CINXE.COM
Search results for: isothermal oxidation
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: isothermal oxidation</title> <meta name="description" content="Search results for: isothermal oxidation"> <meta name="keywords" content="isothermal oxidation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="isothermal oxidation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="isothermal oxidation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1036</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: isothermal oxidation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1036</span> Comparative Study of Isothermal and Cyclic Oxidation on Titanium Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Poonam%20Yadav">Poonam Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong%20Bok%20Lee"> Dong Bok Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Isothermal oxidation at 800°C for 50h and Cyclic oxidation at 600°C and 800°C for 40h of Pure Ti and Ti64 were performed in a muffle furnace. In Cyclic oxidation, massive scale spallation occurred, and the oxide scale cracks and peels off were observed at high temperature, it represents oxide scale that formed during cyclic oxidation was spalled out owing to stresses due to thermal shock generated during repetitive oxidation and subsequent cooling. The thickness of scale is larger in cyclic oxidation than the isothermal case. This is due to inward diffusion of oxygen through oxide scales and/or pores and cracks in cyclic oxidation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclic" title="cyclic">cyclic</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusion" title=" diffusion"> diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=isothermal" title=" isothermal"> isothermal</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic" title=" cyclic"> cyclic</a> </p> <a href="https://publications.waset.org/abstracts/19120/comparative-study-of-isothermal-and-cyclic-oxidation-on-titanium-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19120.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">919</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1035</span> Isothermal and Cyclic Oxidation of the Ti-6Al-4V Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Poonam%20Yadav">Poonam Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong%20Bok%20Lee"> Dong Bok Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the Ti-6Al-4V alloy was isothermally and cyclically oxidized at 800oC for 40 hours in air, and its oxidation behavior was characterized in terms of its oxidation rate, scaling rate, and scale spallation tendency. The isothermal oxidation tests indicated that Ti-6Al-4V oxidized fast and almost linearly, forming thick oxide scales. However, the scales that formed during isothermal oxidation were adherent. The cyclic oxidation tests indicated that the scales that formed on Ti-6Al-4V were highly susceptible to spallation owing to the large growth stress arisen and the thermal stress imposed during thermal cyclings. The formed scales frequently delaminated into several pieces owing to the excessive stress aroused by the repetitive thermal shock. Particularly, excessive oxidation and heavy spallation occurred at the edge of Ti-6Al-4V during cyclic oxidation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclic" title="cyclic">cyclic</a>, <a href="https://publications.waset.org/abstracts/search?q=isothermal" title=" isothermal"> isothermal</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation" title=" oxidation"> oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=spallation" title=" spallation"> spallation</a> </p> <a href="https://publications.waset.org/abstracts/28970/isothermal-and-cyclic-oxidation-of-the-ti-6al-4v-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28970.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1034</span> Catalytic Effect of Graphene Oxide on the Oxidation of Paraffin-Based Fuels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lin-Lin%20Liu">Lin-Lin Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Song-Qi%20Hu"> Song-Qi Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yin%20Wang"> Yin Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Paraffin-based fuels are regarded to be a promising fuel of hybrid rocked motor because of the high regression rate, low price, and environmental friendliness. Graphene Oxide (GO) is an attractive energetic material which is expected to be widely used in propellants, explosives, and some high energy fuels. Paraffin-based fuels with paraffin and GO as raw materials were prepared, and the oxidation process of the samples was investigated by thermogravimetric analysis differential scanning calorimetry (TG/DSC) under oxygen (O₂) and nitrous oxide (N₂O) atmospheres. The oxidation reaction kinetics of the fuels was estimated through the non-isothermal measurements and model-free isoconversional methods based on the experimental results of TGA. The results show that paraffin-based fuels are easier oxidized under O₂ rather than N₂O with atmospheres due to the lower activation energy; GO plays a catalytic role for the oxidation of paraffin-based fuels under the both atmospheres, and the activation energy of the oxidation process decreases with the increase of GO; catalytic effect of GO on the oxidation of paraffin-based fuels are more obvious under O₂ atmospheres than under N₂O atmospheres. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title="graphene oxide">graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=paraffin-based%20fuels" title=" paraffin-based fuels"> paraffin-based fuels</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation" title=" oxidation"> oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=activation%20energy" title=" activation energy"> activation energy</a>, <a href="https://publications.waset.org/abstracts/search?q=TGA" title=" TGA"> TGA</a> </p> <a href="https://publications.waset.org/abstracts/74018/catalytic-effect-of-graphene-oxide-on-the-oxidation-of-paraffin-based-fuels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1033</span> A Study on Prediction Model for Thermally Grown Oxide Layer in Thermal Barrier Coating</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yongseok%20Kim">Yongseok Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeong-Min%20Lee"> Jeong-Min Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyunwoo%20Song"> Hyunwoo Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Junghan%20Yun"> Junghan Yun</a>, <a href="https://publications.waset.org/abstracts/search?q=Jungin%20Byun"> Jungin Byun</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Mean%20Koo"> Jae-Mean Koo</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang-Sung%20Seok"> Chang-Sung Seok</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermal barrier coating(TBC) is applied for gas turbine components to protect the components from extremely high temperature condition. Since metallic substrate cannot endure such severe condition of gas turbines, delamination of TBC can cause failure of the system. Thus, delamination life of TBC is one of the most important issues for designing the components operating at high temperature condition. Thermal stress caused by thermally grown oxide(TGO) layer is known as one of the major failure mechanisms of TBC. Thermal stress by TGO mainly occurs at the interface between TGO layer and ceramic top coat layer, and it is strongly influenced by the thickness and shape of TGO layer. In this study, Isothermal oxidation is conducted on coin-type TBC specimens prepared by APS(air plasma spray) method. After the isothermal oxidation at various temperature and time condition, the thickness and shape(rumpling shape) of the TGO is investigated, and the test data is processed by numerical analysis. Finally, the test data is arranged into a mathematical prediction model with two variables(temperature and exposure time) which can predict the thickness and rumpling shape of TGO. