CINXE.COM
Search results for: generalized Riemann– Liouville and Erdélyi–Kober fractional integral operators
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: generalized Riemann– Liouville and Erdélyi–Kober fractional integral operators</title> <meta name="description" content="Search results for: generalized Riemann– Liouville and Erdélyi–Kober fractional integral operators"> <meta name="keywords" content="generalized Riemann– Liouville and Erdélyi–Kober fractional integral operators"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="generalized Riemann– Liouville and Erdélyi–Kober fractional integral operators" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="generalized Riemann– Liouville and Erdélyi–Kober fractional integral operators"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2279</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: generalized Riemann– Liouville and Erdélyi–Kober fractional integral operators</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2279</span> On the Fractional Integration of Generalized Mittag-Leffler Type Functions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christian%20Lavault">Christian Lavault</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the generalized fractional integral operators of two generalized Mittag-Leffler type functions are investigated. The special cases of interest involve the generalized M-series and K-function, both introduced by Sharma. The two pairs of theorems established herein generalize recent results about left- and right-sided generalized fractional integration operators applied here to the M-series and the K-function. The note also results in important applications in physics and mathematical engineering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fox%E2%80%93Wright%20Psi%20function" title="Fox–Wright Psi function">Fox–Wright Psi function</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20hypergeometric%20function" title=" generalized hypergeometric function"> generalized hypergeometric function</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20Riemann%E2%80%93%20Liouville%20and%20Erd%C3%A9lyi%E2%80%93Kober%20fractional%20integral%20operators" title=" generalized Riemann– Liouville and Erdélyi–Kober fractional integral operators"> generalized Riemann– Liouville and Erdélyi–Kober fractional integral operators</a>, <a href="https://publications.waset.org/abstracts/search?q=Saigo%27s%20generalized%20fractional%20calculus" title=" Saigo's generalized fractional calculus"> Saigo's generalized fractional calculus</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharma%27s%20M-series%20and%20K-function" title=" Sharma's M-series and K-function"> Sharma's M-series and K-function</a> </p> <a href="https://publications.waset.org/abstracts/60662/on-the-fractional-integration-of-generalized-mittag-leffler-type-functions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2278</span> Hermite–Hadamard Type Integral Inequalities Involving k–Riemann–Liouville Fractional Integrals and Their Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Artion%20Kashuri">Artion Kashuri</a>, <a href="https://publications.waset.org/abstracts/search?q=Rozana%20Liko"> Rozana Liko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, some generalization integral inequalities of Hermite–Hadamard type for functions whose derivatives are s–convex in modulus are given by using k–fractional integrals. Some applications to special means are obtained as well. Some known versions are recovered as special cases from our results. We note that our inequalities can be viewed as new refinements of the previous results. Finally, our results have a deep connection with various fractional integral operators and interested readers can find new interesting results using our idea and technique as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hermite-Hadamard%27s%20inequalities" title="Hermite-Hadamard's inequalities">Hermite-Hadamard's inequalities</a>, <a href="https://publications.waset.org/abstracts/search?q=H%C3%B6lder%27s%20inequality" title=" Hölder's inequality"> Hölder's inequality</a>, <a href="https://publications.waset.org/abstracts/search?q=k-Riemann-Liouville%20fractional%20integral" title=" k-Riemann-Liouville fractional integral"> k-Riemann-Liouville fractional integral</a>, <a href="https://publications.waset.org/abstracts/search?q=special%20means" title=" special means"> special means</a> </p> <a href="https://publications.waset.org/abstracts/127761/hermite-hadamard-type-integral-inequalities-involving-k-riemann-liouville-fractional-integrals-and-their-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127761.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2277</span> Lyapunov Type Inequalities for Fractional Impulsive Hamiltonian Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kazem%20Ghanbari">Kazem Ghanbari</a>, <a href="https://publications.waset.org/abstracts/search?q=Yousef%20Gholami"> Yousef Gholami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with study about fractional order impulsive Hamiltonian systems and fractional impulsive Sturm-Liouville type problems derived from these systems. The main purpose of this paper devotes to obtain so called Lyapunov type inequalities for mentioned problems. Also, in view point on applicability of obtained inequalities, some qualitative properties such as stability, disconjugacy, nonexistence and oscillatory behaviour of fractional Hamiltonian systems and fractional Sturm-Liouville type problems under impulsive conditions will be derived. At the end, we want to point out that for studying fractional order Hamiltonian systems, we will apply recently introduced fractional Conformable operators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractional%20derivatives%20and%20integrals" title="fractional derivatives and integrals">fractional derivatives and integrals</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamiltonian%20system" title=" Hamiltonian system"> Hamiltonian system</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov-type%20inequalities" title=" Lyapunov-type inequalities"> Lyapunov-type inequalities</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=disconjugacy" title=" disconjugacy"> disconjugacy</a> </p> <a href="https://publications.waset.org/abstracts/48806/lyapunov-type-inequalities-for-fractional-impulsive-hamiltonian-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48806.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2276</span> Fractional Order Differentiator Using Chebyshev Polynomials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Koushlendra%20Kumar%20Singh">Koushlendra Kumar Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Manish%20Kumar%20Bajpai"> Manish Kumar Bajpai</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Kumar%20Pandey"> Rajesh Kumar Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A discrete time fractional orderdifferentiator has been modeled for estimating the fractional order derivatives of contaminated signal. The proposed approach is based on Chebyshev’s polynomials. We use the Riemann-Liouville fractional order derivative definition for designing the fractional order SG differentiator. In first step we calculate the window weight corresponding to the required fractional order. Then signal is convoluted with this calculated window’s weight for finding the fractional order derivatives of signals. Several signals are considered for evaluating the accuracy of the proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractional%20order%20derivative" title="fractional order