CINXE.COM
Search results for: in-silicon drug design
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: in-silicon drug design</title> <meta name="description" content="Search results for: in-silicon drug design"> <meta name="keywords" content="in-silicon drug design"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="in-silicon drug design" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="in-silicon drug design"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 14265</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: in-silicon drug design</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14265</span> An In-silico Pharmacophore-Based Anti-Viral Drug Development for Hepatitis C Virus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Romasa%20Qasim">Romasa Qasim</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20M.%20Sayedur%20Rahman"> G. M. Sayedur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Nahid%20Hasan"> Nahid Hasan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Shazzad%20Hosain"> M. Shazzad Hosain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Millions of people worldwide suffer from Hepatitis C, one of the fatal diseases. Interferon (IFN) and ribavirin are the available treatments for patients with Hepatitis C, but these treatments have their own side-effects. Our research focused on the development of an orally taken small molecule drug targeting the proteins in Hepatitis C Virus (HCV), which has lesser side effects. Our current study aims to the Pharmacophore based drug development of a specific small molecule anti-viral drug for Hepatitis C Virus (HCV). Drug designing using lab experimentation is not only costly but also it takes a lot of time to conduct such experimentation. Instead in this in silico study, we have used computer-aided techniques to propose a Pharmacophore-based anti-viral drug specific for the protein domains of the polyprotein present in the Hepatitis C Virus. This study has used homology modeling and ab initio modeling for protein 3D structure generation followed by pocket identification in the proteins. Drug-able ligands for the pockets were designed using de novo drug design method. For ligand design, pocket geometry is taken into account. Out of several generated ligands, a new Pharmacophore is proposed, specific for each of the protein domains of HCV. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pharmacophore-based%20drug%20design" title="pharmacophore-based drug design">pharmacophore-based drug design</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-viral%20drug" title=" anti-viral drug"> anti-viral drug</a>, <a href="https://publications.waset.org/abstracts/search?q=in-silico%20drug%20design" title=" in-silico drug design"> in-silico drug design</a>, <a href="https://publications.waset.org/abstracts/search?q=Hepatitis%20C%20virus%20%28HCV%29" title=" Hepatitis C virus (HCV)"> Hepatitis C virus (HCV)</a> </p> <a href="https://publications.waset.org/abstracts/64266/an-in-silico-pharmacophore-based-anti-viral-drug-development-for-hepatitis-c-virus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64266.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14264</span> In Silico Studies on Selected Drug Targets for Combating Drug Resistance in Plasmodium Falcifarum </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deepika%20Bhaskar">Deepika Bhaskar</a>, <a href="https://publications.waset.org/abstracts/search?q=Neena%20Wadehra"> Neena Wadehra</a>, <a href="https://publications.waset.org/abstracts/search?q=Megha%20Gulati"> Megha Gulati</a>, <a href="https://publications.waset.org/abstracts/search?q=Aruna%20Narula"> Aruna Narula</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Vishnu"> R. Vishnu</a>, <a href="https://publications.waset.org/abstracts/search?q=Gunjan%20Katyal"> Gunjan Katyal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With drug resistance becoming widespread in Plasmodium falciparum infections, development of the alternative drugs is the desired strategy for prevention and cure of malaria. Three drug targets were selected to screen promising drug molecules from the GSK library of around 14000 molecules. Using an in silico structure-based drug designing approach, the differences in binding energies of the substrate and inhibitor were exploited between target sites of parasite and human to design a drug molecule against Plasmodium. The docking studies have shown several promising molecules from GSK library with more effective binding as compared to the already known inhibitors for the drug targets. Though stronger interaction has been shown by several molecules as compare to reference, few molecules have shown the potential as drug candidates though in vitro studies are required to validate the results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasmodium" title="plasmodium">plasmodium</a>, <a href="https://publications.waset.org/abstracts/search?q=malaria" title=" malaria"> malaria</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20targets" title=" drug targets"> drug targets</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20silico%20studies" title=" in silico studies"> in silico studies</a> </p> <a href="https://publications.waset.org/abstracts/24319/in-silico-studies-on-selected-drug-targets-for-combating-drug-resistance-in-plasmodium-falcifarum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24319.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14263</span> In-silico Design of Riboswitch Based Potent Inhibitors for Vibrio cholera</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Somdutt%20Mujwar">Somdutt Mujwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamal%20Raj%20Pardasani"> Kamal Raj Pardasani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cholera pandemics are caused by facultative pathogenic Vibrio cholera bacteria persisting in the countries having warmer climatic conditions as well as the presence of large water bodies with huge amount of organic matter, it is responsible for the millions of deaths annually. Presently the available therapy for cholera is Oral Rehydration Therapy (ORT) with an antibiotic drug. Excessive utilization of life saving antibiotics drugs leads to the development of resistance by the infectious micro-organism against the antibiotic drugs resulting in loss of effectiveness of these drugs. Also, many side effects are also associated with the use of these antibiotic drugs. This riboswitch is explored as an alternative drug target for Vibrio cholera bacteria to overcome the problem of drug resistance as well as side effects associated with the antibiotics drugs. The bacterial riboswitch is virtually screened with 24407 legends to get possible drug candidates. The 10 ligands showing best binding with the riboswitch are selected to design a pharmacophore, which can be utilized to design lead molecules by using the phenomenon of bioisosterism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cholera" title="cholera">cholera</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20design" title=" drug design"> drug design</a>, <a href="https://publications.waset.org/abstracts/search?q=ligand" title=" ligand"> ligand</a>, <a href="https://publications.waset.org/abstracts/search?q=riboswitch" title=" riboswitch"> riboswitch</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmacophore" title=" pharmacophore "> pharmacophore </a> </p> <a href="https://publications.waset.org/abstracts/39639/in-silico-design-of-riboswitch-based-potent-inhibitors-for-vibrio-cholera" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39639.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14262</span> Design, Development and Characterization of Pioglitazone Transdermal Drug Delivery System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dwarakanadha%20Reddy%20Peram">Dwarakanadha Reddy Peram</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Swarnalatha"> D. Swarnalatha</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Gopinath"> C. Gopinath</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main aim of this research work was to design and development characterization of Pioglitazone transdermal drug delivery system by using various polymers such as Olibanum with different concentration by solvent evaporation technique. The prepared formulations were evaluated for different physicochemical characteristics like thickness, folding endurance, drug content, percentage moisture absorption, percentage moisture loss, percentage elongation break test and weight uniformity. The diffusion studies were performed by using modified Franz diffusion cells. The result of dissolution studies shows that formulation, F3 (Olibanum with 50 mg) showed maximum release of 99.95 % in 12hrs, whereas F1 (Olibanum and EC backing membrane) showed minimum release of 93.65% in 12 hr. Based on the drug release and physicochemical values obtained the formulation F3 is considered as an optimized formulation which shows higher percentage of drug release of 99.95 % in 12 hr. The developed transdermal patches increase the therapeutic efficacy and reduced toxic effect of pioglitazone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pioglitazone" title="pioglitazone">pioglitazone</a>, <a href="https://publications.waset.org/abstracts/search?q=olibanum" title=" olibanum"> olibanum</a>, <a href="https://publications.waset.org/abstracts/search?q=transdermal%20drug%20delivery%20system" title=" transdermal drug delivery system"> transdermal drug delivery system</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20release%20percantage" title=" drug release percantage"> drug release percantage</a> </p> <a href="https://publications.waset.org/abstracts/85414/design-development-and-characterization-of-pioglitazone-transdermal-drug-delivery-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85414.