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "20b6bc86343438b4ed8773a8934d6327" } } $('.js-work-strip[data-work-id=30082914]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30082914,"title":"A representation theorem for quasi-metric spaces","translated_title":"","metadata":{"grobid_abstract":"We show that every quasi-metric space is isomorphic to a subspace of the hyperspace of a suitable metric space, endowed with the Hausdorff quasi-metric. Therefore a topological space is quasi-metrizable if and only if it can be embedded in a Hausdorff quasi-metric hyperspace.","publication_date":{"day":null,"month":null,"year":1995,"errors":{}},"publication_name":"Topology and its Applications","grobid_abstract_attachment_id":50534224},"translated_abstract":null,"internal_url":"https://www.academia.edu/30082914/A_representation_theorem_for_quasi_metric_spaces","translated_internal_url":"","created_at":"2016-11-25T01:58:24.650-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56988471,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":50534224,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50534224/thumbnails/1.jpg","file_name":"A_representation_theorem_for_quasi-metri20161125-27180-15h34q8.pdf","download_url":"https://www.academia.edu/attachments/50534224/download_file?st=MTczMjc1NDAxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_representation_theorem_for_quasi_metri.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50534224/A_representation_theorem_for_quasi-metri20161125-27180-15h34q8-libre.pdf?1480068174=\u0026response-content-disposition=attachment%3B+filename%3DA_representation_theorem_for_quasi_metri.pdf\u0026Expires=1732757610\u0026Signature=LU7PBOL64Jg-18R3bu5fgLPACZLn5Ejw5HVfd146y6ZBjRorkwfUpzsETcU0va2u72vYwef0aBA8wip2F7ElBI8OY28y~piUXzzGluyLA-QFJUV~PtvWloNeECwFl5R13K4HYyQ9zgjuoZuaQloh2NBNsZ7se8hDTmd9mpHSWf2PhB7TY6czbaDH1xc2gYZNRpyGFVrvzuBbdDuD7Z1IwNh~OP~vquIdAIeHpMZBBoWEpgkYp0~-Lyc7~8-iY5nOT5ZUfrWjEsgj3h~N1AMXAjIoQehsJadOMtO7vbVuyYkrxymSXs0mZnCkzSBeHxO17OHuT2lqTBBaObR7E4DIsg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_representation_theorem_for_quasi_metric_spaces","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":56988471,"first_name":"Paolo","middle_initials":null,"last_name":"Vitolo","page_name":"PaoloVitolo","domain_name":"independent","created_at":"2016-11-21T03:50:46.663-08:00","display_name":"Paolo Vitolo","url":"https://independent.academia.edu/PaoloVitolo"},"attachments":[{"id":50534224,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50534224/thumbnails/1.jpg","file_name":"A_representation_theorem_for_quasi-metri20161125-27180-15h34q8.pdf","download_url":"https://www.academia.edu/attachments/50534224/download_file?st=MTczMjc1NDAxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_representation_theorem_for_quasi_metri.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50534224/A_representation_theorem_for_quasi-metri20161125-27180-15h34q8-libre.pdf?1480068174=\u0026response-content-disposition=attachment%3B+filename%3DA_representation_theorem_for_quasi_metri.pdf\u0026Expires=1732757610\u0026Signature=LU7PBOL64Jg-18R3bu5fgLPACZLn5Ejw5HVfd146y6ZBjRorkwfUpzsETcU0va2u72vYwef0aBA8wip2F7ElBI8OY28y~piUXzzGluyLA-QFJUV~PtvWloNeECwFl5R13K4HYyQ9zgjuoZuaQloh2NBNsZ7se8hDTmd9mpHSWf2PhB7TY6czbaDH1xc2gYZNRpyGFVrvzuBbdDuD7Z1IwNh~OP~vquIdAIeHpMZBBoWEpgkYp0~-Lyc7~8-iY5nOT5ZUfrWjEsgj3h~N1AMXAjIoQehsJadOMtO7vbVuyYkrxymSXs0mZnCkzSBeHxO17OHuT2lqTBBaObR7E4DIsg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":237878,"name":"Fuzzy Metric Space","url":"https://www.academia.edu/Documents/in/Fuzzy_Metric_Space"},{"id":782638,"name":"Topological Space","url":"https://www.academia.edu/Documents/in/Topological_Space"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30082913"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30082913/A_generalization_of_set_difference"><img alt="Research paper thumbnail of A generalization of set-difference" class="work-thumbnail" src="https://attachments.academia-assets.com/50534225/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30082913/A_generalization_of_set_difference">A generalization of set-difference</a></div><div class="wp-workCard_item"><span>Mathematica Slovaca</span><span>, 2011</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b0edb29c412215c1bc797e09cfeee98c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":50534225,"asset_id":30082913,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/50534225/download_file?st=MTczMjc1NDAxMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30082913"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30082913"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30082913; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30082913]").text(description); $(".js-view-count[data-work-id=30082913]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30082913; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30082913']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30082913, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b0edb29c412215c1bc797e09cfeee98c" } } $('.js-work-strip[data-work-id=30082913]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30082913,"title":"A generalization of set-difference","translated_title":"","metadata":{"grobid_abstract":"A structure called d 0 -algebra is defined and studied, which leads to a new description of D-lattices and generalized D-lattices by means of only one totally defined operation. c 2011 Mathematical Institute Slovak Academy of Sciences 2010 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n: Primary 03G05; Secondary 03G25, 81P10. K e y w o r d s: set-difference, Boolean algebra, D-lattice, D-poset, generalized D-lattice, congruence, ideal.","publication_date":{"day":null,"month":null,"year":2011,"errors":{}},"publication_name":"Mathematica Slovaca","grobid_abstract_attachment_id":50534225},"translated_abstract":null,"internal_url":"https://www.academia.edu/30082913/A_generalization_of_set_difference","translated_internal_url":"","created_at":"2016-11-25T01:58:24.526-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56988471,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":50534225,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50534225/thumbnails/1.jpg","file_name":"A_generalization_of_set-difference20161125-27183-2i2dkq.pdf","download_url":"https://www.academia.edu/attachments/50534225/download_file?st=MTczMjc1NDAxMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_generalization_of_set_difference.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50534225/A_generalization_of_set-difference20161125-27183-2i2dkq-libre.pdf?1480068174=\u0026response-content-disposition=attachment%3B+filename%3DA_generalization_of_set_difference.pdf\u0026Expires=1732757610\u0026Signature=DM8Tb37v8QMsufKCMkaDMbbvTtZGVQjLLX8cO2LayNrTw5UCdhq-sE0MizIo-~WfdqhJne50qyor~HdNBHiSZyNtsK2WkuWv4Cxv1Uo8py3TPrkm70Rfh9ph0SZ9WXn8n9VXCVcSCnq3uhgeLZs9ihVOhIFYFFYm9PXzf~YASbQ4G-5jjpMedlrQB-Umlvc6Y87msGrwtGLTAgmxbg2Z4dy4BCDkXqznjkG-1hUvwAoLl0VwuZPhz~JdLaNrUXJYQSKtGvukQCFX24bCuk5uGIDr1uL1GzSti76zPGbTzJlZ5DCM2qmCoTo~yZeHgoH2zS1QT7AGXpXyibnGiDOZww__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_generalization_of_set_difference","translated_slug":"","page_count":16,"language":"en","content_type":"Work","owner":{"id":56988471,"first_name":"Paolo","middle_initials":null,"last_name":"Vitolo","page_name":"PaoloVitolo","domain_name":"independent","created_at":"2016-11-21T03:50:46.663-08:00","display_name":"Paolo Vitolo","url":"https://independent.academia.edu/PaoloVitolo"},"attachments":[{"id":50534225,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50534225/thumbnails/1.jpg","file_name":"A_generalization_of_set-difference20161125-27183-2i2dkq.pdf","download_url":"https://www.academia.edu/attachments/50534225/download_file?st=MTczMjc1NDAxMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_generalization_of_set_difference.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50534225/A_generalization_of_set-difference20161125-27183-2i2dkq-libre.pdf?1480068174=\u0026response-content-disposition=attachment%3B+filename%3DA_generalization_of_set_difference.pdf\u0026Expires=1732757610\u0026Signature=DM8Tb37v8QMsufKCMkaDMbbvTtZGVQjLLX8cO2LayNrTw5UCdhq-sE0MizIo-~WfdqhJne50qyor~HdNBHiSZyNtsK2WkuWv4Cxv1Uo8py3TPrkm70Rfh9ph0SZ9WXn8n9VXCVcSCnq3uhgeLZs9ihVOhIFYFFYm9PXzf~YASbQ4G-5jjpMedlrQB-Umlvc6Y87msGrwtGLTAgmxbg2Z4dy4BCDkXqznjkG-1hUvwAoLl0VwuZPhz~JdLaNrUXJYQSKtGvukQCFX24bCuk5uGIDr1uL1GzSti76zPGbTzJlZ5DCM2qmCoTo~yZeHgoH2zS1QT7AGXpXyibnGiDOZww__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30082912"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30082912/A_question_about_basic_algebras"><img alt="Research paper thumbnail of A question about basic algebras" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30082912/A_question_about_basic_algebras">A question about basic algebras</a></div><div class="wp-workCard_item"><span>Algebra universalis</span><span>, 2009</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30082912"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30082912"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30082912; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30082912]").text(description); $(".js-view-count[data-work-id=30082912]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30082912; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30082912']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30082912, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30082912]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30082912,"title":"A question about basic algebras","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"Algebra universalis"},"translated_abstract":null,"internal_url":"https://www.academia.edu/30082912/A_question_about_basic_algebras","translated_internal_url":"","created_at":"2016-11-25T01:58:24.372-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56988471,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_question_about_basic_algebras","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":56988471,"first_name":"Paolo","middle_initials":null,"last_name":"Vitolo","page_name":"PaoloVitolo","domain_name":"independent","created_at":"2016-11-21T03:50:46.663-08:00","display_name":"Paolo Vitolo","url":"https://independent.academia.edu/PaoloVitolo"},"attachments":[],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="29605381"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/29605381/Decomposition_of_Pseudo_effect_Algebras_and_the_Hammer_Sobczyk_Theorem"><img alt="Research paper thumbnail of Decomposition of Pseudo-effect Algebras and the Hammer–Sobczyk Theorem" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/29605381/Decomposition_of_Pseudo_effect_Algebras_and_the_Hammer_Sobczyk_Theorem">Decomposition of Pseudo-effect Algebras and the Hammer–Sobczyk Theorem</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/BarbieriGiuseppina">Giuseppina Barbieri</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/PaoloVitolo">Paolo Vitolo</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/AvalloneAnna">Anna Avallone</a>, and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/HansWeber6">Hans Weber</a></span></div><div class="wp-workCard_item"><span>Order</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="29605381"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="29605381"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 29605381; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=29605381]").text(description); $(".js-view-count[data-work-id=29605381]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 29605381; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='29605381']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 29605381, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=29605381]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":29605381,"title":"Decomposition of Pseudo-effect Algebras and the Hammer–Sobczyk Theorem","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Order"},"translated_abstract":null,"internal_url":"https://www.academia.edu/29605381/Decomposition_of_Pseudo_effect_Algebras_and_the_Hammer_Sobczyk_Theorem","translated_internal_url":"","created_at":"2016-11-01T22:49:13.682-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42319385,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":25799155,"work_id":29605381,"tagging_user_id":42319385,"tagged_user_id":56988471,"co_author_invite_id":5706614,"email":"p***o@unibas.it","display_order":0,"name":"Paolo Vitolo","title":"Decomposition of Pseudo-effect Algebras and the Hammer–Sobczyk Theorem"},{"id":26098485,"work_id":29605381,"tagging_user_id":56988471,"tagged_user_id":56692689,"co_author_invite_id":null,"email":"a***e@unibas.it","display_order":4194304,"name":"Anna Avallone","title":"Decomposition of Pseudo-effect Algebras and the Hammer–Sobczyk Theorem"},{"id":26098492,"work_id":29605381,"tagging_user_id":56988471,"tagged_user_id":57705013,"co_author_invite_id":3005314,"email":"w***r@dimi.uniud.it","display_order":6291456,"name":"Hans Weber","title":"Decomposition of Pseudo-effect Algebras and the Hammer–Sobczyk Theorem"}],"downloadable_attachments":[],"slug":"Decomposition_of_Pseudo_effect_Algebras_and_the_Hammer_Sobczyk_Theorem","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":42319385,"first_name":"Giuseppina","middle_initials":null,"last_name":"Barbieri","page_name":"BarbieriGiuseppina","domain_name":"independent","created_at":"2016-01-29T03:18:09.316-08:00","display_name":"Giuseppina Barbieri","url":"https://independent.academia.edu/BarbieriGiuseppina"},"attachments":[],"research_interests":[{"id":183513,"name":"Order","url":"https://www.academia.edu/Documents/in/Order"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="29914659"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/29914659/Decomposition_of_effect_algebras_and_the_Hammer_Sobczyk_theorem"><img alt="Research paper thumbnail of Decomposition of effect algebras and the Hammer�Sobczyk theorem" class="work-thumbnail" src="https://attachments.academia-assets.com/50375307/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/29914659/Decomposition_of_effect_algebras_and_the_Hammer_Sobczyk_theorem">Decomposition of effect algebras and the Hammer�Sobczyk theorem</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/PinucciaBarbieri">Pinuccia Barbieri</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/PaoloVitolo">Paolo Vitolo</a></span></div><div class="wp-workCard_item"><span>Algebra Universalis</span><span>, 2009</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="414cb49974172dbd9326520dff9dab82" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":50375307,"asset_id":29914659,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/50375307/download_file?st=MTczMjc1NDAxMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="29914659"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="29914659"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 29914659; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=29914659]").text(description); $(".js-view-count[data-work-id=29914659]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 29914659; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='29914659']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 29914659, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "414cb49974172dbd9326520dff9dab82" } } $('.js-work-strip[data-work-id=29914659]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":29914659,"title":"Decomposition of effect algebras and the Hammer�Sobczyk theorem","translated_title":"","metadata":{"grobid_abstract":"We prove an algebraic and a topological decomposition theorem for complete D-lattices (i.e., lattice-ordered effect algebras). As a consequence, we obtain a Hammer-Sobczyk type decomposition theorem for modular measures on D-lattices.","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"Algebra Universalis","grobid_abstract_attachment_id":50375307},"translated_abstract":null,"internal_url":"https://www.academia.edu/29914659/Decomposition_of_effect_algebras_and_the_Hammer_Sobczyk_theorem","translated_internal_url":"","created_at":"2016-11-17T06:36:21.798-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56806793,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":25983089,"work_id":29914659,"tagging_user_id":56806793,"tagged_user_id":null,"co_author_invite_id":3005314,"email":"h***r@dimi.uniud.it","display_order":0,"name":"Hans Weber","title":"Decomposition of effect algebras and the Hammer�Sobczyk theorem"},{"id":25983093,"work_id":29914659,"tagging_user_id":56806793,"tagged_user_id":56988471,"co_author_invite_id":5696769,"email":"p***o@unibas.it","display_order":4194304,"name":"Paolo Vitolo","title":"Decomposition of effect algebras and the Hammer�Sobczyk theorem"},{"id":25983111,"work_id":29914659,"tagging_user_id":56806793,"tagged_user_id":56692689,"co_author_invite_id":null,"email":"a***e@unibas.it","display_order":6291456,"name":"Anna Avallone","title":"Decomposition of effect algebras and the Hammer�Sobczyk theorem"},{"id":26064663,"work_id":29914659,"tagging_user_id":56806793,"tagged_user_id":42319385,"co_author_invite_id":null,"email":"g***i@uniud.it","display_order":7340032,"name":"Giuseppina Barbieri","title":"Decomposition of effect algebras and the Hammer�Sobczyk theorem"}],"downloadable_attachments":[{"id":50375307,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50375307/thumbnails/1.jpg","file_name":"Decomposition_of_effect_algebras_and_the20161117-16400-17olkf0.pdf","download_url":"https://www.academia.edu/attachments/50375307/download_file?st=MTczMjc1NDAxMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Decomposition_of_effect_algebras_and_the.