CINXE.COM
(PDF) Predictive Analytics and Software Defect Severity: A Systematic Review and Future Directions | Utku Köse - Academia.edu
<!DOCTYPE html> <html > <head> <meta charset="utf-8"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <meta content="width=device-width, initial-scale=1" name="viewport"> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs"> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="cPL7bNsWUFW7hHUWVtCzSeQvV1X9gL/xw6KlxsXaBGXn/hfkIvY68l9gR/1wgP0tcyzbTmjzXL7OZz+43M/PSg==" /> <meta name="citation_title" content="Predictive Analytics and Software Defect Severity: A Systematic Review and Future Directions" /> <meta name="citation_journal_title" content="Scientific Programming" /> <meta name="citation_author" content="Utku Köse" /> <meta name="twitter:card" content="summary" /> <meta name="twitter:url" content="https://www.academia.edu/122405945/Predictive_Analytics_and_Software_Defect_Severity_A_Systematic_Review_and_Future_Directions" /> <meta name="twitter:title" content="Predictive Analytics and Software Defect Severity: A Systematic Review and Future Directions" /> <meta name="twitter:description" content="Software testing identifies defects in software products with varying multiplying effects based on their severity levels and sequel to instant rectifications, hence the rate of a research study in the software engineering domain. In this paper, a" /> <meta name="twitter:image" content="https://0.academia-photos.com/395715/124145/64827257/s200_utku.k_se.png" /> <meta property="fb:app_id" content="2369844204" /> <meta property="og:type" content="article" /> <meta property="og:url" content="https://www.academia.edu/122405945/Predictive_Analytics_and_Software_Defect_Severity_A_Systematic_Review_and_Future_Directions" /> <meta property="og:title" content="Predictive Analytics and Software Defect Severity: A Systematic Review and Future Directions" /> <meta property="og:image" content="http://a.academia-assets.com/images/open-graph-icons/fb-paper.gif" /> <meta property="og:description" content="Software testing identifies defects in software products with varying multiplying effects based on their severity levels and sequel to instant rectifications, hence the rate of a research study in the software engineering domain. In this paper, a" /> <meta property="article:author" content="https://suleyman-demirel.academia.edu/UtkuKose" /> <meta name="description" content="Software testing identifies defects in software products with varying multiplying effects based on their severity levels and sequel to instant rectifications, hence the rate of a research study in the software engineering domain. In this paper, a" /> <title>(PDF) Predictive Analytics and Software Defect Severity: A Systematic Review and Future Directions | Utku Köse - Academia.edu</title> <link rel="canonical" href="https://www.academia.edu/122405945/Predictive_Analytics_and_Software_Defect_Severity_A_Systematic_Review_and_Future_Directions" /> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "single_work", 'action': "show", 'controller_action': 'single_work#show', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script> var $controller_name = 'single_work'; var $action_name = "show"; var $rails_env = 'production'; var $app_rev = '49879c2402910372f4abc62630a427bbe033d190'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.require = { config: function() { return function() {} } } </script> <script> window.Aedu = window.Aedu || {}; window.Aedu.hit_data = null; window.Aedu.serverRenderTime = new Date(1732404172000); window.Aedu.timeDifference = new Date().getTime() - 1732404172000; </script> <script type="application/ld+json">{"@context":"https://schema.org","@type":"ScholarlyArticle","abstract":"Software testing identifies defects in software products with varying multiplying effects based on their severity levels and sequel to instant rectifications, hence the rate of a research study in the software engineering domain. In this paper, a systematic literature review (SLR) on machine learning-based software defect severity prediction was conducted in the last decade. The SLR was aimed at detecting germane areas central to efficient predictive analytics, which are seldom captured in existing software defect severity prediction reviews. The germane areas include the analysis of techniques or approaches which have a significant influence on the threats to the validity of proposed models, and the bias-variance tradeoff considerations techniques in data science-based approaches. A population, intervention, and outcome model is adopted for better search terms during the literature selection process, and subsequent quality assurance scrutiny yielded fifty-two primary studies. A sub...","author":[{"@context":"https://schema.org","@type":"Person","name":"Utku Köse"}],"contributor":[],"dateCreated":"2024-07-28","dateModified":null,"datePublished":null,"headline":"Predictive Analytics and Software Defect Severity: A Systematic Review and Future Directions","inLanguage":"en","keywords":["Engineering","Computer Science","Analytics","Scientific programming","Software Analytics"],"locationCreated":null,"publication":"Scientific Programming","publisher":{"@context":"https://schema.org","@type":"Organization","name":"Hindawi Limited"},"image":null,"thumbnailUrl":null,"url":"https://www.academia.edu/122405945/Predictive_Analytics_and_Software_Defect_Severity_A_Systematic_Review_and_Future_Directions","sourceOrganization":[{"@context":"https://schema.org","@type":"EducationalOrganization","name":"suleyman-demirel"}]}</script><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/single_work_page/loswp-352e32ba4e89304dc0b4fa5b3952eef2198174c54cdb79066bc62e91c68a1a91.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-8d679e925718b5e8e4b18e9a4fab37f7eaa99e43386459376559080ac8f2856a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/text_button-73590134e40cdb49f9abdc8e796cc00dc362693f3f0f6137d6cf9bb78c318ce7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> </head> <body> <div id='react-modal'></div> <div class="js-upgrade-ie-banner" style="display: none; text-align: center; padding: 8px 0; background-color: #ebe480;"><p style="color: #000; font-size: 12px; margin: 0 0 4px;">Academia.edu no longer supports Internet Explorer.