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14261</span> Formulation, Evaluation and Statistical Optimization of Transdermal Niosomal Gel of Atenolol</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lakshmi%20Sirisha%20Kotikalapudi">Lakshmi Sirisha Kotikalapudi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Atenolol, the widely used antihypertensive drug is ionisable and degrades in the acidic environment of the GIT lessening the bioavailability. Transdermal route may be selected as an alternative to enhance the bioavailability. Half-life of the drug is 6-7 hours suggesting the requirement of prolonged release of the drug. The present work of transdermal niosomal gel aims to extend release of the drug and increase the bioavailability. Ethanol injection method was used for the preparation of niosomes using span-60 and cholesterol at different molar ratios following central composite design. The prepared niosomes were characterized for size, zeta-potential, entrapment efficiency, drug content and in-vitro drug release. Optimized formulation was selected by statistically analyzing the results obtained using the software Stat-Ease Design Expert. The optimized formulation also showed high drug retention inside the vesicles over a period of three months at a temperature of 4 °C indicating stability. Niosomes separated as a pellet were dried and incorporated into the hydrogel prepared using chitosan a natural polymer as a gelling agent. The effect of various chemical permeation enhancers was also studied over the gel formulations. The prepared formulations were characterized for viscosity, pH, drug release using Franz diffusion cells, and skin irritation test as well as in-vivo pharmacological activities. Atenolol niosomal gel preparations showed the prolonged release of the drug and pronounced antihypertensive activity indicating the suitability of niosomal gel for topical and systemic delivery of atenolol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atenolol" title="atenolol">atenolol</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=niosomes" title=" niosomes"> niosomes</a>, <a href="https://publications.waset.org/abstracts/search?q=transdermal" title=" transdermal"> transdermal</a> </p> <a href="https://publications.waset.org/abstracts/59549/formulation-evaluation-and-statistical-optimization-of-transdermal-niosomal-gel-of-atenolol" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14260</span> Development and Evaluation of Gastro Retentive Floating Tablets of Ayurvedic Vati Formulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imran%20Khan%20Pathan">Imran Khan Pathan</a>, <a href="https://publications.waset.org/abstracts/search?q=Anil%20Bhandari"> Anil Bhandari</a>, <a href="https://publications.waset.org/abstracts/search?q=Peeyush%20K.%20Sharma"> Peeyush K. Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Rakesh%20K.%20Patel"> Rakesh K. Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Suresh%20Purohit"> Suresh Purohit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Floating tablets of Marichyadi Vati were developed with an aim to prolong its gastric residence time and increase the bioavailability of drug. Rapid gastrointestinal transit could result in incomplete drug release from the drug delivery system above the absorption zone leading to diminished efficacy of the administered dose. The tablets were prepared by wet granulation technique, using HPMC E50 LV act as Matrixing agent, Carbopol as floating enhancer, microcrystalline cellulose as binder, sodium bi carbonate as effervescent agent with other excipients. The simplex lattice design was used for selection of variables for tablets formulation. Formulation was optimized on the basis of floating time and in vitro drug release. The results showed that the floating lag time for optimized formulation was found to be 61 second with about 97.32 % of total drug release within 3 hours. The in vitro release profiles of drug from the formulation could be best expressed zero order with highest linearity r2 = 0.9943. It was concluded that the gastroretentive drug delivery system can be developed for Marichyadi Vati containing piperine to increase the residence time of the drug in the stomach and thereby increasing bioavailability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piperine" title="piperine">piperine</a>, <a href="https://publications.waset.org/abstracts/search?q=Marichyadi%20Vati" title=" Marichyadi Vati"> Marichyadi Vati</a>, <a href="https://publications.waset.org/abstracts/search?q=gastroretentive%20drug%20delivery" title=" gastroretentive drug delivery"> gastroretentive drug delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=floating%20tablet" title=" floating tablet"> floating tablet</a> </p> <a href="https://publications.waset.org/abstracts/1702/development-and-evaluation-of-gastro-retentive-floating-tablets-of-ayurvedic-vati-formulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1702.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14259</span> Potential Drug-Drug Interactions at a Referral Hematology-Oncology Ward in Iran: A Cross-Sectional Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sara%20Ataei">Sara Ataei</a>, <a href="https://publications.waset.org/abstracts/search?q=Molouk%20Hadjibabaie"> Molouk Hadjibabaie</a>, <a href="https://publications.waset.org/abstracts/search?q=Shirinsadat%20Badri"> Shirinsadat Badri</a>, <a href="https://publications.waset.org/abstracts/search?q=Amirhossein%20Moslehi"> Amirhossein Moslehi</a>, <a href="https://publications.waset.org/abstracts/search?q=Iman%20Karimzadeh"> Iman Karimzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ardeshir%20Ghavamzadeh"> Ardeshir Ghavamzadeh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: To assess the pattern and probable risk factors for moderate and major drug–drug interactions in a referral hematology-oncology ward in Iran. Methods: All patients admitted to hematology–oncology ward of Dr. Shariati Hospital during a 6-month period and received at least two anti-cancer or non-anti-cancer medications simultaneously were included. All being scheduled anti-cancer and non-anti-cancer medications both prescribed and administered during ward stay were considered for drug–drug interaction screening by Lexi-Interact On- Desktop software. Results: One hundred and eighty-five drug–drug interactions with moderate or major severity were detected from 83 patients. Most of drug–drug interactions (69.73 %) were classified as pharmacokinetics. Fluconazole (25.95 %) was the most commonly offending medication in drug–drug interactions. Interaction of sulfamethoxazole-trimethoprim with fluconazole was the most common drug–drug interaction (27.27 %). Vincristine with imatinib was the only identified interaction between two anti-cancer agents. The number of administered medications during ward stay was considered as an independent risk factor for developing a drug–drug interaction. Conclusions: Potential moderate or major drug–drug interactions occur frequently in patients with hematological malignancies or related diseases. Performing larger standard studies are required to assess the real clinical and economical effects of drug–drug interactions on patients with hematological and non-hematological malignancies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drug%E2%80%93drug%20interactions" title="drug–drug interactions">drug–drug interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=hematology%E2%80%93oncology%20ward" title=" hematology–oncology ward"> hematology–oncology ward</a>, <a href="https://publications.waset.org/abstracts/search?q=hematological%20malignancies" title=" hematological malignancies "> hematological malignancies </a> </p> <a href="https://publications.waset.org/abstracts/17983/potential-drug-drug-interactions-at-a-referral-hematology-oncology-ward-in-iran-a-cross-sectional-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17983.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14258</span> The importance of Clinical Pharmacy and Computer Aided Drug Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peter%20Edwar%20Mortada%20Nasif">Peter Edwar Mortada Nasif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of CAD (Computer Aided Design) technology is ubiquitous in the architecture, engineering and construction (AEC) industry. This has led to its inclusion in the curriculum of architecture schools in Nigeria as an important part of the training module. This article examines the ethical issues involved in implementing CAD (Computer Aided Design) content into the architectural education curriculum. Using existing literature, this study begins with the benefits of integrating CAD into architectural education and the responsibilities of different stakeholders in the implementation process. It also examines issues related to the negative use of information technology and the perceived negative impact of CAD use on design creativity. Using a survey method, data from the architecture department of Chukwuemeka Odumegwu Ojukwu Uli University was collected to serve as a case study on how the issues raised were being addressed. The article draws conclusions on what ensures successful ethical implementation. Millions of people around the world suffer from hepatitis C, one of the world's deadliest diseases. Interferon (IFN) is treatment options for patients with hepatitis C, but these treatments have their side effects. Our research focused on developing an oral small molecule drug that targets hepatitis C virus (HCV) proteins and has fewer side effects. Our current study aims to develop a drug based on a small molecule antiviral drug specific for the hepatitis C virus (HCV). Drug development using laboratory experiments is not only expensive, but also time-consuming to conduct these experiments. Instead, in this in silicon study, we used computational techniques to propose a specific antiviral drug for the protein domains of found in the hepatitis C virus. This study used homology modeling and abs initio modeling to generate the 3D structure of the proteins, then identifying pockets in the proteins. Acceptable lagans for pocket drugs have been developed using the de novo drug design method. Pocket geometry is taken into account when designing ligands. Among the various lagans generated, a new specific for each of the HCV protein domains has been proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drug%20design" title="drug design">drug design</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-viral%20drug" title=" anti-viral drug"> anti-viral drug</a>, <a href="https://publications.waset.org/abstracts/search?q=in-silicon%20drug%20design" title=" in-silicon drug design"> in-silicon drug design</a>, <a href="https://publications.waset.org/abstracts/search?q=hepatitis%20C%20virus" title=" hepatitis C virus"> hepatitis C