CINXE.COM

Search results for: Cymbopogon citratus Stapf

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Cymbopogon citratus Stapf</title> <meta name="description" content="Search results for: Cymbopogon citratus Stapf"> <meta name="keywords" content="Cymbopogon citratus Stapf"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Cymbopogon citratus Stapf" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Cymbopogon citratus Stapf"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 30</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Cymbopogon citratus Stapf</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Effects of Cymbopogon citratus, Stapf (CS) or Lemon Grass Ethanol Extract on Antioxidant and Vascular Disorders Parameters in Rat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suphaket%20Saenthaweesuk">Suphaket Saenthaweesuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Nutiya%20Somparn"> Nutiya Somparn</a>, <a href="https://publications.waset.org/abstracts/search?q=Atcharaporn%20Thewmore"> Atcharaporn Thewmore</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study aims to investigate the effects of Cymbopogon citratus, Stapf (CS) or lemon grass ethanol extract on antioxidant and vascular disorders parameters in rat. The CS ethanol extract was screened for its phytochemical contents and antioxidant activity in vitro. Moreover, the extract was studied in rats to evaluate its effects in vivo. Rats were orally administered with CS at 1,000 mg/kg/day for 30 days. Phytochemical screening of CS extract indicated the presence of tannins, flavonoids and phenolic compounds. The extract contained phenolic compounds 1,400.10 ± 0.47 mg of gallic acid equivalents per gram CS extract. The free radical scavenging activity assessed by DPPH assay gave IC50 of 168.77 ± 3.32µg/mL, which is relatively lower than that of BHT with IC50 of 12.34 ± 1.14 µg/mL. In the animals, the protein expression of antioxidant enzymes, γ-glutamylcysteine ligase (γ-GCL) in liver was significantly increased. This was consistent with elevation of serum catalase (CAT) and superoxide dismutase (SOD) activities. However, Protein expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule (ICAM-1) and endothelial nitric oxide synthase (eNOS) in heart and aorta were not differenced from normal control. Taken together, the present study provides evidence that CCS water extract exhibits direct antioxidant properties and can induce cytoprotective enzymes in vivo. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title="antioxidant">antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=Cymbopogon%20citratus%20Stapf" title=" Cymbopogon citratus Stapf"> Cymbopogon citratus Stapf</a>, <a href="https://publications.waset.org/abstracts/search?q=VCAM-1" title=" VCAM-1"> VCAM-1</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B3-glutamylcysteine%20ligase" title=" γ-glutamylcysteine ligase"> γ-glutamylcysteine ligase</a> </p> <a href="https://publications.waset.org/abstracts/69543/effects-of-cymbopogon-citratus-stapf-cs-or-lemon-grass-ethanol-extract-on-antioxidant-and-vascular-disorders-parameters-in-rat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69543.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Optimization, Yield and Chemical Composition of Essential Oil from Cymbopogon citratus: Comparative Study with Microwave Assisted Extraction and Hydrodistillation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Irsha%20Dhotre">Irsha Dhotre</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cymbopogon citratus is generally known as Indian Lemongrass and is widely applicable in the cosmetic, pharmaceutical, dairy puddings, and food industries. To enhance the quality of extraction, microwave-oven-aided hydro distillation processes were implemented. The basic parameter which influences the rate of extraction is considered, such as the temperature of extraction, the time required for extraction, and microwave-oven power applied. Locally available CKP 25 Cymbopogon citratus was used for the extraction of essential oil. Optimization of Extractions Parameters and full factorial Box–Behnken design (BBD) evaluated by using Design expert 13 software. The regression model revealed that the optimum parameters required for extractions are a temperature of 35℃, a time of extraction of 130 minutes, and microwave-oven power of 700 W. The extraction efficiency of yield is 4.76%. Gas Chromatography-Mass Spectroscopy (GC-MS) analysis confirmed the significant components present in the extraction of lemongrass oil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Box%E2%80%93Behnken%20design" title="Box–Behnken design">Box–Behnken design</a>, <a href="https://publications.waset.org/abstracts/search?q=Cymbopogon%20citratus" title=" Cymbopogon citratus"> Cymbopogon citratus</a>, <a href="https://publications.waset.org/abstracts/search?q=hydro%20distillation" title=" hydro distillation"> hydro distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave-oven" title=" microwave-oven"> microwave-oven</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a> </p> <a href="https://publications.waset.org/abstracts/160880/optimization-yield-and-chemical-composition-of-essential-oil-from-cymbopogon-citratus-comparative-study-with-microwave-assisted-extraction-and-hydrodistillation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Evaluation of Lemongrass (Cymbopogon citratus) as Mosquito Repellent Extracted by Supercritical Carbon Dioxide Assisted Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chia-Yu%20Lin">Chia-Yu Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun-Ying%20Lee"> Chun-Ying Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih-Jer%20Lin"> Chih-Jer Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lemongrass (Cymbopogon citratus), grown in tropical and subtropical regions over the world, has many potential uses in pharmaceutical, cosmetics, food and flavor, and agriculture industries. In this study, because of its affinity to human body and friendliness to the environment, lemongrass extract was prepared from different processes to evaluate its effectiveness as mosquito repellent. Moreover, the supercritical fluid extraction method has been widely used as an effective and environmental friendly process in the preparation of a variety of compounds. Thus, both the extracts from lemongrass by the conventional hydrodistillation method and the supercritical CO₂ assisted method were compared. The effects of pressure, temperature and time duration on the supercritical CO₂ extraction were also investigated. The compositions of different extracts were examined using mass spectrometer. As for the experiment of mosquito repellence, the extract was placed inside a mosquito trap along with syrup. The mosquito counts in each trap with extracts prepared from different processes were employed in the quantitative evaluation. It was found that the extract from the supercritical CO₂ assisted process contained higher citronellol content than the conventional hydrodistillation method. The extract with higher citronellol content also demonstrated more effective as a mosquito repellent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lemongrass%20%28Cymbopogon%20citratus%29" title="lemongrass (Cymbopogon citratus)">lemongrass (Cymbopogon citratus)</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodistillation" title=" hydrodistillation"> hydrodistillation</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20fluid%20extraction" title=" supercritical fluid extraction"> supercritical fluid extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=mosquito%20repellent" title=" mosquito repellent"> mosquito repellent</a> </p> <a href="https://publications.waset.org/abstracts/100193/evaluation-of-lemongrass-cymbopogon-citratus-as-mosquito-repellent-extracted-by-supercritical-carbon-dioxide-assisted-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100193.