CINXE.COM
Adam Sillito | University College London - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Adam Sillito | University College London - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="uUJvN4b-TjfuiVzTBzx_v6e1LreRNpL73GGy5JAQxrHYVyRVQPMadIilcsnSLrU12y_tZ5k_0PczHjTFQK4iaQ" /> <link rel="stylesheet" href="//a.academia-assets.com/assets/wow-3d36c19b4875b226bfed0fcba1dcea3f2fe61148383d97c0465c016b8c969290.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/social/home-79e78ce59bef0a338eb6540ec3d93b4a7952115b56c57f1760943128f4544d42.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/single_work_page/figure_carousel-2004283e0948681916eefa74772df54f56cb5c7413d82b160212231c2f474bb3.css" media="all" /><script type="application/ld+json">{"@context":"https://schema.org","@type":"ProfilePage","mainEntity":{"@context":"https://schema.org","@type":"Person","name":"Adam Sillito","url":"https://ucl.academia.edu/AdamSillito","sameAs":[]},"dateCreated":"2016-02-29T05:31:19-08:00","dateModified":"2022-10-24T02:23:20-07:00","name":"Adam Sillito","description":"","sameAs":[],"relatedLink":"https://www.academia.edu/74670959/Figure_ground_modulation_in_awake_primate_thalamus"}</script><link rel="stylesheet" href="//a.academia-assets.com/assets/design_system/heading-95367dc03b794f6737f30123738a886cf53b7a65cdef98a922a98591d60063e3.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/design_system/button-8c9ae4b5c8a2531640c354d92a1f3579c8ff103277ef74913e34c8a76d4e6c00.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/design_system/body-170d1319f0e354621e81ca17054bb147da2856ec0702fe440a99af314a6338c5.css" media="all" /><style type="text/css">@media(max-width: 567px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 32px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 30px;--type-sans-serif-lg-line-height: 36px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 30px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 24px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 24px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 18px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 32px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 20px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 32px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 40px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 24px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 26px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 48px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 52px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 48px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 58px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 80px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 64px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}@media(min-width: 568px)and (max-width: 1279px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 42px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 32px;--type-sans-serif-lg-line-height: 36px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 34px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 28px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 25px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 20px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 30px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 24px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 40px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 48px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 28px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 32px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 58px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 68px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 74px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 82px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 104px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 80px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}@media(min-width: 1280px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 42px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 32px;--type-sans-serif-lg-line-height: 38px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 34px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 28px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 25px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 20px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 30px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 24px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 40px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 48px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 28px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 32px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 58px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 68px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 74px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 82px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 152px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 80px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}</style><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" href="//a.academia-assets.com/assets/design_system/common-57f9da13cef3fd4e2a8b655342c6488eded3e557e823fe67571f2ac77acd7b6f.css" media="all" /> <meta name="author" content="adam sillito" /> <meta name="description" content="Adam Sillito, University College London: 9 Followers, 5 Following, 78 Research papers. Research interests: Acoustic Modelling, Psychoacoustics, and Orientation." /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = 'a33dd03fda41f0b5b438df17216e0059ca70a01a'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":13886,"monthly_visitors":"31 million","monthly_visitor_count":31300000,"monthly_visitor_count_in_millions":31,"user_count":286806844,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1744371498000); window.Aedu.timeDifference = new Date().getTime() - 1744371498000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link rel="preload" href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" as="style" onload="this.rel='stylesheet'"> <link rel="stylesheet" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" media="all" /> <link rel="stylesheet" href="//a.academia-assets.com/assets/academia-e4a11c75ccedf64d34f117b334c28ebf40fe75db593398069c5640435b4cda98.css" media="all" /> <link rel="stylesheet" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" media="all" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-7d36841b83a7f1e8e8bee77199e3df42524ded8fb4aae118d9fbe6bb45fb6052.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-a5a92a7d7fd5e806e498818586e171b196d11c9bb64c0c2ba9e0ae84d2893cd5.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://ucl.academia.edu/AdamSillito" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-9a991241089b57e32c409c3e5327dede3260c603666b91cc4a66cd30d56c6b95.js" defer="defer"></script><script>$viewedUser = Aedu.User.set_viewed( {"id":44148669,"first_name":"Adam","middle_initials":null,"last_name":"Sillito","page_name":"AdamSillito","domain_name":"ucl","created_at":"2016-02-29T05:31:19.603-08:00","display_name":"Adam Sillito","url":"https://ucl.academia.edu/AdamSillito","photo":"/images/s65_no_pic.png","has_photo":false,"department":{"id":10814,"name":"Institute of Ophthalmology","url":"https://ucl.academia.edu/Departments/Institute_of_Ophthalmology/Documents","university":{"id":111,"name":"University College London","url":"https://ucl.academia.edu/"}},"position":"Emeritus","position_id":6,"is_analytics_public":false,"interests":[{"id":2140,"name":"Acoustic Modelling","url":"https://www.academia.edu/Documents/in/Acoustic_Modelling"},{"id":4158,"name":"Psychoacoustics","url":"https://www.academia.edu/Documents/in/Psychoacoustics"},{"id":93037,"name":"Orientation","url":"https://www.academia.edu/Documents/in/Orientation"},{"id":131237,"name":"Cluster Analysis","url":"https://www.academia.edu/Documents/in/Cluster_Analysis"},{"id":4139,"name":"Audiology","url":"https://www.academia.edu/Documents/in/Audiology"},{"id":627,"name":"Ophthalmology","url":"https://www.academia.edu/Documents/in/Ophthalmology"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://ucl.academia.edu/AdamSillito","location":"/AdamSillito","scheme":"https","host":"ucl.academia.edu","port":null,"pathname":"/AdamSillito","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-0770ce56-0c0b-4713-af22-52869bafde81"></div> <div id="ProfileCheckPaperUpdate-react-component-0770ce56-0c0b-4713-af22-52869bafde81"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Adam Sillito</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://ucl.academia.edu/">University College London</a>, <a class="u-tcGrayDarker" href="https://ucl.academia.edu/Departments/Institute_of_Ophthalmology/Documents">Institute of Ophthalmology</a>, <span class="u-tcGrayDarker">Emeritus</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Adam" data-follow-user-id="44148669" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="44148669"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">9</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">5</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">4</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="suggested-academics-container"><div class="suggested-academics--header"><h3 class="ds2-5-heading-sans-serif-xs">Related Authors</h3></div><ul class="suggested-user-card-list" data-nosnippet="true"><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://hud.academia.edu/RupertTill"><img class="profile-avatar u-positionAbsolute" alt="Rupert Till related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/1858/3811062/4460200/s200_rupert.till.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://hud.academia.edu/RupertTill">Rupert Till</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Huddersfield</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://westernsydney.academia.edu/JohnCass"><img class="profile-avatar u-positionAbsolute" alt="John Cass related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/53890/16137/44775109/s200_john.cass.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://westernsydney.academia.edu/JohnCass">John Cass</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Western Sydney University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://ucl.academia.edu/JulieTDaniels"><img class="profile-avatar u-positionAbsolute" alt="Julie T Daniels related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/176868/528375/661591/s200_julie.t_daniels.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://ucl.academia.edu/JulieTDaniels">Julie T Daniels</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University College London</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://ucl.academia.edu/GaryRubin"><img class="profile-avatar u-positionAbsolute" alt="Gary Rubin related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/237321/155868/181443/s200_gary.rubin.jpeg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://ucl.academia.edu/GaryRubin">Gary Rubin</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University College London</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://tc.academia.edu/JaclynOcumpaugh"><img class="profile-avatar u-positionAbsolute" alt="Jaclyn L Ocumpaugh related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/257812/8044512/9008986/s200_jaclyn.ocumpaugh.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://tc.academia.edu/JaclynOcumpaugh">Jaclyn L Ocumpaugh</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Teachers College, Columbia University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://plymouth.academia.edu/PaulArtes"><img class="profile-avatar u-positionAbsolute" alt="Paul H Artes related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/319349/93070/103041/s200_paul.artes.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://plymouth.academia.edu/PaulArtes">Paul H Artes</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Plymouth University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://sbu-tr.academia.edu/MehmetAkifKILIC"><img class="profile-avatar u-positionAbsolute" alt="Mehmet Akif KILIC related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/322769/352844/77230725/s200_mehmet_akif.kilic.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://sbu-tr.academia.edu/MehmetAkifKILIC">Mehmet Akif KILIC</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Sağlık Bilimleri Üniversitesi</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://durham.academia.edu/TuomasEerola"><img class="profile-avatar u-positionAbsolute" alt="Tuomas Eerola related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/350094/94499/48540499/s200_tuomas.eerola.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://durham.academia.edu/TuomasEerola">Tuomas Eerola</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Durham University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://cuni.academia.edu/AnezkaKuzmicova"><img class="profile-avatar u-positionAbsolute" alt="Anezka Kuzmicova related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/1889073/639906/27852162/s200_anezka.kuzmicova.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://cuni.academia.edu/AnezkaKuzmicova">Anezka Kuzmicova</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Charles University, Prague</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://ufpe.academia.edu/DalsonFigueiredoFilho"><img class="profile-avatar u-positionAbsolute" alt="Dalson Figueiredo related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/1979619/656094/12172769/s200_dalson.figueiredo.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://ufpe.academia.edu/DalsonFigueiredoFilho">Dalson Figueiredo</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Universidade Federal de Pernambuco</p></div></div></ul></div><style type="text/css">.suggested-academics--header h3{font-size:16px;font-weight:500;line-height:20px}</style><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="44148669" href="https://www.academia.edu/Documents/in/Ophthalmology"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://ucl.academia.edu/AdamSillito","location":"/AdamSillito","scheme":"https","host":"ucl.academia.edu","port":null,"pathname":"/AdamSillito","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Ophthalmology"]}" data-trace="false" data-dom-id="Pill-react-component-f09d9be1-3c8c-4f7d-b69e-91087b6c4d73"></div> <div id="Pill-react-component-f09d9be1-3c8c-4f7d-b69e-91087b6c4d73"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Adam Sillito</h3></div><div class="js-work-strip profile--work_container" data-work-id="74670959"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/74670959/Figure_ground_modulation_in_awake_primate_thalamus"><img alt="Research paper thumbnail of Figure-ground modulation in awake primate thalamus" class="work-thumbnail" src="https://attachments.academia-assets.com/83593913/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/74670959/Figure_ground_modulation_in_awake_primate_thalamus">Figure-ground modulation in awake primate thalamus</a></div><div class="wp-workCard_item"><span>Proceedings of the National Academy of Sciences of the United States of America</span><span>, Jan 21, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Figure-ground discrimination refers to the perception of an object, the figure, against a nondesc...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Figure-ground discrimination refers to the perception of an object, the figure, against a nondescript background. Neural mechanisms of figure-ground detection have been associated with feedback interactions between higher centers and primary visual cortex and have been held to index the effect of global analysis on local feature encoding. Here, in recordings from visual thalamus of alert primates, we demonstrate a robust enhancement of neuronal firing when the figure, as opposed to the ground, component of a motion-defined figure-ground stimulus is located over the receptive field. In this paradigm, visual stimulation of the receptive field and its near environs is identical across both conditions, suggesting the response enhancement reflects higher integrative mechanisms. It thus appears that cortical activity generating the higher-order percept of the figure is simultaneously reentered into the lowest level that is anatomically possible (the thalamus), so that the signature of the...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ccbbbb7ee70ff87fafc0a50e71ad312d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":83593913,"asset_id":74670959,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/83593913/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="74670959"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="74670959"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 74670959; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=74670959]").text(description); $(".js-view-count[data-work-id=74670959]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 74670959; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='74670959']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ccbbbb7ee70ff87fafc0a50e71ad312d" } } $('.js-work-strip[data-work-id=74670959]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":74670959,"title":"Figure-ground modulation in awake primate thalamus","translated_title":"","metadata":{"abstract":"Figure-ground discrimination refers to the perception of an object, the figure, against a nondescript background. Neural mechanisms of figure-ground detection have been associated with feedback interactions between higher centers and primary visual cortex and have been held to index the effect of global analysis on local feature encoding. Here, in recordings from visual thalamus of alert primates, we demonstrate a robust enhancement of neuronal firing when the figure, as opposed to the ground, component of a motion-defined figure-ground stimulus is located over the receptive field. In this paradigm, visual stimulation of the receptive field and its near environs is identical across both conditions, suggesting the response enhancement reflects higher integrative mechanisms. It thus appears that cortical activity generating the higher-order percept of the figure is simultaneously reentered into the lowest level that is anatomically possible (the thalamus), so that the signature of the...","publication_date":{"day":21,"month":1,"year":2015,"errors":{}},"publication_name":"Proceedings of the National Academy of Sciences of the United States of America"},"translated_abstract":"Figure-ground discrimination refers to the perception of an object, the figure, against a nondescript background. Neural mechanisms of figure-ground detection have been associated with feedback interactions between higher centers and primary visual cortex and have been held to index the effect of global analysis on local feature encoding. Here, in recordings from visual thalamus of alert primates, we demonstrate a robust enhancement of neuronal firing when the figure, as opposed to the ground, component of a motion-defined figure-ground stimulus is located over the receptive field. In this paradigm, visual stimulation of the receptive field and its near environs is identical across both conditions, suggesting the response enhancement reflects higher integrative mechanisms. It thus appears that cortical activity generating the higher-order percept of the figure is simultaneously reentered into the lowest level that is anatomically possible (the thalamus), so that the signature of the...","internal_url":"https://www.academia.edu/74670959/Figure_ground_modulation_in_awake_primate_thalamus","translated_internal_url":"","created_at":"2022-03-27T00:55:46.749-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":44148669,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":83593913,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83593913/thumbnails/1.jpg","file_name":"a46793267dda8f2bf1291738bd038e932ade.pdf","download_url":"https://www.academia.edu/attachments/83593913/download_file","bulk_download_file_name":"Figure_ground_modulation_in_awake_primat.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83593913/a46793267dda8f2bf1291738bd038e932ade-libre.pdf?1649525221=\u0026response-content-disposition=attachment%3B+filename%3DFigure_ground_modulation_in_awake_primat.pdf\u0026Expires=1744375097\u0026Signature=J5bBfMQG3TGhyArD7A2bPn1T9fI7aSYsTaQo3jgnBoHcNnTScVHzPMwxGV6DhUAwRsPoY3ohgFe8PBctvukfyAEaG4mHQCkB1~ywHDlvCoOfDDkA64nE1-s~p7Kbzg-Dqy60YLr9hfr~WkKhOrQvuGGGhysiwR3pQsDRG6oOSmqlICXWH6HRFTsRqcSkuMBzshwMCe0F-L~2ca2DtbMPRI7XGUjC3dmsC8V~QLFw-cXPP7cJhCTg5dScW2OJZ~XRwIvIAFRcYZb7yXlMy4VbfuIhCzn8zqkyPLe1xXGVXtt8OdI-y27QU3WVRiRd8E2hd2neLFJ~Nbakk0xjJUBwZg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Figure_ground_modulation_in_awake_primate_thalamus","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"Figure-ground discrimination refers to the perception of an object, the figure, against a nondescript background. Neural mechanisms of figure-ground detection have been associated with feedback interactions between higher centers and primary visual cortex and have been held to index the effect of global analysis on local feature encoding. Here, in recordings from visual thalamus of alert primates, we demonstrate a robust enhancement of neuronal firing when the figure, as opposed to the ground, component of a motion-defined figure-ground stimulus is located over the receptive field. In this paradigm, visual stimulation of the receptive field and its near environs is identical across both conditions, suggesting the response enhancement reflects higher integrative mechanisms. It thus appears that cortical activity generating the higher-order percept of the figure is simultaneously reentered into the lowest level that is anatomically possible (the thalamus), so that the signature of the...","impression_tracking_id":null,"owner":{"id":44148669,"first_name":"Adam","middle_initials":null,"last_name":"Sillito","page_name":"AdamSillito","domain_name":"ucl","created_at":"2016-02-29T05:31:19.603-08:00","display_name":"Adam Sillito","url":"https://ucl.academia.edu/AdamSillito"},"attachments":[{"id":83593913,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83593913/thumbnails/1.jpg","file_name":"a46793267dda8f2bf1291738bd038e932ade.pdf","download_url":"https://www.academia.edu/attachments/83593913/download_file","bulk_download_file_name":"Figure_ground_modulation_in_awake_primat.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83593913/a46793267dda8f2bf1291738bd038e932ade-libre.pdf?1649525221=\u0026response-content-disposition=attachment%3B+filename%3DFigure_ground_modulation_in_awake_primat.pdf\u0026Expires=1744375097\u0026Signature=J5bBfMQG3TGhyArD7A2bPn1T9fI7aSYsTaQo3jgnBoHcNnTScVHzPMwxGV6DhUAwRsPoY3ohgFe8PBctvukfyAEaG4mHQCkB1~ywHDlvCoOfDDkA64nE1-s~p7Kbzg-Dqy60YLr9hfr~WkKhOrQvuGGGhysiwR3pQsDRG6oOSmqlICXWH6HRFTsRqcSkuMBzshwMCe0F-L~2ca2DtbMPRI7XGUjC3dmsC8V~QLFw-cXPP7cJhCTg5dScW2OJZ~XRwIvIAFRcYZb7yXlMy4VbfuIhCzn8zqkyPLe1xXGVXtt8OdI-y27QU3WVRiRd8E2hd2neLFJ~Nbakk0xjJUBwZg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":5359,"name":"Visual perception","url":"https://www.academia.edu/Documents/in/Visual_perception"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":66228,"name":"Thalamus","url":"https://www.academia.edu/Documents/in/Thalamus"},{"id":573267,"name":"Macaca Mulatta","url":"https://www.academia.edu/Documents/in/Macaca_Mulatta"},{"id":2849038,"name":"photic stimulation","url":"https://www.academia.edu/Documents/in/photic_stimulation"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-74670959-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="51845333"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/51845333/Apparent_enhancement_of_inhibitory_processes_influencing_visual_cortical_cells_at_high_resting_discharge_levels"><img alt="Research paper thumbnail of Apparent enhancement of inhibitory processes influencing visual cortical cells at high resting discharge levels" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Apparent enhancement of inhibitory processes influencing visual cortical cells at high resting discharge levels</div><div class="wp-workCard_item"><span>Neurosci Lett</span><span>, 1976</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="51845333"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="51845333"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 51845333; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=51845333]").text(description); $(".js-view-count[data-work-id=51845333]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 51845333; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='51845333']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=51845333]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":51845333,"title":"Apparent enhancement of inhibitory processes influencing visual cortical cells at high resting discharge levels","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1976,"errors":{}},"publication_name":"Neurosci Lett"},"translated_abstract":null,"internal_url":"https://www.academia.edu/51845333/Apparent_enhancement_of_inhibitory_processes_influencing_visual_cortical_cells_at_high_resting_discharge_levels","translated_internal_url":"","created_at":"2021-09-11T06:19:23.801-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":44148669,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Apparent_enhancement_of_inhibitory_processes_influencing_visual_cortical_cells_at_high_resting_discharge_levels","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":44148669,"first_name":"Adam","middle_initials":null,"last_name":"Sillito","page_name":"AdamSillito","domain_name":"ucl","created_at":"2016-02-29T05:31:19.603-08:00","display_name":"Adam Sillito","url":"https://ucl.academia.edu/AdamSillito"},"attachments":[],"research_interests":[{"id":221,"name":"Psychology","url":"https://www.academia.edu/Documents/in/Psychology"},{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-51845333-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="48594754"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/48594754/Monocular_deprivation_and_the_input_to_the_visual_cortex"><img alt="Research paper thumbnail of Monocular deprivation and the input to the visual cortex" class="work-thumbnail" src="https://attachments.academia-assets.com/67125544/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/48594754/Monocular_deprivation_and_the_input_to_the_visual_cortex">Monocular deprivation and the input to the visual cortex</a></div><div class="wp-workCard_item"><span>Nature</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0d07e9631ffd85c56cf84a748fbce554" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":67125544,"asset_id":48594754,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/67125544/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="48594754"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="48594754"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 48594754; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=48594754]").text(description); $(".js-view-count[data-work-id=48594754]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 48594754; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='48594754']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0d07e9631ffd85c56cf84a748fbce554" } } $('.js-work-strip[data-work-id=48594754]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":48594754,"title":"Monocular deprivation and the input to the visual cortex","translated_title":"","metadata":{"publisher":"Springer Nature","publication_name":"Nature"},"translated_abstract":null,"internal_url":"https://www.academia.edu/48594754/Monocular_deprivation_and_the_input_to_the_visual_cortex","translated_internal_url":"","created_at":"2021-05-05T00:06:18.406-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":44148669,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":67125544,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/67125544/thumbnails/1.jpg","file_name":"260482a020210505-17702-10msoah.pdf","download_url":"https://www.academia.edu/attachments/67125544/download_file","bulk_download_file_name":"Monocular_deprivation_and_the_input_to_t.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/67125544/260482a020210505-17702-10msoah-libre.pdf?1620337201=\u0026response-content-disposition=attachment%3B+filename%3DMonocular_deprivation_and_the_input_to_t.pdf\u0026Expires=1744375097\u0026Signature=ZnCe~g9u6mICzinSv1DPOWalxYhzgERtkMpIXKO1dZnFZVm6vgEJRbDDRMnq2qRzCqLvMIvhEG-bAJ8N1yVwbVW4ccfpNi6Acg3Esf2n~nmdL6GZPtiJsRs6TkoI7CdTPDouGCHGqAyyVTf94gPIkDQzOmTXueeMlk6N4JUbGZqeAj0wDdpC4hNGRgzMbmbAWdAzlpDGJo8sbB-PXJxXsB7vfZhdd0~Z-oN2Xkl3wnzoPE4Z6P468U~OxhuqDBhiwxca7-cNnZ0nThWV44gfmeHL16kyxpu8fVTFcwZiOHrw66-rKSIfZYI95cPpbik5B4BD8a7wUNq2G7QjyUfJDA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Monocular_deprivation_and_the_input_to_the_visual_cortex","translated_slug":"","page_count":1,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":44148669,"first_name":"Adam","middle_initials":null,"last_name":"Sillito","page_name":"AdamSillito","domain_name":"ucl","created_at":"2016-02-29T05:31:19.603-08:00","display_name":"Adam Sillito","url":"https://ucl.academia.edu/AdamSillito"},"attachments":[{"id":67125544,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/67125544/thumbnails/1.jpg","file_name":"260482a020210505-17702-10msoah.pdf","download_url":"https://www.academia.edu/attachments/67125544/download_file","bulk_download_file_name":"Monocular_deprivation_and_the_input_to_t.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/67125544/260482a020210505-17702-10msoah-libre.pdf?1620337201=\u0026response-content-disposition=attachment%3B+filename%3DMonocular_deprivation_and_the_input_to_t.pdf\u0026Expires=1744375097\u0026Signature=ZnCe~g9u6mICzinSv1DPOWalxYhzgERtkMpIXKO1dZnFZVm6vgEJRbDDRMnq2qRzCqLvMIvhEG-bAJ8N1yVwbVW4ccfpNi6Acg3Esf2n~nmdL6GZPtiJsRs6TkoI7CdTPDouGCHGqAyyVTf94gPIkDQzOmTXueeMlk6N4JUbGZqeAj0wDdpC4hNGRgzMbmbAWdAzlpDGJo8sbB-PXJxXsB7vfZhdd0~Z-oN2Xkl3wnzoPE4Z6P468U~OxhuqDBhiwxca7-cNnZ0nThWV44gfmeHL16kyxpu8fVTFcwZiOHrw66-rKSIfZYI95cPpbik5B4BD8a7wUNq2G7QjyUfJDA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":33319,"name":"Nature","url":"https://www.academia.edu/Documents/in/Nature"},{"id":3473325,"name":"Monocular deprivation","url":"https://www.academia.edu/Documents/in/Monocular_deprivation"}],"urls":[{"id":10108649,"url":"http://www.nature.com/articles/Art260482a0"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-48594754-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="48594751"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/48594751/Focal_Gain_Control_of_Thalamic_Visual_Receptive_Fields_by_Layer_6_Corticothalamic_Feedback"><img alt="Research paper thumbnail of Focal Gain Control of Thalamic Visual Receptive Fields by Layer 6 Corticothalamic Feedback" class="work-thumbnail" src="https://attachments.academia-assets.com/67125517/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/48594751/Focal_Gain_Control_of_Thalamic_Visual_Receptive_Fields_by_Layer_6_Corticothalamic_Feedback">Focal Gain Control of Thalamic Visual Receptive Fields by Layer 6 Corticothalamic Feedback</a></div><div class="wp-workCard_item"><span>Cerebral cortex (New York, N.Y. : 1991)</span><span>, Jan 17, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The projections between the thalamus and primary visual cortex (V1) are a key reciprocal neural c...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The projections between the thalamus and primary visual cortex (V1) are a key reciprocal neural circuit, relaying retinal signals to cortical layers 4 & 6 while being simultaneously regulated by massive layer 6 corticothalamic feedback. Effectively dissecting the influence of this corticothalamic feedback circuit in higher mammals remains a challenge for vision research. By pharmacologically increasing the focal gain of visually driven layer 6 responses of cat V1 in a controlled fashion, we examined the effects of such focal cortical changes on the response amplitudes and spatial structure of the receptive fields (RFs) of individual dorsal lateral geniculate nucleus (dLGN) cells. We found that enhancing visually driven cortical feedback could facilitate or suppress the overall responses of dLGN cells, and such an effect was linked to the orientation preference of the cortical neuron. Related to these selective retinotopic gain changes, enhanced feedback induced the RFs of dLGN cells...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2dfd1c4239d71736ab60094e6ea729ac" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":67125517,"asset_id":48594751,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/67125517/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="48594751"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="48594751"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 48594751; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=48594751]").text(description); $(".js-view-count[data-work-id=48594751]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 48594751; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='48594751']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2dfd1c4239d71736ab60094e6ea729ac" } } $('.js-work-strip[data-work-id=48594751]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":48594751,"title":"Focal Gain Control of Thalamic Visual Receptive Fields by Layer 6 Corticothalamic Feedback","translated_title":"","metadata":{"abstract":"The projections between the thalamus and primary visual cortex (V1) are a key reciprocal neural circuit, relaying retinal signals to cortical layers 4 \u0026 6 while being simultaneously regulated by massive layer 6 corticothalamic feedback. Effectively dissecting the influence of this corticothalamic feedback circuit in higher mammals remains a challenge for vision research. By pharmacologically increasing the focal gain of visually driven layer 6 responses of cat V1 in a controlled fashion, we examined the effects of such focal cortical changes on the response amplitudes and spatial structure of the receptive fields (RFs) of individual dorsal lateral geniculate nucleus (dLGN) cells. We found that enhancing visually driven cortical feedback could facilitate or suppress the overall responses of dLGN cells, and such an effect was linked to the orientation preference of the cortical neuron. Related to these selective retinotopic gain changes, enhanced feedback induced the RFs of dLGN cells...","publication_date":{"day":17,"month":1,"year":2016,"errors":{}},"publication_name":"Cerebral cortex (New York, N.Y. : 1991)"},"translated_abstract":"The projections between the thalamus and primary visual cortex (V1) are a key reciprocal neural circuit, relaying retinal signals to cortical layers 4 \u0026 6 while being simultaneously regulated by massive layer 6 corticothalamic feedback. Effectively dissecting the influence of this corticothalamic feedback circuit in higher mammals remains a challenge for vision research. By pharmacologically increasing the focal gain of visually driven layer 6 responses of cat V1 in a controlled fashion, we examined the effects of such focal cortical changes on the response amplitudes and spatial structure of the receptive fields (RFs) of individual dorsal lateral geniculate nucleus (dLGN) cells. We found that enhancing visually driven cortical feedback could facilitate or suppress the overall responses of dLGN cells, and such an effect was linked to the orientation preference of the cortical neuron. Related to these selective retinotopic gain changes, enhanced feedback induced the RFs of dLGN cells...","internal_url":"https://www.academia.edu/48594751/Focal_Gain_Control_of_Thalamic_Visual_Receptive_Fields_by_Layer_6_Corticothalamic_Feedback","translated_internal_url":"","created_at":"2021-05-05T00:06:18.284-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":44148669,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":67125517,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/67125517/thumbnails/1.jpg","file_name":"bhw376.pdf","download_url":"https://www.academia.edu/attachments/67125517/download_file","bulk_download_file_name":"Focal_Gain_Control_of_Thalamic_Visual_Re.