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50375307/Decomposition_of_effect_algebras_and_the20161117-16400-17olkf0-libre.pdf?1479394425=\u0026response-content-disposition=attachment%3B+filename%3DDecomposition_of_effect_algebras_and_the.pdf\u0026Expires=1732757611\u0026Signature=S8dkhLkWePkEvgGjP5t4JQ6P-EIC8Cc~EDMk-j~yEx~lEXXx-SKf3oF7WrlOQKLIrfQwhByuDtye2~qsDlMzTcQmfzy-QhAe156gajtH1VReJSvCepyVI91b0-0nShwQaqrhUYhgZ6H2BJ9ZjFK5lTm95EWZT7gynJixO3L~zIIMO7S1hKyRUwxBsAZryVERtwVr-QRs07c2T0jS8TNsgEUm6wtHoYjtg3OcxaD9BLcIrgP0uvvIgCfgpZdnxVY1dhaIZ2t09TkR1ly7kbVof4MYWMtaxfpX58ARU0oalkIF4~6Sy0M0VJn7vphdVWWekpMkHJdmqWBSdrRb6DvvnA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Decomposition_of_effect_algebras_and_the_Hammer_Sobczyk_theorem","translated_slug":"","page_count":18,"language":"en","content_type":"Work","owner":{"id":56806793,"first_name":"Pinuccia","middle_initials":null,"last_name":"Barbieri","page_name":"PinucciaBarbieri","domain_name":"independent","created_at":"2016-11-17T06:35:56.140-08:00","display_name":"Pinuccia Barbieri","url":"https://independent.academia.edu/PinucciaBarbieri"},"attachments":[{"id":50375307,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50375307/thumbnails/1.jpg","file_name":"Decomposition_of_effect_algebras_and_the20161117-16400-17olkf0.pdf","download_url":"https://www.academia.edu/attachments/50375307/download_file?st=MTczMjc1NDAxMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Decomposition_of_effect_algebras_and_the.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50375307/Decomposition_of_effect_algebras_and_the20161117-16400-17olkf0-libre.pdf?1479394425=\u0026response-content-disposition=attachment%3B+filename%3DDecomposition_of_effect_algebras_and_the.pdf\u0026Expires=1732757611\u0026Signature=S8dkhLkWePkEvgGjP5t4JQ6P-EIC8Cc~EDMk-j~yEx~lEXXx-SKf3oF7WrlOQKLIrfQwhByuDtye2~qsDlMzTcQmfzy-QhAe156gajtH1VReJSvCepyVI91b0-0nShwQaqrhUYhgZ6H2BJ9ZjFK5lTm95EWZT7gynJixO3L~zIIMO7S1hKyRUwxBsAZryVERtwVr-QRs07c2T0jS8TNsgEUm6wtHoYjtg3OcxaD9BLcIrgP0uvvIgCfgpZdnxVY1dhaIZ2t09TkR1ly7kbVof4MYWMtaxfpX58ARU0oalkIF4~6Sy0M0VJn7vphdVWWekpMkHJdmqWBSdrRb6DvvnA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"}],"urls":[{"id":7745585,"url":"http://cat.inist.fr/?aModele=afficheN\u0026cpsidt=21032640"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="29995993"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/29995993/Extension_of_measures_on_pseudo_D_lattices"><img alt="Research paper thumbnail of Extension of measures on pseudo-D-lattices" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/29995993/Extension_of_measures_on_pseudo_D_lattices">Extension of measures on pseudo-D-lattices</a></div><div class="wp-workCard_item"><span>Mathematica Slovaca</span><span>, 2016</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="29995993"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="29995993"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 29995993; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=29995993]").text(description); $(".js-view-count[data-work-id=29995993]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 29995993; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='29995993']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 29995993, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=29995993]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":29995993,"title":"Extension of measures on pseudo-D-lattices","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Mathematica Slovaca"},"translated_abstract":null,"internal_url":"https://www.academia.edu/29995993/Extension_of_measures_on_pseudo_D_lattices","translated_internal_url":"","created_at":"2016-11-21T03:51:16.172-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56988471,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":26086771,"work_id":29995993,"tagging_user_id":56988471,"tagged_user_id":45652322,"co_author_invite_id":null,"email":"d***a@gmail.com","display_order":0,"name":"Anna De Simone","title":"Extension of measures on pseudo-D-lattices"},{"id":26086772,"work_id":29995993,"tagging_user_id":56988471,"tagged_user_id":56692689,"co_author_invite_id":null,"email":"a***e@unibas.it","display_order":4194304,"name":"Anna Avallone","title":"Extension of measures on pseudo-D-lattices"}],"downloadable_attachments":[],"slug":"Extension_of_measures_on_pseudo_D_lattices","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":56988471,"first_name":"Paolo","middle_initials":null,"last_name":"Vitolo","page_name":"PaoloVitolo","domain_name":"independent","created_at":"2016-11-21T03:50:46.663-08:00","display_name":"Paolo Vitolo","url":"https://independent.academia.edu/PaoloVitolo"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="29856951"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/29856951/Positive_Operators_la_Aumann_Shapley_on_Spaces_of_Functions_on_D_Lattices"><img alt="Research paper thumbnail of Positive Operators � la Aumann-Shapley on Spaces of Functions on D-Lattices" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/29856951/Positive_Operators_la_Aumann_Shapley_on_Spaces_of_Functions_on_D_Lattices">Positive Operators � la Aumann-Shapley on Spaces of Functions on D-Lattices</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/PaoloVitolo">Paolo Vitolo</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/AvalloneAnna">Anna Avallone</a></span></div><div class="wp-workCard_item"><span>Positivity</span><span>, 2006</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="29856951"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="29856951"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 29856951; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=29856951]").text(description); $(".js-view-count[data-work-id=29856951]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 29856951; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='29856951']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 29856951, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=29856951]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":29856951,"title":"Positive Operators � la Aumann-Shapley on Spaces of Functions on D-Lattices","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"Positivity"},"translated_abstract":null,"internal_url":"https://www.academia.edu/29856951/Positive_Operators_la_Aumann_Shapley_on_Spaces_of_Functions_on_D_Lattices","translated_internal_url":"","created_at":"2016-11-15T10:31:02.763-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56692689,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":25902775,"work_id":29856951,"tagging_user_id":56692689,"tagged_user_id":56988471,"co_author_invite_id":5696769,"email":"p***o@unibas.it","display_order":0,"name":"Paolo Vitolo","title":"Positive Operators � la Aumann-Shapley on Spaces of Functions on D-Lattices"},{"id":25902794,"work_id":29856951,"tagging_user_id":56692689,"tagged_user_id":null,"co_author_invite_id":1855420,"email":"b***e@unina.it","display_order":4194304,"name":"Achille Basile","title":"Positive Operators � la Aumann-Shapley on Spaces of Functions on D-Lattices"}],"downloadable_attachments":[],"slug":"Positive_Operators_la_Aumann_Shapley_on_Spaces_of_Functions_on_D_Lattices","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":56692689,"first_name":"Anna","middle_initials":null,"last_name":"Avallone","page_name":"AvalloneAnna","domain_name":"independent","created_at":"2016-11-15T10:28:51.796-08:00","display_name":"Anna Avallone","url":"https://independent.academia.edu/AvalloneAnna"},"attachments":[],"research_interests":[{"id":91401,"name":"Bounded Variation","url":"https://www.academia.edu/Documents/in/Bounded_Variation"},{"id":159391,"name":"Shapley value","url":"https://www.academia.edu/Documents/in/Shapley_value"},{"id":178344,"name":"Positivity","url":"https://www.academia.edu/Documents/in/Positivity"}],"urls":[{"id":7737942,"url":"http://springerlink.com/index/10.1007/s11117-006-0052-3"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="29856921"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/29856921/Lyapunov_decomposition_of_measures_on_effect_algebras"><img alt="Research paper thumbnail of Lyapunov decomposition of measures on effect algebras" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/29856921/Lyapunov_decomposition_of_measures_on_effect_algebras">Lyapunov decomposition of measures on effect algebras</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/AvalloneAnna">Anna Avallone</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/PaoloVitolo">Paolo Vitolo</a></span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="29856921"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="29856921"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 29856921; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=29856921]").text(description); $(".js-view-count[data-work-id=29856921]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 29856921; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='29856921']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 29856921, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=29856921]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":29856921,"title":"Lyapunov decomposition of measures on effect algebras","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2009,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/29856921/Lyapunov_decomposition_of_measures_on_effect_algebras","translated_internal_url":"","created_at":"2016-11-15T10:30:58.492-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56692689,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":25902778,"work_id":29856921,"tagging_user_id":56692689,"tagged_user_id":56988471,"co_author_invite_id":5696769,"email":"p***o@unibas.it","display_order":0,"name":"Paolo Vitolo","title":"Lyapunov decomposition of measures on effect algebras"}],"downloadable_attachments":[],"slug":"Lyapunov_decomposition_of_measures_on_effect_algebras","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":56692689,"first_name":"Anna","middle_initials":null,"last_name":"Avallone","page_name":"AvalloneAnna","domain_name":"independent","created_at":"2016-11-15T10:28:51.796-08:00","display_name":"Anna Avallone","url":"https://independent.academia.edu/AvalloneAnna"},"attachments":[],"research_interests":[{"id":801173,"name":"Measures","url":"https://www.academia.edu/Documents/in/Measures"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="29995992"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/29995992/Bornological_Convergences_on_the_Hyperspace_of_a_Uniformizable_Space"><img alt="Research paper thumbnail of Bornological Convergences on the Hyperspace of a Uniformizable Space" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/29995992/Bornological_Convergences_on_the_Hyperspace_of_a_Uniformizable_Space">Bornological Convergences on the Hyperspace of a Uniformizable Space</a></div><div class="wp-workCard_item"><span>Set-Valued and Variational Analysis</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT Bornological convergence is a generalization of the well known Attouch--Wets convergence...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT Bornological convergence is a generalization of the well known Attouch--Wets convergence. Our aim is to compare lower, upper and ``two-sided&amp;#39;&amp;#39; convergences generated by two compatible uniformities and two arbitrary bornologies. Moreover, the comparison of convergences induced by bounded-proximal topologies is characterized.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="29995992"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="29995992"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 29995992; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=29995992]").text(description); $(".js-view-count[data-work-id=29995992]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 29995992; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='29995992']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 29995992, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=29995992]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":29995992,"title":"Bornological Convergences on the Hyperspace of a Uniformizable Space","translated_title":"","metadata":{"abstract":"ABSTRACT Bornological convergence is a generalization of the well known Attouch--Wets convergence. Our aim is to compare lower, upper and ``two-sided\u0026amp;#39;\u0026amp;#39; convergences generated by two compatible uniformities and two arbitrary bornologies. Moreover, the comparison of convergences induced by bounded-proximal topologies is characterized.","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Set-Valued and Variational Analysis"},"translated_abstract":"ABSTRACT Bornological convergence is a generalization of the well known Attouch--Wets convergence. Our aim is to compare lower, upper and ``two-sided\u0026amp;#39;\u0026amp;#39; convergences generated by two compatible uniformities and two arbitrary bornologies. Moreover, the comparison of convergences induced by bounded-proximal topologies is characterized.","internal_url":"https://www.academia.edu/29995992/Bornological_Convergences_on_the_Hyperspace_of_a_Uniformizable_Space","translated_internal_url":"","created_at":"2016-11-21T03:51:15.544-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56988471,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Bornological_Convergences_on_the_Hyperspace_of_a_Uniformizable_Space","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":56988471,"first_name":"Paolo","middle_initials":null,"last_name":"Vitolo","page_name":"PaoloVitolo","domain_name":"independent","created_at":"2016-11-21T03:50:46.663-08:00","display_name":"Paolo Vitolo","url":"https://independent.academia.edu/PaoloVitolo"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="29995991"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/29995991/Tightness_character_and_related_properties_of_hyperspace_topologies"><img alt="Research paper thumbnail of Tightness, character and related properties of hyperspace topologies" class="work-thumbnail" src="https://attachments.academia-assets.com/50454318/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/29995991/Tightness_character_and_related_properties_of_hyperspace_topologies">Tightness, character and related properties of hyperspace topologies</a></div><div class="wp-workCard_item"><span>Topol Appl</span><span>, 2004</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ea90b9fe5cf978897d3eaa9db9e5acb3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":50454318,"asset_id":29995991,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/50454318/download_file?st=MTczMjc1NDAxMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="29995991"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="29995991"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 29995991; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=29995991]").text(description); $(".js-view-count[data-work-id=29995991]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 29995991; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='29995991']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 29995991, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ea90b9fe5cf978897d3eaa9db9e5acb3" } } $('.js-work-strip[data-work-id=29995991]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":29995991,"title":"Tightness, character and related properties of hyperspace topologies","translated_title":"","metadata":{"grobid_abstract":"Given a Hausdorff space X, we calculate the tightness and the character of the hyperspace CL ∅ (X) of X, endowed with either the co-compact or the lower Vietoris topology, and give some estimates for the tightness of CL ∅ (X), endowed with the Fell topology.","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"Topol Appl","grobid_abstract_attachment_id":50454318},"translated_abstract":null,"internal_url":"https://www.academia.edu/29995991/Tightness_character_and_related_properties_of_hyperspace_topologies","translated_internal_url":"","created_at":"2016-11-21T03:51:15.302-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56988471,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":26086762,"work_id":29995991,"tagging_user_id":56988471,"tagged_user_id":null,"co_author_invite_id":5759928,"email":"c***i@unito.it","display_order":0,"name":"Camillo Costantini","title":"Tightness, character and related properties of hyperspace topologies"},{"id":26086764,"work_id":29995991,"tagging_user_id":56988471,"tagged_user_id":null,"co_author_invite_id":5759929,"email":"l***a@mat.savba.sk","display_order":4194304,"name":"Ľubica Holá","title":"Tightness, character and related properties of hyperspace