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Biochemical Studies on the Effects of Cymbopogon citratus (Lemon Grass) on Wistar Albino Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adegbegi%20Ademuyiwa%20Joshua">Adegbegi Ademuyiwa Joshua</a>, <a href="https://publications.waset.org/abstracts/search?q=Onoagbe%20Iyare"> Onoagbe Iyare</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Medicinal plants have been recognized to have therapeutic effects and they may also have toxic side effects. The present study was undertaken to investigate the effect of extracts of Cymbopogon citratus on normal rats. Blood glucose levels of all animals were determined. Biochemical studies carried out to determine the oxidative status by measuring activities of superoxide dismutase (SOD) and catalase (CAT), and in the liver, kidney and pancrease. Oral administration of ethanolic and aqueous extract of C. citratus at a doses of 200 mg/kg body weight, for a period of 30 days, caused a significant (p<0.05) reduction in blood glucose levels. Effect on hormonal profile (TSH, T3, and T4) was also determined, and was found to be significantly higher in all the administered groups when compared with control. Lipid profiles levels; Total cholesterols, triglycerides, high density lipoprotein-cholesterol and low density lipoprotein-cholesterol were significantly (p>0.05) higher for all treated rats as compared against control. SOD, catalase, GSH and Vitamin C activities in the tissues (liver, kidney and pancrease) of the rats treated with the medicinal plants were generally higher or statistical slightly similar to control. Histopathology result showed that both ethanolic and aqueous extracts (200 mg/kg body weight) of C. citratus was safer as no adverse effects were observed in the organs examined. Findings in this study showed that this plant has hypoglycemic properties and did not exert oxidative damage; in some instances, particularly in the liver, kidney and pancreas as well as its relative safety and possible use for weight gain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=medicinal%20plants" title="medicinal plants">medicinal plants</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20glucose" title=" blood glucose"> blood glucose</a>, <a href="https://publications.waset.org/abstracts/search?q=cymbopogon%20citratus" title=" cymbopogon citratus"> cymbopogon citratus</a>, <a href="https://publications.waset.org/abstracts/search?q=hypoglycaemic" title=" hypoglycaemic"> hypoglycaemic</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20status" title=" oxidative status"> oxidative status</a> </p> <a href="https://publications.waset.org/abstracts/28326/biochemical-studies-on-the-effects-of-cymbopogon-citratus-lemon-grass-on-wistar-albino-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Production of Vermiwash from Medicinal Plants and Its Potential Use as Fungicide against the Alternaria Alternata (fr.) Keissl. Affecting Cucumber (Cucumis sativus L.) in Guyana</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Ansari">Abdullah Ansari</a>, <a href="https://publications.waset.org/abstracts/search?q=Sinika%20Rambaran"> Sinika Rambaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Sirpaul%20Jaikishun"> Sirpaul Jaikishun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vermiwash could be used to enhance plant productivity and resistance to some harmful plant pathogens, as well as provide benefit through the disposal of waste matter. Alternaria rot caused by the fungus Alternaria alternata (Fr.) Keissl., is a common soil-borne pathogen that results in postharvest fruit rot of cucumbers, peppers and other cash crops. The production and distribution of Cucumis sativus L. (cucumber) could be severely affected by Alternaria rot. Fungicides are the traditional treatment however; they are not only expensive but can also cause environmental and health problems. Vermiwash was prepared from various medicinal plants (Ocimum tenuiflorum L. {Tulsi}, Azadirachta indica A. Juss. {neem}, Cymbopogon citratus (DC. ex Nees) Stapf. {lemon grass} and Oryza sativa L. {paddy straw} and applied, in vitro, to A. alternata to investigate their effectiveness as organic alternatives to traditional fungicides. All of the samples of vermiwash inhibited the growth of A. alternata. The inhibitive effects on the fungus appeared most effective when A. indica and O. tenuiflorum were used in the production of the vermiwash. Using the serial dilution method, vermiwash from O. tenuiflorum showed the highest percent of inhibition (93.2%), followed by C. citratus (74.7%), A. indica (68.7%), O. sativa, combination, and combination without worms. Using the sterile disc diffusion method, all of the samples produced zones of inhibition against A. alternata. Vermiwash from A. indica produced a zone of inhibition, averaging 15.3mm, followed by O. tenuiflorum (14.0mm), combination without worms, combination, C. citratus and O. sativa. Nystatin produced a zone of inhibition of 10mm. The results indicate that vermiwash is not simply an organic alternative to more traditional chemical fungicides, but it may in fact be a better and more effective product in treating certain fungal plant infections, particularly A. alternata. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vermiwash" title="vermiwash">vermiwash</a>, <a href="https://publications.waset.org/abstracts/search?q=earthworms" title=" earthworms"> earthworms</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria" title=" bacteria"> bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=alternaria%20alternata" title=" alternaria alternata"> alternaria alternata</a>, <a href="https://publications.waset.org/abstracts/search?q=antifungal" title=" antifungal"> antifungal</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial" title=" antibacterial"> antibacterial</a> </p> <a href="https://publications.waset.org/abstracts/39201/production-of-vermiwash-from-medicinal-plants-and-its-potential-use-as-fungicide-against-the-alternaria-alternata-fr-keissl-affecting-cucumber-cucumis-sativus-l-in-guyana" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39201.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Antibacterial Activity and Kinetic Parameters of the Essential Oils of Drypetes Gossweileri S.Moore, Ocimun Gratissimum L. and Cymbopogon Citratus DC Stapf on 5 Multidrug-Resistant Strains of Shigella</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elsa%20Makue%20Nguuffo">Elsa Makue Nguuffo</a>, <a href="https://publications.waset.org/abstracts/search?q=Esther%20Del%20Florence%20Moni%20Ndedi"> Esther Del Florence Moni Ndedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacky%20Njiki%20Biko%C3%AF"> Jacky Njiki Bikoï</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean%20Paul%20Assam%20Assam"> Jean Paul Assam Assam</a>, <a href="https://publications.waset.org/abstracts/search?q=Maximilienne%20Ascension%20Nyegue"> Maximilienne Ascension Nyegue</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aims: The present study aims to evaluate the kinetic parameters of essential oils (EOs) and combinations fromDrypetes gossweileri Stem Bark, Ocimum gratissimum leaves, Cymbopogon citratusleaves after evaluation of their antibacterial activityonmultidrug-resistant strains ofShigella. Material and Methods:fiveclinical strains of Shigellaisolated from patients with diarrhoeaincluding Shigella flexneri, and 4 otherstrains of Shigella sppwere selected. Their antibiotic profile was established using agar test diffusion with seven antibiotics belonging to seven classes.EOs were extracted from each plant using hydrodistillation process. The activity of Ciprofloxacin®, OEs, and their combination formulatedinthe followingratios(w/w/w): C1: 1/1/1; C2: 2/1/1; C3: 1/2/1, C4:1/1/2 was evaluated microdilution assay. The various interactions of OEs in the different combinations were determined then the OE and the most active combination were retained to determine their kinetic parameters on S. flexneri. Results: Antibiotic susceptibility tests revealed that most Shigella isolates (n = 4) were resistant to six antibiotics tested. Ciprofloxacin (40%), Nalidixic acid (60%), Tetracycline (80%), Amoxicillin (100%), Cefotaxime (80%), Erythromycin (100%), and Cotrimoxazole (80%) were the profiles found in the different strains of Shigella. About the antibacterial activity of OEs, Drypetes gossweileriOE and C2 combination had shown a higher Shigellicide property with a Minimal Inhibitory Concentration(MIC) respectivelyranging from 0.078 mg/mL to 0.312 mg/mL and 0.012 to 1.562 mg/mL. Combinations of OEs showed various interactions whose synergistic effects were mostly encountered. The best deactivation was obtained by the combination C2 at 16 MIC withb= 1.962. Conclusion: the susceptibility of Shigella to OEs and their combinations justifies their use in traditional medicine in the treatment of shigellosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shigella" title="shigella">shigella</a>, <a href="https://publications.waset.org/abstracts/search?q=multidrug-resistant" title=" multidrug-resistant"> multidrug-resistant</a>, <a href="https://publications.waset.org/abstracts/search?q=EOs" title=" EOs"> EOs</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetic" title=" kinetic"> kinetic</a> </p> <a href="https://publications.waset.org/abstracts/150997/antibacterial-activity-and-kinetic-parameters-of-the-essential-oils-of-drypetes-gossweileri-smoore-ocimun-gratissimum-l-and-cymbopogon-citratus-dc-stapf-on-5-multidrug-resistant-strains-of-shigella" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150997.