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/67125517/bhw376-libre.pdf?1620337209=\u0026response-content-disposition=attachment%3B+filename%3DFocal_Gain_Control_of_Thalamic_Visual_Re.pdf\u0026Expires=1744375098\u0026Signature=O1RMnkkTD9CR-2JsJzVnkjOfRK7ChkpTDf56WUkX4UEk3KImue4TnEBuHma685tqAqT5jI-vBGTRXSYT9BhnxNGyaYmrD-MpgX4zCZwHVfZEeVKulWrNIxaPzEwHivi5q6ZAusZ3HbOzQjhE5-2wp1Y6qumvAIfFRtbG-5XDq4zssWRwOycF3lVCE0DvWZMqw8DlrkWJ9vIlKXa5jGDSWIzfJjlRqE5Tb0S-J6~fEbJ2xRnVLqt7YJuwlUTpjpWu7PpvWP2uHdElaQqGhA8ExtoKWYfn4zKRI9erV8yv9embNSW-nMHyrmPgClBxIFZMPbimTSaIM68SY8SPH02PMg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Focal_Gain_Control_of_Thalamic_Visual_Receptive_Fields_by_Layer_6_Corticothalamic_Feedback","translated_slug":"","page_count":14,"language":"en","content_type":"Work","summary":"The projections between the thalamus and primary visual cortex (V1) are a key reciprocal neural circuit, relaying retinal signals to cortical layers 4 \u0026 6 while being simultaneously regulated by massive layer 6 corticothalamic feedback. Effectively dissecting the influence of this corticothalamic feedback circuit in higher mammals remains a challenge for vision research. By pharmacologically increasing the focal gain of visually driven layer 6 responses of cat V1 in a controlled fashion, we examined the effects of such focal cortical changes on the response amplitudes and spatial structure of the receptive fields (RFs) of individual dorsal lateral geniculate nucleus (dLGN) cells. We found that enhancing visually driven cortical feedback could facilitate or suppress the overall responses of dLGN cells, and such an effect was linked to the orientation preference of the cortical neuron. Related to these selective retinotopic gain changes, enhanced feedback induced the RFs of dLGN cells...","impression_tracking_id":null,"owner":{"id":44148669,"first_name":"Adam","middle_initials":null,"last_name":"Sillito","page_name":"AdamSillito","domain_name":"ucl","created_at":"2016-02-29T05:31:19.603-08:00","display_name":"Adam Sillito","url":"https://ucl.academia.edu/AdamSillito"},"attachments":[{"id":67125517,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/67125517/thumbnails/1.jpg","file_name":"bhw376.pdf","download_url":"https://www.academia.edu/attachments/67125517/download_file","bulk_download_file_name":"Focal_Gain_Control_of_Thalamic_Visual_Re.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/67125517/bhw376-libre.pdf?1620337209=\u0026response-content-disposition=attachment%3B+filename%3DFocal_Gain_Control_of_Thalamic_Visual_Re.pdf\u0026Expires=1744375098\u0026Signature=O1RMnkkTD9CR-2JsJzVnkjOfRK7ChkpTDf56WUkX4UEk3KImue4TnEBuHma685tqAqT5jI-vBGTRXSYT9BhnxNGyaYmrD-MpgX4zCZwHVfZEeVKulWrNIxaPzEwHivi5q6ZAusZ3HbOzQjhE5-2wp1Y6qumvAIfFRtbG-5XDq4zssWRwOycF3lVCE0DvWZMqw8DlrkWJ9vIlKXa5jGDSWIzfJjlRqE5Tb0S-J6~fEbJ2xRnVLqt7YJuwlUTpjpWu7PpvWP2uHdElaQqGhA8ExtoKWYfn4zKRI9erV8yv9embNSW-nMHyrmPgClBxIFZMPbimTSaIM68SY8SPH02PMg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science"},{"id":78467,"name":"Cerebral Cortex","url":"https://www.academia.edu/Documents/in/Cerebral_Cortex"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-48594751-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="48594749"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/48594749/GABA_mediated_inhibitory_processes_in_the_function_of_the_geniculo_striate_system"><img alt="Research paper thumbnail of GABA mediated inhibitory processes in the function of the geniculo-striate system" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">GABA mediated inhibitory processes in the function of the geniculo-striate system</div><div class="wp-workCard_item"><span>Progress in Brain Research</span><span>, Feb 1, 1992</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="48594749"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="48594749"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 48594749; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=48594749]").text(description); $(".js-view-count[data-work-id=48594749]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 48594749; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='48594749']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=48594749]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":48594749,"title":"GABA mediated inhibitory processes in the function of the geniculo-striate system","translated_title":"","metadata":{"publication_date":{"day":1,"month":2,"year":1992,"errors":{}},"publication_name":"Progress in Brain Research"},"translated_abstract":null,"internal_url":"https://www.academia.edu/48594749/GABA_mediated_inhibitory_processes_in_the_function_of_the_geniculo_striate_system","translated_internal_url":"","created_at":"2021-05-05T00:06:18.159-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":44148669,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"GABA_mediated_inhibitory_processes_in_the_function_of_the_geniculo_striate_system","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":44148669,"first_name":"Adam","middle_initials":null,"last_name":"Sillito","page_name":"AdamSillito","domain_name":"ucl","created_at":"2016-02-29T05:31:19.603-08:00","display_name":"Adam Sillito","url":"https://ucl.academia.edu/AdamSillito"},"attachments":[],"research_interests":[{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science"},{"id":49962,"name":"Visual Cortex","url":"https://www.academia.edu/Documents/in/Visual_Cortex"},{"id":418263,"name":"SYNAPSES","url":"https://www.academia.edu/Documents/in/SYNAPSES"},{"id":704401,"name":"Neural pathways","url":"https://www.academia.edu/Documents/in/Neural_pathways"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"},{"id":1619808,"name":"Gamma-Aminobutyric Acid","url":"https://www.academia.edu/Documents/in/Gamma-Aminobutyric_Acid"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-48594749-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="48594747"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/48594747/Neurotransmitters_in_the_Retina_and_the_Visual_Centres_Biomedical_Research_Vol_3_Suppl_December_1982_edited_by_A_Kaneko_N_Tsukahara_and_K_Uchizono_Biomedical_Research_Foundation_of_Japan_1982_Distributed_outside_Japan_by_Maruzen_Company_Tokyo_45_00_4_30_sea_mail_postage_and_hand_"><img alt="Research paper thumbnail of Neurotransmitters in the Retina and the Visual Centres (Biomedical Research Vol. 3, Suppl. December 1982)edited by A. Kaneko, N. Tsukahara and K. Uchizono, Biomedical Research Foundation of Japan, 1982. (Distributed outside Japan by Maruzen Company, Tokyo.) $45.00 ($4.30 sea mail postage and hand..." class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Neurotransmitters in the Retina and the Visual Centres (Biomedical Research Vol. 3, Suppl. December 1982)edited by A. Kaneko, N. Tsukahara and K. Uchizono, Biomedical Research Foundation of Japan, 1982. (Distributed outside Japan by Maruzen Company, Tokyo.) $45.00 ($4.30 sea mail postage and hand...</div><div class="wp-workCard_item"><span>Trends Neurosci</span><span>, 1983</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="48594747"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="48594747"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 48594747; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=48594747]").text(description); $(".js-view-count[data-work-id=48594747]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 48594747; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='48594747']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=48594747]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":48594747,"title":"Neurotransmitters in the Retina and the Visual Centres (Biomedical Research Vol. 3, Suppl. December 1982)edited by A. Kaneko, N. Tsukahara and K. Uchizono, Biomedical Research Foundation of Japan, 1982. (Distributed outside Japan by Maruzen Company, Tokyo.) $45.00 ($4.30 sea mail postage and hand...","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1983,"errors":{}},"publication_name":"Trends Neurosci"},"translated_abstract":null,"internal_url":"https://www.academia.edu/48594747/Neurotransmitters_in_the_Retina_and_the_Visual_Centres_Biomedical_Research_Vol_3_Suppl_December_1982_edited_by_A_Kaneko_N_Tsukahara_and_K_Uchizono_Biomedical_Research_Foundation_of_Japan_1982_Distributed_outside_Japan_by_Maruzen_Company_Tokyo_45_00_4_30_sea_mail_postage_and_hand_","translated_internal_url":"","created_at":"2021-05-05T00:06:18.065-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":44148669,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Neurotransmitters_in_the_Retina_and_the_Visual_Centres_Biomedical_Research_Vol_3_Suppl_December_1982_edited_by_A_Kaneko_N_Tsukahara_and_K_Uchizono_Biomedical_Research_Foundation_of_Japan_1982_Distributed_outside_Japan_by_Maruzen_Company_Tokyo_45_00_4_30_sea_mail_postage_and_hand_","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":44148669,"first_name":"Adam","middle_initials":null,"last_name":"Sillito","page_name":"AdamSillito","domain_name":"ucl","created_at":"2016-02-29T05:31:19.603-08:00","display_name":"Adam Sillito","url":"https://ucl.academia.edu/AdamSillito"},"attachments":[],"research_interests":[{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-48594747-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="48594743"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/48594743/Contest_Dependent_Interactions_and_Visual_Processing_in_V1"><img alt="Research paper thumbnail of Contest-Dependent Interactions and Visual Processing in V1" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Contest-Dependent Interactions and Visual Processing in V1</div><div class="wp-workCard_item"><span>Journal of Physiology</span><span>, 1996</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="48594743"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="48594743"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 48594743; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=48594743]").text(description); $(".js-view-count[data-work-id=48594743]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 48594743; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='48594743']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=48594743]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":48594743,"title":"Contest-Dependent Interactions and Visual Processing in V1","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1996,"errors":{}},"publication_name":"Journal of Physiology"},"translated_abstract":null,"internal_url":"https://www.academia.edu/48594743/Contest_Dependent_Interactions_and_Visual_Processing_in_V1","translated_internal_url":"","created_at":"2021-05-05T00:06:17.905-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":44148669,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Contest_Dependent_Interactions_and_Visual_Processing_in_V1","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":44148669,"first_name":"Adam","middle_initials":null,"last_name":"Sillito","page_name":"AdamSillito","domain_name":"ucl","created_at":"2016-02-29T05:31:19.603-08:00","display_name":"Adam Sillito","url":"https://ucl.academia.edu/AdamSillito"},"attachments":[],"research_interests":[{"id":167,"name":"Physiology","url":"https://www.academia.edu/Documents/in/Physiology"}],"urls":[{"id":10108647,"url":"http://cat.inist.fr/?aModele=afficheN\u0026cpsidt=10711187"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-48594743-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="48594739"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/48594739/Spatial_Characteristics_and_Laminar_Organisation_of_Feedback_Effects_From_MT_to_V1"><img alt="Research paper thumbnail of Spatial Characteristics and Laminar Organisation of Feedback Effects From MT to V1" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Spatial Characteristics and Laminar Organisation of Feedback Effects From MT to V1</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="48594739"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="48594739"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 48594739; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=48594739]").text(description); $(".js-view-count[data-work-id=48594739]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 48594739; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='48594739']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=48594739]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":48594739,"title":"Spatial Characteristics and Laminar Organisation of Feedback Effects From MT to V1","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2001,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/48594739/Spatial_Characteristics_and_Laminar_Organisation_of_Feedback_Effects_From_MT_to_V1","translated_internal_url":"","created_at":"2021-05-05T00:06:17.811-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":44148669,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Spatial_Characteristics_and_Laminar_Organisation_of_Feedback_Effects_From_MT_to_V1","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":44148669,"first_name":"Adam","middle_initials":null,"last_name":"Sillito","page_name":"AdamSillito","domain_name":"ucl","created_at":"2016-02-29T05:31:19.603-08:00","display_name":"Adam Sillito","url":"https://ucl.academia.edu/AdamSillito"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-48594739-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="48594736"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/48594736/Feedback_systems_in_Visual_Processing"><img alt="Research paper thumbnail of Feedback systems in Visual Processing" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Feedback systems in Visual Processing</div><div class="wp-workCard_item"><span>In Chalupa Lm and Werner Js the Visual Neurosciences Mit Press Cambridge Massachusetts</span><span>, 2003</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="48594736"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="48594736"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 48594736; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=48594736]").text(description); $(".js-view-count[data-work-id=48594736]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 48594736; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='48594736']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=48594736]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":48594736,"title":"Feedback systems in Visual Processing","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2003,"errors":{}},"publication_name":"In Chalupa Lm and Werner Js the Visual Neurosciences Mit Press Cambridge Massachusetts"},"translated_abstract":null,"internal_url":"https://www.academia.edu/48594736/Feedback_systems_in_Visual_Processing","translated_internal_url":"","created_at":"2021-05-05T00:06:17.667-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":44148669,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Feedback_systems_in_Visual_Processing","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":44148669,"first_name":"Adam","middle_initials":null,"last_name":"Sillito","page_name":"AdamSillito","domain_name":"ucl","created_at":"2016-02-29T05:31:19.603-08:00","display_name":"Adam Sillito","url":"https://ucl.academia.edu/AdamSillito"},"attachments":[],"research_interests":[{"id":161,"name":"Neuroscience","url":"https://www.academia.edu/Documents/in/Neuroscience"},{"id":107320,"name":"System","url":"https://www.academia.edu/Documents/in/System"},{"id":137633,"name":"Feedback","url":"https://www.academia.edu/Documents/in/Feedback"},{"id":151357,"name":"Visual","url":"https://www.academia.edu/Documents/in/Visual"},{"id":160102,"name":"Systems","url":"https://www.academia.edu/Documents/in/Systems"}],"urls":[{"id":10108645,"url":"http://discovery.ucl.ac.uk/55028/"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-48594736-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="48594732"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/48594732/Neural_communication_and_control_Advances_in_physiological_sciences_vol_30_Edited_by_Gy_Szekely_E_Labos_and_S_Damjanovich_Pp_340_Pergamon_Press_Oxford_and_Akadem_ai_Kaid_Budapest_1981_E15_50_35_00_"><img alt="Research paper thumbnail of Neural communication and control. Advances in physiological sciences, vol. 30 Edited by Gy. Szekely, E. Labos and S. Damjanovich. Pp. 340. Pergamon Press, Oxford and Akadem�ai Kaid�, Budapest. 1981. E15.50 ($35.00)" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Neural communication and control. Advances in physiological sciences, vol. 30 Edited by Gy. Szekely, E. Labos and S. Damjanovich. Pp. 340. Pergamon Press, Oxford and Akadem�ai Kaid�, Budapest. 1981. E15.50 ($35.00)</div><div class="wp-workCard_item"><span>Endeavour</span><span>, 1982</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="48594732"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="48594732"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 48594732; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=48594732]").text(description); $(".js-view-count[data-work-id=48594732]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 48594732; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='48594732']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=48594732]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":48594732,"title":"Neural communication and control. Advances in physiological sciences, vol. 30 Edited by Gy. Szekely, E. Labos and S. Damjanovich. Pp. 340. Pergamon Press, Oxford and Akadem�ai Kaid�, Budapest. 1981. E15.50 ($35.00)","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1982,"errors":{}},"publication_name":"Endeavour"},"translated_abstract":null,"internal_url":"https://www.academia.edu/48594732/Neural_communication_and_control_Advances_in_physiological_sciences_vol_30_Edited_by_Gy_Szekely_E_Labos_and_S_Damjanovich_Pp_340_Pergamon_Press_Oxford_and_Akadem_ai_Kaid_Budapest_1981_E15_50_35_00_","translated_internal_url":"","created_at":"2021-05-05T00:06:17.557-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":44148669,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Neural_communication_and_control_Advances_in_physiological_sciences_vol_30_Edited_by_Gy_Szekely_E_Labos_and_S_Damjanovich_Pp_340_Pergamon_Press_Oxford_and_Akadem_ai_Kaid_Budapest_1981_E15_50_35_00_","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":44148669,"first_name":"Adam","middle_initials":null,"last_name":"Sillito","page_name":"AdamSillito","domain_name":"ucl","created_at":"2016-02-29T05:31:19.603-08:00","display_name":"Adam Sillito","url":"https://ucl.academia.edu/AdamSillito"},"attachments":[],"research_interests":[{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":455535,"name":"Endeavour","url":"https://www.academia.edu/Documents/in/Endeavour"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-48594732-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="48594726"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/48594726/The_contribution_of_the_non_N_methyl_D_aspartate_group_of_excitatory_amino_acid_receptors_to_retinogeniculate_transmission_in_the_cat"><img alt="Research paper thumbnail of The contribution of the non-N-methyl-D-aspartate group of excitatory amino acid receptors to retinogeniculate transmission in the cat" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">The contribution of the non-N-methyl-D-aspartate group of excitatory amino acid receptors to retinogeniculate transmission in the cat</div><div class="wp-workCard_item"><span>Neuroscience</span><span>, 1990</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The N-methyl-D-aspartate receptor antagonist 3-((+/-)-2-carboxypiperazin-4-yl)-propyl-1-phosphoni...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The N-methyl-D-aspartate receptor antagonist 3-((+/-)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid and the non-N-methyl-D-aspartate receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione have been iontophoretically applied to cells in the cat dorsal lateral geniculate nucleus and their effects on the visual response compared. The objective was to examine the possibility of both N-methyl-D-aspartate and non-N-methyl-D-aspartate receptors being involved in the transfer of the retinal input to X and Y cells in the dorsal lateral geniculate nucleus. The results show that selective blockade of either N-methyl-D-aspartate receptors or non-N-methyl-D-aspartate receptors can block the visual response of both X and Y cells. Overall, the most potent reductions of visual responses across the population of cells studied were obtained with the N-methyl-D-aspartate receptor antagonist with X cells showing a slightly greater reduction on average (80%) than Y cells (66%). The relatively smaller overall reductions in visual responses obtained with the non-N-methyl-D-aspartate receptor blockade reflected the lower levels of blockade that were compatible with selectivity using iontophoretic applications of 6-cyano-7-nitroquinoxaline-2,3-dione. It is concluded that N-methyl-D-aspartate and non-N-methyl-D-aspartate receptors are critically involved in the visual response of both &amp;quot;on&amp;quot; and &amp;quot;off&amp;quot; centre X and Y cells.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="48594726"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="48594726"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 48594726; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=48594726]").text(description); $(".js-view-count[data-work-id=48594726]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 48594726; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='48594726']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=48594726]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":48594726,"title":"The contribution of the non-N-methyl-D-aspartate group of excitatory amino acid receptors to retinogeniculate transmission in the cat","translated_title":"","metadata":{"abstract":"The N-methyl-D-aspartate receptor antagonist 3-((+/-)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid and the non-N-methyl-D-aspartate receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione have been iontophoretically applied to cells in the cat dorsal lateral geniculate nucleus and their effects on the visual response compared. The objective was to examine the possibility of both N-methyl-D-aspartate and non-N-methyl-D-aspartate receptors being involved in the transfer of the retinal input to X and Y cells in the dorsal lateral geniculate nucleus. The results show that selective blockade of either N-methyl-D-aspartate receptors or non-N-methyl-D-aspartate receptors can block the visual response of both X and Y cells. Overall, the most potent reductions of visual responses across the population of cells studied were obtained with the N-methyl-D-aspartate receptor antagonist with X cells showing a slightly greater reduction on average (80%) than Y cells (66%). The relatively smaller overall reductions in visual responses obtained with the non-N-methyl-D-aspartate receptor blockade reflected the lower levels of blockade that were compatible with selectivity using iontophoretic applications of 6-cyano-7-nitroquinoxaline-2,3-dione. It is concluded that N-methyl-D-aspartate and non-N-methyl-D-aspartate receptors are critically involved in the visual response of both \u0026amp;quot;on\u0026amp;quot; and \u0026amp;quot;off\u0026amp;quot; centre X and Y cells.","publication_date":{"day":null,"month":null,"year":1990,"errors":{}},"publication_name":"Neuroscience"},"translated_abstract":"The N-methyl-D-aspartate receptor antagonist 3-((+/-)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid and the non-N-methyl-D-aspartate receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione have been iontophoretically applied to cells in the cat dorsal lateral geniculate nucleus and their effects on the visual response compared. The objective was to examine the possibility of both N-methyl-D-aspartate and non-N-methyl-D-aspartate receptors being involved in the transfer of the retinal input to X and Y cells in the dorsal lateral geniculate nucleus. The results show that selective blockade of either N-methyl-D-aspartate receptors or non-N-methyl-D-aspartate receptors can block the visual response of both X and Y cells. Overall, the most potent reductions of visual responses across the population of cells studied were obtained with the N-methyl-D-aspartate receptor antagonist with X cells showing a slightly greater reduction on average (80%) than Y cells (66%). The relatively smaller overall reductions in visual responses obtained with the non-N-methyl-D-aspartate receptor blockade reflected the lower levels of blockade that were compatible with selectivity using iontophoretic applications of 6-cyano-7-nitroquinoxaline-2,3-dione. It is concluded that N-methyl-D-aspartate and non-N-methyl-D-aspartate receptors are critically involved in the visual response of both \u0026amp;quot;on\u0026amp;quot; and \u0026amp;quot;off\u0026amp;quot; centre X and Y cells.","internal_url":"https://www.academia.edu/48594726/The_contribution_of_the_non_N_methyl_D_aspartate_group_of_excitatory_amino_acid_receptors_to_retinogeniculate_transmission_in_the_cat","translated_internal_url":"","created_at":"2021-05-05T00:06:17.363-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":44148669,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_contribution_of_the_non_N_methyl_D_aspartate_group_of_excitatory_amino_acid_receptors_to_retinogeniculate_transmission_in_the_cat","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"The N-methyl-D-aspartate receptor antagonist 3-((+/-)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid and the non-N-methyl-D-aspartate receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione have been iontophoretically applied to cells in the cat dorsal lateral geniculate nucleus and their effects on the visual response compared. The objective was to examine the possibility of both N-methyl-D-aspartate and non-N-methyl-D-aspartate receptors being involved in the transfer of the retinal input to X and Y cells in the dorsal lateral geniculate nucleus. The results show that selective blockade of either N-methyl-D-aspartate receptors or non-N-methyl-D-aspartate receptors can block the visual response of both X and Y cells. Overall, the most potent reductions of visual responses across the population of cells studied were obtained with the N-methyl-D-aspartate receptor antagonist with X cells showing a slightly greater reduction on average (80%) than Y cells (66%). The relatively smaller overall reductions in visual responses obtained with the non-N-methyl-D-aspartate receptor blockade reflected the lower levels of blockade that were compatible with selectivity using iontophoretic applications of 6-cyano-7-nitroquinoxaline-2,3-dione. It is concluded that N-methyl-D-aspartate and non-N-methyl-D-aspartate receptors are critically involved in the visual response of both \u0026amp;quot;on\u0026amp;quot; and \u0026amp;quot;off\u0026amp;quot; centre X and Y cells.","impression_tracking_id":null,"owner":{"id":44148669,"first_name":"Adam","middle_initials":null,"last_name":"Sillito","page_name":"AdamSillito","domain_name":"ucl","created_at":"2016-02-29T05:31:19.603-08:00","display_name":"Adam Sillito","url":"https://ucl.academia.edu/AdamSillito"},"attachments":[],"research_interests":[{"id":161,"name":"Neuroscience","url":"https://www.academia.edu/Documents/in/Neuroscience"},{"id":221,"name":"Psychology","url":"https://www.academia.edu/Documents/in/Psychology"},{"id":2007,"name":"Electrophysiology","url":"https://www.academia.edu/Documents/in/Electrophysiology"},{"id":41088,"name":"Cats","url":"https://www.academia.edu/Documents/in/Cats"},{"id":117200,"name":"Retina","url":"https://www.academia.edu/Documents/in/Retina"},{"id":138538,"name":"CAT","url":"https://www.academia.edu/Documents/in/CAT"},{"id":513105,"name":"Retinal Ganglion Cells","url":"https://www.academia.edu/Documents/in/Retinal_Ganglion_Cells"},{"id":955727,"name":"Action Potentials","url":"https://www.academia.edu/Documents/in/Action_Potentials"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"},{"id":2012816,"name":"Glutamate Receptor","url":"https://www.academia.edu/Documents/in/Glutamate_Receptor"},{"id":2228752,"name":"Visual Pathway","url":"https://www.academia.edu/Documents/in/Visual_Pathway"},{"id":2555845,"name":"NMDA receptor","url":"https://www.academia.edu/Documents/in/NMDA_receptor"}],"urls":[{"id":10108641,"url":"http://cat.inist.fr/?aModele=afficheN\u0026cpsidt=6846712"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-48594726-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="48594722"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/48594722/Non_length_tuned_cells_in_layers_II_III_and_IV_of_the_visual_cortex_the_effect_of_blockade_of_layer_VI_on_responses_to_stimuli_of_different_lengths"><img alt="Research paper thumbnail of Non-length-tuned cells in layers II/III and IV of the visual cortex: the effect of blockade of layer VI on responses to stimuli of different lengths" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Non-length-tuned cells in layers II/III and IV of the visual cortex: the effect of blockade of layer VI on responses to stimuli of different lengths</div><div class="wp-workCard_item"><span>Exp Brain Res</span><span>, 1995</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We have previously shown, using a local inactivation technique, that layer VI provides a facilita...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We have previously shown, using a local inactivation technique, that layer VI provides a facilitatory input to the majority of hypercomplex cells located in layer IV above, and hence to layers II/III, which in many cases enhances length selectivity. However, many cells in these layers are not tuned for stimulus length, being equally responsive to long and short stimuli. Thus it is important to known whether layer VI can influence the responses of these cells. We have now used a similar paradigm of iontophoretic application of GABA to examine the effect of blockade of layer VI on the length tuning profiles of these cells in layers II-IV. During the blockade of layer VI, the most common effect, seen in 41% of the cells, was inhibition of visual responses, (i.e. commensurate with loss of a facilitatory input). An increase in response magnitude was found in 21% of the population, and responses were unaffected in 36% of cells tested. This suggests that the predominant influence of local regions of layer VI on this cell type, located in layers II/III and IV, is facilitatory, with a smaller proportion of cells receiving an inhibitory input. Such effects were seen even with the shortest lengths tested, suggesting once more that elements of layer VI are responsive to stimuli much shorter than was previously accepted. Thus these data suggest that layer VI plays a role in the generation of the response dynamics of non-length-tuned cells in overlying layers II/III and IV.