</p><p style="color: #000; font-size: 12px; margin: 0;">To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.querySelector('.js-upgrade-ie-banner').style.display = 'block'; }</script> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "051709b36ce71b6015084c4b60017652a64f8acbb2bc79215e7518c4faba4f03", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="ZeH04RENDcbhSRaY8xx+4UmVrZD5VAOa21dJMQ2388by7Rhp6O1nYQWtJHPVTDCF3pYhi2wn4NXWktNPFKI46Q==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://www.academia.edu/122405945/Predictive_Analytics_and_Software_Defect_Severity_A_Systematic_Review_and_Future_Directions" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="MapKtYztW7esipKF7SxMolU6KGDaBUpb1VWusLdDvxmmpqY9dQ0xEEhuoG7LfALGwjmke092qRTYkDTOrlZ0Ng==" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><input class="btn btn-primary btn-block g-recaptcha js-password-reset-submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" type="submit" value="Email me a link" /></form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script> <div class="header--container" id="main-header-container"><div class="header--inner-container header--inner-container-ds2"><div class="header-ds2--left-wrapper"><div class="header-ds2--left-wrapper-inner"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="hide-on-desktop-redesign" style="height: 24px; width: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hide-on-mobile-redesign" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a><div class="header--search-container header--search-container-ds2"><form class="js-SiteSearch-form select2-no-default-pills" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><svg style="width: 14px; height: 14px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="search" class="header--search-icon svg-inline--fa fa-search fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M505 442.7L405.3 343c-4.5-4.5-10.6-7-17-7H372c27.6-35.3 44-79.7 44-128C416 93.1 322.9 0 208 0S0 93.1 0 208s93.1 208 208 208c48.3 0 92.7-16.4 128-44v16.3c0 6.4 2.5 12.5 7 17l99.7 99.7c9.4 9.4 24.6 9.4 33.9 0l28.3-28.3c9.4-9.4 9.4-24.6.1-34zM208 336c-70.7 0-128-57.2-128-128 0-70.7 57.2-128 128-128 70.7 0 128 57.2 128 128 0 70.7-57.2 128-128 128z"></path></svg><input class="header--search-input header--search-input-ds2 js-SiteSearch-form-input" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" /></form></div></div></div><nav class="header--nav-buttons header--nav-buttons-ds2 js-main-nav"><a class="ds2-5-button ds2-5-button--secondary js-header-login-url header-button-ds2 header-login-ds2 hide-on-mobile-redesign" href="https://www.academia.edu/login" rel="nofollow">Log In</a><a class="ds2-5-button ds2-5-button--secondary header-button-ds2 hide-on-mobile-redesign" href="https://www.academia.edu/signup" rel="nofollow">Sign Up</a><button class="header--hamburger-button header--hamburger-button-ds2 hide-on-desktop-redesign js-header-hamburger-button"><div class="icon-bar"></div><div class="icon-bar" style="margin-top: 4px;"></div><div class="icon-bar" style="margin-top: 4px;"></div></button></nav></div><ul class="header--dropdown-container js-header-dropdown"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/login" rel="nofollow">Log In</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/signup" rel="nofollow">Sign Up</a></li><li class="header--dropdown-row js-header-dropdown-expand-button"><button class="header--dropdown-button">more<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-down" class="header--dropdown-button-icon svg-inline--fa fa-caret-down fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M31.3 192h257.3c17.8 0 26.7 21.5 14.1 34.1L174.1 354.8c-7.8 7.8-20.5 7.8-28.3 0L17.2 226.1C4.6 213.5 13.5 192 31.3 192z"></path></svg></button></li><li><ul class="header--expanded-dropdown-container"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/about">About</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/press">Press</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://medium.com/@academia">Blog</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/documents">Papers</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/terms">Terms</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/privacy">Privacy</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/copyright">Copyright</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/hiring"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="header--dropdown-row-icon svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>We're Hiring!</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://support.academia.edu/"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="header--dropdown-row-icon svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>Help Center</a></li><li class="header--dropdown-row js-header-dropdown-collapse-button"><button class="header--dropdown-button">less<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-up" class="header--dropdown-button-icon svg-inline--fa fa-caret-up fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M288.662 352H31.338c-17.818 0-26.741-21.543-14.142-34.142l128.662-128.662c7.81-7.81 20.474-7.81 28.284 0l128.662 128.662c12.6 12.599 3.676 34.142-14.142 34.142z"></path></svg></button></li></ul></li></ul></div> <script src="//a.academia-assets.com/assets/webpack_bundles/fast_loswp-bundle-bf3d831cde46cd0e142f29f81a3fc4ce5ab45a404c10c12a480e83de68aff851.js" defer="defer"></script><script>window.loswp = {}; window.loswp.author = 395715; window.loswp.bulkDownloadFilterCounts = {}; window.loswp.hasDownloadableAttachment = true; window.loswp.hasViewableAttachments = true; // TODO: just use routes for this window.loswp.loginUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F122405945%2FPredictive_Analytics_and_Software_Defect_Severity_A_Systematic_Review_and_Future_Directions%3Fauto%3Ddownload"; window.loswp.translateUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F122405945%2FPredictive_Analytics_and_Software_Defect_Severity_A_Systematic_Review_and_Future_Directions%3Fshow_translation%3Dtrue"; window.loswp.previewableAttachments = [{"id":117075390,"identifier":"Attachment_117075390","shouldShowBulkDownload":false}]; window.loswp.shouldDetectTimezone = true; window.loswp.shouldShowBulkDownload = true; window.loswp.showSignupCaptcha = false window.loswp.willEdgeCache = false; window.loswp.work = {"work":{"id":122405945,"created_at":"2024-07-28T01:59:31.670-07:00","from_world_paper_id":257657458,"updated_at":"2024-07-28T02:23:03.984-07:00","_data":{"abstract":"Software testing identifies defects in software products with varying multiplying effects based on their severity levels and sequel to instant rectifications, hence the rate of a research study in the software engineering domain. In this paper, a systematic literature review (SLR) on machine learning-based software defect severity prediction was conducted in the last decade. The SLR was aimed at detecting germane areas central to efficient predictive analytics, which are seldom captured in existing software defect severity prediction reviews. The germane areas include the analysis of techniques or approaches which have a significant influence on the threats to the validity of proposed models, and the bias-variance tradeoff considerations techniques in data science-based approaches. A population, intervention, and outcome model is adopted for better search terms during the literature selection process, and subsequent quality assurance scrutiny yielded fifty-two primary studies. A sub...","publisher":"Hindawi Limited","publication_name":"Scientific Programming"},"document_type":"paper","pre_hit_view_count_baseline":null,"quality":"high","language":"en","title":"Predictive Analytics and Software Defect Severity: A Systematic Review and Future Directions","broadcastable":false,"draft":null,"has_indexable_attachment":true,"indexable":true}}["work"]; window.loswp.workCoauthors = [395715]; window.loswp.locale = "en"; window.loswp.countryCode = "SG"; window.loswp.cwvAbTestBucket = ""; window.loswp.designVariant = "ds_vanilla"; window.loswp.fullPageMobileSutdModalVariant = "full_page_mobile_sutd_modal"; window.loswp.useOptimizedScribd4genScript = false; window.loswp.appleClientId = 'edu.academia.applesignon';</script><script defer="" src="https://accounts.google.com/gsi/client"></script><div class="ds-loswp-container"><div class="ds-work-card--grid-container"><div class="ds-work-card--container js-loswp-work-card"><div class="ds-work-card--cover"><div class="ds-work-cover--wrapper"><div class="ds-work-cover--container"><button class="ds-work-cover--clickable js-swp-download-button" data-signup-modal="{"location":"swp-splash-paper-cover","attachmentId":117075390,"attachmentType":"pdf"}"><img alt="First page of “Predictive Analytics and Software Defect Severity: A Systematic Review and Future Directions”" class="ds-work-cover--cover-thumbnail" src="https://0.academia-photos.com/attachment_thumbnails/117075390/mini_magick20240801-1-b4m9tx.png?1722533212" /><img alt="PDF Icon" class="ds-work-cover--file-icon" src="//a.academia-assets.com/assets/single_work_splash/adobe.icon-574afd46eb6b03a77a153a647fb47e30546f9215c0ee6a25df597a779717f9ef.svg" /><div class="ds-work-cover--hover-container"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span><p>Download Free PDF</p></div><div class="ds-work-cover--ribbon-container">Download Free PDF</div><div class="ds-work-cover--ribbon-triangle"></div></button></div></div></div><div class="ds-work-card--work-information"><h1 class="ds-work-card--work-title">Predictive Analytics and Software Defect Severity: A Systematic Review and Future Directions</h1><div class="ds-work-card--work-authors ds-work-card--detail"><a class="ds-work-card--author js-wsj-grid-card-author ds2-5-body-md ds2-5-body-link" data-author-id="395715" href="https://suleyman-demirel.academia.edu/UtkuKose"><img alt="Profile image of Utku Köse" class="ds-work-card--author-avatar" src="https://0.academia-photos.com/395715/124145/64827257/s65_utku.k_se.png" />Utku Köse</a></div><p class="ds-work-card--detail ds2-5-body-sm">Scientific Programming</p><p class="ds-work-card--work-abstract ds-work-card--detail ds2-5-body-md">Software testing identifies defects in software products with varying multiplying effects based on their severity levels and sequel to instant rectifications, hence the rate of a research study in the software engineering domain. In this paper, a systematic literature review (SLR) on machine learning-based software defect severity prediction was conducted in the last decade. The SLR was aimed at detecting germane areas central to efficient predictive analytics, which are seldom captured in existing software defect severity prediction reviews. The germane areas include the analysis of techniques or approaches which have a significant influence on the threats to the validity of proposed models, and the bias-variance tradeoff considerations techniques in data science-based approaches. A population, intervention, and outcome model is adopted for better search terms during the literature selection process, and subsequent quality assurance scrutiny yielded fifty-two primary studies. A sub...</p><div class="ds-work-card--button-container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{"location":"continue-reading-button--work-card","attachmentId":117075390,"attachmentType":"pdf","workUrl":"https://www.academia.edu/122405945/Predictive_Analytics_and_Software_Defect_Severity_A_Systematic_Review_and_Future_Directions"}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{"location":"download-pdf-button--work-card","attachmentId":117075390,"attachmentType":"pdf","workUrl":"https://www.academia.edu/122405945/Predictive_Analytics_and_Software_Defect_Severity_A_Systematic_Review_and_Future_Directions"}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div></div><div data-auto_select="false" data-client_id="331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b" data-doc_id="117075390" data-landing_url="https://www.academia.edu/122405945/Predictive_Analytics_and_Software_Defect_Severity_A_Systematic_Review_and_Future_Directions" data-login_uri="https://www.academia.edu/registrations/google_one_tap" data-moment_callback="onGoogleOneTapEvent" id="g_id_onload"></div><div class="ds-top-related-works--grid-container"><div class="ds-related-content--container ds-top-related-works--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="0" data-entity-id="73619014" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/73619014/A_Systematic_Literature_Review_of_Software_Defect_Prediction_Research_Trends_Datasets_Methods_and_Frameworks">A Systematic Literature Review of Software Defect Prediction: Research Trends, Datasets, Methods and Frameworks</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="181920526" href="https://independent.academia.edu/AhmedBahaa71">Ahmed Bahaa</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Software Engineering, 2015</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A Systematic Literature Review of Software Defect Prediction: Research Trends, Datasets, Methods and Frameworks","attachmentId":82070426,"attachmentType":"pdf","work_url":"https://www.academia.edu/73619014/A_Systematic_Literature_Review_of_Software_Defect_Prediction_Research_Trends_Datasets_Methods_and_Frameworks","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/73619014/A_Systematic_Literature_Review_of_Software_Defect_Prediction_Research_Trends_Datasets_Methods_and_Frameworks"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="1" data-entity-id="15959620" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/15959620/The_Adoption_of_Machine_Learning_Techniques_for_Software_Defect_Prediction_An_Initial_Industrial_Validation">The Adoption of Machine Learning Techniques for Software Defect Prediction: An Initial Industrial Validation</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="35113184" href="https://independent.academia.edu/J%C3%B6rgenHansson">Jörgen Hansson</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Communications in Computer and Information Science, 2014</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"The Adoption of Machine Learning Techniques for Software Defect Prediction: An Initial Industrial Validation","attachmentId":42811970,"attachmentType":"pdf","work_url":"https://www.academia.edu/15959620/The_Adoption_of_Machine_Learning_Techniques_for_Software_Defect_Prediction_An_Initial_Industrial_Validation","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/15959620/The_Adoption_of_Machine_Learning_Techniques_for_Software_Defect_Prediction_An_Initial_Industrial_Validation"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="2" data-entity-id="106713490" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/106713490/SOFTWARE_DEFECT_PREDICTION_USING_MACHINE_LEARNING_APPROACH_A_Contemporary_review">SOFTWARE DEFECT PREDICTION USING MACHINE LEARNING APPROACH : A Contemporary