topologies"}],"downloadable_attachments":[{"id":50454318,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50454318/thumbnails/1.jpg","file_name":"Tightness_character_and_related_properti20161121-32695-15a8l51.pdf","download_url":"https://www.academia.edu/attachments/50454318/download_file?st=MTczMjc1NDAxMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Tightness_character_and_related_properti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50454318/Tightness_character_and_related_properti20161121-32695-15a8l51-libre.pdf?1479730467=\u0026response-content-disposition=attachment%3B+filename%3DTightness_character_and_related_properti.pdf\u0026Expires=1732757611\u0026Signature=Y~moOGKyZeGAacxk0IWjxgb~Foo~HLSeH-kMTVoC5d25ucXV27FzJSeb5qqCisafEqJi4qUcoLu5XMK8~YiKauMYcCxpZfwi04USzfc4vSt18BgDAAHvAzYcqGNEDKbH0Lf9AHM~EhQeXhRJQFqvZUnOkdWTc3Ljx1WuqB5AioSuQA3J1nUheAfFjYj0AUInz7z26ZjXDUQpROYXrXCZuQN9KsqQT3yqiVcXh2bOo7zl4HW1qF7e~fB9H0dG52T-Qas4A1tif0dz3iIOLtHy7HFWt4tFhFw~VvqOd6ongKSP0dcFej9fjcJ-~YeGGS7WJ0ZOFNSnXzGIMkHjBElA2w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Tightness_character_and_related_properties_of_hyperspace_topologies","translated_slug":"","page_count":48,"language":"en","content_type":"Work","owner":{"id":56988471,"first_name":"Paolo","middle_initials":null,"last_name":"Vitolo","page_name":"PaoloVitolo","domain_name":"independent","created_at":"2016-11-21T03:50:46.663-08:00","display_name":"Paolo Vitolo","url":"https://independent.academia.edu/PaoloVitolo"},"attachments":[{"id":50454318,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50454318/thumbnails/1.jpg","file_name":"Tightness_character_and_related_properti20161121-32695-15a8l51.pdf","download_url":"https://www.academia.edu/attachments/50454318/download_file?st=MTczMjc1NDAxMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Tightness_character_and_related_properti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50454318/Tightness_character_and_related_properti20161121-32695-15a8l51-libre.pdf?1479730467=\u0026response-content-disposition=attachment%3B+filename%3DTightness_character_and_related_properti.pdf\u0026Expires=1732757611\u0026Signature=Y~moOGKyZeGAacxk0IWjxgb~Foo~HLSeH-kMTVoC5d25ucXV27FzJSeb5qqCisafEqJi4qUcoLu5XMK8~YiKauMYcCxpZfwi04USzfc4vSt18BgDAAHvAzYcqGNEDKbH0Lf9AHM~EhQeXhRJQFqvZUnOkdWTc3Ljx1WuqB5AioSuQA3J1nUheAfFjYj0AUInz7z26ZjXDUQpROYXrXCZuQN9KsqQT3yqiVcXh2bOo7zl4HW1qF7e~fB9H0dG52T-Qas4A1tif0dz3iIOLtHy7HFWt4tFhFw~VvqOd6ongKSP0dcFej9fjcJ-~YeGGS7WJ0ZOFNSnXzGIMkHjBElA2w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"}],"urls":[{"id":7756688,"url":"http://sciencedirect.com/science/article/pii/s0166864104000501"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="29856948"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/29856948/Decomposition_of_Pseudo_effect_Algebras_and_the_Hammer_Sobczyk_Theorem"><img alt="Research paper thumbnail of Decomposition of Pseudo-effect Algebras and the Hammer–Sobczyk Theorem" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/29856948/Decomposition_of_Pseudo_effect_Algebras_and_the_Hammer_Sobczyk_Theorem">Decomposition of Pseudo-effect Algebras and the Hammer–Sobczyk Theorem</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/PinucciaBarbieri">Pinuccia Barbieri</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/AvalloneAnna">Anna Avallone</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/PaoloVitolo">Paolo Vitolo</a>, and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/BarbieriGiuseppina">Giuseppina Barbieri</a></span></div><div class="wp-workCard_item"><span>Order</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="29856948"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="29856948"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 29856948; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=29856948]").text(description); $(".js-view-count[data-work-id=29856948]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 29856948; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='29856948']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 29856948, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=29856948]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":29856948,"title":"Decomposition of Pseudo-effect Algebras and the Hammer–Sobczyk Theorem","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Order"},"translated_abstract":null,"internal_url":"https://www.academia.edu/29856948/Decomposition_of_Pseudo_effect_Algebras_and_the_Hammer_Sobczyk_Theorem","translated_internal_url":"","created_at":"2016-11-15T10:31:02.338-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56692689,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":25902756,"work_id":29856948,"tagging_user_id":56692689,"tagged_user_id":56806793,"co_author_invite_id":4442221,"email":"p***i@gmail.com","display_order":0,"name":"Pinuccia Barbieri","title":"Decomposition of Pseudo-effect Algebras and the Hammer–Sobczyk Theorem"},{"id":25902768,"work_id":29856948,"tagging_user_id":56692689,"tagged_user_id":56988471,"co_author_invite_id":5696769,"email":"p***o@unibas.it","display_order":4194304,"name":"Paolo Vitolo","title":"Decomposition of Pseudo-effect Algebras and the Hammer–Sobczyk Theorem"},{"id":25902781,"work_id":29856948,"tagging_user_id":56692689,"tagged_user_id":null,"co_author_invite_id":3005314,"email":"h***r@dimi.uniud.it","display_order":6291456,"name":"Hans Weber","title":"Decomposition of Pseudo-effect Algebras and the Hammer–Sobczyk Theorem"},{"id":26194623,"work_id":29856948,"tagging_user_id":56988471,"tagged_user_id":42319385,"co_author_invite_id":null,"email":"g***i@uniud.it","display_order":7340032,"name":"Giuseppina Barbieri","title":"Decomposition of Pseudo-effect Algebras and the Hammer–Sobczyk Theorem"}],"downloadable_attachments":[],"slug":"Decomposition_of_Pseudo_effect_Algebras_and_the_Hammer_Sobczyk_Theorem","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":56692689,"first_name":"Anna","middle_initials":null,"last_name":"Avallone","page_name":"AvalloneAnna","domain_name":"independent","created_at":"2016-11-15T10:28:51.796-08:00","display_name":"Anna Avallone","url":"https://independent.academia.edu/AvalloneAnna"},"attachments":[],"research_interests":[{"id":183513,"name":"Order","url":"https://www.academia.edu/Documents/in/Order"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="29995990"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/29995990/On_the_Aumann_Shapley_value"><img alt="Research paper thumbnail of On the Aumann-Shapley value" class="work-thumbnail" src="https://attachments.academia-assets.com/50454305/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/29995990/On_the_Aumann_Shapley_value">On the Aumann-Shapley value</a></div><div class="wp-workCard_item"><span>Positivity</span><span>, May 27, 2008</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="125e448188f1bfc1ba4feb0641490807" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":50454305,"asset_id":29995990,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/50454305/download_file?st=MTczMjc1NDAxMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="29995990"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="29995990"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 29995990; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=29995990]").text(description); $(".js-view-count[data-work-id=29995990]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 29995990; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='29995990']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 29995990, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "125e448188f1bfc1ba4feb0641490807" } } $('.js-work-strip[data-work-id=29995990]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":29995990,"title":"On the Aumann-Shapley value","translated_title":"","metadata":{"grobid_abstract":"Let L be a D-lattice, i.e. a lattice ordered effect algebra, and let BV be the Banach space of all real-valued functions of bounded variation on L (vanishing at 0) endowed with the variation norm. We prove the existence of a continuous Aumann-Shapley value ϕ on bv NA, the subspace of BV spanned by all functions of the form f • µ, where µ : L → [0, 1] is a nonatomic σ-additive modular measure and f : [0, 1] → R is of bounded variation and continuous at 0 and at 1. Mathematics Subject Classification (2000). 28A12, 06C15, 91A12. A. Basile et al. Positivity (D1) a b is defined if and only if b ≤ a; (D2) If b = b c. Vol. 12 (2008) On the Aumann-Shapley value 615","publication_date":{"day":27,"month":5,"year":2008,"errors":{}},"publication_name":"Positivity","grobid_abstract_attachment_id":50454305},"translated_abstract":null,"internal_url":"https://www.academia.edu/29995990/On_the_Aumann_Shapley_value","translated_internal_url":"","created_at":"2016-11-21T03:51:14.663-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56988471,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":26086761,"work_id":29995990,"tagging_user_id":56988471,"tagged_user_id":null,"co_author_invite_id":5759928,"email":"c***i@unito.it","display_order":0,"name":"Camillo Costantini","title":"On the Aumann-Shapley value"},{"id":26086770,"work_id":29995990,"tagging_user_id":56988471,"tagged_user_id":null,"co_author_invite_id":1855420,"email":"b***e@unina.it","display_order":4194304,"name":"Achille Basile","title":"On the Aumann-Shapley value"}],"downloadable_attachments":[{"id":50454305,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50454305/thumbnails/1.jpg","file_name":"s11117-008-2207-x20161121-9768-1gfpiby.pdf","download_url":"https://www.academia.edu/attachments/50454305/download_file?st=MTczMjc1NDAxMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_Aumann_Shapley_value.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50454305/s11117-008-2207-x20161121-9768-1gfpiby-libre.pdf?1479730445=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_Aumann_Shapley_value.pdf\u0026Expires=1732757612\u0026Signature=VJZTGRjxVC7wwvN6yunrBx3CJmxGMnSkscv5TpGw4NZa6hM5SwRJTN6ISxTSo3RO88O9F0Fc-31rgN3LQlgvJNYMsPFr3OjWSAwtgi5E7ge8rb878-l4A~2OwJ4w2Kz2S79dcxRf~2IvVF~MSzCxeEjq7E-m5-JLMJxHOFMz55iL5Vzb35wuqjbAXqUXtypWtArAdCJPt0BNOSB1m9XPz1BC-T1IzCSj-a4uCvKsspD9w1YF3EJ5BxPjdeImIA3TfYsqaIiOnddv4qH8C8yJ1hEiH9QbgSwEKxlYzN4K-3eiXWG-YhsYqWnnAEekfNlAFh086UEr2RfDeCOBF6HMLw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_the_Aumann_Shapley_value","translated_slug":"","page_count":17,"language":"en","content_type":"Work","owner":{"id":56988471,"first_name":"Paolo","middle_initials":null,"last_name":"Vitolo","page_name":"PaoloVitolo","domain_name":"independent","created_at":"2016-11-21T03:50:46.663-08:00","display_name":"Paolo Vitolo","url":"https://independent.academia.edu/PaoloVitolo"},"attachments":[{"id":50454305,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50454305/thumbnails/1.jpg","file_name":"s11117-008-2207-x20161121-9768-1gfpiby.pdf","download_url":"https://www.academia.edu/attachments/50454305/download_file?st=MTczMjc1NDAxMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_Aumann_Shapley_value.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50454305/s11117-008-2207-x20161121-9768-1gfpiby-libre.pdf?1479730445=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_Aumann_Shapley_value.pdf\u0026Expires=1732757612\u0026Signature=VJZTGRjxVC7wwvN6yunrBx3CJmxGMnSkscv5TpGw4NZa6hM5SwRJTN6ISxTSo3RO88O9F0Fc-31rgN3LQlgvJNYMsPFr3OjWSAwtgi5E7ge8rb878-l4A~2OwJ4w2Kz2S79dcxRf~2IvVF~MSzCxeEjq7E-m5-JLMJxHOFMz55iL5Vzb35wuqjbAXqUXtypWtArAdCJPt0BNOSB1m9XPz1BC-T1IzCSj-a4uCvKsspD9w1YF3EJ5BxPjdeImIA3TfYsqaIiOnddv4qH8C8yJ1hEiH9QbgSwEKxlYzN4K-3eiXWG-YhsYqWnnAEekfNlAFh086UEr2RfDeCOBF6HMLw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":86034,"name":"Mathematical Analysis","url":"https://www.academia.edu/Documents/in/Mathematical_Analysis"},{"id":91401,"name":"Bounded Variation","url":"https://www.academia.edu/Documents/in/Bounded_Variation"},{"id":159391,"name":"Shapley value","url":"https://www.academia.edu/Documents/in/Shapley_value"},{"id":178344,"name":"Positivity","url":"https://www.academia.edu/Documents/in/Positivity"},{"id":230427,"name":"Lattice","url":"https://www.academia.edu/Documents/in/Lattice"}],"urls":[{"id":7756687,"url":"http://cat.inist.fr/?aModele=afficheN\u0026cpsidt=20733077"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="29856917"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/29856917/Decomposition_and_control_theorems_in_effect_algebras"><img alt="Research paper thumbnail of Decomposition and control theorems in effect algebras" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/29856917/Decomposition_and_control_theorems_in_effect_algebras">Decomposition and control theorems in effect algebras</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/AvalloneAnna">Anna Avallone</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/PaoloVitolo">Paolo Vitolo</a></span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="29856917"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="29856917"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 29856917; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=29856917]").text(description); $(".js-view-count[data-work-id=29856917]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 29856917; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='29856917']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 29856917, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=29856917]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":29856917,"title":"Decomposition and control theorems in effect algebras","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2003,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/29856917/Decomposition_and_control_theorems_in_effect_algebras","translated_internal_url":"","created_at":"2016-11-15T10:30:57.595-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56692689,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":25902777,"work_id":29856917,"tagging_user_id":56692689,"tagged_user_id":56988471,"co_author_invite_id":5696769,"email":"p***o@unibas.it","display_order":0,"name":"Paolo Vitolo","title":"Decomposition and control theorems in effect algebras"}],"downloadable_attachments":[],"slug":"Decomposition_and_control_theorems_in_effect_algebras","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":56692689,"first_name":"Anna","middle_initials":null,"last_name":"Avallone","page_name":"AvalloneAnna","domain_name":"independent","created_at":"2016-11-15T10:28:51.796-08:00","display_name":"Anna Avallone","url":"https://independent.academia.edu/AvalloneAnna"},"attachments":[],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="29856945"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/29856945/Pseudo_D_lattices_and_separating_points_of_measures"><img alt="Research paper thumbnail of Pseudo-D-lattices and separating points of measures" class="work-thumbnail" src="https://attachments.academia-assets.com/50329284/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/29856945/Pseudo_D_lattices_and_separating_points_of_measures">Pseudo-D-lattices and separating points of measures</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/PaoloVitolo">Paolo Vitolo</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/AvalloneAnna">Anna Avallone</a></span></div><div class="wp-workCard_item"><span>Fuzzy Sets and Systems</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0d80cac17f9feaadfb2c1dc24272c03f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":50329284,"asset_id":29856945,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/50329284/download_file?st=MTczMjc1NDAxMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="29856945"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="29856945"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 29856945; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=29856945]").text(description); $(".js-view-count[data-work-id=29856945]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 29856945; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='29856945']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 29856945, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0d80cac17f9feaadfb2c1dc24272c03f" } } $('.js-work-strip[data-work-id=29856945]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":29856945,"title":"Pseudo-D-lattices and separating points of measures","translated_title":"","metadata":{"ai_title_tag":"Dense Gδ-sets of Separating Points in Pseudo-D-lattices","grobid_abstract":"In 1986, A. Basile and H. Weber proved that every countable family M of σ-additive measures on a σcomplete Boolean ring R admits a dense G δ -set of separating points, with respect to a suitable topology, in the following two cases: either (i) each element of M is s-bounded and, whenever λ, ν ∈ M are distinct, the quotient of R modulo N (λ − ν) is infinite, or (ii) each element of M is continuous.","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Fuzzy Sets and Systems","grobid_abstract_attachment_id":50329284},"translated_abstract":null,"internal_url":"https://www.academia.edu/29856945/Pseudo_D_lattices_and_separating_points_of_measures","translated_internal_url":"","created_at":"2016-11-15T10:31:01.804-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56692689,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":25902770,"work_id":29856945,"tagging_user_id":56692689,"tagged_user_id":56988471,"co_author_invite_id":5696769,"email":"p***o@unibas.it","display_order":0,"name":"Paolo Vitolo","title":"Pseudo-D-lattices and separating points of measures"}],"downloadable_attachments":[{"id":50329284,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50329284/thumbnails/1.jpg","file_name":"Pseudo-D-lattices_and_separating_points_20161115-25016-evwcpv.pdf","download_url":"https://www.academia.edu/attachments/50329284/download_file?st=MTczMjc1NDAxMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Pseudo_D_lattices_and_separating_points.