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20barrier%20coating" title="thermal barrier coating">thermal barrier coating</a>, <a href="https://publications.waset.org/abstracts/search?q=thermally%20grown%20oxide" title=" thermally grown oxide"> thermally grown oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20stress" title=" thermal stress"> thermal stress</a>, <a href="https://publications.waset.org/abstracts/search?q=isothermal%20oxidation" title=" isothermal oxidation"> isothermal oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a> </p> <a href="https://publications.waset.org/abstracts/15412/a-study-on-prediction-model-for-thermally-grown-oxide-layer-in-thermal-barrier-coating" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1032</span> High Temperature Oxidation Behavior of Aluminized Steel by Arc Spray and Cementation Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minoo%20Tavakoli">Minoo Tavakoli</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Kiani%20Rashid"> Alireza Kiani Rashid</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Afrasiabi"> Abbas Afrasiabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An aluminum coating deposited on mild steel substrate by electric arc spray and diffused to the base steel material by diffusion treatment at 800 and 900°C for 1 and 3 hours in a static air. Alloy layers formed by diffusion at both temperatures were investigated, and their features were compared with those of pack cementation aluminized steel. High-temperature oxidation tests were carried out in air at 600 °C for 145 hours. Results indicated that the aluminide coatings obtained from this process have significantly improved the high-temperature oxidation resistance in both methods due to the Al2O3 scale formation. Furthermore, it showed that the isothermal oxidation resistance of arc spray technique is better than pack cementation method. This can be attributed to voids that formed at the intermetallic layer /Al layer interface which is increased in the pack cementation method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20arc%20spray" title="electric arc spray">electric arc spray</a>, <a href="https://publications.waset.org/abstracts/search?q=pack%20cementation" title=" pack cementation"> pack cementation</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation%20resistance" title=" oxidation resistance"> oxidation resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminized%20steel" title=" aluminized steel "> aluminized steel </a> </p> <a href="https://publications.waset.org/abstracts/15965/high-temperature-oxidation-behavior-of-aluminized-steel-by-arc-spray-and-cementation-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15965.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1031</span> Formation of Protective Silicide-Aluminide Coating on Gamma-TiAl Advanced Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Nouri">S. Nouri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the Si-aluminide coating was prepared on gamma-TiAl [Ti-45Al-2Nb-2Mn-1B (at. %)] via liquid-phase slurry procedure. The high temperature oxidation resistance of this diffusion coating was evaluated at 1100 °C for 400 hours. The results of the isothermal oxidation showed that the formation of Si-aluminide coating can remarkably improve the high temperature oxidation of bare gamma-TiAl alloy. The identification of oxide scale microstructure showed that the formation of protective Al<sub>2</sub>O<sub>3</sub>+SiO<sub>2</sub> mixed oxide scale along with a continuous, compact and uniform layer of Ti<sub>5</sub>Si<sub>3</sub> beneath the surface oxide scale can act as an oxygen diffusion barrier during the high temperature oxidation. The other possible mechanisms related to the formation of Si-aluminide coating and oxide scales were also discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gamma-TiAl%20alloy" title="Gamma-TiAl alloy">Gamma-TiAl alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20temperature%20oxidation" title=" high temperature oxidation"> high temperature oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=Si-aluminide%20coating" title=" Si-aluminide coating"> Si-aluminide coating</a>, <a href="https://publications.waset.org/abstracts/search?q=slurry%20procedure" title=" slurry procedure"> slurry procedure</a> </p> <a href="https://publications.waset.org/abstracts/105858/formation-of-protective-silicide-aluminide-coating-on-gamma-tial-advanced-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105858.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1030</span> Alumina Supported Cu-Mn-Cr Catalysts for CO and VOCs oxidation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krasimir%20Ivanov">Krasimir Ivanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Elitsa%20Kolentsova"> Elitsa Kolentsova</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitar%20Dimitrov"> Dimitar Dimitrov</a>, <a href="https://publications.waset.org/abstracts/search?q=Petya%20Petrova"> Petya Petrova</a>, <a href="https://publications.waset.org/abstracts/search?q=Tatyana%20Tabakova"> Tatyana Tabakova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work studies the effect of chemical composition on the activity and selectivity of γ–alumina supported CuO/ MnO2/Cr2O3 catalysts toward deep oxidation of CO, dimethyl ether (DME) and methanol. The catalysts were prepared by impregnation of the support with an aqueous solution of copper nitrate, manganese nitrate and CrO3 under different conditions. Thermal, XRD and TPR analysis were performed. The catalytic measurements of single compounds oxidation were carried out on continuous flow equipment with a four-channel isothermal stainless steel reactor. Flow-line equipment with an adiabatic reactor for simultaneous oxidation of all compounds under the conditions that mimic closely the industrial ones was used. The reactant and product gases were analyzed by means of on-line gas chromatographs. On the basis of XRD analysis it can be concluded that the active component of the mixed Cu-Mn-Cr/γ–alumina catalysts consists of at least six compounds – CuO, Cr2O3, MnO2, Cu1.5Mn1.5O4, Cu1.5Cr1.5O4 and CuCr2O4, depending on the Cu/Mn/Cr molar ratio. Chemical composition strongly influences catalytic properties, this influence being quite variable with regards to the different processes. The rate of CO oxidation rapidly decrease with increasing of chromium content in the active component while for the DME was observed the reverse trend. It was concluded that the best compromise are the catalysts with Cu/(Mn + Cr) molar ratio 1:5 and Mn/Cr molar ratio from 1:3 to 1:4. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cu-Mn-Cr%20oxide%20catalysts" title="Cu-Mn-Cr oxide catalysts">Cu-Mn-Cr oxide catalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=volatile%20organic%20compounds" title=" volatile organic compounds"> volatile organic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20oxidation" title=" deep oxidation"> deep oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=dimethyl%20ether%20%28DME%29" title=" dimethyl ether (DME)"> dimethyl ether (DME)</a> </p> <a href="https://publications.waset.org/abstracts/23641/alumina-supported-cu-mn-cr-catalysts-for-co-and-vocs-oxidation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23641.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1029</span> Alumina Supported Copper-manganese Catalysts for Combustion of Exhaust Gases: Catalysts Characterization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krasimir%20I.%20Ivanov">Krasimir I. Ivanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Elitsa%20N.%20Kolentsova"> Elitsa N. Kolentsova</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitar%20Y.%20Dimitrov"> Dimitar Y. Dimitrov</a>, <a href="https://publications.waset.org/abstracts/search?q=Georgi%20V.%20Avdeev"> Georgi V. Avdeev</a>, <a href="https://publications.waset.org/abstracts/search?q=Tatyana%20T.