CINXE.COM

Search results for: forest stands

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: forest stands</title> <meta name="description" content="Search results for: forest stands"> <meta name="keywords" content="forest stands"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="forest stands" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="forest stands"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1265</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: forest stands</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1265</span> Optimal Management of Forest Stands under Wind Risk in Czech Republic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zohreh%20Mohammadi">Zohreh Mohammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Kaspar"> Jan Kaspar</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Lohmander"> Peter Lohmander</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Marusak"> Robert Marusak</a>, <a href="https://publications.waset.org/abstracts/search?q=Harald%20Vacik"> Harald Vacik</a>, <a href="https://publications.waset.org/abstracts/search?q=Ljusk%20Ola%20%20Eriksson"> Ljusk Ola Eriksson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Storms are important damaging agents in European forest ecosystems. In the latest decades, significant economic losses in European forestry occurred due to storms. This study investigates the problem of optimal harvest planning when forest stands risk to be felled by storms. One of the most applicable mathematical methods which are being used to optimize forest management is stochastic dynamic programming (SDP). This method belongs to the adaptive optimization class. Sequential decisions, such as harvest decisions, can be optimized based on sequential information about events that cannot be perfectly predicted, such as the future storms and the future states of wind protection from other forest stands. In this paper, stochastic dynamic programming is used to maximize the expected present value of the profits from an area consisting of several forest stands. The region of analysis is the Czech Republic. The harvest decisions, in a particular time period, should be simultaneously taken in all neighbor stands. The reason is that different stands protect each other from possible winds. The optimal harvest age of a particular stand is a function of wind speed and different wind protection effects. The optimal harvest age often decreases with wind speed, but it cannot be determined for one stand at a time. When we consider a particular stand, this stand also protects other stands. Furthermore, the particular stand is protected by neighbor stands. In some forest stands, it may even be rational to increase the harvest age under the influence of stronger winds, in order to protect more valuable stands in the neighborhood. It is important to integrate wind risk in forestry decision-making. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Czech%20republic" title="Czech republic">Czech republic</a>, <a href="https://publications.waset.org/abstracts/search?q=forest%20stands" title=" forest stands"> forest stands</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20dynamic%20programming" title=" stochastic dynamic programming"> stochastic dynamic programming</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20risk" title=" wind risk"> wind risk</a> </p> <a href="https://publications.waset.org/abstracts/126598/optimal-management-of-forest-stands-under-wind-risk-in-czech-republic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126598.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1264</span> Population Dynamics of Early Oak Defoliators in Correlation with Micro-climatic Temperature Conditions in Kragujevac Area in Serbia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miroslava%20Markovi%C4%87">Miroslava Marković</a>, <a href="https://publications.waset.org/abstracts/search?q=Renata%20Gagi%C4%87"> Renata Gagić</a>, <a href="https://publications.waset.org/abstracts/search?q=Serdar"> Serdar</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksandar%20Lu%C4%8Di%C4%87"> Aleksandar Lučić</a>, <a href="https://publications.waset.org/abstracts/search?q=Ljubinko%20Rakonjac"> Ljubinko Rakonjac</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Forest dieback that comes in waves since the early 20th century has lately grown into an epidemic, in particular in oak stands. For this reason, research was conducted of the population dynamics of early oak defoliators, which represent a grave danger in oak stands due to their gradogenic attributes. The research was carried out over a 5-year period in oak forests in the area of forest administrations Kragujevac and Gornji Milanovac. The samples used in the research were collected from bottom branches, where Geometridae were found in the largest numbers, as well as from the mid and upper parts of the crowns, where other species were found. Population levels of these pests were presented in laboratory conditions on winter branch samples and in newly foliated stands on site, depending on the basic parameters of the climatic conditions. The greatest deviation of the population level of early oak defoliators was noted in 2018 on all 6 presented localities through the analysis of winter branches and the analysis of their presence in newly foliated stands on site, and it was followed by the highest average air temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=defoliators" title="defoliators">defoliators</a>, <a href="https://publications.waset.org/abstracts/search?q=oak" title=" oak"> oak</a>, <a href="https://publications.waset.org/abstracts/search?q=population%20level" title=" population level"> population level</a>, <a href="https://publications.waset.org/abstracts/search?q=population%20dynamics" title=" population dynamics"> population dynamics</a> </p> <a href="https://publications.waset.org/abstracts/159565/population-dynamics-of-early-oak-defoliators-in-correlation-with-micro-climatic-temperature-conditions-in-kragujevac-area-in-serbia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159565.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1263</span> Monitoring of Quantitative and Qualitative Changes in Combustible Material in the Białowieża Forest</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Damian%20Czubak">Damian Czubak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Białowieża Forest is a very valuable natural area, included in the World Natural Heritage at UNESCO, where, due to infestation by the bark beetle (Ips typographus), norway spruce (Picea abies) have deteriorated. This catastrophic scenario led to an increase in fire danger. This was due to the occurrence of large amounts of dead wood and grass cover, as light penetrated to the bottom of the stands. These factors in a dry state are materials that favour the possibility of fire and the rapid spread of fire. One of the objectives of the study was to monitor the quantitative and qualitative changes of combustible material on the permanent decay plots of spruce stands from 2012-2022. In addition, the size of the area with highly flammable vegetation was monitored and a classification of the stands of the Białowieża Forest by flammability classes was made. The key factor that determines the potential fire hazard of a forest is combustible material. Primarily its type, quantity, moisture content, size and spatial structure. Based on the inventory data on the areas of forest districts in the Białowieża Forest, the average fire load and its changes over the years were calculated. The analysis was carried out taking into account the changes in the health status of the stands and sanitary operations. The quantitative and qualitative assessment of fallen timber and fire load of ground cover used the results of the 2019 and 2021 inventories. Approximately 9,000 circular plots were used for the study. An assessment was made of the amount of potential fuel, understood as ground cover vegetation and dead wood debris. In addition, monitoring of areas with vegetation that poses a high fire risk was conducted using data from 2019 and 2021. All sub-areas were inventoried where vegetation posing a specific fire hazard represented at least 10% of the area with species characteristic of that cover. In addition to the size of the area with fire-prone vegetation, a very important element is the size of the fire load on the indicated plots. On representative plots, the biomass of the land cover was measured on an area of 10 m2 and then the amount of biomass of each component was determined. The resulting element of variability of ground covers in stands was their flammability classification. The classification developed made it possible to track changes in the flammability classes of stands over the period covered by the measurements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=classification" title="classification">classification</a>, <a href="https://publications.waset.org/abstracts/search?q=combustible%20material" title=" combustible material"> combustible material</a>, <a href="https://publications.waset.org/abstracts/search?q=flammable%20vegetation" title=" flammable vegetation"> flammable vegetation</a>, <a href="https://publications.waset.org/abstracts/search?q=Norway%20spruce" title=" Norway spruce"> Norway spruce</a> </p> <a href="https://publications.waset.org/abstracts/163493/monitoring-of-quantitative-and-qualitative-changes-in-combustible-material-in-the-bialowieza-forest" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1262</span> Historic Fire Occurrence in Hemi-Boreal Forests: Exploring Natural and Cultural Scots Pine Multi-Cohort Fire Regimes in Lithuania</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Charles%20Ruffner">Charles Ruffner</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Manton"> Michael Manton</a>, <a href="https://publications.waset.org/abstracts/search?q=Gintautas%20Kibirkstis"> Gintautas Kibirkstis</a>, <a href="https://publications.waset.org/abstracts/search?q=Gediminas%20Brazaitas"> Gediminas Brazaitas</a>, <a href="https://publications.waset.org/abstracts/search?q=Vitas%20Marozas"> Vitas Marozas</a>, <a href="https://publications.waset.org/abstracts/search?q=Ekaterine%20Makrickiene"> Ekaterine