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50329284/Pseudo-D-lattices_and_separating_points_20161115-25016-evwcpv-libre.pdf?1479235543=\u0026response-content-disposition=attachment%3B+filename%3DPseudo_D_lattices_and_separating_points.pdf\u0026Expires=1732757612\u0026Signature=UWi0cjHIbdvWjLyMQAv~fLOUHOIznDCnM2iRdEZFd8vUWJkh3eCtugFYLiqt685o5A0Q~qxaHI14o5FOtu8vQGYdiMNxCoV6fa4PONtJhW7sKUc4r9ns5Hfu0UeK5x3tA5gYD37up0vQP8SBGYSnv~T2TGU5qvK9bcW-kwTIzN~tLGwWvihboIuuR026F6~VAv0o5O0vokeU8PxJfY53lpdyk9cU8B1X2ros61wwcHJ5imceaY8vuqxX5RbbYArQrxHEb-EMK0I0ELMImhxTk2r1-~e8CCHp~AAc6Xg5V4wi4gxjZCJS3QzMmDZkMnwchuGJ7uLEU9KxRmEO2YcYmg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Pseudo_D_lattices_and_separating_points_of_measures","translated_slug":"","page_count":22,"language":"en","content_type":"Work","owner":{"id":56692689,"first_name":"Anna","middle_initials":null,"last_name":"Avallone","page_name":"AvalloneAnna","domain_name":"independent","created_at":"2016-11-15T10:28:51.796-08:00","display_name":"Anna Avallone","url":"https://independent.academia.edu/AvalloneAnna"},"attachments":[{"id":50329284,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50329284/thumbnails/1.jpg","file_name":"Pseudo-D-lattices_and_separating_points_20161115-25016-evwcpv.pdf","download_url":"https://www.academia.edu/attachments/50329284/download_file?st=MTczMjc1NDAxMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Pseudo_D_lattices_and_separating_points.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50329284/Pseudo-D-lattices_and_separating_points_20161115-25016-evwcpv-libre.pdf?1479235543=\u0026response-content-disposition=attachment%3B+filename%3DPseudo_D_lattices_and_separating_points.pdf\u0026Expires=1732757612\u0026Signature=UWi0cjHIbdvWjLyMQAv~fLOUHOIznDCnM2iRdEZFd8vUWJkh3eCtugFYLiqt685o5A0Q~qxaHI14o5FOtu8vQGYdiMNxCoV6fa4PONtJhW7sKUc4r9ns5Hfu0UeK5x3tA5gYD37up0vQP8SBGYSnv~T2TGU5qvK9bcW-kwTIzN~tLGwWvihboIuuR026F6~VAv0o5O0vokeU8PxJfY53lpdyk9cU8B1X2ros61wwcHJ5imceaY8vuqxX5RbbYArQrxHEb-EMK0I0ELMImhxTk2r1-~e8CCHp~AAc6Xg5V4wi4gxjZCJS3QzMmDZkMnwchuGJ7uLEU9KxRmEO2YcYmg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":652157,"name":"Fuzzy Sets and Systems","url":"https://www.academia.edu/Documents/in/Fuzzy_Sets_and_Systems"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="29995989"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/29995989/Comparability_of_lower_Attouch_Wets_topologies"><img alt="Research paper thumbnail of Comparability of lower Attouch--Wets topologies" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/29995989/Comparability_of_lower_Attouch_Wets_topologies">Comparability of lower Attouch--Wets topologies</a></div><div class="wp-workCard_item"><span>Filomat</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Beer and Di Concilio have given necessary and sufficient conditions for a two-sided Attouch--Wets...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Beer and Di Concilio have given necessary and sufficient conditions for a two-sided Attouch--Wets topology to contain another on the hyperspace of non-empty closed subsets of a metrizable space as determined by metrics compatible with the topology. In the present paper, we characterize comparability of lower Attouch--Wets topologies as determined by compatible metrics.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="29995989"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="29995989"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 29995989; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=29995989]").text(description); $(".js-view-count[data-work-id=29995989]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 29995989; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='29995989']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 29995989, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=29995989]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":29995989,"title":"Comparability of lower Attouch--Wets topologies","translated_title":"","metadata":{"abstract":"Beer and Di Concilio have given necessary and sufficient conditions for a two-sided Attouch--Wets topology to contain another on the hyperspace of non-empty closed subsets of a metrizable space as determined by metrics compatible with the topology. In the present paper, we characterize comparability of lower Attouch--Wets topologies as determined by compatible metrics.","publication_name":"Filomat"},"translated_abstract":"Beer and Di Concilio have given necessary and sufficient conditions for a two-sided Attouch--Wets topology to contain another on the hyperspace of non-empty closed subsets of a metrizable space as determined by metrics compatible with the topology. In the present paper, we characterize comparability of lower Attouch--Wets topologies as determined by compatible metrics.","internal_url":"https://www.academia.edu/29995989/Comparability_of_lower_Attouch_Wets_topologies","translated_internal_url":"","created_at":"2016-11-21T03:51:14.070-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56988471,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Comparability_of_lower_Attouch_Wets_topologies","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":56988471,"first_name":"Paolo","middle_initials":null,"last_name":"Vitolo","page_name":"PaoloVitolo","domain_name":"independent","created_at":"2016-11-21T03:50:46.663-08:00","display_name":"Paolo Vitolo","url":"https://independent.academia.edu/PaoloVitolo"},"attachments":[],"research_interests":[{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="6181641" id="papers"><div class="js-work-strip profile--work_container" data-work-id="30082919"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30082919/When_is_Kuratowski_convergence_topological"><img alt="Research paper thumbnail of When is Kuratowski convergence topological?" class="work-thumbnail" src="https://attachments.academia-assets.com/50534228/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30082919/When_is_Kuratowski_convergence_topological">When is Kuratowski convergence topological?</a></div><div class="wp-workCard_item"><span>Filomat</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="021b1d4d8ec805156c74ef29094765c9" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":50534228,"asset_id":30082919,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/50534228/download_file?st=MTczMjc1NDAxMiw4LjIyMi4yMDguMTQ2&st=MTczMjc1NDAxMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30082919"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30082919"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30082919; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30082919]").text(description); $(".js-view-count[data-work-id=30082919]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30082919; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30082919']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30082919, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "021b1d4d8ec805156c74ef29094765c9" } } $('.js-work-strip[data-work-id=30082919]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30082919,"title":"When is Kuratowski convergence topological?","translated_title":"","metadata":{"grobid_abstract":"It is known that if a topological space X is locally compact then the Kuratowski convergence on the closed subsets of X is topological. We show that the converse is true, provided that X is quasi-sober.","publication_name":"Filomat","grobid_abstract_attachment_id":50534228},"translated_abstract":null,"internal_url":"https://www.academia.edu/30082919/When_is_Kuratowski_convergence_topological","translated_internal_url":"","created_at":"2016-11-25T01:58:25.207-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56988471,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":50534228,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50534228/thumbnails/1.jpg","file_name":"When_is_Kuratowski_convergence_topologic20161125-27184-1lbxqmx.pdf","download_url":"https://www.academia.edu/attachments/50534228/download_file?st=MTczMjc1NDAxMiw4LjIyMi4yMDguMTQ2&st=MTczMjc1NDAxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"When_is_Kuratowski_convergence_topologic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50534228/When_is_Kuratowski_convergence_topologic20161125-27184-1lbxqmx-libre.pdf?1480068173=\u0026response-content-disposition=attachment%3B+filename%3DWhen_is_Kuratowski_convergence_topologic.pdf\u0026Expires=1732757610\u0026Signature=QOmMXAeSByWf9mk~~jRiQJ55o7pkzChffLsSZuVSwMZcqON09ts~0lfjiAEpqsQ4AO038yNtC~CVA7GzqZqBhPhqy~nR1pOt0wA7ek9c7Xr92a64Ilrypp14qnhoPGAjaBxFyOPBbLnG887WgWZbNBfExXV4viv5k5JEK47dlEkCn56tTJVImB0J3jplo7aPf-bwQdw57p~ZEbhvv9n1vvJkB25Ss4UioqXOn-orifxIm0VRh8~9yEeTcBQomyQQhmmls1wMyLFRCFgH1OEWmMnVu8~aGspWjTxTyaKlqRVEv7q9fWa6E2nYzab2jkSezhi3WVTkVcAU1GTIebYQqQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"When_is_Kuratowski_convergence_topological","translated_slug":"","page_count":19,"language":"en","content_type":"Work","owner":{"id":56988471,"first_name":"Paolo","middle_initials":null,"last_name":"Vitolo","page_name":"PaoloVitolo","domain_name":"independent","created_at":"2016-11-21T03:50:46.663-08:00","display_name":"Paolo Vitolo","url":"https://independent.academia.edu/PaoloVitolo"},"attachments":[{"id":50534228,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50534228/thumbnails/1.jpg","file_name":"When_is_Kuratowski_convergence_topologic20161125-27184-1lbxqmx.pdf","download_url":"https://www.academia.edu/attachments/50534228/download_file?st=MTczMjc1NDAxMiw4LjIyMi4yMDguMTQ2&st=MTczMjc1NDAxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"When_is_Kuratowski_convergence_topologic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50534228/When_is_Kuratowski_convergence_topologic20161125-27184-1lbxqmx-libre.pdf?1480068173=\u0026response-content-disposition=attachment%3B+filename%3DWhen_is_Kuratowski_convergence_topologic.pdf\u0026Expires=1732757610\u0026Signature=QOmMXAeSByWf9mk~~jRiQJ55o7pkzChffLsSZuVSwMZcqON09ts~0lfjiAEpqsQ4AO038yNtC~CVA7GzqZqBhPhqy~nR1pOt0wA7ek9c7Xr92a64Ilrypp14qnhoPGAjaBxFyOPBbLnG887WgWZbNBfExXV4viv5k5JEK47dlEkCn56tTJVImB0J3jplo7aPf-bwQdw57p~ZEbhvv9n1vvJkB25Ss4UioqXOn-orifxIm0VRh8~9yEeTcBQomyQQhmmls1wMyLFRCFgH1OEWmMnVu8~aGspWjTxTyaKlqRVEv7q9fWa6E2nYzab2jkSezhi3WVTkVcAU1GTIebYQqQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30082918"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30082918/The_reconstruction_of_simply_disconnected_tournaments"><img alt="Research paper thumbnail of The reconstruction of simply disconnected tournaments" class="work-thumbnail" src="https://attachments.academia-assets.com/50534227/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30082918/The_reconstruction_of_simply_disconnected_tournaments">The reconstruction of simply disconnected tournaments</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper we will prove that simply disconnected tournaments of order at least 7 are reconstr...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper we will prove that simply disconnected tournaments of order at least 7 are reconstructible, i.e. they are determined (up to isomorphisms) by their subtournaments.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="12dd5216780152648485520214cb191e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":50534227,"asset_id":30082918,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/50534227/download_file?st=MTczMjc1NDAxMiw4LjIyMi4yMDguMTQ2&st=MTczMjc1NDAxMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30082918"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30082918"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30082918; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30082918]").text(description); $(".js-view-count[data-work-id=30082918]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30082918; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30082918']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30082918, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "12dd5216780152648485520214cb191e" } } $('.js-work-strip[data-work-id=30082918]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30082918,"title":"The reconstruction of simply disconnected tournaments","translated_title":"","metadata":{"abstract":"In this paper we will prove that simply disconnected tournaments of order at least 7 are reconstructible, i.e. they are determined (up to isomorphisms) by their subtournaments."},"translated_abstract":"In this paper we will prove that simply disconnected tournaments of order at least 7 are reconstructible, i.e. they are determined (up to isomorphisms) by their subtournaments.","internal_url":"https://www.academia.edu/30082918/The_reconstruction_of_simply_disconnected_tournaments","translated_internal_url":"","created_at":"2016-11-25T01:58:25.104-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56988471,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":50534227,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50534227/thumbnails/1.jpg","file_name":"The_reconstruction_of_simply_disconnecte20161125-27180-1uz0two.pdf","download_url":"https://www.academia.edu/attachments/50534227/download_file?st=MTczMjc1NDAxMiw4LjIyMi4yMDguMTQ2&st=MTczMjc1NDAxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_reconstruction_of_simply_disconnecte.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50534227/The_reconstruction_of_simply_disconnecte20161125-27180-1uz0two-libre.pdf?1480068174=\u0026response-content-disposition=attachment%3B+filename%3DThe_reconstruction_of_simply_disconnecte.pdf\u0026Expires=1732757610\u0026Signature=cgbz4aeRESNUaAlAzIGi1hRrf3ne8UYcL0RHLz9-AzoSxwCSbFbhLaiOsqRTY00JlRO0bb2BYhjaJ0rhbkXsHKM7m3kM89-36q5fMvJ1KbB7LASd~ZToiQgi4DmCaGNJ3AlpfgwFot-j925lO60FfnVHa987qLVOqK~jtv53Vw2YgVERrYSd6FDRj4ThLoIAPJ1N~JAWh4WpUddmsxapr4ayvHaph59bDmBrhY2O6dOc-mngGN0w2MxH246vxHLbx0PlEFP1uSfzuMUzBftncY7fIStvhA-DpMEdB8QJ-sq2Np6NPfvfvNM0eKBvxTtuX3OaK6zXNZQWU3oLa4K7Pw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_reconstruction_of_simply_disconnected_tournaments","translated_slug":"","page_count":13,"language":"en","content_type":"Work","owner":{"id":56988471,"first_name":"Paolo","middle_initials":null,"last_name":"Vitolo","page_name":"PaoloVitolo","domain_name":"independent","created_at":"2016-11-21T03:50:46.663-08:00","display_name":"Paolo Vitolo","url":"https://independent.academia.edu/PaoloVitolo"},"attachments":[{"id":50534227,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50534227/thumbnails/1.jpg","file_name":"The_reconstruction_of_simply_disconnecte20161125-27180-1uz0two.pdf","download_url":"https://www.academia.edu/attachments/50534227/download_file?st=MTczMjc1NDAxMiw4LjIyMi4yMDguMTQ2&st=MTczMjc1NDAxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_reconstruction_of_simply_disconnecte.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50534227/The_reconstruction_of_simply_disconnecte20161125-27180-1uz0two-libre.pdf?1480068174=\u0026response-content-disposition=attachment%3B+filename%3DThe_reconstruction_of_simply_disconnecte.pdf\u0026Expires=1732757610\u0026Signature=cgbz4aeRESNUaAlAzIGi1hRrf3ne8UYcL0RHLz9-AzoSxwCSbFbhLaiOsqRTY00JlRO0bb2BYhjaJ0rhbkXsHKM7m3kM89-36q5fMvJ1KbB7LASd~ZToiQgi4DmCaGNJ3AlpfgwFot-j925lO60FfnVHa987qLVOqK~jtv53Vw2YgVERrYSd6FDRj4ThLoIAPJ1N~JAWh4WpUddmsxapr4ayvHaph59bDmBrhY2O6dOc-mngGN0w2MxH246vxHLbx0PlEFP1uSfzuMUzBftncY7fIStvhA-DpMEdB8QJ-sq2Np6NPfvfvNM0eKBvxTtuX3OaK6zXNZQWU3oLa4K7Pw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30082917"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30082917/Decomposition_of_topologies_on_lattices_and_hyperspaces"><img alt="Research paper thumbnail of Decomposition of topologies on lattices and hyperspaces" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30082917/Decomposition_of_topologies_on_lattices_and_hyperspaces">Decomposition of topologies on lattices and hyperspaces</a></div><div class="wp-workCard_item"><span>Dissertationes Mathematicae</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30082917"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30082917"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30082917; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30082917]").text(description); $(".js-view-count[data-work-id=30082917]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30082917; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30082917']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30082917, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30082917]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30082917,"title":"Decomposition of topologies on lattices and hyperspaces","translated_title":"","metadata":{"publication_name":"Dissertationes Mathematicae"},"translated_abstract":null,"internal_url":"https://www.academia.edu/30082917/Decomposition_of_topologies_on_lattices_and_hyperspaces","translated_internal_url":"","created_at":"2016-11-25T01:58:24.994-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56988471,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Decomposition_of_topologies_on_lattices_and_hyperspaces","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":56988471,"first_name":"Paolo","middle_initials":null,"last_name":"Vitolo","page_name":"PaoloVitolo","domain_name":"independent","created_at":"2016-11-21T03:50:46.663-08:00","display_name":"Paolo Vitolo","url":"https://independent.academia.edu/PaoloVitolo"},"attachments":[],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30082916"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30082916/The_representation_of_weighted_quasi_metric_spaces"><img alt="Research paper thumbnail of The representation of weighted quasi-metric spaces" class="work-thumbnail" src="https://attachments.academia-assets.com/50534226/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30082916/The_representation_of_weighted_quasi_metric_spaces">The representation of weighted quasi-metric spaces</a></div><div class="wp-workCard_item"><span>Rendiconti dell'Istituto di Matematica dell'Universita di Trieste</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this note we continue the investigation carried out in [Topology Appl. 65, No. 1, 101-104 (199...