%20Tabakova"> Tatyana T. Tabakova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent research copper and manganese systems were found to be the most active in CO and organic compounds oxidation among the base catalysts. The mixed copper manganese oxide has been widely studied in oxidation reactions because of their higher activity at low temperatures in comparison with single oxide catalysts. The results showed that the formation of spinel CuxMn3−xO4 in the oxidized catalyst is responsible for the activity even at room temperature. That is why most of the investigations are focused on the hopcalite catalyst (CuMn2O4) as the best copper-manganese catalyst. Now it’s known that this is true only for CO oxidation, but not for mixture of CO and VOCs. The purpose of this study is to investigate the alumina supported copper-manganese catalysts with different Cu/Mn molar ratio in terms of oxidation of CO, methanol and dimethyl ether. The catalysts were prepared by impregnation of γ-Al2O3 with copper and manganese nitrates and the catalytic activity measurements were carried out in continuous flow equipment with a four-channel isothermal stainless steel reactor. Gas mixtures on the input and output of the reactor were analyzed with a gas chromatograph, equipped with FID and TCD detectors. The texture characteristics were determined by low-temperature (- 196 oС) nitrogen adsorption in a Quantachrome Instruments NOVA 1200e (USA) specific surface area&pore analyzer. Thermal, XRD and TPR analyses were performed. It was established that the active component of the mixed Cu-Mn/γ–alumina catalysts strongly depends on the Cu/Mn molar ratio. Highly active alumina supported Cu-Mn catalysts for CO, methanol and DME oxidation were synthesized. While the hopcalite is the best catalyst for CO oxidation, the best compromise for simultaneous oxidation of all components is the catalyst with Cu/Mn molar ratio 1:5. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supported%20copper-manganese%20catalysts" title="supported copper-manganese catalysts">supported copper-manganese catalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=CO" title=" CO"> CO</a>, <a href="https://publications.waset.org/abstracts/search?q=VOCs%20oxidation" title=" VOCs oxidation"> VOCs oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion%20of%20exhaust%20gases" title=" combustion of exhaust gases"> combustion of exhaust gases</a> </p> <a href="https://publications.waset.org/abstracts/23639/alumina-supported-copper-manganese-catalysts-for-combustion-of-exhaust-gases-catalysts-characterization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23639.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1028</span> Alumina Supported Copper-Manganese Catalysts for Combustion of Exhaust Gases: Effect of Preparation Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krasimir%20Ivanov">Krasimir Ivanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Elitsa%20Kolentsova"> Elitsa Kolentsova</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitar%20Dimitrov"> Dimitar Dimitrov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of active and stable catalysts without noble metals for low temperature oxidation of exhaust gases remains a significant challenge. The purpose of this study is to determine the influence of the preparation method on the catalytic activity of the supported copper-manganese mixed oxides in terms of VOCs oxidation. The catalysts were prepared by impregnation of γ-Al2O3 with copper and manganese nitrates and acetates and the possibilities for CO, CH3OH and dimethyl ether (DME) oxidation were evaluated using continuous flow equipment with a four-channel isothermal stainless steel reactor. Effect of the support, Cu/Mn mole ratio, heat treatment of the precursor and active component loading were investigated. Highly active alumina supported Cu-Mn catalysts for CO and VOCs oxidation were synthesized. The effect of preparation conditions on the activity behavior of the catalysts was discussed. The synergetic interaction between copper and manganese species increases the activity for complete oxidation over mixed catalysts. Type of support, calcination temperature and active component loading along with catalyst composition are important factors, determining catalytic activity. Cu/Mn molar ratio of 1:5, heat treatment at 450oC and 20 % active component loading are the best compromise for production of active catalyst for simultaneous combustion of CO, CH3OH and DME. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copper-manganese%20catalysts" title="copper-manganese catalysts">copper-manganese catalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=CO" title=" CO"> CO</a>, <a href="https://publications.waset.org/abstracts/search?q=VOCs%20oxidation" title=" VOCs oxidation"> VOCs oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=exhaust%20gases" title=" exhaust gases"> exhaust gases</a> </p> <a href="https://publications.waset.org/abstracts/22828/alumina-supported-copper-manganese-catalysts-for-combustion-of-exhaust-gases-effect-of-preparation-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22828.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1027</span> Alumina Supported Cu-Mn-La Catalysts for CO and VOCs Oxidation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elitsa%20N.%20Kolentsova">Elitsa N. Kolentsova</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitar%20Y.%20Dimitrov"> Dimitar Y. Dimitrov</a>, <a href="https://publications.waset.org/abstracts/search?q=Petya%20Cv.%20Petrova"> Petya Cv. Petrova</a>, <a href="https://publications.waset.org/abstracts/search?q=Georgi%20V.%20Avdeev"> Georgi V. Avdeev</a>, <a href="https://publications.waset.org/abstracts/search?q=Diana%20D.%20Nihtianova"> Diana D. Nihtianova</a>, <a href="https://publications.waset.org/abstracts/search?q=Krasimir%20I.%20Ivanov"> Krasimir I. Ivanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Tatyana%20T.%20Tabakova"> Tatyana T. Tabakova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, copper and manganese-containing systems are recognized as active and selective catalysts in many oxidation reactions. The main idea of this study is to obtain more information about γ-Al<sub>2</sub>O<sub>3 </sub>supported Cu-La catalysts and to evaluate their activity to simultaneous oxidation of CO, CH<sub>3</sub>OH and dimethyl ether (DME). The catalysts were synthesized by impregnation of support with a mixed aqueous solution of nitrates of copper, manganese and lanthanum under different conditions. XRD, HRTEM/EDS, TPR and thermal analysis were performed to investigate catalysts’ bulk and surface properties. The texture characteristics were determined by Quantachrome Instruments NOVA 1200e specific surface area and pore analyzer. The catalytic measurements of single compounds oxidation were carried out on continuous flow equipment with a four-channel isothermal stainless steel reactor in a wide temperature range. On the basis of XRD analysis and HRTEM/EDS, it was concluded that the active component of the mixed Cu-Mn-La/γ–alumina catalysts strongly depends on the Cu/Mn molar ratio and consisted of at least four compounds – CuO, La<sub>2</sub>O<sub>3</sub>, MnO<sub>2</sub> and Cu<sub>1.5</sub>Mn<sub>1.5</sub>O<sub>4</sub>. A homogeneous distribution of the active component on the carrier surface was found. The chemical composition strongly influenced catalytic properties. This influence was quite variable with regards to the different processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cu-Mn-La%20oxide%20catalysts" title="Cu-Mn-La oxide catalysts">Cu-Mn-La oxide catalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20oxide" title=" carbon oxide"> carbon oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=VOCs" title=" VOCs"> VOCs</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20oxidation" title=" deep oxidation"> deep oxidation</a> </p> <a href="https://publications.waset.org/abstracts/52487/alumina-supported-cu-mn-la-catalysts-for-co-and-vocs-oxidation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1026</span> Effect of Plastic Deformation on the Carbide-Free Bainite Transformation in Medium C-Si Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mufath%20Zorgani">Mufath Zorgani</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Garcia-Mateo"> Carlos Garcia-Mateo</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Jahazi"> Mohammad Jahazi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the influence of pre-strained austenite on the extent of isothermal bainite transformation in medium-carbon, high-silicon steel was investigated. Different amounts of deformations were applied at 600°C on the austenite right before quenching to the region, where isothermal bainitic transformation is activated. Four different temperatures of 325, 350, 375, and 400°C considering similar holding time 1800s at each temperature, were selected to investigate the extent of isothermal bainitic transformation. The results showed that the deformation-free austenite transforms to the higher volume fraction of CFB bainite when the isothermal transformation temperature reduced from 400 to 325°C, the introduction of plastic deformation in austenite prior to the formation