virus</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20aided%20design" title=" computer aided design"> computer aided design</a>, <a href="https://publications.waset.org/abstracts/search?q=CAD%20education" title=" CAD education"> CAD education</a>, <a href="https://publications.waset.org/abstracts/search?q=education%20improvement" title=" education improvement"> education improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=small-size%20contractor%20automatic%20pharmacy" title=" small-size contractor automatic pharmacy"> small-size contractor automatic pharmacy</a>, <a href="https://publications.waset.org/abstracts/search?q=PLC" title=" PLC"> PLC</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20system" title=" control system"> control system</a>, <a href="https://publications.waset.org/abstracts/search?q=management%20system" title=" management system"> management system</a>, <a href="https://publications.waset.org/abstracts/search?q=communication" title=" communication"> communication</a> </p> <a href="https://publications.waset.org/abstracts/188179/the-importance-of-clinical-pharmacy-and-computer-aided-drug-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">22</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14257</span> Drug Use Knowledge and Antimicrobial Drug Use Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pimporn%20Thongmuang">Pimporn Thongmuang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The import value of antimicrobial drugs reached approximately fifteen million Baht in 2010, considered as the highest import value of all modern drugs, and this value is rising every year. Antimicrobials are considered the hazardous drugs by the Ministry of Public Health. This research was conducted in order to investigate the past knowledge of drug use and Antimicrobial drug use behavior. A total of 757 students were selected as the samples out of a population of 1,800 students. This selected students had the experience of Antimicrobial drugs use a year ago. A questionnaire was utilized in this research. The findings put on the view that knowledge gained by the students about proper use of antimicrobial drugs was not brought into practice. This suggests that the education procedure regarding drug use needs adjustment. And therefore the findings of this research are expected to be utilized as guidelines for educating people about the proper use of antimicrobial drugs. At a broader perspective, correct drug use behavior of the public may potentially reduce drug cost of the Ministry of Public Health of Thailand. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drug%20use%20knowledge" title="drug use knowledge">drug use knowledge</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20drugs" title=" antimicrobial drugs"> antimicrobial drugs</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20use%20behavior" title=" drug use behavior"> drug use behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=drug" title=" drug"> drug</a> </p> <a href="https://publications.waset.org/abstracts/3900/drug-use-knowledge-and-antimicrobial-drug-use-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14256</span> DeepLig: A de-novo Computational Drug Design Approach to Generate Multi-Targeted Drugs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anika%20Chebrolu">Anika Chebrolu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mono-targeted drugs can be of limited efficacy against complex diseases. Recently, multi-target drug design has been approached as a promising tool to fight against these challenging diseases. However, the scope of current computational approaches for multi-target drug design is limited. DeepLig presents a de-novo drug discovery platform that uses reinforcement learning to generate and optimize novel, potent, and multitargeted drug candidates against protein targets. DeepLig’s model consists of two networks in interplay: a generative network and a predictive network. The generative network, a Stack- Augmented Recurrent Neural Network, utilizes a stack memory unit to remember and recognize molecular patterns when generating novel ligands from scratch. The generative network passes each newly created ligand to the predictive network, which then uses multiple Graph Attention Networks simultaneously to forecast the average binding affinity of the generated ligand towards multiple target proteins. With each iteration, given feedback from the predictive network, the generative network learns to optimize itself to create molecules with a higher average binding affinity towards multiple proteins. DeepLig was evaluated based on its ability to generate multi-target ligands against two distinct proteins, multi-target ligands against three distinct proteins, and multi-target ligands against two distinct binding pockets on the same protein. With each test case, DeepLig was able to create a library of valid, synthetically accessible, and novel molecules with optimal and equipotent binding energies. We propose that DeepLig provides an effective approach to design multi-targeted drug therapies that can potentially show higher success rates during in-vitro trials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drug%20design" title="drug design">drug design</a>, <a href="https://publications.waset.org/abstracts/search?q=multitargeticity" title=" multitargeticity"> multitargeticity</a>, <a href="https://publications.waset.org/abstracts/search?q=de-novo" title=" de-novo"> de-novo</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforcement%20learning" title=" reinforcement learning"> reinforcement learning</a> </p> <a href="https://publications.waset.org/abstracts/171394/deeplig-a-de-novo-computational-drug-design-approach-to-generate-multi-targeted-drugs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171394.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14255</span> The Impact of Artificial Intelligence on Medicine Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasser%20Ahmed%20Mahmoud%20Ali%20Helal">Yasser Ahmed Mahmoud Ali Helal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of CAD (Computer Aided Design) technology is ubiquitous in the architecture, engineering and construction (AEC) industry. This has led to its inclusion in the curriculum of architecture schools in Nigeria as an important part of the training module. This article examines the ethical issues involved in implementing CAD (Computer Aided Design) content into the architectural education curriculum. Using existing literature, this study begins with the benefits of integrating CAD into architectural education and the responsibilities of different stakeholders in the implementation process. It also examines issues related to the negative use of information technology and the perceived negative impact of CAD use on design creativity. Using a survey method, data from the architecture department of University was collected to serve as a case study on how the issues raised were being addressed. The article draws conclusions on what ensures successful ethical implementation. Millions of people around the world suffer from hepatitis C, one of the world's deadliest diseases. Interferon (IFN) is treatment options for patients with hepatitis C, but these treatments have their side effects. Our research focused on developing an oral small molecule drug that targets hepatitis C virus (HCV) proteins and has fewer side effects. Our current study aims to develop a drug based on a small molecule antiviral drug specific for the hepatitis C virus (HCV). Drug development using laboratory experiments is not only expensive, but also time-consuming to conduct these experiments. Instead, in this in silicon study, we used computational techniques to propose a specific antiviral drug for the protein domains of found in the hepatitis C virus. This study used homology modeling and abs initio modeling to generate the 3D structure of the proteins, then identifying pockets in the proteins. Acceptable lagans for pocket drugs have been developed using the de novo drug design method. Pocket geometry is taken into account when designing ligands. Among the various lagans generated, a new specific for each of the HCV protein domains has been proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drug%20design" title="drug design">drug design</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-viral%20drug" title=" anti-viral drug"> anti-viral drug</a>, <a href="https://publications.waset.org/abstracts/search?q=in-silicon%20drug%20design" title=" in-silicon drug design"> in-silicon drug design</a>, <a href="https://publications.waset.org/abstracts/search?q=hepatitis%20C%20virus%20%28HCV%29%20%20CAD%20%28Computer%20Aided%20Design%29" title=" hepatitis C virus (HCV) CAD (Computer Aided Design)"> hepatitis C virus (HCV) CAD (Computer Aided Design)</a>, <a href="https://publications.waset.org/abstracts/search?q=CAD%20education" title=" CAD education"> CAD education</a>, <a href="https://publications.waset.org/abstracts/search?q=education%20improvement" title=" education improvement"> education improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=small-size%20contractor%20automatic%20pharmacy" title=" small-size contractor automatic pharmacy"> small-size contractor automatic pharmacy</a>, <a href="https://publications.waset.org/abstracts/search?q=PLC" title=" PLC"> PLC</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20system" title=" control system"> control system</a>, <a href="https://publications.waset.org/abstracts/search?q=management%20system" title=" management system"> management system</a>, <a href="https://publications.waset.org/abstracts/search?q=communication" title=" communication"> communication</a> </p> <a href="https://publications.waset.org/abstracts/183104/the-impact-of-artificial-intelligence-on-medicine-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14254</span> Drug-Drug Interaction Prediction in Diabetes Mellitus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rashini%20Maduka">Rashini Maduka</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20R.