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this note we continue the investigation carried out in [Topology Appl. 65, No. 1, 101-104 (1995; Zbl 0828.54024)]. We show that every weighted quasi-metric space can be identified with a subspace of a space of some canonical type, which is constructed from a metric space. We also present a very simple method to construct a weighted quasi-metric space, as the graph of a function defined on a metric space, and show that every weighted quasi-metric space arises in this way. Similar results may be obtained if we drop the requirement that the weight function have nonnegative values.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f0d9e7cf9803f9c5ba4e1628aab10a83" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":50534226,"asset_id":30082916,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/50534226/download_file?st=MTczMjc1NDAxMiw4LjIyMi4yMDguMTQ2&st=MTczMjc1NDAxMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30082916"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30082916"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30082916; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30082916]").text(description); $(".js-view-count[data-work-id=30082916]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30082916; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30082916']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30082916, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f0d9e7cf9803f9c5ba4e1628aab10a83" } } $('.js-work-strip[data-work-id=30082916]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30082916,"title":"The representation of weighted quasi-metric spaces","translated_title":"","metadata":{"abstract":"In this note we continue the investigation carried out in [Topology Appl. 65, No. 1, 101-104 (1995; Zbl 0828.54024)]. We show that every weighted quasi-metric space can be identified with a subspace of a space of some canonical type, which is constructed from a metric space. We also present a very simple method to construct a weighted quasi-metric space, as the graph of a function defined on a metric space, and show that every weighted quasi-metric space arises in this way. Similar results may be obtained if we drop the requirement that the weight function have nonnegative values.","publication_name":"Rendiconti dell'Istituto di Matematica dell'Universita di Trieste"},"translated_abstract":"In this note we continue the investigation carried out in [Topology Appl. 65, No. 1, 101-104 (1995; Zbl 0828.54024)]. We show that every weighted quasi-metric space can be identified with a subspace of a space of some canonical type, which is constructed from a metric space. We also present a very simple method to construct a weighted quasi-metric space, as the graph of a function defined on a metric space, and show that every weighted quasi-metric space arises in this way. Similar results may be obtained if we drop the requirement that the weight function have nonnegative values.","internal_url":"https://www.academia.edu/30082916/The_representation_of_weighted_quasi_metric_spaces","translated_internal_url":"","created_at":"2016-11-25T01:58:24.889-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56988471,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":50534226,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50534226/thumbnails/1.jpg","file_name":"The_representation_of_weighted_quasi-met20161125-27180-gwjm88.pdf","download_url":"https://www.academia.edu/attachments/50534226/download_file?st=MTczMjc1NDAxMiw4LjIyMi4yMDguMTQ2&st=MTczMjc1NDAxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_representation_of_weighted_quasi_met.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50534226/The_representation_of_weighted_quasi-met20161125-27180-gwjm88-libre.pdf?1480068172=\u0026response-content-disposition=attachment%3B+filename%3DThe_representation_of_weighted_quasi_met.pdf\u0026Expires=1732757610\u0026Signature=EcJXWojBEaj7J7xuXY6sW6y7Jk96uzIgyTKd~iqpX01XfU0Y89JGJ-JwuaoPambBmm7xwkQz8xHOz8MlZ~JS1w85dr06-ov4sYsixK1lmvHfBVENti-yrLJtfYeefGutgbjP2pDS~h7PCnuuamCulRqff049xC4b47vmpYmuJsgDblPBiOQYo~DhBU8MFl2ZnoPphAtewZ9j-PStFDJlxRWX5xxAa9lArtRg104HNqX0vlwl5Bx9dzykdUr0IKLNlGNP-GzHwFmLmrJQmHIMbi24TE~QBUwRbuoxw6AVuyJ66yJ7FtzjJ6Hs8yWE5NPCvJnW4xZwVSwW3q3WFG0PZQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_representation_of_weighted_quasi_metric_spaces","translated_slug":"","page_count":6,"language":"lv","content_type":"Work","owner":{"id":56988471,"first_name":"Paolo","middle_initials":null,"last_name":"Vitolo","page_name":"PaoloVitolo","domain_name":"independent","created_at":"2016-11-21T03:50:46.663-08:00","display_name":"Paolo Vitolo","url":"https://independent.academia.edu/PaoloVitolo"},"attachments":[{"id":50534226,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50534226/thumbnails/1.jpg","file_name":"The_representation_of_weighted_quasi-met20161125-27180-gwjm88.pdf","download_url":"https://www.academia.edu/attachments/50534226/download_file?st=MTczMjc1NDAxMiw4LjIyMi4yMDguMTQ2&st=MTczMjc1NDAxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_representation_of_weighted_quasi_met.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50534226/The_representation_of_weighted_quasi-met20161125-27180-gwjm88-libre.pdf?1480068172=\u0026response-content-disposition=attachment%3B+filename%3DThe_representation_of_weighted_quasi_met.pdf\u0026Expires=1732757610\u0026Signature=EcJXWojBEaj7J7xuXY6sW6y7Jk96uzIgyTKd~iqpX01XfU0Y89JGJ-JwuaoPambBmm7xwkQz8xHOz8MlZ~JS1w85dr06-ov4sYsixK1lmvHfBVENti-yrLJtfYeefGutgbjP2pDS~h7PCnuuamCulRqff049xC4b47vmpYmuJsgDblPBiOQYo~DhBU8MFl2ZnoPphAtewZ9j-PStFDJlxRWX5xxAa9lArtRg104HNqX0vlwl5Bx9dzykdUr0IKLNlGNP-GzHwFmLmrJQmHIMbi24TE~QBUwRbuoxw6AVuyJ66yJ7FtzjJ6Hs8yWE5NPCvJnW4xZwVSwW3q3WFG0PZQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":237878,"name":"Fuzzy Metric Space","url":"https://www.academia.edu/Documents/in/Fuzzy_Metric_Space"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30082915"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30082915/Compatibility_and_central_elements_in_pseudo_effect_algebras"><img alt="Research paper thumbnail of Compatibility and central elements in pseudo-effect algebras" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30082915/Compatibility_and_central_elements_in_pseudo_effect_algebras">Compatibility and central elements in pseudo-effect algebras</a></div><div class="wp-workCard_item"><span>Kybernetika -Praha-</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30082915"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30082915"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30082915; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30082915]").text(description); $(".js-view-count[data-work-id=30082915]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30082915; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30082915']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30082915, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30082915]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30082915,"title":"Compatibility and central elements in pseudo-effect algebras","translated_title":"","metadata":{"publication_name":"Kybernetika -Praha-"},"translated_abstract":null,"internal_url":"https://www.academia.edu/30082915/Compatibility_and_central_elements_in_pseudo_effect_algebras","translated_internal_url":"","created_at":"2016-11-25T01:58:24.777-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56988471,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Compatibility_and_central_elements_in_pseudo_effect_algebras","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":56988471,"first_name":"Paolo","middle_initials":null,"last_name":"Vitolo","page_name":"PaoloVitolo","domain_name":"independent","created_at":"2016-11-21T03:50:46.663-08:00","display_name":"Paolo Vitolo","url":"https://independent.academia.edu/PaoloVitolo"},"attachments":[],"research_interests":[{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics"},{"id":7936,"name":"Quantum Mechanics","url":"https://www.academia.edu/Documents/in/Quantum_Mechanics"},{"id":28422,"name":"Quantum Computation","url":"https://www.academia.edu/Documents/in/Quantum_Computation"},{"id":230427,"name":"Lattice","url":"https://www.academia.edu/Documents/in/Lattice"},{"id":348250,"name":"Algebraic Logic","url":"https://www.academia.edu/Documents/in/Algebraic_Logic"},{"id":1002691,"name":"Compatibility","url":"https://www.academia.edu/Documents/in/Compatibility"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30082914"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30082914/A_representation_theorem_for_quasi_metric_spaces"><img alt="Research paper thumbnail of A representation theorem for quasi-metric spaces" class="work-thumbnail" src="https://attachments.academia-assets.com/50534224/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30082914/A_representation_theorem_for_quasi_metric_spaces">A representation theorem for quasi-metric spaces</a></div><div class="wp-workCard_item"><span>Topology and its Applications</span><span>, 1995</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="20b6bc86343438b4ed8773a8934d6327" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":50534224,"asset_id":30082914,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/50534224/download_file?st=MTczMjc1NDAxMiw4LjIyMi4yMDguMTQ2&st=MTczMjc1NDAxMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30082914"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30082914"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30082914; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30082914]").text(description); $(".js-view-count[data-work-id=30082914]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30082914; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30082914']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30082914, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "20b6bc86343438b4ed8773a8934d6327" } } $('.js-work-strip[data-work-id=30082914]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30082914,"title":"A representation theorem for quasi-metric spaces","translated_title":"","metadata":{"grobid_abstract":"We show that every quasi-metric space is isomorphic to a subspace of the hyperspace of a suitable metric space, endowed with the Hausdorff quasi-metric. Therefore a topological space is quasi-metrizable if and only if it can be embedded in a Hausdorff quasi-metric hyperspace.","publication_date":{"day":null,"month":null,"year":1995,"errors":{}},"publication_name":"Topology and its Applications","grobid_abstract_attachment_id":50534224},"translated_abstract":null,"internal_url":"https://www.academia.edu/30082914/A_representation_theorem_for_quasi_metric_spaces","translated_internal_url":"","created_at":"2016-11-25T01:58:24.650-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56988471,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":50534224,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50534224/thumbnails/1.jpg","file_name":"A_representation_theorem_for_quasi-metri20161125-27180-15h34q8.pdf","download_url":"https://www.academia.edu/attachments/50534224/download_file?st=MTczMjc1NDAxMiw4LjIyMi4yMDguMTQ2&st=MTczMjc1NDAxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_representation_theorem_for_quasi_metri.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50534224/A_representation_theorem_for_quasi-metri20161125-27180-15h34q8-libre.pdf?1480068174=\u0026response-content-disposition=attachment%3B+filename%3DA_representation_theorem_for_quasi_metri.pdf\u0026Expires=1732757610\u0026Signature=LU7PBOL64Jg-18R3bu5fgLPACZLn5Ejw5HVfd146y6ZBjRorkwfUpzsETcU0va2u72vYwef0aBA8wip2F7ElBI8OY28y~piUXzzGluyLA-QFJUV~PtvWloNeECwFl5R13K4HYyQ9zgjuoZuaQloh2NBNsZ7se8hDTmd9mpHSWf2PhB7TY6czbaDH1xc2gYZNRpyGFVrvzuBbdDuD7Z1IwNh~OP~vquIdAIeHpMZBBoWEpgkYp0~-Lyc7~8-iY5nOT5ZUfrWjEsgj3h~N1AMXAjIoQehsJadOMtO7vbVuyYkrxymSXs0mZnCkzSBeHxO17OHuT2lqTBBaObR7E4DIsg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_representation_theorem_for_quasi_metric_spaces","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":56988471,"first_name":"Paolo","middle_initials":null,"last_name":"Vitolo","page_name":"PaoloVitolo","domain_name":"independent","created_at":"2016-11-21T03:50:46.663-08:00","display_name":"Paolo Vitolo","url":"https://independent.academia.edu/PaoloVitolo"},"attachments":[{"id":50534224,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50534224/thumbnails/1.jpg","file_name":"A_representation_theorem_for_quasi-metri20161125-27180-15h34q8.pdf","download_url":"https://www.academia.edu/attachments/50534224/download_file?st=MTczMjc1NDAxMiw4LjIyMi4yMDguMTQ2&st=MTczMjc1NDAxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_representation_theorem_for_quasi_metri.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50534224/A_representation_theorem_for_quasi-metri20161125-27180-15h34q8-libre.pdf?1480068174=\u0026response-content-disposition=attachment%3B+filename%3DA_representation_theorem_for_quasi_metri.pdf\u0026Expires=1732757610\u0026Signature=LU7PBOL64Jg-18R3bu5fgLPACZLn5Ejw5HVfd146y6ZBjRorkwfUpzsETcU0va2u72vYwef0aBA8wip2F7ElBI8OY28y~piUXzzGluyLA-QFJUV~PtvWloNeECwFl5R13K4HYyQ9zgjuoZuaQloh2NBNsZ7se8hDTmd9mpHSWf2PhB7TY6czbaDH1xc2gYZNRpyGFVrvzuBbdDuD7Z1IwNh~OP~vquIdAIeHpMZBBoWEpgkYp0~-Lyc7~8-iY5nOT5ZUfrWjEsgj3h~N1AMXAjIoQehsJadOMtO7vbVuyYkrxymSXs0mZnCkzSBeHxO17OHuT2lqTBBaObR7E4DIsg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":237878,"name":"Fuzzy Metric Space","url":"https://www.academia.edu/Documents/in/Fuzzy_Metric_Space"},{"id":782638,"name":"Topological Space","url":"https://www.academia.edu/Documents/in/Topological_Space"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30082913"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30082913/A_generalization_of_set_difference"><img alt="Research paper thumbnail of A generalization of set-difference" class="work-thumbnail" src="https://attachments.academia-assets.com/50534225/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30082913/A_generalization_of_set_difference">A generalization of set-difference</a></div><div class="wp-workCard_item"><span>Mathematica Slovaca</span><span>, 2011</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b0edb29c412215c1bc797e09cfeee98c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":50534225,"asset_id":30082913,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/50534225/download_file?st=MTczMjc1NDAxMiw4LjIyMi4yMDguMTQ2&st=MTczMjc1NDAxMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30082913"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30082913"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30082913; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30082913]").text(description); $(".js-view-count[data-work-id=30082913]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30082913; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30082913']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30082913, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b0edb29c412215c1bc797e09cfeee98c" } } $('.js-work-strip[data-work-id=30082913]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30082913,"title":"A generalization of set-difference","translated_title":"","metadata":{"grobid_abstract":"A structure called d 0 -algebra is defined and studied, which leads to a new description of D-lattices and generalized D-lattices by means of only one totally defined operation. c 2011 Mathematical Institute Slovak Academy of Sciences 2010 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n: Primary 03G05; Secondary 03G25, 81P10. K e y w o r d s: set-difference, Boolean algebra, D-lattice, D-poset, generalized D-lattice, congruence, ideal.","publication_date":{"day":null,"month":null,"year":2011,"errors":{}},"publication_name":"Mathematica Slovaca","grobid_abstract_attachment_id":50534225},"translated_abstract":null,"internal_url":"https://www.academia.edu/30082913/A_generalization_of_set_difference","translated_internal_url":"","created_at":"2016-11-25T01:58:24.526-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56988471,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":50534225,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50534225/thumbnails/1.jpg","file_name":"A_generalization_of_set-difference20161125-27183-2i2dkq.pdf","download_url":"https://www.academia.edu/attachments/50534225/download_file?st=MTczMjc1NDAxMiw4LjIyMi4yMDguMTQ2&st=MTczMjc1NDAxMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_generalization_of_set_difference.