review</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="55583905" href="https://fountainuniversity.academia.edu/BaseeratAbdusalam">Baseerat A . Abdulsalami</a></div><p class="ds-related-work--abstract ds2-5-body-sm">Detecting defects in software at the bleeding edge of a software development life cycle is vital. Identifying defects before the deployment of software aids in delivering high-quality products, and reduces development costs. Machine learning techniques are deployed in the earlier stages of software development to improve software performance quality and decrease software maintenance costs. This study focuses on reviewing some papers published in software defect prediction using Machine learning techniques from 2020 to the current time to determine the predominance of machine learning methodologies adoption in software defect prediction. Google Scholar was used to source research papers for this study, and data was gathered from the publications. The process involves reviewing the selected papers, writing a concise synopsis of the papers, connecting and involving them where appropriate, reviewing existing methodology, and finally summarizing the findings. The result shows recent acti...</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"SOFTWARE DEFECT PREDICTION USING MACHINE LEARNING APPROACH : A Contemporary review","attachmentId":105764939,"attachmentType":"pdf","work_url":"https://www.academia.edu/106713490/SOFTWARE_DEFECT_PREDICTION_USING_MACHINE_LEARNING_APPROACH_A_Contemporary_review","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/106713490/SOFTWARE_DEFECT_PREDICTION_USING_MACHINE_LEARNING_APPROACH_A_Contemporary_review"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="3" data-entity-id="63994997" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/63994997/Machine_Learning_Techniques_for_Software_Bug_Prediction_A_Systematic_Review">Machine Learning Techniques for Software Bug Prediction: A Systematic Review</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="129067957" href="https://independent.academia.edu/SyahanaSaharudin">Syahana Saharudin</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Computer Science</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Machine Learning Techniques for Software Bug Prediction: A Systematic Review","attachmentId":76234806,"attachmentType":"pdf","work_url":"https://www.academia.edu/63994997/Machine_Learning_Techniques_for_Software_Bug_Prediction_A_Systematic_Review","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/63994997/Machine_Learning_Techniques_for_Software_Bug_Prediction_A_Systematic_Review"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="4" data-entity-id="124459477" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/124459477/Measuring_the_Impact_of_Predictive_Models_on_the_Software_Project_A_Cost_Service_Time_and_Risk_Evaluation_of_a_Metric_based_Defect_Severity_Prediction_Model">Measuring the Impact of Predictive Models on the Software Project: A Cost, Service Time, and Risk Evaluation of a Metric-based Defect Severity Prediction Model</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="90504" href="https://nitw.academia.edu/Ravichandrasadam">Ravichandra sadam</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Research Square (Research Square), 2023</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Measuring the Impact of Predictive Models on the Software Project: A Cost, Service Time, and Risk Evaluation of a Metric-based Defect Severity Prediction Model","attachmentId":118680416,"attachmentType":"pdf","work_url":"https://www.academia.edu/124459477/Measuring_the_Impact_of_Predictive_Models_on_the_Software_Project_A_Cost_Service_Time_and_Risk_Evaluation_of_a_Metric_based_Defect_Severity_Prediction_Model","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/124459477/Measuring_the_Impact_of_Predictive_Models_on_the_Software_Project_A_Cost_Service_Time_and_Risk_Evaluation_of_a_Metric_based_Defect_Severity_Prediction_Model"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="5" data-entity-id="40239074" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/40239074/A_Literature_Review_Study_of_Software_Defect_Prediction_using_Machine_Learning_Techniques">A Literature Review Study of Software Defect Prediction using Machine Learning Techniques</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="28589548" href="https://bahirdar.academia.edu/ermiyasbirhanu">ermiyas birhanu</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Journal of Emerging Research in Management &Technology , 2017</p><p class="ds-related-work--abstract ds2-5-body-sm">oftware systems are any software product or applications that support business domains such as Manufacturing,Aviation, Health care, insurance and so on.Software quality is a means of measuring how software is designed and how well the software conforms to that design. Some of the variables that we are looking for software quality are Correctness, Product quality, Scalability, Completeness and Absence of bugs, However the quality standard that was used from one organization is different from other for this reason it is better to apply the software metrics to measure the quality of software. Attributes that we gathered from source code through software metrics can be an input for software defect predictor. Software defect are an error that are introduced by software developer and stakeholders. Finally, in this study we discovered the application of machine learning on software defect that we gathered from the previous research works.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A Literature Review Study of Software Defect Prediction using Machine Learning Techniques","attachmentId":60470917,"attachmentType":"pdf","work_url":"https://www.academia.edu/40239074/A_Literature_Review_Study_of_Software_Defect_Prediction_using_Machine_Learning_Techniques","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/40239074/A_Literature_Review_Study_of_Software_Defect_Prediction_using_Machine_Learning_Techniques"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="6" data-entity-id="69209551" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/69209551/Prevalence_of_Machine_Learning_Techniques_in_Software_Defect_Prediction">Prevalence of Machine Learning Techniques in Software Defect Prediction</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="103036378" href="https://bdsongonline.academia.edu/ProfessorDrMdIsmailJabiullah">Professor Dr. Md. Ismail Jabiullah</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2020</p><p class="ds-related-work--abstract ds2-5-body-sm">Software Defect Prediction (SDP) is a popular research area which plays an important role for software quality. It works as an indicator of whether a software module is defect-free or defective. In this study, a review has been conducted from January 2015 to August 2019 and 165 articles are selected in the area of SDP to know the prevalence of Machine Learning (ML) techniques. These articles are collected by searching in Google Scholar, and they are published in various platforms (e.g., IEEE, Springer, Elsevier). Firstly the information has been extracted from the collected particles, and then the information has been pre-processed, categorized, visualized, and finally, the results have been reported. The result shows the most frequently used data sets, classifiers, performance metrics, and techniques in SDP. This investigation will help to find the prevalence of ML techniques in SDP and give a quick view to understand the trends of ML techniques in defect prediction research.