%20Wijesinghe"> C. R. Wijesinghe</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Weerasinghe"> A. R. Weerasinghe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drug-drug interactions (DDIs) can happen when two or more drugs are taken together. Today DDIs have become a serious health issue due to adverse drug effects. In vivo and in vitro methods for identifying DDIs are time-consuming and costly. Therefore, in-silico-based approaches are preferred in DDI identification. Most machine learning models for DDI prediction are used chemical and biological drug properties as features. However, some drug features are not available and costly to extract. Therefore, it is better to make automatic feature engineering. Furthermore, people who have diabetes already suffer from other diseases and take more than one medicine together. Then adverse drug effects may happen to diabetic patients and cause unpleasant reactions in the body. In this study, we present a model with a graph convolutional autoencoder and a graph decoder using a dataset from DrugBank version 5.1.3. The main objective of the model is to identify unknown interactions between antidiabetic drugs and the drugs taken by diabetic patients for other diseases. We considered automatic feature engineering and used Known DDIs only as the input for the model. Our model has achieved 0.86 in AUC and 0.86 in AP. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drug-drug%20interaction%20prediction" title="drug-drug interaction prediction">drug-drug interaction prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20embedding" title=" graph embedding"> graph embedding</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20convolutional%20networks" title=" graph convolutional networks"> graph convolutional networks</a>, <a href="https://publications.waset.org/abstracts/search?q=adverse%20drug%20effects" title=" adverse drug effects"> adverse drug effects</a> </p> <a href="https://publications.waset.org/abstracts/165305/drug-drug-interaction-prediction-in-diabetes-mellitus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165305.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14253</span> Spray-Dried, Biodegradable, Drug-Loaded Microspheres for Use in the Treatment of Lung Diseases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mazen%20AlGharsan">Mazen AlGharsan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: The Carbopol Microsphere of Linezolid, a drug used to treat lung disease (pulmonary disease), was prepared using Buchi B-90 nano spray-drier. Methods: Production yield, drug content, external morphology, particle size, and in vitro release pattern were performed. Results: The work was 79.35%, and the drug content was 66.84%. The surface of the particles was shriveled in shape, with particle size distribution with a mean diameter of 9.6 µm; the drug was released in a biphasic manner with an initial release of 25.2 ± 5.7% at 60 minutes. It later prolonged the release by 95.5 ± 2.5% up to 12 hours. Differential scanning calorimetry (DSC) revealed no change in the melting point of the formulation. Fourier-transform infrared (FT-IR) studies showed no polymer-drug interaction in the prepared nanoparticles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title="nanotechnology">nanotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20delivery" title=" drug delivery"> drug delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=Linezolid" title=" Linezolid"> Linezolid</a>, <a href="https://publications.waset.org/abstracts/search?q=lung%20disease" title=" lung disease"> lung disease</a> </p> <a href="https://publications.waset.org/abstracts/193025/spray-dried-biodegradable-drug-loaded-microspheres-for-use-in-the-treatment-of-lung-diseases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193025.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">13</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14252</span> Response Surface Methodology to Obtain Disopyramide Phosphate Loaded Controlled Release Ethyl Cellulose Microspheres</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krutika%20K.%20Sawant">Krutika K. Sawant</a>, <a href="https://publications.waset.org/abstracts/search?q=Anil%20Solanki"> Anil Solanki </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study deals with the preparation and optimization of ethyl cellulose-containing disopyramide phosphate loaded microspheres using solvent evaporation technique. A central composite design consisting of a two-level full factorial design superimposed on a star design was employed for optimizing the preparation microspheres. The drug:polymer ratio (X1) and speed of the stirrer (X2) were chosen as the independent variables. The cumulative release of the drug at a different time (2, 6, 10, 14, and 18 hr) was selected as the dependent variable. An optimum polynomial equation was generated for the prediction of the response variable at time 10 hr. Based on the results of multiple linear regression analysis and F statistics, it was concluded that sustained action can be obtained when X1 and X2 are kept at high levels. The X1X2 interaction was found to be statistically significant. The drug release pattern fitted the Higuchi model well. The data of a selected batch were subjected to an optimization study using Box-Behnken design, and an optimal formulation was fabricated. Good agreement was observed between the predicted and the observed dissolution profiles of the optimal formulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disopyramide%20phosphate" title="disopyramide phosphate">disopyramide phosphate</a>, <a href="https://publications.waset.org/abstracts/search?q=ethyl%20cellulose" title=" ethyl cellulose"> ethyl cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=microspheres" title=" microspheres"> microspheres</a>, <a href="https://publications.waset.org/abstracts/search?q=controlled%20release" title=" controlled release"> controlled release</a>, <a href="https://publications.waset.org/abstracts/search?q=Box-Behnken%20design" title=" Box-Behnken design"> Box-Behnken design</a>, <a href="https://publications.waset.org/abstracts/search?q=factorial%20design" title=" factorial design"> factorial design</a> </p> <a href="https://publications.waset.org/abstracts/21542/response-surface-methodology-to-obtain-disopyramide-phosphate-loaded-controlled-release-ethyl-cellulose-microspheres" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14251</span> The Importance of Clinical Pharmacy and Computer Aided Drug Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mario%20Hanna%20Louis%20Hanna">Mario Hanna Louis Hanna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of CAD (pc Aided layout) generation is ubiquitous inside the structure, engineering and construction (AEC) industry. This has led to its inclusion in the curriculum of structure faculties in Nigeria as an important part of the training module. This newsletter examines the moral troubles involved in implementing CAD (pc Aided layout) content into the architectural training curriculum. Using current literature, this study begins with the advantages of integrating CAD into architectural education and the responsibilities of various stakeholders in the implementation process. It also examines issues related to the terrible use of records generation and the perceived bad effect of CAD use on design creativity. The use of a survey technique, information from the architecture department of Chukwuemeka Odumegwu Ojukwu Uli college changed into accumulated to serve as a case observe on how the problems raised have been being addressed. The object draws conclusions on what guarantees a hit moral implementation. Tens of millions of human beings around the sector suffer from hepatitis C, one of the international's deadliest sicknesses. Interferon (IFN) is a remedy alternative for patients with hepatitis C, but these treatments have their aspect outcomes. Our research targeted growing an oral small molecule drug that goals hepatitis C virus (HCV) proteins and has fewer facet effects. Our contemporary study targets to broaden a drug primarily based on a small molecule antiviral drug precise for the hepatitis C virus (HCV). Drug improvement and the use of laboratory experiments isn't always best high-priced, however also time-eating to behavior those experiments. instead, on this in silicon have a look at, we used computational strategies to recommend a particular antiviral drug for the protein domain names of discovered in the hepatitis C virus. This examines used homology modeling and abs initio modeling to generate the 3-D shape of the proteins, then figuring out pockets within the proteins. Proper lagans for pocket pills were advanced the usage of the de novo drug design method. Pocket geometry is taken into consideration while designing ligands. A few of the various lagans generated, a different for each of the HCV protein domains has been proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drug%20design" title="drug design">drug design</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-viral%20drug" title=" anti-viral drug"> anti-viral drug</a>, <a href="https://publications.waset.org/abstracts/search?q=in-silicon%20drug%20design" title=" in-silicon drug design"> in-silicon drug design</a>, <a href="https://publications.waset.org/abstracts/search?q=Hepatitis%20C%20virus%20%28HCV%29%20%20CAD%20%28Computer%20Aided%20Design%29" title=" Hepatitis C virus (HCV) CAD (Computer Aided Design)"> Hepatitis C virus (HCV) CAD (Computer Aided Design)</a>, <a href="https://publications.waset.org/abstracts/search?q=CAD%20education" title=" CAD education"> CAD education</a>, <a href="https://publications.waset.org/abstracts/search?q=education%20improvement" title=" education improvement"> education improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=small-size%20contractor%20automatic%20pharmacy" title=" small-size contractor automatic pharmacy"> small-size contractor automatic pharmacy</a>, <a href="https://publications.waset.org/abstracts/search?q=PLC" title=" PLC"> PLC</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20system" title=" control system"> control system</a>, <a href="https://publications.waset.org/abstracts/search?q=management%20system" title=" management system"> management system</a>, <a href="https://publications.waset.org/abstracts/search?q=communication." title=" communication."> communication.