Makrickiene</a>, <a href="https://publications.waset.org/abstracts/search?q=Rutile%20Pukiene"> Rutile Pukiene</a>, <a href="https://publications.waset.org/abstracts/search?q=Per%20Angelstam"> Per Angelstam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In dynamic boreal forests, fire is an important natural disturbance, which drives regeneration and mortality of living and dead trees, and thus successional trajectories. However, current forest management practices focusing on wood production only have effectively eliminated fire as a stand-level disturbance. While this is generally well studied across much of Europe, in Lithuania, little is known about the historic fire regime and the role fire plays as a management tool towards the sustainable management of future landscapes. Focusing on Scots pine forests, we explore; i) the relevance of fire disturbance regimes on forestlands of Lithuania; ii) fire occurrence in the Dzukija landscape for dry upland and peatland forest sites, and iii) correlate tree-ring data with climate variables to ascertain climatic influences on growth and fire occurrence. We sampled and cross-dated 132 Scots pine samples with fire scars from 4 dry pine forest stands and 4 peatland forest stands, respectively. The fire history of each sample was analyzed using standard dendrochronological methods and presented in FHAES format. Analyses of soil moisture and nutrient conditions revealed a strong probability of finding forests that have a high fire frequency in Scots pine forests (59%), which cover 34.5% of Lithuania’s current forestland. The fire history analysis revealed 455 fire scars and 213 fire events during the period 1742-2019. Within the Dzukija landscape, the mean fire interval was 4.3 years for the dry Scots pine forest and 8.7 years for the peatland Scots pine forest. However, our comparison of fire frequency before and after 1950 shows a marked decrease in mean fire interval. Our data suggest that hemi-boreal forest landscapes of Lithuania provide strong evidence that fire, both human and lightning-ignited fires, has been and should be a natural phenomenon and that the examination of biological archives can be used to guide sustainable forest management into the future. Currently, fire use is prohibited by law as a tool for forest management in Lithuania. We recommend introducing trials that use low-intensity prescribed burning of Scots pine stands as a regeneration tool towards mimicking natural forest disturbance regimes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiversity%20conservation" title="biodiversity conservation">biodiversity conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=cultural%20burning" title=" cultural burning"> cultural burning</a>, <a href="https://publications.waset.org/abstracts/search?q=dendrochronology" title=" dendrochronology"> dendrochronology</a>, <a href="https://publications.waset.org/abstracts/search?q=forest%20dynamics" title=" forest dynamics"> forest dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=forest%20management" title=" forest management"> forest management</a>, <a href="https://publications.waset.org/abstracts/search?q=succession" title=" succession"> succession</a> </p> <a href="https://publications.waset.org/abstracts/138982/historic-fire-occurrence-in-hemi-boreal-forests-exploring-natural-and-cultural-scots-pine-multi-cohort-fire-regimes-in-lithuania" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138982.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1261</span> Silviculture for Climate Change: Future Scenarios for Nigeria Forests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azeez%20O.%20Ganiyu">Azeez O. Ganiyu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climate change is expected to lead to substantial changes in rainfall patterns in southwest Nigeria, and this may have substantial consequence for forest management and for conservation outcomes throughout the region. We examine three different forest types across an environmental spectrum from semi-arid to humid subtropical and consider their response to water shortages and other environmental stresses; we also explore the potential consequence for conservation and timber production by considering impacts on forest structure and limiting stand density. Analysis of a series of scenarios provides the basis for a critique of existing management practices and suggests practical alternatives to develop resilient forests with minimal diminution of production and environmental services. We specifically discuss practical silviculture interventions that are feasible at the landscape-scale, that are economically viable, and that have the potential to enhance resilience of forest stands. We also discuss incentives to encourage adoption of these approaches by private forest owners. We draw on these case studies in southwestern Nigeria to offer generic principle to assist forest researchers and managers faced with similar challenges elsewhere. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=forest" title=" forest"> forest</a>, <a href="https://publications.waset.org/abstracts/search?q=future" title=" future"> future</a>, <a href="https://publications.waset.org/abstracts/search?q=silviculture" title=" silviculture"> silviculture</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigeria" title=" Nigeria"> Nigeria</a> </p> <a href="https://publications.waset.org/abstracts/111257/silviculture-for-climate-change-future-scenarios-for-nigeria-forests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111257.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1260</span> Mapping Forest Biodiversity Using Remote Sensing and Field Data in the National Park of Tlemcen (Algeria)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bencherif%20Kada">Bencherif Kada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In forest management practice, landscape and Mediterranean forest are never posed as linked objects. But sustainable forestry requires the valorization of the forest landscape and this aim involves assessing the spatial distribution of biodiversity by mapping forest landscaped units and subunits and by monitoring the environmental trends. This contribution aims to highlight, through object-oriented classifications, the landscaped biodiversity of the National Park of Tlemcen (Algeria). The methodology used is based on ground data and on the basic processing units of object-oriented classification that are segments, so-called image-objects, representing a relatively homogenous units on the ground. The classification of Landsat Enhanced Thematic Mapper plus (ETM+) imagery is performed on image objects, and not on pixels. Advantages of object-oriented classification are to make full use of meaningful statistic and texture calculation, uncorrelated shape information (e.g., length-to-width ratio, direction and area of an object, etc.) and topological features (neighbor, super-object, etc.), and the close relation between real-world objects and image objects. The results show that per object classification using the k-nearest neighbor’s method is more efficient than per pixel one. It permits to simplify the content of the image while preserving spectrally and spatially homogeneous types of land covers such as Aleppo pine stands, cork oak groves, mixed groves of cork oak, holm oak and zen oak, mixed groves of holm oak and thuja, water plan, dense and open shrub-lands of oaks, vegetable crops or orchard, herbaceous plants and bare soils. Texture attributes seem to provide no useful information while spatial attributes of shape, compactness seem to be performant for all the dominant features, such as pure stands of Aleppo pine and/or cork oak and bare soils. Landscaped sub-units are individualized while conserving the spatial information. Continuously dominant dense stands over a large area were formed into a single class, such as dense, fragmented stands with clear stands. Low shrublands formations and high wooded shrublands are well individualized but with some confusion with enclaves for the former. Overall, a visual evaluation of the classification shows that the classification reflects the actual spatial state of the study area at the landscape level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forest" title="forest">forest</a>, <a href="https://publications.waset.org/abstracts/search?q=oaks" title=" oaks"> oaks</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiversity" title=" biodiversity"> biodiversity</a>, <a href="https://publications.waset.org/abstracts/search?q=shrublands" title=" shrublands"> shrublands</a> </p> <a href="https://publications.waset.org/abstracts/187570/mapping-forest-biodiversity-using-remote-sensing-and-field-data-in-the-national-park-of-tlemcen-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187570.