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Prevalence of Machine Learning Techniques in Software Defect Prediction","attachmentId":79391948,"attachmentType":"pdf","work_url":"https://www.academia.edu/69209551/Prevalence_of_Machine_Learning_Techniques_in_Software_Defect_Prediction","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/69209551/Prevalence_of_Machine_Learning_Techniques_in_Software_Defect_Prediction"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="7" data-entity-id="17046588" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/17046588/A_systematic_review_of_software_fault_prediction_studies">A systematic review of software fault prediction studies</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="17180161" href="https://independent.academia.edu/BanuDiri">Banu Diri</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Expert Systems with Applications, 2009</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A systematic review of software fault prediction studies","attachmentId":42344466,"attachmentType":"pdf","work_url":"https://www.academia.edu/17046588/A_systematic_review_of_software_fault_prediction_studies","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/17046588/A_systematic_review_of_software_fault_prediction_studies"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="8" data-entity-id="50798644" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/50798644/SOFTWARE_DEFECT_PREDICTION_PAST_PRESENT_AND_FUTURE">SOFTWARE DEFECT PREDICTION: PAST PRESENT AND FUTURE</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="39122404" href="https://iaeme.academia.edu/publication">IAEME Publication</a></div><p class="ds-related-work--metadata ds2-5-body-xs">IAEME PUBLICATION, 2018</p><p class="ds-related-work--abstract ds2-5-body-sm">Software development calls for several defect prediction methodologies using critical parameters such as review effort measurement, test effort estimation, phase gate containment, change request cost, re-usability, size and quality to improve the quality of deliverables. Nonetheless, a lot of these methodologies are actually in development stages and further research is required to produce a strong and dependable model. Many research centers have started more research projects in these research areas. Through this study, we investigated research papers and categorized depending on the importance to user community. We conducted a survey on a software application defect prediction methodologies based on machine learning approaches as well as statistical approaches. This paper contains an outline of works that have been published so far and not a comprehensive review of all the papers published on the topic. We’re confident that the survey of ours will help researchers to under- stand developments in this particular field of study in an effective and easy manner. We have also introduced as well as discussed the latest trends in defect prediction.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"SOFTWARE DEFECT PREDICTION: PAST PRESENT AND FUTURE","attachmentId":68665160,"attachmentType":"pdf","work_url":"https://www.academia.edu/50798644/SOFTWARE_DEFECT_PREDICTION_PAST_PRESENT_AND_FUTURE","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/50798644/SOFTWARE_DEFECT_PREDICTION_PAST_PRESENT_AND_FUTURE"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="9" data-entity-id="106747693" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/106747693/A_Systematic_Approach_for_Enhancing_Software_Defect_Prediction_Using_Machine_Learning">A Systematic Approach for Enhancing Software Defect Prediction Using Machine Learning</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="13407718" href="https://green.academia.edu/MdSolaimanMia">Md. Solaiman Mia</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2023 International Conference on Next-Generation Computing, IoT and Machine Learning (NCIM)</p><p class="ds-related-work--abstract ds2-5-body-sm">In the modern world of software development, ensuring reliability and performance is of paramount importance. However, despite the best efforts from the developers, software defects can still emerge, causing frustration and wasted resources. Due to the numerous defects found during the software development process, researchers have developed numerous ways for defect prediction models. However, these models cut down the time and expense of development when problems in a concurrent software product are anticipated. Due to the increased amount of defects brought on by software complexity, manual defect detection can become an extremely time-consuming procedure. This encouraged researchers to create methods for the automatic detection of software defects. The study of this paper has shown that a combination of machine learning algorithms could be applied effectively for software defect prediction. Interestingly, the combination of Artificial Neural Network and Random Forest classifier has been performed with the mean accuracy of 91%, while the hyper-parameter optimization model classifier has been performed with the mean accuracy of 83%, 83%, 84%, 77% and 80% for Support Vector Machine, Random Forest, Logistic Regression, Naive Bayes Gaussian and Decision Tree, respectively. These findings have demonstrated the potential of Machine Learning in the area of software development.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A Systematic Approach for Enhancing Software Defect Prediction Using Machine Learning","attachmentId":105819656,"attachmentType":"pdf","work_url":"https://www.academia.edu/106747693/A_Systematic_Approach_for_Enhancing_Software_Defect_Prediction_Using_Machine_Learning","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/106747693/A_Systematic_Approach_for_Enhancing_Software_Defect_Prediction_Using_Machine_Learning"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div></div><div class="ds-sticky-ctas--wrapper js-loswp-sticky-ctas hidden"><div class="ds-sticky-ctas--grid-container"><div class="ds-sticky-ctas--container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{"location":"continue-reading-button--sticky-ctas","attachmentId":117075390,"attachmentType":"pdf","workUrl":null}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{"location":"download-pdf-button--sticky-ctas","attachmentId":117075390,"attachmentType":"pdf","workUrl":null}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div><div class="ds-below-fold--grid-container"><div class="ds-work--container js-loswp-embedded-document"><div class="attachment_preview" data-attachment="Attachment_117075390" style="display: none"><div class="js-scribd-document-container"><div class="scribd--document-loading js-scribd-document-loader" style="display: block;"><img alt="Loading..." src="//a.academia-assets.com/images/loaders/paper-load.gif" /><p>Loading Preview</p></div></div><div style="text-align: center;"><div class="scribd--no-preview-alert js-preview-unavailable"><p>Sorry, preview is currently unavailable. You can download the paper by clicking the button above.