</a> </p> <a href="https://publications.waset.org/abstracts/189433/the-importance-of-clinical-pharmacy-and-computer-aided-drug-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">27</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14250</span> An Alternative Nano Design Strategy by Neutralized AMPS and Soy Bean Lecithin to Form Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Esra%20Cansever%20Mutlu">Esra Cansever Mutlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Muge%20Sennaroglu%20Bostan"> Muge Sennaroglu Bostan</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Bahadori"> Fatemeh Bahadori</a>, <a href="https://publications.waset.org/abstracts/search?q=Ebru%20Toksoy%20Oner"> Ebru Toksoy Oner</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20S.%20Eroglu"> Mehmet S. Eroglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Paclitaxel is used in treatment of different cancer types mainly breast, ovarian, lung and Kaposi’s sarcoma. It is poorly soluble in water; therefore, currently used formulations tremendously show side-effects and high toxicity. Encapsulation of the drug in a nano drug carrier which causes both reducing side effects and increasing drug activity is a desired new approach for the nano-medicine to target the site of cancer. In this study, synthesis of a novel nano paclitaxel formulation made of a new amphiphilic monomer was followed by the investigation of its pharmacological properties. UV radical polymerization was carried out by using the monomer Lecithin-2-Acrylamido-2-methylpropane (L-AMPS) and the drug-spacer, to obtain sterically high stabilized, biocompatible and biodegradable phospholipid nanoparticles, in which the drug paclitaxel (Pxl) was encapsulated (NanoPxl). Particles showed high drug loading capacity (68%) and also hydrodynamic size less than 200 nm with slight negative surface charge. The drug release profile was obtained and in vitro cytotoxicity test was performed on MCF-7 cell line. Consequently, these data indicated that paclitaxel loaded Lecithin-AMPS/PCL-MAC nanoparticles can be considered as a new, safe and effective nanocarrier for the treatment of breast cancer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=paclitaxel" title="paclitaxel">paclitaxel</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticle" title=" nanoparticle"> nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20delivery" title=" drug delivery"> drug delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=L-AMPS" title=" L-AMPS"> L-AMPS</a> </p> <a href="https://publications.waset.org/abstracts/68815/an-alternative-nano-design-strategy-by-neutralized-amps-and-soy-bean-lecithin-to-form-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68815.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14249</span> Role of Social Support in Drug Cessation among Male Addicts in the West of Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farzad%20Jalilian">Farzad Jalilian</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Mirzaei%20Alavijeh"> Mehdi Mirzaei Alavijeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Fazel%20Zinat%20Motlagh"> Fazel Zinat Motlagh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Social support is an important benchmark of health for people in avoidance conditions. The main goal of this study was to determine the three kinds of social support (family, friend and other significant) to drug cessation among male addicts, in Kermanshah, the west of Iran. This cross-sectional study was conducted among 132 addicts, randomly selected to participate voluntarily in the study. Data were collected from conduct interviews based on standard questionnaire and analyzed by using SPSS-18 at 95% significance level. The majority of addicts were young (Mean: 30.4 years), and with little education. Opium (36.4%), Crack (21.2%), and Methamphetamine (12.9%) were the predominant drugs. Inabilities to reject the offer and having addict friends are the most often reasons for drug usage. Almost, 18.9% reported history of drug injection. 43.2% of the participants already did drug cessation at least once. Logistic regression showed the family support (OR = 1.110), age (OR = 1.106) and drug use initiation age (OR = 0.918) was predicting drug cessation. Our result showed; family support is a more important effect among types of social support in drug cessation. It seems that providing educational program to addict’s families for more support of patients at drug cessation can be beneficial. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drug%20cessation" title="drug cessation">drug cessation</a>, <a href="https://publications.waset.org/abstracts/search?q=family%20support" title=" family support"> family support</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20use" title=" drug use"> drug use</a>, <a href="https://publications.waset.org/abstracts/search?q=initiation%20age" title=" initiation age"> initiation age</a> </p> <a href="https://publications.waset.org/abstracts/33735/role-of-social-support-in-drug-cessation-among-male-addicts-in-the-west-of-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33735.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">550</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14248</span> Functionalized Nanoparticles for Drug Delivery Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Temesgen%20Geremew">Temesgen Geremew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Functionalized nanoparticles have emerged as a revolutionary platform for drug delivery, offering significant advantages over traditional methods. By strategically modifying their surface properties, these nanoparticles can be designed to target specific tissues and cells, significantly reducing off-target effects and enhancing therapeutic efficacy. This targeted approach allows for lower drug doses, minimizing systemic exposure and potential side effects. Additionally, functionalization enables controlled release of the encapsulated drug, improving drug stability and reducing the frequency of administration, leading to improved patient compliance. This work explores the immense potential of functionalized nanoparticles in revolutionizing drug delivery, addressing limitations associated with conventional therapies and paving the way for personalized medicine with precise and targeted treatment strategies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title="nanoparticles">nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=drug" title=" drug"> drug</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title=" nanomaterials"> nanomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=applications" title=" applications"> applications</a> </p> <a href="https://publications.waset.org/abstracts/183288/functionalized-nanoparticles-for-drug-delivery-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183288.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14247</span> Pharmaceutical Science and Development in Drug Research</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adegoke%20Yinka%20Adebayo">Adegoke Yinka Adebayo </a> </p> <p class="card-text"><strong>Abstract:</strong></p> An understanding of the critical product attributes that impact on in vivo performance is key to the production of safe and effective medicines. Thus, a key driver for our research is the development of new basic science and technology underpinning the development of new pharmaceutical products. Research includes the structure and properties of drugs and excipients, biopharmaceutical characterisation, pharmaceutical processing and technology and formulation and analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drug%20discovery" title="drug discovery">drug discovery</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20development" title=" drug development"> drug development</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20delivery" title=" drug delivery "> drug delivery </a> </p> <a href="https://publications.waset.org/abstracts/19017/pharmaceutical-science-and-development-in-drug-research" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19017.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">494</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14246</span> Modulated Bioavailability of an Anti HIV Drug through a Self-Nanoemulsifying Drug Delivery System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sunit%20Kumar%20Sahoo">Sunit Kumar Sahoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Prakash%20Chandra%20Senapati"> Prakash Chandra Senapati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main drawback to design drug delivery systems with BCS class II drugs is their low bioavailabilty due to their inherent low permeability characteristics. So the present investigation aspire to develop a self-nanoemulsifying drug delivery system (SNEDDS) of BCS class II anti HIV drug efavirenz (EFZ) using mixtures of non-ionic surfactant mixtures with the main objective to improve the oral bioavailability of said drug. Results obtained from solubility studies of EFZ in various expients utilized for construction of the pseudo ternary phase diagram containing surfactant mixtures. Surfactants in 1:1 combination are used with different co-surfactants in different ratio to delineate the area of monophasic region of the pseudo ternary phase diagram. The formulations which offered positive results in different thermodynamic stability studies were considered for percentage transmittance and turbidity analysis. The various characterization studies like the TEM analysis of post diluted SNEDDS formulations r confirmed the size in nanometric range (below 50 nm) and FT-IR studies confirmed the intactness of the drug the in the preconcentrate. The in vitro dissolution profile of SNEDDS showed that 80% drug was released within 30 min in case of optimized SNEDDS while it was approximately 18.3 % in the case of plain drug powder.. The Pharmacokinetic study using rat model revealed a 2.63 fold increase in AUC (0-∞) in comparison to plain EFZ suspension. The designed delivery system illustrated the confidence in creating a formulation of EFZ with enhanced bioavailability for better HIV treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=efavirenz" title="efavirenz">efavirenz</a>, <a href="https://publications.waset.org/abstracts/search?q=self-nanoemulsifying" title=" self-nanoemulsifying"> self-nanoemulsifying</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactant%20mixture" title=" surfactant mixture"> surfactant mixture</a>, <a href="https://publications.waset.org/abstracts/search?q=bioavailability" title=" bioavailability"> bioavailability</a> </p> <a href="https://publications.waset.org/abstracts/39271/modulated-bioavailability-of-an-anti-hiv-drug-through-a-self-nanoemulsifying-drug-delivery-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39271.