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Evaluation of Nematicidal Action of Some Botanicals on Plant-Parasitic Nematode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lakshmi">Lakshmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yakshita%20Awasthi"> Yakshita Awasthi</a>, <a href="https://publications.waset.org/abstracts/search?q=Deepika"> Deepika</a>, <a href="https://publications.waset.org/abstracts/search?q=Lovleen%20Jha"> Lovleen Jha</a>, <a href="https://publications.waset.org/abstracts/search?q=Archna%20Kumar"> Archna Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> From the back of centuries, plant-parasitic nematodes (PPN) have been recognized as a major threat to agriculturalists globally. It causes 21.3% global food loss annually. The utilization of harmful chemical pesticides to minimize the nematode population may cause acute and delayed health hazards and harmful impacts on human health. In recent years, a variety of plants have been evaluated for their nematicidal properties and efficacy in the management of plant-parasitic nematodes. Several Phyto-nematicides are available, but most of them are incapable of sustainable management of PPN, especially Meloidogyne spp. Thus, there is a great need for a new eco-friendly, highly efficient, sustainable control measure for this nematode species. Keeping all these facts and after reviewing the literature, aqueous extract of Cymbopogon citratus, Tagetes erecta, and Azadirachta indica were prepared by adding distilled water (1 g sample mixed with 10ml of water). In vitro studies were conducted to evaluate the efficacious nature of targeted botanicals against PPN Meloidogyne spp. The mortality status of PPN was recorded by counting the live and dead individuals after applying 100μl of selected extract. The impact was observed at different time durations, i.e., 24h and 48h. The result showed that the highest 100% mortality was at 48h in all three extracts. Thus, these extracts, with the addition of a suitable shelf-life enhancer, may be exploited in different nematode control programs as an economical, sustainable measure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meloidogyne" title="Meloidogyne">Meloidogyne</a>, <a href="https://publications.waset.org/abstracts/search?q=Cymbopogon%20citratus" title=" Cymbopogon citratus"> Cymbopogon citratus</a>, <a href="https://publications.waset.org/abstracts/search?q=Tagetes%20erecta" title=" Tagetes erecta"> Tagetes erecta</a>, <a href="https://publications.waset.org/abstracts/search?q=Azadirachta%20indica" title=" Azadirachta indica"> Azadirachta indica</a>, <a href="https://publications.waset.org/abstracts/search?q=nematicidal" title=" nematicidal"> nematicidal</a> </p> <a href="https://publications.waset.org/abstracts/149073/evaluation-of-nematicidal-action-of-some-botanicals-on-plant-parasitic-nematode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149073.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Activity of Some Plant Extracts on the Larvae and Eggs of Culex quinquefasciatus in the Laboratory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20El%20Maghrbi">A. A. El Maghrbi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The control of vectors like mosquitoes based on the application of chemical insecticides but due to its adverse effect on the environment, and development of resistance by most of species of mosquitoes including vectors of important diseases. Ethanol and acetone extracts of nine species of plants (Allium tuberosum, Apium leptophylum, Carica papaya, Cymbopogon citratus, Euphorbia cotinofolia, Melia azedarach, Ocimum canum, Ricinus common, and Tagetes erecta) were tested in respect of their influence on the eggs and larvae of Culex quinquifasciatus in concentration 100, 10 and 1 mg/L. In relation to the survival of larvae, ethanol extract of O. canum and acetone extract of A.tuberosum in 100 mg/L have larvicide activity against L4 of Cx. quinquifasciatus. For hatching of eggs, ethanol and acetone extract of A.tuberosum (100 and 10 mg/L) and acetone extract of C.citratus (100 mg/L) produced reduction in the number of eggs hatched of Cx. quinquifasciatus. Our results indicate that each extract of the plant have potential to control mosquito population and suggest that further studies are needed in this field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cx.%20quinquefasciatus" title="Cx. quinquefasciatus">Cx. quinquefasciatus</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20extract" title=" plant extract"> plant extract</a>, <a href="https://publications.waset.org/abstracts/search?q=ethanol" title=" ethanol"> ethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=acetone" title=" acetone"> acetone</a>, <a href="https://publications.waset.org/abstracts/search?q=larvae" title=" larvae"> larvae</a>, <a href="https://publications.waset.org/abstracts/search?q=eggs" title=" eggs"> eggs</a> </p> <a href="https://publications.waset.org/abstracts/17441/activity-of-some-plant-extracts-on-the-larvae-and-eggs-of-culex-quinquefasciatus-in-the-laboratory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17441.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Supercritical CO2 Extraction of Cymbopogon martini Essential Oil and Comparison of Its Composition with Traditionally Extracted Oils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aarti%20Singh">Aarti Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Anees%20Ahmad"> Anees Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Essential oil was extracted from lemon grass (Cymbopogon martini) with supercritical carbondioxide (SC-CO2) at pressure of 140 bar and temperature of 55 °C and CO2 flow rate of 8 gmin-1, and its composition and yield were compared with other conventional extraction methods of oil, HD (Hydrodistillation), SE (Solvent Extraction), UAE (Ultrasound Assisted Extraction). SC-CO2 extraction is a green and sustainable extraction technique. Each oil was analysed by GC-MS, the major constituents were neral (44%), Z-citral (43%), geranial (27%), caryophyllene (4.6%) and linalool (1%). The essential oil of lemon grass is valued for its neral and citral concentration. The oil obtained by supercritical carbon-dioxide extraction contained maximum concentration of neral (55.05%) whereas ultrasonication extracted oil contained minimum content (5.24%) and it was absent in solvent extracted oil. The antioxidant properties have been assessed by DPPH and superoxide scavenging methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cymbopogon%20martini" title="cymbopogon martini">cymbopogon martini</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title=" essential oil"> essential oil</a>, <a href="https://publications.waset.org/abstracts/search?q=FT-IR" title=" FT-IR"> FT-IR</a>, <a href="https://publications.waset.org/abstracts/search?q=GC-MS" title=" GC-MS"> GC-MS</a>, <a href="https://publications.waset.org/abstracts/search?q=HPTLC" title=" HPTLC"> HPTLC</a>, <a href="https://publications.waset.org/abstracts/search?q=SC-CO2" title=" SC-CO2"> SC-CO2</a> </p> <a href="https://publications.waset.org/abstracts/36550/supercritical-co2-extraction-of-cymbopogon-martini-essential-oil-and-comparison-of-its-composition-with-traditionally-extracted-oils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36550.