derivative">fractional order derivative</a>, <a href="https://publications.waset.org/abstracts/search?q=chebyshev%0D%0Apolynomials" title=" chebyshev polynomials"> chebyshev polynomials</a>, <a href="https://publications.waset.org/abstracts/search?q=signals" title=" signals"> signals</a>, <a href="https://publications.waset.org/abstracts/search?q=S-G%20differentiator" title=" S-G differentiator"> S-G differentiator</a> </p> <a href="https://publications.waset.org/abstracts/21346/fractional-order-differentiator-using-chebyshev-polynomials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">648</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2275</span> An Efficient Collocation Method for Solving the Variable-Order Time-Fractional Partial Differential Equations Arising from the Physical Phenomenon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haniye%20Dehestani">Haniye Dehestani</a>, <a href="https://publications.waset.org/abstracts/search?q=Yadollah%20Ordokhani"> Yadollah Ordokhani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we present an efficient approach for solving variable-order time-fractional partial differential equations, which are based on Legendre and Laguerre polynomials. First, we introduced the pseudo-operational matrices of integer and variable fractional order of integration by use of some properties of Riemann-Liouville fractional integral. Then, applied together with collocation method and Legendre-Laguerre functions for solving variable-order time-fractional partial differential equations. Also, an estimation of the error is presented. At last, we investigate numerical examples which arise in physics to demonstrate the accuracy of the present method. In comparison results obtained by the present method with the exact solution and the other methods reveals that the method is very effective. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collocation%20method" title="collocation method">collocation method</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20partial%20differential%20equations" title=" fractional partial differential equations"> fractional partial differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=legendre-laguerre%20functions" title=" legendre-laguerre functions"> legendre-laguerre functions</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudo-operational%20matrix%20of%20integration" title=" pseudo-operational matrix of integration"> pseudo-operational matrix of integration</a> </p> <a href="https://publications.waset.org/abstracts/97195/an-efficient-collocation-method-for-solving-the-variable-order-time-fractional-partial-differential-equations-arising-from-the-physical-phenomenon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97195.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2274</span> Analytical Solutions of Time Space Fractional, Advection-Dispersion and Whitham-Broer-Kaup Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Danish%20Khan">Muhammad Danish Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Imran%20Naeem"> Imran Naeem</a>, <a href="https://publications.waset.org/abstracts/search?q=Mudassar%20Imran"> Mudassar Imran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, we study time-space Fractional Advection-Dispersion (FADE) equation and time-space Fractional Whitham-Broer-Kaup (FWBK) equation that have a significant role in hydrology. We introduce suitable transformations to convert fractional order derivatives to integer order derivatives and as a result these equations transform into Partial Differential Equations (PDEs). Then the Lie symmetries and corresponding optimal systems of the resulting PDEs are derived. The symmetry reductions and exact independent solutions based on optimal system are investigated which constitute the exact solutions of original fractional differential equations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modified%20Riemann-Liouville%20fractional%20derivative" title="modified Riemann-Liouville fractional derivative">modified Riemann-Liouville fractional derivative</a>, <a href="https://publications.waset.org/abstracts/search?q=lie-symmetries" title=" lie-symmetries"> lie-symmetries</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20system" title=" optimal system"> optimal system</a>, <a href="https://publications.waset.org/abstracts/search?q=invariant%20solutions" title=" invariant solutions"> invariant solutions</a> </p> <a href="https://publications.waset.org/abstracts/2191/analytical-solutions-of-time-space-fractional-advection-dispersion-and-whitham-broer-kaup-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2273</span> Cellular Automata Using Fractional Integral Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasser%20F.%20Hassan">Yasser F. Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a proposed model of cellular automata is studied by means of fractional integral function. A cellular automaton is a decentralized computing model providing an excellent platform for performing complex computation with the help of only local information. The paper discusses how using fractional integral function for representing cellular automata memory or state. The architecture of computing and learning model will be given and the results of calibrating of approach are also given. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractional%20integral" title="fractional integral">fractional integral</a>, <a href="https://publications.waset.org/abstracts/search?q=cellular%20automata" title=" cellular automata"> cellular automata</a>, <a href="https://publications.waset.org/abstracts/search?q=memory" title=" memory"> memory</a>, <a href="https://publications.waset.org/abstracts/search?q=learning" title=" learning"> learning</a> </p> <a href="https://publications.waset.org/abstracts/55312/cellular-automata-using-fractional-integral-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55312.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2272</span> On Fourier Type Integral Transform for a Class of Generalized Quotients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Issa">A. S. Issa</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Q.%20AL-Omari"> S. K. Q. AL-Omari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we investigate certain spaces of generalized functions for the Fourier and Fourier type integral transforms. We discuss convolution theorems and establish certain spaces of distributions for the considered integrals. The new Fourier type integral is well-defined, linear, one-to-one and continuous with respect to certain types of convergences. Many properties and an inverse problem are also discussed in some details. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boehmian" title="Boehmian">Boehmian</a>, <a href="https://publications.waset.org/abstracts/search?q=Fourier%20integral" title=" Fourier integral"> Fourier integral</a>, <a href="https://publications.waset.org/abstracts/search?q=Fourier%20type%20integral" title=" Fourier type integral"> Fourier type integral</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20quotient" title=" generalized quotient"> generalized quotient</a> </p> <a href="https://publications.waset.org/abstracts/45947/on-fourier-type-integral-transform-for-a-class-of-generalized-quotients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2271</span> Numerical Computation of Sturm-Liouville Problem with Robin Boundary Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Theddeus%20T.%20Akano">Theddeus T. Akano</a>, <a href="https://publications.waset.org/abstracts/search?q=Omotayo%20A.