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14245</span> Floating Oral in Situ Gelling System of Anticancer Drug</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Umme%20Hani">Umme Hani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Rahmatulla"> Mohammed Rahmatulla</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Ghazwani"> Mohammed Ghazwani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Alqahtani"> Ali Alqahtani</a>, <a href="https://publications.waset.org/abstracts/search?q=Yahya%20Alhamhoom"> Yahya Alhamhoom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and introduction: Neratinib is a potent anticancer drug used for the treatment of breast cancer. It is poorly soluble at higher pH, which tends to minimize the therapeutic effects in the lower gastrointestinal tract (GIT) leading to poor bioavailability. An attempt has been made to prepare and develop a gastro-retentive system of Neratinib to improve the drug bioavailability in the GIT by enhancing the gastric retention time. Materials and methods: In the present study a three-factor at two-level (23) factorial design based optimization was used to inspect the effects of three independent variables (factors) such as sodium alginate (A), sodium bicarbonate (B) and sodium citrate (C) on the dependent variables like in vitro gelation, in vitro floating, water uptake and percentage drug release. Results: All the formulations showed pH in the range 6.7 ±0.25 to 7.4 ±0.24, percentage drug content was observed to be 96.3±0.27 to 99.5 ±0.28%, in vitro gelation observed as gelation immediate remains for an extended period. Percentage of water uptake was in the range between 9.01±0.15 to 31.01±0.25%, floating lag time was estimated form 7±0.39 to 57±0.36 sec. F4 and F5 showed floating even after 12hrs. All formulations showed a release of around 90% drug release within 12hr. It was observed that the selected independent variables affect the dependent variables. Conclusion: The developed system may be a promising and alternative approach to augment gastric retention of drugs and enhances the therapeutic efficacy of the drug. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neratinib" title="neratinib">neratinib</a>, <a href="https://publications.waset.org/abstracts/search?q=2%C2%B3%20factorial%20design" title=" 2³ factorial design"> 2³ factorial design</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20alginate" title=" sodium alginate"> sodium alginate</a>, <a href="https://publications.waset.org/abstracts/search?q=floating" title=" floating"> floating</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20situ%20gelling%20system" title=" in situ gelling system"> in situ gelling system</a> </p> <a href="https://publications.waset.org/abstracts/116325/floating-oral-in-situ-gelling-system-of-anticancer-drug" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116325.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14244</span> Spatial Relationship of Drug Smuggling Based on Geographic Information System Knowledge Discovery Using Decision Tree Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Niamkaeo">S. Niamkaeo</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Robert"> O. Robert</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Chaowalit"> O. Chaowalit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this investigation, we focus on discovering spatial relationship of drug smuggling along the northern border of Thailand. Thailand is no longer a drug production site, but Thailand is still one of the major drug trafficking hubs due to its topographic characteristics facilitating drug smuggling from neighboring countries. Our study areas cover three districts (Mae-jan, Mae-fahluang, and Mae-sai) in Chiangrai city and four districts (Chiangdao, Mae-eye, Chaiprakarn, and Wienghang) in Chiangmai city where drug smuggling of methamphetamine crystal and amphetamine occurs mostly. The data on drug smuggling incidents from 2011 to 2017 was collected from several national and local published news. Geo-spatial drug smuggling database was prepared. Decision tree algorithm was applied in order to discover the spatial relationship of factors related to drug smuggling, which was converted into rules using rule-based system. The factors including land use type, smuggling route, season and distance within 500 meters from check points were found that they were related to drug smuggling in terms of rules-based relationship. It was illustrated that drug smuggling was occurred mostly in forest area in winter. Drug smuggling exhibited was discovered mainly along topographic road where check points were not reachable. This spatial relationship of drug smuggling could support the Thai Office of Narcotics Control Board in surveillance drug smuggling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decision%20tree" title="decision tree">decision tree</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20smuggling" title=" drug smuggling"> drug smuggling</a>, <a href="https://publications.waset.org/abstracts/search?q=Geographic%20Information%20System" title=" Geographic Information System"> Geographic Information System</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS%20knowledge%20discovery" title=" GIS knowledge discovery"> GIS knowledge discovery</a>, <a href="https://publications.waset.org/abstracts/search?q=rule-based%20system" title=" rule-based system"> rule-based system</a> </p> <a href="https://publications.waset.org/abstracts/99772/spatial-relationship-of-drug-smuggling-based-on-geographic-information-system-knowledge-discovery-using-decision-tree-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14243</span> Computer Based Identification of Possible Molecular Targets for Induction of Drug Resistance Reversion in Multidrug Resistant Mycobacterium Tuberculosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oleg%20Reva">Oleg Reva</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilya%20Korotetskiy"> Ilya Korotetskiy</a>, <a href="https://publications.waset.org/abstracts/search?q=Marina%20Lankina"> Marina Lankina</a>, <a href="https://publications.waset.org/abstracts/search?q=Murat%20Kulmanov"> Murat Kulmanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksandr%20Ilin"> Aleksandr Ilin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Molecular docking approaches are widely used for design of new antibiotics and modeling of antibacterial activities of numerous ligands which bind specifically to active centers of indispensable enzymes and/or key signaling proteins of pathogens. Widespread drug resistance among pathogenic microorganisms calls for development of new antibiotics specifically targeting important metabolic and information pathways. A generally recognized problem is that almost all molecular targets have been identified already and it is getting more and more difficult to design innovative antibacterial compounds to combat the drug resistance. A promising way to overcome the drug resistance problem is an induction of reversion of drug resistance by supplementary medicines to improve the efficacy of the conventional antibiotics. In contrast to well established computer-based drug design, modeling of drug resistance reversion still is in its infancy. In this work, we proposed an approach to identification of compensatory genetic variants reducing the fitness cost associated with the acquisition of drug resistance by pathogenic bacteria. The approach was based on an analysis of the population genetic of Mycobacterium tuberculosis and on results of experimental modeling of the drug resistance reversion induced by a new anti-tuberculosis drug FS-1. The latter drug is an iodine-containing nanomolecular complex that passed clinical trials and was admitted as a new medicine against MDR-TB in Kazakhstan. Isolates of M. tuberculosis obtained on different stages of the clinical trials and also from laboratory animals infected with MDR-TB strain were characterized by antibiotic resistance, and their genomes were sequenced by the paired-end Illumina HiSeq 2000 technology. A steady increase in sensitivity to conventional anti-tuberculosis antibiotics in series of isolated treated with FS-1 was registered despite the fact that the canonical drug resistance mutations identified in the genomes of these isolates remained intact. It was hypothesized that the drug resistance phenotype in M. tuberculosis requires an adjustment of activities of many genes to compensate the fitness cost of the drug resistance mutations. FS-1 cased an aggravation of the fitness cost and removal of the drug-resistant variants of M. tuberculosis from the population. This process caused a significant increase in genetic heterogeneity of the Mtb population that was not observed in the positive and negative controls (infected laboratory animals left untreated and treated solely with the antibiotics). A large-scale search for linkage disequilibrium associations between the drug resistance mutations and genetic variants in other genomic loci allowed identification of target proteins, which could be influenced by supplementary drugs to increase the fitness cost of the drug resistance and deprive the drug-resistant bacterial variants of their competitiveness in the population. The approach will be used to improve the efficacy of FS-1 and also for computer-based design of new drugs to combat drug-resistant infections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complete%20genome%20sequencing" title="complete genome sequencing">complete genome sequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20modeling" title=" computational modeling"> computational modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20resistance%20reversion" title=" drug resistance reversion"> drug resistance reversion</a>, <a href="https://publications.waset.org/abstracts/search?q=Mycobacterium%20tuberculosis" title=" Mycobacterium tuberculosis"> Mycobacterium tuberculosis</a> </p> <a href="https://publications.waset.org/abstracts/62242/computer-based-identification-of-possible-molecular-targets-for-induction-of-drug-resistance-reversion-in-multidrug-resistant-mycobacterium-tuberculosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62242.