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="48594722"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="48594722"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 48594722; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=48594722]").text(description); $(".js-view-count[data-work-id=48594722]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 48594722; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='48594722']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=48594722]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":48594722,"title":"Non-length-tuned cells in layers II/III and IV of the visual cortex: the effect of blockade of layer VI on responses to stimuli of different lengths","translated_title":"","metadata":{"abstract":"We have previously shown, using a local inactivation technique, that layer VI provides a facilitatory input to the majority of hypercomplex cells located in layer IV above, and hence to layers II/III, which in many cases enhances length selectivity. However, many cells in these layers are not tuned for stimulus length, being equally responsive to long and short stimuli. Thus it is important to known whether layer VI can influence the responses of these cells. We have now used a similar paradigm of iontophoretic application of GABA to examine the effect of blockade of layer VI on the length tuning profiles of these cells in layers II-IV. During the blockade of layer VI, the most common effect, seen in 41% of the cells, was inhibition of visual responses, (i.e. commensurate with loss of a facilitatory input). An increase in response magnitude was found in 21% of the population, and responses were unaffected in 36% of cells tested. This suggests that the predominant influence of local regions of layer VI on this cell type, located in layers II/III and IV, is facilitatory, with a smaller proportion of cells receiving an inhibitory input. Such effects were seen even with the shortest lengths tested, suggesting once more that elements of layer VI are responsive to stimuli much shorter than was previously accepted. Thus these data suggest that layer VI plays a role in the generation of the response dynamics of non-length-tuned cells in overlying layers II/III and IV.","publication_date":{"day":null,"month":null,"year":1995,"errors":{}},"publication_name":"Exp Brain Res"},"translated_abstract":"We have previously shown, using a local inactivation technique, that layer VI provides a facilitatory input to the majority of hypercomplex cells located in layer IV above, and hence to layers II/III, which in many cases enhances length selectivity. However, many cells in these layers are not tuned for stimulus length, being equally responsive to long and short stimuli. Thus it is important to known whether layer VI can influence the responses of these cells. We have now used a similar paradigm of iontophoretic application of GABA to examine the effect of blockade of layer VI on the length tuning profiles of these cells in layers II-IV. During the blockade of layer VI, the most common effect, seen in 41% of the cells, was inhibition of visual responses, (i.e. commensurate with loss of a facilitatory input). An increase in response magnitude was found in 21% of the population, and responses were unaffected in 36% of cells tested. This suggests that the predominant influence of local regions of layer VI on this cell type, located in layers II/III and IV, is facilitatory, with a smaller proportion of cells receiving an inhibitory input. Such effects were seen even with the shortest lengths tested, suggesting once more that elements of layer VI are responsive to stimuli much shorter than was previously accepted. Thus these data suggest that layer VI plays a role in the generation of the response dynamics of non-length-tuned cells in overlying layers II/III and IV.","internal_url":"https://www.academia.edu/48594722/Non_length_tuned_cells_in_layers_II_III_and_IV_of_the_visual_cortex_the_effect_of_blockade_of_layer_VI_on_responses_to_stimuli_of_different_lengths","translated_internal_url":"","created_at":"2021-05-05T00:06:17.255-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":44148669,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Non_length_tuned_cells_in_layers_II_III_and_IV_of_the_visual_cortex_the_effect_of_blockade_of_layer_VI_on_responses_to_stimuli_of_different_lengths","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"We have previously shown, using a local inactivation technique, that layer VI provides a facilitatory input to the majority of hypercomplex cells located in layer IV above, and hence to layers II/III, which in many cases enhances length selectivity. However, many cells in these layers are not tuned for stimulus length, being equally responsive to long and short stimuli. Thus it is important to known whether layer VI can influence the responses of these cells. We have now used a similar paradigm of iontophoretic application of GABA to examine the effect of blockade of layer VI on the length tuning profiles of these cells in layers II-IV. During the blockade of layer VI, the most common effect, seen in 41% of the cells, was inhibition of visual responses, (i.e. commensurate with loss of a facilitatory input). An increase in response magnitude was found in 21% of the population, and responses were unaffected in 36% of cells tested. This suggests that the predominant influence of local regions of layer VI on this cell type, located in layers II/III and IV, is facilitatory, with a smaller proportion of cells receiving an inhibitory input. Such effects were seen even with the shortest lengths tested, suggesting once more that elements of layer VI are responsive to stimuli much shorter than was previously accepted. Thus these data suggest that layer VI plays a role in the generation of the response dynamics of non-length-tuned cells in overlying layers II/III and IV.","impression_tracking_id":null,"owner":{"id":44148669,"first_name":"Adam","middle_initials":null,"last_name":"Sillito","page_name":"AdamSillito","domain_name":"ucl","created_at":"2016-02-29T05:31:19.603-08:00","display_name":"Adam Sillito","url":"https://ucl.academia.edu/AdamSillito"},"attachments":[],"research_interests":[{"id":41088,"name":"Cats","url":"https://www.academia.edu/Documents/in/Cats"},{"id":49962,"name":"Visual Cortex","url":"https://www.academia.edu/Documents/in/Visual_Cortex"},{"id":263337,"name":"Iontophoresis","url":"https://www.academia.edu/Documents/in/Iontophoresis"},{"id":1619808,"name":"Gamma-Aminobutyric Acid","url":"https://www.academia.edu/Documents/in/Gamma-Aminobutyric_Acid"},{"id":1959302,"name":"Muscimol","url":"https://www.academia.edu/Documents/in/Muscimol"},{"id":2849038,"name":"photic stimulation","url":"https://www.academia.edu/Documents/in/photic_stimulation"},{"id":2922956,"name":"Psychology and Cognitive Sciences","url":"https://www.academia.edu/Documents/in/Psychology_and_Cognitive_Sciences"},{"id":3763225,"name":"Medical and Health Sciences","url":"https://www.academia.edu/Documents/in/Medical_and_Health_Sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-48594722-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="48594719"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/48594719/The_contribution_of_inhibitory_mechanisms_to_the_receptive_field_properties_of_neurones_in_the_striate_cortex_of_the_cat"><img alt="Research paper thumbnail of The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat" class="work-thumbnail" src="https://attachments.academia-assets.com/67125512/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/48594719/The_contribution_of_inhibitory_mechanisms_to_the_receptive_field_properties_of_neurones_in_the_striate_cortex_of_the_cat">The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat</a></div><div class="wp-workCard_item"><span>The Journal of Physiology</span><span>, 1975</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A. M. SILLITO 7. On the basis of these results it is suggested that the normal sub- division of t...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A. M. SILLITO 7. On the basis of these results it is suggested that the normal sub- division of the simple cell receptive field into separate 'on' and 'off' regions and its directional specificity are dependent on intracortical in- hibitory processes that are blocked by bicuculline. The orientational tuning of simple cells conversely appears to be largely determined by the excitatory input but normally enhanced by lateral type inhibitory pro- cesses acting in the orientation domain. 8. It also appears that the excitatory input to some complex cells is not orientation specific. This suggests that for these cells it is extremely unlikely that they receive an orientation specific excitatory input from simple cells.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1319638285f95ef4f38c48c7916d6db0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":67125512,"asset_id":48594719,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/67125512/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="48594719"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="48594719"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 48594719; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=48594719]").text(description); $(".js-view-count[data-work-id=48594719]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 48594719; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='48594719']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1319638285f95ef4f38c48c7916d6db0" } } $('.js-work-strip[data-work-id=48594719]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":48594719,"title":"The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat","translated_title":"","metadata":{"publisher":"Wiley-Blackwell","grobid_abstract":"A. M. SILLITO 7. On the basis of these results it is suggested that the normal sub- division of the simple cell receptive field into separate 'on' and 'off' regions and its directional specificity are dependent on intracortical in- hibitory processes that are blocked by bicuculline. The orientational tuning of simple cells conversely appears to be largely determined by the excitatory input but normally enhanced by lateral type inhibitory pro- cesses acting in the orientation domain. 8. It also appears that the excitatory input to some complex cells is not orientation specific. This suggests that for these cells it is extremely unlikely that they receive an orientation specific excitatory input from simple cells.","publication_date":{"day":null,"month":null,"year":1975,"errors":{}},"publication_name":"The Journal of Physiology","grobid_abstract_attachment_id":67125512},"translated_abstract":null,"internal_url":"https://www.academia.edu/48594719/The_contribution_of_inhibitory_mechanisms_to_the_receptive_field_properties_of_neurones_in_the_striate_cortex_of_the_cat","translated_internal_url":"","created_at":"2021-05-05T00:06:17.152-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":44148669,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":67125512,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/67125512/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/67125512/download_file","bulk_download_file_name":"The_contribution_of_inhibitory_mechanism.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/67125512/pdf-libre.pdf?1620337208=\u0026response-content-disposition=attachment%3B+filename%3DThe_contribution_of_inhibitory_mechanism.pdf\u0026Expires=1744375098\u0026Signature=hQmaNfu4PYfFytY4AEF-aaMwk02kEXAFaeXt0kqkkppDWCc-5w-TnwLl3NSq~pCtUXu41Qgo9OUJGyutnyrfOFIH-oAmUa04CzkaW9w-TGLPXBQC3Nv91E~vA8z8uLV5w~FOxmfkjs4jXpy5PEqkoi6skZJ8Wpe51h6ePfTx5F6IwpuDaJ1Nk8XyqC3xJBJfH40hq4uOiKJQM6030MvMRdK-wQQMgR14tw8AiBkqaiyGywxV67KM2zdPg6-eO1oLmIoRQ~c5hGrNw2voV8nRvQ~eQW~W81arlAmPn-VrLNATRsw3153-iyAyOh8ssUiyMc8sAm7dmddhdfplGpQbbQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_contribution_of_inhibitory_mechanisms_to_the_receptive_field_properties_of_neurones_in_the_striate_cortex_of_the_cat","translated_slug":"","page_count":25,"language":"en","content_type":"Work","summary":"A. M. SILLITO 7. On the basis of these results it is suggested that the normal sub- division of the simple cell receptive field into separate 'on' and 'off' regions and its directional specificity are dependent on intracortical in- hibitory processes that are blocked by bicuculline. The orientational tuning of simple cells conversely appears to be largely determined by the excitatory input but normally enhanced by lateral type inhibitory pro- cesses acting in the orientation domain. 8. It also appears that the excitatory input to some complex cells is not orientation specific. This suggests that for these cells it is extremely unlikely that they receive an orientation specific excitatory input from simple cells.","impression_tracking_id":null,"owner":{"id":44148669,"first_name":"Adam","middle_initials":null,"last_name":"Sillito","page_name":"AdamSillito","domain_name":"ucl","created_at":"2016-02-29T05:31:19.603-08:00","display_name":"Adam Sillito","url":"https://ucl.academia.edu/AdamSillito"},"attachments":[{"id":67125512,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/67125512/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/67125512/download_file","bulk_download_file_name":"The_contribution_of_inhibitory_mechanism.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/67125512/pdf-libre.pdf?1620337208=\u0026response-content-disposition=attachment%3B+filename%3DThe_contribution_of_inhibitory_mechanism.pdf\u0026Expires=1744375098\u0026Signature=hQmaNfu4PYfFytY4AEF-aaMwk02kEXAFaeXt0kqkkppDWCc-5w-TnwLl3NSq~pCtUXu41Qgo9OUJGyutnyrfOFIH-oAmUa04CzkaW9w-TGLPXBQC3Nv91E~vA8z8uLV5w~FOxmfkjs4jXpy5PEqkoi6skZJ8Wpe51h6ePfTx5F6IwpuDaJ1Nk8XyqC3xJBJfH40hq4uOiKJQM6030MvMRdK-wQQMgR14tw8AiBkqaiyGywxV67KM2zdPg6-eO1oLmIoRQ~c5hGrNw2voV8nRvQ~eQW~W81arlAmPn-VrLNATRsw3153-iyAyOh8ssUiyMc8sAm7dmddhdfplGpQbbQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":158333,"name":"Receptive Field","url":"https://www.academia.edu/Documents/in/Receptive_Field"},{"id":2002627,"name":"Striate Cortex","url":"https://www.academia.edu/Documents/in/Striate_Cortex"},{"id":3763225,"name":"Medical and Health Sciences","url":"https://www.academia.edu/Documents/in/Medical_and_Health_Sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-48594719-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="48594715"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/48594715/Oscillations_and_long_lasting_correlations_in_a_model_of_the_lateral_geniculate_nucleus_and_visual_cortex"><img alt="Research paper thumbnail of Oscillations and long-lasting correlations in a model of the lateral geniculate nucleus and visual cortex" class="work-thumbnail" src="https://attachments.academia-assets.com/67125501/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/48594715/Oscillations_and_long_lasting_correlations_in_a_model_of_the_lateral_geniculate_nucleus_and_visual_cortex">Oscillations and long-lasting correlations in a model of the lateral geniculate nucleus and visual cortex</a></div><div class="wp-workCard_item"><span>Journal of neurophysiology</span><span>, 2000</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We have previously developed a model of the corticogeniculate system to explore cortically induce...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We have previously developed a model of the corticogeniculate system to explore cortically induced synchronization of lateral geniculate nucleus (LGN) neurons. Our model was based on the experiments of Sillito et al. Recently Brody discovered that the LGN events found by Sillito et al. correlate over a much longer period of time than expected from the stimulus-driven responses and proposed a cortically induced slow covariation in LGN cell membrane potentials to account for this phenomenon. We have examined the data from our model, and we found, to our surprise, that the model shows the same long-term correlation. The model&#39;s behavior was the result of a previously unsuspected oscillatory effect, not a slow covariation. The oscillations were in the same frequency range as the well-known spindle oscillations of the thalamocortical system. In the model, the strength of feedback inhibition from the cortex and the presence of low-threshold calcium channels in LGN cells were important...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e905322e1d195c6099d5107864d89d5f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":67125501,"asset_id":48594715,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/67125501/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="48594715"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="48594715"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 48594715; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=48594715]").text(description); $(".js-view-count[data-work-id=48594715]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 48594715; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='48594715']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e905322e1d195c6099d5107864d89d5f" } } $('.js-work-strip[data-work-id=48594715]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":48594715,"title":"Oscillations and long-lasting correlations in a model of the lateral geniculate nucleus and visual cortex","translated_title":"","metadata":{"abstract":"We have previously developed a model of the corticogeniculate system to explore cortically induced synchronization of lateral geniculate nucleus (LGN) neurons. Our model was based on the experiments of Sillito et al. Recently Brody discovered that the LGN events found by Sillito et al. correlate over a much longer period of time than expected from the stimulus-driven responses and proposed a cortically induced slow covariation in LGN cell membrane potentials to account for this phenomenon. We have examined the data from our model, and we found, to our surprise, that the model shows the same long-term correlation. The model\u0026#39;s behavior was the result of a previously unsuspected oscillatory effect, not a slow covariation. The oscillations were in the same frequency range as the well-known spindle oscillations of the thalamocortical system. In the model, the strength of feedback inhibition from the cortex and the presence of low-threshold calcium channels in LGN cells were important...","publication_date":{"day":null,"month":null,"year":2000,"errors":{}},"publication_name":"Journal of neurophysiology"},"translated_abstract":"We have previously developed a model of the corticogeniculate system to explore cortically induced synchronization of lateral geniculate nucleus (LGN) neurons. Our model was based on the experiments of Sillito et al. Recently Brody discovered that the LGN events found by Sillito et al. correlate over a much longer period of time than expected from the stimulus-driven responses and proposed a cortically induced slow covariation in LGN cell membrane potentials to account for this phenomenon. We have examined the data from our model, and we found, to our surprise, that the model shows the same long-term correlation. The model\u0026#39;s behavior was the result of a previously unsuspected oscillatory effect, not a slow covariation. The oscillations were in the same frequency range as the well-known spindle oscillations of the thalamocortical system. In the model, the strength of feedback inhibition from the cortex and the presence of low-threshold calcium channels in LGN cells were important...","internal_url":"https://www.academia.edu/48594715/Oscillations_and_long_lasting_correlations_in_a_model_of_the_lateral_geniculate_nucleus_and_visual_cortex","translated_internal_url":"","created_at":"2021-05-05T00:06:17.056-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":44148669,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":67125501,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/67125501/thumbnails/1.jpg","file_name":"e59dbae7050dd4d419aee3b9b68e40286878.pdf","download_url":"https://www.academia.edu/attachments/67125501/download_file","bulk_download_file_name":"Oscillations_and_long_lasting_correlatio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/67125501/e59dbae7050dd4d419aee3b9b68e40286878-libre.pdf?1620337205=\u0026response-content-disposition=attachment%3B+filename%3DOscillations_and_long_lasting_correlatio.pdf\u0026Expires=1744375098\u0026Signature=V7e0jcH4DOPMWe8epGisIAFAE7HYZ~Qnk1mdLZaLbUYnwzC4FbYGZf0cY3ua~56D9RHFaykqKkRTsTh7b4wVKHyZXAnxekbStiHLZr~s9oAeDfFP2YLm1rDGnvspgLFw0vRXbidIowdWD8ALc7mkx~6oUGmJl9-I~f8j76TlQjIas9~42lpOHF0rt9wtalbbqOe8JTap-3d~rK4EIDG263V4YXwGs9jtr6Df6AHW4WXidkqEGXICCcEpTibuiUL3G-i3BOdmxiPfs0uy98XC7p4~XpEXpxTS5Y3t~M4P4Yrm4k1YD28NqmpLLZbIh1U40SVvKfY2fnbfJLJUW1SclA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Oscillations_and_long_lasting_correlations_in_a_model_of_the_lateral_geniculate_nucleus_and_visual_cortex","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"We have previously developed a model of the corticogeniculate system to explore cortically induced synchronization of lateral geniculate nucleus (LGN) neurons. Our model was based on the experiments of Sillito et al. Recently Brody discovered that the LGN events found by Sillito et al. correlate over a much longer period of time than expected from the stimulus-driven responses and proposed a cortically induced slow covariation in LGN cell membrane potentials to account for this phenomenon. We have examined the data from our model, and we found, to our surprise, that the model shows the same long-term correlation. The model\u0026#39;s behavior was the result of a previously unsuspected oscillatory effect, not a slow covariation. The oscillations were in the same frequency range as the well-known spindle oscillations of the thalamocortical system. In the model, the strength of feedback inhibition from the cortex and the presence of low-threshold calcium channels in LGN cells were important...","impression_tracking_id":null,"owner":{"id":44148669,"first_name":"Adam","middle_initials":null,"last_name":"Sillito","page_name":"AdamSillito","domain_name":"ucl","created_at":"2016-02-29T05:31:19.603-08:00","display_name":"Adam Sillito","url":"https://ucl.academia.edu/AdamSillito"},"attachments":[{"id":67125501,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/67125501/thumbnails/1.jpg","file_name":"e59dbae7050dd4d419aee3b9b68e40286878.pdf","download_url":"https://www.academia.edu/attachments/67125501/download_file","bulk_download_file_name":"Oscillations_and_long_lasting_correlatio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/67125501/e59dbae7050dd4d419aee3b9b68e40286878-libre.pdf?1620337205=\u0026response-content-disposition=attachment%3B+filename%3DOscillations_and_long_lasting_correlatio.pdf\u0026Expires=1744375098\u0026Signature=V7e0jcH4DOPMWe8epGisIAFAE7HYZ~Qnk1mdLZaLbUYnwzC4FbYGZf0cY3ua~56D9RHFaykqKkRTsTh7b4wVKHyZXAnxekbStiHLZr~s9oAeDfFP2YLm1rDGnvspgLFw0vRXbidIowdWD8ALc7mkx~6oUGmJl9-I~f8j76TlQjIas9~42lpOHF0rt9wtalbbqOe8JTap-3d~rK4EIDG263V4YXwGs9jtr6Df6AHW4WXidkqEGXICCcEpTibuiUL3G-i3BOdmxiPfs0uy98XC7p4~XpEXpxTS5Y3t~M4P4Yrm4k1YD28NqmpLLZbIh1U40SVvKfY2fnbfJLJUW1SclA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2007,"name":"Electrophysiology","url":"https://www.academia.edu/Documents/in/Electrophysiology"},{"id":22272,"name":"Neurophysiology","url":"https://www.academia.edu/Documents/in/Neurophysiology"},{"id":49962,"name":"Visual Cortex","url":"https://www.academia.edu/Documents/in/Visual_Cortex"},{"id":69542,"name":"Computer Simulation","url":"https://www.academia.edu/Documents/in/Computer_Simulation"},{"id":413195,"name":"Time Factors","url":"https://www.academia.edu/Documents/in/Time_Factors"},{"id":2922956,"name":"Psychology and Cognitive Sciences","url":"https://www.academia.edu/Documents/in/Psychology_and_Cognitive_Sciences"},{"id":3763225,"name":"Medical and Health Sciences","url":"https://www.academia.edu/Documents/in/Medical_and_Health_Sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-48594715-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="48594712"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/48594712/The_spatial_extent_of_excitatory_and_inhibitory_zones_in_the_receptive_field_of_superficial_layer_hypercomplex_cells"><img alt="Research paper thumbnail of The spatial extent of excitatory and inhibitory zones in the receptive field of superficial layer hypercomplex cells" class="work-thumbnail" src="https://attachments.academia-assets.com/67125503/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/48594712/The_spatial_extent_of_excitatory_and_inhibitory_zones_in_the_receptive_field_of_superficial_layer_hypercomplex_cells">The spatial extent of excitatory and inhibitory zones in the receptive field of superficial layer hypercomplex cells</a></div><div class="wp-workCard_item"><span>The Journal of physiology</span><span>, 1977</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">1. An investigation has been made of the extent of inhibitory and excitatory components in the re...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">1. An investigation has been made of the extent of inhibitory and excitatory components in the receptive field of superficial layer hypercomplex cells in the cat&#39;s striate cortex and the relation of the components to the length preference exhibited by these cells.2. Maximal responses were produced by an optimal length stimulus moving through a restricted region of the receptive field. The length of this receptive field region was less than the total length of the excitatory zone as mapped with a very short slit. Slits of similar length to the excitatory zone produced a smaller response than an optimal length slit.3. An increase of slit length so that it passed over receptive field regions either side of the excitatory zone resulted in an elimination of the response. When background discharge levels were increased by the iontophoretic application of D, L-homocysteic acid slits of this length were observed to produce a suppression of the resting discharge as they passed over the r...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="afe9fc9d6136be317e55413c066533e2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":67125503,"asset_id":48594712,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/67125503/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="48594712"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="48594712"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 48594712; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=48594712]").text(description); $(".js-view-count[data-work-id=48594712]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 48594712; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='48594712']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "afe9fc9d6136be317e55413c066533e2" } } $('.js-work-strip[data-work-id=48594712]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":48594712,"title":"The spatial extent of excitatory and inhibitory zones in the receptive field of superficial layer hypercomplex cells","translated_title":"","metadata":{"abstract":"1. An investigation has been made of the extent of inhibitory and excitatory components in the receptive field of superficial layer hypercomplex cells in the cat\u0026#39;s striate cortex and the relation of the components to the length preference exhibited by these cells.2. Maximal responses were produced by an optimal length stimulus moving through a restricted region of the receptive field. The length of this receptive field region was less than the total length of the excitatory zone as mapped with a very short slit. Slits of similar length to the excitatory zone produced a smaller response than an optimal length slit.3. An increase of slit length so that it passed over receptive field regions either side of the excitatory zone resulted in an elimination of the response. When background discharge levels were increased by the iontophoretic application of D, L-homocysteic acid slits of this length were observed to produce a suppression of the resting discharge as they passed over the r...","publication_date":{"day":null,"month":null,"year":1977,"errors":{}},"publication_name":"The Journal of physiology"},"translated_abstract":"1. An investigation has been made of the extent of inhibitory and excitatory components in the receptive field of superficial layer hypercomplex cells in the cat\u0026#39;s striate cortex and the relation of the components to the length preference exhibited by these cells.2. Maximal responses were produced by an optimal length stimulus moving through a restricted region of the receptive field. The length of this receptive field region was less than the total length of the excitatory zone as mapped with a very short slit. Slits of similar length to the excitatory zone produced a smaller response than an optimal length slit.3. An increase of slit length so that it passed over receptive field regions either side of the excitatory zone resulted in an elimination of the response. When background discharge levels were increased by the iontophoretic application of D, L-homocysteic acid slits of this length were observed to produce a suppression of the resting discharge as they passed over the r...","internal_url":"https://www.academia.edu/48594712/The_spatial_extent_of_excitatory_and_inhibitory_zones_in_the_receptive_field_of_superficial_layer_hypercomplex_cells","translated_internal_url":"","created_at":"2021-05-05T00:06:16.960-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":44148669,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":67125503,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/67125503/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/67125503/download_file","bulk_download_file_name":"The_spatial_extent_of_excitatory_and_inh.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/67125503/pdf-libre.pdf?1620337206=\u0026response-content-disposition=attachment%3B+filename%3DThe_spatial_extent_of_excitatory_and_inh.pdf\u0026Expires=1744375098\u0026Signature=Lg-ooQs-j4r1AxnR1gTXSobulF0p4ic3HOxUFVpDeNywGnz-G3JZ4wddpTXCWbgG7ce9VCk69irP5CFbZ3Trz63g2dV6Cr9iG1vkH0N2DCIMkKryihXjAChkDRkbSZnSSzXPPQU78M4sErphyU65Wc~ZnIvaN0JvYuqQEAn1EApeVTL-wwdcu-ADpSAZXgUq3rx18NaqA12T-VFdY0n20Du03AtrXzfJx7Ez9ePl0bv~wxy~MFntA2FHy02H2AfbXuiwLbhcl18LObCQ7fwVs1ULvEEAV4eDdao~qgcbgMDDmqQrFzCEEnkfpQ7VkILVaYqBpQHpCmme91tefeDpjw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_spatial_extent_of_excitatory_and_inhibitory_zones_in_the_receptive_field_of_superficial_layer_hypercomplex_cells","translated_slug":"","page_count":13,"language":"en","content_type":"Work","summary":"1. An investigation has been made of the extent of inhibitory and excitatory components in the receptive field of superficial layer hypercomplex cells in the cat\u0026#39;s striate cortex and the relation of the components to the length preference exhibited by these cells.2. Maximal responses were produced by an optimal length stimulus moving through a restricted region of the receptive field. The length of this receptive field region was less than the total length of the excitatory zone as mapped with a very short slit. Slits of similar length to the excitatory zone produced a smaller response than an optimal length slit.3. An increase of slit length so that it passed over receptive field regions either side of the excitatory zone resulted in an elimination of the response. When background discharge levels were increased by the iontophoretic application of D, L-homocysteic acid slits of this length were observed to produce a suppression of the resting discharge as they passed over the r...","impression_tracking_id":null,"owner":{"id":44148669,"first_name":"Adam","middle_initials":null,"last_name":"Sillito","page_name":"AdamSillito","domain_name":"ucl","created_at":"2016-02-29T05:31:19.603-08:00","display_name":"Adam Sillito","url":"https://ucl.academia.edu/AdamSillito"},"attachments":[{"id":67125503,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/67125503/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/67125503/download_file","bulk_download_file_name":"The_spatial_extent_of_excitatory_and_inh.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/67125503/pdf-libre.pdf?1620337206=\u0026response-content-disposition=attachment%3B+filename%3DThe_spatial_extent_of_excitatory_and_inh.pdf\u0026Expires=1744375098\u0026Signature=Lg-ooQs-j4r1AxnR1gTXSobulF0p4ic3HOxUFVpDeNywGnz-G3JZ4wddpTXCWbgG7ce9VCk69irP5CFbZ3Trz63g2dV6Cr9iG1vkH0N2DCIMkKryihXjAChkDRkbSZnSSzXPPQU78M4sErphyU65Wc~ZnIvaN0JvYuqQEAn1EApeVTL-wwdcu-ADpSAZXgUq3rx18NaqA12T-VFdY0n20Du03AtrXzfJx7Ez9ePl0bv~wxy~MFntA2FHy02H2AfbXuiwLbhcl18LObCQ7fwVs1ULvEEAV4eDdao~qgcbgMDDmqQrFzCEEnkfpQ7VkILVaYqBpQHpCmme91tefeDpjw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":41088,"name":"Cats","url":"https://www.academia.edu/Documents/in/Cats"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":49962,"name":"Visual Cortex","url":"https://www.academia.edu/Documents/in/Visual_Cortex"},{"id":158333,"name":"Receptive Field","url":"https://www.academia.edu/Documents/in/Receptive_Field"},{"id":193974,"name":"Neurons","url":"https://www.academia.edu/Documents/in/Neurons"},{"id":195983,"name":"Homocysteine","url":"https://www.academia.edu/Documents/in/Homocysteine"},{"id":955727,"name":"Action Potentials","url":"https://www.academia.edu/Documents/in/Action_Potentials"},{"id":1287048,"name":"Interneurons","url":"https://www.academia.edu/Documents/in/Interneurons"},{"id":1422473,"name":"Bicuculline","url":"https://www.academia.edu/Documents/in/Bicuculline"},{"id":3763225,"name":"Medical and Health Sciences","url":"https://www.academia.edu/Documents/in/Medical_and_Health_Sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-48594712-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="48594707"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/48594707/Effects_of_vasoactive_intesti_nal_polypeptide_on_the_response_properties_of_cells_in_area_17_of_the_cat_visual_cortex"><img alt="Research paper thumbnail of Effects of vasoactive intesti - nal polypeptide on the response properties of cells in area 17 of the cat visual cortex" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Effects of vasoactive intesti - nal polypeptide on the response properties of cells in area 17 of the cat visual cortex</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="48594707"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="48594707"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 48594707; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=48594707]").text(description); $(".js-view-count[data-work-id=48594707]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 48594707; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='48594707']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=48594707]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":48594707,"title":"Effects of vasoactive intesti - nal polypeptide on the response properties of cells in area 17 of the cat visual cortex","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1993,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/48594707/Effects_of_vasoactive_intesti_nal_polypeptide_on_the_response_properties_of_cells_in_area_17_of_the_cat_visual_cortex","translated_internal_url":"","created_at":"2021-05-05T00:06:16.852-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":44148669,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Effects_of_vasoactive_intesti_nal_polypeptide_on_the_response_properties_of_cells_in_area_17_of_the_cat_visual_cortex","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":44148669,"first_name":"Adam","middle_initials":null,"last_name":"Sillito","page_name":"AdamSillito","domain_name":"ucl","created_at":"2016-02-29T05:31:19.603-08:00","display_name":"Adam Sillito","url":"https://ucl.academia.edu/AdamSillito"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-48594707-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="48594703"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/48594703/Spatial_frequency_tuning_of_orientation_discontinuity_sensitive_corticofugal_feedback_to_the_cat_lateral_geniculate_nucleus"><img alt="Research paper thumbnail of Spatial frequency tuning of orientation-discontinuity-sensitive corticofugal feedback to the cat lateral geniculate nucleus" class="work-thumbnail" src="https://attachments.academia-assets.com/67125551/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/48594703/Spatial_frequency_tuning_of_orientation_discontinuity_sensitive_corticofugal_feedback_to_the_cat_lateral_geniculate_nucleus">Spatial frequency tuning of orientation-discontinuity-sensitive corticofugal feedback to the cat lateral geniculate nucleus</a></div><div class="wp-workCard_item"><span>The Journal of Physiology</span><span>, 1996</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The influence of spatial frequency on the inhibitory component of the effects mediated by feedbac...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The influence of spatial frequency on the inhibitory component of the effects mediated by feedback from the visual cortex has been examined in X and Y cells in the A laminae of the feline dorsal lateral geniculate nucleus (dLGN). Experiments utilized a concentric, bipartite visual stimulus centred over the receptive fields of the cells studied. The responses of dLGN cells to selective stimulation of receptive field centre (with the inner window) were compared with those to stimulation of centre and surround mechanisms (both inner and outer window), with the stimuli either in or out of orientation alignment. 