%20Fakinlede"> Omotayo A. Fakinlede</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The modelling of physical phenomena, such as the earth’s free oscillations, the vibration of strings, the interaction of atomic particles, or the steady state flow in a bar give rise to Sturm-Liouville (SL) eigenvalue problems. The boundary applications of some systems like the convection-diffusion equation, electromagnetic and heat transfer problems requires the combination of Dirichlet and Neumann boundary conditions. Hence, the incorporation of Robin boundary condition in the analyses of Sturm-Liouville problem. This paper deals with the computation of the eigenvalues and eigenfunction of generalized Sturm-Liouville problems with Robin boundary condition using the finite element method. Numerical solutions of classical Sturm–Liouville problems are presented. The results show an agreement with the exact solution. High results precision is achieved with higher number of elements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sturm-Liouville%20problem" title="Sturm-Liouville problem">Sturm-Liouville problem</a>, <a href="https://publications.waset.org/abstracts/search?q=Robin%20boundary%20condition" title=" Robin boundary condition"> Robin boundary condition</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=eigenvalue%20problems" title=" eigenvalue problems"> eigenvalue problems</a> </p> <a href="https://publications.waset.org/abstracts/37320/numerical-computation-of-sturm-liouville-problem-with-robin-boundary-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37320.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2270</span> Modified Fractional Curl Operator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rawhy%20Ismail">Rawhy Ismail </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Applying fractional calculus in the field of electromagnetics shows significant results. The fractionalization of the conventional curl operator leads to having additional solutions to an electromagnetic problem. This work restudies the concept of the fractional curl operator considering fractional time derivatives in Maxwell’s curl equations. In that sense, a general scheme for the wave loss term is introduced and the degree of freedom of the system is affected through imposing the new fractional parameters. The conventional case is recovered by setting all fractional derivatives to unity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curl%20operator" title="curl operator">curl operator</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20calculus" title=" fractional calculus"> fractional calculus</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20curl%20operators" title=" fractional curl operators"> fractional curl operators</a>, <a href="https://publications.waset.org/abstracts/search?q=Maxwell%20equations" title=" Maxwell equations"> Maxwell equations</a> </p> <a href="https://publications.waset.org/abstracts/35772/modified-fractional-curl-operator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">487</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2269</span> Notes on Frames in Weighted Hardy Spaces and Generalized Weighted Composition Operators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shams%20Alyusof">Shams Alyusof</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work is to enrich the studies of the frames due to their prominent role in pure mathematics as well as in applied mathematics and many applications in computer science and engineering. Recently, there are remarkable studies of operators that preserve frames on some spaces, and this research could be considered as an extension of such studies. Indeed, this paper is to we characterize weighted composition operators that preserve frames in weighted Hardy spaces on the open unit disk. Moreover, it shows that this characterization does not apply to generalized weighted composition operators on such spaces. Nevertheless, this study could be extended to provide more specific characterizations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frames" title="frames">frames</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20weighted%20composition%20operators" title=" generalized weighted composition operators"> generalized weighted composition operators</a>, <a href="https://publications.waset.org/abstracts/search?q=weighted%20Hardy%20spaces" title=" weighted Hardy spaces"> weighted Hardy spaces</a>, <a href="https://publications.waset.org/abstracts/search?q=analytic%20functions" title=" analytic functions"> analytic functions</a> </p> <a href="https://publications.waset.org/abstracts/156372/notes-on-frames-in-weighted-hardy-spaces-and-generalized-weighted-composition-operators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2268</span> Integral Domains and Alexandroff Topology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shai%20Sarussi">Shai Sarussi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Let S be an integral domain which is not a field, let F be its field of fractions, and let A be an F-algebra. An S-subalgebra R of A is called S-nice if R ∩ F = S and F R = A. A topological space whose set of open sets is closed under arbitrary intersections is called an Alexandroff space. Inspired by the well-known Zariski-Riemann space and the Zariski topology on the set of prime ideals of a commutative ring, we define a topology on the set of all S-nice subalgebras of A. Consequently, we get an interplay between Algebra and topology, that gives us a better understanding of the S-nice subalgebras of A. It is shown that every irreducible subset of S-nice subalgebras of A has a supremum; and a characterization of the irreducible components is given, in terms of maximal S-nice subalgebras of A. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexandroff%20topology" title="Alexandroff topology">Alexandroff topology</a>, <a href="https://publications.waset.org/abstracts/search?q=integral%20domains" title=" integral domains"> integral domains</a>, <a href="https://publications.waset.org/abstracts/search?q=Zariski-Riemann%20space" title=" Zariski-Riemann space"> Zariski-Riemann space</a>, <a href="https://publications.waset.org/abstracts/search?q=S-nice%20subalgebras" title=" S-nice subalgebras"> S-nice subalgebras</a> </p> <a href="https://publications.waset.org/abstracts/154343/integral-domains-and-alexandroff-topology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154343.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2267</span> Nonlocal Phenomena in Quantum Mechanics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kazim%20G.%20Atman">Kazim G. Atman</a>, <a href="https://publications.waset.org/abstracts/search?q=H%C3%BCseyin%20Sirin"> Hüseyin Sirin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In theoretical physics, nonlocal phenomena has always been subject of debate. However, in the conventional mathematical approach where the developments of the physical systems are investigated by using the standard mathematical tools, nonlocal effects are not taken into account. In order to investigate the nonlocality in quantum mechanics and fractal property of space, fractional derivative operators are employed in this study. In this manner, fractional creation and annihilation operators are introduced and Einstein coefficients are taken into account as an application of concomitant formalism in quantum field theory. Therefore, each energy mode of photons are considered as fractional quantized harmonic oscillator hereby Einstein coefficients are obtained. Nevertheless, wave function and energy eigenvalues of fractional quantum mechanical harmonic oscillator are obtained via the fractional derivative order α which is a measure of the influence of nonlocal effects. In the case α = 1, where space becomes homogeneous and continuous, standard physical conclusions are recovered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Einstein%E2%80%99s%20Coefficients" title="Einstein’s Coefficients">Einstein’s Coefficients</a>, <a href="https://publications.waset.org/abstracts/search?q=Fractional%20Calculus" title=" Fractional Calculus"> Fractional Calculus</a>, <a href="https://publications.waset.org/abstracts/search?q=Fractional%20Quantum%20Mechanics" title=" Fractional Quantum Mechanics"> Fractional Quantum Mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=Nonlocal%20Theories" title=" Nonlocal Theories"> Nonlocal Theories</a> </p> <a href="https://publications.waset.org/abstracts/124566/nonlocal-phenomena-in-quantum-mechanics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124566.