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14242</span> Functionalized DOX Nanocapsules by Iron Oxide Nanoparticles for Targeted Drug Delivery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Afsaneh%20Ghorbanzadeh">Afsaneh Ghorbanzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Afshin%20Farahbakhsh"> Afshin Farahbakhsh</a>, <a href="https://publications.waset.org/abstracts/search?q=Zakieh%20Bayat"> Zakieh Bayat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The drug capsulation was used for release and targeted delivery in determined time, place and temperature or pH. The DOX nanocapsules were used to reduce and to minimize the unwanted side effects of drug. In this paper, the encapsulation methods of doxorubicin (DOX) and the labeling it by the magnetic core of iron (Fe3O4) has been studied. The Fe3O4 was conjugated with DOX via hydrazine bond. The solution was capsuled by the sensitive polymer of heat or pH such as chitosan-g-poly (N-isopropylacrylamide-co-N,N-dimethylacrylamide), dextran-g-poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide) and mPEG-G2.5 PAMAM by hydrazine bond. The drug release was very slow at temperatures lower than 380°C. There was a rapid and controlled drug release at temperatures higher than 380°C. According to experiments, the use mPEG-G2.5PAMAM is the best method of DOX nanocapsules synthesis, because in this method, the drug delivery time to certain place is lower than other methods and the percentage of released drug is higher. The synthesized magnetic carrier system has potential applications in magnetic drug-targeting delivery and magnetic resonance imaging. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drug%20carrier" title="drug carrier">drug carrier</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20release" title=" drug release"> drug release</a>, <a href="https://publications.waset.org/abstracts/search?q=doxorubicin" title=" doxorubicin"> doxorubicin</a>, <a href="https://publications.waset.org/abstracts/search?q=iron%20oxide%20NPs" title=" iron oxide NPs"> iron oxide NPs</a> </p> <a href="https://publications.waset.org/abstracts/9068/functionalized-dox-nanocapsules-by-iron-oxide-nanoparticles-for-targeted-drug-delivery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14241</span> Development of the Drug Abuse Health Information System in Thai Community</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Waraporn%20Boonchieng">Waraporn Boonchieng</a>, <a href="https://publications.waset.org/abstracts/search?q=Ekkarat%20Boonchieng"> Ekkarat Boonchieng</a>, <a href="https://publications.waset.org/abstracts/search?q=Sivaporn%20Aungwattana"> Sivaporn Aungwattana</a>, <a href="https://publications.waset.org/abstracts/search?q=Decha%20Tamdee"> Decha Tamdee</a>, <a href="https://publications.waset.org/abstracts/search?q=Wongamporn%20Pinyavong"> Wongamporn Pinyavong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drug addiction represents one of the most important public health issues in both developed and developing countries. The purpose of this study was to develop a drug abuse health information in a community in Northern Thailand using developmental research design. The developmental researchers performed four phases to develop drug abuse health information, including 1) synthesizing knowledge related to drug abuse prevention and identifying the components of drug abuse health information; 2) developing the system in mobile application and website; 3) implementing drug abuse health information in the rural community; and 4) evaluating the feasibility of drug abuse health information. Data collection involved both qualitative and quantitative procedures. The qualitative data and quantitative data were analyzed using content analysis and descriptive statistics, respectively. The findings of this study showed that drug abuse health information consisted of five sections, including drug-related prevention knowledge for teens, drug-related knowledge for adults and professionals, the database for drug dependence treatment centers, self-administered questionnaires, and supportive counseling sections. First, in drug-related prevention knowledge for teens, the developmental researchers designed four infographics and animation to provide drug-related prevention knowledge, including types of illegal drugs, causes of drug abuse, consequences of drug abuse, drug abuse diagnosis and treatment, and drug abuse prevention. Second, in drug-related knowledge for adults and professionals, the developmental researchers developed many documents in a form of PDF file to provide drug-related knowledge, including types of illegal drugs, causes of drug abuse, drug abuse prevention, and relapse prevention guideline. Third, database for drug dependence treatment centers included the place, direction map, operation time, and the way for contacting all drug dependence treatment centers in Thailand. Fourth, self-administered questionnaires comprised preventive drugs behavior questionnaire, drug abuse knowledge questionnaire, the stages of change readiness and treatment eagerness to drug use scale, substance use behaviors questionnaire, tobacco use behaviors questionnaire, stress screening, and depression screening. Finally, for supportive counseling, the developmental researchers designed chatting box through which each user could write and send their concerns to counselors individually. Results from evaluation process showed that 651 participants used drug abuse health information via mobile application and website. Among all users, 48.8% were males and 51.2% were females. More than half (55.3%) were 15-20 years old and most of them (88.0%) were Buddhists. Most users reported ever getting knowledge related to drugs (86.1%), and drinking alcohol (94.2%) while some of them (6.9%) reported ever using tobacco. For satisfaction with using the drug abuse health information, more than half of users reflected that the contents of drug abuse health information were interesting (59%), up-to date (61%), and highly useful to their self-study (59%) at high level. In addition, half of them were satisfied with the design in terms of infographics (54%) and animation (51%). Thus, this drug abuse health information can be adopted to explore drug abuse situation and serves as a tool to prevent drug abuse and addiction among Thai community people. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drug%20addiction" title="drug addiction">drug addiction</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20informatics" title=" health informatics"> health informatics</a>, <a href="https://publications.waset.org/abstracts/search?q=big%20data" title=" big data"> big data</a>, <a href="https://publications.waset.org/abstracts/search?q=development%20research" title=" development research"> development research</a> </p> <a href="https://publications.waset.org/abstracts/107305/development-of-the-drug-abuse-health-information-system-in-thai-community" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107305.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14240</span> In silico Subtractive Genomics Approach for Identification of Strain-Specific Putative Drug Targets among Hypothetical Proteins of Drug-Resistant Klebsiella pneumoniae Strain 825795-1</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Umairah%20Natasya%20Binti%20Mohd%20Omeershffudin">Umairah Natasya Binti Mohd Omeershffudin</a>, <a href="https://publications.waset.org/abstracts/search?q=Suresh%20Kumar"> Suresh Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Klebsiella pneumoniae, a Gram-negative enteric bacterium that causes nosocomial and urinary tract infections. Particular concern is the global emergence of multidrug-resistant (MDR) strains of Klebsiella pneumoniae. Characterization of antibiotic resistance determinants at the genomic level plays a critical role in understanding, and potentially controlling, the spread of multidrug-resistant (MDR) pathogens. In this study, drug-resistant Klebsiella pneumoniae strain 825795-1 was investigated with extensive computational approaches aimed at identifying novel drug targets among hypothetical proteins. We have analyzed 1099 hypothetical proteins available in genome. We have used in-silico genome subtraction methodology to design potential and pathogen-specific drug targets against Klebsiella pneumoniae. We employed bioinformatics tools to subtract the strain-specific paralogous and host-specific homologous sequences from the bacterial proteome. The sorted 645 proteins were further refined to identify the essential genes in the pathogenic bacterium using the database of essential genes (DEG). We found 135 unique essential proteins in the target proteome that could be utilized as novel targets to design newer drugs. Further, we identified 49 cytoplasmic protein as potential drug targets through sub-cellular localization prediction. Further, we investigated these proteins in the DrugBank databases, and 11 of the unique essential proteins showed druggability according to the FDA approved drug bank databases with diverse broad-spectrum property. The results of this study will facilitate discovery of new drugs against Klebsiella pneumoniae. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pneumonia" title="pneumonia">pneumonia</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20target" title=" drug target"> drug target</a>, <a href="https://publications.waset.org/abstracts/search?q=hypothetical%20protein" title=" hypothetical protein"> hypothetical protein</a>, <a href="https://publications.waset.org/abstracts/search?q=subtractive%20genomics" title=" subtractive genomics"> subtractive genomics</a> </p> <a href="https://publications.waset.org/abstracts/82108/in-silico-subtractive-genomics-approach-for-identification-of-strain-specific-putative-drug-targets-among-hypothetical-proteins-of-drug-resistant-klebsiella-pneumoniae-strain-825795-1" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82108.