2. With these same stimuli, layer VI cells in the visual cortex showed a marked increase in response magnitude when the inner and outer components of the stimulus were in orientation alignment, and presented at the preferred orientation. In the case of dLGN X and Y cells we observed an enhancement of the surround antagonism of the centre response when the inner and outer sections of the stimulus were in orientation alignment. 3. The effects of varying spatial frequency on these responses were examined in dLGN cells in the presence of corticofugal feedback. With the stimulus sections in orientation alignment, surround stimulation produced a powerful and significant reduction in the response to stimulation of centre mechanism alone with the most marked effects for stimuli in the range 0 1-085 cycles per degree (c.p.d.). The reduction produced by surround stimulation in the range 0 1-0'5 c.p.d. was notably more potent in X cells than in Y cells. 4. The responses to the same stimuli were examined in dLGN cells with the corticofugal feedback inactivated. Comparison of data from cells studied with and without feedback revealed a significant decrease in surround-mediated attenuation of the centre response in Y cells for spatial frequencies in the range 0 1-085 c.p.d. For X cells the decrease in strength of the surround antagonism was also clear and significant but only seen in the range 0.1-0'5 c.p.d. 5. The influence of the orientation alignment of inner and outer stimulus sections revealed a marked difference between cells studied with and without feedback. In the presence of feedback fully aligned stimuli enhanced surround antagonism of centre responses for spatial frequencies in the range 0'1-0'5 c.p.d., in X and Y cells. In the absence of corticofugal feedback this alignment effect was essentially eliminated. 6. These data show that surround antagonism of the centre response is influenced by orientation alignment of the stimulus sections at low spatial frequencies and in the presence of corticofugal feedback. They support a cortically driven enhancement of the inhibitory mechanisms reinforcing surround mechanisms in the dLGN. We propose that feedback enhances a low spatial frequency cut-off in the dLGN, that this effect is maximal for a continuous iso-orientated contour, but diminished whenever there is an orientation discontinuity. The hyperpolarizing influence underlying this effect may contribute to the recently described synchronizing influence of the direct corticofugal contacts onto relay cells. We suggest feedback of the cortical level of analysis refines the transfer of the visual input at geniculate level in a stimulus-context-dependent fashion.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="601824ec9b880ebded4ddd1cabb50925" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":67125551,"asset_id":48594703,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/67125551/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="48594703"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="48594703"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 48594703; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=48594703]").text(description); $(".js-view-count[data-work-id=48594703]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 48594703; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='48594703']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "601824ec9b880ebded4ddd1cabb50925" } } $('.js-work-strip[data-work-id=48594703]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":48594703,"title":"Spatial frequency tuning of orientation-discontinuity-sensitive corticofugal feedback to the cat lateral geniculate nucleus","translated_title":"","metadata":{"publisher":"Wiley-Blackwell","grobid_abstract":"The influence of spatial frequency on the inhibitory component of the effects mediated by feedback from the visual cortex has been examined in X and Y cells in the A laminae of the feline dorsal lateral geniculate nucleus (dLGN). Experiments utilized a concentric, bipartite visual stimulus centred over the receptive fields of the cells studied. The responses of dLGN cells to selective stimulation of receptive field centre (with the inner window) were compared with those to stimulation of centre and surround mechanisms (both inner and outer window), with the stimuli either in or out of orientation alignment. 2. With these same stimuli, layer VI cells in the visual cortex showed a marked increase in response magnitude when the inner and outer components of the stimulus were in orientation alignment, and presented at the preferred orientation. In the case of dLGN X and Y cells we observed an enhancement of the surround antagonism of the centre response when the inner and outer sections of the stimulus were in orientation alignment. 3. The effects of varying spatial frequency on these responses were examined in dLGN cells in the presence of corticofugal feedback. With the stimulus sections in orientation alignment, surround stimulation produced a powerful and significant reduction in the response to stimulation of centre mechanism alone with the most marked effects for stimuli in the range 0 1-085 cycles per degree (c.p.d.). The reduction produced by surround stimulation in the range 0 1-0'5 c.p.d. was notably more potent in X cells than in Y cells. 4. The responses to the same stimuli were examined in dLGN cells with the corticofugal feedback inactivated. Comparison of data from cells studied with and without feedback revealed a significant decrease in surround-mediated attenuation of the centre response in Y cells for spatial frequencies in the range 0 1-085 c.p.d. For X cells the decrease in strength of the surround antagonism was also clear and significant but only seen in the range 0.1-0'5 c.p.d. 5. The influence of the orientation alignment of inner and outer stimulus sections revealed a marked difference between cells studied with and without feedback. In the presence of feedback fully aligned stimuli enhanced surround antagonism of centre responses for spatial frequencies in the range 0'1-0'5 c.p.d., in X and Y cells. In the absence of corticofugal feedback this alignment effect was essentially eliminated. 6. These data show that surround antagonism of the centre response is influenced by orientation alignment of the stimulus sections at low spatial frequencies and in the presence of corticofugal feedback. They support a cortically driven enhancement of the inhibitory mechanisms reinforcing surround mechanisms in the dLGN. We propose that feedback enhances a low spatial frequency cut-off in the dLGN, that this effect is maximal for a continuous iso-orientated contour, but diminished whenever there is an orientation discontinuity. The hyperpolarizing influence underlying this effect may contribute to the recently described synchronizing influence of the direct corticofugal contacts onto relay cells. We suggest feedback of the cortical level of analysis refines the transfer of the visual input at geniculate level in a stimulus-context-dependent fashion.","publication_date":{"day":null,"month":null,"year":1996,"errors":{}},"publication_name":"The Journal of Physiology","grobid_abstract_attachment_id":67125551},"translated_abstract":null,"internal_url":"https://www.academia.edu/48594703/Spatial_frequency_tuning_of_orientation_discontinuity_sensitive_corticofugal_feedback_to_the_cat_lateral_geniculate_nucleus","translated_internal_url":"","created_at":"2021-05-05T00:06:16.749-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":44148669,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":67125551,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/67125551/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/67125551/download_file","bulk_download_file_name":"Spatial_frequency_tuning_of_orientation.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/67125551/pdf-libre.pdf?1620337204=\u0026response-content-disposition=attachment%3B+filename%3DSpatial_frequency_tuning_of_orientation.pdf\u0026Expires=1744375098\u0026Signature=aZzxKVCFZV5ZBALPxaxx2Agr7vlKXuHXppBfboyaehM6Qy1o6XLKOSO9zKsUUTMlsIPDR8z1p50iMVEN6mLZv285ppJV1ekh3SeLXdveUPOMIgu8IgcSXn85yxQCHaL5t5fVAXB7QAkF9GaxltSyLhwv0eyW7jGSo9NYbCteNCuWoz9IFjIYZNNTRBlGYeDJ2B-l8QNAv3bUunvgrAlrdEeK4DmxunhI7G3kQRSBorcJY2qPFrfYNWU14AdJsVt8IKiVv7kEY~Nf0Y3Jw43vmEJUEymW80ntN6y2JnA5eFhaRXsbJrgyE1vOpRxiuEFbc8INLv4SYOSJpgoSo8a58w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Spatial_frequency_tuning_of_orientation_discontinuity_sensitive_corticofugal_feedback_to_the_cat_lateral_geniculate_nucleus","translated_slug":"","page_count":12,"language":"en","content_type":"Work","summary":"The influence of spatial frequency on the inhibitory component of the effects mediated by feedback from the visual cortex has been examined in X and Y cells in the A laminae of the feline dorsal lateral geniculate nucleus (dLGN). Experiments utilized a concentric, bipartite visual stimulus centred over the receptive fields of the cells studied. The responses of dLGN cells to selective stimulation of receptive field centre (with the inner window) were compared with those to stimulation of centre and surround mechanisms (both inner and outer window), with the stimuli either in or out of orientation alignment. 2. With these same stimuli, layer VI cells in the visual cortex showed a marked increase in response magnitude when the inner and outer components of the stimulus were in orientation alignment, and presented at the preferred orientation. In the case of dLGN X and Y cells we observed an enhancement of the surround antagonism of the centre response when the inner and outer sections of the stimulus were in orientation alignment. 3. The effects of varying spatial frequency on these responses were examined in dLGN cells in the presence of corticofugal feedback. With the stimulus sections in orientation alignment, surround stimulation produced a powerful and significant reduction in the response to stimulation of centre mechanism alone with the most marked effects for stimuli in the range 0 1-085 cycles per degree (c.p.d.). The reduction produced by surround stimulation in the range 0 1-0'5 c.p.d. was notably more potent in X cells than in Y cells. 4. The responses to the same stimuli were examined in dLGN cells with the corticofugal feedback inactivated. Comparison of data from cells studied with and without feedback revealed a significant decrease in surround-mediated attenuation of the centre response in Y cells for spatial frequencies in the range 0 1-085 c.p.d. For X cells the decrease in strength of the surround antagonism was also clear and significant but only seen in the range 0.1-0'5 c.p.d. 5. The influence of the orientation alignment of inner and outer stimulus sections revealed a marked difference between cells studied with and without feedback. In the presence of feedback fully aligned stimuli enhanced surround antagonism of centre responses for spatial frequencies in the range 0'1-0'5 c.p.d., in X and Y cells. In the absence of corticofugal feedback this alignment effect was essentially eliminated. 6. These data show that surround antagonism of the centre response is influenced by orientation alignment of the stimulus sections at low spatial frequencies and in the presence of corticofugal feedback. They support a cortically driven enhancement of the inhibitory mechanisms reinforcing surround mechanisms in the dLGN. We propose that feedback enhances a low spatial frequency cut-off in the dLGN, that this effect is maximal for a continuous iso-orientated contour, but diminished whenever there is an orientation discontinuity. The hyperpolarizing influence underlying this effect may contribute to the recently described synchronizing influence of the direct corticofugal contacts onto relay cells. We suggest feedback of the cortical level of analysis refines the transfer of the visual input at geniculate level in a stimulus-context-dependent fashion.","impression_tracking_id":null,"owner":{"id":44148669,"first_name":"Adam","middle_initials":null,"last_name":"Sillito","page_name":"AdamSillito","domain_name":"ucl","created_at":"2016-02-29T05:31:19.603-08:00","display_name":"Adam Sillito","url":"https://ucl.academia.edu/AdamSillito"},"attachments":[{"id":67125551,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/67125551/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/67125551/download_file","bulk_download_file_name":"Spatial_frequency_tuning_of_orientation.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/67125551/pdf-libre.pdf?1620337204=\u0026response-content-disposition=attachment%3B+filename%3DSpatial_frequency_tuning_of_orientation.pdf\u0026Expires=1744375098\u0026Signature=aZzxKVCFZV5ZBALPxaxx2Agr7vlKXuHXppBfboyaehM6Qy1o6XLKOSO9zKsUUTMlsIPDR8z1p50iMVEN6mLZv285ppJV1ekh3SeLXdveUPOMIgu8IgcSXn85yxQCHaL5t5fVAXB7QAkF9GaxltSyLhwv0eyW7jGSo9NYbCteNCuWoz9IFjIYZNNTRBlGYeDJ2B-l8QNAv3bUunvgrAlrdEeK4DmxunhI7G3kQRSBorcJY2qPFrfYNWU14AdJsVt8IKiVv7kEY~Nf0Y3Jw43vmEJUEymW80ntN6y2JnA5eFhaRXsbJrgyE1vOpRxiuEFbc8INLv4SYOSJpgoSo8a58w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":155840,"name":"Spatial Frequency","url":"https://www.academia.edu/Documents/in/Spatial_Frequency"},{"id":3763225,"name":"Medical and Health Sciences","url":"https://www.academia.edu/Documents/in/Medical_and_Health_Sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-48594703-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="48594699"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/48594699/Directional_asymmetries_in_the_length_response_profiles_of_cells_in_the_feline_dorsal_lateral_geniculate_nucleus"><img alt="Research paper thumbnail of Directional asymmetries in the length-response profiles of cells in the feline dorsal lateral geniculate nucleus" class="work-thumbnail" src="https://attachments.academia-assets.com/67125495/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/48594699/Directional_asymmetries_in_the_length_response_profiles_of_cells_in_the_feline_dorsal_lateral_geniculate_nucleus">Directional asymmetries in the length-response profiles of cells in the feline dorsal lateral geniculate nucleus</a></div><div class="wp-workCard_item"><span>The Journal of physiology</span><span>, Jan 15, 1994</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">1. The visual cortex provides a major synaptic input to the dorsal lateral geniculate nucleus (dL...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">1. The visual cortex provides a major synaptic input to the dorsal lateral geniculate nucleus (dLGN). Cortical layer VI cells giving rise to this projection are strongly influenced by stimulus orientation, length and direction of motion. In the dLGN, a significant component of the strong length tuning exhibited by most cells follows from the corticofugal influence. We have now checked whether there are directional biases in geniculate cell responses, and whether such biases are influenced by stimulus length. 2. The responses of A-laminae dLGN cells were assessed by single-unit extracellular recording. Length preference was examined by plotting multihistogram length-tuning curves to moving bars of light of various length. 3. Over half of the cells tested (100/183) exhibited directional bias and in many cases, this bias was highly dependent on bar length, resulting in radically different length response profiles for the two directions of motion. These asymmetries are similar to those ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="66cb4388cc732cd2593c39d024ca5199" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":67125495,"asset_id":48594699,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/67125495/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="48594699"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="48594699"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 48594699; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=48594699]").text(description); $(".js-view-count[data-work-id=48594699]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 48594699; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='48594699']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "66cb4388cc732cd2593c39d024ca5199" } } $('.js-work-strip[data-work-id=48594699]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":48594699,"title":"Directional asymmetries in the length-response profiles of cells in the feline dorsal lateral geniculate nucleus","translated_title":"","metadata":{"abstract":"1. The visual cortex provides a major synaptic input to the dorsal lateral geniculate nucleus (dLGN). Cortical layer VI cells giving rise to this projection are strongly influenced by stimulus orientation, length and direction of motion. In the dLGN, a significant component of the strong length tuning exhibited by most cells follows from the corticofugal influence. We have now checked whether there are directional biases in geniculate cell responses, and whether such biases are influenced by stimulus length. 2. The responses of A-laminae dLGN cells were assessed by single-unit extracellular recording. Length preference was examined by plotting multihistogram length-tuning curves to moving bars of light of various length. 3. Over half of the cells tested (100/183) exhibited directional bias and in many cases, this bias was highly dependent on bar length, resulting in radically different length response profiles for the two directions of motion. These asymmetries are similar to those ...","publication_date":{"day":15,"month":1,"year":1994,"errors":{}},"publication_name":"The Journal of physiology"},"translated_abstract":"1. The visual cortex provides a major synaptic input to the dorsal lateral geniculate nucleus (dLGN). Cortical layer VI cells giving rise to this projection are strongly influenced by stimulus orientation, length and direction of motion. In the dLGN, a significant component of the strong length tuning exhibited by most cells follows from the corticofugal influence. We have now checked whether there are directional biases in geniculate cell responses, and whether such biases are influenced by stimulus length. 2. The responses of A-laminae dLGN cells were assessed by single-unit extracellular recording. Length preference was examined by plotting multihistogram length-tuning curves to moving bars of light of various length. 3. Over half of the cells tested (100/183) exhibited directional bias and in many cases, this bias was highly dependent on bar length, resulting in radically different length response profiles for the two directions of motion. These asymmetries are similar to those ...","internal_url":"https://www.academia.edu/48594699/Directional_asymmetries_in_the_length_response_profiles_of_cells_in_the_feline_dorsal_lateral_geniculate_nucleus","translated_internal_url":"","created_at":"2021-05-05T00:06:16.655-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":44148669,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":67125495,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/67125495/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/67125495/download_file","bulk_download_file_name":"Directional_asymmetries_in_the_length_re.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/67125495/pdf-libre.pdf?1620337208=\u0026response-content-disposition=attachment%3B+filename%3DDirectional_asymmetries_in_the_length_re.pdf\u0026Expires=1744375098\u0026Signature=CYcypoyf89DP1ZQJWd6MJgPRhpkqUGlRL76UevP5tumIaEfwCeFam1tOy-1NTxKos4yooBEEFxfdj3-OV96gpkhI-49YW~4Px-Pin9hj6H4rn6XR2X33AwASLQPPWnTVsBoODb~Jb0jGpZzF5nhINqg8wBQYLLGk~8hW9fSJysKmAy~uxH7Z0CS6LIgBhyTxBHfbJcjM1KAtbXELWC5FM3XLY-V4emaFK-PXPW-GMt5C4Oe~PrKTZPWDpXHltr4dlUUvsPK5ST8C3m8WE0piAw9wW2ux2UYYd7hbzgVmBzM3olypmhdJInfAxjFMY9xalM9XzpUH9eGAxdJND8Y0Rg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Directional_asymmetries_in_the_length_response_profiles_of_cells_in_the_feline_dorsal_lateral_geniculate_nucleus","translated_slug":"","page_count":12,"language":"en","content_type":"Work","summary":"1. The visual cortex provides a major synaptic input to the dorsal lateral geniculate nucleus (dLGN). Cortical layer VI cells giving rise to this projection are strongly influenced by stimulus orientation, length and direction of motion. In the dLGN, a significant component of the strong length tuning exhibited by most cells follows from the corticofugal influence. We have now checked whether there are directional biases in geniculate cell responses, and whether such biases are influenced by stimulus length. 2. The responses of A-laminae dLGN cells were assessed by single-unit extracellular recording. Length preference was examined by plotting multihistogram length-tuning curves to moving bars of light of various length. 3. Over half of the cells tested (100/183) exhibited directional bias and in many cases, this bias was highly dependent on bar length, resulting in radically different length response profiles for the two directions of motion. These asymmetries are similar to those ...","impression_tracking_id":null,"owner":{"id":44148669,"first_name":"Adam","middle_initials":null,"last_name":"Sillito","page_name":"AdamSillito","domain_name":"ucl","created_at":"2016-02-29T05:31:19.603-08:00","display_name":"Adam Sillito","url":"https://ucl.academia.edu/AdamSillito"},"attachments":[{"id":67125495,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/67125495/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/67125495/download_file","bulk_download_file_name":"Directional_asymmetries_in_the_length_re.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/67125495/pdf-libre.pdf?1620337208=\u0026response-content-disposition=attachment%3B+filename%3DDirectional_asymmetries_in_the_length_re.pdf\u0026Expires=1744375098\u0026Signature=CYcypoyf89DP1ZQJWd6MJgPRhpkqUGlRL76UevP5tumIaEfwCeFam1tOy-1NTxKos4yooBEEFxfdj3-OV96gpkhI-49YW~4Px-Pin9hj6H4rn6XR2X33AwASLQPPWnTVsBoODb~Jb0jGpZzF5nhINqg8wBQYLLGk~8hW9fSJysKmAy~uxH7Z0CS6LIgBhyTxBHfbJcjM1KAtbXELWC5FM3XLY-V4emaFK-PXPW-GMt5C4Oe~PrKTZPWDpXHltr4dlUUvsPK5ST8C3m8WE0piAw9wW2ux2UYYd7hbzgVmBzM3olypmhdJInfAxjFMY9xalM9XzpUH9eGAxdJND8Y0Rg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":41088,"name":"Cats","url":"https://www.academia.edu/Documents/in/Cats"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":49962,"name":"Visual Cortex","url":"https://www.academia.edu/Documents/in/Visual_Cortex"},{"id":93037,"name":"Orientation","url":"https://www.academia.edu/Documents/in/Orientation"},{"id":137633,"name":"Feedback","url":"https://www.academia.edu/Documents/in/Feedback"},{"id":193974,"name":"Neurons","url":"https://www.academia.edu/Documents/in/Neurons"},{"id":418263,"name":"SYNAPSES","url":"https://www.academia.edu/Documents/in/SYNAPSES"},{"id":1281442,"name":"Extracellular Space","url":"https://www.academia.edu/Documents/in/Extracellular_Space"},{"id":2234200,"name":"Functional Laterality","url":"https://www.academia.edu/Documents/in/Functional_Laterality"},{"id":2583527,"name":"sympathectomy","url":"https://www.academia.edu/Documents/in/sympathectomy"},{"id":2849038,"name":"photic stimulation","url":"https://www.academia.edu/Documents/in/photic_stimulation"},{"id":3763225,"name":"Medical and Health Sciences","url":"https://www.academia.edu/Documents/in/Medical_and_Health_Sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-48594699-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="48594694"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/48594694/Differential_properties_of_cells_in_the_feline_primary_visual_cortex_providing_the_corticofugal_feedback_to_the_lateral_geniculate_nucleus_and_visual_claustrum"><img alt="Research paper thumbnail of Differential properties of cells in the feline primary visual cortex providing the corticofugal feedback to the lateral geniculate nucleus and visual claustrum" class="work-thumbnail" src="https://attachments.academia-assets.com/67125498/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/48594694/Differential_properties_of_cells_in_the_feline_primary_visual_cortex_providing_the_corticofugal_feedback_to_the_lateral_geniculate_nucleus_and_visual_claustrum">Differential properties of cells in the feline primary visual cortex providing the corticofugal feedback to the lateral geniculate nucleus and visual claustrum</a></div><div class="wp-workCard_item"><span>The Journal of neuroscience : the official journal of the Society for Neuroscience</span><span>, 1995</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We have examined the responses of 141 layer VI cells in the feline visual cortex. Within this gro...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We have examined the responses of 141 layer VI cells in the feline visual cortex. Within this group we compared the responses of a subpopulation of cells checked for connectivity by electrical stimulation in the dLGN and the visual claustrum. The antidromically identified corticogeniculate projecting cells had relatively short receptive fields, as judged from length response curves, measured quantitatively, and were located at the &quot;short&quot; end of the receptive field length spectrum seen in the general population. Of the 17 corticogeniculate projecting cells, 71% were S type cells, which were typically monocular and directionally selective, with relatively long latencies following electrical stimulation. The remaining 29% were C type cells, also directionally selective, but with a wider spread of ocular dominance preferences and shorter latencies following electrical stimulation. S and C type subpopulations did not differ in their receptive field lengths. The mean receptive ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a129ef2802db7f44ac96dd9e5572f1f1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":67125498,"asset_id":48594694,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/67125498/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="48594694"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="48594694"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 48594694; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=48594694]").text(description); $(".js-view-count[data-work-id=48594694]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 48594694; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='48594694']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a129ef2802db7f44ac96dd9e5572f1f1" } } $('.js-work-strip[data-work-id=48594694]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":48594694,"title":"Differential properties of cells in the feline primary visual cortex providing the corticofugal feedback to the lateral geniculate nucleus and visual claustrum","translated_title":"","metadata":{"abstract":"We have examined the responses of 141 layer VI cells in the feline visual cortex. Within this group we compared the responses of a subpopulation of cells checked for connectivity by electrical stimulation in the dLGN and the visual claustrum. The antidromically identified corticogeniculate projecting cells had relatively short receptive fields, as judged from length response curves, measured quantitatively, and were located at the \u0026quot;short\u0026quot; end of the receptive field length spectrum seen in the general population. Of the 17 corticogeniculate projecting cells, 71% were S type cells, which were typically monocular and directionally selective, with relatively long latencies following electrical stimulation. The remaining 29% were C type cells, also directionally selective, but with a wider spread of ocular dominance preferences and shorter latencies following electrical stimulation. S and C type subpopulations did not differ in their receptive field lengths. The mean receptive ...","publication_date":{"day":null,"month":null,"year":1995,"errors":{}},"publication_name":"The Journal of neuroscience : the official journal of the Society for Neuroscience"},"translated_abstract":"We have examined the responses of 141 layer VI cells in the feline visual cortex. Within this group we compared the responses of a subpopulation of cells checked for connectivity by electrical stimulation in the dLGN and the visual claustrum. The antidromically identified corticogeniculate projecting cells had relatively short receptive fields, as judged from length response curves, measured quantitatively, and were located at the \u0026quot;short\u0026quot; end of the receptive field length spectrum seen in the general population. Of the 17 corticogeniculate projecting cells, 71% were S type cells, which were typically monocular and directionally selective, with relatively long latencies following electrical stimulation. The remaining 29% were C type cells, also directionally selective, but with a wider spread of ocular dominance preferences and shorter latencies following electrical stimulation. S and C type subpopulations did not differ in their receptive field lengths. The mean receptive ...","internal_url":"https://www.academia.edu/48594694/Differential_properties_of_cells_in_the_feline_primary_visual_cortex_providing_the_corticofugal_feedback_to_the_lateral_geniculate_nucleus_and_visual_claustrum","translated_internal_url":"","created_at":"2021-05-05T00:06:16.545-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":44148669,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":67125498,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/67125498/thumbnails/1.jpg","file_name":"4868.full.pdf","download_url":"https://www.academia.edu/attachments/67125498/download_file","bulk_download_file_name":"Differential_properties_of_cells_in_the.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/67125498/4868.full-libre.pdf?1620337206=\u0026response-content-disposition=attachment%3B+filename%3DDifferential_properties_of_cells_in_the.pdf\u0026Expires=1744375098\u0026Signature=dCNg1cx69c3QUVHvGjBduqDI4lXHCFJW43~rIG1RXjPYXvzYXmZFPt3tvx1uMbZMu0Pvp-90d0wzKupYkrU-sSlo30FB49cuMoH7YTRDv-5dP6Qyhf6PwLt0DyJTHX4cobSIpldeOcsKg11Nfj~yFAf1fbZV79myYNdAPc5cfIbVTQzyuPXk~kjzU8gSdTDhi8znqLanOSKPlThmaGJ0GvEmH-b2KT-ZgveXxBjjhn6DQeIFAF8BNa7ezF9azwMDCBRgn-2dqZV6ZXAR43fHL0NutgSPioIOWpMpZg0R~OLPROMlTP7eMwp9ayp3pYBH~oAMvJ6wDB2QmC6v~7rs8A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Differential_properties_of_cells_in_the_feline_primary_visual_cortex_providing_the_corticofugal_feedback_to_the_lateral_geniculate_nucleus_and_visual_claustrum","translated_slug":"","page_count":7,"language":"en","content_type":"Work","summary":"We have examined the responses of 141 layer VI cells in the feline visual cortex. Within this group we compared the responses of a subpopulation of cells checked for connectivity by electrical stimulation in the dLGN and the visual claustrum. The antidromically identified corticogeniculate projecting cells had relatively short receptive fields, as judged from length response curves, measured quantitatively, and were located at the \u0026quot;short\u0026quot; end of the receptive field length spectrum seen in the general population. Of the 17 corticogeniculate projecting cells, 71% were S type cells, which were typically monocular and directionally selective, with relatively long latencies following electrical stimulation. The remaining 29% were C type cells, also directionally selective, but with a wider spread of ocular dominance preferences and shorter latencies following electrical stimulation. S and C type subpopulations did not differ in their receptive field lengths. The mean receptive ...","impression_tracking_id":null,"owner":{"id":44148669,"first_name":"Adam","middle_initials":null,"last_name":"Sillito","page_name":"AdamSillito","domain_name":"ucl","created_at":"2016-02-29T05:31:19.603-08:00","display_name":"Adam Sillito","url":"https://ucl.academia.edu/AdamSillito"},"attachments":[{"id":67125498,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/67125498/thumbnails/1.jpg","file_name":"4868.full.pdf","download_url":"https://www.academia.edu/attachments/67125498/download_file","bulk_download_file_name":"Differential_properties_of_cells_in_the.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/67125498/4868.full-libre.pdf?1620337206=\u0026response-content-disposition=attachment%3B+filename%3DDifferential_properties_of_cells_in_the.pdf\u0026Expires=1744375098\u0026Signature=dCNg1cx69c3QUVHvGjBduqDI4lXHCFJW43~rIG1RXjPYXvzYXmZFPt3tvx1uMbZMu0Pvp-90d0wzKupYkrU-sSlo30FB49cuMoH7YTRDv-5dP6Qyhf6PwLt0DyJTHX4cobSIpldeOcsKg11Nfj~yFAf1fbZV79myYNdAPc5cfIbVTQzyuPXk~kjzU8gSdTDhi8znqLanOSKPlThmaGJ0GvEmH-b2KT-ZgveXxBjjhn6DQeIFAF8BNa7ezF9azwMDCBRgn-2dqZV6ZXAR43fHL0NutgSPioIOWpMpZg0R~OLPROMlTP7eMwp9ayp3pYBH~oAMvJ6wDB2QmC6v~7rs8A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2007,"name":"Electrophysiology","url":"https://www.academia.edu/Documents/in/Electrophysiology"},{"id":41088,"name":"Cats","url":"https://www.academia.edu/Documents/in/Cats"},{"id":49962,"name":"Visual Cortex","url":"https://www.academia.edu/Documents/in/Visual_Cortex"},{"id":137633,"name":"Feedback","url":"https://www.academia.edu/Documents/in/Feedback"},{"id":158333,"name":"Receptive Field","url":"https://www.academia.edu/Documents/in/Receptive_Field"},{"id":187796,"name":"Primary visual cortex","url":"https://www.academia.edu/Documents/in/Primary_visual_cortex"},{"id":193974,"name":"Neurons","url":"https://www.academia.edu/Documents/in/Neurons"},{"id":207165,"name":"Lateral Geniculate Nucleus","url":"https://www.academia.edu/Documents/in/Lateral_Geniculate_Nucleus"},{"id":321836,"name":"Spectrum","url":"https://www.academia.edu/Documents/in/Spectrum"},{"id":484219,"name":"Basal ganglia","url":"https://www.academia.edu/Documents/in/Basal_ganglia"},{"id":1423006,"name":"General Population","url":"https://www.academia.edu/Documents/in/General_Population"},{"id":1731323,"name":"COL","url":"https://www.academia.edu/Documents/in/COL-2000"},{"id":2234200,"name":"Functional Laterality","url":"https://www.academia.edu/Documents/in/Functional_Laterality"},{"id":2922956,"name":"Psychology and Cognitive Sciences","url":"https://www.academia.edu/Documents/in/Psychology_and_Cognitive_Sciences"},{"id":3763225,"name":"Medical and Health Sciences","url":"https://www.academia.edu/Documents/in/Medical_and_Health_Sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-48594694-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="48594688"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/48594688/The_action_of_the_putative_neurotransmitters_N_acetylaspartylglutamate_and_L_homocysteate_in_cat_dorsal_lateral_geniculate_nucleus"><img alt="Research paper thumbnail of The action of the putative neurotransmitters N-acetylaspartylglutamate and L-homocysteate in cat dorsal lateral geniculate nucleus" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">The action of the putative neurotransmitters N-acetylaspartylglutamate and L-homocysteate in cat dorsal lateral geniculate nucleus</div><div class="wp-workCard_item"><span>Journal of neurophysiology</span><span>, 1992</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">1. We have examined the actions and pharmacology of two putative optic nerve transmitters, N-acet...