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Soil Carbon Stock in Sub-Optimal Land for the Development of Cymbopogon Nardus L. At Simawang Village, West Sumatera, Indonesia </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juniarti">Juniarti</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusniwati"> Yusniwati</a>, <a href="https://publications.waset.org/abstracts/search?q=Anwar.%20A"> Anwar. A</a>, <a href="https://publications.waset.org/abstracts/search?q=Armansyah"> Armansyah</a>, <a href="https://publications.waset.org/abstracts/search?q=Febriamansyah"> Febriamansyah</a>, <a href="https://publications.waset.org/abstracts/search?q=R."> R.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Simawang area is one of the critical areas (sub-optimal) that experienced drought from climate changes. Potential dry land belonging to sub-optimal in Simawang, West Sumatera, Indonesia not been fully utilized for agricultural cultivation. Simawang village, West Sumatera, Indonesia is formerly known as the rice barn, due to the climate change area is experiencing a drought, so the rice fields that were once productive now a grazing paddock because of lack of water. This study aims to calculate the soil carbon stock in Simawang village, West Sumatera Indonesia. The study was conducted in Simawang village, Tanah Datar regency, West Sumatera from October 2014 until December 2017. The study was conducted on sub-optimal land to be planted with Cymbopogon nardus L. (Sereh wangi in Indonesian language). Composite soil sampling conducted at a depth of 0-20 cm, 20 – 40 cm. Based on the depth of soil carbon stocks gained higher ground 6473 t ha-1 at a depth of 0-20 cm at a depth of 20-40 cm. Efforts to increase soil carbon is expected to be cultivated through Cymbopogon nardus L. planting has been done. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20changes" title="climate changes">climate changes</a>, <a href="https://publications.waset.org/abstracts/search?q=sereh%20wangi%20%28Cymbopogon%20nardus%20L.%29" title=" sereh wangi (Cymbopogon nardus L.)"> sereh wangi (Cymbopogon nardus L.)</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20carbon%20stock" title=" soil carbon stock"> soil carbon stock</a>, <a href="https://publications.waset.org/abstracts/search?q=sub%20optimal%20land" title=" sub optimal land "> sub optimal land </a> </p> <a href="https://publications.waset.org/abstracts/23405/soil-carbon-stock-in-sub-optimal-land-for-the-development-of-cymbopogon-nardus-l-at-simawang-village-west-sumatera-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23405.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Soil Carbon Stock in Sub-Optimal Land due to Climate Change on Development Cymbopogon nardus L. at Simawang Village, West Sumatera, Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juniarti%20Yuni">Juniarti Yuni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Simawang area is one of the critical areas (sub-optimal) that experienced drought from climate changes. Potential dry land belonging to sub-optimal in Simawang, West Sumatera, Indonesia not been fully utilized for agricultural cultivation. Simawang village, West Sumatera, Indonesia is formerly known as the rice barn, due to the climate change area is experiencing a drought, so the rice fields that were once productive now a grazing paddock because of lack of water. This study aims to calculate the soil carbon stock in Simawang village, West Sumatera Indonesia. The study was conducted in Simawang village, Tanah Datar regency, West Sumatera from October 2014 until December 2017. The study was conducted on sub-optimal land to be planted with Cymbopogon nardus L. (Sereh wangi in Indonesian language). Composite soil sampling conducted at a depth of 0-20 cm, 20–40 cm. Based on the depth of soil carbon stocks gained higher ground 6473 T/Ha at a depth of 0-20 cm at a depth of 20-40 cm. Efforts to increase soil carbon is expected to be cultivated through Cymbopogon nardus L. planting has been done. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20changes" title="climate changes">climate changes</a>, <a href="https://publications.waset.org/abstracts/search?q=sereh%20wangi%20%28Cymbopogon%20nardus%20L.%29" title=" sereh wangi (Cymbopogon nardus L.)"> sereh wangi (Cymbopogon nardus L.)</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20carbon%20stock" title=" soil carbon stock"> soil carbon stock</a>, <a href="https://publications.waset.org/abstracts/search?q=sub%20optimal%20land" title=" sub optimal land"> sub optimal land</a> </p> <a href="https://publications.waset.org/abstracts/25187/soil-carbon-stock-in-sub-optimal-land-due-to-climate-change-on-development-cymbopogon-nardus-l-at-simawang-village-west-sumatera-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25187.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Anatomical and Histological Characters of Cymbopogon nardus Roots and Its Mutagenic Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pravaree%20Phuneerub">Pravaree Phuneerub</a>, <a href="https://publications.waset.org/abstracts/search?q=Chanida%20Palanuvej"> Chanida Palanuvej</a>, <a href="https://publications.waset.org/abstracts/search?q=Nijsiri%20Ruangrungsi"> Nijsiri Ruangrungsi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cymbopogon nardus Rendel (Family Gramineae) is commonly known as citronella grass. The dried root of C. nardus is used for antipyretic, anti-inflammation, anti-analgesic and anticancer in traditional Thai medicine. Transverse sectional and pulverized C. nardus root were illustrated. The volatile oil was extracted from oil gland by hydrodistillation and analysed by GC/MS. Cymbopogon nardus root was exhaustively extracted by continuously maceration in ethanol and water respectively. The mutagenic and antimutagenic properties of the ethanol extract and fractionated water extract of C. nardus root were evaluated by Ames assay using the S. typhimurium strains TA98 and TA100 as the models. The result indicated that the anatomical character of root transverse section displayed epidermis, parenchyma, oil gland, phloem, xylem vessel, endodermis and pith. Histological characters of root powder showed parenchyma containing oleoresin, parenchyma in longitudinal view, reticulate vessel, annular vessel, starch granules and fragment of fiber. The root volatile oil was rich in sesquiterpenes dominated by elemol (22.87%) and alpha-eudesmol (16.09%). For mutagenic activity, the both extracts of C. nardus were no mutagenic toward S. typhimurium strains TA98 and TA100. Furthermore, the ethanol extract and fractionated water extract of C. nardus root demonstrated strong antimutagenic effect against of nitrite treated 1-aminopyrene to S. typhimurium strains TA98 and TA100. This present investigation suggested that the dried root extract of C. nardus can be further developed as promising antimutagenic agent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cymbopogon%20nardus" title="Cymbopogon nardus">Cymbopogon nardus</a>, <a href="https://publications.waset.org/abstracts/search?q=volatile%20oil%20analysis" title=" volatile oil analysis"> volatile oil analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=mutagenic" title=" mutagenic"> mutagenic</a>, <a href="https://publications.waset.org/abstracts/search?q=antimutagenic%20effect" title=" antimutagenic effect"> antimutagenic effect</a>, <a href="https://publications.waset.org/abstracts/search?q=Ames%20Salmonella%20assay" title=" Ames Salmonella assay"> Ames Salmonella assay</a> </p> <a href="https://publications.waset.org/abstracts/19042/anatomical-and-histological-characters-of-cymbopogon-nardus-roots-and-its-mutagenic-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19042.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Screening for Larvicidal Activity of Aqueous and Ethanolic Extracts of Fourteen Selected Plants and Formulation of a Larvicide against Aedes aegypti (Linn.) and Aedes albopictus (Skuse) Larvae</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20Russelle%20S.%20Alvarez">Michael Russelle S. Alvarez</a>, <a href="https://publications.waset.org/abstracts/search?q=Noel%20S.%20Quiming"> Noel S. Quiming</a>, <a href="https://publications.waset.org/abstracts/search?q=Francisco%20M.