</p></div></div></div></div><div class="ds-sidebar--container js-work-sidebar"><div class="ds-related-content--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="0" data-entity-id="121430772" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/121430772/The_influence_of_machine_learning_on_the_predictive_performance_of_cross_project_defect_prediction_empirical_analysis">The influence of machine learning on the predictive performance of cross-project defect prediction: empirical analysis</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="163561779" href="https://uad.academia.edu/TELKOMNIKAJOURNAL">TELKOMNIKA JOURNAL</a></div><p class="ds-related-work--metadata ds2-5-body-xs">TELKOMNIKA Telecommunication Computing Electronics and Control, 2024</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"The influence of machine learning on the predictive performance of cross-project defect prediction: empirical analysis","attachmentId":116307769,"attachmentType":"pdf","work_url":"https://www.academia.edu/121430772/The_influence_of_machine_learning_on_the_predictive_performance_of_cross_project_defect_prediction_empirical_analysis","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/121430772/The_influence_of_machine_learning_on_the_predictive_performance_of_cross_project_defect_prediction_empirical_analysis"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="1" data-entity-id="2172841" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/2172841/A_general_software_defect_proneness_prediction_framework">A general software defect-proneness prediction framework</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="2793490" href="https://jntukakinada.academia.edu/BharadwajBn">Bharadwaj Bn</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Software Engineering, …, 2011</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A general software defect-proneness prediction framework","attachmentId":30226347,"attachmentType":"pdf","work_url":"https://www.academia.edu/2172841/A_general_software_defect_proneness_prediction_framework","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/2172841/A_general_software_defect_proneness_prediction_framework"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="2" data-entity-id="93172419" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/93172419/Towards_Developing_and_Analysing_Metric_Based_Software_Defect_Severity_Prediction_Model">Towards Developing and Analysing Metric-Based Software Defect Severity Prediction Model</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="90504" href="https://nitw.academia.edu/Ravichandrasadam">Ravichandra sadam</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Cornell University - arXiv, 2022</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Towards Developing and Analysing Metric-Based Software Defect Severity Prediction Model","attachmentId":95983596,"attachmentType":"pdf","work_url":"https://www.academia.edu/93172419/Towards_Developing_and_Analysing_Metric_Based_Software_Defect_Severity_Prediction_Model","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/93172419/Towards_Developing_and_Analysing_Metric_Based_Software_Defect_Severity_Prediction_Model"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="3" data-entity-id="24155230" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/24155230/DEFECT_EFFORT_PREDICTION_MODELS_IN_SOFTWARE_INTERNATIONAL_JOURNAL_OF_MANAGEMENT_IJM_IJM_I_A_E_M_E">DEFECT / EFFORT PREDICTION MODELS IN SOFTWARE INTERNATIONAL JOURNAL OF MANAGEMENT (IJM) IJM © I A E M E</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="3194628" href="https://iaeme.academia.edu/iaeme">iaeme iaeme</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"DEFECT / EFFORT PREDICTION MODELS IN SOFTWARE INTERNATIONAL JOURNAL OF MANAGEMENT (IJM) IJM © I A E M E","attachmentId":44503539,"attachmentType":"pdf","work_url":"https://www.academia.edu/24155230/DEFECT_EFFORT_PREDICTION_MODELS_IN_SOFTWARE_INTERNATIONAL_JOURNAL_OF_MANAGEMENT_IJM_IJM_I_A_E_M_E","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/24155230/DEFECT_EFFORT_PREDICTION_MODELS_IN_SOFTWARE_INTERNATIONAL_JOURNAL_OF_MANAGEMENT_IJM_IJM_I_A_E_M_E"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="4" data-entity-id="106197085" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/106197085/Improved_software_defect_prediction">Improved software defect prediction</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="272577786" href="https://independent.academia.edu/FentonNorman">Norman Fenton</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2005</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Improved software defect prediction","attachmentId":105749137,"attachmentType":"pdf","work_url":"https://www.academia.edu/106197085/Improved_software_defect_prediction","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/106197085/Improved_software_defect_prediction"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="5" data-entity-id="116744257" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/116744257/Insights_of_effectivity_analysis_of_learning_based_approaches_towards_software_defect_prediction">Insights of effectivity analysis of learning-based approaches towards software defect prediction</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="163474776" href="https://independent.academia.edu/JournalIJECE">International Journal of Electrical and Computer Engineering (IJECE)</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Journal of Electrical and Computer Engineering (IJECE), 2024</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Insights of effectivity analysis of learning-based approaches towards software defect prediction","attachmentId":112788497,"attachmentType":"pdf","work_url":"https://www.academia.edu/116744257/Insights_of_effectivity_analysis_of_learning_based_approaches_towards_software_defect_prediction","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/116744257/Insights_of_effectivity_analysis_of_learning_based_approaches_towards_software_defect_prediction"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="6" data-entity-id="28402250" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/28402250/Benchmarking_Classification_Models_for_Software_Defect_Prediction_A_Proposed_Framework_and_Novel_Findings">Benchmarking Classification Models for Software Defect Prediction: A Proposed Framework and Novel Findings</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="52595967" href="https://independent.academia.edu/BartBaesens">Bart Baesens</a></div><p class="ds-related-work--metadata