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14239</span> Prevalence of Drug Injection among Male Prisoners in the West of Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farzad%20Jalilian">Farzad Jalilian</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Mirzaei%20Alavijeh"> Mehdi Mirzaei Alavijeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Substance addiction is one of the major worldwide problems that destroys economy, familial relationships, and the abuser’s career and has several side effects; in the meantime drug injection due to the possibility of shared use of syringes among drug users could have multiple complications to be followed. The purpose of this study was to determine the prevalence of drug injection among male prisoners in Kermanshah city, the west of Iran. Methods: In this cross-sectional study 615 male prisoners were randomly selected to participate voluntarily in the study. Participants filled out a writing self-report questionnaire. Data were analyzed by the SPSS software (ver. 21.0) at 95% significant level. Results: The mean age of respondents was 31.13 years [SD: 7.76]. Mean initiation age for drug use was 14.36 years (range, 9-34 years). Almost, 39.4 % reported a history of drug use before prison. Opium (33.2%) and crystal (27.1%) was the most used drug among prisoners. Furthermore, 9.3 % had a history of injection addiction. There was a significant correlation between age, crime type, marital status, economic status, unprotected sex and drug injection (P < 0.05). Conclusion: The low age of drug abuse and the prevalence of drug injection among offenders can be as a warning for responsible; in this regard, implementation of prevention programs to risky behavior and harm reduction among high-risk groups can follow useful results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=substance%20abuse" title="substance abuse">substance abuse</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20injection" title=" drug injection"> drug injection</a>, <a href="https://publications.waset.org/abstracts/search?q=prison" title=" prison"> prison</a>, <a href="https://publications.waset.org/abstracts/search?q=Iran" title=" Iran"> Iran</a> </p> <a href="https://publications.waset.org/abstracts/33740/prevalence-of-drug-injection-among-male-prisoners-in-the-west-of-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33740.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">485</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14238</span> Optimization of Lercanidipine Nanocrystals Using Design of Experiments Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dolly%20Gadhiya">Dolly Gadhiya</a>, <a href="https://publications.waset.org/abstracts/search?q=Jayvadan%20Patel"> Jayvadan Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Mihir%20%20Raval"> Mihir Raval</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lercanidipine hydrochloride is a calcium channel blockers used for treating angina pectoris and hypertension. Lercanidipine is a BCS Class II drug having poor aqueous solubility. Absolute bioavailability of Lercanidipine is very low and the main reason ascribed for this is poor aqueous solubility of the drug. Design and formulatation of nanocrystals by media milling method was main focus of this study. In this present study preliminary optimization was carried out with one factor at a time (OFAT) approach. For this different parameters like size of milling beads, amount of zirconium beads, types of stabilizer, concentrations of stabilizer, concentrations of drug, stirring speeds and milling time were optimized on the basis of particle size, polydispersity index and zeta potential. From the OFAT model different levels for above parameters selected for Plackett - Burman Design (PBD). Plackett-Burman design having 13 runs involving 6 independent variables was carried out at higher and lower level. Based on statistical analysis of PBD it was found that concentration of stabilizer, concentration of drug and stirring speed have significant impact on particle size, PDI, zeta potential value and saturation solubility. These experimental designs for preparation of nanocrystals were applied successfully which shows increase in aqueous solubility and dissolution rate of Lercanidipine hydrochloride. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lercanidipine%20hydrochloride" title="Lercanidipine hydrochloride">Lercanidipine hydrochloride</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocrystals" title=" nanocrystals"> nanocrystals</a>, <a href="https://publications.waset.org/abstracts/search?q=OFAT" title=" OFAT"> OFAT</a>, <a href="https://publications.waset.org/abstracts/search?q=Plackett%20Burman" title=" Plackett Burman"> Plackett Burman</a> </p> <a href="https://publications.waset.org/abstracts/81642/optimization-of-lercanidipine-nanocrystals-using-design-of-experiments-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81642.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14237</span> Modeling Optimal Lipophilicity and Drug Performance in Ligand-Receptor Interactions: A Machine Learning Approach to Drug Discovery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jay%20Ananth">Jay Ananth</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The drug discovery process currently requires numerous years of clinical testing as well as money just for a single drug to earn FDA approval. For drugs that even make it this far in the process, there is a very slim chance of receiving FDA approval, resulting in detrimental hurdles to drug accessibility. To minimize these inefficiencies, numerous studies have implemented computational methods, although few computational investigations have focused on a crucial feature of drugs: lipophilicity. Lipophilicity is a physical attribute of a compound that measures its solubility in lipids and is a determinant of drug efficacy. This project leverages Artificial Intelligence to predict the impact of a drug’s lipophilicity on its performance by accounting for factors such as binding affinity and toxicity. The model predicted lipophilicity and binding affinity in the validation set with very high R² scores of 0.921 and 0.788, respectively, while also being applicable to a variety of target receptors. The results expressed a strong positive correlation between lipophilicity and both binding affinity and toxicity. The model helps in both drug development and discovery, providing every pharmaceutical company with recommended lipophilicity levels for drug candidates as well as a rapid assessment of early-stage drugs prior to any testing, eliminating significant amounts of time and resources currently restricting drug accessibility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drug%20discovery" title="drug discovery">drug discovery</a>, <a href="https://publications.waset.org/abstracts/search?q=lipophilicity" title=" lipophilicity"> lipophilicity</a>, <a href="https://publications.waset.org/abstracts/search?q=ligand-receptor%20interactions" title=" ligand-receptor interactions"> ligand-receptor interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20development" title=" drug development"> drug development</a> </p> <a href="https://publications.waset.org/abstracts/163127/modeling-optimal-lipophilicity-and-drug-performance-in-ligand-receptor-interactions-a-machine-learning-approach-to-drug-discovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163127.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14236</span> A Diagnostic Challenge of Drug Resistant Childhood Tuberculosis in Developing World</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Warda%20Fatima">Warda Fatima</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasnain%20Javed"> Hasnain Javed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The emerging trend of Drug resistance in childhood Tuberculosis is increasing worldwide and now becoming a priority challenge for National TB Control Programs of the world. Childhood TB accounts for 10-15% of total TB burden across the globe and same proportion is quantified in case of drug resistant TB. One third population suffering from MDR TB dies annually because of non-diagnosis and unavailability of appropriate treatment. However, true Childhood MDR TB cannot be estimated due to non-confirmation. Diagnosis of Pediatric TB by sputum Smear Microscopy and Culture inoculation are limited due to paucibacillary nature and difficulties in obtaining adequate sputum specimens. Diagnosis becomes more difficult when it comes to HIV infected child. New molecular advancements for early case detection of TB and MDR TB in adults have not been endorsed in children. Multi centered trials are needed to design better diagnostic approaches and efficient and safer treatments for DR TB in high burden countries. The aim of the present study is to sketch out the current situation of the childhood Drug resistant TB especially in the developing world and to highlight the classic and novel methods that are to be implemented in high-burden resource-limited locations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drug%20resistant%20TB" title="drug resistant TB">drug resistant TB</a>, <a href="https://publications.waset.org/abstracts/search?q=childhood" title=" childhood"> childhood</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnosis" title=" diagnosis"> diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=novel%20methods" title=" novel methods"> novel methods</a> </p> <a href="https://publications.waset.org/abstracts/18875/a-diagnostic-challenge-of-drug-resistant-childhood-tuberculosis-in-developing-world" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18875.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=in-silicon%20drug%20design&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=in-silicon%20drug%20design&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=in-silicon%20drug%20design&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=in-silicon%20drug%20design&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=in-silicon%20drug%20design&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=in-silicon%20drug%20design&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=in-silicon%20drug%20design&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=in-silicon%20drug%20design&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=in-silicon%20drug%20design&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=in-silicon%20drug%20design&page=475">475</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=in-silicon%20drug%20design&page=476">476</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=in-silicon%20drug%20design&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>