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">30</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1259</span> Assessment of the Landscaped Biodiversity in the National Park of Tlemcen (Algeria) Using Per-Object Analysis of Landsat Imagery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bencherif%20Kada">Bencherif Kada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the forest management practice, landscape and Mediterranean forest are never posed as linked objects. But sustainable forestry requires the valorization of the forest landscape, and this aim involves assessing the spatial distribution of biodiversity by mapping forest landscaped units and subunits and by monitoring the environmental trends. This contribution aims to highlight, through object-oriented classifications, the landscaped biodiversity of the National Park of Tlemcen (Algeria). The methodology used is based on ground data and on the basic processing units of object-oriented classification, that are segments, so-called image-objects, representing a relatively homogenous units on the ground. The classification of Landsat Enhanced Thematic Mapper plus (ETM+) imagery is performed on image objects and not on pixels. Advantages of object-oriented classification are to make full use of meaningful statistic and texture calculation, uncorrelated shape information (e.g., length-to-width ratio, direction, and area of an object, etc.), and topological features (neighbor, super-object, etc.), and the close relation between real-world objects and image objects. The results show that per object classification using the k-nearest neighbor’s method is more efficient than per pixel one. It permits to simplify of the content of the image while preserving spectrally and spatially homogeneous types of land covers such as Aleppo pine stands, cork oak groves, mixed groves of cork oak, holm oak, and zen oak, mixed groves of holm oak and thuja, water plan, dense and open shrub-lands of oaks, vegetable crops or orchard, herbaceous plants, and bare soils. Texture attributes seem to provide no useful information, while spatial attributes of shape and compactness seem to be performant for all the dominant features, such as pure stands of Aleppo pine and/or cork oak and bare soils. Landscaped sub-units are individualized while conserving the spatial information. Continuously dominant dense stands over a large area were formed into a single class, such as dense, fragmented stands with clear stands. Low shrublands formations and high wooded shrublands are well individualized but with some confusion with enclaves for the former. Overall, a visual evaluation of the classification shows that the classification reflects the actual spatial state of the study area at the landscape level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forest" title="forest">forest</a>, <a href="https://publications.waset.org/abstracts/search?q=oaks" title=" oaks"> oaks</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=diversity" title=" diversity"> diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=shrublands" title=" shrublands"> shrublands</a> </p> <a href="https://publications.waset.org/abstracts/159593/assessment-of-the-landscaped-biodiversity-in-the-national-park-of-tlemcen-algeria-using-per-object-analysis-of-landsat-imagery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1258</span> Forest Harvesting Policies and Practices in Tropical Forest of Terengganu, Malaysia: Industry Experiences</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Zaki%20Hamzah">Mohd Zaki Hamzah</a>, <a href="https://publications.waset.org/abstracts/search?q=Roslan%20Rani"> Roslan Rani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Bazli%20Razali"> Ahmad Bazli Razali</a>, <a href="https://publications.waset.org/abstracts/search?q=Satiful%20Bahri%20Mamat"> Satiful Bahri Mamat</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Hadi%20Ripin"> Abdul Hadi Ripin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Harun%20Esa"> Mohd Harun Esa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ever since 1901, forest management and silviculture practices in Malaysia have been frequently reviewed and updated to take into account changes in forest conditions, markets, timber demand/supply and technical advances that can be achieved in industrial processes, logging and forest harvesting, and currently, the forest management system practiced in Peninsular Malaysia is the Selective Management System (SMS) which was introduced in 1978. This system requires the selection of management regime (felling) based on Pre-Felling Forest Inventory (Pre-F) data to ensure economical harvesting and also ensuring adequate standing stands for subsequent rounds of felling, while maintaining ecological balance and environmental quality. SMS regulates forest harvesting through area and volume controls, with the cutting cycle 30 years. Most of the forest management units (FMU) (in Peninsular Malaysia) implementing SMS have been certified by Forest Stewardship Council (FSC) and/or Program for Endorsement of Forest Certification (PEFC), and one such FMU belongs to Kumpulan Pengurusan Kayu Kayan Terengganu (KPKKT). KPKKT, a timber management subsidiary of Golden Pharos Berhad (GPB), adopts the SMS to manage its 108,900 ha of timber concessionary areas in its role as logs’ supplier for the consumption of three subsidiaries of GPB. KPKKT is also responsible for the sustainable development and management of its concession in accordance with the Sustainable Forest Management (SFM) standards to ensure that it addresses the loss of forest cover and forest degradation, forest-based economic, social and environmental benefits, and ecologically protecting forests while mobilising financial resources for the implementation of sustainable forest management planning, harvesting, monitoring and the marketing of products. This paper will detail out the management and harvesting guidelines imposed by the controlling government agency, and harvesting processes taken by KPKKT to comply with guidelines and eventually supplying timber to the relevant subsidiaries (downstream mills under GPB). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable%20forest%20management" title="sustainable forest management">sustainable forest management</a>, <a href="https://publications.waset.org/abstracts/search?q=silviculture" title=" silviculture"> silviculture</a>, <a href="https://publications.waset.org/abstracts/search?q=reduce%20impact%20logging" title=" reduce impact logging"> reduce impact logging</a>, <a href="https://publications.waset.org/abstracts/search?q=forest%20certification" title=" forest certification"> forest certification</a> </p> <a href="https://publications.waset.org/abstracts/164270/forest-harvesting-policies-and-practices-in-tropical-forest-of-terengganu-malaysia-industry-experiences" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164270.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1257</span> Community Forest Management Practice in Nepal: Public Understanding of Forest Benefit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chandralal%20Shrestha">Chandralal Shrestha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the developing countries like Nepal, the community based forest management approach has often been glorified as one of the best forest management alternatives to maximize the forest benefits. Though the approach has succeeded to construct a local level institution and conserve the forest biodiversity, how the local communities perceived about the forest benefits, the question always remains silent among the researchers and policy makers. The paper aims to explore the understanding of forest benefits from the perspective of local communities who used the forests in terms of institutional stability, equity and livelihood opportunity, and ecological stability. The paper revealed that the local communities have mixed understanding over the forest benefits. The institutional and ecological activities carried out by the local communities indicated that they have better understanding over the forest benefits. However, inequality while sharing the forest benefits, low pricing strategy and its negative consequences in valuation of forest products and limited livelihood opportunities indicated the poor understanding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=community%20based%20forest%20management" title="community based forest management">community based forest management</a>, <a href="https://publications.waset.org/abstracts/search?q=forest%20benefits" title=" forest benefits"> forest benefits</a>, <a href="https://publications.waset.org/abstracts/search?q=lowland" title=" lowland"> lowland</a>, <a href="https://publications.waset.org/abstracts/search?q=Nepal" title=" Nepal"> Nepal</a> </p> <a href="https://publications.waset.org/abstracts/42988/community-forest-management-practice-in-nepal-public-understanding-of-forest-benefit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42988.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1256</span> Monitoring of Forest Cover Dynamics in the High Atlas of Morocco (Zaouit Ahansal) Using Remote Sensing Techniques and GIS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelaziz%20Moujane">Abdelaziz Moujane</a>, <a href="https://publications.waset.org/abstracts/search?q=Abedelali%20Boulli"> Abedelali Boulli</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdellah%20Ouigmane"> Abdellah Ouigmane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work focuses on the assessment of forestlandscape changes in the region of ZaouitAhansal, usingmultitemporal satellite images at high spatial resolution.Severalremotesensingmethodswereappliednamely: The supervised classification algorithm and NDVI whichwerecombined in a GIS environment to quantify the extent and change in density of forest stands (holmoak, juniper, thya, Aleppo pine, crops, and others).The resultsobtainedshowedthat the forest of ZaouitAhansal has undergonesignificantdegradationresulting in a decrease in the area of juniper, cedar, and zeenoak, as well as an increase in the area of baresoil and agricultural land. The remotesensing data providedsatisfactoryresults for identifying and quantifying changes in forestcover. In addition, thisstudycould serve as a reference for the development of management strategies and restoration programs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title="remote sensing">remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20image" title=" satellite image"> satellite image</a>, <a href="https://publications.waset.org/abstracts/search?q=NDVI" title=" NDVI"> NDVI</a>, <a href="https://publications.waset.org/abstracts/search?q=deforestation" title=" deforestation"> deforestation</a>, <a href="https://publications.waset.org/abstracts/search?q=zaouit%20ahansal" title=" zaouit ahansal"> zaouit ahansal</a> </p> <a href="https://publications.waset.org/abstracts/147105/monitoring-of-forest-cover-dynamics-in-the-high-atlas-of-morocco-zaouit-ahansal-using-remote-sensing-techniques-and-gis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147105.