%20Heralde"> Francisco M. Heralde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to: a) obtain ethanolic (95% EtOH) and aqueous extracts of <em>Selaginella elmeri, Christella dentata, Elatostema sinnatum, Curculigo capitulata, Euphorbia hirta, Murraya koenigii, Alpinia speciosa, Cymbopogon citratus, Eucalyptus globulus, Jatropha curcas, Psidium guajava, Gliricidia sepium, Ixora coccinea</em> and <em>Capsicum frutescens</em> and screen them for larvicidal activities against Aedes aegypti (Linn.) and Aedes albopictus (Skuse) larvae; b) to fractionate the most active extract and determine the most active fraction; c) to determine the larvicidal properties of the most active extract and fraction against by computing their percentage mortality, LC50, and LC90 after 24 and 48 hours of exposure; and d) to determine the nature of the components of the active extracts and fractions using phytochemical screening. Ethanolic (95% EtOH) and aqueous extracts of the selected plants will be screened for potential larvicidal activity against <em>Ae. aegypti</em> and <em>Ae. albopictus</em> using standard procedures and 1% malathion and a Piper nigrum based ovicide-larvicide by the Department of Science and Technology as positive controls. The results were analyzed using One-Way ANOVA with Tukey&rsquo;s and Dunnett&rsquo;s test. The most active extract will be subjected to partial fractionation using normal-phase column chromatography, and the fractions subsequently screened to determine the most active fraction. The most active extract and fraction were subjected to dose-response assay and probit analysis to determine the LC50 and LC90 after 24 and 48 hours of exposure. The active extracts and fractions will be screened for phytochemical content. The ethanolic extracts of <em>C. citratus, E. hirta, I. coccinea, G. sepium, M. koenigii, E globulus, J. curcas</em> and <em>C. frutescens</em> exhibited significant larvicidal activity, with <em>C. frutescens</em> being the most active. After fractionation, the ethyl acetate fraction was found to be the most active. Phytochemical screening of the extracts revealed the presence of alkaloids, tannins, indoles and steroids. A formulation using talcum powder&ndash;300 mg fraction per 1 g talcum powder&ndash;was made and again tested for larvicidal activity. At 2 g/L, the formulation proved effective in killing all of the test larvae after 24 hours. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=larvicidal%20activity%20screening" title="larvicidal activity screening">larvicidal activity screening</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20purification" title=" partial purification"> partial purification</a>, <a href="https://publications.waset.org/abstracts/search?q=dose-response%20assay" title=" dose-response assay"> dose-response assay</a>, <a href="https://publications.waset.org/abstracts/search?q=capsicum%20frutescens" title=" capsicum frutescens"> capsicum frutescens</a> </p> <a href="https://publications.waset.org/abstracts/37793/screening-for-larvicidal-activity-of-aqueous-and-ethanolic-extracts-of-fourteen-selected-plants-and-formulation-of-a-larvicide-against-aedes-aegypti-linn-and-aedes-albopictus-skuse-larvae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37793.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Preparation and Evaluation of Herbal Extracts for Washing of Vegetables and Fruits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pareshkumar%20Umedbhai%20Patel">Pareshkumar Umedbhai Patel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Variety of microbes were isolated from surface of fruit and vegetables to get idea about normal flora of their surface. The process of isolation of microbes involved use of sterilized cotton swabs to wipe the surface of the samples. For isolation of Bacteria, yeast and fungi microbiological media used were nutrient agar medium, GYE agar medium and MRBA agar medium respectively. The microscopical and macroscopical characteristics of all the isolates were studied. Different plants with known antimicrobial activity were selected for obtaining samples for extraction e.g. Ficus (Ficus religosa) stem, Amla (Phyllanthus emblica) fruit, Tulsi (Ocimum tenuiflorum) leaves and Lemon grass (Cymbopogon citratus) oil. Antimicrobial activity of these samples was tested initially against known bacteria followed by study against microbes isolated from surface of vegetables and fruits. During the studies carried out throughout the work, lemongrass oil and Amla extract were found superior. Lemongrass oil and Amla extract respectively inhibited growth of 65% and 42% microbes isolated from fruit and vegetable surfaces. Rest two studied plant extracts showed only 11% of inhibition against the studied isolates. The results of isolate inhibition show the antibacterial effect of lemongrass oil better than the rest of the studied plant extracts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=herbal%20extracts" title="herbal extracts">herbal extracts</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetables" title=" vegetables"> vegetables</a>, <a href="https://publications.waset.org/abstracts/search?q=fruits" title=" fruits"> fruits</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title=" antimicrobial activity"> antimicrobial activity</a> </p> <a href="https://publications.waset.org/abstracts/85019/preparation-and-evaluation-of-herbal-extracts-for-washing-of-vegetables-and-fruits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85019.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> The Effect of Aromatherapy Candle as Insecticide from Citrus Extract of Lemongrass (Cymbopogon) to Increase Ae. aegypti Mortality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurul%20Hidayah">Nurul Hidayah</a>, <a href="https://publications.waset.org/abstracts/search?q=Farida%20Rahmatika"> Farida Rahmatika</a>, <a href="https://publications.waset.org/abstracts/search?q=Fathimah%20Azzahra"> Fathimah Azzahra</a>, <a href="https://publications.waset.org/abstracts/search?q=Nesty%20Herennadia"> Nesty Herennadia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aromatherapy candles are one of the insecticide media that have not been much researched. The active ingredient that is proven to have the effect of insecticide is a citrus extract from lemongrass oil (Cymbopogon). Aromatherapy candles are added by citrus compounds to be insecticidal for Ae. aegypti mosquito that was related to the infectious disease such as dengue fever. This research aims to find out if aromatherapy candles of citrus compounds have an insecticidal effect on Ae. aegypti mosquito. We used true experimental design including posttest only with control group design. The samples are 20 male and female Ae. aegypti mosquitos with aged 1-7 days belong to the inclusion criteria. The subjects were divided into 6 groups, consisting of 1 negative control group and 5 treatment groups with variation concentration are 1%; 2%; 3%; 4%; 5%. Each group will be treated for 2 hours and observed death after 24 hours. Replication in each group is done 4 times. The results were then tested statistically using Kruskal-Wallis and probit test. Mean of death in negative control group, and treatment group 1%; 2%; 3%; 4%; 5% respectively 0; 1; 0.25; 0; 1 and 1 mosquito. The Kruskal-Wallis test in the study group found no significant difference (p = 0.178). The probit analysis showed that LC50 and LC90 were 20.069% and 31.557%. The aromatherapy candle of a citrus compound has an insecticidal effect on the Ae aegypti mosquito. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ae.%20aegypti%20insecticide" title="Ae. aegypti insecticide">Ae. aegypti insecticide</a>, <a href="https://publications.waset.org/abstracts/search?q=aromatherapy%20candle" title=" aromatherapy candle"> aromatherapy candle</a>, <a href="https://publications.waset.org/abstracts/search?q=citrus%20compound" title=" citrus compound"> citrus compound</a>, <a href="https://publications.waset.org/abstracts/search?q=lemongrass%20oil%20%28Cymbopogon%29" title=" lemongrass oil (Cymbopogon)"> lemongrass oil (Cymbopogon)</a> </p> <a href="https://publications.waset.org/abstracts/83514/the-effect-of-aromatherapy-candle-as-insecticide-from-citrus-extract-of-lemongrass-cymbopogon-to-increase-ae-aegypti-mortality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83514.