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2266</span> Durrmeyer Type Modification of q-Generalized Bernstein Operators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruchi">Ruchi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Acu"> A. M. Acu</a>, <a href="https://publications.waset.org/abstracts/search?q=Purshottam%20N.%20Agrawal"> Purshottam N. Agrawal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper to introduce the Durrmeyer type modification of q-generalized-Bernstein operators which include the Bernstein polynomials in the particular α = 0. We investigate the rate of convergence by means of the Lipschitz class and the Peetre’s K-functional. Also, we define the bivariate case of Durrmeyer type modification of q-generalized-Bernstein operators and study the degree of approximation with the aid of the partial modulus of continuity and the Peetre’s K-functional. Finally, we introduce the GBS (Generalized Boolean Sum) of the Durrmeyer type modification of q- generalized-Bernstein operators and investigate the approximation of the Bögel continuous and Bögel differentiable functions with the aid of the Lipschitz class and the mixed modulus of smoothness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=B%C3%B6gel%20continuous" title="Bögel continuous">Bögel continuous</a>, <a href="https://publications.waset.org/abstracts/search?q=B%C3%B6gel%20differentiable" title=" Bögel differentiable"> Bögel differentiable</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20Boolean%20sum" title=" generalized Boolean sum"> generalized Boolean sum</a>, <a href="https://publications.waset.org/abstracts/search?q=Peetre%E2%80%99s%20K-functional" title=" Peetre’s K-functional"> Peetre’s K-functional</a>, <a href="https://publications.waset.org/abstracts/search?q=Lipschitz%20class" title=" Lipschitz class"> Lipschitz class</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20modulus%20of%20smoothness" title=" mixed modulus of smoothness"> mixed modulus of smoothness</a> </p> <a href="https://publications.waset.org/abstracts/79175/durrmeyer-type-modification-of-q-generalized-bernstein-operators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2265</span> Tuning Fractional Order Proportional-Integral-Derivative Controller Using Hybrid Genetic Algorithm Particle Swarm and Differential Evolution Optimization Methods for Automatic Voltage Regulator System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fouzi%20Aboura">Fouzi Aboura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fractional order proportional-integral-derivative (FOPID) controller or fractional order (PIλDµ) is a proportional-integral-derivative (PID) controller where integral order (λ) and derivative order (µ) are fractional, one of the important application of classical PID is the Automatic Voltage Regulator (AVR).The FOPID controller needs five parameters optimization while the design of conventional PID controller needs only three parameters to be optimized. In our paper we have proposed a comparison between algorithms Differential Evolution (DE) and Hybrid Genetic Algorithm Particle Swarm Optimization (HGAPSO) ,we have studied theirs characteristics and performance analysis to find an optimum parameters of the FOPID controller, a new objective function is also proposed to take into account the relation between the performance criteria’s. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FOPID%20controller" title="FOPID controller">FOPID controller</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20order" title=" fractional order"> fractional order</a>, <a href="https://publications.waset.org/abstracts/search?q=AVR%20system" title=" AVR system"> AVR system</a>, <a href="https://publications.waset.org/abstracts/search?q=objective%20function" title=" objective function"> objective function</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=GA" title=" GA"> GA</a>, <a href="https://publications.waset.org/abstracts/search?q=PSO" title=" PSO"> PSO</a>, <a href="https://publications.waset.org/abstracts/search?q=HGAPSO" title=" HGAPSO"> HGAPSO</a> </p> <a href="https://publications.waset.org/abstracts/164900/tuning-fractional-order-proportional-integral-derivative-controller-using-hybrid-genetic-algorithm-particle-swarm-and-differential-evolution-optimization-methods-for-automatic-voltage-regulator-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2264</span> Caputo-Type Fuzzy Fractional Riccati Differential Equations with Fuzzy Initial Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Trilok%20Mathur">Trilok Mathur</a>, <a href="https://publications.waset.org/abstracts/search?q=Shivi%20Agarwal"> Shivi Agarwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the solutions of fuzzy-fractional-order Riccati equations under Caputo-type fuzzy fractional derivatives. The Caputo-type fuzzy fractional derivatives are defined based on Hukuhura difference and strongly generalized fuzzy differentiability. The Laplace-Adomian-Pade method is used for solving fractional Riccati-type initial value differential equations of fractional order. Moreover, we also displayed some examples to illustrate our methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Caputo-type%20fuzzy%20fractional%20derivative" title="Caputo-type fuzzy fractional derivative">Caputo-type fuzzy fractional derivative</a>, <a href="https://publications.waset.org/abstracts/search?q=Fractional%20Riccati%20differential%20equations" title=" Fractional Riccati differential equations"> Fractional Riccati differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=Laplace-Adomian-Pade%20method" title=" Laplace-Adomian-Pade method"> Laplace-Adomian-Pade method</a>, <a href="https://publications.waset.org/abstracts/search?q=Mittag%20Leffler%20function" title=" Mittag Leffler function"> Mittag Leffler function</a> </p> <a href="https://publications.waset.org/abstracts/51080/caputo-type-fuzzy-fractional-riccati-differential-equations-with-fuzzy-initial-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2263</span> Magnetohydrodynamic Couette Flow of Fractional Burger’s Fluid in an Annulus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sani%20Isa">Sani Isa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Musa"> Ali Musa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Burgers’ fluid with a fractional derivatives model in an annulus was analyzed. Combining appropriately the basic equations, with the fractionalized fractional Burger’s fluid model allow us to determine the velocity field, temperature and shear stress. The governing partial differential equation was solved using the combine Laplace transformation method and Riemann sum approximation to give velocity field, temperature and shear stress on the fluid flow. The influence of various parameters like fractional parameters, relaxation time and retardation time, are drawn. The results obtained are simulated using Mathcad software and presented graphically. From the graphical results, we observed that the relaxation time and time helps the flow pattern, on the other hand, other material constants resist the fluid flow while fractional parameters effect on fluid flow is opposite to each other. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sani%20isa" title="sani isa">sani isa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20musaburger%E2%80%99s%20fluid" title=" Ali musaburger’s fluid"> Ali musaburger’s fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=Laplace%20transform" title=" Laplace transform"> Laplace transform</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20derivatives" title=" fractional derivatives"> fractional derivatives</a>, <a href="https://publications.waset.org/abstracts/search?q=annulus" title=" annulus"> annulus</a> </p> <a href="https://publications.waset.org/abstracts/190150/magnetohydrodynamic-couette-flow-of-fractional-burgers-fluid-in-an-annulus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190150.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">24</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2262</span> Fractional-Order PI Controller Tuning Rules for Cascade Control System </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Truong%20Nguyen%20Luan%20Vu">Truong Nguyen Luan Vu</a>, <a href="https://publications.waset.org/abstracts/search?q=Le%20Hieu%20Giang"> Le Hieu Giang</a>, <a href="https://publications.waset.org/abstracts/search?q=Le%20Linh"> Le Linh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fractional–order proportional integral (FOPI) controller tuning rules based on the fractional calculus for the cascade control system are systematically proposed in this paper. Accordingly, the ideal controller is obtained by using internal model control (IMC) approach for both the inner and outer loops, which gives the desired closed-loop responses. On the basis of the fractional calculus, the analytical tuning rules of FOPI controller for the inner loop can be established in the frequency domain. Besides, the outer loop is tuned by using any integer PI/PID controller tuning rules in the literature. The simulation study is considered for the stable process model and the results demonstrate the simplicity, flexibility, and effectiveness of the proposed method for the cascade control system in compared with the other methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bode%E2%80%99s%20ideal%20transfer%20function" title="Bode’s ideal transfer function">Bode’s ideal transfer function</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20calculus" title=" fractional calculus"> fractional calculus</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%E2%80%93order%20proportional%20integral%20%28FOPI%29%20controller" title=" fractional–order proportional integral (FOPI) controller"> fractional–order proportional integral (FOPI) controller</a>, <a href="https://publications.waset.org/abstracts/search?q=cascade%20control%20system" title=" cascade control system"> cascade control system</a> </p> <a href="https://publications.waset.org/abstracts/48740/fractional-order-pi-controller-tuning-rules-for-cascade-control-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48740.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2261</span> Derivation of Fractional Black-Scholes Equations Driven by Fractional G-Brownian Motion and Their Application in European Option Pricing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Changhong%20Guo">Changhong Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaomei%20Fang"> Shaomei Fang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20He"> Yong He</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, fractional Black-Scholes models for the European option pricing were established based on the fractional G-Brownian motion (fGBm), which generalizes the concepts of the classical Brownian motion, fractional Brownian motion and the G-Brownian motion, and that can be used to be a tool for considering the long range dependence and uncertain volatility for the financial markets simultaneously. A generalized fractional Black-Scholes equation (FBSE) was derived by using the Taylor’s series of fractional order and the theory of absence of arbitrage. Finally, some explicit option pricing formulas for the European call option and put option under the FBSE were also solved, which extended the classical option pricing formulas given by F. Black and M. Scholes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=European%20option%20pricing" title="European option pricing">European option pricing</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20Black-Scholes%20equations" title=" fractional Black-Scholes equations"> fractional Black-Scholes equations</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20g-Brownian%20motion" title=" fractional g-Brownian motion"> fractional g-Brownian motion</a>, <a href="https://publications.waset.org/abstracts/search?q=Taylor%27s%20series%20of%20fractional%20order" title=" Taylor's series of fractional order"> Taylor's series of fractional order</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertain%20volatility" title=" uncertain volatility"> uncertain volatility</a> </p> <a href="https://publications.waset.org/abstracts/127107/derivation-of-fractional-black-scholes-equations-driven-by-fractional-g-brownian-motion-and-their-application-in-european-option-pricing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127107.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2260</span> Design Fractional-Order Terminal Sliding Mode Control for Synchronization of a Class of Fractional-Order Chaotic Systems with Uncertainty and External Disturbances</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shabnam%20Pashaei">Shabnam Pashaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammadali%20Badamchizadeh"> Mohammadali Badamchizadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a new fractional-order terminal sliding mode control for synchronization of two different fractional-order chaotic systems with uncertainty and external disturbances. A fractional-order integral type nonlinear switching surface is presented. Then, using the Lyapunov stability theory and sliding mode theory, a fractional-order control law is designed to synchronize two different fractional-order chaotic systems. Finally, a simulation example is presented to illustrate the performance and applicability of the proposed method. Based on numerical results, the proposed controller ensures that the states of the controlled fractional-order chaotic response system are asymptotically synchronized with the states of the drive system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=terminal%20sliding%20mode%20control" title="terminal sliding mode control">terminal sliding mode control</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional-order%20calculus" title=" fractional-order calculus"> fractional-order calculus</a>, <a href="https://publications.waset.org/abstracts/search?q=chaotic%20systems" title=" chaotic systems"> chaotic systems</a>, <a href="https://publications.waset.org/abstracts/search?q=synchronization" title=" synchronization"> synchronization</a> </p> <a