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1255</span> Community Forestry Programme through the Local Forest Users Group, Nepal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniyal%20Neupane">Daniyal Neupane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Establishment of community forestry in Nepal is a successful step in the conservation of forests. Community forestry programme through the local forest users group has shown its positive impacts in the society. This paper discusses an overview of the present scenario of the community forestry in Nepal. It describes the brief historical background, some important forest legislations, and organization of forest. The paper also describes the internal conflicts between forest users and district forest offices, and possible resolution. It also suggests some of the aspects of community forestry in which the research needs to be focused for the better management of the forests in Nepal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=community%20forest" title="community forest">community forest</a>, <a href="https://publications.waset.org/abstracts/search?q=conservation%20of%20forest" title=" conservation of forest"> conservation of forest</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20forest%20users%20group" title=" local forest users group"> local forest users group</a>, <a href="https://publications.waset.org/abstracts/search?q=better%20management" title=" better management"> better management</a>, <a href="https://publications.waset.org/abstracts/search?q=Nepal" title=" Nepal"> Nepal</a> </p> <a href="https://publications.waset.org/abstracts/43475/community-forestry-programme-through-the-local-forest-users-group-nepal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1254</span> Simulation of Forest Fire Using Wireless Sensor Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20F.%20Fauzi">Mohammad F. Fauzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurul%20H.%20Shahba%20M.%20Shahrun"> Nurul H. Shahba M. Shahrun</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurul%20W.%20Hamzah"> Nurul W. Hamzah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Noah%20A.%20Rahman"> Mohd Noah A. Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Afzaal%20H.%20Seyal"> Afzaal H. Seyal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we proposed a simulation system using Wireless Sensor Network (WSN) that will be distributed around the forest for early forest fire detection and to locate the areas affected. In Brunei Darussalam, approximately 78% of the nation is covered by forest. Since the forest is Brunei’s most precious natural assets, it is very important to protect and conserve our forest. The hot climate in Brunei Darussalam can lead to forest fires which can be a fatal threat to the preservation of our forest. The process consists of getting data from the sensors, analyzing the data and producing an alert. The key factors that we are going to analyze are the surrounding temperature, wind speed and wind direction, humidity of the air and soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forest%20fire%20monitor" title="forest fire monitor">forest fire monitor</a>, <a href="https://publications.waset.org/abstracts/search?q=humidity" title=" humidity"> humidity</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20direction" title=" wind direction"> wind direction</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20network" title=" wireless sensor network"> wireless sensor network</a> </p> <a href="https://publications.waset.org/abstracts/50659/simulation-of-forest-fire-using-wireless-sensor-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50659.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1253</span> Economic Benefits in Community Based Forest Management from Users Perspective in Community Forestry, Nepal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sovit%20Pujari">Sovit Pujari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the developing countries like Nepal, the community-based forest management approach has often been glorified as one of the best forest management alternatives to maximize the forest benefits. Though the approach has succeeded to construct a local level institution and conserve the forest biodiversity, how the local communities perceived about the forest benefits, the question always remains silent among the researchers and policy makers. The paper aims to explore the understanding of forest benefits from the perspective of local communities who used the forests in terms of institutional stability, equity and livelihood opportunity, and ecological stability. The paper revealed that the local communities have mixed understanding over the forest benefits. The institutional and ecological activities carried out by the local communities indicated that they have a better understanding over the forest benefits. However, inequality while sharing the forest benefits, low pricing strategy and its negative consequences in the valuation of forest products and limited livelihood opportunities indicating the poor understanding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=community%20based%20forest%20management" title="community based forest management">community based forest management</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20pricing%20strategy" title=" low pricing strategy"> low pricing strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=forest%20benefits" title=" forest benefits"> forest benefits</a>, <a href="https://publications.waset.org/abstracts/search?q=livelihood%20opportunities" title=" livelihood opportunities"> livelihood opportunities</a>, <a href="https://publications.waset.org/abstracts/search?q=Nepal" title=" Nepal"> Nepal</a> </p> <a href="https://publications.waset.org/abstracts/43471/economic-benefits-in-community-based-forest-management-from-users-perspective-in-community-forestry-nepal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1252</span> Carbon Sequestration and Carbon Stock Potential of Major Forest Types in the Foot Hills of Nilgiri Biosphere Reserve, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Palanikumaran">B. Palanikumaran</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Kanagaraj"> N. Kanagaraj</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sangareswari"> M. Sangareswari</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Sailaja"> V. Sailaja</a>, <a href="https://publications.waset.org/abstracts/search?q=Kapil%20%20Sihag"> Kapil Sihag</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study aimed to estimate the carbon sequestration potential of major forest types present in the foothills of Nilgiri biosphere reserve. The total biomass carbon stock was estimated in tropical thorn forest, tropical dry deciduous forest and tropical moist deciduous forest as 14.61 t C ha⁻¹ 75.16 t C ha⁻¹ and 187.52 t C ha⁻¹ respectively. The density and basal area were estimated in tropical thorn forest, tropical dry deciduous forest, tropical moist deciduous forest as 173 stems ha⁻¹, 349 stems ha⁻¹, 391 stems ha⁻¹ and 6.21 m² ha⁻¹, 31.09 m² ha⁻¹, 67.34 m² ha⁻¹ respectively. The soil carbon stock of different forest ecosystems was estimated, and the results revealed that tropical moist deciduous forest (71.74 t C ha⁻¹) accounted for more soil carbon stock when compared to tropical dry deciduous forest (31.80 t C ha⁻¹) and tropical thorn forest (3.99 t C ha⁻¹). The tropical moist deciduous forest has the maximum annual leaf litter which was 12.77 t ha⁻¹ year⁻¹ followed by 6.44 t ha⁻¹ year⁻¹ litter fall of tropical dry deciduous forest. The tropical thorn forest accounted for 3.42 t ha⁻¹ yr⁻¹ leaf litter production. The leaf litter carbon stock of tropical thorn forest, tropical dry deciduous forest and tropical moist deciduous forest found to be 1.02 t C ha⁻¹ yr⁻¹ 2.28 t⁻¹ C ha⁻¹ yr⁻¹ and 5.42 t C ha⁻¹ yr⁻¹ respectively. The results explained that decomposition percent at the soil surface in the following order.tropical dry deciduous forest (77.66 percent) > tropical thorn forest (69.49 percent) > tropical moist deciduous forest (63.17 percent). Decomposition percent at soil subsurface was studied, and the highest decomposition percent was observed in tropical dry deciduous forest (80.52 percent) followed by tropical moist deciduous forest (77.65 percent) and tropical thorn forest (72.10 percent). The decomposition percent was higher at soil subsurface. Among the three forest type, tropical moist deciduous forest accounted for the highest bacterial (59.67 x 105cfu’s g⁻¹ soil), actinomycetes (74.87 x 104cfu’s g⁻¹ soil) and fungal (112.60 x10³cfu’s g⁻¹ soil) population. The overall observation of the study helps to conclude that, the tropical moist deciduous forest has the potential of storing higher carbon content as biomass with the value of 264.68 t C ha⁻¹ and microbial populations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=basal%20area" title="basal area">basal area</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20sequestration" title=" carbon sequestration"> carbon sequestration</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20stock" title=" carbon stock"> carbon stock</a>, <a href="https://publications.waset.org/abstracts/search?q=Nilgiri%20biosphere%20reserve" title=" Nilgiri biosphere reserve"> Nilgiri biosphere reserve</a> </p> <a href="https://publications.waset.org/abstracts/110275/carbon-sequestration-and-carbon-stock-potential-of-major-forest-types-in-the-foot-hills-of-nilgiri-biosphere-reserve-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110275.