of bainite invariably involves a delay of the same or identical isothermal treatment. On the other side, when the isothermal transformation temperature and deformation increases, the volume fraction and the plate thickness of bainite decreases and the amount of retained austenite increases. The shape of retained austenite is mostly representing blocky-shape one due to the less amount of transformed bainite. Moreover, the plate-like shape bainite cannot be resolved when the deformation amount reached 30%, and the isothermal transformation temperatures are of 375 and 400°C. The amount of retained austenite and the percentage of its transformation to martensite during the final cooling stage play a significant role in the variation of hardness level for different thermomechanical regimes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ausforming" title="ausforming">ausforming</a>, <a href="https://publications.waset.org/abstracts/search?q=carbide%20free%20bainite" title=" carbide free bainite"> carbide free bainite</a>, <a href="https://publications.waset.org/abstracts/search?q=dilatometry" title=" dilatometry"> dilatometry</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/117105/effect-of-plastic-deformation-on-the-carbide-free-bainite-transformation-in-medium-c-si-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117105.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1025</span> Studies on Non-Isothermal Crystallization Kinetics of PP/SEBS-g-MA Blends</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rishi%20Sharma">Rishi Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Maiti"> S. N. Maiti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The non-isothermal crystallization kinetics of PP/SEBS-g-MA blends up to 0-50% concentration of copolymer was studied by differential scanning calorimetry at four different cooling rates. Crystallization parameters were analyzed by Avrami and Jeziorny models. Primary and secondary crystallization processes were described by Avrami equation. Avrami model showed that all types of shapes grow from small dimensions during primary crystallization. However, three-dimensional crystal growth was observed during the secondary crystallization process. The crystallization peak and onset temperature decrease, however <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crystallization%20kinetics" title="crystallization kinetics">crystallization kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=non-isothermal" title=" non-isothermal"> non-isothermal</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene" title=" polypropylene"> polypropylene</a>, <a href="https://publications.waset.org/abstracts/search?q=SEBS-g-MA" title=" SEBS-g-MA"> SEBS-g-MA</a> </p> <a href="https://publications.waset.org/abstracts/19871/studies-on-non-isothermal-crystallization-kinetics-of-ppsebs-g-ma-blends" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19871.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">622</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1024</span> Improvement of Mechanical Properties and Corrosion Resistance of AA7056 Aluminum Alloys by the Non-isothermal Aging Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tse-An%20Pan">Tse-An Pan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheng-Long%20Lee"> Sheng-Long Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of non-isothermal aging on the mechanical properties and corrosion resistance of Al-9Zn-2.3Mg-1.9Cu (AA7056) alloys was investigated. The results revealed that thick materials were limited to retrogression and re-aging treatment (RRA). It could not reach the retrogression temperature in the RRA treatment. Compared with the RRA treatment, the non-isothermal aging (NIA) treatment produced discontinuous precipitates at grain boundaries, while the intragranular precipitates were fine and dense. The strength was similar to that of the RRA treatment; the corrosion resistance of the alloy was significantly improved by NIA aging. NIA treatment was less affected by the thickness of the alloy. The difference between the actual temperature and the setting temperature of the alloy is minimal during the aging process. The combination of properties could overcome the fact that RRA treatment cannot handle thick materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al-Zn-Mg-Cu%20alloy" title="Al-Zn-Mg-Cu alloy">Al-Zn-Mg-Cu alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=retrogression" title=" retrogression"> retrogression</a>, <a href="https://publications.waset.org/abstracts/search?q=re-aging" title=" re-aging"> re-aging</a>, <a href="https://publications.waset.org/abstracts/search?q=non-isothermal%20aging" title=" non-isothermal aging"> non-isothermal aging</a> </p> <a href="https://publications.waset.org/abstracts/162230/improvement-of-mechanical-properties-and-corrosion-resistance-of-aa7056-aluminum-alloys-by-the-non-isothermal-aging-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162230.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1023</span> Studies on Plasma Spray Deposited La2O3 - YSZ (Yttria-Stabilized Zirconia) Composite Thermal Barrier Coating</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prashant%20Sharma">Prashant Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyotsna%20Dutta%20Majumdar"> Jyotsna Dutta Majumdar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study concerns development of a composite thermal barrier coating consisting of a mixture of La2O3 and YSZ (with 8 wt.%, 32 wt.% and 50 wt.% 50% La2O3) by plasma spray deposition technique on a CoNiCrAlY based bond coat deposited on Inconel 718 substrate by high velocity oxy-fuel deposition (HVOF) technique. The addition of La2O3 in YSZ causes the formation of pyrochlore (La2Zr2O7) phase in the inter splats boundary along with the presence of LaYO3 phase. The coefficient of thermal expansion is significantly reduced from due to the evolution of different phases and structural defects in the sprayed coating. The activation energy for TGO growth under isothermal and cyclic oxidation was increased in the composite coating as compared to YSZ coating. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasma%20spraying" title="plasma spraying">plasma spraying</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation%20resistance" title=" oxidation resistance"> oxidation resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20barrier%20coating" title=" thermal barrier coating"> thermal barrier coating</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20method" title=" X-ray method"> X-ray method</a> </p> <a href="https://publications.waset.org/abstracts/48738/studies-on-plasma-spray-deposited-la2o3-ysz-yttria-stabilized-zirconia-composite-thermal-barrier-coating" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48738.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1022</span> Effect of Oxidation on Wetting Behavior between Silicon and Silicon Carbide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zineb%20Benouahmane">Zineb Benouahmane</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Lifeng"> Zhang Lifeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Experimental oxidation tests at high temperature (1300°C-1500°C) on α-SiC samples have been performed with different holding times and atmosphere (air, argon). Oxidized samples were then analyzed using X-ray photoelectron spectroscopy coupled to SEM and DAKTEK surface profiler verification. The oxidation rate and the mas gain were found to increase with temperature and holding times, corresponding to a passive oxidation regime which lead to the formation of SiO2 layer. The sessile drop method is employed in order to measure the wetting angles between Si/SiC system at high temperature (1430°C-1550°C). Contact angle can be varied between 44 °C to 85°C, by controlling the oxygen content in α-SiC. Increasing the temperature occurred the infiltration of liquid silicon and deoxidation of the coating. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oxidation" title="oxidation">oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=wettability" title=" wettability"> wettability</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon" title=" silicon"> silicon</a>, <a href="https://publications.waset.org/abstracts/search?q=SiC" title=" SiC"> SiC</a> </p> <a href="https://publications.waset.org/abstracts/22053/effect-of-oxidation-on-wetting-behavior-between-silicon-and-silicon-carbide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22053.