href="https://publications.waset.org/abstracts/67276/design-fractional-order-terminal-sliding-mode-control-for-synchronization-of-a-class-of-fractional-order-chaotic-systems-with-uncertainty-and-external-disturbances" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2259</span> A New Study on Mathematical Modelling of COVID-19 with Caputo Fractional Derivative</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sadia%20Arshad">Sadia Arshad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The new coronavirus disease or COVID-19 still poses an alarming situation around the world. Modeling based on the derivative of fractional order is relatively important to capture real-world problems and to analyze the realistic situation of the proposed model. Weproposed a mathematical model for the investigation of COVID-19 dynamics in a generalized fractional framework. The new model is formulated in the Caputo sense and employs a nonlinear time-varying transmission rate. The existence and uniqueness solutions of the fractional order derivative have been studied using the fixed-point theory. The associated dynamical behaviors are discussed in terms of equilibrium, stability, and basic reproduction number. For the purpose of numerical implementation, an effcient approximation scheme is also employed to solve the fractional COVID-19 model. Numerical simulations are reported for various fractional orders, and simulation results are compared with a real case of COVID-19 pandemic. According to the comparative results with real data, we find the best value of fractional orderand justify the use of the fractional concept in the mathematical modelling, for the new fractional modelsimulates the reality more accurately than the other classical frameworks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractional%20calculus" title="fractional calculus">fractional calculus</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20solution" title=" numerical solution"> numerical solution</a> </p> <a href="https://publications.waset.org/abstracts/151862/a-new-study-on-mathematical-modelling-of-covid-19-with-caputo-fractional-derivative" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2258</span> A Proof of the N. Davydov Theorem for Douglis Algebra Valued Functions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jean-Marie%20Vilaire">Jean-Marie Vilaire</a>, <a href="https://publications.waset.org/abstracts/search?q=Ricardo%20Abreu-Blaya"> Ricardo Abreu-Blaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20Bory-Reyes"> Juan Bory-Reyes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The classical Beltrami system of elliptic equations generalizes the Cauchy Riemann equation in the complex plane and offers the possibility to consider homogeneous system with no terms of zero order. The theory of Douglis-valued functions, called Hyper-analytic functions, is special case of the above situation. In this note, we prove an analogue of the N. Davydov theorem in the framework of the theory of hyperanalytic functions. The used methodology contemplates characteristic methods of the hypercomplex analysis as well as the singular integral operators and elliptic systems of the partial differential equations theories. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beltrami%20equation" title="Beltrami equation">Beltrami equation</a>, <a href="https://publications.waset.org/abstracts/search?q=Douglis%20algebra-valued%20function" title=" Douglis algebra-valued function"> Douglis algebra-valued function</a>, <a href="https://publications.waset.org/abstracts/search?q=Hypercomplex%20Cauchy%20type%20integral" title=" Hypercomplex Cauchy type integral"> Hypercomplex Cauchy type integral</a>, <a href="https://publications.waset.org/abstracts/search?q=Sokhotski-Plemelj%20formulae" title=" Sokhotski-Plemelj formulae"> Sokhotski-Plemelj formulae</a> </p> <a href="https://publications.waset.org/abstracts/92078/a-proof-of-the-n-davydov-theorem-for-douglis-algebra-valued-functions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92078.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2257</span> Robust Fractional Order Controllers for Minimum and Non-Minimum Phase Systems – Studies on Design and Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anand%20Kishore%20Kola">Anand Kishore Kola</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Uday%20Bhaskar%20Babu"> G. Uday Bhaskar Babu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kotturi%20Ajay%20Kumar"> Kotturi Ajay Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The modern dynamic systems used in industries are complex in nature and hence the fractional order controllers have been contemplated as a fresh approach to control system design that takes the complexity into account. Traditional integer order controllers use integer derivatives and integrals to control systems, whereas fractional order controllers use fractional derivatives and integrals to regulate memory and non-local behavior. This study provides a method based on the maximumsensitivity (Ms) methodology to discover all resilient fractional filter Internal Model Control - proportional integral derivative (IMC-PID) controllers that stabilize the closed-loop system and deliver the highest performance for a time delay system with a Smith predictor configuration. Additionally, it helps to enhance the range of PID controllers that are used to stabilize the system. This study also evaluates the effectiveness of the suggested controller approach for minimum phase system in comparison to those currently in use which are based on Integral of Absolute Error (IAE) and Total Variation (TV). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modern%20dynamic%20systems" title="modern dynamic systems">modern dynamic systems</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20order%20controllers" title=" fractional order controllers"> fractional order controllers</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum-sensitivity" title=" maximum-sensitivity"> maximum-sensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=IMC-PID%20controllers" title=" IMC-PID controllers"> IMC-PID controllers</a>, <a href="https://publications.waset.org/abstracts/search?q=Smith%20predictor" title=" Smith predictor"> Smith predictor</a>, <a href="https://publications.waset.org/abstracts/search?q=IAE%20and%20TV" title=" IAE and TV"> IAE and TV</a> </p> <a href="https://publications.waset.org/abstracts/181141/robust-fractional-order-controllers-for-minimum-and-non-minimum-phase-systems-studies-on-design-and-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181141.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2256</span> Probability Fuzzy Aggregation Operators in Vehicle Routing Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anna%20Sikharulidze">Anna Sikharulidze</a>, <a href="https://publications.waset.org/abstracts/search?q=Gia%20Sirbiladze"> Gia Sirbiladze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For the evaluation of unreliability levels of movement on the closed routes in the vehicle routing problem, the fuzzy operators family is constructed. The interactions between routing factors in extreme conditions on the roads are considered. A multi-criteria decision-making model (MCDM) is constructed. Constructed aggregations are based on the Choquet integral and the associated probability class of a fuzzy measure. Propositions on the correctness of the extension are proved. Connections between the operators and the compositions of dual triangular norms are described. The conjugate connections between the constructed operators are shown. Operators reflect interactions among all the combinations of the factors in the fuzzy MCDM process. Several variants of constructed operators are used in the decision-making problem regarding the assessment of unreliability and possibility levels of movement on closed routes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vehicle%20routing%20problem" title="vehicle routing problem">vehicle routing problem</a>, <a href="https://publications.waset.org/abstracts/search?q=associated%20probabilities%20of%20a%20fuzzy%20measure" title=" associated probabilities of a fuzzy measure"> associated probabilities of a fuzzy measure</a>, <a href="https://publications.waset.org/abstracts/search?q=choquet%20integral" title=" choquet integral"> choquet integral</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20aggregation%20operator" title=" fuzzy aggregation operator"> fuzzy aggregation operator</a> </p> <a href="https://publications.waset.org/abstracts/60841/probability-fuzzy-aggregation-operators-in-vehicle-routing-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60841.