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">1. We have examined the actions and pharmacology of two putative optic nerve transmitters, N-acetylaspartylglutamate (NAAG) and L-homocysteic acid (L-HCA), in the feline dorsal lateral geniculate nucleus (dLGN). We compared the responses obtained to iontophoretic application of these substances with those elicited by visual stimulation and application of specific N-methyl-D-aspartate (NMDA) and non-NMDA receptor agonists. The relative effects of the selective NMDA antagonist 3-[(+/-)-2-carboxypiperazin-4-yl]-propyl-1-phosphonic acid (CPP) and the selective non-NMDA antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) were tested on these responses. 2. There was a pronounced contrast between the influence of iontophoretically applied NAAG and L-HCA on dLGN cells. Iontophoretic application of NAAG [ejection current range 75-200 nA (mean 125 nA)] evoked either no effect (17/37), or very weak and sluggish excitatory (16/37) or inhibitory (4/37) effects. Conversely, L-HCA application [...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="48594688"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="48594688"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 48594688; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=48594688]").text(description); $(".js-view-count[data-work-id=48594688]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 48594688; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='48594688']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=48594688]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":48594688,"title":"The action of the putative neurotransmitters N-acetylaspartylglutamate and L-homocysteate in cat dorsal lateral geniculate nucleus","translated_title":"","metadata":{"abstract":"1. We have examined the actions and pharmacology of two putative optic nerve transmitters, N-acetylaspartylglutamate (NAAG) and L-homocysteic acid (L-HCA), in the feline dorsal lateral geniculate nucleus (dLGN). We compared the responses obtained to iontophoretic application of these substances with those elicited by visual stimulation and application of specific N-methyl-D-aspartate (NMDA) and non-NMDA receptor agonists. The relative effects of the selective NMDA antagonist 3-[(+/-)-2-carboxypiperazin-4-yl]-propyl-1-phosphonic acid (CPP) and the selective non-NMDA antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) were tested on these responses. 2. There was a pronounced contrast between the influence of iontophoretically applied NAAG and L-HCA on dLGN cells. Iontophoretic application of NAAG [ejection current range 75-200 nA (mean 125 nA)] evoked either no effect (17/37), or very weak and sluggish excitatory (16/37) or inhibitory (4/37) effects. Conversely, L-HCA application [...","publication_date":{"day":null,"month":null,"year":1992,"errors":{}},"publication_name":"Journal of neurophysiology"},"translated_abstract":"1. We have examined the actions and pharmacology of two putative optic nerve transmitters, N-acetylaspartylglutamate (NAAG) and L-homocysteic acid (L-HCA), in the feline dorsal lateral geniculate nucleus (dLGN). We compared the responses obtained to iontophoretic application of these substances with those elicited by visual stimulation and application of specific N-methyl-D-aspartate (NMDA) and non-NMDA receptor agonists. The relative effects of the selective NMDA antagonist 3-[(+/-)-2-carboxypiperazin-4-yl]-propyl-1-phosphonic acid (CPP) and the selective non-NMDA antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) were tested on these responses. 2. There was a pronounced contrast between the influence of iontophoretically applied NAAG and L-HCA on dLGN cells. Iontophoretic application of NAAG [ejection current range 75-200 nA (mean 125 nA)] evoked either no effect (17/37), or very weak and sluggish excitatory (16/37) or inhibitory (4/37) effects. Conversely, L-HCA application [...","internal_url":"https://www.academia.edu/48594688/The_action_of_the_putative_neurotransmitters_N_acetylaspartylglutamate_and_L_homocysteate_in_cat_dorsal_lateral_geniculate_nucleus","translated_internal_url":"","created_at":"2021-05-05T00:06:16.445-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":44148669,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_action_of_the_putative_neurotransmitters_N_acetylaspartylglutamate_and_L_homocysteate_in_cat_dorsal_lateral_geniculate_nucleus","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"1. We have examined the actions and pharmacology of two putative optic nerve transmitters, N-acetylaspartylglutamate (NAAG) and L-homocysteic acid (L-HCA), in the feline dorsal lateral geniculate nucleus (dLGN). We compared the responses obtained to iontophoretic application of these substances with those elicited by visual stimulation and application of specific N-methyl-D-aspartate (NMDA) and non-NMDA receptor agonists. The relative effects of the selective NMDA antagonist 3-[(+/-)-2-carboxypiperazin-4-yl]-propyl-1-phosphonic acid (CPP) and the selective non-NMDA antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) were tested on these responses. 2. There was a pronounced contrast between the influence of iontophoretically applied NAAG and L-HCA on dLGN cells. Iontophoretic application of NAAG [ejection current range 75-200 nA (mean 125 nA)] evoked either no effect (17/37), or very weak and sluggish excitatory (16/37) or inhibitory (4/37) effects. Conversely, L-HCA application [...","impression_tracking_id":null,"owner":{"id":44148669,"first_name":"Adam","middle_initials":null,"last_name":"Sillito","page_name":"AdamSillito","domain_name":"ucl","created_at":"2016-02-29T05:31:19.603-08:00","display_name":"Adam Sillito","url":"https://ucl.academia.edu/AdamSillito"},"attachments":[],"research_interests":[{"id":12071,"name":"Immunohistochemistry","url":"https://www.academia.edu/Documents/in/Immunohistochemistry"},{"id":22272,"name":"Neurophysiology","url":"https://www.academia.edu/Documents/in/Neurophysiology"},{"id":41088,"name":"Cats","url":"https://www.academia.edu/Documents/in/Cats"},{"id":193974,"name":"Neurons","url":"https://www.academia.edu/Documents/in/Neurons"},{"id":195983,"name":"Homocysteine","url":"https://www.academia.edu/Documents/in/Homocysteine"},{"id":263337,"name":"Iontophoresis","url":"https://www.academia.edu/Documents/in/Iontophoresis"},{"id":2849038,"name":"photic stimulation","url":"https://www.academia.edu/Documents/in/photic_stimulation"},{"id":2922956,"name":"Psychology and Cognitive Sciences","url":"https://www.academia.edu/Documents/in/Psychology_and_Cognitive_Sciences"},{"id":3763225,"name":"Medical and Health Sciences","url":"https://www.academia.edu/Documents/in/Medical_and_Health_Sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-48594688-figures'); } }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="4712854" id="papers"><div class="js-work-strip profile--work_container" data-work-id="74670959"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/74670959/Figure_ground_modulation_in_awake_primate_thalamus"><img alt="Research paper thumbnail of Figure-ground modulation in awake primate thalamus" class="work-thumbnail" src="https://attachments.academia-assets.com/83593913/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/74670959/Figure_ground_modulation_in_awake_primate_thalamus">Figure-ground modulation in awake primate thalamus</a></div><div class="wp-workCard_item"><span>Proceedings of the National Academy of Sciences of the United States of America</span><span>, Jan 21, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Figure-ground discrimination refers to the perception of an object, the figure, against a nondesc...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Figure-ground discrimination refers to the perception of an object, the figure, against a nondescript background. Neural mechanisms of figure-ground detection have been associated with feedback interactions between higher centers and primary visual cortex and have been held to index the effect of global analysis on local feature encoding. Here, in recordings from visual thalamus of alert primates, we demonstrate a robust enhancement of neuronal firing when the figure, as opposed to the ground, component of a motion-defined figure-ground stimulus is located over the receptive field. In this paradigm, visual stimulation of the receptive field and its near environs is identical across both conditions, suggesting the response enhancement reflects higher integrative mechanisms. It thus appears that cortical activity generating the higher-order percept of the figure is simultaneously reentered into the lowest level that is anatomically possible (the thalamus), so that the signature of the...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ccbbbb7ee70ff87fafc0a50e71ad312d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":83593913,"asset_id":74670959,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/83593913/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="74670959"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="74670959"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 74670959; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=74670959]").text(description); $(".js-view-count[data-work-id=74670959]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 74670959; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='74670959']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ccbbbb7ee70ff87fafc0a50e71ad312d" } } $('.js-work-strip[data-work-id=74670959]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":74670959,"title":"Figure-ground modulation in awake primate thalamus","translated_title":"","metadata":{"abstract":"Figure-ground discrimination refers to the perception of an object, the figure, against a nondescript background. Neural mechanisms of figure-ground detection have been associated with feedback interactions between higher centers and primary visual cortex and have been held to index the effect of global analysis on local feature encoding. Here, in recordings from visual thalamus of alert primates, we demonstrate a robust enhancement of neuronal firing when the figure, as opposed to the ground, component of a motion-defined figure-ground stimulus is located over the receptive field. In this paradigm, visual stimulation of the receptive field and its near environs is identical across both conditions, suggesting the response enhancement reflects higher integrative mechanisms. It thus appears that cortical activity generating the higher-order percept of the figure is simultaneously reentered into the lowest level that is anatomically possible (the thalamus), so that the signature of the...","publication_date":{"day":21,"month":1,"year":2015,"errors":{}},"publication_name":"Proceedings of the National Academy of Sciences of the United States of America"},"translated_abstract":"Figure-ground discrimination refers to the perception of an object, the figure, against a nondescript background. Neural mechanisms of figure-ground detection have been associated with feedback interactions between higher centers and primary visual cortex and have been held to index the effect of global analysis on local feature encoding. Here, in recordings from visual thalamus of alert primates, we demonstrate a robust enhancement of neuronal firing when the figure, as opposed to the ground, component of a motion-defined figure-ground stimulus is located over the receptive field. In this paradigm, visual stimulation of the receptive field and its near environs is identical across both conditions, suggesting the response enhancement reflects higher integrative mechanisms. It thus appears that cortical activity generating the higher-order percept of the figure is simultaneously reentered into the lowest level that is anatomically possible (the thalamus), so that the signature of the...","internal_url":"https://www.academia.edu/74670959/Figure_ground_modulation_in_awake_primate_thalamus","translated_internal_url":"","created_at":"2022-03-27T00:55:46.749-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":44148669,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":83593913,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83593913/thumbnails/1.jpg","file_name":"a46793267dda8f2bf1291738bd038e932ade.pdf","download_url":"https://www.academia.edu/attachments/83593913/download_file","bulk_download_file_name":"Figure_ground_modulation_in_awake_primat.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83593913/a46793267dda8f2bf1291738bd038e932ade-libre.pdf?1649525221=\u0026response-content-disposition=attachment%3B+filename%3DFigure_ground_modulation_in_awake_primat.pdf\u0026Expires=1744375097\u0026Signature=J5bBfMQG3TGhyArD7A2bPn1T9fI7aSYsTaQo3jgnBoHcNnTScVHzPMwxGV6DhUAwRsPoY3ohgFe8PBctvukfyAEaG4mHQCkB1~ywHDlvCoOfDDkA64nE1-s~p7Kbzg-Dqy60YLr9hfr~WkKhOrQvuGGGhysiwR3pQsDRG6oOSmqlICXWH6HRFTsRqcSkuMBzshwMCe0F-L~2ca2DtbMPRI7XGUjC3dmsC8V~QLFw-cXPP7cJhCTg5dScW2OJZ~XRwIvIAFRcYZb7yXlMy4VbfuIhCzn8zqkyPLe1xXGVXtt8OdI-y27QU3WVRiRd8E2hd2neLFJ~Nbakk0xjJUBwZg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Figure_ground_modulation_in_awake_primate_thalamus","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"Figure-ground discrimination refers to the perception of an object, the figure, against a nondescript background. Neural mechanisms of figure-ground detection have been associated with feedback interactions between higher centers and primary visual cortex and have been held to index the effect of global analysis on local feature encoding. Here, in recordings from visual thalamus of alert primates, we demonstrate a robust enhancement of neuronal firing when the figure, as opposed to the ground, component of a motion-defined figure-ground stimulus is located over the receptive field. In this paradigm, visual stimulation of the receptive field and its near environs is identical across both conditions, suggesting the response enhancement reflects higher integrative mechanisms. It thus appears that cortical activity generating the higher-order percept of the figure is simultaneously reentered into the lowest level that is anatomically possible (the thalamus), so that the signature of the...","impression_tracking_id":null,"owner":{"id":44148669,"first_name":"Adam","middle_initials":null,"last_name":"Sillito","page_name":"AdamSillito","domain_name":"ucl","created_at":"2016-02-29T05:31:19.603-08:00","display_name":"Adam Sillito","url":"https://ucl.academia.edu/AdamSillito"},"attachments":[{"id":83593913,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83593913/thumbnails/1.jpg","file_name":"a46793267dda8f2bf1291738bd038e932ade.pdf","download_url":"https://www.academia.edu/attachments/83593913/download_file","bulk_download_file_name":"Figure_ground_modulation_in_awake_primat.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83593913/a46793267dda8f2bf1291738bd038e932ade-libre.pdf?1649525221=\u0026response-content-disposition=attachment%3B+filename%3DFigure_ground_modulation_in_awake_primat.pdf\u0026Expires=1744375097\u0026Signature=J5bBfMQG3TGhyArD7A2bPn1T9fI7aSYsTaQo3jgnBoHcNnTScVHzPMwxGV6DhUAwRsPoY3ohgFe8PBctvukfyAEaG4mHQCkB1~ywHDlvCoOfDDkA64nE1-s~p7Kbzg-Dqy60YLr9hfr~WkKhOrQvuGGGhysiwR3pQsDRG6oOSmqlICXWH6HRFTsRqcSkuMBzshwMCe0F-L~2ca2DtbMPRI7XGUjC3dmsC8V~QLFw-cXPP7cJhCTg5dScW2OJZ~XRwIvIAFRcYZb7yXlMy4VbfuIhCzn8zqkyPLe1xXGVXtt8OdI-y27QU3WVRiRd8E2hd2neLFJ~Nbakk0xjJUBwZg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":5359,"name":"Visual perception","url":"https://www.academia.edu/Documents/in/Visual_perception"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":66228,"name":"Thalamus","url":"https://www.academia.edu/Documents/in/Thalamus"},{"id":573267,"name":"Macaca Mulatta","url":"https://www.academia.edu/Documents/in/Macaca_Mulatta"},{"id":2849038,"name":"photic stimulation","url":"https://www.academia.edu/Documents/in/photic_stimulation"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-74670959-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="51845333"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/51845333/Apparent_enhancement_of_inhibitory_processes_influencing_visual_cortical_cells_at_high_resting_discharge_levels"><img alt="Research paper thumbnail of Apparent enhancement of inhibitory processes influencing visual cortical cells at high resting discharge levels" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Apparent enhancement of inhibitory processes influencing visual cortical cells at high resting discharge levels</div><div class="wp-workCard_item"><span>Neurosci Lett</span><span>, 1976</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="51845333"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="51845333"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 51845333; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=51845333]").text(description); $(".js-view-count[data-work-id=51845333]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 51845333; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='51845333']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=51845333]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":51845333,"title":"Apparent enhancement of inhibitory processes influencing visual cortical cells at high resting discharge levels","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1976,"errors":{}},"publication_name":"Neurosci Lett"},"translated_abstract":null,"internal_url":"https://www.academia.edu/51845333/Apparent_enhancement_of_inhibitory_processes_influencing_visual_cortical_cells_at_high_resting_discharge_levels","translated_internal_url":"","created_at":"2021-09-11T06:19:23.801-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":44148669,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Apparent_enhancement_of_inhibitory_processes_influencing_visual_cortical_cells_at_high_resting_discharge_levels","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":44148669,"first_name":"Adam","middle_initials":null,"last_name":"Sillito","page_name":"AdamSillito","domain_name":"ucl","created_at":"2016-02-29T05:31:19.603-08:00","display_name":"Adam Sillito","url":"https://ucl.academia.edu/AdamSillito"},"attachments":[],"research_interests":[{"id":221,"name":"Psychology","url":"https://www.academia.edu/Documents/in/Psychology"},{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-51845333-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="48594754"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/48594754/Monocular_deprivation_and_the_input_to_the_visual_cortex"><img alt="Research paper thumbnail of Monocular deprivation and the input to the visual cortex" class="work-thumbnail" src="https://attachments.academia-assets.com/67125544/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/48594754/Monocular_deprivation_and_the_input_to_the_visual_cortex">Monocular deprivation and the input to the visual cortex</a></div><div class="wp-workCard_item"><span>Nature</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0d07e9631ffd85c56cf84a748fbce554" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":67125544,"asset_id":48594754,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/67125544/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="48594754"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="48594754"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 48594754; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=48594754]").text(description); $(".js-view-count[data-work-id=48594754]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 48594754; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='48594754']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0d07e9631ffd85c56cf84a748fbce554" } } $('.js-work-strip[data-work-id=48594754]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":48594754,"title":"Monocular deprivation and the input to the visual cortex","translated_title":"","metadata":{"publisher":"Springer Nature","publication_name":"Nature"},"translated_abstract":null,"internal_url":"https://www.academia.edu/48594754/Monocular_deprivation_and_the_input_to_the_visual_cortex","translated_internal_url":"","created_at":"2021-05-05T00:06:18.406-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":44148669,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":67125544,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/67125544/thumbnails/1.jpg","file_name":"260482a020210505-17702-10msoah.pdf","download_url":"https://www.academia.edu/attachments/67125544/download_file","bulk_download_file_name":"Monocular_deprivation_and_the_input_to_t.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/67125544/260482a020210505-17702-10msoah-libre.pdf?1620337201=\u0026response-content-disposition=attachment%3B+filename%3DMonocular_deprivation_and_the_input_to_t.pdf\u0026Expires=1744375097\u0026Signature=ZnCe~g9u6mICzinSv1DPOWalxYhzgERtkMpIXKO1dZnFZVm6vgEJRbDDRMnq2qRzCqLvMIvhEG-bAJ8N1yVwbVW4ccfpNi6Acg3Esf2n~nmdL6GZPtiJsRs6TkoI7CdTPDouGCHGqAyyVTf94gPIkDQzOmTXueeMlk6N4JUbGZqeAj0wDdpC4hNGRgzMbmbAWdAzlpDGJo8sbB-PXJxXsB7vfZhdd0~Z-oN2Xkl3wnzoPE4Z6P468U~OxhuqDBhiwxca7-cNnZ0nThWV44gfmeHL16kyxpu8fVTFcwZiOHrw66-rKSIfZYI95cPpbik5B4BD8a7wUNq2G7QjyUfJDA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Monocular_deprivation_and_the_input_to_the_visual_cortex","translated_slug":"","page_count":1,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":44148669,"first_name":"Adam","middle_initials":null,"last_name":"Sillito","page_name":"AdamSillito","domain_name":"ucl","created_at":"2016-02-29T05:31:19.603-08:00","display_name":"Adam Sillito","url":"https://ucl.academia.edu/AdamSillito"},"attachments":[{"id":67125544,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/67125544/thumbnails/1.jpg","file_name":"260482a020210505-17702-10msoah.pdf","download_url":"https://www.academia.edu/attachments/67125544/download_file","bulk_download_file_name":"Monocular_deprivation_and_the_input_to_t.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/67125544/260482a020210505-17702-10msoah-libre.pdf?1620337201=\u0026response-content-disposition=attachment%3B+filename%3DMonocular_deprivation_and_the_input_to_t.pdf\u0026Expires=1744375097\u0026Signature=ZnCe~g9u6mICzinSv1DPOWalxYhzgERtkMpIXKO1dZnFZVm6vgEJRbDDRMnq2qRzCqLvMIvhEG-bAJ8N1yVwbVW4ccfpNi6Acg3Esf2n~nmdL6GZPtiJsRs6TkoI7CdTPDouGCHGqAyyVTf94gPIkDQzOmTXueeMlk6N4JUbGZqeAj0wDdpC4hNGRgzMbmbAWdAzlpDGJo8sbB-PXJxXsB7vfZhdd0~Z-oN2Xkl3wnzoPE4Z6P468U~OxhuqDBhiwxca7-cNnZ0nThWV44gfmeHL16kyxpu8fVTFcwZiOHrw66-rKSIfZYI95cPpbik5B4BD8a7wUNq2G7QjyUfJDA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":33319,"name":"Nature","url":"https://www.academia.edu/Documents/in/Nature"},{"id":3473325,"name":"Monocular deprivation","url":"https://www.academia.edu/Documents/in/Monocular_deprivation"}],"urls":[{"id":10108649,"url":"http://www.nature.com/articles/Art260482a0"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-48594754-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="48594751"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/48594751/Focal_Gain_Control_of_Thalamic_Visual_Receptive_Fields_by_Layer_6_Corticothalamic_Feedback"><img alt="Research paper thumbnail of Focal Gain Control of Thalamic Visual Receptive Fields by Layer 6 Corticothalamic Feedback" class="work-thumbnail" src="https://attachments.academia-assets.com/67125517/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/48594751/Focal_Gain_Control_of_Thalamic_Visual_Receptive_Fields_by_Layer_6_Corticothalamic_Feedback">Focal Gain Control of Thalamic Visual Receptive Fields by Layer 6 Corticothalamic Feedback</a></div><div class="wp-workCard_item"><span>Cerebral cortex (New York, N.Y. : 1991)</span><span>, Jan 17, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The projections between the thalamus and primary visual cortex (V1) are a key reciprocal neural c...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The projections between the thalamus and primary visual cortex (V1) are a key reciprocal neural circuit, relaying retinal signals to cortical layers 4 & 6 while being simultaneously regulated by massive layer 6 corticothalamic feedback. Effectively dissecting the influence of this corticothalamic feedback circuit in higher mammals remains a challenge for vision research. By pharmacologically increasing the focal gain of visually driven layer 6 responses of cat V1 in a controlled fashion, we examined the effects of such focal cortical changes on the response amplitudes and spatial structure of the receptive fields (RFs) of individual dorsal lateral geniculate nucleus (dLGN) cells. We found that enhancing visually driven cortical feedback could facilitate or suppress the overall responses of dLGN cells, and such an effect was linked to the orientation preference of the cortical neuron. Related to these selective retinotopic gain changes, enhanced feedback induced the RFs of dLGN cells...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2dfd1c4239d71736ab60094e6ea729ac" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":67125517,"asset_id":48594751,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/67125517/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="48594751"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="48594751"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 48594751; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=48594751]").text(description); $(".js-view-count[data-work-id=48594751]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 48594751; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='48594751']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2dfd1c4239d71736ab60094e6ea729ac" } } $('.js-work-strip[data-work-id=48594751]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":48594751,"title":"Focal Gain Control of Thalamic Visual Receptive Fields by Layer 6 Corticothalamic Feedback","translated_title":"","metadata":{"abstract":"The projections between the thalamus and primary visual cortex (V1) are a key reciprocal neural circuit, relaying retinal signals to cortical layers 4 \u0026 6 while being simultaneously regulated by massive layer 6 corticothalamic feedback. Effectively dissecting the influence of this corticothalamic feedback circuit in higher mammals remains a challenge for vision research. By pharmacologically increasing the focal gain of visually driven layer 6 responses of cat V1 in a controlled fashion, we examined the effects of such focal cortical changes on the response amplitudes and spatial structure of the receptive fields (RFs) of individual dorsal lateral geniculate nucleus (dLGN) cells. We found that enhancing visually driven cortical feedback could facilitate or suppress the overall responses of dLGN cells, and such an effect was linked to the orientation preference of the cortical neuron. Related to these selective retinotopic gain changes, enhanced feedback induced the RFs of dLGN cells...","publication_date":{"day":17,"month":1,"year":2016,"errors":{}},"publication_name":"Cerebral cortex (New York, N.Y. : 1991)"},"translated_abstract":"The projections between the thalamus and primary visual cortex (V1) are a key reciprocal neural circuit, relaying retinal signals to cortical layers 4 \u0026 6 while being simultaneously regulated by massive layer 6 corticothalamic feedback. Effectively dissecting the influence of this corticothalamic feedback circuit in higher mammals remains a challenge for vision research. By pharmacologically increasing the focal gain of visually driven layer 6 responses of cat V1 in a controlled fashion, we examined the effects of such focal cortical changes on the response amplitudes and spatial structure of the receptive fields (RFs) of individual dorsal lateral geniculate nucleus (dLGN) cells. We found that enhancing visually driven cortical feedback could facilitate or suppress the overall responses of dLGN cells, and such an effect was linked to the orientation preference of the cortical neuron. Related to these selective retinotopic gain changes, enhanced feedback induced the RFs of dLGN cells...","internal_url":"https://www.academia.edu/48594751/Focal_Gain_Control_of_Thalamic_Visual_Receptive_Fields_by_Layer_6_Corticothalamic_Feedback","translated_internal_url":"","created_at":"2021-05-05T00:06:18.284-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":44148669,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":67125517,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/67125517/thumbnails/1.jpg","file_name":"bhw376.pdf","download_url":"https://www.academia.edu/attachments/67125517/download_file","bulk_download_file_name":"Focal_Gain_Control_of_Thalamic_Visual_Re.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/67125517/bhw376-libre.pdf?1620337209=\u0026response-content-disposition=attachment%3B+filename%3DFocal_Gain_Control_of_Thalamic_Visual_Re.pdf\u0026Expires=1744375098\u0026Signature=O1RMnkkTD9CR-2JsJzVnkjOfRK7ChkpTDf56WUkX4UEk3KImue4TnEBuHma685tqAqT5jI-vBGTRXSYT9BhnxNGyaYmrD-MpgX4zCZwHVfZEeVKulWrNIxaPzEwHivi5q6ZAusZ3HbOzQjhE5-2wp1Y6qumvAIfFRtbG-5XDq4zssWRwOycF3lVCE0DvWZMqw8DlrkWJ9vIlKXa5jGDSWIzfJjlRqE5Tb0S-J6~fEbJ2xRnVLqt7YJuwlUTpjpWu7PpvWP2uHdElaQqGhA8ExtoKWYfn4zKRI9erV8yv9embNSW-nMHyrmPgClBxIFZMPbimTSaIM68SY8SPH02PMg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Focal_Gain_Control_of_Thalamic_Visual_Receptive_Fields_by_Layer_6_Corticothalamic_Feedback","translated_slug":"","page_count":14,"language":"en","content_type":"Work","summary":"The projections between the thalamus and primary visual cortex (V1) are a key reciprocal neural circuit, relaying retinal signals to cortical layers 4 \u0026 6 while being simultaneously regulated by massive layer 6 corticothalamic feedback. Effectively dissecting the influence of this corticothalamic feedback circuit in higher mammals remains a challenge for vision research. By pharmacologically increasing the focal gain of visually driven layer 6 responses of cat V1 in a controlled fashion, we examined the effects of such focal cortical changes on the response amplitudes and spatial structure of the receptive fields (RFs) of individual dorsal lateral geniculate nucleus (dLGN) cells. We found that enhancing visually driven cortical feedback could facilitate or suppress the overall responses of dLGN cells, and such an effect was linked to the orientation preference of the cortical neuron. Related to these selective retinotopic gain changes, enhanced feedback induced the RFs of dLGN cells...","impression_tracking_id":null,"owner":{"id":44148669,"first_name":"Adam","middle_initials":null,"last_name":"Sillito","page_name":"AdamSillito","domain_name":"ucl","created_at":"2016-02-29T05:31:19.603-08:00","display_name":"Adam Sillito","url":"https://ucl.academia.edu/AdamSillito"},"attachments":[{"id":67125517,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/67125517/thumbnails/1.jpg","file_name":"bhw376.pdf","download_url":"https://www.academia.edu/attachments/67125517/download_file","bulk_download_file_name":"Focal_Gain_Control_of_Thalamic_Visual_Re.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/67125517/bhw376-libre.pdf?1620337209=\u0026response-content-disposition=attachment%3B+filename%3DFocal_Gain_Control_of_Thalamic_Visual_Re.pdf\u0026Expires=1744375098\u0026Signature=O1RMnkkTD9CR-2JsJzVnkjOfRK7ChkpTDf56WUkX4UEk3KImue4TnEBuHma685tqAqT5jI-vBGTRXSYT9BhnxNGyaYmrD-MpgX4zCZwHVfZEeVKulWrNIxaPzEwHivi5q6ZAusZ3HbOzQjhE5-2wp1Y6qumvAIfFRtbG-5XDq4zssWRwOycF3lVCE0DvWZMqw8DlrkWJ9vIlKXa5jGDSWIzfJjlRqE5Tb0S-J6~fEbJ2xRnVLqt7YJuwlUTpjpWu7PpvWP2uHdElaQqGhA8ExtoKWYfn4zKRI9erV8yv9embNSW-nMHyrmPgClBxIFZMPbimTSaIM68SY8SPH02PMg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science"},{"id":78467,"name":"Cerebral Cortex","url":"https://www.academia.edu/Documents/in/Cerebral_Cortex"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-48594751-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="48594749"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/48594749/GABA_mediated_inhibitory_processes_in_the_function_of_the_geniculo_striate_system"><img alt="Research paper thumbnail of GABA mediated inhibitory processes in the function of the geniculo-striate system" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">GABA mediated inhibitory processes in the function of the geniculo-striate system</div><div class="wp-workCard_item"><span>Progress in Brain Research</span><span>, Feb 1, 1992</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="48594749"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="48594749"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 48594749; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=48594749]").text(description); $(".js-view-count[data-work-id=48594749]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 48594749; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='48594749']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=48594749]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":48594749,"title":"GABA mediated inhibitory processes in the function of the geniculo-striate system","translated_title":"","metadata":{"publication_date":{"day":1,"month":2,"year":1992,"errors":{}},"publication_name":"Progress in Brain Research"},"translated_abstract":null,"internal_url":"https://www.academia.edu/48594749/GABA_mediated_inhibitory_processes_in_the_function_of_the_geniculo_striate_system","translated_internal_url":"","created_at":"2021-05-05T00:06:18.159-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":44148669,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"GABA_mediated_inhibitory_processes_in_the_function_of_the_geniculo_striate_system","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":44148669,"first_name":"Adam","middle_initials":null,"last_name":"Sillito","page_name":"AdamSillito","domain_name":"ucl","created_at":"2016-02-29T05:31:19.603-08:00","display_name":"Adam Sillito","url":"https://ucl.academia.edu/AdamSillito"},"attachments":[],"research_interests":[{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science"},{"id":49962,"name":"Visual Cortex","url":"https://www.academia.edu/Documents/in/Visual_Cortex"},{"id":418263,"name":"SYNAPSES","url":"https://www.academia.edu/Documents/in/SYNAPSES"},{"id":704401,"name":"Neural pathways","url":"https://www.academia.edu/Documents/in/Neural_pathways"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"},{"id":1619808,"name":"Gamma-Aminobutyric Acid","url":"https://www.academia.edu/Documents/in/Gamma-Aminobutyric_Acid"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-48594749-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="48594747"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/48594747/Neurotransmitters_in_the_Retina_and_the_Visual_Centres_Biomedical_Research_Vol_3_Suppl_December_1982_edited_by_A_Kaneko_N_Tsukahara_and_K_Uchizono_Biomedical_Research_Foundation_of_Japan_1982_Distributed_outside_Japan_by_Maruzen_Company_Tokyo_45_00_4_30_sea_mail_postage_and_hand_"><img alt="Research paper thumbnail of Neurotransmitters in the Retina and the Visual Centres (Biomedical Research Vol. 3, Suppl. December 1982)edited by A. Kaneko, N. Tsukahara and K. Uchizono, Biomedical Research Foundation of Japan, 1982. (Distributed outside Japan by Maruzen Company, Tokyo.) $45.00 ($4.30 sea mail postage and hand..." class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Neurotransmitters in the Retina and the Visual Centres (Biomedical Research Vol. 3, Suppl. December 1982)edited by A. Kaneko, N. Tsukahara and K. Uchizono, Biomedical Research Foundation of Japan, 1982. (Distributed outside Japan by Maruzen Company, Tokyo.) $45.00 ($4.30 sea mail postage and hand...