ds2-5-body-xs">IEEE Transactions on Software Engineering, 2000</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Benchmarking Classification Models for Software Defect Prediction: A Proposed Framework and Novel Findings","attachmentId":48741315,"attachmentType":"pdf","work_url":"https://www.academia.edu/28402250/Benchmarking_Classification_Models_for_Software_Defect_Prediction_A_Proposed_Framework_and_Novel_Findings","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/28402250/Benchmarking_Classification_Models_for_Software_Defect_Prediction_A_Proposed_Framework_and_Novel_Findings"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="7" data-entity-id="102166747" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/102166747/Machine_Learning_Approaches_for_Predicting_the_Severity_Level_of_Software_Bug_Reports_in_Closed_Source_Projects">Machine Learning Approaches for Predicting the Severity Level of Software Bug Reports in Closed Source Projects</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="270707999" href="https://independent.academia.edu/ZaherSalah1">Zaher Salah</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Journal of Advanced Computer Science and Applications, 2019</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Machine Learning Approaches for Predicting the Severity Level of Software Bug Reports in Closed Source Projects","attachmentId":102502747,"attachmentType":"pdf","work_url":"https://www.academia.edu/102166747/Machine_Learning_Approaches_for_Predicting_the_Severity_Level_of_Software_Bug_Reports_in_Closed_Source_Projects","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/102166747/Machine_Learning_Approaches_for_Predicting_the_Severity_Level_of_Software_Bug_Reports_in_Closed_Source_Projects"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="8" data-entity-id="9574037" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/9574037/A_Critique_of_Software_Defect_Prediction_Models">A Critique of Software Defect Prediction Models</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="22640469" href="https://qmul.academia.edu/NormanFenton">Norman Fenton</a></div><p class="ds-related-work--metadata ds2-5-body-xs">IEEE Transactions on Software Engineering, 1999</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A Critique of Software Defect Prediction Models","attachmentId":35788349,"attachmentType":"pdf","work_url":"https://www.academia.edu/9574037/A_Critique_of_Software_Defect_Prediction_Models","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/9574037/A_Critique_of_Software_Defect_Prediction_Models"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="9" data-entity-id="69249363" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/69249363/Understanding_machine_learning_software_defect_predictions">Understanding machine learning software defect predictions</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="4348850" href="https://independent.academia.edu/AdrianoVeloso">Adriano Veloso</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Automated Software Engineering</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Understanding machine learning software defect predictions","attachmentId":79416972,"attachmentType":"pdf","work_url":"https://www.academia.edu/69249363/Understanding_machine_learning_software_defect_predictions","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/69249363/Understanding_machine_learning_software_defect_predictions"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="10" data-entity-id="44233882" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/44233882/Implication_of_Data_Mining_and_Machine_Learning_in_Software_Engineering_Domain_for_Software_Model_Quality_and_Defect_Prediction">Implication of Data Mining and Machine Learning in Software Engineering Domain for Software Model, Quality and Defect Prediction</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="174819338" href="https://independent.academia.edu/Shubhamsingh1441">Shubham singh</a><span>, </span><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="98372740" href="https://independent.academia.edu/AnuragSinha33">Anurag Sinha</a></div><p class="ds-related-work--metadata ds2-5-body-xs">INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING and SYSTEM SOFTWARE, 2020</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Implication of Data Mining and Machine Learning in Software Engineering Domain for Software Model, Quality and Defect Prediction","attachmentId":64603851,"attachmentType":"pdf","work_url":"https://www.academia.edu/44233882/Implication_of_Data_Mining_and_Machine_Learning_in_Software_Engineering_Domain_for_Software_Model_Quality_and_Defect_Prediction","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/44233882/Implication_of_Data_Mining_and_Machine_Learning_in_Software_Engineering_Domain_for_Software_Model_Quality_and_Defect_Prediction"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="11" data-entity-id="124273809" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/124273809/The_Effect_of_the_Dataset_Size_on_the_Accuracy_of_Software_Defect_Prediction_Models_An_Empirical_Study">The Effect of the Dataset Size on the Accuracy of Software Defect Prediction Models: An Empirical Study</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="169048435" href="https://ua-huntsville.academia.edu/MohammadAlshayeb">Mohammad Alshayeb</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Inteligencia Artificial, 2021</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"The Effect of the Dataset Size on the Accuracy of Software Defect Prediction Models: An Empirical Study","attachmentId":118530691,"attachmentType":"pdf","work_url":"https://www.academia.edu/124273809/The_Effect_of_the_Dataset_Size_on_the_Accuracy_of_Software_Defect_Prediction_Models_An_Empirical_Study","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/124273809/The_Effect_of_the_Dataset_Size_on_the_Accuracy_of_Software_Defect_Prediction_Models_An_Empirical_Study"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="12" data-entity-id="64120184" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/64120184/Comparative_Analysis_of_Software_Defect_PredictionTechniques">Comparative Analysis of Software Defect PredictionTechniques</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="19712605" href="https://exeter.academia.edu/KhadijaAmir">Khadija Amir</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2019</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Comparative Analysis of Software Defect PredictionTechniques","attachmentId":76300717,"attachmentType":"pdf","work_url":"https://www.academia.edu/64120184/Comparative_Analysis_of_Software_Defect_PredictionTechniques","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/64120184/Comparative_Analysis_of_Software_Defect_PredictionTechniques"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="13" data-entity-id="16827135" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/16827135/Building_Defect_Prediction_Models_in_Practice">Building Defect Prediction Models in