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50534225/A_generalization_of_set-difference20161125-27183-2i2dkq-libre.pdf?1480068174=\u0026response-content-disposition=attachment%3B+filename%3DA_generalization_of_set_difference.pdf\u0026Expires=1732757610\u0026Signature=DM8Tb37v8QMsufKCMkaDMbbvTtZGVQjLLX8cO2LayNrTw5UCdhq-sE0MizIo-~WfdqhJne50qyor~HdNBHiSZyNtsK2WkuWv4Cxv1Uo8py3TPrkm70Rfh9ph0SZ9WXn8n9VXCVcSCnq3uhgeLZs9ihVOhIFYFFYm9PXzf~YASbQ4G-5jjpMedlrQB-Umlvc6Y87msGrwtGLTAgmxbg2Z4dy4BCDkXqznjkG-1hUvwAoLl0VwuZPhz~JdLaNrUXJYQSKtGvukQCFX24bCuk5uGIDr1uL1GzSti76zPGbTzJlZ5DCM2qmCoTo~yZeHgoH2zS1QT7AGXpXyibnGiDOZww__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_generalization_of_set_difference","translated_slug":"","page_count":16,"language":"en","content_type":"Work","owner":{"id":56988471,"first_name":"Paolo","middle_initials":null,"last_name":"Vitolo","page_name":"PaoloVitolo","domain_name":"independent","created_at":"2016-11-21T03:50:46.663-08:00","display_name":"Paolo Vitolo","url":"https://independent.academia.edu/PaoloVitolo"},"attachments":[{"id":50534225,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50534225/thumbnails/1.jpg","file_name":"A_generalization_of_set-difference20161125-27183-2i2dkq.pdf","download_url":"https://www.academia.edu/attachments/50534225/download_file?st=MTczMjc1NDAxMiw4LjIyMi4yMDguMTQ2&st=MTczMjc1NDAxMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_generalization_of_set_difference.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50534225/A_generalization_of_set-difference20161125-27183-2i2dkq-libre.pdf?1480068174=\u0026response-content-disposition=attachment%3B+filename%3DA_generalization_of_set_difference.pdf\u0026Expires=1732757610\u0026Signature=DM8Tb37v8QMsufKCMkaDMbbvTtZGVQjLLX8cO2LayNrTw5UCdhq-sE0MizIo-~WfdqhJne50qyor~HdNBHiSZyNtsK2WkuWv4Cxv1Uo8py3TPrkm70Rfh9ph0SZ9WXn8n9VXCVcSCnq3uhgeLZs9ihVOhIFYFFYm9PXzf~YASbQ4G-5jjpMedlrQB-Umlvc6Y87msGrwtGLTAgmxbg2Z4dy4BCDkXqznjkG-1hUvwAoLl0VwuZPhz~JdLaNrUXJYQSKtGvukQCFX24bCuk5uGIDr1uL1GzSti76zPGbTzJlZ5DCM2qmCoTo~yZeHgoH2zS1QT7AGXpXyibnGiDOZww__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30082912"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30082912/A_question_about_basic_algebras"><img alt="Research paper thumbnail of A question about basic algebras" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30082912/A_question_about_basic_algebras">A question about basic algebras</a></div><div class="wp-workCard_item"><span>Algebra universalis</span><span>, 2009</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30082912"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30082912"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30082912; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30082912]").text(description); $(".js-view-count[data-work-id=30082912]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30082912; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30082912']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 30082912, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30082912]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30082912,"title":"A question about basic algebras","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"Algebra universalis"},"translated_abstract":null,"internal_url":"https://www.academia.edu/30082912/A_question_about_basic_algebras","translated_internal_url":"","created_at":"2016-11-25T01:58:24.372-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56988471,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_question_about_basic_algebras","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":56988471,"first_name":"Paolo","middle_initials":null,"last_name":"Vitolo","page_name":"PaoloVitolo","domain_name":"independent","created_at":"2016-11-21T03:50:46.663-08:00","display_name":"Paolo Vitolo","url":"https://independent.academia.edu/PaoloVitolo"},"attachments":[],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="29605381"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/29605381/Decomposition_of_Pseudo_effect_Algebras_and_the_Hammer_Sobczyk_Theorem"><img alt="Research paper thumbnail of Decomposition of Pseudo-effect Algebras and the Hammer–Sobczyk Theorem" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/29605381/Decomposition_of_Pseudo_effect_Algebras_and_the_Hammer_Sobczyk_Theorem">Decomposition of Pseudo-effect Algebras and the Hammer–Sobczyk Theorem</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/BarbieriGiuseppina">Giuseppina Barbieri</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/PaoloVitolo">Paolo Vitolo</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/AvalloneAnna">Anna Avallone</a>, and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/HansWeber6">Hans Weber</a></span></div><div class="wp-workCard_item"><span>Order</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="29605381"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="29605381"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 29605381; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=29605381]").text(description); $(".js-view-count[data-work-id=29605381]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 29605381; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='29605381']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 29605381, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=29605381]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":29605381,"title":"Decomposition of Pseudo-effect Algebras and the Hammer–Sobczyk Theorem","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Order"},"translated_abstract":null,"internal_url":"https://www.academia.edu/29605381/Decomposition_of_Pseudo_effect_Algebras_and_the_Hammer_Sobczyk_Theorem","translated_internal_url":"","created_at":"2016-11-01T22:49:13.682-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":42319385,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":25799155,"work_id":29605381,"tagging_user_id":42319385,"tagged_user_id":56988471,"co_author_invite_id":5706614,"email":"p***o@unibas.it","display_order":0,"name":"Paolo Vitolo","title":"Decomposition of Pseudo-effect Algebras and the Hammer–Sobczyk Theorem"},{"id":26098485,"work_id":29605381,"tagging_user_id":56988471,"tagged_user_id":56692689,"co_author_invite_id":null,"email":"a***e@unibas.it","display_order":4194304,"name":"Anna Avallone","title":"Decomposition of Pseudo-effect Algebras and the Hammer–Sobczyk Theorem"},{"id":26098492,"work_id":29605381,"tagging_user_id":56988471,"tagged_user_id":57705013,"co_author_invite_id":3005314,"email":"w***r@dimi.uniud.it","display_order":6291456,"name":"Hans Weber","title":"Decomposition of Pseudo-effect Algebras and the Hammer–Sobczyk Theorem"}],"downloadable_attachments":[],"slug":"Decomposition_of_Pseudo_effect_Algebras_and_the_Hammer_Sobczyk_Theorem","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":42319385,"first_name":"Giuseppina","middle_initials":null,"last_name":"Barbieri","page_name":"BarbieriGiuseppina","domain_name":"independent","created_at":"2016-01-29T03:18:09.316-08:00","display_name":"Giuseppina Barbieri","url":"https://independent.academia.edu/BarbieriGiuseppina"},"attachments":[],"research_interests":[{"id":183513,"name":"Order","url":"https://www.academia.edu/Documents/in/Order"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="29914659"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/29914659/Decomposition_of_effect_algebras_and_the_Hammer_Sobczyk_theorem"><img alt="Research paper thumbnail of Decomposition of effect algebras and the Hammer�Sobczyk theorem" class="work-thumbnail" src="https://attachments.academia-assets.com/50375307/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/29914659/Decomposition_of_effect_algebras_and_the_Hammer_Sobczyk_theorem">Decomposition of effect algebras and the Hammer�Sobczyk theorem</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/PinucciaBarbieri">Pinuccia Barbieri</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/PaoloVitolo">Paolo Vitolo</a></span></div><div class="wp-workCard_item"><span>Algebra Universalis</span><span>, 2009</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="414cb49974172dbd9326520dff9dab82" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":50375307,"asset_id":29914659,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/50375307/download_file?st=MTczMjc1NDAxMiw4LjIyMi4yMDguMTQ2&st=MTczMjc1NDAxMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="29914659"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="29914659"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 29914659; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=29914659]").text(description); $(".js-view-count[data-work-id=29914659]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 29914659; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='29914659']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 29914659, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "414cb49974172dbd9326520dff9dab82" } } $('.js-work-strip[data-work-id=29914659]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":29914659,"title":"Decomposition of effect algebras and the Hammer�Sobczyk theorem","translated_title":"","metadata":{"grobid_abstract":"We prove an algebraic and a topological decomposition theorem for complete D-lattices (i.e., lattice-ordered effect algebras). As a consequence, we obtain a Hammer-Sobczyk type decomposition theorem for modular measures on D-lattices.","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"Algebra Universalis","grobid_abstract_attachment_id":50375307},"translated_abstract":null,"internal_url":"https://www.academia.edu/29914659/Decomposition_of_effect_algebras_and_the_Hammer_Sobczyk_theorem","translated_internal_url":"","created_at":"2016-11-17T06:36:21.798-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56806793,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":25983089,"work_id":29914659,"tagging_user_id":56806793,"tagged_user_id":null,"co_author_invite_id":3005314,"email":"h***r@dimi.uniud.it","display_order":0,"name":"Hans Weber","title":"Decomposition of effect algebras and the Hammer�Sobczyk theorem"},{"id":25983093,"work_id":29914659,"tagging_user_id":56806793,"tagged_user_id":56988471,"co_author_invite_id":5696769,"email":"p***o@unibas.it","display_order":4194304,"name":"Paolo Vitolo","title":"Decomposition of effect algebras and the Hammer�Sobczyk theorem"},{"id":25983111,"work_id":29914659,"tagging_user_id":56806793,"tagged_user_id":56692689,"co_author_invite_id":null,"email":"a***e@unibas.it","display_order":6291456,"name":"Anna Avallone","title":"Decomposition of effect algebras and the Hammer�Sobczyk theorem"},{"id":26064663,"work_id":29914659,"tagging_user_id":56806793,"tagged_user_id":42319385,"co_author_invite_id":null,"email":"g***i@uniud.it","display_order":7340032,"name":"Giuseppina Barbieri","title":"Decomposition of effect algebras and the Hammer�Sobczyk theorem"}],"downloadable_attachments":[{"id":50375307,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50375307/thumbnails/1.jpg","file_name":"Decomposition_of_effect_algebras_and_the20161117-16400-17olkf0.pdf","download_url":"https://www.academia.edu/attachments/50375307/download_file?st=MTczMjc1NDAxMiw4LjIyMi4yMDguMTQ2&st=MTczMjc1NDAxMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Decomposition_of_effect_algebras_and_the.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50375307/Decomposition_of_effect_algebras_and_the20161117-16400-17olkf0-libre.pdf?1479394425=\u0026response-content-disposition=attachment%3B+filename%3DDecomposition_of_effect_algebras_and_the.pdf\u0026Expires=1732757611\u0026Signature=S8dkhLkWePkEvgGjP5t4JQ6P-EIC8Cc~EDMk-j~yEx~lEXXx-SKf3oF7WrlOQKLIrfQwhByuDtye2~qsDlMzTcQmfzy-QhAe156gajtH1VReJSvCepyVI91b0-0nShwQaqrhUYhgZ6H2BJ9ZjFK5lTm95EWZT7gynJixO3L~zIIMO7S1hKyRUwxBsAZryVERtwVr-QRs07c2T0jS8TNsgEUm6wtHoYjtg3OcxaD9BLcIrgP0uvvIgCfgpZdnxVY1dhaIZ2t09TkR1ly7kbVof4MYWMtaxfpX58ARU0oalkIF4~6Sy0M0VJn7vphdVWWekpMkHJdmqWBSdrRb6DvvnA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Decomposition_of_effect_algebras_and_the_Hammer_Sobczyk_theorem","translated_slug":"","page_count":18,"language":"en","content_type":"Work","owner":{"id":56806793,"first_name":"Pinuccia","middle_initials":null,"last_name":"Barbieri","page_name":"PinucciaBarbieri","domain_name":"independent","created_at":"2016-11-17T06:35:56.140-08:00","display_name":"Pinuccia Barbieri","url":"https://independent.academia.edu/PinucciaBarbieri"},"attachments":[{"id":50375307,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50375307/thumbnails/1.jpg","file_name":"Decomposition_of_effect_algebras_and_the20161117-16400-17olkf0.pdf","download_url":"https://www.academia.edu/attachments/50375307/download_file?st=MTczMjc1NDAxMiw4LjIyMi4yMDguMTQ2&st=MTczMjc1NDAxMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Decomposition_of_effect_algebras_and_the.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50375307/Decomposition_of_effect_algebras_and_the20161117-16400-17olkf0-libre.pdf?1479394425=\u0026response-content-disposition=attachment%3B+filename%3DDecomposition_of_effect_algebras_and_the.pdf\u0026Expires=1732757611\u0026Signature=S8dkhLkWePkEvgGjP5t4JQ6P-EIC8Cc~EDMk-j~yEx~lEXXx-SKf3oF7WrlOQKLIrfQwhByuDtye2~qsDlMzTcQmfzy-QhAe156gajtH1VReJSvCepyVI91b0-0nShwQaqrhUYhgZ6H2BJ9ZjFK5lTm95EWZT7gynJixO3L~zIIMO7S1hKyRUwxBsAZryVERtwVr-QRs07c2T0jS8TNsgEUm6wtHoYjtg3OcxaD9BLcIrgP0uvvIgCfgpZdnxVY1dhaIZ2t09TkR1ly7kbVof4MYWMtaxfpX58ARU0oalkIF4~6Sy0M0VJn7vphdVWWekpMkHJdmqWBSdrRb6DvvnA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"}],"urls":[{"id":7745585,"url":"http://cat.inist.fr/?aModele=afficheN\u0026cpsidt=21032640"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="29995993"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/29995993/Extension_of_measures_on_pseudo_D_lattices"><img alt="Research paper thumbnail of Extension of measures on pseudo-D-lattices" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/29995993/Extension_of_measures_on_pseudo_D_lattices">Extension of measures on pseudo-D-lattices</a></div><div class="wp-workCard_item"><span>Mathematica Slovaca</span><span>, 2016</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="29995993"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="29995993"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 29995993; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=29995993]").text(description); $(".js-view-count[data-work-id=29995993]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 29995993; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='29995993']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 29995993, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=29995993]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":29995993,"title":"Extension of measures on pseudo-D-lattices","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Mathematica Slovaca"},"translated_abstract":null,"internal_url":"https://www.academia.edu/29995993/Extension_of_measures_on_pseudo_D_lattices","translated_internal_url":"","created_at":"2016-11-21T03:51:16.172-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56988471,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":26086771,"work_id":29995993,"tagging_user_id":56988471,"tagged_user_id":45652322,"co_author_invite_id":null,"email":"d***a@gmail.com","display_order":0,"name":"Anna De Simone","title":"Extension of measures on pseudo-D-lattices"},{"id":26086772,"work_id":29995993,"tagging_user_id":56988471,"tagged_user_id":56692689,"co_author_invite_id":null,"email":"a***e@unibas.it","display_order":4194304,"name":"Anna Avallone","title":"Extension of measures on pseudo-D-lattices"}],"downloadable_attachments":[],"slug":"Extension_of_measures_on_pseudo_D_lattices","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":56988471,"first_name":"Paolo","middle_initials":null,"last_name":"Vitolo","page_name":"PaoloVitolo","domain_name":"independent","created_at":"2016-11-21T03:50:46.663-08:00","display_name":"Paolo Vitolo","url":"https://independent.academia.edu/PaoloVitolo"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="29856951"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/29856951/Positive_Operators_la_Aumann_Shapley_on_Spaces_of_Functions_on_D_Lattices"><img alt="Research paper thumbnail of Positive Operators � la Aumann-Shapley on Spaces of Functions on D-Lattices" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/29856951/Positive_Operators_la_Aumann_Shapley_on_Spaces_of_Functions_on_D_Lattices">Positive Operators � la Aumann-Shapley on Spaces of Functions on D-Lattices</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/PaoloVitolo">Paolo Vitolo</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/AvalloneAnna">Anna Avallone</a></span></div><div class="wp-workCard_item"><span>Positivity</span><span>, 2006</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="29856951"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="29856951"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 29856951; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=29856951]").text(description); $(".js-view-count[data-work-id=29856951]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 29856951; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='29856951']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 29856951, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=29856951]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":29856951,"title":"Positive Operators � la Aumann-Shapley on Spaces of Functions on