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1021</span> Synthesis and Characterization of Zinc (II) Complex and Its Catalytic Activity on C(SP3)-H Oxidation Reactions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yal%C3%A7%C4%B1n%20K%C4%B1l%C4%B1%C3%A7">Yalçın Kılıç</a>, <a href="https://publications.waset.org/abstracts/search?q=%C4%B0brahim%20Kani"> İbrahim Kani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The conversion of hydrocarbons to carbonyl compounds by oxidation reaction is one of the most important reactions in the synthesis of fine chemicals. As a result of the oxidation of hydrocarbons containing aliphatic sp3-CH groups in their structures, aldehydes, ketones or carboxylic acids can be obtained. In this study, OSSO-type 2,2'-[1,4-butanedylbis(thio)]bis-benzoic acid (tsabutH2) ligand and [Zn(µ-tsabut)(phen)]n complex (where phen = 1,10-phenantroline) were synthesized and their structures were characterized by single crystal x-ray diffraction method. The catalytic efficiency of the complex in the catalytic oxidation studies of organic compounds such as cyclohexane, ethylbenzene, diphenylmethane, and p-xylene containing sp3-C-H in its structure was investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20complex" title="metal complex">metal complex</a>, <a href="https://publications.waset.org/abstracts/search?q=OSSO-type%20ligand" title=" OSSO-type ligand"> OSSO-type ligand</a>, <a href="https://publications.waset.org/abstracts/search?q=catalysis" title=" catalysis"> catalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation" title=" oxidation"> oxidation</a> </p> <a href="https://publications.waset.org/abstracts/157326/synthesis-and-characterization-of-zinc-ii-complex-and-its-catalytic-activity-on-csp3-h-oxidation-reactions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1020</span> Electro-Oxidation of Glycerol Using Nickel Deposited Carbon Ceramic Electrode and Product Analysis Using High Performance Liquid Chromatography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mulatu%20Kassie%20Birhanu">Mulatu Kassie Birhanu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electro-oxidation of glycerol is an important process to convert the less price glycerol into other expensive (essential) and energy-rich chemicals. In this study, nickel was electro-deposited on laboratory-made carbon ceramic electrode (CCE) substrate using electrochemical techniques that is cyclic voltammetry (CV) to prepare an electro-catalyst (Ni/CCE) for electro-oxidation of glycerol. Carbon ceramic electrode was prepared from graphite and methyl tri-methoxy silane (MTMOS) through the processes called hydrolysis and condensation with methanol in acidic media (HCl) by a sol-gel technique. Physico-chemical characterization of bare CCE and modified (deposited) CCE (Ni/CCE) was measured and evaluated by Fourier Transform Infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD). Electro-oxidation of glycerol was performed in 0.1 M glycerol in alkaline media (0.5 M NaOH). High-Performance Liquid Chromatography (HPLC) technique was used to identify and determine the concentration of glycerol, reaction intermediates and oxidized products of glycerol after its electro-oxidation is performed. The conversion (%) of electro-oxidation of glycerol during 9-hour oxidation was 73% and 36% at 1.8V and 1.6V vs. RHE, respectively. Formate, oxalate, glycolate and glycerate are the main oxidation products of glycerol with selectivity (%) of 75%, 8.6%, 1.1% and 0.95 % at 1.8 V vs. RHE and 55.4%, 2.2%, 1.0% and 0.6% at 1.6 V vs. RHE respectively. The result indicates that formate is the main product in the electro-oxidation of glycerol on Ni/CCE using the indicated applied potentials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon-ceramic%20electrode" title="carbon-ceramic electrode">carbon-ceramic electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title=" electrodeposition"> electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=electro-oxidation" title=" electro-oxidation"> electro-oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=Methyltrimethoxysilane" title=" Methyltrimethoxysilane"> Methyltrimethoxysilane</a> </p> <a href="https://publications.waset.org/abstracts/141050/electro-oxidation-of-glycerol-using-nickel-deposited-carbon-ceramic-electrode-and-product-analysis-using-high-performance-liquid-chromatography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141050.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1019</span> Non-Isothermal Stationary Laminar Oil Flow Numerical Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniyar%20Bossinov">Daniyar Bossinov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper considers a non-isothermal stationary waxy crude oil flow in a two-dimensional axisymmetric pipe with the transition of a Newtonian fluid to a non-Newtonian fluid. The viscosity and yield stress of waxy crude oil are highly dependent on temperature changes. During the hot pumping of waxy crude oil through a buried pipeline, a non-isothermal flow occurs due to heat transfer to the surrounding soil. This leads to a decrease in flow temperature, an increase in viscosity, the appearance of yield stress, the crystallization of wax, and the deposition of solid particles on the pipeline's inner wall. The deposition of oil solid particles reduces a pipeline flow area and leads to the appearance of a stagnant zone with thermal insulation in the near-wall area. Waxy crude oil properties change. A Newtonian fluid at low temperatures transits to a non-Newtonian fluid. The one-dimensional modeling of a non-isothermal waxy crude oil flow in a two-dimensional axisymmetric pipeline by traditional averaging of temperature and velocity over the pipeline cross-section does not allow for explaining a physics phenomenon. Therefore, in this work, a two-dimensional flow model and the heat transfer of waxy oil are constructed. The calculated data show the transition of a Newtonian fluid to a non-Newtonian fluid due to the heat exchange of waxy oil with the environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-isothermal%20laminar%20flow" title="non-isothermal laminar flow">non-isothermal laminar flow</a>, <a href="https://publications.waset.org/abstracts/search?q=waxy%20crude%20oil" title=" waxy crude oil"> waxy crude oil</a>, <a href="https://publications.waset.org/abstracts/search?q=stagnant%20zone" title=" stagnant zone"> stagnant zone</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20stress" title=" yield stress"> yield stress</a> </p> <a href="https://publications.waset.org/abstracts/188992/non-isothermal-stationary-laminar-oil-flow-numerical-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">29</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1018</span> Optimizing Oxidation Process Parameters of Al-Li Base Alloys Using Taguchi Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muna%20K.%20Abbass">Muna K. Abbass</a>, <a href="https://publications.waset.org/abstracts/search?q=Laith%20A.%20Mohammed"> Laith A. Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Muntaha%20K.%20Abbas"> Muntaha K. Abbas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The oxidation of Al-Li base alloy containing small amounts of rare earth (RE) oxides such as 0.2 wt% Y2O3 and 0.2wt% Nd2O3 particles have been studied at temperatures: 400ºC, 500ºC and 550°C for 60hr in a dry air. Alloys used in this study were prepared by melting and casting in a permanent steel mould under controlled atmosphere. Identification of oxidation kinetics was carried out by using weight gain/surface area (∆W/A) measurements while scanning electron microscopy (SEM) and x-ray diffraction analysis were used for micro structural morphologies and phase identification of the oxide scales. It was observed that the oxidation kinetic for all studied alloys follows the parabolic law in most experimental tests under the different oxidation temperatures. It was also found that the alloy containing 0.2 wt %Y 2O3 particles possess the lowest oxidation rate and shows great improvements in oxidation resistance compared to the alloy containing 0.2 wt % Nd2O3 particles and Al-Li base alloy. In this work, Taguchi method is performed to estimate the optimum weight gain /area (∆W/A) parameter in oxidation process of Al-Li base alloys to obtain a minimum thickness of oxidation layer. Taguchi method is used to formulate the experimental layout, to analyses the effect of each parameter (time, temperature and alloy type) on the oxidation generation and to predict the optimal choice for each parameter and analyzed the effect of these parameters on the weight gain /area (∆W/A) parameter. The analysis shows that, the temperature significantly affects on the (∆W/A) parameter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al-Li%20base%20alloy" title="Al-Li base alloy">Al-Li base alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation" title=" oxidation"> oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature "> temperature </a> </p> <a href="https://publications.waset.org/abstracts/11322/optimizing-oxidation-process-parameters-of-al-li-base-alloys-using-taguchi-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11322.