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1251</span> Inverted Diameter-Limit Thinning: A Promising Alternative for Mixed Populus tremuloides Stands Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ablo%20Paul%20Igor%20Hounzandji">Ablo Paul Igor Hounzandji</a>, <a href="https://publications.waset.org/abstracts/search?q=Benoit%20Lafleur"> Benoit Lafleur</a>, <a href="https://publications.waset.org/abstracts/search?q=Annie%20DesRochers"> Annie DesRochers</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Populus tremuloides [Michx] regenerates rapidly and abundantly by root suckering after harvest, creating stands with interconnected stems. Pre-commercial thinning can be used to concentrate growth on fewer stems to reach merchantability faster than un-thinned stands. However, conventional thinning methods are typically designed to reach even spacing between residual stems (1,100 stem ha⁻¹, evenly distributed), which can lead to treated stands consisting of weaker/smaller stems compared to the original stands. Considering the nature of P. tremuloides's regeneration, with large underground biomass of interconnected roots, aiming to keep the most vigorous and largest stems, regardless of their spatial distribution, inverted diameter-limit thinning could be more beneficial to post-thinning stand productivity because it would reduce the imbalance between roots and leaf area caused by thinning. Aims: This study aimed to compare stand and stem productivity of P. tremuloides stands thinned with a conventional thinning treatment (CT; 1,100 stem ha⁻¹, evenly distributed), two levels of inverted diameter-limit thinning (DL1 and DL2, keeping the largest 1100 or 2200 stems ha⁻¹, respectively, regardless of their spatial distribution) and a control unthinned treatment. Because DL treatments can create substantial or frequent gaps in the thinned stands, we also aimed to evaluate the potential of this treatment to recreate mixed conifer-broadleaf stands by fill-planting Picea glauca seedlings. Methods: Three replicate 21 year-old sucker-regenerated aspen stands were thinned in 2010 according to four treatments: CT, DL1, DL2, and un-thinned control. Picea glauca seedlings were underplanted in gaps created by the DL1 and DL2 treatments. Stand productivity per hectare, stem quality (diameter and height, volume stem⁻¹) and survival and height growth of fill-planted P. glauca seedlings were measured 8 year post-treatments. Results: Productivity, volume, diameter, and height were better in the treated stands (CT, DL1, and DL2) than in the un-thinned control. Productivity of CT and DL1 stands was similar 4.8 m³ ha⁻¹ year⁻¹. At the tree level, diameter and height of the trees in the DL1 treatment were 5% greater than those in the CT treatment. The average volume of trees in the DL1 treatment was 11% higher than the CT treatment. Survival after 8 years of fill planted P. glauca seedlings was 2% greater in the DL1 than in the DL2 treatment. DL1 treatment also produced taller seedlings (+20 cm). Discussion: Results showed that DL treatments were effective in producing post-thinned stands with larger stems without affecting stand productivity. In addition, we showed that these treatments were suitable to introduce slower growing conifer seedlings such as Picea glauca in order to re-create or maintain mixed stands despite the aggressive nature of P. tremuloides sucker regeneration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aspen" title="Aspen">Aspen</a>, <a href="https://publications.waset.org/abstracts/search?q=inverted%20diameter-limit" title=" inverted diameter-limit"> inverted diameter-limit</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20forest" title=" mixed forest"> mixed forest</a>, <a href="https://publications.waset.org/abstracts/search?q=populus%20tremuloides" title=" populus tremuloides"> populus tremuloides</a>, <a href="https://publications.waset.org/abstracts/search?q=silviculture" title=" silviculture"> silviculture</a>, <a href="https://publications.waset.org/abstracts/search?q=thinning" title=" thinning"> thinning</a> </p> <a href="https://publications.waset.org/abstracts/120220/inverted-diameter-limit-thinning-a-promising-alternative-for-mixed-populus-tremuloides-stands-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120220.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1250</span> Community Activism for Sustainable Forest Management in Nepal: Lessons fromTarpakha Community Forest Siranchok, Gorkha</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prem%20Bahadur%20Giri">Prem Bahadur Giri</a>, <a href="https://publications.waset.org/abstracts/search?q=Trilochana%20Pokhrel"> Trilochana Pokhrel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The nationalization of forest during early 1960s had become a counterproductive for the conservation of forest in Nepal. Realizing this fact, the Government of Nepal initiated a paradigm shift from government-controlled forestry system to people’s direct participation for managing forestry, conceptualizing community forest approach in the early 1980s. The community forestry approach is expected to promote sustainable forest management, restoring degraded forests for enhancing the forest condition on one hand, and on the other, improvement of livelihoods, particularly of low-income people and forest dependent communities, as well as promoting community ownership to forest. As a result, establishment of community forests started and had taken faster momentum in Nepal. Of the total land in Nepal, forest occupies 6.5 million hectares which is around 45 percent of the forest area. Of the total forest area 1.8 million hectarehas been handed-over to community management. A total of 19,361 ‘community forest users groups’ are already created to manage the community forest.Tostreamlinethe governance of community forest, the enactment of ‘Forest Act 1993’ provides a clear legal basis for managing community forest in Nepal. This article is based on an in-depth study taking a case of Tarpakha Community Forest (TCF) located in Siranchok Rural Municipality of Gorkha District in Nepal. It mainly discusses on to extent the TCF able to achieve twin objectives of this community forest for catalyzing socio-economic improvement of the targeted community and conservation of forest. The primary information was generated through in-depth interviews along with group discussion with members, management committee, and other relevant stakeholders. The findings reveal that there is significant improvement of regeneration of forest and also changes in the socio-economic status of local community. However, coordination with local municipality and forest governing entities is still weak. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=community%20forest" title="community forest">community forest</a>, <a href="https://publications.waset.org/abstracts/search?q=nepal" title=" nepal"> nepal</a>, <a href="https://publications.waset.org/abstracts/search?q=socio-economic%20%20benefit" title=" socio-economic benefit"> socio-economic benefit</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20forest%20management" title=" sustainable forest management"> sustainable forest management</a> </p> <a href="https://publications.waset.org/abstracts/172566/community-activism-for-sustainable-forest-management-in-nepal-lessons-fromtarpakha-community-forest-siranchok-gorkha" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172566.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1249</span> The Interrelationship Between Urban Forest ,Forest Policy And Degraded Lands In Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pius%20Akindele%20Adeniyi">Pius Akindele Adeniyi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The World's tropical forests are disappearing at an alarming rate of more than 200,000 ha per year as a result of deforestation due mainly to population pressures, economic growth, poor management and inappropriate policy. A forest policy determines the role of the sector in a nation's economy and it is formulated in accordance with the objectives of the national economic development. Urban forestry as a concept is relatively new in Nigeria when compared to European and American countries. It consists of growing of trees, shrubs and grass along streets, in parks, and around public or private buildings whose management rests in the hands of the public and private owners. Major urban centers in Nigeria are devoid of efficiently planned tree-planting programs. Hence, various factors militating against environmental improvements, such as climate and other agents of degradation, are highlighted for the necessary attention. The paper discusses the need for forest policy formulation and the objectives of forest policy. Elements of forest policy are also discussed and in particular, those peculiar to urbanization and degraded lands are Forest policy and land-use and policy implementation together with some problem issues in forest policy are discussed while recommendations are given on formulation of a forest policy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urban" title="urban">urban</a>, <a href="https://publications.waset.org/abstracts/search?q=forest" title=" forest"> forest</a>, <a href="https://publications.waset.org/abstracts/search?q=policy" title=" policy"> policy</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction" title=" interaction"> interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=degraded" title=" degraded"> degraded</a> </p> <a href="https://publications.waset.org/abstracts/163752/the-interrelationship-between-urban-forest-forest-policy-and-degraded-lands-in-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163752.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1248</span> Insect Outbreaks, Harvesting and Wildfire in Forests: Mathematical Models for Coupling Disturbances</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20C.%20A.%20Leite">M. C. A. Leite</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Chen-Charpentier"> B. Chen-Charpentier</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Agusto"> F. Agusto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A long-term goal of sustainable forest management is a relatively stable source of wood and a stable forest age-class structure has become the goal of many forest management practices. In the absence of disturbances, this forest management goal could easily be achieved. However, in the face of recurring insect outbreaks and other disruptive processes forest planning becomes more difficult, requiring knowledge of the effects on the forest of a wide variety of environmental factors (e.g., habitat heterogeneity, fire size and frequency, harvesting, insect outbreaks, and age distributions). The association between distinct forest disturbances and the potential effect on forest dynamics is a complex matter, particularly when evaluated over time and at large scale, and is not well understood. However, gaining knowledge in this area is crucial for a sustainable forest management. Mathematical modeling is a tool that can be used to broader the understanding in this area. In this talk we will introduce mathematical models formulation incorporating the effect of insect outbreaks either as a single disturbance in the forest population dynamics or coupled with other disturbances: either wildfire or harvesting. The results and ecological insights will be discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=age-structured%20forest%20population" title="age-structured