D-Lattices","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"Positivity"},"translated_abstract":null,"internal_url":"https://www.academia.edu/29856951/Positive_Operators_la_Aumann_Shapley_on_Spaces_of_Functions_on_D_Lattices","translated_internal_url":"","created_at":"2016-11-15T10:31:02.763-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56692689,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":25902775,"work_id":29856951,"tagging_user_id":56692689,"tagged_user_id":56988471,"co_author_invite_id":5696769,"email":"p***o@unibas.it","display_order":0,"name":"Paolo Vitolo","title":"Positive Operators � la Aumann-Shapley on Spaces of Functions on D-Lattices"},{"id":25902794,"work_id":29856951,"tagging_user_id":56692689,"tagged_user_id":null,"co_author_invite_id":1855420,"email":"b***e@unina.it","display_order":4194304,"name":"Achille Basile","title":"Positive Operators � la Aumann-Shapley on Spaces of Functions on D-Lattices"}],"downloadable_attachments":[],"slug":"Positive_Operators_la_Aumann_Shapley_on_Spaces_of_Functions_on_D_Lattices","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":56692689,"first_name":"Anna","middle_initials":null,"last_name":"Avallone","page_name":"AvalloneAnna","domain_name":"independent","created_at":"2016-11-15T10:28:51.796-08:00","display_name":"Anna Avallone","url":"https://independent.academia.edu/AvalloneAnna"},"attachments":[],"research_interests":[{"id":91401,"name":"Bounded Variation","url":"https://www.academia.edu/Documents/in/Bounded_Variation"},{"id":159391,"name":"Shapley value","url":"https://www.academia.edu/Documents/in/Shapley_value"},{"id":178344,"name":"Positivity","url":"https://www.academia.edu/Documents/in/Positivity"}],"urls":[{"id":7737942,"url":"http://springerlink.com/index/10.1007/s11117-006-0052-3"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="29856921"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/29856921/Lyapunov_decomposition_of_measures_on_effect_algebras"><img alt="Research paper thumbnail of Lyapunov decomposition of measures on effect algebras" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/29856921/Lyapunov_decomposition_of_measures_on_effect_algebras">Lyapunov decomposition of measures on effect algebras</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/AvalloneAnna">Anna Avallone</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/PaoloVitolo">Paolo Vitolo</a></span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="29856921"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="29856921"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 29856921; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=29856921]").text(description); $(".js-view-count[data-work-id=29856921]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 29856921; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='29856921']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 29856921, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=29856921]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":29856921,"title":"Lyapunov decomposition of measures on effect algebras","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2009,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/29856921/Lyapunov_decomposition_of_measures_on_effect_algebras","translated_internal_url":"","created_at":"2016-11-15T10:30:58.492-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56692689,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":25902778,"work_id":29856921,"tagging_user_id":56692689,"tagged_user_id":56988471,"co_author_invite_id":5696769,"email":"p***o@unibas.it","display_order":0,"name":"Paolo Vitolo","title":"Lyapunov decomposition of measures on effect algebras"}],"downloadable_attachments":[],"slug":"Lyapunov_decomposition_of_measures_on_effect_algebras","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":56692689,"first_name":"Anna","middle_initials":null,"last_name":"Avallone","page_name":"AvalloneAnna","domain_name":"independent","created_at":"2016-11-15T10:28:51.796-08:00","display_name":"Anna Avallone","url":"https://independent.academia.edu/AvalloneAnna"},"attachments":[],"research_interests":[{"id":801173,"name":"Measures","url":"https://www.academia.edu/Documents/in/Measures"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="29995992"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/29995992/Bornological_Convergences_on_the_Hyperspace_of_a_Uniformizable_Space"><img alt="Research paper thumbnail of Bornological Convergences on the Hyperspace of a Uniformizable Space" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/29995992/Bornological_Convergences_on_the_Hyperspace_of_a_Uniformizable_Space">Bornological Convergences on the Hyperspace of a Uniformizable Space</a></div><div class="wp-workCard_item"><span>Set-Valued and Variational Analysis</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT Bornological convergence is a generalization of the well known Attouch--Wets convergence...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT Bornological convergence is a generalization of the well known Attouch--Wets convergence. Our aim is to compare lower, upper and ``two-sided&amp;#39;&amp;#39; convergences generated by two compatible uniformities and two arbitrary bornologies. Moreover, the comparison of convergences induced by bounded-proximal topologies is characterized.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="29995992"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="29995992"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 29995992; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=29995992]").text(description); $(".js-view-count[data-work-id=29995992]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 29995992; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='29995992']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 29995992, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=29995992]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":29995992,"title":"Bornological Convergences on the Hyperspace of a Uniformizable Space","translated_title":"","metadata":{"abstract":"ABSTRACT Bornological convergence is a generalization of the well known Attouch--Wets convergence. Our aim is to compare lower, upper and ``two-sided\u0026amp;#39;\u0026amp;#39; convergences generated by two compatible uniformities and two arbitrary bornologies. Moreover, the comparison of convergences induced by bounded-proximal topologies is characterized.","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Set-Valued and Variational Analysis"},"translated_abstract":"ABSTRACT Bornological convergence is a generalization of the well known Attouch--Wets convergence. Our aim is to compare lower, upper and ``two-sided\u0026amp;#39;\u0026amp;#39; convergences generated by two compatible uniformities and two arbitrary bornologies. Moreover, the comparison of convergences induced by bounded-proximal topologies is characterized.","internal_url":"https://www.academia.edu/29995992/Bornological_Convergences_on_the_Hyperspace_of_a_Uniformizable_Space","translated_internal_url":"","created_at":"2016-11-21T03:51:15.544-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56988471,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Bornological_Convergences_on_the_Hyperspace_of_a_Uniformizable_Space","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":56988471,"first_name":"Paolo","middle_initials":null,"last_name":"Vitolo","page_name":"PaoloVitolo","domain_name":"independent","created_at":"2016-11-21T03:50:46.663-08:00","display_name":"Paolo Vitolo","url":"https://independent.academia.edu/PaoloVitolo"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="29995991"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/29995991/Tightness_character_and_related_properties_of_hyperspace_topologies"><img alt="Research paper thumbnail of Tightness, character and related properties of hyperspace topologies" class="work-thumbnail" src="https://attachments.academia-assets.com/50454318/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/29995991/Tightness_character_and_related_properties_of_hyperspace_topologies">Tightness, character and related properties of hyperspace topologies</a></div><div class="wp-workCard_item"><span>Topol Appl</span><span>, 2004</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ea90b9fe5cf978897d3eaa9db9e5acb3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":50454318,"asset_id":29995991,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/50454318/download_file?st=MTczMjc1NDAxMiw4LjIyMi4yMDguMTQ2&st=MTczMjc1NDAxMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="29995991"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="29995991"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 29995991; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=29995991]").text(description); $(".js-view-count[data-work-id=29995991]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 29995991; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='29995991']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 29995991, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ea90b9fe5cf978897d3eaa9db9e5acb3" } } $('.js-work-strip[data-work-id=29995991]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":29995991,"title":"Tightness, character and related properties of hyperspace topologies","translated_title":"","metadata":{"grobid_abstract":"Given a Hausdorff space X, we calculate the tightness and the character of the hyperspace CL ∅ (X) of X, endowed with either the co-compact or the lower Vietoris topology, and give some estimates for the tightness of CL ∅ (X), endowed with the Fell topology.","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"Topol Appl","grobid_abstract_attachment_id":50454318},"translated_abstract":null,"internal_url":"https://www.academia.edu/29995991/Tightness_character_and_related_properties_of_hyperspace_topologies","translated_internal_url":"","created_at":"2016-11-21T03:51:15.302-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56988471,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":26086762,"work_id":29995991,"tagging_user_id":56988471,"tagged_user_id":null,"co_author_invite_id":5759928,"email":"c***i@unito.it","display_order":0,"name":"Camillo Costantini","title":"Tightness, character and related properties of hyperspace topologies"},{"id":26086764,"work_id":29995991,"tagging_user_id":56988471,"tagged_user_id":null,"co_author_invite_id":5759929,"email":"l***a@mat.savba.sk","display_order":4194304,"name":"Ľubica Holá","title":"Tightness, character and related properties of hyperspace topologies"}],"downloadable_attachments":[{"id":50454318,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50454318/thumbnails/1.jpg","file_name":"Tightness_character_and_related_properti20161121-32695-15a8l51.pdf","download_url":"https://www.academia.edu/attachments/50454318/download_file?st=MTczMjc1NDAxMiw4LjIyMi4yMDguMTQ2&st=MTczMjc1NDAxMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Tightness_character_and_related_properti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50454318/Tightness_character_and_related_properti20161121-32695-15a8l51-libre.pdf?1479730467=\u0026response-content-disposition=attachment%3B+filename%3DTightness_character_and_related_properti.pdf\u0026Expires=1732757611\u0026Signature=Y~moOGKyZeGAacxk0IWjxgb~Foo~HLSeH-kMTVoC5d25ucXV27FzJSeb5qqCisafEqJi4qUcoLu5XMK8~YiKauMYcCxpZfwi04USzfc4vSt18BgDAAHvAzYcqGNEDKbH0Lf9AHM~EhQeXhRJQFqvZUnOkdWTc3Ljx1WuqB5AioSuQA3J1nUheAfFjYj0AUInz7z26ZjXDUQpROYXrXCZuQN9KsqQT3yqiVcXh2bOo7zl4HW1qF7e~fB9H0dG52T-Qas4A1tif0dz3iIOLtHy7HFWt4tFhFw~VvqOd6ongKSP0dcFej9fjcJ-~YeGGS7WJ0ZOFNSnXzGIMkHjBElA2w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Tightness_character_and_related_properties_of_hyperspace_topologies","translated_slug":"","page_count":48,"language":"en","content_type":"Work","owner":{"id":56988471,"first_name":"Paolo","middle_initials":null,"last_name":"Vitolo","page_name":"PaoloVitolo","domain_name":"independent","created_at":"2016-11-21T03:50:46.663-08:00","display_name":"Paolo Vitolo","url":"https://independent.academia.edu/PaoloVitolo"},"attachments":[{"id":50454318,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50454318/thumbnails/1.jpg","file_name":"Tightness_character_and_related_properti20161121-32695-15a8l51.pdf","download_url":"https://www.academia.edu/attachments/50454318/download_file?st=MTczMjc1NDAxMiw4LjIyMi4yMDguMTQ2&st=MTczMjc1NDAxMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Tightness_character_and_related_properti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50454318/Tightness_character_and_related_properti20161121-32695-15a8l51-libre.pdf?1479730467=\u0026response-content-disposition=attachment%3B+filename%3DTightness_character_and_related_properti.pdf\u0026Expires=1732757611\u0026Signature=Y~moOGKyZeGAacxk0IWjxgb~Foo~HLSeH-kMTVoC5d25ucXV27FzJSeb5qqCisafEqJi4qUcoLu5XMK8~YiKauMYcCxpZfwi04USzfc4vSt18BgDAAHvAzYcqGNEDKbH0Lf9AHM~EhQeXhRJQFqvZUnOkdWTc3Ljx1WuqB5AioSuQA3J1nUheAfFjYj0AUInz7z26ZjXDUQpROYXrXCZuQN9KsqQT3yqiVcXh2bOo7zl4HW1qF7e~fB9H0dG52T-Qas4A1tif0dz3iIOLtHy7HFWt4tFhFw~VvqOd6ongKSP0dcFej9fjcJ-~YeGGS7WJ0ZOFNSnXzGIMkHjBElA2w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"}],"urls":[{"id":7756688,"url":"http://sciencedirect.com/science/article/pii/s0166864104000501"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="29856948"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/29856948/Decomposition_of_Pseudo_effect_Algebras_and_the_Hammer_Sobczyk_Theorem"><img alt="Research paper thumbnail of Decomposition of Pseudo-effect Algebras and the Hammer–Sobczyk Theorem" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/29856948/Decomposition_of_Pseudo_effect_Algebras_and_the_Hammer_Sobczyk_Theorem">Decomposition of Pseudo-effect Algebras and the Hammer–Sobczyk Theorem</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/PinucciaBarbieri">Pinuccia Barbieri</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/AvalloneAnna">Anna Avallone</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/PaoloVitolo">Paolo Vitolo</a>, and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/BarbieriGiuseppina">Giuseppina Barbieri</a></span></div><div class="wp-workCard_item"><span>Order</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="29856948"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="29856948"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 29856948; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=29856948]").text(description); $(".js-view-count[data-work-id=29856948]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 29856948; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='29856948']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 29856948, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=29856948]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":29856948,"title":"Decomposition of Pseudo-effect Algebras and the Hammer–Sobczyk Theorem","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Order"},"translated_abstract":null,"internal_url":"https://www.academia.edu/29856948/Decomposition_of_Pseudo_effect_Algebras_and_the_Hammer_Sobczyk_Theorem","translated_internal_url":"","created_at":"2016-11-15T10:31:02.338-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56692689,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":25902756,"work_id":29856948,"tagging_user_id":56692689,"tagged_user_id":56806793,"co_author_invite_id":4442221,"email":"p***i@gmail.com","display_order":0,"name":"Pinuccia Barbieri","title":"Decomposition of Pseudo-effect Algebras and the Hammer–Sobczyk Theorem"},{"id":25902768,"work_id":29856948,"tagging_user_id":56692689,"tagged_user_id":56988471,"co_author_invite_id":5696769,"email":"p***o@unibas.it","display_order":4194304,"name":"Paolo Vitolo","title":"Decomposition of Pseudo-effect Algebras and the Hammer–Sobczyk Theorem"},{"id":25902781,"work_id":29856948,"tagging_user_id":56692689,"tagged_user_id":null,"co_author_invite_id":3005314,"email":"h***r@dimi.uniud.it","display_order":6291456,"name":"Hans Weber","title":"Decomposition of Pseudo-effect Algebras and the Hammer–Sobczyk Theorem"},{"id":26194623,"work_id":29856948,"tagging_user_id":56988471,"tagged_user_id":42319385,"co_author_invite_id":null,"email":"g***i@uniud.it","display_order":7340032,"name":"Giuseppina Barbieri","title":"Decomposition of Pseudo-effect Algebras and the Hammer–Sobczyk Theorem"}],"downloadable_attachments":[],"slug":"Decomposition_of_Pseudo_effect_Algebras_and_the_Hammer_Sobczyk_Theorem","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":56692689,"first_name":"Anna","middle_initials":null,"last_name":"Avallone","page_name":"AvalloneAnna","domain_name":"independent","created_at":"2016-11-15T10:28:51.796-08:00","display_name":"Anna Avallone","url":"https://independent.academia.edu/AvalloneAnna"},"attachments":[],"research_interests":[{"id":183513,"name":"Order","url":"https://www.academia.edu/Documents/in/Order"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="29995990"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/29995990/On_the_Aumann_Shapley_value"><img alt="Research paper thumbnail of On the Aumann-Shapley value" class="work-thumbnail" src="https://attachments.academia-assets.com/50454305/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/29995990/On_the_Aumann_Shapley_value">On the Aumann-Shapley value</a></div><div class="wp-workCard_item"><span>Positivity</span><span>, May 27, 2008</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="125e448188f1bfc1ba4feb0641490807" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":50454305,"asset_id":29995990,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/50454305/download_file?st=MTczMjc1NDAxMiw4LjIyMi4yMDguMTQ2&st=MTczMjc1NDAxMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="29995990"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="29995990"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 29995990; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=29995990]").text(description); $(".js-view-count[data-work-id=29995990]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 29995990; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='29995990']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 29995990, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "125e448188f1bfc1ba4feb0641490807" } } $('.js-work-strip[data-work-id=29995990]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":29995990,"title":"On the Aumann-Shapley value","translated_title":"","metadata":{"grobid_abstract":"Let L be a D-lattice, i.e. a lattice ordered effect algebra, and let BV be the Banach space of all real-valued functions of bounded variation on L (vanishing at 0) endowed with the variation norm. We prove the existence of a continuous Aumann-Shapley value ϕ on bv NA, the subspace of BV spanned by all functions of the form f • µ, where µ : L → [0, 1] is a nonatomic σ-additive modular measure and f : [0, 1] → R is of bounded variation and continuous at 0 and at 1. Mathematics Subject Classification (2000). 