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1017</span> Microstructures of Si Surfaces Fabricated by Electrochemical Anodic Oxidation with Agarose Stamps</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hang%20Zhou">Hang Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Limin%20Zhu"> Limin Zhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the fabrication of microstructures on Si surfaces by using electrochemical anodic oxidation with agarose stamps. The fabricating process is based on a selective anodic oxidation reaction that occurs in the contact area between a stamp and a Si substrate. The stamp which is soaked in electrolyte previously acts as a current flow channel. After forming the oxide patterns as an etching mask, a KOH aqueous is used for the wet etching of Si. A complicated microstructure array of 1 cm2 was fabricated by the method with high accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microstructures" title="microstructures">microstructures</a>, <a href="https://publications.waset.org/abstracts/search?q=anodic%20oxidation" title=" anodic oxidation"> anodic oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon" title=" silicon"> silicon</a>, <a href="https://publications.waset.org/abstracts/search?q=agarose%20stamps" title=" agarose stamps"> agarose stamps</a> </p> <a href="https://publications.waset.org/abstracts/57259/microstructures-of-si-surfaces-fabricated-by-electrochemical-anodic-oxidation-with-agarose-stamps" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1016</span> Tribocorrosion Behavior of Austempered Ductile Iron Microalloyed with Boron</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Gvazava">S. Gvazava</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Khidasheli"> N. Khidasheli</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Gordeziani"> G. Gordeziani</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20DL.%20Batako"> A. DL. Batako</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The work presented in this paper studied the tribological characteristics (wear resistance, friction coefficient) of austempered ductile iron (ADI) with different combinations of structural composition (upper bainite, lower bainite, retained austenite) in dry sliding friction. A range of structural states of the metal matrix was obtained by changing the regimes of isothermal quenching of high-strength cast iron. The tribological tests were carried out using two sets of isothermal quenched cast irons. After austenitization at 900°С for 60 minutes, the specimens from the first group were isothermally quenched at the 300°С temperature and the specimens from the second set – at 400°С. The investigations showed that the isothermal quenching increases the friction coefficient of high-strength cast irons. The friction coefficient was found to be in the range from 0.4 to 0.55 for cast irons, depending on the structures of the metal matrix. The quenched cast irons having lower bainite demonstrate higher wear resistance in dry friction conditions. The dependence of wear resistance on the amount of retained austenite in isothermal quenched cast irons has a nonlinear characteristic and reaches its maximum value when the content of retained austenite is about 15-22%. The boron micro-additives allowed to reduce the friction coefficient of ADI and increase their wear resistance by 1.5-1.7 times. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wear%20resistance" title="wear resistance">wear resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20sliding" title=" dry sliding"> dry sliding</a>, <a href="https://publications.waset.org/abstracts/search?q=austempering" title=" austempering"> austempering</a>, <a href="https://publications.waset.org/abstracts/search?q=ADI" title=" ADI"> ADI</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20coefficient" title=" friction coefficient"> friction coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=retained%20austenite" title=" retained austenite"> retained austenite</a>, <a href="https://publications.waset.org/abstracts/search?q=isothermal%20quenching" title=" isothermal quenching"> isothermal quenching</a> </p> <a href="https://publications.waset.org/abstracts/143702/tribocorrosion-behavior-of-austempered-ductile-iron-microalloyed-with-boron" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143702.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1015</span> Phenol Degradation via Photocatalytic Oxidation Using Fe Doped TiO₂</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sherif%20Ismail">Sherif Ismail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Degradation of phenol-contaminated wastewater using Photocatalytic oxidation process was investigated in batch experiments using Fe doped TiO₂. Moreover, the effect of oxygen aeration on the performance of photocatalytic oxidation process by iron (Fe⁺²) doped titanium dioxide (TiO₂) was assessed. Photocatalytic oxidation using Fe doped TiO₂ effectively reduce the phenol concentration in wastewater with optimum condition of light intensity, pH, catalyst-dosing and initial concentration of phenol were 50 W/m2, 5.3, 600 mg/l and 10 mg/l respectively. The results obtained that removal efficiency of phenol was 88% after 180 min in case of N₂ addition. However, aeration by oxygen resulted in a 99% removal efficiency in 120 min. The results of photo-catalysis oxidation experiments fitted the pseudo-first-order kinetic equation with high correlation. Costs estimation of 30 m3/d full-scale photo-catalysis oxidation plant was assessed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phenol%20degradation" title="phenol degradation">phenol degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=Fe-doped%20TiO2" title=" Fe-doped TiO2"> Fe-doped TiO2</a>, <a href="https://publications.waset.org/abstracts/search?q=AOPs" title=" AOPs"> AOPs</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20analysis" title=" cost analysis"> cost analysis</a> </p> <a href="https://publications.waset.org/abstracts/90365/phenol-degradation-via-photocatalytic-oxidation-using-fe-doped-tio2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90365.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1014</span> Microstructure and Oxidation Behaviors of Al, Y Modified Silicide Coatings Prepared on an Nb-Si Based Ultrahigh Temperature Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiping%20Guo">Xiping Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jing%20Li"> Jing Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The microstructure of an Si-Al-Y co-deposition coating prepared on an Nb-Si based ultra high temperature alloy by pack cementation process at 1250°C for eight hours was studied. The results showed that the coating was composed of a (Nb,X)Si₂ (X represents Ti, Cr and Hf elements) outer layer, a (Ti,Nb)₅Si₄ middle layer and an Al, Cr-rich inner layer. For comparison, the oxidation behaviors of the coating at 800, 1050 and 1350°C were investigated respectively. Linear oxidation kinetics was found with the parabolic rate constants of 5.29×10⁻², 9×10⁻²and 5.81 mg² cm⁻⁴ h⁻¹, respectively. Catastrophic pesting oxidation has not been found at 800°C even for 100 h. The surface of the scale was covered by compact glassy SiO₂ film. The coating was able to effectively protect the Nb-Si based alloy from oxidation at 1350°C for at least 100 h. The formation process of the scale was testified following an epitaxial growth mechanism. The mechanism responsible for the oxidation behavior of the Si-Al-Y co-deposition coating at 800, 1050 and 1350°C was proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nb-Si%20based%20ultra%20high%20temperature%20alloy" title="Nb-Si based ultra high temperature alloy">Nb-Si based ultra high temperature alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation%20resistance" title=" oxidation resistance"> oxidation resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=pack%20cementation" title=" pack cementation"> pack cementation</a>, <a href="https://publications.waset.org/abstracts/search?q=silicide%20coating" title=" silicide coating"> silicide coating</a>, <a href="https://publications.waset.org/abstracts/search?q=Al%20and%20Y%20modified" title=" Al and Y modified"> Al and Y modified</a> </p> <a href="https://publications.waset.org/abstracts/78981/microstructure-and-oxidation-behaviors-of-al-y-modified-silicide-coatings-prepared-on-an-nb-si-based-ultrahigh-temperature-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78981.