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Silicon Nanoparticles and Irradiated Chitosan: Sustainable Elicitors for PS II Activity and Antioxidant Mediated Plant Immunity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Mukarram">Mohammad Mukarram</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Masroor%20A.%20Khan"> M. Masroor A. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Kurjak"> Daniel Kurjak</a>, <a href="https://publications.waset.org/abstracts/search?q=Marek%20Fabrika"> Marek Fabrika</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lemongrass (Cymbopogon flexuosus (Steud.) Wats) is an aromatic grass with great industrial potential. It is cultivated for its essential oil (EO), which has great economic value due to its numerous medicinal, cosmetic, and culinary applications. The present study had the goal to evaluate whether the combined application of silicon nanoparticles (SiNPs) 150 mg L⁻¹ and irradiated chitosan (ICH) 120 mg L⁻¹ can upgrade lemongrass crop and render enhanced growth and productivity. The analyses of growth and photosynthetic parameters, leaf-nitrogen, and reactive oxygen species metabolism, as well as the content of total essential oil, indicated that combined foliar sprays of SiNPs and ICH can significantly (p≤0.05) trigger a general activation of lemongrass metabolism. Overall, the data indicate that concomitant SiNPs and ICH application elicit lemongrass physiology and defence system, and opens new possibilities for their biotechnological application on other related plant species with agronomic potential. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photosynthesis" title="photosynthesis">photosynthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=Cymbopogon" title=" Cymbopogon"> Cymbopogon</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20metabolism" title=" antioxidant metabolism"> antioxidant metabolism</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title=" essential oil"> essential oil</a>, <a href="https://publications.waset.org/abstracts/search?q=ROS" title=" ROS"> ROS</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=polysaccharides" title=" polysaccharides"> polysaccharides</a> </p> <a href="https://publications.waset.org/abstracts/145948/silicon-nanoparticles-and-irradiated-chitosan-sustainable-elicitors-for-ps-ii-activity-and-antioxidant-mediated-plant-immunity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Isolation and Identification of Fungi from Different Types of Medicinal Plants Cultivated in Ecuador</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ana%20Paola%20Echavarria">Ana Paola Echavarria</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariuxi%20Medina"> Mariuxi Medina</a>, <a href="https://publications.waset.org/abstracts/search?q=Haydelba%20D%27Armas"> Haydelba D&#039;Armas</a>, <a href="https://publications.waset.org/abstracts/search?q=Carmita%20Jaramillo"> Carmita Jaramillo</a>, <a href="https://publications.waset.org/abstracts/search?q=Diana%20San%20Martin"> Diana San Martin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of medicinal plants is one of the oldest and most extended medical therapies that goes back to prehistoric times, and nowadays, they are also used in the preparation of phytopharmaceuticals with options to cure diseases. The test for the determination of fungi was carried out in the Pharmacy Pilot Plant (treatment of the leaves of the plant species) and the Microbiology Laboratory (determination of fungi of the plant species, using growth medium called Sabouraud agar plus the vegetal sample), of the Academic Unit of Chemical Sciences and Health, of the Universidad Tecnica de Machala. Subsequently, colony counting was performed, both macroscopic, which is determined in the growth medium of the seeding, and microscopic, to identify the germinative forms using blue lactophenol. The procedure was repeated in duplicate to replicate the results data. The determination of the total fungal content of the following plant species was evaluated: Cymbopogon citratus (lemon verbena), Melissa officinalis (lemon balm), Taraxacum officinale (dandelion), Artemisia absinthium (absinthe), Piper carpunya (guaviduca), Moringa oleifera (moringa), Coriandrum sativum (coriander), Momordica charantia (achochilla), Borago officinalis (borage), Aloysia citriodora (cedron), Ambrosia artemisifolia (altamisa) and Ageratum conyzoides (mastrante). The results obtained showed that all the samples of the twelve plant species studied developed filamentous fungi, with great variability of them, within the permissible limits and contemplated by the Ecuadorian Institute of Normalization (INEN), being suitable as raw material for its use in the preparation of nutraceuticals and medicinal products or phytodrugs; with the exception of A. conyzoides (mastranto) which is the only species that exceeds the regulation in the average of dilutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=colonies" title="colonies">colonies</a>, <a href="https://publications.waset.org/abstracts/search?q=fungi" title=" fungi"> fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=medicinal%20plants" title=" medicinal plants"> medicinal plants</a>, <a href="https://publications.waset.org/abstracts/search?q=microbiological%20quality" title=" microbiological quality"> microbiological quality</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabouraud%20agar" title=" Sabouraud agar"> Sabouraud agar</a> </p> <a href="https://publications.waset.org/abstracts/124839/isolation-and-identification-of-fungi-from-different-types-of-medicinal-plants-cultivated-in-ecuador" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124839.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Toxicity of Cymbopogon proximus (Maharaib) Oil Extract to Newzealand Rabbits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20Amna">A. B. Amna</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20E.%20Samia"> M. A. E. Samia</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20Hassan"> A. K. Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The clinical, pathological, hematological and biological changes in Newzealand rabbits groups given daily oral doses of 0.1,0.25 and 0.5 ml/kg body weight/day of Cpmbopogon proximus oil extract were investigated in an experiment durated for 21 days. Other than the dose co-related mortality rates, the clinical signs were observed daily after dosing to be low appetite and nervous signs including restlessness and increased consciousness. Pulmonary excretion of the oil extract led to bloody spots on the lungs, lymphocyte infiltration, congestion and edema. Renal glumeruli manifested lymphocyte infiltration in addition to shrinkages and easinophilic material in the medulla, if considered with the corticomedullary generalized necrosis and the significant changes in urea, they can explain the renal dysfunction. Hepatic malfunction was manifested by significant changes in serum alkaline phosphatase and aspartate transferases accompanied by the congested, fatty changed livers. The direct physical effect of the extracted oil was detected by the catarrhal inflammation of the intestines.There was no significant haematological change except for the slight changes in RBCs and MCVs in rabbits given the highest dose. Future work for Cpmbopogon proximus oil extract was forwarded and practical implications of the result were highlighted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=toxicity" title="toxicity">toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=cymbopogon%20proximus%20%28maharaib%29" title=" cymbopogon proximus (maharaib)"> cymbopogon proximus (maharaib)</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20extract" title=" oil extract"> oil extract</a>, <a href="https://publications.waset.org/abstracts/search?q=Newzealand%20rabbits" title=" Newzealand rabbits"> Newzealand rabbits</a> </p> <a href="https://publications.waset.org/abstracts/32953/toxicity-of-cymbopogon-proximus-maharaib-oil-extract-to-newzealand-rabbits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32953.