forest population">age-structured forest population</a>, <a href="https://publications.waset.org/abstracts/search?q=disturbances%20interaction" title=" disturbances interaction"> disturbances interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=harvesting%20insects%20outbreak%20dynamics" title=" harvesting insects outbreak dynamics"> harvesting insects outbreak dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%0D%0Amodeling" title=" mathematical modeling"> mathematical modeling</a> </p> <a href="https://publications.waset.org/abstracts/16948/insect-outbreaks-harvesting-and-wildfire-in-forests-mathematical-models-for-coupling-disturbances" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">525</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1247</span> Machine Learning-Driven Prediction of Cardiovascular Diseases: A Supervised Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thota%20Sai%20Prakash">Thota Sai Prakash</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Yaswanth"> B. Yaswanth</a>, <a href="https://publications.waset.org/abstracts/search?q=Jhade%20Bhuvaneswar"> Jhade Bhuvaneswar</a>, <a href="https://publications.waset.org/abstracts/search?q=Marreddy%20Divakar%20Reddy"> Marreddy Divakar Reddy</a>, <a href="https://publications.waset.org/abstracts/search?q=Shyam%20Ji%20Gupta"> Shyam Ji Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Across the globe, there are a lot of chronic diseases, and heart disease stands out as one of the most perilous. Sadly, many lives are lost to this condition, even though early intervention could prevent such tragedies. However, identifying heart disease in its initial stages is not easy. To address this challenge, we propose an automated system aimed at predicting the presence of heart disease using advanced techniques. By doing so, we hope to empower individuals with the knowledge needed to take proactive measures against this potentially fatal illness. Our approach towards this problem involves meticulous data preprocessing and the development of predictive models utilizing classification algorithms such as Support Vector Machines (SVM), Decision Tree, and Random Forest. We assess the efficiency of every model based on metrics like accuracy, ensuring that we select the most reliable option. Additionally, we conduct thorough data analysis to reveal the importance of different attributes. Among the models considered, Random Forest emerges as the standout performer with an accuracy rate of 96.04% in our study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machines" title="support vector machines">support vector machines</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20tree" title=" decision tree"> decision tree</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20forest" title=" random forest"> random forest</a> </p> <a href="https://publications.waset.org/abstracts/185653/machine-learning-driven-prediction-of-cardiovascular-diseases-a-supervised-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185653.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">40</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1246</span> Community Activism for Sustainable Forest Management in Nepal: Lessons fromTarpakha Community Forest</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prem%20Bahadur%20Giri">Prem Bahadur Giri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The nationalization of forests during the early 1960s had become counterproductive for the conservation of forests in Nepal. Realizing this fact, the Government of Nepal initiated a paradigm shift from a government-controlled forestry system to people’s direct participation in managing forestry, conceptualizing a community forest approach in the early 1980s. The community forestry approach is expected to promote sustainable forest management, restoring degraded forests to enhance the forest condition on the one hand, and on the other, improvement of livelihoods, particularly of low-income people and forest-dependent communities, as well as promoting community ownership of a forest. As a result, the establishment of community forests started and had taken faster momentum in Nepal. Of the total land in Nepal, forest occupies 6.5 million hectares which are around 45 percent of the forest area. Of the total forest area, 1.8 million hectares have been handed over to community management. A total of 19,361 ‘community forest users groups’ are already created to manage the community forest. To streamline the governance of community forests, the enactment of ‘The Forest Act 1993’ provides a clear legal basis for managing community forests in Nepal. This article is based on an in-depth study taking the case of Tarpakha Community Forest (TCF) located in Siranchok Rural Municipality of Gorkha District in Nepal. It mainly discusses the extent to which the TCF is able to achieve the twin objectives of this community forest for catalyzing socio-economic improvement of the targeted community and conservation of the forest. The primary information was generated through in-depth interviews along with group discussions with members, the management committee, and other relevant stakeholders. The findings reveal that there is a significant improvement in the regeneration of the forest and also changes in the socio-economic status of the local community. However, coordination with local municipalities and forest governing entities is still weak. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=community%20forest" title="community forest">community forest</a>, <a href="https://publications.waset.org/abstracts/search?q=socio-economic%20benefit" title=" socio-economic benefit"> socio-economic benefit</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20forest%20management" title=" sustainable forest management"> sustainable forest management</a>, <a href="https://publications.waset.org/abstracts/search?q=Nepal" title=" Nepal"> Nepal</a> </p> <a href="https://publications.waset.org/abstracts/160129/community-activism-for-sustainable-forest-management-in-nepal-lessons-fromtarpakha-community-forest" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160129.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1245</span> Assessment of Non-Timber Forest Products from Community Managed Forest of Thenzawl Forest Division, Mizoram, Northeast India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Lalhmingsangi">K. Lalhmingsangi</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20K.%20Sahoo"> U. K. Sahoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Non-Timber Forest Products represent one of the key sources of income and subsistence to the fringe communities living in rural areas. A study was conducted for the assessment of NTFP within the community forest of five villages under Thenzawl forest division. Participatory Rural Appraisal (PRA), questionnaire, field exercise, discussion and interview with the first hand NTFP exploiter and sellers was adopted for the field study. Fuel wood, medicinal plants, fodder, wild vegetables, fruits, broom grass, thatch grass, bamboo pole and cane species are the main NTFP harvested from the community forest. Among all the NTFPs, the highest percentage of household involvement was found in fuel wood, i.e. 53% of household and least in medicinal plants 5%. They harvest for their own consumption as well as for selling to the market to meet their needs. Edible food and fruits are sold to the market and it was estimated that 300 (Rs/hh/yr) was earned by each household through the selling of this NTFP from the community forest alone. No marketing channels are linked with fuelwood, medicinal plants and fodder since they harvest only for their own consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=community%20forest" title="community forest">community forest</a>, <a href="https://publications.waset.org/abstracts/search?q=subsistence" title=" subsistence"> subsistence</a>, <a href="https://publications.waset.org/abstracts/search?q=non-timber%20forest%20products" title=" non-timber forest products"> non-timber forest products</a>, <a href="https://publications.waset.org/abstracts/search?q=Thenzawl%20Forest%20Division" title=" Thenzawl Forest Division"> Thenzawl Forest Division</a> </p> <a href="https://publications.waset.org/abstracts/95061/assessment-of-non-timber-forest-products-from-community-managed-forest-of-thenzawl-forest-division-mizoram-northeast-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95061.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1244</span> Plantation Forests Height Mapping Using Unmanned Aerial System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shiming%20Li">Shiming Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Qingwang%20Liu"> Qingwang Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Honggan%20Wu"> Honggan Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianbing%20Zhang"> Jianbing Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plantation forests are useful for timber production, recreation, environmental protection and social development. Stands height is an important parameter for the estimation of forest volume and carbon stocks. Although lidar is suitable technology for the vertical parameters extraction of forests, but high costs make it not suitable for operational inventory. With the development of computer vision and photogrammetry, aerial photos from unmanned aerial system can be used as an alternative solution for height mapping. Structure-from-motion (SfM) photogrammetry technique can be used to extract DSM and DEM information. Canopy height model (CHM) can be achieved by subtraction DEM from DSM. Our result shows that overlapping aerial photos is a potential solution for plantation forests height mapping. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forest%20height%20mapping" title="forest height mapping">forest height mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=plantation%20forests" title=" plantation forests"> plantation forests</a>, <a href="https://publications.waset.org/abstracts/search?q=structure-from-motion%20photogrammetry" title=" structure-from-motion photogrammetry"> structure-from-motion photogrammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=UAS" title=" UAS"> UAS</a> </p> <a href="https://publications.waset.org/abstracts/63172/plantation-forests-height-mapping-using-unmanned-aerial-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1243</span> Design an Architectural Model for Deploying Wireless Sensor Network to Prevent Forest Fire</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saurabh%20Shukla">Saurabh Shukla</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20N.