28A12, 06C15, 91A12. A. Basile et al. Positivity (D1) a b is defined if and only if b ≤ a; (D2) If b = b c. Vol. 12 (2008) On the Aumann-Shapley value 615","publication_date":{"day":27,"month":5,"year":2008,"errors":{}},"publication_name":"Positivity","grobid_abstract_attachment_id":50454305},"translated_abstract":null,"internal_url":"https://www.academia.edu/29995990/On_the_Aumann_Shapley_value","translated_internal_url":"","created_at":"2016-11-21T03:51:14.663-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56988471,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":26086761,"work_id":29995990,"tagging_user_id":56988471,"tagged_user_id":null,"co_author_invite_id":5759928,"email":"c***i@unito.it","display_order":0,"name":"Camillo Costantini","title":"On the Aumann-Shapley value"},{"id":26086770,"work_id":29995990,"tagging_user_id":56988471,"tagged_user_id":null,"co_author_invite_id":1855420,"email":"b***e@unina.it","display_order":4194304,"name":"Achille Basile","title":"On the Aumann-Shapley value"}],"downloadable_attachments":[{"id":50454305,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50454305/thumbnails/1.jpg","file_name":"s11117-008-2207-x20161121-9768-1gfpiby.pdf","download_url":"https://www.academia.edu/attachments/50454305/download_file?st=MTczMjc1NDAxMiw4LjIyMi4yMDguMTQ2&st=MTczMjc1NDAxMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_Aumann_Shapley_value.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50454305/s11117-008-2207-x20161121-9768-1gfpiby-libre.pdf?1479730445=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_Aumann_Shapley_value.pdf\u0026Expires=1732757612\u0026Signature=VJZTGRjxVC7wwvN6yunrBx3CJmxGMnSkscv5TpGw4NZa6hM5SwRJTN6ISxTSo3RO88O9F0Fc-31rgN3LQlgvJNYMsPFr3OjWSAwtgi5E7ge8rb878-l4A~2OwJ4w2Kz2S79dcxRf~2IvVF~MSzCxeEjq7E-m5-JLMJxHOFMz55iL5Vzb35wuqjbAXqUXtypWtArAdCJPt0BNOSB1m9XPz1BC-T1IzCSj-a4uCvKsspD9w1YF3EJ5BxPjdeImIA3TfYsqaIiOnddv4qH8C8yJ1hEiH9QbgSwEKxlYzN4K-3eiXWG-YhsYqWnnAEekfNlAFh086UEr2RfDeCOBF6HMLw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_the_Aumann_Shapley_value","translated_slug":"","page_count":17,"language":"en","content_type":"Work","owner":{"id":56988471,"first_name":"Paolo","middle_initials":null,"last_name":"Vitolo","page_name":"PaoloVitolo","domain_name":"independent","created_at":"2016-11-21T03:50:46.663-08:00","display_name":"Paolo Vitolo","url":"https://independent.academia.edu/PaoloVitolo"},"attachments":[{"id":50454305,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50454305/thumbnails/1.jpg","file_name":"s11117-008-2207-x20161121-9768-1gfpiby.pdf","download_url":"https://www.academia.edu/attachments/50454305/download_file?st=MTczMjc1NDAxMiw4LjIyMi4yMDguMTQ2&st=MTczMjc1NDAxMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_Aumann_Shapley_value.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50454305/s11117-008-2207-x20161121-9768-1gfpiby-libre.pdf?1479730445=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_Aumann_Shapley_value.pdf\u0026Expires=1732757612\u0026Signature=VJZTGRjxVC7wwvN6yunrBx3CJmxGMnSkscv5TpGw4NZa6hM5SwRJTN6ISxTSo3RO88O9F0Fc-31rgN3LQlgvJNYMsPFr3OjWSAwtgi5E7ge8rb878-l4A~2OwJ4w2Kz2S79dcxRf~2IvVF~MSzCxeEjq7E-m5-JLMJxHOFMz55iL5Vzb35wuqjbAXqUXtypWtArAdCJPt0BNOSB1m9XPz1BC-T1IzCSj-a4uCvKsspD9w1YF3EJ5BxPjdeImIA3TfYsqaIiOnddv4qH8C8yJ1hEiH9QbgSwEKxlYzN4K-3eiXWG-YhsYqWnnAEekfNlAFh086UEr2RfDeCOBF6HMLw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":86034,"name":"Mathematical Analysis","url":"https://www.academia.edu/Documents/in/Mathematical_Analysis"},{"id":91401,"name":"Bounded Variation","url":"https://www.academia.edu/Documents/in/Bounded_Variation"},{"id":159391,"name":"Shapley value","url":"https://www.academia.edu/Documents/in/Shapley_value"},{"id":178344,"name":"Positivity","url":"https://www.academia.edu/Documents/in/Positivity"},{"id":230427,"name":"Lattice","url":"https://www.academia.edu/Documents/in/Lattice"}],"urls":[{"id":7756687,"url":"http://cat.inist.fr/?aModele=afficheN\u0026cpsidt=20733077"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="29856917"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/29856917/Decomposition_and_control_theorems_in_effect_algebras"><img alt="Research paper thumbnail of Decomposition and control theorems in effect algebras" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/29856917/Decomposition_and_control_theorems_in_effect_algebras">Decomposition and control theorems in effect algebras</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/AvalloneAnna">Anna Avallone</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/PaoloVitolo">Paolo Vitolo</a></span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="29856917"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="29856917"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 29856917; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=29856917]").text(description); $(".js-view-count[data-work-id=29856917]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 29856917; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='29856917']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 29856917, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=29856917]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":29856917,"title":"Decomposition and control theorems in effect algebras","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2003,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/29856917/Decomposition_and_control_theorems_in_effect_algebras","translated_internal_url":"","created_at":"2016-11-15T10:30:57.595-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56692689,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":25902777,"work_id":29856917,"tagging_user_id":56692689,"tagged_user_id":56988471,"co_author_invite_id":5696769,"email":"p***o@unibas.it","display_order":0,"name":"Paolo Vitolo","title":"Decomposition and control theorems in effect algebras"}],"downloadable_attachments":[],"slug":"Decomposition_and_control_theorems_in_effect_algebras","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":56692689,"first_name":"Anna","middle_initials":null,"last_name":"Avallone","page_name":"AvalloneAnna","domain_name":"independent","created_at":"2016-11-15T10:28:51.796-08:00","display_name":"Anna Avallone","url":"https://independent.academia.edu/AvalloneAnna"},"attachments":[],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="29856945"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/29856945/Pseudo_D_lattices_and_separating_points_of_measures"><img alt="Research paper thumbnail of Pseudo-D-lattices and separating points of measures" class="work-thumbnail" src="https://attachments.academia-assets.com/50329284/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/29856945/Pseudo_D_lattices_and_separating_points_of_measures">Pseudo-D-lattices and separating points of measures</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/PaoloVitolo">Paolo Vitolo</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/AvalloneAnna">Anna Avallone</a></span></div><div class="wp-workCard_item"><span>Fuzzy Sets and Systems</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0d80cac17f9feaadfb2c1dc24272c03f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":50329284,"asset_id":29856945,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/50329284/download_file?st=MTczMjc1NDAxMiw4LjIyMi4yMDguMTQ2&st=MTczMjc1NDAxMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="29856945"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="29856945"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 29856945; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=29856945]").text(description); $(".js-view-count[data-work-id=29856945]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 29856945; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='29856945']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 29856945, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0d80cac17f9feaadfb2c1dc24272c03f" } } $('.js-work-strip[data-work-id=29856945]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":29856945,"title":"Pseudo-D-lattices and separating points of measures","translated_title":"","metadata":{"ai_title_tag":"Dense Gδ-sets of Separating Points in Pseudo-D-lattices","grobid_abstract":"In 1986, A. Basile and H. Weber proved that every countable family M of σ-additive measures on a σcomplete Boolean ring R admits a dense G δ -set of separating points, with respect to a suitable topology, in the following two cases: either (i) each element of M is s-bounded and, whenever λ, ν ∈ M are distinct, the quotient of R modulo N (λ − ν) is infinite, or (ii) each element of M is continuous.","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Fuzzy Sets and Systems","grobid_abstract_attachment_id":50329284},"translated_abstract":null,"internal_url":"https://www.academia.edu/29856945/Pseudo_D_lattices_and_separating_points_of_measures","translated_internal_url":"","created_at":"2016-11-15T10:31:01.804-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56692689,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":25902770,"work_id":29856945,"tagging_user_id":56692689,"tagged_user_id":56988471,"co_author_invite_id":5696769,"email":"p***o@unibas.it","display_order":0,"name":"Paolo Vitolo","title":"Pseudo-D-lattices and separating points of measures"}],"downloadable_attachments":[{"id":50329284,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50329284/thumbnails/1.jpg","file_name":"Pseudo-D-lattices_and_separating_points_20161115-25016-evwcpv.pdf","download_url":"https://www.academia.edu/attachments/50329284/download_file?st=MTczMjc1NDAxMiw4LjIyMi4yMDguMTQ2&st=MTczMjc1NDAxMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Pseudo_D_lattices_and_separating_points.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50329284/Pseudo-D-lattices_and_separating_points_20161115-25016-evwcpv-libre.pdf?1479235543=\u0026response-content-disposition=attachment%3B+filename%3DPseudo_D_lattices_and_separating_points.pdf\u0026Expires=1732757612\u0026Signature=UWi0cjHIbdvWjLyMQAv~fLOUHOIznDCnM2iRdEZFd8vUWJkh3eCtugFYLiqt685o5A0Q~qxaHI14o5FOtu8vQGYdiMNxCoV6fa4PONtJhW7sKUc4r9ns5Hfu0UeK5x3tA5gYD37up0vQP8SBGYSnv~T2TGU5qvK9bcW-kwTIzN~tLGwWvihboIuuR026F6~VAv0o5O0vokeU8PxJfY53lpdyk9cU8B1X2ros61wwcHJ5imceaY8vuqxX5RbbYArQrxHEb-EMK0I0ELMImhxTk2r1-~e8CCHp~AAc6Xg5V4wi4gxjZCJS3QzMmDZkMnwchuGJ7uLEU9KxRmEO2YcYmg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Pseudo_D_lattices_and_separating_points_of_measures","translated_slug":"","page_count":22,"language":"en","content_type":"Work","owner":{"id":56692689,"first_name":"Anna","middle_initials":null,"last_name":"Avallone","page_name":"AvalloneAnna","domain_name":"independent","created_at":"2016-11-15T10:28:51.796-08:00","display_name":"Anna Avallone","url":"https://independent.academia.edu/AvalloneAnna"},"attachments":[{"id":50329284,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50329284/thumbnails/1.jpg","file_name":"Pseudo-D-lattices_and_separating_points_20161115-25016-evwcpv.pdf","download_url":"https://www.academia.edu/attachments/50329284/download_file?st=MTczMjc1NDAxMiw4LjIyMi4yMDguMTQ2&st=MTczMjc1NDAxMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Pseudo_D_lattices_and_separating_points.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50329284/Pseudo-D-lattices_and_separating_points_20161115-25016-evwcpv-libre.pdf?1479235543=\u0026response-content-disposition=attachment%3B+filename%3DPseudo_D_lattices_and_separating_points.pdf\u0026Expires=1732757612\u0026Signature=UWi0cjHIbdvWjLyMQAv~fLOUHOIznDCnM2iRdEZFd8vUWJkh3eCtugFYLiqt685o5A0Q~qxaHI14o5FOtu8vQGYdiMNxCoV6fa4PONtJhW7sKUc4r9ns5Hfu0UeK5x3tA5gYD37up0vQP8SBGYSnv~T2TGU5qvK9bcW-kwTIzN~tLGwWvihboIuuR026F6~VAv0o5O0vokeU8PxJfY53lpdyk9cU8B1X2ros61wwcHJ5imceaY8vuqxX5RbbYArQrxHEb-EMK0I0ELMImhxTk2r1-~e8CCHp~AAc6Xg5V4wi4gxjZCJS3QzMmDZkMnwchuGJ7uLEU9KxRmEO2YcYmg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":652157,"name":"Fuzzy Sets and Systems","url":"https://www.academia.edu/Documents/in/Fuzzy_Sets_and_Systems"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="29995989"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/29995989/Comparability_of_lower_Attouch_Wets_topologies"><img alt="Research paper thumbnail of Comparability of lower Attouch--Wets topologies" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/29995989/Comparability_of_lower_Attouch_Wets_topologies">Comparability of lower Attouch--Wets topologies</a></div><div class="wp-workCard_item"><span>Filomat</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Beer and Di Concilio have given necessary and sufficient conditions for a two-sided Attouch--Wets...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Beer and Di Concilio have given necessary and sufficient conditions for a two-sided Attouch--Wets topology to contain another on the hyperspace of non-empty closed subsets of a metrizable space as determined by metrics compatible with the topology. In the present paper, we characterize comparability of lower Attouch--Wets topologies as determined by compatible metrics.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="29995989"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="29995989"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 29995989; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=29995989]").text(description); $(".js-view-count[data-work-id=29995989]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 29995989; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='29995989']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 29995989, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=29995989]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":29995989,"title":"Comparability of lower Attouch--Wets topologies","translated_title":"","metadata":{"abstract":"Beer and Di Concilio have given necessary and sufficient conditions for a two-sided Attouch--Wets topology to contain another on the hyperspace of non-empty closed subsets of a metrizable space as determined by metrics compatible with the topology. In the present paper, we characterize comparability of lower Attouch--Wets topologies as determined by compatible metrics.","publication_name":"Filomat"},"translated_abstract":"Beer and Di Concilio have given necessary and sufficient conditions for a two-sided Attouch--Wets topology to contain another on the hyperspace of non-empty closed subsets of a metrizable space as determined by metrics compatible with the topology. In the present paper, we characterize comparability of lower Attouch--Wets topologies as determined by compatible metrics.","internal_url":"https://www.academia.edu/29995989/Comparability_of_lower_Attouch_Wets_topologies","translated_internal_url":"","created_at":"2016-11-21T03:51:14.070-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":56988471,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Comparability_of_lower_Attouch_Wets_topologies","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":56988471,"first_name":"Paolo","middle_initials":null,"last_name":"Vitolo","page_name":"PaoloVitolo","domain_name":"independent","created_at":"2016-11-21T03:50:46.663-08:00","display_name":"Paolo Vitolo","url":"https://independent.academia.edu/PaoloVitolo"},"attachments":[],"research_interests":[{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "6a696ac28033b0b9a41d1868eb6e0d9db8b5ad3bc62e47134eb4519eae17da25", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="sV88bDMIMXagaXLk1cTdgBalcdcfw7HgDtDNcOaZmcLVu5GPjL8HthciGOfzv0Jfh0e9Gj+eIur1N/8rPj0Vxg==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://independent.academia.edu/PaoloVitolo" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="q4ITAGMw47oCxqNUbK+ALrhtuhbjVlDaqb16xnNVKi7PZr7j3IfVerWNyVdK1B/xKY9228MLw9BSWkidq/GmKg==" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>