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Extraction and Uses of Essential Oil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ram%20Prasad%20Baral">Ram Prasad Baral</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A large number of herb materials contain Essential Oils with extensive bioactivities. Acknowledging the importance of plants and its medicinal value, extraction of Essential Oil had been done using Steam Distillation method. In this project, Steam Distillation was used to extract oil from different plant materials like Chamomilla recutita (L.) Rauschert, Artemisia Vulgaris L, Rhododendron anthopogon D. Don, Cymbopogon nardus L, Andropogon nardus, Cinnamomum tamala, Juniperus spp, Cymbopohonflexuosus flexuous, Mantha Arvensia, Nardostachys Jatamansi, Wintergreen Essential Oil, and Valeriana Officinalis. Research has confirmed centuries of practical use of essential oils, and we now know that the 'fragrant pharmacy' contains compounds with an extremely broad range of biochemical effects. Essential oils are so termed as they are believed to represent the very essence of odor and flavor. The recovery of Essential Oil from the raw botanical starting material is very important since the quality of the oil is greatly influenced during this step. There is a variety of methods for obtaining volatile oils from plants. Steam distillation method was found to be one of the promising techniques for the extraction of essential oil from plants as reputable distiller will preserve the original qualities of the plant. The distillation was conducted in Clevenger apparatus in which boiling, condensing, and decantation was done. Analysis of essential oil was done using Gas Chromatography-Mass Spectrometer apparatus, which gives evaluates essential oil qualitatively and quantitatively. The volume of essential oil obtained was changing with respect to temperature and time of heating. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chamomilla%20recutita%20%28L.%29%20Rauschert" title="Chamomilla recutita (L.) Rauschert">Chamomilla recutita (L.) Rauschert</a>, <a href="https://publications.waset.org/abstracts/search?q=Artemisia%20Vulgaris%20L" title=" Artemisia Vulgaris L"> Artemisia Vulgaris L</a>, <a href="https://publications.waset.org/abstracts/search?q=Rhododendron%20anthopogon%20D.%20Don" title=" Rhododendron anthopogon D. Don"> Rhododendron anthopogon D. Don</a>, <a href="https://publications.waset.org/abstracts/search?q=Cymbopogon%20nardus%20L" title=" Cymbopogon nardus L"> Cymbopogon nardus L</a>, <a href="https://publications.waset.org/abstracts/search?q=Andropogon%20nardus" title=" Andropogon nardus"> Andropogon nardus</a>, <a href="https://publications.waset.org/abstracts/search?q=Cinnamomum%20tamala" title=" Cinnamomum tamala"> Cinnamomum tamala</a>, <a href="https://publications.waset.org/abstracts/search?q=Juniperus%20spp" title=" Juniperus spp"> Juniperus spp</a>, <a href="https://publications.waset.org/abstracts/search?q=Cymbopohonflexuosus%20flexuous" title=" Cymbopohonflexuosus flexuous"> Cymbopohonflexuosus flexuous</a>, <a href="https://publications.waset.org/abstracts/search?q=Mantha" title=" Mantha"> Mantha</a> </p> <a href="https://publications.waset.org/abstracts/26780/extraction-and-uses-of-essential-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26780.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Efficiency of Wood Vinegar Mixed with Some Plants Extract against the Housefly (Musca domestica L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=U.%20Pangnakorn">U. Pangnakorn</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Kanlaya"> S. Kanlaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The efficiency of wood vinegar mixed with each individual of three plants extract such as: citronella grass (Cymbopogon nardus), neem seed (Azadirachta indica A. Juss), and yam bean seed (Pachyrhizus erosus Urb.) were tested against the second instar larvae of housefly (Musca domestica L.). Steam distillation was used for extraction of the citronella grass while neem and yam bean were simple extracted by fermentation with ethyl alcohol. Toxicity test was evaluated in laboratory based on two methods of larvicidal bioassay: topical application method (contact poison) and feeding method (stomach poison). Larval mortality was observed daily and larval survivability was recorded until the survived larvae developed to pupae and adults. The study resulted that treatment of wood vinegar mixed with citronella grass showed the highest larval mortality by topical application method (50.0%) and by feeding method (80.0%). However, treatment of mixed wood vinegar and neem seed showed the longest pupal duration to 25 day and 32 days for topical application method and feeding method respectively. Additional, larval duration on treated M. domestica larvae was extended to 13 days for topical application method and 11 days for feeding method. Thus, the feeding method gave higher efficiency compared with the topical application method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=housefly%20%28Musca%20domestica%20L.%29" title="housefly (Musca domestica L.)">housefly (Musca domestica L.)</a>, <a href="https://publications.waset.org/abstracts/search?q=neem%20seed%20%28Azadirachta%20indica%29" title=" neem seed (Azadirachta indica)"> neem seed (Azadirachta indica)</a>, <a href="https://publications.waset.org/abstracts/search?q=citronella%20grass%20%28Cymbopogon%20nardus%29" title=" citronella grass (Cymbopogon nardus)"> citronella grass (Cymbopogon nardus)</a>, <a href="https://publications.waset.org/abstracts/search?q=yam%20bean%20seed%20%28Pachyrhizus%20erosus%29" title=" yam bean seed (Pachyrhizus erosus)"> yam bean seed (Pachyrhizus erosus)</a>, <a href="https://publications.waset.org/abstracts/search?q=mortality" title=" mortality"> mortality</a> </p> <a href="https://publications.waset.org/abstracts/12886/efficiency-of-wood-vinegar-mixed-with-some-plants-extract-against-the-housefly-musca-domestica-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12886.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> NMR-Based Metabolomic Study of Antimalarial Plant Species Used Traditionally by Vha-Venda People in Limpopo Province, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Johanna%20Bapela">Johanna Bapela</a>, <a href="https://publications.waset.org/abstracts/search?q=Heino%20Heyman"> Heino Heyman</a>, <a href="https://publications.waset.org/abstracts/search?q=Marion%20Meyer"> Marion Meyer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Regardless of the significant advances accomplished in reducing the burden of malaria and other tropical diseases in recent years, malaria remains a major cause of mortality in endemic countries. This is especially the case in sub-Saharan Africa where 99% of the estimated global malaria deaths occurs on an annual basis. The emergence of resistant Plasmodium species and the lack of diversified chemotherapeutic agents provide the rationale for bioprospecting for antiplasmodial scaffolds. Crude extracts from twenty indigenous antimalarial plant species were screened for antimalarial activity and then subjected to 1H NMR-based metabolomic analysis. Ten plant extracts exhibited significant in vitro antiplasmodial activity (IC50 ≤ 5 µg/ml). The Principal Component Analysis (PCA) of the acquired 1H NMR spectra could not separate the analyzed plant extracts according to the detected antiplasmodial bioactivity. Application of supervised Orthogonal Projections to Latent Structures–Discriminant Analysis (OPLS-DA) to the 1H NMR profiles resulted in a discrimination pattern that could be correlated to bioactivity. A contribution plot generated from the OPLS-DA scoring plot illustrated the classes of compounds responsible for the observed grouping. Given the preliminary in vitro results, Tabernaemontana elegans Stapf. (Apocynaceae) and Vangueria infausta Burch. subsp. infausta (Rubiaceae) were subjected to further phytochemical investigations. Two indole alkaloids, dregamine and tabernaemontanine possessing antiplasmodial activity were isolated from T. elegans. Two compounds were isolated from V. infausta subsp. infausta and identified as friedelin (IC50 = 3.01 µg/ml) and morindolide (IC50 = 18.5 µg/ml). While these compounds have been previously identified, this is the first account of their occurrence in the genus Vangueria and their antiplasmodial activity. Based on the results of the study, metabolomics