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1013</span> Investigating Water-Oxidation Using a Ru(III) Carboxamide Water Coordinated Complex </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yosra%20M.%20Badiei">Yosra M. Badiei</a>, <a href="https://publications.waset.org/abstracts/search?q=Evelyn%20Ortiz"> Evelyn Ortiz</a>, <a href="https://publications.waset.org/abstracts/search?q=Marisa%20Portenti"> Marisa Portenti</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Szalda"> David Szalda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water-oxidation half-reaction is a critical reaction that can be driven by a sustainable energy source (e.g., solar or wind) and be coupled with a chemical fuel making reaction which stores the released electrons and protons from water (e.g., H₂ or methanol). The use of molecular water-oxidation catalysts (WOC) allow the rationale design of redox active metal centers and provides a better understanding of their structure-activity-relationship. Herein, the structure of a Ru(III) complex bearing a doubly deprotonated N,N'-bis(aryl)pyridine-2,6-dicarboxamide ligand which contains a water molecule in its primary coordination sphere was elucidated by single-crystal X-ray diffraction. Further spectroscopic experimental data and pH-dependent electrochemical studies reveal its water-oxidation reactivity. Emphasis on mechanistic details for O₂ formation of this complex will be addressed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water-oxidation" title="water-oxidation">water-oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=catalysis" title=" catalysis"> catalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=ruthenium" title=" ruthenium"> ruthenium</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20photosynthesis" title=" artificial photosynthesis"> artificial photosynthesis</a> </p> <a href="https://publications.waset.org/abstracts/108812/investigating-water-oxidation-using-a-ruiii-carboxamide-water-coordinated-complex" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1012</span> Theoretical Study of the Mechanism of the Oxidation of Linoleic Acid by 1O2</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rayenne%20Djemil">Rayenne Djemil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The mechanism of oxidation reaction of linoleic acid C18: 2 (9 cis12) by singlet oxygen 1O2 were theoretically investigated via using quantum chemical methods. We explored the four reaction pathways at PM3, Hartree-Fock HF and, B3LYP functional associated with the base 6-31G (d) level. The results are in favor of the first and the last reaction ways. The transition states were found by QST3 method. Thus the pathways between the transition state structures and their corresponding minima have been identified by the IRC calculations. The thermodynamic study showed that the four ways of oxidation of linoleic acid are spontaneous, exothermic and, the enthalpy values confirm that conjugate hydroperoxydes are the most favorable products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=echanism" title="echanism">echanism</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20mechanics" title=" quantum mechanics"> quantum mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation" title=" oxidation"> oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=linoleic%20acid%20H" title=" linoleic acid H"> linoleic acid H</a> </p> <a href="https://publications.waset.org/abstracts/35946/theoretical-study-of-the-mechanism-of-the-oxidation-of-linoleic-acid-by-1o2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1011</span> Oxidation of Alcohols Types Using Nano-Graphene Oxide (NGO) as Heterogeneous Catalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Gharib">Ali Gharib</a>, <a href="https://publications.waset.org/abstracts/search?q=Leila%20Vojdanifard"> Leila Vojdanifard</a>, <a href="https://publications.waset.org/abstracts/search?q=Nader%20Noroozi%20Pesyan"> Nader Noroozi Pesyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mina%20Roshani"> Mina Roshani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We describe an efficient method for oxidation of alcohols to related aldehydes and ketones by hydrogen peroxide as oxidizing agent, under reflux conditions. Nano-graphene oxide (NGO) as a heterogeneous catalyst was used and had their activity compared with other various catalysts. This catalyst was found to be an excellent catalyst for oxidation of alcohols. The effects of various parameters, including catalyst type, nature of the substituent in the alcohols and temperature, on the yield of the carboxylic acids were studied. Nano-graphene oxide was synthesized by the oxidation of graphite powders. This nanocatalyst was found to be highly efficient in this reaction and products were obtained in good to excellent yields. The recovered nano-catalyst was successfully reused for several runs without significant loss in its catalytic activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano-graphene%20oxide" title="nano-graphene oxide">nano-graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation" title=" oxidation"> oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=aldehyde" title=" aldehyde"> aldehyde</a>, <a href="https://publications.waset.org/abstracts/search?q=ketone" title=" ketone"> ketone</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst" title=" catalyst"> catalyst</a> </p> <a href="https://publications.waset.org/abstracts/40536/oxidation-of-alcohols-types-using-nano-graphene-oxide-ngo-as-heterogeneous-catalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40536.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1010</span> Inter-Filling of CaO and MgO Mixed Layer in Surface Behavior of Al-Mg Alloys Containing Al2Ca</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seong-Ho%20Ha">Seong-Ho Ha</a>, <a href="https://publications.waset.org/abstracts/search?q=Young-Ok%20Yoon"> Young-Ok Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Shae%20K.%20Kim"> Shae K. Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oxide layer of normal Al-Mg alloy can be characterized by upper MgO and lower MgAl2O4 spinel. The formation of the MgO outmost layer occurs by the surface segregation of Mg in the initial oxidation. After then, the oxidation is proceeded with the formation of MgA12O4 spinel beneath the MgO. Growth of the oxide layer is accelerated by constant formation of MgA12O4 spinel. On the other hand, the oxidation resistance of Al-Mg alloys can be significantly improved simply by Mg+Al2Ca master alloy use as the Mg alloying element and such an improvement is attributed to the CaO/MgO mixed layer. Al-Mg alloy containing Al2Ca shows CaO as the upper layer and MgO as the lower one without MgA12O4 spinel. Such a dense oxide film acts as a protective layer. However, the CaO/MgO scale has the outmost MgO, partly, after a long time exposure to a harsh oxidation condition. The aim of this study is to investigate the inter-filling behaviour of CaO and MgO mixed layer in oxidation resistance mechanism of Al-Mg alloys containing Al2Ca. The process of outmost MgO layer formation will be clarified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al-Mg%20alloy" title="Al-Mg alloy">Al-Mg alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=Al2Ca" title=" Al2Ca"> Al2Ca</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation" title=" oxidation"> oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=MgO" title=" MgO"> MgO</a> </p> <a href="https://publications.waset.org/abstracts/49097/inter-filling-of-cao-and-mgo-mixed-layer-in-surface-behavior-of-al-mg-alloys-containing-al2ca" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49097.