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2255</span> A Coupled System of Caputo-Type Katugampola Fractional Differential Equations with Integral Boundary Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yacine%20Arioua">Yacine Arioua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we investigate the existence and uniqueness of solutions for a coupled system of nonlinear Caputo-type Katugampola fractional differential equations with integral boundary conditions. Based upon a contraction mapping principle, Schauders fixed point theorems, some new existence and uniqueness results of solutions for the given problems are obtained. For application, some examples are given to illustrate the usefulness of our main results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractional%20differential%20equations" title="fractional differential equations">fractional differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=coupled%20system" title=" coupled system"> coupled system</a>, <a href="https://publications.waset.org/abstracts/search?q=Caputo-Katugampola%20derivative" title=" Caputo-Katugampola derivative"> Caputo-Katugampola derivative</a>, <a href="https://publications.waset.org/abstracts/search?q=fixed%20point%20theorems" title=" fixed point theorems"> fixed point theorems</a>, <a href="https://publications.waset.org/abstracts/search?q=existence" title=" existence"> existence</a>, <a href="https://publications.waset.org/abstracts/search?q=uniqueness" title=" uniqueness"> uniqueness</a> </p> <a href="https://publications.waset.org/abstracts/124953/a-coupled-system-of-caputo-type-katugampola-fractional-differential-equations-with-integral-boundary-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124953.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2254</span> Chaos Analysis of a 3D Finance System and Generalized Synchronization for N-Dimension</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Fiaz">Muhammad Fiaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article in hand is the study of complex features like Zero Hopf Bifurcation, Chaos and Synchronization of integer and fractional order version of a new 3D finance system. Trusted tools of averaging theory and active control method are utilized for investigation of Zero Hopf bifurcation and synchronization for both versions respectively. Inventiveness of the paper is to find the answer of a question that is it possible to find a chaotic system which can be synchronized with any other of the same dimension? Based on different examples we categorically develop a theory that if a couple of master and slave chaotic dynamical system is synchronized by selecting a suitable gain matrix with special conditions then the master system is synchronized with any chaotic dynamical system of the same dimension. With the help of this study we developed generalized theorems for synchronization of n-dimension dynamical systems for integer as well as fractional versions. it proposed that this investigation will contribute a lot to control dynamical systems and only a suitable gain matrix with special conditions is enough to synchronize the system under consideration with any other chaotic system of the same dimension. Chaotic properties of fractional version of the new finance system are also analyzed at fractional order q=0.87. Simulations results, where required, also provided for authenticity of analytical study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complex%20analysis" title="complex analysis">complex analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=chaos" title=" chaos"> chaos</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20synchronization" title=" generalized synchronization"> generalized synchronization</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20dynamics" title=" control dynamics"> control dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20order%20analysis" title=" fractional order analysis"> fractional order analysis</a> </p> <a href="https://publications.waset.org/abstracts/182892/chaos-analysis-of-a-3d-finance-system-and-generalized-synchronization-for-n-dimension" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182892.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2253</span> Approximation by Generalized Lupaş-Durrmeyer Operators with Two Parameter α and β</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Preeti%20Sharma">Preeti Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the Stancu type generalization of Lupaş-Durrmeyer operators. We establish some direct results in the polynomial weighted space of continuous functions defined on the interval [0, 1]. Also, Voronovskaja type theorem is studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lupas-Durrmeyer%20operators" title="Lupas-Durrmeyer operators">Lupas-Durrmeyer operators</a>, <a href="https://publications.waset.org/abstracts/search?q=polya%20distribution" title=" polya distribution"> polya distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=weighted%20approximation" title=" weighted approximation"> weighted approximation</a>, <a href="https://publications.waset.org/abstracts/search?q=rate%20of%20convergence" title=" rate of convergence"> rate of convergence</a>, <a href="https://publications.waset.org/abstracts/search?q=modulus%20of%20continuity" title=" modulus of continuity"> modulus of continuity</a> </p> <a href="https://publications.waset.org/abstracts/47660/approximation-by-generalized-lupas-durrmeyer-operators-with-two-parameter-a-and-v" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2252</span> Numerical Applications of Tikhonov Regularization for the Fourier Multiplier Operators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fethi%20Soltani">Fethi Soltani</a>, <a href="https://publications.waset.org/abstracts/search?q=Adel%20Almarashi"> Adel Almarashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Idir%20Mechai"> Idir Mechai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tikhonov regularization and reproducing kernels are the most popular approaches to solve ill-posed problems in computational mathematics and applications. And the Fourier multiplier operators are an essential tool to extend some known linear transforms in Euclidean Fourier analysis, as: Weierstrass transform, Poisson integral, Hilbert transform, Riesz transforms, Bochner-Riesz mean operators, partial Fourier integral, Riesz potential, Bessel potential, etc. Using the theory of reproducing kernels, we construct a simple and efficient representations for some class of Fourier multiplier operators Tm on the Paley-Wiener space Hh. In addition, we