%20Pandey"> G. N. Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fires have become the most serious disasters to forest resources and the human environment. In recent years, due to climate change, human activities and other factors the frequency of forest fires has increased considerably. The monitoring and prevention of forest fires have now become a global concern for forest fire prevention organizations. Currently, the methods for forest fire prevention largely consist of patrols, observation from watch towers. Thus, software like deployment of the wireless sensor network to prevent forest fire is being developed to get a better estimate of the temperature and humidity prospects. Now days, wireless sensor networks are beginning to be deployed at an accelerated pace. It is not unrealistic to expect that in coming years the world will be covered with wireless sensor networks. This new technology has lots of unlimited potentials and can be used for numerous application areas including environmental, medical, military, transportation, entertainment, crisis management, homeland defense, and smart spaces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deployment" title="deployment">deployment</a>, <a href="https://publications.waset.org/abstracts/search?q=sensors" title=" sensors"> sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20networks" title=" wireless sensor networks"> wireless sensor networks</a>, <a href="https://publications.waset.org/abstracts/search?q=forest%20fires" title=" forest fires"> forest fires</a> </p> <a href="https://publications.waset.org/abstracts/3989/design-an-architectural-model-for-deploying-wireless-sensor-network-to-prevent-forest-fire" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1242</span> Extraction of Forest Plantation Resources in Selected Forest of San Manuel, Pangasinan, Philippines Using LiDAR Data for Forest Status Assessment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mark%20Joseph%20Quinto">Mark Joseph Quinto</a>, <a href="https://publications.waset.org/abstracts/search?q=Roan%20Beronilla"> Roan Beronilla</a>, <a href="https://publications.waset.org/abstracts/search?q=Guiller%20Damian"> Guiller Damian</a>, <a href="https://publications.waset.org/abstracts/search?q=Eliza%20Camaso"> Eliza Camaso</a>, <a href="https://publications.waset.org/abstracts/search?q=Ronaldo%20Alberto"> Ronaldo Alberto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Forest inventories are essential to assess the composition, structure and distribution of forest vegetation that can be used as baseline information for management decisions. Classical forest inventory is labor intensive and time-consuming and sometimes even dangerous. The use of Light Detection and Ranging (LiDAR) in forest inventory would improve and overcome these restrictions. This study was conducted to determine the possibility of using LiDAR derived data in extracting high accuracy forest biophysical parameters and as a non-destructive method for forest status analysis of San Manual, Pangasinan. Forest resources extraction was carried out using LAS tools, GIS, Envi and .bat scripts with the available LiDAR data. The process includes the generation of derivatives such as Digital Terrain Model (DTM), Canopy Height Model (CHM) and Canopy Cover Model (CCM) in .bat scripts followed by the generation of 17 composite bands to be used in the extraction of forest classification covers using ENVI 4.8 and GIS software. The Diameter in Breast Height (DBH), Above Ground Biomass (AGB) and Carbon Stock (CS) were estimated for each classified forest cover and Tree Count Extraction was carried out using GIS. Subsequently, field validation was conducted for accuracy assessment. Results showed that the forest of San Manuel has 73% Forest Cover, which is relatively much higher as compared to the 10% canopy cover requirement. On the extracted canopy height, 80% of the tree&rsquo;s height ranges from 12 m to 17 m. CS of the three forest covers based on the AGB were: 20819.59 kg/20x20 m for closed broadleaf, 8609.82 kg/20x20 m for broadleaf plantation and 15545.57 kg/20x20m for open broadleaf. Average tree counts for the tree forest plantation was 413 trees/ha. As such, the forest of San Manuel has high percent forest cover and high CS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20stock" title="carbon stock">carbon stock</a>, <a href="https://publications.waset.org/abstracts/search?q=forest%20inventory" title=" forest inventory"> forest inventory</a>, <a href="https://publications.waset.org/abstracts/search?q=LiDAR" title=" LiDAR"> LiDAR</a>, <a href="https://publications.waset.org/abstracts/search?q=tree%20count" title=" tree count"> tree count</a> </p> <a href="https://publications.waset.org/abstracts/71998/extraction-of-forest-plantation-resources-in-selected-forest-of-san-manuel-pangasinan-philippines-using-lidar-data-for-forest-status-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1241</span> PRISM: An Analytical Tool for Forest Plan Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dung%20Nguyen">Dung Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Wei"> Yu Wei</a>, <a href="https://publications.waset.org/abstracts/search?q=Eric%20Henderson"> Eric Henderson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Analytical tools have been used for decades to assist in the development of forest plans. In 2016, a new decision support system, PRISM, was jointly developed by United States Forest Service (USFS) Northern Region and Colorado State University to support the forest planning process. Prism has a friendly user interface with functionality for database management, model development, data visualization, and sensitivity analysis. The software is tailored for USFS planning, but it is flexible enough to support planning efforts by other forestland owners and managers. Here, the core capability of PRISM and its applications in developing plans for several United States national forests are presented. The strengths of PRISM are also discussed to show its potential of being a preferable tool for managers and experts in the domain of forest management and planning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decision%20support" title="decision support">decision support</a>, <a href="https://publications.waset.org/abstracts/search?q=forest%20management" title=" forest management"> forest management</a>, <a href="https://publications.waset.org/abstracts/search?q=forest%20plan" title=" forest plan"> forest plan</a>, <a href="https://publications.waset.org/abstracts/search?q=graphical%20user%20interface" title=" graphical user interface"> graphical user interface</a>, <a href="https://publications.waset.org/abstracts/search?q=software" title=" software"> software</a> </p> <a href="https://publications.waset.org/abstracts/156720/prism-an-analytical-tool-for-forest-plan-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1240</span> Moroccan Mountains: Forest Ecosystems and Biodiversity Conservation Strategies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Sghir%20Taleb">Mohammed Sghir Taleb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Forest ecosystems in Morocco are subject increasingly to natural and human pressures. Conscious of this problem, Morocco set a strategy that focuses on programs of <em>in-situ</em> and <em>ex-situ</em> biodiversity conservation. This study is the result of a synthesis of various existing studies on biodiversity and forest ecosystems. It gives an overview of Moroccan mountain forest ecosystems and flora diversity. It also focuses on the efforts made by Morocco to conserve and sustainably manage biodiversity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mountain" title="mountain">mountain</a>, <a href="https://publications.waset.org/abstracts/search?q=ecosystems" title=" ecosystems"> ecosystems</a>, <a href="https://publications.waset.org/abstracts/search?q=conservation" title=" conservation"> conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=Morocco" title=" Morocco"> Morocco</a> </p> <a href="https://publications.waset.org/abstracts/35387/moroccan-mountains-forest-ecosystems-and-biodiversity-conservation-strategies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35387.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">582</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1239</span> Low Pricing Strategy of Forest Products in Community Forestry Program: Subsidy to the Forest Users or Loss of Economy?