</div><div class="wp-workCard_item"><span>Trends Neurosci</span><span>, 1983</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="48594747"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="48594747"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 48594747; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=48594747]").text(description); $(".js-view-count[data-work-id=48594747]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 48594747; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='48594747']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=48594747]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":48594747,"title":"Neurotransmitters in the Retina and the Visual Centres (Biomedical Research Vol. 3, Suppl. December 1982)edited by A. Kaneko, N. Tsukahara and K. Uchizono, Biomedical Research Foundation of Japan, 1982. (Distributed outside Japan by Maruzen Company, Tokyo.) $45.00 ($4.30 sea mail postage and hand...","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1983,"errors":{}},"publication_name":"Trends Neurosci"},"translated_abstract":null,"internal_url":"https://www.academia.edu/48594747/Neurotransmitters_in_the_Retina_and_the_Visual_Centres_Biomedical_Research_Vol_3_Suppl_December_1982_edited_by_A_Kaneko_N_Tsukahara_and_K_Uchizono_Biomedical_Research_Foundation_of_Japan_1982_Distributed_outside_Japan_by_Maruzen_Company_Tokyo_45_00_4_30_sea_mail_postage_and_hand_","translated_internal_url":"","created_at":"2021-05-05T00:06:18.065-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":44148669,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Neurotransmitters_in_the_Retina_and_the_Visual_Centres_Biomedical_Research_Vol_3_Suppl_December_1982_edited_by_A_Kaneko_N_Tsukahara_and_K_Uchizono_Biomedical_Research_Foundation_of_Japan_1982_Distributed_outside_Japan_by_Maruzen_Company_Tokyo_45_00_4_30_sea_mail_postage_and_hand_","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":44148669,"first_name":"Adam","middle_initials":null,"last_name":"Sillito","page_name":"AdamSillito","domain_name":"ucl","created_at":"2016-02-29T05:31:19.603-08:00","display_name":"Adam Sillito","url":"https://ucl.academia.edu/AdamSillito"},"attachments":[],"research_interests":[{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-48594747-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="48594743"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/48594743/Contest_Dependent_Interactions_and_Visual_Processing_in_V1"><img alt="Research paper thumbnail of Contest-Dependent Interactions and Visual Processing in V1" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Contest-Dependent Interactions and Visual Processing in V1</div><div class="wp-workCard_item"><span>Journal of Physiology</span><span>, 1996</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="48594743"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="48594743"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 48594743; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=48594743]").text(description); $(".js-view-count[data-work-id=48594743]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 48594743; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='48594743']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=48594743]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":48594743,"title":"Contest-Dependent Interactions and Visual Processing in V1","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1996,"errors":{}},"publication_name":"Journal of Physiology"},"translated_abstract":null,"internal_url":"https://www.academia.edu/48594743/Contest_Dependent_Interactions_and_Visual_Processing_in_V1","translated_internal_url":"","created_at":"2021-05-05T00:06:17.905-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":44148669,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Contest_Dependent_Interactions_and_Visual_Processing_in_V1","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":44148669,"first_name":"Adam","middle_initials":null,"last_name":"Sillito","page_name":"AdamSillito","domain_name":"ucl","created_at":"2016-02-29T05:31:19.603-08:00","display_name":"Adam Sillito","url":"https://ucl.academia.edu/AdamSillito"},"attachments":[],"research_interests":[{"id":167,"name":"Physiology","url":"https://www.academia.edu/Documents/in/Physiology"}],"urls":[{"id":10108647,"url":"http://cat.inist.fr/?aModele=afficheN\u0026cpsidt=10711187"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-48594743-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="48594739"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/48594739/Spatial_Characteristics_and_Laminar_Organisation_of_Feedback_Effects_From_MT_to_V1"><img alt="Research paper thumbnail of Spatial Characteristics and Laminar Organisation of Feedback Effects From MT to V1" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Spatial Characteristics and Laminar Organisation of Feedback Effects From MT to V1</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="48594739"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="48594739"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 48594739; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=48594739]").text(description); $(".js-view-count[data-work-id=48594739]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 48594739; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='48594739']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=48594739]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":48594739,"title":"Spatial Characteristics and Laminar Organisation of Feedback Effects From MT to V1","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2001,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/48594739/Spatial_Characteristics_and_Laminar_Organisation_of_Feedback_Effects_From_MT_to_V1","translated_internal_url":"","created_at":"2021-05-05T00:06:17.811-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":44148669,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Spatial_Characteristics_and_Laminar_Organisation_of_Feedback_Effects_From_MT_to_V1","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":44148669,"first_name":"Adam","middle_initials":null,"last_name":"Sillito","page_name":"AdamSillito","domain_name":"ucl","created_at":"2016-02-29T05:31:19.603-08:00","display_name":"Adam Sillito","url":"https://ucl.academia.edu/AdamSillito"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-48594739-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="48594736"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/48594736/Feedback_systems_in_Visual_Processing"><img alt="Research paper thumbnail of Feedback systems in Visual Processing" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Feedback systems in Visual Processing</div><div class="wp-workCard_item"><span>In Chalupa Lm and Werner Js the Visual Neurosciences Mit Press Cambridge Massachusetts</span><span>, 2003</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="48594736"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="48594736"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 48594736; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=48594736]").text(description); $(".js-view-count[data-work-id=48594736]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 48594736; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='48594736']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=48594736]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":48594736,"title":"Feedback systems in Visual Processing","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2003,"errors":{}},"publication_name":"In Chalupa Lm and Werner Js the Visual Neurosciences Mit Press Cambridge Massachusetts"},"translated_abstract":null,"internal_url":"https://www.academia.edu/48594736/Feedback_systems_in_Visual_Processing","translated_internal_url":"","created_at":"2021-05-05T00:06:17.667-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":44148669,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Feedback_systems_in_Visual_Processing","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":44148669,"first_name":"Adam","middle_initials":null,"last_name":"Sillito","page_name":"AdamSillito","domain_name":"ucl","created_at":"2016-02-29T05:31:19.603-08:00","display_name":"Adam Sillito","url":"https://ucl.academia.edu/AdamSillito"},"attachments":[],"research_interests":[{"id":161,"name":"Neuroscience","url":"https://www.academia.edu/Documents/in/Neuroscience"},{"id":107320,"name":"System","url":"https://www.academia.edu/Documents/in/System"},{"id":137633,"name":"Feedback","url":"https://www.academia.edu/Documents/in/Feedback"},{"id":151357,"name":"Visual","url":"https://www.academia.edu/Documents/in/Visual"},{"id":160102,"name":"Systems","url":"https://www.academia.edu/Documents/in/Systems"}],"urls":[{"id":10108645,"url":"http://discovery.ucl.ac.uk/55028/"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-48594736-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="48594732"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/48594732/Neural_communication_and_control_Advances_in_physiological_sciences_vol_30_Edited_by_Gy_Szekely_E_Labos_and_S_Damjanovich_Pp_340_Pergamon_Press_Oxford_and_Akadem_ai_Kaid_Budapest_1981_E15_50_35_00_"><img alt="Research paper thumbnail of Neural communication and control. Advances in physiological sciences, vol. 30 Edited by Gy. Szekely, E. Labos and S. Damjanovich. Pp. 340. Pergamon Press, Oxford and Akadem�ai Kaid�, Budapest. 1981. E15.50 ($35.00)" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Neural communication and control. Advances in physiological sciences, vol. 30 Edited by Gy. Szekely, E. Labos and S. Damjanovich. Pp. 340. Pergamon Press, Oxford and Akadem�ai Kaid�, Budapest. 1981. E15.50 ($35.00)</div><div class="wp-workCard_item"><span>Endeavour</span><span>, 1982</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="48594732"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="48594732"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 48594732; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=48594732]").text(description); $(".js-view-count[data-work-id=48594732]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 48594732; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='48594732']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=48594732]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":48594732,"title":"Neural communication and control. Advances in physiological sciences, vol. 30 Edited by Gy. Szekely, E. Labos and S. Damjanovich. Pp. 340. Pergamon Press, Oxford and Akadem�ai Kaid�, Budapest. 1981. E15.50 ($35.00)","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1982,"errors":{}},"publication_name":"Endeavour"},"translated_abstract":null,"internal_url":"https://www.academia.edu/48594732/Neural_communication_and_control_Advances_in_physiological_sciences_vol_30_Edited_by_Gy_Szekely_E_Labos_and_S_Damjanovich_Pp_340_Pergamon_Press_Oxford_and_Akadem_ai_Kaid_Budapest_1981_E15_50_35_00_","translated_internal_url":"","created_at":"2021-05-05T00:06:17.557-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":44148669,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Neural_communication_and_control_Advances_in_physiological_sciences_vol_30_Edited_by_Gy_Szekely_E_Labos_and_S_Damjanovich_Pp_340_Pergamon_Press_Oxford_and_Akadem_ai_Kaid_Budapest_1981_E15_50_35_00_","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":44148669,"first_name":"Adam","middle_initials":null,"last_name":"Sillito","page_name":"AdamSillito","domain_name":"ucl","created_at":"2016-02-29T05:31:19.603-08:00","display_name":"Adam Sillito","url":"https://ucl.academia.edu/AdamSillito"},"attachments":[],"research_interests":[{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":455535,"name":"Endeavour","url":"https://www.academia.edu/Documents/in/Endeavour"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-48594732-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="48594726"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/48594726/The_contribution_of_the_non_N_methyl_D_aspartate_group_of_excitatory_amino_acid_receptors_to_retinogeniculate_transmission_in_the_cat"><img alt="Research paper thumbnail of The contribution of the non-N-methyl-D-aspartate group of excitatory amino acid receptors to retinogeniculate transmission in the cat" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">The contribution of the non-N-methyl-D-aspartate group of excitatory amino acid receptors to retinogeniculate transmission in the cat</div><div class="wp-workCard_item"><span>Neuroscience</span><span>, 1990</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The N-methyl-D-aspartate receptor antagonist 3-((+/-)-2-carboxypiperazin-4-yl)-propyl-1-phosphoni...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The N-methyl-D-aspartate receptor antagonist 3-((+/-)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid and the non-N-methyl-D-aspartate receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione have been iontophoretically applied to cells in the cat dorsal lateral geniculate nucleus and their effects on the visual response compared. The objective was to examine the possibility of both N-methyl-D-aspartate and non-N-methyl-D-aspartate receptors being involved in the transfer of the retinal input to X and Y cells in the dorsal lateral geniculate nucleus. The results show that selective blockade of either N-methyl-D-aspartate receptors or non-N-methyl-D-aspartate receptors can block the visual response of both X and Y cells. Overall, the most potent reductions of visual responses across the population of cells studied were obtained with the N-methyl-D-aspartate receptor antagonist with X cells showing a slightly greater reduction on average (80%) than Y cells (66%). The relatively smaller overall reductions in visual responses obtained with the non-N-methyl-D-aspartate receptor blockade reflected the lower levels of blockade that were compatible with selectivity using iontophoretic applications of 6-cyano-7-nitroquinoxaline-2,3-dione. It is concluded that N-methyl-D-aspartate and non-N-methyl-D-aspartate receptors are critically involved in the visual response of both &amp;quot;on&amp;quot; and &amp;quot;off&amp;quot; centre X and Y cells.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="48594726"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="48594726"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 48594726; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=48594726]").text(description); $(".js-view-count[data-work-id=48594726]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 48594726; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='48594726']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=48594726]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":48594726,"title":"The contribution of the non-N-methyl-D-aspartate group of excitatory amino acid receptors to retinogeniculate transmission in the cat","translated_title":"","metadata":{"abstract":"The N-methyl-D-aspartate receptor antagonist 3-((+/-)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid and the non-N-methyl-D-aspartate receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione have been iontophoretically applied to cells in the cat dorsal lateral geniculate nucleus and their effects on the visual response compared. The objective was to examine the possibility of both N-methyl-D-aspartate and non-N-methyl-D-aspartate receptors being involved in the transfer of the retinal input to X and Y cells in the dorsal lateral geniculate nucleus. The results show that selective blockade of either N-methyl-D-aspartate receptors or non-N-methyl-D-aspartate receptors can block the visual response of both X and Y cells. Overall, the most potent reductions of visual responses across the population of cells studied were obtained with the N-methyl-D-aspartate receptor antagonist with X cells showing a slightly greater reduction on average (80%) than Y cells (66%). The relatively smaller overall reductions in visual responses obtained with the non-N-methyl-D-aspartate receptor blockade reflected the lower levels of blockade that were compatible with selectivity using iontophoretic applications of 6-cyano-7-nitroquinoxaline-2,3-dione. It is concluded that N-methyl-D-aspartate and non-N-methyl-D-aspartate receptors are critically involved in the visual response of both \u0026amp;quot;on\u0026amp;quot; and \u0026amp;quot;off\u0026amp;quot; centre X and Y cells.","publication_date":{"day":null,"month":null,"year":1990,"errors":{}},"publication_name":"Neuroscience"},"translated_abstract":"The N-methyl-D-aspartate receptor antagonist 3-((+/-)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid and the non-N-methyl-D-aspartate receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione have been iontophoretically applied to cells in the cat dorsal lateral geniculate nucleus and their effects on the visual response compared. The objective was to examine the possibility of both N-methyl-D-aspartate and non-N-methyl-D-aspartate receptors being involved in the transfer of the retinal input to X and Y cells in the dorsal lateral geniculate nucleus. The results show that selective blockade of either N-methyl-D-aspartate receptors or non-N-methyl-D-aspartate receptors can block the visual response of both X and Y cells. Overall, the most potent reductions of visual responses across the population of cells studied were obtained with the N-methyl-D-aspartate receptor antagonist with X cells showing a slightly greater reduction on average (80%) than Y cells (66%). The relatively smaller overall reductions in visual responses obtained with the non-N-methyl-D-aspartate receptor blockade reflected the lower levels of blockade that were compatible with selectivity using iontophoretic applications of 6-cyano-7-nitroquinoxaline-2,3-dione. It is concluded that N-methyl-D-aspartate and non-N-methyl-D-aspartate receptors are critically involved in the visual response of both \u0026amp;quot;on\u0026amp;quot; and \u0026amp;quot;off\u0026amp;quot; centre X and Y cells.","internal_url":"https://www.academia.edu/48594726/The_contribution_of_the_non_N_methyl_D_aspartate_group_of_excitatory_amino_acid_receptors_to_retinogeniculate_transmission_in_the_cat","translated_internal_url":"","created_at":"2021-05-05T00:06:17.363-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":44148669,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_contribution_of_the_non_N_methyl_D_aspartate_group_of_excitatory_amino_acid_receptors_to_retinogeniculate_transmission_in_the_cat","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"The N-methyl-D-aspartate receptor antagonist 3-((+/-)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid and the non-N-methyl-D-aspartate receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione have been iontophoretically applied to cells in the cat dorsal lateral geniculate nucleus and their effects on the visual response compared. The objective was to examine the possibility of both N-methyl-D-aspartate and non-N-methyl-D-aspartate receptors being involved in the transfer of the retinal input to X and Y cells in the dorsal lateral geniculate nucleus. The results show that selective blockade of either N-methyl-D-aspartate receptors or non-N-methyl-D-aspartate receptors can block the visual response of both X and Y cells. Overall, the most potent reductions of visual responses across the population of cells studied were obtained with the N-methyl-D-aspartate receptor antagonist with X cells showing a slightly greater reduction on average (80%) than Y cells (66%). The relatively smaller overall reductions in visual responses obtained with the non-N-methyl-D-aspartate receptor blockade reflected the lower levels of blockade that were compatible with selectivity using iontophoretic applications of 6-cyano-7-nitroquinoxaline-2,3-dione. It is concluded that N-methyl-D-aspartate and non-N-methyl-D-aspartate receptors are critically involved in the visual response of both \u0026amp;quot;on\u0026amp;quot; and \u0026amp;quot;off\u0026amp;quot; centre X and Y cells.","impression_tracking_id":null,"owner":{"id":44148669,"first_name":"Adam","middle_initials":null,"last_name":"Sillito","page_name":"AdamSillito","domain_name":"ucl","created_at":"2016-02-29T05:31:19.603-08:00","display_name":"Adam Sillito","url":"https://ucl.academia.edu/AdamSillito"},"attachments":[],"research_interests":[{"id":161,"name":"Neuroscience","url":"https://www.academia.edu/Documents/in/Neuroscience"},{"id":221,"name":"Psychology","url":"https://www.academia.edu/Documents/in/Psychology"},{"id":2007,"name":"Electrophysiology","url":"https://www.academia.edu/Documents/in/Electrophysiology"},{"id":41088,"name":"Cats","url":"https://www.academia.edu/Documents/in/Cats"},{"id":117200,"name":"Retina","url":"https://www.academia.edu/Documents/in/Retina"},{"id":138538,"name":"CAT","url":"https://www.academia.edu/Documents/in/CAT"},{"id":513105,"name":"Retinal Ganglion Cells","url":"https://www.academia.edu/Documents/in/Retinal_Ganglion_Cells"},{"id":955727,"name":"Action Potentials","url":"https://www.academia.edu/Documents/in/Action_Potentials"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"},{"id":2012816,"name":"Glutamate Receptor","url":"https://www.academia.edu/Documents/in/Glutamate_Receptor"},{"id":2228752,"name":"Visual Pathway","url":"https://www.academia.edu/Documents/in/Visual_Pathway"},{"id":2555845,"name":"NMDA receptor","url":"https://www.academia.edu/Documents/in/NMDA_receptor"}],"urls":[{"id":10108641,"url":"http://cat.inist.fr/?aModele=afficheN\u0026cpsidt=6846712"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-48594726-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="48594722"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/48594722/Non_length_tuned_cells_in_layers_II_III_and_IV_of_the_visual_cortex_the_effect_of_blockade_of_layer_VI_on_responses_to_stimuli_of_different_lengths"><img alt="Research paper thumbnail of Non-length-tuned cells in layers II/III and IV of the visual cortex: the effect of blockade of layer VI on responses to stimuli of different lengths" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Non-length-tuned cells in layers II/III and IV of the visual cortex: the effect of blockade of layer VI on responses to stimuli of different lengths</div><div class="wp-workCard_item"><span>Exp Brain Res</span><span>, 1995</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We have previously shown, using a local inactivation technique, that layer VI provides a facilita...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We have previously shown, using a local inactivation technique, that layer VI provides a facilitatory input to the majority of hypercomplex cells located in layer IV above, and hence to layers II/III, which in many cases enhances length selectivity. However, many cells in these layers are not tuned for stimulus length, being equally responsive to long and short stimuli. Thus it is important to known whether layer VI can influence the responses of these cells. We have now used a similar paradigm of iontophoretic application of GABA to examine the effect of blockade of layer VI on the length tuning profiles of these cells in layers II-IV. During the blockade of layer VI, the most common effect, seen in 41% of the cells, was inhibition of visual responses, (i.e. commensurate with loss of a facilitatory input). An increase in response magnitude was found in 21% of the population, and responses were unaffected in 36% of cells tested. This suggests that the predominant influence of local regions of layer VI on this cell type, located in layers II/III and IV, is facilitatory, with a smaller proportion of cells receiving an inhibitory input. Such effects were seen even with the shortest lengths tested, suggesting once more that elements of layer VI are responsive to stimuli much shorter than was previously accepted. Thus these data suggest that layer VI plays a role in the generation of the response dynamics of non-length-tuned cells in overlying layers II/III and IV.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="48594722"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="48594722"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 48594722; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=48594722]").text(description); $(".js-view-count[data-work-id=48594722]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 48594722; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='48594722']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=48594722]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":48594722,"title":"Non-length-tuned cells in layers II/III and IV of the visual cortex: the effect of blockade of layer VI on responses to stimuli of different lengths","translated_title":"","metadata":{"abstract":"We have previously shown, using a local inactivation technique, that layer VI provides a facilitatory input to the majority of hypercomplex cells located in layer IV above, and hence to layers II/III, which in many cases enhances length selectivity. However, many cells in these layers are not tuned for stimulus length, being equally responsive to long and short stimuli. Thus it is important to known whether layer VI can influence the responses of these cells. We have now used a similar paradigm of iontophoretic application of GABA to examine the effect of blockade of layer VI on the length tuning profiles of these cells in layers II-IV. During the blockade of layer VI, the most common effect, seen in 41% of the cells, was inhibition of visual responses, (i.e. commensurate with loss of a facilitatory input). An increase in response magnitude was found in 21% of the population, and responses were unaffected in 36% of cells tested. This suggests that the predominant influence of local regions of layer VI on this cell type, located in layers II/III and IV, is facilitatory, with a smaller proportion of cells receiving an inhibitory input. Such effects were seen even with the shortest lengths tested, suggesting once more that elements of layer VI are responsive to stimuli much shorter than was previously accepted. Thus these data suggest that layer VI plays a role in the generation of the response dynamics of non-length-tuned cells in overlying layers II/III and IV.","publication_date":{"day":null,"month":null,"year":1995,"errors":{}},"publication_name":"Exp Brain Res"},"translated_abstract":"We have previously shown, using a local inactivation technique, that layer VI provides a facilitatory input to the majority of hypercomplex cells located in layer IV above, and hence to layers II/III, which in many cases enhances length selectivity. However, many cells in these layers are not tuned for stimulus length, being equally responsive to long and short stimuli. Thus it is important to known whether layer VI can influence the responses of these cells. We have now used a similar paradigm of iontophoretic application of GABA to examine the effect of blockade of layer VI on the length tuning profiles of these cells in layers II-IV. During the blockade of layer VI, the most common effect, seen in 41% of the cells, was inhibition of visual responses, (i.e. commensurate with loss of a facilitatory input). An increase in response magnitude was found in 21% of the population, and responses were unaffected in 36% of cells tested. This suggests that the predominant influence of local regions of layer VI on this cell type, located in layers II/III and IV, is facilitatory, with a smaller proportion of cells receiving an inhibitory input. Such effects were seen even with the shortest lengths tested, suggesting once more that elements of layer VI are responsive to stimuli much shorter than was previously accepted. Thus these data suggest that layer VI plays a role in the generation of the response dynamics of non-length-tuned cells in overlying layers II/III and IV.","internal_url":"https://www.academia.edu/48594722/Non_length_tuned_cells_in_layers_II_III_and_IV_of_the_visual_cortex_the_effect_of_blockade_of_layer_VI_on_responses_to_stimuli_of_different_lengths","translated_internal_url":"","created_at":"2021-05-05T00:06:17.255-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":44148669,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Non_length_tuned_cells_in_layers_II_III_and_IV_of_the_visual_cortex_the_effect_of_blockade_of_layer_VI_on_responses_to_stimuli_of_different_lengths","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"We have previously shown, using a local inactivation technique, that layer VI provides a facilitatory input to the majority of hypercomplex cells located in layer IV above, and hence to layers II/III, which in many cases enhances length selectivity. However, many cells in these layers are not tuned for stimulus length, being equally responsive to long and short stimuli. Thus it is important to known whether layer VI can influence the responses of these cells. We have now used a similar paradigm of iontophoretic application of GABA to examine the effect of blockade of layer VI on the length tuning profiles of these cells in layers II-IV. During the blockade of layer VI, the most common effect, seen in 41% of the cells, was inhibition of visual responses, (i.e. commensurate with loss of a facilitatory input). An increase in response magnitude was found in 21% of the population, and responses were unaffected in 36% of cells tested. This suggests that the predominant influence of local regions of layer VI on this cell type, located in layers II/III and IV, is facilitatory, with a smaller proportion of cells receiving an inhibitory input. Such effects were seen even with the shortest lengths tested, suggesting once more that elements of layer VI are responsive to stimuli much shorter than was previously accepted. Thus these data suggest that layer VI plays a role in the generation of the response dynamics of non-length-tuned cells in overlying layers II/III and IV.","impression_tracking_id":null,"owner":{"id":44148669,"first_name":"Adam","middle_initials":null,"last_name":"Sillito","page_name":"AdamSillito","domain_name":"ucl","created_at":"2016-02-29T05:31:19.603-08:00","display_name":"Adam Sillito","url":"https://ucl.academia.edu/AdamSillito"},"attachments":[],"research_interests":[{"id":41088,"name":"Cats","url":"https://www.academia.edu/Documents/in/Cats"},{"id":49962,"name":"Visual Cortex","url":"https://www.academia.edu/Documents/in/Visual_Cortex"},{"id":263337,"name":"Iontophoresis","url":"https://www.academia.edu/Documents/in/Iontophoresis"},{"id":1619808,"name":"Gamma-Aminobutyric Acid","url":"https://www.academia.edu/Documents/in/Gamma-Aminobutyric_Acid"},{"id":1959302,"name":"Muscimol","url":"https://www.academia.edu/Documents/in/Muscimol"},{"id":2849038,"name":"photic stimulation","url":"https://www.academia.edu/Documents/in/photic_stimulation"},{"id":2922956,"name":"Psychology and Cognitive Sciences","url":"https://www.academia.edu/Documents/in/Psychology_and_Cognitive_Sciences"},{"id":3763225,"name":"Medical and Health Sciences","url":"https://www.academia.edu/Documents/in/Medical_and_Health_Sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-48594722-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="48594719"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/48594719/The_contribution_of_inhibitory_mechanisms_to_the_receptive_field_properties_of_neurones_in_the_striate_cortex_of_the_cat"><img alt="Research paper thumbnail of The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat" class="work-thumbnail" src="https://attachments.academia-assets.com/67125512/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/48594719/The_contribution_of_inhibitory_mechanisms_to_the_receptive_field_properties_of_neurones_in_the_striate_cortex_of_the_cat">The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat</a></div><div class="wp-workCard_item"><span>The Journal of Physiology</span><span>, 1975</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A. M. SILLITO 7. On the basis of these results it is suggested that the normal sub- division of t...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A. M. SILLITO 7. On the basis of these results it is suggested that the normal sub- division of the simple cell receptive field into separate 'on' and 'off' regions and its directional specificity are dependent on intracortical in- hibitory processes that are blocked by bicuculline. The orientational tuning of simple cells conversely appears to be largely determined by the excitatory input but normally enhanced by lateral type inhibitory pro- cesses acting in the orientation domain. 8. It also appears that the excitatory input to some complex cells is not orientation specific. This suggests that for these cells it is extremely unlikely that they receive an orientation specific excitatory input from simple cells.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1319638285f95ef4f38c48c7916d6db0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":67125512,"asset_id":48594719,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/67125512/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="48594719"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="48594719"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 48594719; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=48594719]").text(description); $(".js-view-count[data-work-id=48594719]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 48594719; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='48594719']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1319638285f95ef4f38c48c7916d6db0" } } $('.js-work-strip[data-work-id=48594719]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":48594719,"title":"The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat","translated_title":"","metadata":{"publisher":"Wiley-Blackwell","grobid_abstract":"A. M. SILLITO 7. On the basis of these results it is suggested that the normal sub- division of the simple cell receptive field into separate 'on' and 'off' regions and its directional specificity are dependent on intracortical in- hibitory processes that are blocked by bicuculline. The orientational tuning of simple cells conversely appears to be largely determined by the excitatory input but normally enhanced by lateral type inhibitory pro- cesses acting in the orientation domain. 