give an error estimate formula for the approximation and obtain some convergence results as the parameters and the independent variables approaches zero. Furthermore, using numerical quadrature integration rules to compute single and multiple integrals, we give numerical examples and we write explicitly the extremal function and the corresponding Fourier multiplier operators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fourier%20multiplier%20operators" title="fourier multiplier operators">fourier multiplier operators</a>, <a href="https://publications.waset.org/abstracts/search?q=Gauss-Kronrod%20method%20of%20integration" title=" Gauss-Kronrod method of integration"> Gauss-Kronrod method of integration</a>, <a href="https://publications.waset.org/abstracts/search?q=Paley-Wiener%20space" title=" Paley-Wiener space"> Paley-Wiener space</a>, <a href="https://publications.waset.org/abstracts/search?q=Tikhonov%20regularization" title=" Tikhonov regularization"> Tikhonov regularization</a> </p> <a href="https://publications.waset.org/abstracts/38538/numerical-applications-of-tikhonov-regularization-for-the-fourier-multiplier-operators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2251</span> Globally Attractive Mild Solutions for Non-Local in Time Subdiffusion Equations of Neutral Type</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jorge%20Gonzalez%20Camus">Jorge Gonzalez Camus</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Lizama"> Carlos Lizama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work is proved the existence of at least one globally attractive mild solution to the Cauchy problem, for fractional evolution equation of neutral type, involving the fractional derivate in Caputo sense. An almost sectorial operator on a Banach space X and a kernel belonging to a large class appears in the equation, which covers many relevant cases from physics applications, in particular, the important case of time - fractional evolution equations of neutral type. The main tool used in this work was the Hausdorff measure of noncompactness and fixed point theorems, specifically Darbo-type. Initially, the equation is a Cauchy problem, involving a fractional derivate in Caputo sense. Then, is formulated the equivalent integral version, and defining a convenient functional, using the analytic integral resolvent operator, and verifying the hypothesis of the fixed point theorem of Darbo type, give us the existence of mild solution for the initial problem. Furthermore, each mild solution is globally attractive, a property that is desired in asymptotic behavior for that solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=attractive%20mild%20solutions" title="attractive mild solutions">attractive mild solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=integral%20Volterra%20equations" title=" integral Volterra equations"> integral Volterra equations</a>, <a href="https://publications.waset.org/abstracts/search?q=neutral%20type%20equations" title=" neutral type equations"> neutral type equations</a>, <a href="https://publications.waset.org/abstracts/search?q=non-local%20in%20time%20equations" title=" non-local in time equations"> non-local in time equations</a> </p> <a href="https://publications.waset.org/abstracts/99925/globally-attractive-mild-solutions-for-non-local-in-time-subdiffusion-equations-of-neutral-type" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99925.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2250</span> Statistical Convergence of the Szasz-Mirakjan-Kantorovich-Type Operators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rishikesh%20Yadav">Rishikesh Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramakanta%20Meher"> Ramakanta Meher</a>, <a href="https://publications.waset.org/abstracts/search?q=Vishnu%20Narayan%20Mishra"> Vishnu Narayan Mishra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main aim of this article is to investigate the statistical convergence of the summation of integral type operators and to obtain the weighted statistical convergence. The rate of statistical convergence by means of modulus of continuity and function belonging to the Lipschitz class are also studied. We discuss the convergence of the defined operators by graphical representation and put a better rate of convergence than the Szasz-Mirakjan-Kantorovich operators. In the last section, we extend said operators into bivariate operators to study about the rate of convergence in sense of modulus of continuity and by means of Lipschitz class by using function of two variables. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=The%20Szasz-Mirakjan-Kantorovich%20operators" title="The Szasz-Mirakjan-Kantorovich operators">The Szasz-Mirakjan-Kantorovich operators</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20convergence" title=" statistical convergence"> statistical convergence</a>, <a href="https://publications.waset.org/abstracts/search?q=modulus%20of%20continuity" title=" modulus of continuity"> modulus of continuity</a>, <a href="https://publications.waset.org/abstracts/search?q=Peeters%20K-functional" title=" Peeters K-functional"> Peeters K-functional</a>, <a href="https://publications.waset.org/abstracts/search?q=weighted%20modulus%20of%20continuity" title=" weighted modulus of continuity"> weighted modulus of continuity</a> </p> <a href="https://publications.waset.org/abstracts/96045/statistical-convergence-of-the-szasz-mirakjan-kantorovich-type-operators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96045.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=generalized%20Riemann%E2%80%93%20Liouville%20and%20Erd%C3%A9lyi%E2%80%93Kober%20fractional%20integral%20operators&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=generalized%20Riemann%E2%80%93%20Liouville%20and%20Erd%C3%A9lyi%E2%80%93Kober%20fractional%20integral%20operators&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=generalized%20Riemann%E2%80%93%20Liouville%20and%20Erd%C3%A9lyi%E2%80%93Kober%20fractional%20integral%20operators&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=generalized%20Riemann%E2%80%93%20Liouville%20and%20Erd%C3%A9lyi%E2%80%93Kober%20fractional%20integral%20operators&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=generalized%20Riemann%E2%80%93%20Liouville%20and%20Erd%C3%A9lyi%E2%80%93Kober%20fractional%20integral%20operators&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=generalized%20Riemann%E2%80%93%20Liouville%20and%20Erd%C3%A9lyi%E2%80%93Kober%20fractional%20integral%20operators&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=generalized%20Riemann%E2%80%93%20Liouville%20and%20Erd%C3%A9lyi%E2%80%93Kober%20fractional%20integral%20operators&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=generalized%20Riemann%E2%80%93%20Liouville%20and%20Erd%C3%A9lyi%E2%80%93Kober%20fractional%20integral%20operators&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=generalized%20Riemann%E2%80%93%20Liouville%20and%20Erd%C3%A9lyi%E2%80%93Kober%20fractional%20integral%20operators&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=generalized%20Riemann%E2%80%93%20Liouville%20and%20Erd%C3%A9lyi%E2%80%93Kober%20fractional%20integral%20operators&page=75">75</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=generalized%20Riemann%E2%80%93%20Liouville%20and%20Erd%C3%A9lyi%E2%80%93Kober%20fractional%20integral%20operators&page=76">76</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=generalized%20Riemann%E2%80%93%20Liouville%20and%20Erd%C3%A9lyi%E2%80%93Kober%20fractional%20integral%20operators&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>