Practice</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="36583123" href="https://independent.academia.edu/JohannesHimmelbauer">Johannes Himmelbauer</a><span>, </span><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="36276263" href="https://independent.academia.edu/ThomasNatschl%C3%A4ger">Thomas Natschläger</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2014</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Building Defect Prediction Models in Practice","attachmentId":42391019,"attachmentType":"pdf","work_url":"https://www.academia.edu/16827135/Building_Defect_Prediction_Models_in_Practice","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/16827135/Building_Defect_Prediction_Models_in_Practice"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="14" data-entity-id="74526860" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/74526860/Literature_Review_of_Software_Engineering_Fault_prediction">Literature Review of Software Engineering Fault prediction</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="47888385" href="https://204.academia.edu/iJouranls">iJOURNALS PUBLICATIONS IJSHRE | IJSRC</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Literature Review of Software Engineering Fault prediction","attachmentId":82647258,"attachmentType":"pdf","work_url":"https://www.academia.edu/74526860/Literature_Review_of_Software_Engineering_Fault_prediction","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/74526860/Literature_Review_of_Software_Engineering_Fault_prediction"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="15" data-entity-id="72999964" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/72999964/Practical_considerations_in_deploying_statistical_methods_for_defect_prediction_A_case_study_within_the_Turkish_telecommunications_industry">Practical considerations in deploying statistical methods for defect prediction: A case study within the Turkish telecommunications industry</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="144523662" href="https://independent.academia.edu/BenerAyse">Ayse Bener</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Information and Software Technology, 2010</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Practical considerations in deploying statistical methods for defect prediction: A case study within the Turkish telecommunications industry","attachmentId":81696834,"attachmentType":"pdf","work_url":"https://www.academia.edu/72999964/Practical_considerations_in_deploying_statistical_methods_for_defect_prediction_A_case_study_within_the_Turkish_telecommunications_industry","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/72999964/Practical_considerations_in_deploying_statistical_methods_for_defect_prediction_A_case_study_within_the_Turkish_telecommunications_industry"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="16" data-entity-id="79869423" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/79869423/Machine_Learning_Techniques_to_Predict_Software_Defect">Machine Learning Techniques to Predict Software Defect</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="14677866" href="https://independent.academia.edu/VadlamaniRavi">Vadlamani Ravi</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Encyclopedia of Business Analytics and Optimization</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Machine Learning Techniques to Predict Software Defect","attachmentId":86439448,"attachmentType":"pdf","work_url":"https://www.academia.edu/79869423/Machine_Learning_Techniques_to_Predict_Software_Defect","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/79869423/Machine_Learning_Techniques_to_Predict_Software_Defect"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="17" data-entity-id="124819909" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/124819909/Applying_Machine_Learning_Analysis_for_Software_Quality_Test">Applying Machine Learning Analysis for Software Quality Test</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="275090879" href="https://independent.academia.edu/MekuriaRemudin">Remudin Mekuria</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2023 International Conference on Code Quality (ICCQ)</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Applying Machine Learning Analysis for Software Quality Test","attachmentId":118975107,"attachmentType":"pdf","work_url":"https://www.academia.edu/124819909/Applying_Machine_Learning_Analysis_for_Software_Quality_Test","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/124819909/Applying_Machine_Learning_Analysis_for_Software_Quality_Test"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="18" data-entity-id="123525718" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/123525718/Software_risk_prediction_systematic_literature_review_on_machine_learning_techniques">Software risk prediction: systematic literature review on machine learning techniques</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="323435816" href="https://aiub.academia.edu/MahmudulHoqueMahmud">Mahmudul Hoque Mahmud</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Applied Sciences, 2022</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Software risk prediction: systematic literature review on machine learning techniques","attachmentId":117937140,"attachmentType":"pdf","work_url":"https://www.academia.edu/123525718/Software_risk_prediction_systematic_literature_review_on_machine_learning_techniques","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/123525718/Software_risk_prediction_systematic_literature_review_on_machine_learning_techniques"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div><div class="ds-related-content--container"><h2 class="ds-related-content--heading">Related topics</h2><div class="ds-research-interests--pills-container"><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="48" href="https://www.academia.edu/Documents/in/Engineering">Engineering</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="422" href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="44687" href="https://www.academia.edu/Documents/in/Analytics">Analytics</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="556565" href="https://www.academia.edu/Documents/in/Scientific_programming">Scientific programming</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="977115" href="https://www.academia.edu/Documents/in/Software_Analytics">Software Analytics</a></div></div></div></div></div><div class="footer--content"><ul class="footer--main-links hide-on-mobile"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a href="https://support.academia.edu/"><svg style="width: 12px; height: 12px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer--research-interests"><li>Find new research papers in:</li><li><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul><ul class="footer--legal-links hide-on-mobile"><li><a href="https://www.academia.edu/terms">Terms</a></li><li><a href="https://www.academia.edu/privacy">Privacy</a></li><li><a href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2024</li></ul></div> </body> </html>