</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laxuman%20Thakuri">Laxuman Thakuri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Community-based forest management is often glorified as one of the best forest management alternatives in the developing countries like Nepal. It is also believed that the transfer of forest management authorities to local communities is decisive to take efficient decisions, maximize the forest benefits and improve the people’s livelihood. The community forestry of Nepal also aims to maximize the forest benefits; share them among the user households and improve their livelihood. However, how the local communities fix the price of forest products and local pricing made by the forest user groups affects to equitable forest benefits-sharing among the user households and their livelihood improvement objectives, the answer is largely silent among the researchers and policy-makers alike. This study examines local pricing system of forest products in the lowland community forestry and its effects on equitable benefit-sharing and livelihood improvement objectives. The study discovered that forest user groups fixed the price of forest products based on three criteria: i) costs incur in harvesting, ii) office operation costs, and iii) livelihood improvement costs through community development and income generating activities. Since user households have heterogeneous socio-economic conditions, the forest user groups have been applied low pricing strategy even for high-value forest products that the access of socio-economically worse-off households can be increased. However, the results of forest products distribution showed that as a result of low pricing strategy the access of socio-economically better-off households has been increasing at higher rate than worse-off and an inequality situation has been created. Similarly, the low pricing strategy is also found defective to livelihood improvement objectives. The study suggests for revising the forest products pricing system in community forest management and reforming the community forestry policy as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=community%20forestry" title="community forestry">community forestry</a>, <a href="https://publications.waset.org/abstracts/search?q=forest%20products%20pricing" title=" forest products pricing"> forest products pricing</a>, <a href="https://publications.waset.org/abstracts/search?q=equitable%20benefit-sharing" title=" equitable benefit-sharing"> equitable benefit-sharing</a>, <a href="https://publications.waset.org/abstracts/search?q=livelihood%20improvement" title=" livelihood improvement"> livelihood improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=Nepal" title=" Nepal "> Nepal </a> </p> <a href="https://publications.waset.org/abstracts/37379/low-pricing-strategy-of-forest-products-in-community-forestry-program-subsidy-to-the-forest-users-or-loss-of-economy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37379.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1238</span> Characteristics of Old-Growth and Secondary Forests in Relation to Age and Typhoon Disturbance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Teng-Chiu%20Lin">Teng-Chiu Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Pei-Jen%20Lee%20Shaner"> Pei-Jen Lee Shaner</a>, <a href="https://publications.waset.org/abstracts/search?q=Shin-Yu%20Lin"> Shin-Yu Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Both forest age and physical damages due to weather events such as tropical cyclones can influence forest characteristics and subsequently its capacity to sequester carbon. Detangling these influences is therefore a pressing issue under climate change. In this study, we compared the compositional and structural characteristics of three forests in Taiwan differing in age and severity of typhoon disturbances. We found that the two forests (one old-growth forest and one secondary forest) experiencing more severe typhoon disturbances had shorter stature, higher wood density, higher tree species diversity, and lower typhoon-induced tree mortality than the other secondary forest experiencing less severe typhoon disturbances. On the other hand, the old-growth forest had a larger amount of woody debris than the two secondary forests, suggesting a dominant role of forest age on woody debris accumulation. Of the three forests, only the two experiencing more severe typhoon disturbances formed new gaps following two 2015 typhoons, and between these two forests, the secondary forest gained more gaps than the old-growth forest. Consider that older forests generally have more gaps due to a higher background tree mortality, our findings suggest that the age effects on gap dynamics may be reversed by typhoon disturbances. This study demonstrated the effects of typhoons on forest characteristics, some of which could negate the age effects and rejuvenate older forests. If cyclone disturbances were to intensity under climate change, the capacity of older forests to sequester carbon may be reduced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=typhoon" title="typhoon">typhoon</a>, <a href="https://publications.waset.org/abstracts/search?q=canpy%20gap" title=" canpy gap"> canpy gap</a>, <a href="https://publications.waset.org/abstracts/search?q=coarse%20woody%20debris" title=" coarse woody debris"> coarse woody debris</a>, <a href="https://publications.waset.org/abstracts/search?q=forest%20stature" title=" forest stature"> forest stature</a>, <a href="https://publications.waset.org/abstracts/search?q=forest%20age" title=" forest age"> forest age</a> </p> <a href="https://publications.waset.org/abstracts/55429/characteristics-of-old-growth-and-secondary-forests-in-relation-to-age-and-typhoon-disturbance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55429.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1237</span> Geographic Information System Applications in Prioritizing Karlahi Forest Reserve Area for Conservation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Hyellamada%20Jerry">Samuel Hyellamada Jerry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study focused on assessing conservation priorities within the Karlahi Forest Reserve of Fufore Local Government in Adamawa State. The main objective was to identify specific areas within the forest reserve that require immediate conservation attention. The research employed remote sensing and GIS techniques to achieve this goal. By overlaying the IDRIS Silva module results, a spatial distribution map was generated, highlighting the cumulative priority areas within and outside the forest. Among the total vegetated area of 26.38 km² in the Karlahi Forest Reserve, the analysis revealed that 16.16 km² were classified as high-priority conservation zones. Additionally, 4.59 km² and 5.63 km² were identified as medium and low-priority areas, respectively. In light of these findings, it is recommended that conservation efforts incorporate detailed land cover information and regular assessments of species diversity. Furthermore, strict adherence to national and state policies regarding forest reserves and parks is crucial for effective conservation management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=priority" title="priority">priority</a>, <a href="https://publications.waset.org/abstracts/search?q=Karlahi" title=" Karlahi"> Karlahi</a>, <a href="https://publications.waset.org/abstracts/search?q=forest" title=" forest"> forest</a>, <a href="https://publications.waset.org/abstracts/search?q=reserve" title=" reserve"> reserve</a>, <a href="https://publications.waset.org/abstracts/search?q=IDRISI%20Silva" title=" IDRISI Silva"> IDRISI Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=species%20diversity" title=" species diversity"> species diversity</a> </p> <a href="https://publications.waset.org/abstracts/178549/geographic-information-system-applications-in-prioritizing-karlahi-forest-reserve-area-for-conservation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1236</span> Community Forest Management and Ecological and Economic Sustainability: A Two-Way Street</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sony%20Baral">Sony Baral</a>, <a href="https://publications.waset.org/abstracts/search?q=Harald%20Vacik"> Harald Vacik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study analyzes the sustainability of community forest management in two community forests in Terai and Hills of Nepal, representing four forest types: 1) Shorearobusta, 2) Terai hardwood, 3) Schima-Castanopsis, and 4) other Hills. The sustainability goals for this region include maintaining and enhancing the forest stocks. Considering this, we analysed changes in species composition, stand density, growing stock volume, and growth-to-removal ratio at 3-5 year intervals from 2005-2016 within 109 permanent forest plots (57 in the Terai and 52 in the Hills). To complement inventory data, forest users, forest committee members, and forest officials were consulted. The results indicate that the relative representation of economically valuable tree species has increased. Based on trends in stand density, both forests are being sustainably managed. Pole-sized trees dominated the diameter distribution, however, with a limited number of mature trees and declined regeneration. The forests were over-harvested until 2013 but under-harvested in the recent period in the Hills. In contrast, both forest types were under-harvested throughout the inventory period in the Terai. We found that the ecological dimension of sustainable forest management is strongly achieved while the economic dimension is lacking behind the current potential. Thus, we conclude that maintaining a large number of trees in the forest does not necessarily ensure both ecological and economical sustainability. Instead, priority should be given on a rational estimation of the annual harvest rates to enhance forest resource conditions together with regular benefits to the local communities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=community%20forests" title="community forests">community forests</a>, <a href="https://publications.waset.org/abstracts/search?q=diversity" title=" diversity"> diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=growing%20stock" title=" growing stock"> growing stock</a>, <a href="https://publications.waset.org/abstracts/search?q=forest%20management" title=" forest management"> forest management</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=nepal" title=" nepal"> nepal</a> </p> <a href="https://publications.waset.org/abstracts/154371/community-forest-management-and-ecological-and-economic-sustainability-a-two-way-street" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154371.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=forest%20stands&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=forest%20stands&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=forest%20stands&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=forest%20stands&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=forest%20stands&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=forest%20stands&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=forest%20stands&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=forest%20stands&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=forest%20stands&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=forest%20stands&amp;page=42">42</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=forest%20stands&amp;page=43">43</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=forest%20stands&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10