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1009</span> Comparison of Structure and Corrosion Properties of Titanium Oxide Films Prepared by Thermal Oxidation, DC Plasma Oxidation, and by the Sol-Gel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20%C3%87omakl%C4%B1">O. Çomaklı</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Yaz%C4%B1c%C4%B1"> M. Yazıcı</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Yetim"> T. Yetim</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20F.%20Yetim"> A. F. Yetim</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20%C3%87elik"> A. Çelik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, TiO₂ films were deposited on Cp-Ti substrates by thermal oxidation, DC plasma oxidation, and by the sol-gel method. Microstructures of uncoated and TiO₂ film coated samples were examined by X-ray diffraction and SEM. Thin oxide film consisting of anatase (A) and rutile (R) TiO₂ structures was observed on the surface of CP-Ti by under three different treatments. Also, the more intense anatase and rutile peaks appeared at samples plasma oxidized at 700˚C. The thicknesses of films were about 1.8 μm at the TiO₂ film coated samples by sol-gel and about 2.7 μm at thermal oxidated samples, while it was measured as 3.9 μm at the plasma oxidated samples. Electrochemical corrosion behaviour of uncoated and coated specimens was mainly carried out by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) in simulated body fluid (SBF) solution. Results showed that at the plasma oxidated samples exhibited a better resistance property to corrosion than that of other treatments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=TiO%E2%82%82" title="TiO₂">TiO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=CP-Ti" title=" CP-Ti"> CP-Ti</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20properties" title=" corrosion properties"> corrosion properties</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20oxidation" title=" thermal oxidation"> thermal oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20oxidation" title=" plasma oxidation"> plasma oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel" title=" sol-gel"> sol-gel</a> </p> <a href="https://publications.waset.org/abstracts/74991/comparison-of-structure-and-corrosion-properties-of-titanium-oxide-films-prepared-by-thermal-oxidation-dc-plasma-oxidation-and-by-the-sol-gel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74991.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1008</span> The Effect of Oxidation Stability Improvement in Calophyllum Inophyllum Palm Oil Methyl Ester Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Natalina">Natalina</a>, <a href="https://publications.waset.org/abstracts/search?q=Hwai%20Chyuan%20Onga"> Hwai Chyuan Onga</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20T.%20Chonga"> W. T. Chonga </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oxidation stability of biodiesel is very important in fuel handling especially for remote location of biodiesel application. Variety of feedstocks and biodiesel production process resulted many variation of biodiesel oxidation stability. The current study relates to investigation of the impact of fatty acid composition that caused by natural and production process of calophyllum inophyllum palm oil methyl ester that correlated with improvement of biodiesel oxidation stability. Firstly, biodiesel was produced from crude oil of palm oil, calophyllum inophyllum and mixing of calophyllum inophyllum and palm oil. The production process of calophyllum inophyllum palm oil methyl ester (CIPOME) was divided by including washing process and without washing. Secondly, the oxidation stability was measured from the palm oil methyl ester (POME), calophyllum inophyllum methyl ester (CIME), CIPOME with washing process and CIPOME without washing process. Then, in order to find the differences of fatty acid compositions all of the biodiesels were measured by gas chromatography analysis. It was found that mixing calophyllum inophyllum into palm oil increased the oxidation stability. Washing process influenced the CIPOME fatty acid composition, and reduction of washing process during the production process gave significant oxidation stability number of CIPOME (38 h to 114 h). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation%20stability" title=" oxidation stability"> oxidation stability</a>, <a href="https://publications.waset.org/abstracts/search?q=calophyllum%20inophyllum" title=" calophyllum inophyllum"> calophyllum inophyllum</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20content" title=" water content"> water content</a> </p> <a href="https://publications.waset.org/abstracts/39777/the-effect-of-oxidation-stability-improvement-in-calophyllum-inophyllum-palm-oil-methyl-ester-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39777.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1007</span> Influence of Grain Shape, Size and Grain Boundary Diffusion on High Temperature Oxidation of Metal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sneha%20Samal">Sneha Samal</a>, <a href="https://publications.waset.org/abstracts/search?q=Iva%20Petrikova"> Iva Petrikova</a>, <a href="https://publications.waset.org/abstracts/search?q=Bohdana%20Marvalova"> Bohdana Marvalova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Influence of grain size, shape and grain boundary diffusion at high temperature oxidation of pure metal is investigated as the function of microstructure evolution in this article. The oxidized scale depends on the geometrical parameter of the metal-scale system and grain shape, size, diffusion through boundary layers and influence of the contamination. The creation of the inner layer and the morphological structure develops from the internal stress generated during the growth of the scale. The oxidation rate depends on the cation and anion mobile transport of the metal in the inward and outward direction of the diffusion layer. Oxidation rate decreases with decreasing the grain size of the pure metal, whereas zinc deviates from this principle. A strong correlation between the surface roughness evolution, grain size, crystalline properties and oxidation mechanism of the oxidized metal was established. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20temperature%20oxidation" title="high temperature oxidation">high temperature oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=pure%20metals" title=" pure metals"> pure metals</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20size" title=" grain size"> grain size</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20and%20grain%20boundary" title=" shape and grain boundary"> shape and grain boundary</a> </p> <a href="https://publications.waset.org/abstracts/8543/influence-of-grain-shape-size-and-grain-boundary-diffusion-on-high-temperature-oxidation-of-metal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8543.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">497</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=isothermal%20oxidation&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=isothermal%20oxidation&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=isothermal%20oxidation&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=isothermal%20oxidation&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=isothermal%20oxidation&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=isothermal%20oxidation&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=isothermal%20oxidation&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=isothermal%20oxidation&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=isothermal%20oxidation&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=isothermal%20oxidation&page=34">34</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=isothermal%20oxidation&page=35">35</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=isothermal%20oxidation&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>