8. It also appears that the excitatory input to some complex cells is not orientation specific. This suggests that for these cells it is extremely unlikely that they receive an orientation specific excitatory input from simple cells.","publication_date":{"day":null,"month":null,"year":1975,"errors":{}},"publication_name":"The Journal of Physiology","grobid_abstract_attachment_id":67125512},"translated_abstract":null,"internal_url":"https://www.academia.edu/48594719/The_contribution_of_inhibitory_mechanisms_to_the_receptive_field_properties_of_neurones_in_the_striate_cortex_of_the_cat","translated_internal_url":"","created_at":"2021-05-05T00:06:17.152-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":44148669,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":67125512,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/67125512/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/67125512/download_file","bulk_download_file_name":"The_contribution_of_inhibitory_mechanism.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/67125512/pdf-libre.pdf?1620337208=\u0026response-content-disposition=attachment%3B+filename%3DThe_contribution_of_inhibitory_mechanism.pdf\u0026Expires=1744375098\u0026Signature=hQmaNfu4PYfFytY4AEF-aaMwk02kEXAFaeXt0kqkkppDWCc-5w-TnwLl3NSq~pCtUXu41Qgo9OUJGyutnyrfOFIH-oAmUa04CzkaW9w-TGLPXBQC3Nv91E~vA8z8uLV5w~FOxmfkjs4jXpy5PEqkoi6skZJ8Wpe51h6ePfTx5F6IwpuDaJ1Nk8XyqC3xJBJfH40hq4uOiKJQM6030MvMRdK-wQQMgR14tw8AiBkqaiyGywxV67KM2zdPg6-eO1oLmIoRQ~c5hGrNw2voV8nRvQ~eQW~W81arlAmPn-VrLNATRsw3153-iyAyOh8ssUiyMc8sAm7dmddhdfplGpQbbQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_contribution_of_inhibitory_mechanisms_to_the_receptive_field_properties_of_neurones_in_the_striate_cortex_of_the_cat","translated_slug":"","page_count":25,"language":"en","content_type":"Work","summary":"A. M. SILLITO 7. On the basis of these results it is suggested that the normal sub- division of the simple cell receptive field into separate 'on' and 'off' regions and its directional specificity are dependent on intracortical in- hibitory processes that are blocked by bicuculline. The orientational tuning of simple cells conversely appears to be largely determined by the excitatory input but normally enhanced by lateral type inhibitory pro- cesses acting in the orientation domain. 8. It also appears that the excitatory input to some complex cells is not orientation specific. This suggests that for these cells it is extremely unlikely that they receive an orientation specific excitatory input from simple cells.","impression_tracking_id":null,"owner":{"id":44148669,"first_name":"Adam","middle_initials":null,"last_name":"Sillito","page_name":"AdamSillito","domain_name":"ucl","created_at":"2016-02-29T05:31:19.603-08:00","display_name":"Adam Sillito","url":"https://ucl.academia.edu/AdamSillito"},"attachments":[{"id":67125512,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/67125512/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/67125512/download_file","bulk_download_file_name":"The_contribution_of_inhibitory_mechanism.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/67125512/pdf-libre.pdf?1620337208=\u0026response-content-disposition=attachment%3B+filename%3DThe_contribution_of_inhibitory_mechanism.pdf\u0026Expires=1744375098\u0026Signature=hQmaNfu4PYfFytY4AEF-aaMwk02kEXAFaeXt0kqkkppDWCc-5w-TnwLl3NSq~pCtUXu41Qgo9OUJGyutnyrfOFIH-oAmUa04CzkaW9w-TGLPXBQC3Nv91E~vA8z8uLV5w~FOxmfkjs4jXpy5PEqkoi6skZJ8Wpe51h6ePfTx5F6IwpuDaJ1Nk8XyqC3xJBJfH40hq4uOiKJQM6030MvMRdK-wQQMgR14tw8AiBkqaiyGywxV67KM2zdPg6-eO1oLmIoRQ~c5hGrNw2voV8nRvQ~eQW~W81arlAmPn-VrLNATRsw3153-iyAyOh8ssUiyMc8sAm7dmddhdfplGpQbbQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":158333,"name":"Receptive Field","url":"https://www.academia.edu/Documents/in/Receptive_Field"},{"id":2002627,"name":"Striate Cortex","url":"https://www.academia.edu/Documents/in/Striate_Cortex"},{"id":3763225,"name":"Medical and Health Sciences","url":"https://www.academia.edu/Documents/in/Medical_and_Health_Sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-48594719-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="48594715"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/48594715/Oscillations_and_long_lasting_correlations_in_a_model_of_the_lateral_geniculate_nucleus_and_visual_cortex"><img alt="Research paper thumbnail of Oscillations and long-lasting correlations in a model of the lateral geniculate nucleus and visual cortex" class="work-thumbnail" src="https://attachments.academia-assets.com/67125501/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/48594715/Oscillations_and_long_lasting_correlations_in_a_model_of_the_lateral_geniculate_nucleus_and_visual_cortex">Oscillations and long-lasting correlations in a model of the lateral geniculate nucleus and visual cortex</a></div><div class="wp-workCard_item"><span>Journal of neurophysiology</span><span>, 2000</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We have previously developed a model of the corticogeniculate system to explore cortically induce...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We have previously developed a model of the corticogeniculate system to explore cortically induced synchronization of lateral geniculate nucleus (LGN) neurons. Our model was based on the experiments of Sillito et al. Recently Brody discovered that the LGN events found by Sillito et al. correlate over a much longer period of time than expected from the stimulus-driven responses and proposed a cortically induced slow covariation in LGN cell membrane potentials to account for this phenomenon. We have examined the data from our model, and we found, to our surprise, that the model shows the same long-term correlation. The model&#39;s behavior was the result of a previously unsuspected oscillatory effect, not a slow covariation. The oscillations were in the same frequency range as the well-known spindle oscillations of the thalamocortical system. In the model, the strength of feedback inhibition from the cortex and the presence of low-threshold calcium channels in LGN cells were important...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e905322e1d195c6099d5107864d89d5f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":67125501,"asset_id":48594715,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/67125501/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="48594715"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="48594715"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 48594715; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=48594715]").text(description); $(".js-view-count[data-work-id=48594715]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 48594715; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='48594715']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e905322e1d195c6099d5107864d89d5f" } } $('.js-work-strip[data-work-id=48594715]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":48594715,"title":"Oscillations and long-lasting correlations in a model of the lateral geniculate nucleus and visual cortex","translated_title":"","metadata":{"abstract":"We have previously developed a model of the corticogeniculate system to explore cortically induced synchronization of lateral geniculate nucleus (LGN) neurons. Our model was based on the experiments of Sillito et al. Recently Brody discovered that the LGN events found by Sillito et al. correlate over a much longer period of time than expected from the stimulus-driven responses and proposed a cortically induced slow covariation in LGN cell membrane potentials to account for this phenomenon. We have examined the data from our model, and we found, to our surprise, that the model shows the same long-term correlation. The model\u0026#39;s behavior was the result of a previously unsuspected oscillatory effect, not a slow covariation. The oscillations were in the same frequency range as the well-known spindle oscillations of the thalamocortical system. In the model, the strength of feedback inhibition from the cortex and the presence of low-threshold calcium channels in LGN cells were important...","publication_date":{"day":null,"month":null,"year":2000,"errors":{}},"publication_name":"Journal of neurophysiology"},"translated_abstract":"We have previously developed a model of the corticogeniculate system to explore cortically induced synchronization of lateral geniculate nucleus (LGN) neurons. Our model was based on the experiments of Sillito et al. Recently Brody discovered that the LGN events found by Sillito et al. correlate over a much longer period of time than expected from the stimulus-driven responses and proposed a cortically induced slow covariation in LGN cell membrane potentials to account for this phenomenon. We have examined the data from our model, and we found, to our surprise, that the model shows the same long-term correlation. The model\u0026#39;s behavior was the result of a previously unsuspected oscillatory effect, not a slow covariation. The oscillations were in the same frequency range as the well-known spindle oscillations of the thalamocortical system. In the model, the strength of feedback inhibition from the cortex and the presence of low-threshold calcium channels in LGN cells were important...","internal_url":"https://www.academia.edu/48594715/Oscillations_and_long_lasting_correlations_in_a_model_of_the_lateral_geniculate_nucleus_and_visual_cortex","translated_internal_url":"","created_at":"2021-05-05T00:06:17.056-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":44148669,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":67125501,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/67125501/thumbnails/1.jpg","file_name":"e59dbae7050dd4d419aee3b9b68e40286878.pdf","download_url":"https://www.academia.edu/attachments/67125501/download_file","bulk_download_file_name":"Oscillations_and_long_lasting_correlatio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/67125501/e59dbae7050dd4d419aee3b9b68e40286878-libre.pdf?1620337205=\u0026response-content-disposition=attachment%3B+filename%3DOscillations_and_long_lasting_correlatio.pdf\u0026Expires=1744375098\u0026Signature=V7e0jcH4DOPMWe8epGisIAFAE7HYZ~Qnk1mdLZaLbUYnwzC4FbYGZf0cY3ua~56D9RHFaykqKkRTsTh7b4wVKHyZXAnxekbStiHLZr~s9oAeDfFP2YLm1rDGnvspgLFw0vRXbidIowdWD8ALc7mkx~6oUGmJl9-I~f8j76TlQjIas9~42lpOHF0rt9wtalbbqOe8JTap-3d~rK4EIDG263V4YXwGs9jtr6Df6AHW4WXidkqEGXICCcEpTibuiUL3G-i3BOdmxiPfs0uy98XC7p4~XpEXpxTS5Y3t~M4P4Yrm4k1YD28NqmpLLZbIh1U40SVvKfY2fnbfJLJUW1SclA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Oscillations_and_long_lasting_correlations_in_a_model_of_the_lateral_geniculate_nucleus_and_visual_cortex","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"We have previously developed a model of the corticogeniculate system to explore cortically induced synchronization of lateral geniculate nucleus (LGN) neurons. Our model was based on the experiments of Sillito et al. Recently Brody discovered that the LGN events found by Sillito et al. correlate over a much longer period of time than expected from the stimulus-driven responses and proposed a cortically induced slow covariation in LGN cell membrane potentials to account for this phenomenon. We have examined the data from our model, and we found, to our surprise, that the model shows the same long-term correlation. The model\u0026#39;s behavior was the result of a previously unsuspected oscillatory effect, not a slow covariation. The oscillations were in the same frequency range as the well-known spindle oscillations of the thalamocortical system. In the model, the strength of feedback inhibition from the cortex and the presence of low-threshold calcium channels in LGN cells were important...","impression_tracking_id":null,"owner":{"id":44148669,"first_name":"Adam","middle_initials":null,"last_name":"Sillito","page_name":"AdamSillito","domain_name":"ucl","created_at":"2016-02-29T05:31:19.603-08:00","display_name":"Adam Sillito","url":"https://ucl.academia.edu/AdamSillito"},"attachments":[{"id":67125501,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/67125501/thumbnails/1.jpg","file_name":"e59dbae7050dd4d419aee3b9b68e40286878.pdf","download_url":"https://www.academia.edu/attachments/67125501/download_file","bulk_download_file_name":"Oscillations_and_long_lasting_correlatio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/67125501/e59dbae7050dd4d419aee3b9b68e40286878-libre.pdf?1620337205=\u0026response-content-disposition=attachment%3B+filename%3DOscillations_and_long_lasting_correlatio.pdf\u0026Expires=1744375098\u0026Signature=V7e0jcH4DOPMWe8epGisIAFAE7HYZ~Qnk1mdLZaLbUYnwzC4FbYGZf0cY3ua~56D9RHFaykqKkRTsTh7b4wVKHyZXAnxekbStiHLZr~s9oAeDfFP2YLm1rDGnvspgLFw0vRXbidIowdWD8ALc7mkx~6oUGmJl9-I~f8j76TlQjIas9~42lpOHF0rt9wtalbbqOe8JTap-3d~rK4EIDG263V4YXwGs9jtr6Df6AHW4WXidkqEGXICCcEpTibuiUL3G-i3BOdmxiPfs0uy98XC7p4~XpEXpxTS5Y3t~M4P4Yrm4k1YD28NqmpLLZbIh1U40SVvKfY2fnbfJLJUW1SclA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2007,"name":"Electrophysiology","url":"https://www.academia.edu/Documents/in/Electrophysiology"},{"id":22272,"name":"Neurophysiology","url":"https://www.academia.edu/Documents/in/Neurophysiology"},{"id":49962,"name":"Visual Cortex","url":"https://www.academia.edu/Documents/in/Visual_Cortex"},{"id":69542,"name":"Computer Simulation","url":"https://www.academia.edu/Documents/in/Computer_Simulation"},{"id":413195,"name":"Time Factors","url":"https://www.academia.edu/Documents/in/Time_Factors"},{"id":2922956,"name":"Psychology and Cognitive Sciences","url":"https://www.academia.edu/Documents/in/Psychology_and_Cognitive_Sciences"},{"id":3763225,"name":"Medical and Health Sciences","url":"https://www.academia.edu/Documents/in/Medical_and_Health_Sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-48594715-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="48594712"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/48594712/The_spatial_extent_of_excitatory_and_inhibitory_zones_in_the_receptive_field_of_superficial_layer_hypercomplex_cells"><img alt="Research paper thumbnail of The spatial extent of excitatory and inhibitory zones in the receptive field of superficial layer hypercomplex cells" class="work-thumbnail" src="https://attachments.academia-assets.com/67125503/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/48594712/The_spatial_extent_of_excitatory_and_inhibitory_zones_in_the_receptive_field_of_superficial_layer_hypercomplex_cells">The spatial extent of excitatory and inhibitory zones in the receptive field of superficial layer hypercomplex cells</a></div><div class="wp-workCard_item"><span>The Journal of physiology</span><span>, 1977</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">1. An investigation has been made of the extent of inhibitory and excitatory components in the re...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">1. An investigation has been made of the extent of inhibitory and excitatory components in the receptive field of superficial layer hypercomplex cells in the cat&#39;s striate cortex and the relation of the components to the length preference exhibited by these cells.2. Maximal responses were produced by an optimal length stimulus moving through a restricted region of the receptive field. The length of this receptive field region was less than the total length of the excitatory zone as mapped with a very short slit. Slits of similar length to the excitatory zone produced a smaller response than an optimal length slit.3. An increase of slit length so that it passed over receptive field regions either side of the excitatory zone resulted in an elimination of the response. When background discharge levels were increased by the iontophoretic application of D, L-homocysteic acid slits of this length were observed to produce a suppression of the resting discharge as they passed over the r...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="afe9fc9d6136be317e55413c066533e2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":67125503,"asset_id":48594712,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/67125503/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="48594712"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="48594712"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 48594712; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=48594712]").text(description); $(".js-view-count[data-work-id=48594712]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 48594712; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='48594712']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "afe9fc9d6136be317e55413c066533e2" } } $('.js-work-strip[data-work-id=48594712]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":48594712,"title":"The spatial extent of excitatory and inhibitory zones in the receptive field of superficial layer hypercomplex cells","translated_title":"","metadata":{"abstract":"1. An investigation has been made of the extent of inhibitory and excitatory components in the receptive field of superficial layer hypercomplex cells in the cat\u0026#39;s striate cortex and the relation of the components to the length preference exhibited by these cells.2. Maximal responses were produced by an optimal length stimulus moving through a restricted region of the receptive field. The length of this receptive field region was less than the total length of the excitatory zone as mapped with a very short slit. Slits of similar length to the excitatory zone produced a smaller response than an optimal length slit.3. An increase of slit length so that it passed over receptive field regions either side of the excitatory zone resulted in an elimination of the response. When background discharge levels were increased by the iontophoretic application of D, L-homocysteic acid slits of this length were observed to produce a suppression of the resting discharge as they passed over the r...","publication_date":{"day":null,"month":null,"year":1977,"errors":{}},"publication_name":"The Journal of physiology"},"translated_abstract":"1. An investigation has been made of the extent of inhibitory and excitatory components in the receptive field of superficial layer hypercomplex cells in the cat\u0026#39;s striate cortex and the relation of the components to the length preference exhibited by these cells.2. Maximal responses were produced by an optimal length stimulus moving through a restricted region of the receptive field. The length of this receptive field region was less than the total length of the excitatory zone as mapped with a very short slit. Slits of similar length to the excitatory zone produced a smaller response than an optimal length slit.3. An increase of slit length so that it passed over receptive field regions either side of the excitatory zone resulted in an elimination of the response. When background discharge levels were increased by the iontophoretic application of D, L-homocysteic acid slits of this length were observed to produce a suppression of the resting discharge as they passed over the r...","internal_url":"https://www.academia.edu/48594712/The_spatial_extent_of_excitatory_and_inhibitory_zones_in_the_receptive_field_of_superficial_layer_hypercomplex_cells","translated_internal_url":"","created_at":"2021-05-05T00:06:16.960-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":44148669,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":67125503,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/67125503/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/67125503/download_file","bulk_download_file_name":"The_spatial_extent_of_excitatory_and_inh.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/67125503/pdf-libre.pdf?1620337206=\u0026response-content-disposition=attachment%3B+filename%3DThe_spatial_extent_of_excitatory_and_inh.pdf\u0026Expires=1744375098\u0026Signature=Lg-ooQs-j4r1AxnR1gTXSobulF0p4ic3HOxUFVpDeNywGnz-G3JZ4wddpTXCWbgG7ce9VCk69irP5CFbZ3Trz63g2dV6Cr9iG1vkH0N2DCIMkKryihXjAChkDRkbSZnSSzXPPQU78M4sErphyU65Wc~ZnIvaN0JvYuqQEAn1EApeVTL-wwdcu-ADpSAZXgUq3rx18NaqA12T-VFdY0n20Du03AtrXzfJx7Ez9ePl0bv~wxy~MFntA2FHy02H2AfbXuiwLbhcl18LObCQ7fwVs1ULvEEAV4eDdao~qgcbgMDDmqQrFzCEEnkfpQ7VkILVaYqBpQHpCmme91tefeDpjw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_spatial_extent_of_excitatory_and_inhibitory_zones_in_the_receptive_field_of_superficial_layer_hypercomplex_cells","translated_slug":"","page_count":13,"language":"en","content_type":"Work","summary":"1. An investigation has been made of the extent of inhibitory and excitatory components in the receptive field of superficial layer hypercomplex cells in the cat\u0026#39;s striate cortex and the relation of the components to the length preference exhibited by these cells.2. Maximal responses were produced by an optimal length stimulus moving through a restricted region of the receptive field. The length of this receptive field region was less than the total length of the excitatory zone as mapped with a very short slit. Slits of similar length to the excitatory zone produced a smaller response than an optimal length slit.3. An increase of slit length so that it passed over receptive field regions either side of the excitatory zone resulted in an elimination of the response. When background discharge levels were increased by the iontophoretic application of D, L-homocysteic acid slits of this length were observed to produce a suppression of the resting discharge as they passed over the r...","impression_tracking_id":null,"owner":{"id":44148669,"first_name":"Adam","middle_initials":null,"last_name":"Sillito","page_name":"AdamSillito","domain_name":"ucl","created_at":"2016-02-29T05:31:19.603-08:00","display_name":"Adam Sillito","url":"https://ucl.academia.edu/AdamSillito"},"attachments":[{"id":67125503,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/67125503/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/67125503/download_file","bulk_download_file_name":"The_spatial_extent_of_excitatory_and_inh.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/67125503/pdf-libre.pdf?1620337206=\u0026response-content-disposition=attachment%3B+filename%3DThe_spatial_extent_of_excitatory_and_inh.pdf\u0026Expires=1744375098\u0026Signature=Lg-ooQs-j4r1AxnR1gTXSobulF0p4ic3HOxUFVpDeNywGnz-G3JZ4wddpTXCWbgG7ce9VCk69irP5CFbZ3Trz63g2dV6Cr9iG1vkH0N2DCIMkKryihXjAChkDRkbSZnSSzXPPQU78M4sErphyU65Wc~ZnIvaN0JvYuqQEAn1EApeVTL-wwdcu-ADpSAZXgUq3rx18NaqA12T-VFdY0n20Du03AtrXzfJx7Ez9ePl0bv~wxy~MFntA2FHy02H2AfbXuiwLbhcl18LObCQ7fwVs1ULvEEAV4eDdao~qgcbgMDDmqQrFzCEEnkfpQ7VkILVaYqBpQHpCmme91tefeDpjw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":41088,"name":"Cats","url":"https://www.academia.edu/Documents/in/Cats"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":49962,"name":"Visual Cortex","url":"https://www.academia.edu/Documents/in/Visual_Cortex"},{"id":158333,"name":"Receptive Field","url":"https://www.academia.edu/Documents/in/Receptive_Field"},{"id":193974,"name":"Neurons","url":"https://www.academia.edu/Documents/in/Neurons"},{"id":195983,"name":"Homocysteine","url":"https://www.academia.edu/Documents/in/Homocysteine"},{"id":955727,"name":"Action Potentials","url":"https://www.academia.edu/Documents/in/Action_Potentials"},{"id":1287048,"name":"Interneurons","url":"https://www.academia.edu/Documents/in/Interneurons"},{"id":1422473,"name":"Bicuculline","url":"https://www.academia.edu/Documents/in/Bicuculline"},{"id":3763225,"name":"Medical and Health Sciences","url":"https://www.academia.edu/Documents/in/Medical_and_Health_Sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-48594712-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="48594707"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/48594707/Effects_of_vasoactive_intesti_nal_polypeptide_on_the_response_properties_of_cells_in_area_17_of_the_cat_visual_cortex"><img alt="Research paper thumbnail of Effects of vasoactive intesti - nal polypeptide on the response properties of cells in area 17 of the cat visual cortex" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Effects of vasoactive intesti - nal polypeptide on the response properties of cells in area 17 of the cat visual cortex</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="48594707"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="48594707"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 48594707; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=48594707]").text(description); $(".js-view-count[data-work-id=48594707]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 48594707; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='48594707']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=48594707]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":48594707,"title":"Effects of vasoactive intesti - nal polypeptide on the response properties of cells in area 17 of the cat visual cortex","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1993,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/48594707/Effects_of_vasoactive_intesti_nal_polypeptide_on_the_response_properties_of_cells_in_area_17_of_the_cat_visual_cortex","translated_internal_url":"","created_at":"2021-05-05T00:06:16.852-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":44148669,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Effects_of_vasoactive_intesti_nal_polypeptide_on_the_response_properties_of_cells_in_area_17_of_the_cat_visual_cortex","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":44148669,"first_name":"Adam","middle_initials":null,"last_name":"Sillito","page_name":"AdamSillito","domain_name":"ucl","created_at":"2016-02-29T05:31:19.603-08:00","display_name":"Adam Sillito","url":"https://ucl.academia.edu/AdamSillito"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-48594707-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="48594703"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/48594703/Spatial_frequency_tuning_of_orientation_discontinuity_sensitive_corticofugal_feedback_to_the_cat_lateral_geniculate_nucleus"><img alt="Research paper thumbnail of Spatial frequency tuning of orientation-discontinuity-sensitive corticofugal feedback to the cat lateral geniculate nucleus" class="work-thumbnail" src="https://attachments.academia-assets.com/67125551/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/48594703/Spatial_frequency_tuning_of_orientation_discontinuity_sensitive_corticofugal_feedback_to_the_cat_lateral_geniculate_nucleus">Spatial frequency tuning of orientation-discontinuity-sensitive corticofugal feedback to the cat lateral geniculate nucleus</a></div><div class="wp-workCard_item"><span>The Journal of Physiology</span><span>, 1996</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The influence of spatial frequency on the inhibitory component of the effects mediated by feedbac...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The influence of spatial frequency on the inhibitory component of the effects mediated by feedback from the visual cortex has been examined in X and Y cells in the A laminae of the feline dorsal lateral geniculate nucleus (dLGN). Experiments utilized a concentric, bipartite visual stimulus centred over the receptive fields of the cells studied. The responses of dLGN cells to selective stimulation of receptive field centre (with the inner window) were compared with those to stimulation of centre and surround mechanisms (both inner and outer window), with the stimuli either in or out of orientation alignment. 2. With these same stimuli, layer VI cells in the visual cortex showed a marked increase in response magnitude when the inner and outer components of the stimulus were in orientation alignment, and presented at the preferred orientation. In the case of dLGN X and Y cells we observed an enhancement of the surround antagonism of the centre response when the inner and outer sections of the stimulus were in orientation alignment. 3. The effects of varying spatial frequency on these responses were examined in dLGN cells in the presence of corticofugal feedback. With the stimulus sections in orientation alignment, surround stimulation produced a powerful and significant reduction in the response to stimulation of centre mechanism alone with the most marked effects for stimuli in the range 0 1-085 cycles per degree (c.p.d.). The reduction produced by surround stimulation in the range 0 1-0'5 c.p.d. was notably more potent in X cells than in Y cells. 4. The responses to the same stimuli were examined in dLGN cells with the corticofugal feedback inactivated. Comparison of data from cells studied with and without feedback revealed a significant decrease in surround-mediated attenuation of the centre response in Y cells for spatial frequencies in the range 0 1-085 c.p.d. For X cells the decrease in strength of the surround antagonism was also clear and significant but only seen in the range 0.1-0'5 c.p.d. 5. The influence of the orientation alignment of inner and outer stimulus sections revealed a marked difference between cells studied with and without feedback. In the presence of feedback fully aligned stimuli enhanced surround antagonism of centre responses for spatial frequencies in the range 0'1-0'5 c.p.d., in X and Y cells. In the absence of corticofugal feedback this alignment effect was essentially eliminated. 6. These data show that surround antagonism of the centre response is influenced by orientation alignment of the stimulus sections at low spatial frequencies and in the presence of corticofugal feedback. They support a cortically driven enhancement of the inhibitory mechanisms reinforcing surround mechanisms in the dLGN. We propose that feedback enhances a low spatial frequency cut-off in the dLGN, that this effect is maximal for a continuous iso-orientated contour, but diminished whenever there is an orientation discontinuity. The hyperpolarizing influence underlying this effect may contribute to the recently described synchronizing influence of the direct corticofugal contacts onto relay cells. We suggest feedback of the cortical level of analysis refines the transfer of the visual input at geniculate level in a stimulus-context-dependent fashion.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="601824ec9b880ebded4ddd1cabb50925" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":67125551,"asset_id":48594703,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/67125551/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="48594703"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="48594703"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 48594703; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=48594703]").text(description); $(".js-view-count[data-work-id=48594703]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 48594703; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='48594703']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "601824ec9b880ebded4ddd1cabb50925" } } $('.js-work-strip[data-work-id=48594703]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":48594703,"title":"Spatial frequency tuning of orientation-discontinuity-sensitive corticofugal feedback to the cat lateral geniculate nucleus","translated_title":"","metadata":{"publisher":"Wiley-Blackwell","grobid_abstract":"The influence of spatial frequency on the inhibitory component of the effects mediated by feedback from the visual cortex has been examined in X and Y cells in the A laminae of the feline dorsal lateral geniculate nucleus (dLGN). Experiments utilized a concentric, bipartite visual stimulus centred over the receptive fields of the cells studied. The responses of dLGN cells to selective stimulation of receptive field centre (with the inner window) were compared with those to stimulation of centre and surround mechanisms (both inner and outer window), with the stimuli either in or out of orientation alignment. 2. With these same stimuli, layer VI cells in the visual cortex showed a marked increase in response magnitude when the inner and outer components of the stimulus were in orientation alignment, and presented at the preferred orientation. In the case of dLGN X and Y cells we observed an enhancement of the surround antagonism of the centre response when the inner and outer sections of the stimulus were in orientation alignment. 3. The effects of varying spatial frequency on these responses were examined in dLGN cells in the presence of corticofugal feedback. With the stimulus sections in orientation alignment, surround stimulation produced a powerful and significant reduction in the response to stimulation of centre mechanism alone with the most marked effects for stimuli in the range 0 1-085 cycles per degree (c.p.d.). The reduction produced by surround stimulation in the range 0 1-0'5 c.p.d. was notably more potent in X cells than in Y cells. 4. The responses to the same stimuli were examined in dLGN cells with the corticofugal feedback inactivated. Comparison of data from cells studied with and without feedback revealed a significant decrease in surround-mediated attenuation of the centre response in Y cells for spatial frequencies in the range 0 1-085 c.p.d. For X cells the decrease in strength of the surround antagonism was also clear and significant but only seen in the range 0.1-0'5 c.p.d. 5. The influence of the orientation alignment of inner and outer stimulus sections revealed a marked difference between cells studied with and without feedback. In the presence of feedback fully aligned stimuli enhanced surround antagonism of centre responses for spatial frequencies in the range 0'1-0'5 c.p.d., in X and Y cells. In the absence of corticofugal feedback this alignment effect was essentially eliminated. 6. These data show that surround antagonism of the centre response is influenced by orientation alignment of the stimulus sections at low spatial frequencies and in the presence of corticofugal feedback. They support a cortically driven enhancement of the inhibitory mechanisms reinforcing surround mechanisms in the dLGN. We propose that feedback enhances a low spatial frequency cut-off in the dLGN, that this effect is maximal for a continuous iso-orientated contour, but diminished whenever there is an orientation discontinuity. The hyperpolarizing influence underlying this effect may contribute to the recently described synchronizing influence of the direct corticofugal contacts onto relay cells. We suggest feedback of the cortical level of analysis refines the transfer of the visual input at geniculate level in a stimulus-context-dependent fashion.","publication_date":{"day":null,"month":null,"year":1996,"errors":{}},"publication_name":"The Journal of Physiology","grobid_abstract_attachment_id":67125551},"translated_abstract":null,"internal_url":"https://www.academia.edu/48594703/Spatial_frequency_tuning_of_orientation_discontinuity_sensitive_corticofugal_feedback_to_the_cat_lateral_geniculate_nucleus","translated_internal_url":"","created_at":"2021-05-05T00:06:16.749-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":44148669,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":67125551,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/67125551/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/67125551/download_file","bulk_download_file_name":"Spatial_frequency_tuning_of_orientation.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/67125551/pdf-libre.pdf?1620337204=\u0026response-content-disposition=attachment%3B+filename%3DSpatial_frequency_tuning_of_orientation.pdf\u0026Expires=1744375098\u0026Signature=aZzxKVCFZV5ZBALPxaxx2Agr7vlKXuHXppBfboyaehM6Qy1o6XLKOSO9zKsUUTMlsIPDR8z1p50iMVEN6mLZv285ppJV1ekh3SeLXdveUPOMIgu8IgcSXn85yxQCHaL5t5fVAXB7QAkF9GaxltSyLhwv0eyW7jGSo9NYbCteNCuWoz9IFjIYZNNTRBlGYeDJ2B-l8QNAv3bUunvgrAlrdEeK4DmxunhI7G3kQRSBorcJY2qPFrfYNWU14AdJsVt8IKiVv7kEY~Nf0Y3Jw43vmEJUEymW80ntN6y2JnA5eFhaRXsbJrgyE1vOpRxiuEFbc8INLv4SYOSJpgoSo8a58w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Spatial_frequency_tuning_of_orientation_discontinuity_sensitive_corticofugal_feedback_to_the_cat_lateral_geniculate_nucleus","translated_slug":"","page_count":12,"language":"en","content_type":"Work","summary":"The influence of spatial frequency on the inhibitory component of the effects mediated by feedback from the visual cortex has been examined in X and Y cells in the A laminae of the feline dorsal lateral geniculate nucleus (dLGN). Experiments utilized a concentric, bipartite visual stimulus centred over the receptive fields of the cells studied. The responses of dLGN cells to selective stimulation of receptive field centre (with the inner window) were compared with those to stimulation of centre and surround mechanisms (both inner and outer window), with the stimuli either in or out of orientation alignment. 2. With these same stimuli, layer VI cells in the visual cortex showed a marked increase in response magnitude when the inner and outer components of the stimulus were in orientation alignment, and presented at the preferred orientation. In the case of dLGN X and Y cells we observed an enhancement of the surround antagonism of the centre response when the inner and outer sections of the stimulus were in orientation alignment. 3. The effects of varying spatial frequency on these responses were examined in dLGN cells in the presence of corticofugal feedback. With the stimulus sections in orientation alignment, surround stimulation produced a powerful and significant reduction in the response to stimulation of centre mechanism alone with the most marked effects for stimuli in the range 0 1-085 cycles per degree (c.p.d.). The reduction produced by surround stimulation in the range 0 1-0'5 c.p.d. was notably more potent in X cells than in Y cells. 4. The responses to the same stimuli were examined in dLGN cells with the corticofugal feedback inactivated. Comparison of data from cells studied with and without feedback revealed a significant decrease in surround-mediated attenuation of the centre response in Y cells for spatial frequencies in the range 0 1-085 c.p.d. For X cells the decrease in strength of the surround antagonism was also clear and significant but only seen in the range 0.1-0'5 c.p.d. 5. The influence of the orientation alignment of inner and outer stimulus sections revealed a marked difference between cells studied with and without feedback. In the presence of feedback fully aligned stimuli enhanced surround antagonism of centre responses for spatial frequencies in the range 0'1-0'5 c.p.d., in X and Y cells. In the absence of corticofugal feedback this alignment effect was essentially eliminated. 6. These data show that surround antagonism of the centre response is influenced by orientation alignment of the stimulus sections at low spatial frequencies and in the presence of corticofugal feedback. They support a cortically driven enhancement of the inhibitory mechanisms reinforcing surround mechanisms in the dLGN. We propose that feedback enhances a low spatial frequency cut-off in the dLGN, that this effect is maximal for a continuous iso-orientated contour, but diminished whenever there is an orientation discontinuity. The hyperpolarizing influence underlying this effect may contribute to the recently described synchronizing influence of the direct corticofugal contacts onto relay cells. We suggest feedback of the cortical level of analysis refines the transfer of the visual input at geniculate level in a stimulus-context-dependent fashion.","impression_tracking_id":null,"owner":{"id":44148669,"first_name":"Adam","middle_initials":null,"last_name":"Sillito","page_name":"AdamSillito","domain_name":"ucl","created_at":"2016-02-29T05:31:19.603-08:00","display_name":"Adam Sillito","url":"https://ucl.academia.edu/AdamSillito"},"attachments":[{"id":67125551,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/67125551/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/67125551/download_file","bulk_download_file_name":"Spatial_frequency_tuning_of_orientation.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/67125551/pdf-libre.pdf?1620337204=\u0026response-content-disposition=attachment%3B+filename%3DSpatial_frequency_tuning_of_orientation.pdf\u0026Expires=1744375098\u0026Signature=aZzxKVCFZV5ZBALPxaxx2Agr7vlKXuHXppBfboyaehM6Qy1o6XLKOSO9zKsUUTMlsIPDR8z1p50iMVEN6mLZv285ppJV1ekh3SeLXdveUPOMIgu8IgcSXn85yxQCHaL5t5fVAXB7QAkF9GaxltSyLhwv0eyW7jGSo9NYbCteNCuWoz9IFjIYZNNTRBlGYeDJ2B-l8QNAv3bUunvgrAlrdEeK4DmxunhI7G3kQRSBorcJY2qPFrfYNWU14AdJsVt8IKiVv7kEY~Nf0Y3Jw43vmEJUEymW80ntN6y2JnA5eFhaRXsbJrgyE1vOpRxiuEFbc8INLv4SYOSJpgoSo8a58w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":155840,"name":"Spatial Frequency","url":"https://www.academia.edu/Documents/in/Spatial_Frequency"},{"id":3763225,"name":"Medical and Health Sciences","url":"https://www.academia.edu/Documents/in/Medical_and_Health_Sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-48594703-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="48594699"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/48594699/Directional_asymmetries_in_the_length_response_profiles_of_cells_in_the_feline_dorsal_lateral_geniculate_nucleus"><img alt="Research paper thumbnail of Directional asymmetries in the length-response profiles of cells in the feline dorsal lateral geniculate nucleus" class="work-thumbnail" src="https://attachments.academia-assets.com/67125495/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/48594699/Directional_asymmetries_in_the_length_response_profiles_of_cells_in_the_feline_dorsal_lateral_geniculate_nucleus">Directional asymmetries in the length-response profiles of cells in the feline dorsal lateral geniculate nucleus</a></div><div class="wp-workCard_item"><span>The Journal of physiology</span><span>, Jan 15, 1994</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">1. The visual cortex provides a major synaptic input to the dorsal lateral geniculate nucleus (dL...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">1. The visual cortex provides a major synaptic input to the dorsal lateral geniculate nucleus (dLGN). Cortical layer VI cells giving rise to this projection are strongly influenced by stimulus orientation, length and direction of motion. In the dLGN, a significant component of the strong length tuning exhibited by most cells follows from the corticofugal influence. We have now checked whether there are directional biases in geniculate cell responses, and whether such biases are influenced by stimulus length. 2. The responses of A-laminae dLGN cells were assessed by single-unit extracellular recording. Length preference was examined by plotting multihistogram length-tuning curves to moving bars of light of various length. 3. Over half of the cells tested (100/183) exhibited directional bias and in many cases, this bias was highly dependent on bar length, resulting in radically different length response profiles for the two directions of motion. These asymmetries are similar to those ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="66cb4388cc732cd2593c39d024ca5199" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":67125495,"asset_id":48594699,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/67125495/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="48594699"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="48594699"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 48594699; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=48594699]").text(description); $(".js-view-count[data-work-id=48594699]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 48594699; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='48594699']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "66cb4388cc732cd2593c39d024ca5199" } } $('.js-work-strip[data-work-id=48594699]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":48594699,"title":"Directional asymmetries in the length-response profiles of cells in the feline dorsal lateral geniculate nucleus","translated_title":"","metadata":{"abstract":"1. The visual cortex provides a major synaptic input to the dorsal lateral geniculate nucleus (dLGN). Cortical layer VI cells giving rise to this projection are strongly influenced by stimulus orientation, length and direction of motion. In the dLGN, a significant component of the strong length tuning exhibited by most cells follows from the corticofugal influence. We have now checked whether there are directional biases in geniculate cell responses, and whether such biases are influenced by stimulus length. 2. The responses of A-laminae dLGN cells were assessed by single-unit extracellular recording. Length preference was examined by plotting multihistogram length-tuning curves to moving bars of light of various length. 3. Over half of the cells tested (100/183) exhibited directional bias and in many cases, this bias was highly dependent on bar length, resulting in radically different length response profiles for the two directions of motion. These asymmetries are similar to those ...","publication_date":{"day":15,"month":1,"year":1994,"errors":{}},"publication_name":"The Journal of physiology"},"translated_abstract":"1. The visual cortex provides a major synaptic input to the dorsal lateral geniculate nucleus (dLGN). Cortical layer VI cells giving rise to this projection are strongly influenced by stimulus orientation, length and direction of motion. In the dLGN, a significant component of the strong length tuning exhibited by most cells follows from the corticofugal influence. We have now checked whether there are directional biases in geniculate cell responses, and whether such biases are influenced by stimulus length. 2. The responses of A-laminae dLGN cells were assessed by single-unit extracellular recording. Length preference was examined by plotting multihistogram length-tuning curves to moving bars of light of various length. 3. Over half of the cells tested (100/183) exhibited directional bias and in many cases, this bias was highly dependent on bar length, resulting in radically different length response profiles for the two directions of motion. These asymmetries are similar to those ...","internal_url":"https://www.academia.edu/48594699/Directional_asymmetries_in_the_length_response_profiles_of_cells_in_the_feline_dorsal_lateral_geniculate_nucleus","translated_internal_url":"","created_at":"2021-05-05T00:06:16.655-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":44148669,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":67125495,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/67125495/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/67125495/download_file","bulk_download_file_name":"Directional_asymmetries_in_the_length_re.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/67125495/pdf-libre.pdf?1620337208=\u0026response-content-disposition=attachment%3B+filename%3DDirectional_asymmetries_in_the_length_re.pdf\u0026Expires=1744375098\u0026Signature=CYcypoyf89DP1ZQJWd6MJgPRhpkqUGlRL76UevP5tumIaEfwCeFam1tOy-1NTxKos4yooBEEFxfdj3-OV96gpkhI-49YW~4Px-Pin9hj6H4rn6XR2X33AwASLQPPWnTVsBoODb~Jb0jGpZzF5nhINqg8wBQYLLGk~8hW9fSJysKmAy~uxH7Z0CS6LIgBhyTxBHfbJcjM1KAtbXELWC5FM3XLY-V4emaFK-PXPW-GMt5C4Oe~PrKTZPWDpXHltr4dlUUvsPK5ST8C3m8WE0piAw9wW2ux2UYYd7hbzgVmBzM3olypmhdJInfAxjFMY9xalM9XzpUH9eGAxdJND8Y0Rg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Directional_asymmetries_in_the_length_response_profiles_of_cells_in_the_feline_dorsal_lateral_geniculate_nucleus","translated_slug":"","page_count":12,"language":"en","content_type":"Work","summary":"1. The visual cortex provides a major synaptic input to the dorsal lateral geniculate nucleus (dLGN). Cortical layer VI cells giving rise to this projection are strongly influenced by stimulus orientation, length and direction of motion. In the dLGN, a significant component of the strong length tuning exhibited by most cells follows from the corticofugal influence. We have now checked whether there are directional biases in geniculate cell responses, and whether such biases are influenced by stimulus length. 2. The responses of A-laminae dLGN cells were assessed by single-unit extracellular recording. Length preference was examined by plotting multihistogram length-tuning curves to moving bars of light of various length. 3. Over half of the cells tested (100/183) exhibited directional bias and in many cases, this bias was highly dependent on bar length, resulting in radically different length response profiles for the two directions of motion. These asymmetries are similar to those ...","impression_tracking_id":null,"owner":{"id":44148669,"first_name":"Adam","middle_initials":null,"last_name":"Sillito","page_name":"AdamSillito","domain_name":"ucl","created_at":"2016-02-29T05:31:19.603-08:00","display_name":"Adam Sillito","url":"https://ucl.academia.edu/AdamSillito"},"attachments":[{"id":67125495,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/67125495/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/67125495/download_file","bulk_download_file_name":"Directional_asymmetries_in_the_length_re.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/67125495/pdf-libre.pdf?1620337208=\u0026response-content-disposition=attachment%3B+filename%3DDirectional_asymmetries_in_the_length_re.pdf\u0026Expires=1744375098\u0026Signature=CYcypoyf89DP1ZQJWd6MJgPRhpkqUGlRL76UevP5tumIaEfwCeFam1tOy-1NTxKos4yooBEEFxfdj3-OV96gpkhI-49YW~4Px-Pin9hj6H4rn6XR2X33AwASLQPPWnTVsBoODb~Jb0jGpZzF5nhINqg8wBQYLLGk~8hW9fSJysKmAy~uxH7Z0CS6LIgBhyTxBHfbJcjM1KAtbXELWC5FM3XLY-V4emaFK-PXPW-GMt5C4Oe~PrKTZPWDpXHltr4dlUUvsPK5ST8C3m8WE0piAw9wW2ux2UYYd7hbzgVmBzM3olypmhdJInfAxjFMY9xalM9XzpUH9eGAxdJND8Y0Rg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":41088,"name":"Cats","url":"https://www.academia.edu/Documents/in/Cats"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":49962,"name":"Visual Cortex","url":"https://www.academia.edu/Documents/in/Visual_Cortex"},{"id":93037,"name":"Orientation","url":"https://www.academia.edu/Documents/in/Orientation"},{"id":137633,"name":"Feedback","url":"https://www.academia.edu/Documents/in/Feedback"},{"id":193974,"name":"Neurons","url":"https://www.academia.edu/Documents/in/Neurons"},{"id":418263,"name":"SYNAPSES","url":"https://www.academia.edu/Documents/in/SYNAPSES"},{"id":1281442,"name":"Extracellular Space","url":"https://www.academia.edu/Documents/in/Extracellular_Space"},{"id":2234200,"name":"Functional Laterality","url":"https://www.academia.edu/Documents/in/Functional_Laterality"},{"id":2583527,"name":"sympathectomy","url":"https://www.academia.edu/Documents/in/sympathectomy"},{"id":2849038,"name":"photic stimulation","url":"https://www.academia.edu/Documents/in/photic_stimulation"},{"id":3763225,"name":"Medical and Health Sciences","url":"https://www.academia.edu/Documents/in/Medical_and_Health_Sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-48594699-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="48594694"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/48594694/Differential_properties_of_cells_in_the_feline_primary_visual_cortex_providing_the_corticofugal_feedback_to_the_lateral_geniculate_nucleus_and_visual_claustrum"><img alt="Research paper thumbnail of Differential properties of cells in the feline primary visual cortex providing the corticofugal feedback to the lateral geniculate nucleus and visual claustrum" class="work-thumbnail" src="https://attachments.academia-assets.com/67125498/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/48594694/Differential_properties_of_cells_in_the_feline_primary_visual_cortex_providing_the_corticofugal_feedback_to_the_lateral_geniculate_nucleus_and_visual_claustrum">Differential properties of cells in the feline primary visual cortex providing the corticofugal feedback to the lateral geniculate nucleus and visual claustrum</a></div><div class="wp-workCard_item"><span>The Journal of neuroscience : the official journal of the Society for Neuroscience</span><span>, 1995</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We have examined the responses of 141 layer VI cells in the feline visual cortex. Within this gro...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We have examined the responses of 141 layer VI cells in the feline visual cortex. Within this group we compared the responses of a subpopulation of cells checked for connectivity by electrical stimulation in the dLGN and the visual claustrum. The antidromically identified corticogeniculate projecting cells had relatively short receptive fields, as judged from length response curves, measured quantitatively, and were located at the &quot;short&quot; end of the receptive field length spectrum seen in the general population. Of the 17 corticogeniculate projecting cells, 71% were S type cells, which were typically monocular and directionally selective, with relatively long latencies following electrical stimulation. The remaining 29% were C type cells, also directionally selective, but with a wider spread of ocular dominance preferences and shorter latencies following electrical stimulation. S and C type subpopulations did not differ in their receptive field lengths. The mean receptive ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a129ef2802db7f44ac96dd9e5572f1f1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":67125498,"asset_id":48594694,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/67125498/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="48594694"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="48594694"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 48594694; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=48594694]").text(description); $(".js-view-count[data-work-id=48594694]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 48594694; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='48594694']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a129ef2802db7f44ac96dd9e5572f1f1" } } $('.js-work-strip[data-work-id=48594694]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":48594694,"title":"Differential properties of cells in the feline primary visual cortex providing the corticofugal feedback to the lateral geniculate nucleus and visual claustrum","translated_title":"","metadata":{"abstract":"We have examined the responses of 141 layer VI cells in the feline visual cortex. Within this group we compared the responses of a subpopulation of cells checked for connectivity by electrical stimulation in the dLGN and the visual claustrum. The antidromically identified corticogeniculate projecting cells had relatively short receptive fields, as judged from length response curves, measured quantitatively, and were located at the \u0026quot;short\u0026quot; end of the receptive field length spectrum seen in the general population. Of the 17 corticogeniculate projecting cells, 71% were S type cells, which were typically monocular and directionally selective, with relatively long latencies following electrical stimulation. The remaining 29% were C type cells, also directionally selective, but with a wider spread of ocular dominance preferences and shorter latencies following electrical stimulation. S and C type subpopulations did not differ in their receptive field lengths. The mean receptive ...","publication_date":{"day":null,"month":null,"year":1995,"errors":{}},"publication_name":"The Journal of neuroscience : the official journal of the Society for Neuroscience"},"translated_abstract":"We have examined the responses of 141 layer VI cells in the feline visual cortex. Within this group we compared the responses of a subpopulation of cells checked for connectivity by electrical stimulation in the dLGN and the visual claustrum. The antidromically identified corticogeniculate projecting cells had relatively short receptive fields, as judged from length response curves, measured quantitatively, and were located at the \u0026quot;short\u0026quot; end of the receptive field length spectrum seen in the general population. Of the 17 corticogeniculate projecting cells, 71% were S type cells, which were typically monocular and directionally selective, with relatively long latencies following electrical stimulation. The remaining 29% were C type cells, also directionally selective, but with a wider spread of ocular dominance preferences and shorter latencies following electrical stimulation. S and C type subpopulations did not differ in their receptive field lengths. The mean receptive ...","internal_url":"https://www.academia.edu/48594694/Differential_properties_of_cells_in_the_feline_primary_visual_cortex_providing_the_corticofugal_feedback_to_the_lateral_geniculate_nucleus_and_visual_claustrum","translated_internal_url":"","created_at":"2021-05-05T00:06:16.545-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":44148669,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":67125498,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/67125498/thumbnails/1.jpg","file_name":"4868.full.pdf","download_url":"https://www.academia.edu/attachments/67125498/download_file","bulk_download_file_name":"Differential_properties_of_cells_in_the.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/67125498/4868.full-libre.pdf?1620337206=\u0026response-content-disposition=attachment%3B+filename%3DDifferential_properties_of_cells_in_the.pdf\u0026Expires=1744375098\u0026Signature=dCNg1cx69c3QUVHvGjBduqDI4lXHCFJW43~rIG1RXjPYXvzYXmZFPt3tvx1uMbZMu0Pvp-90d0wzKupYkrU-sSlo30FB49cuMoH7YTRDv-5dP6Qyhf6PwLt0DyJTHX4cobSIpldeOcsKg11Nfj~yFAf1fbZV79myYNdAPc5cfIbVTQzyuPXk~kjzU8gSdTDhi8znqLanOSKPlThmaGJ0GvEmH-b2KT-ZgveXxBjjhn6DQeIFAF8BNa7ezF9azwMDCBRgn-2dqZV6ZXAR43fHL0NutgSPioIOWpMpZg0R~OLPROMlTP7eMwp9ayp3pYBH~oAMvJ6wDB2QmC6v~7rs8A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Differential_properties_of_cells_in_the_feline_primary_visual_cortex_providing_the_corticofugal_feedback_to_the_lateral_geniculate_nucleus_and_visual_claustrum","translated_slug":"","page_count":7,"language":"en","content_type":"Work","summary":"We have examined the responses of 141 layer VI cells in the feline visual cortex. Within this group we compared the responses of a subpopulation of cells checked for connectivity by electrical stimulation in the dLGN and the visual claustrum. The antidromically identified corticogeniculate projecting cells had relatively short receptive fields, as judged from length response curves, measured quantitatively, and were located at the \u0026quot;short\u0026quot; end of the receptive field length spectrum seen in the general population. Of the 17 corticogeniculate projecting cells, 71% were S type cells, which were typically monocular and directionally selective, with relatively long latencies following electrical stimulation. The remaining 29% were C type cells, also directionally selective, but with a wider spread of ocular dominance preferences and shorter latencies following electrical stimulation. S and C type subpopulations did not differ in their receptive field lengths. The mean receptive ...","impression_tracking_id":null,"owner":{"id":44148669,"first_name":"Adam","middle_initials":null,"last_name":"Sillito","page_name":"AdamSillito","domain_name":"ucl","created_at":"2016-02-29T05:31:19.603-08:00","display_name":"Adam Sillito","url":"https://ucl.academia.edu/AdamSillito"},"attachments":[{"id":67125498,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/67125498/thumbnails/1.jpg","file_name":"4868.full.pdf","download_url":"https://www.academia.edu/attachments/67125498/download_file","bulk_download_file_name":"Differential_properties_of_cells_in_the.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/67125498/4868.full-libre.pdf?1620337206=\u0026response-content-disposition=attachment%3B+filename%3DDifferential_properties_of_cells_in_the.pdf\u0026Expires=1744375098\u0026Signature=dCNg1cx69c3QUVHvGjBduqDI4lXHCFJW43~rIG1RXjPYXvzYXmZFPt3tvx1uMbZMu0Pvp-90d0wzKupYkrU-sSlo30FB49cuMoH7YTRDv-5dP6Qyhf6PwLt0DyJTHX4cobSIpldeOcsKg11Nfj~yFAf1fbZV79myYNdAPc5cfIbVTQzyuPXk~kjzU8gSdTDhi8znqLanOSKPlThmaGJ0GvEmH-b2KT-ZgveXxBjjhn6DQeIFAF8BNa7ezF9azwMDCBRgn-2dqZV6ZXAR43fHL0NutgSPioIOWpMpZg0R~OLPROMlTP7eMwp9ayp3pYBH~oAMvJ6wDB2QmC6v~7rs8A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2007,"name":"Electrophysiology","url":"https://www.academia.edu/Documents/in/Electrophysiology"},{"id":41088,"name":"Cats","url":"https://www.academia.edu/Documents/in/Cats"},{"id":49962,"name":"Visual Cortex","url":"https://www.academia.edu/Documents/in/Visual_Cortex"},{"id":137633,"name":"Feedback","url":"https://www.academia.edu/Documents/in/Feedback"},{"id":158333,"name":"Receptive Field","url":"https://www.academia.edu/Documents/in/Receptive_Field"},{"id":187796,"name":"Primary visual cortex","url":"https://www.academia.edu/Documents/in/Primary_visual_cortex"},{"id":193974,"name":"Neurons","url":"https://www.academia.edu/Documents/in/Neurons"},{"id":207165,"name":"Lateral Geniculate Nucleus","url":"https://www.academia.edu/Documents/in/Lateral_Geniculate_Nucleus"},{"id":321836,"name":"Spectrum","url":"https://www.academia.edu/Documents/in/Spectrum"},{"id":484219,"name":"Basal ganglia","url":"https://www.academia.edu/Documents/in/Basal_ganglia"},{"id":1423006,"name":"General Population","url":"https://www.academia.edu/Documents/in/General_Population"},{"id":1731323,"name":"COL","url":"https://www.academia.edu/Documents/in/COL-2000"},{"id":2234200,"name":"Functional Laterality","url":"https://www.academia.edu/Documents/in/Functional_Laterality"},{"id":2922956,"name":"Psychology and Cognitive Sciences","url":"https://www.academia.edu/Documents/in/Psychology_and_Cognitive_Sciences"},{"id":3763225,"name":"Medical and Health Sciences","url":"https://www.academia.edu/Documents/in/Medical_and_Health_Sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-48594694-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="48594688"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/48594688/The_action_of_the_putative_neurotransmitters_N_acetylaspartylglutamate_and_L_homocysteate_in_cat_dorsal_lateral_geniculate_nucleus"><img alt="Research paper thumbnail of The action of the putative neurotransmitters N-acetylaspartylglutamate and L-homocysteate in cat dorsal lateral geniculate nucleus" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">The action of the putative neurotransmitters N-acetylaspartylglutamate and L-homocysteate in cat dorsal lateral geniculate nucleus</div><div class="wp-workCard_item"><span>Journal of neurophysiology</span><span>, 1992</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">1. We have examined the actions and pharmacology of two putative optic nerve transmitters, N-acet...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">1. We have examined the actions and pharmacology of two putative optic nerve transmitters, N-acetylaspartylglutamate (NAAG) and L-homocysteic acid (L-HCA), in the feline dorsal lateral geniculate nucleus (dLGN). We compared the responses obtained to iontophoretic application of these substances with those elicited by visual stimulation and application of specific N-methyl-D-aspartate (NMDA) and non-NMDA receptor agonists. The relative effects of the selective NMDA antagonist 3-[(+/-)-2-carboxypiperazin-4-yl]-propyl-1-phosphonic acid (CPP) and the selective non-NMDA antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) were tested on these responses. 2. There was a pronounced contrast between the influence of iontophoretically applied NAAG and L-HCA on dLGN cells. Iontophoretic application of NAAG [ejection current range 75-200 nA (mean 125 nA)] evoked either no effect (17/37), or very weak and sluggish excitatory (16/37) or inhibitory (4/37) effects. Conversely, L-HCA application [...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="48594688"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="48594688"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 48594688; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=48594688]").text(description); $(".js-view-count[data-work-id=48594688]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 48594688; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='48594688']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=48594688]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":48594688,"title":"The action of the putative neurotransmitters N-acetylaspartylglutamate and L-homocysteate in cat dorsal lateral geniculate nucleus","translated_title":"","metadata":{"abstract":"1. We have examined the actions and pharmacology of two putative optic nerve transmitters, N-acetylaspartylglutamate (NAAG) and L-homocysteic acid (L-HCA), in the feline dorsal lateral geniculate nucleus (dLGN). We compared the responses obtained to iontophoretic application of these substances with those elicited by visual stimulation and application of specific N-methyl-D-aspartate (NMDA) and non-NMDA receptor agonists. The relative effects of the selective NMDA antagonist 3-[(+/-)-2-carboxypiperazin-4-yl]-propyl-1-phosphonic acid (CPP) and the selective non-NMDA antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) were tested on these responses. 2. There was a pronounced contrast between the influence of iontophoretically applied NAAG and L-HCA on dLGN cells. Iontophoretic application of NAAG [ejection current range 75-200 nA (mean 125 nA)] evoked either no effect (17/37), or very weak and sluggish excitatory (16/37) or inhibitory (4/37) effects. Conversely, L-HCA application [...","publication_date":{"day":null,"month":null,"year":1992,"errors":{}},"publication_name":"Journal of neurophysiology"},"translated_abstract":"1. We have examined the actions and pharmacology of two putative optic nerve transmitters, N-acetylaspartylglutamate (NAAG) and L-homocysteic acid (L-HCA), in the feline dorsal lateral geniculate nucleus (dLGN). We compared the responses obtained to iontophoretic application of these substances with those elicited by visual stimulation and application of specific N-methyl-D-aspartate (NMDA) and non-NMDA receptor agonists. The relative effects of the selective NMDA antagonist 3-[(+/-)-2-carboxypiperazin-4-yl]-propyl-1-phosphonic acid (CPP) and the selective non-NMDA antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) were tested on these responses. 2. There was a pronounced contrast between the influence of iontophoretically applied NAAG and L-HCA on dLGN cells. Iontophoretic application of NAAG [ejection current range 75-200 nA (mean 125 nA)] evoked either no effect (17/37), or very weak and sluggish excitatory (16/37) or inhibitory (4/37) effects. Conversely, L-HCA application [...","internal_url":"https://www.academia.edu/48594688/The_action_of_the_putative_neurotransmitters_N_acetylaspartylglutamate_and_L_homocysteate_in_cat_dorsal_lateral_geniculate_nucleus","translated_internal_url":"","created_at":"2021-05-05T00:06:16.445-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":44148669,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_action_of_the_putative_neurotransmitters_N_acetylaspartylglutamate_and_L_homocysteate_in_cat_dorsal_lateral_geniculate_nucleus","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"1. We have examined the actions and pharmacology of two putative optic nerve transmitters, N-acetylaspartylglutamate (NAAG) and L-homocysteic acid (L-HCA), in the feline dorsal lateral geniculate nucleus (dLGN). We compared the responses obtained to iontophoretic application of these substances with those elicited by visual stimulation and application of specific N-methyl-D-aspartate (NMDA) and non-NMDA receptor agonists. The relative effects of the selective NMDA antagonist 3-[(+/-)-2-carboxypiperazin-4-yl]-propyl-1-phosphonic acid (CPP) and the selective non-NMDA antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) were tested on these responses. 2. There was a pronounced contrast between the influence of iontophoretically applied NAAG and L-HCA on dLGN cells. Iontophoretic application of NAAG [ejection current range 75-200 nA (mean 125 nA)] evoked either no effect (17/37), or very weak and sluggish excitatory (16/37) or inhibitory (4/37) effects. Conversely, L-HCA application [...","impression_tracking_id":null,"owner":{"id":44148669,"first_name":"Adam","middle_initials":null,"last_name":"Sillito","page_name":"AdamSillito","domain_name":"ucl","created_at":"2016-02-29T05:31:19.603-08:00","display_name":"Adam Sillito","url":"https://ucl.academia.edu/AdamSillito"},"attachments":[],"research_interests":[{"id":12071,"name":"Immunohistochemistry","url":"https://www.academia.edu/Documents/in/Immunohistochemistry"},{"id":22272,"name":"Neurophysiology","url":"https://www.academia.edu/Documents/in/Neurophysiology"},{"id":41088,"name":"Cats","url":"https://www.academia.edu/Documents/in/Cats"},{"id":193974,"name":"Neurons","url":"https://www.academia.edu/Documents/in/Neurons"},{"id":195983,"name":"Homocysteine","url":"https://www.academia.edu/Documents/in/Homocysteine"},{"id":263337,"name":"Iontophoresis","url":"https://www.academia.edu/Documents/in/Iontophoresis"},{"id":2849038,"name":"photic stimulation","url":"https://www.academia.edu/Documents/in/photic_stimulation"},{"id":2922956,"name":"Psychology and Cognitive Sciences","url":"https://www.academia.edu/Documents/in/Psychology_and_Cognitive_Sciences"},{"id":3763225,"name":"Medical and Health Sciences","url":"https://www.academia.edu/Documents/in/Medical_and_Health_Sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-48594688-figures'); } }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; } .sign-in-with-apple-button > div { margin: 0 auto; / This centers the Apple-rendered button horizontally }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "c7387f6544efe0245285db4d41d0b6fb31382a74efe290104ca738c3097b636f", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="JKY_CWCkl8XwADF1Xqg95LjJoGSMglEMOgm_QXTq9MNFs3RrpqnDhpYsH2-LuvduxFNjtISLEwDVdjlgpFQQGw" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://ucl.academia.edu/AdamSillito" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="kq7Fqtitpu3icxq7lDqLrveHS6NNvyR4Z6Rb2l1tXMfzu47IHqDyroRfNKFBKEEkix2Ic0W2ZnSI2937jdO4Hw" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li><a rel="nofollow" href="https://www.academia.edu/content_policy">Content Policy</a></li><li>Academia ©2025</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>