can be used to globally identify classes of plant secondary metabolites that are responsible for antiplasmodial activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ethnopharmacology" title="ethnopharmacology">ethnopharmacology</a>, <a href="https://publications.waset.org/abstracts/search?q=Malaria" title=" Malaria"> Malaria</a>, <a href="https://publications.waset.org/abstracts/search?q=medicinal%20plants" title=" medicinal plants"> medicinal plants</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolomics" title=" metabolomics"> metabolomics</a> </p> <a href="https://publications.waset.org/abstracts/55170/nmr-based-metabolomic-study-of-antimalarial-plant-species-used-traditionally-by-vha-venda-people-in-limpopo-province-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Morphological and Molecular Characterization of Accessions of Black Fonio Millet (Digitaria Iburua Stapf) Grown in Selected Regions in Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nwogiji%20Cletus%20Olando">Nwogiji Cletus Olando</a>, <a href="https://publications.waset.org/abstracts/search?q=Oselebe%20Happiness%20Ogba"> Oselebe Happiness Ogba</a>, <a href="https://publications.waset.org/abstracts/search?q=Enoch%20Achigan-Dako"> Enoch Achigan-Dako</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Digitaria iburua, commonly known as black fonio, is a cereal crop native to Africa and extensively cultivated by smallholder farmers in Northern Benin, Togo, and Nigeria. This crop holds immense nutritional and socio-cultural value. Unfortunately, limited knowledge about its genetic diversity exists due to a lack of scientific attention. As a result, its potential for improvement in food and agriculture remains largely untapped. To address this gap, a study was conducted using 41 accessions of D. iburua stored in the genebank of the Laboratory of Genetics, Biotechnology, and Seed Science at Abomey-Calavi University, Benin. The study employed both morphological and simple sequence repeat (SSR) markers to evaluate the genetic variability of the accessions. Agro-morphological assessments were carried out during the 2020 cropping season, utilizing an alpha lattice design with three replications. The collected data encompassed qualitative and quantitative traits. Additionally, molecular variability was assessed using eleven SSR markers. The results revealed significant phenotypic variability among the evaluated accessions, leading to their classification into three main clusters. Furthermore, the eleven SSR markers identified a total of 50 alleles, averaging 4.55 alleles per locus. The primers exhibited an average polymorphic information content value of 0.43, with the DE-ARC019 primer displaying the highest value (0.59). These findings suggest a substantial degree of genetic heterogeneity within the evaluated accessions, and the SSR markers employed in the study proved highly effective in detecting and characterizing this genetic variability. In conclusion, this study highlights the presence of significant genetic diversity in black fonio and provides valuable insights for future efforts aimed at its genetic improvement and conservation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20diversity" title="genetic diversity">genetic diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=digitaria%20iburua" title=" digitaria iburua"> digitaria iburua</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20improvement" title=" genetic improvement"> genetic improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=simple%20sequence%20repeat%20markers" title=" simple sequence repeat markers"> simple sequence repeat markers</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigeria" title=" Nigeria"> Nigeria</a>, <a href="https://publications.waset.org/abstracts/search?q=conservation" title=" conservation"> conservation</a> </p> <a href="https://publications.waset.org/abstracts/169069/morphological-and-molecular-characterization-of-accessions-of-black-fonio-millet-digitaria-iburua-stapf-grown-in-selected-regions-in-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169069.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Effect of Biopesticide to Control Infestation of Whitefly Bemisia tabaci (Gennadius) on the Culantro Eryngium foetidum L.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Udomporn%20Pangnakorn">Udomporn Pangnakorn</a>, <a href="https://publications.waset.org/abstracts/search?q=Sombat%20Chuenchooklin"> Sombat Chuenchooklin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effect of the biopesticide from entomopathogenic nematode (Steinernema thailandensis n. sp.), bacteria ISR (Pseudomonas fluorescens), wood vinegar and fermented organic substances from plants: (neem Azadirachta indica + citronella grass Cymbopogon nardus Rendle + bitter bush Chromolaena odorata L.) were tested on culantro (Eryngium foetidum L.). The biopesticide was carried out for reduction infestation of the major insects pest (whitefly Bemisia tabaci (Gennadius)). The experimental plots were located at farmers’ farm in Tumbol Takhian Luean, Nakhon Sawan Province, Thailand. This study was undertaken during the drought season (lately November to May). The populations of whitefly were observed and recorded every hour up to 3 hours with insect net and yellow sticky traps after the treatments were applied. The results showed that bacteria ISR was the highest effectiveness for control whitefly infestation on culantro, the whitefly numbers on insect net were 12.5, 10.0, and 7.5 after spraying in 1hr, 2hr, and 3hr, respectively. While the whitefly on yellow sticky traps showed 15.0, 10.0, and 10.0 after spraying in 1hr, 2hr, and 3hr, respectively. Furthermore, overall the experiments showed that treatment of bacteria ISR found the average whitefly numbers only 8.06 and 11.0 on insect net and sticky tap respectively, followed by treatment of nematode found the average whitefly with 9.87 and 11.43 on the insect net and sticky tap, respectively. Therefore, the application of biopesticide from entomopathogenic nematodes, bacteria ISR, organic substances from plants and wood vinegar combined with natural enemies is the alternative method of Integrated Pest Management (IPM) for against infestation of whitefly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=whitefly%20%28Bemisia%20tabaci%20Gennadius%29" title="whitefly (Bemisia tabaci Gennadius)">whitefly (Bemisia tabaci Gennadius)</a>, <a href="https://publications.waset.org/abstracts/search?q=culantro%20%28Eryngium%20foetidum%20L.%29" title=" culantro (Eryngium foetidum L.)"> culantro (Eryngium foetidum L.)</a>, <a href="https://publications.waset.org/abstracts/search?q=entomopathogenic%20nematode%20%28Steinernema%20thailandensis%20n.%20sp.%29" title=" entomopathogenic nematode (Steinernema thailandensis n. sp.)"> entomopathogenic nematode (Steinernema thailandensis n. sp.)</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria%20ISR%20%28Pseudomonas%20fluorescens%29" title=" bacteria ISR (Pseudomonas fluorescens)"> bacteria ISR (Pseudomonas fluorescens)</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20vinegar" title=" wood vinegar"> wood vinegar</a>, <a href="https://publications.waset.org/abstracts/search?q=fermented%20organic%20substances" title=" fermented organic substances"> fermented organic substances</a> </p> <a href="https://publications.waset.org/abstracts/36589/effect-of-biopesticide-to-control-infestation-of-whitefly-bemisia-tabaci-gennadius-on-the-culantro-eryngium-foetidum-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36589.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Acute and Chronic Effect of Biopesticide on Infestation of Whitefly Bemisia tabaci (Gennadius) on the Culantro Cultivation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=U.%20Pangnakorn">U. Pangnakorn</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Chuenchooklin"> S. Chuenchooklin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acute and chronic effects of biopesticide from entomopathogenic nematode (<em>Steinernema thailandensis</em> n. sp.), bacteria ISR (<em>Pseudomonas fluorescens</em>), wood vinegar and fermented organic substances from plants: (neem <em>Azadirachta indica</em> + citronella grass <em>Cymbopogon nardus </em>Rendle + bitter bush <em>Chromolaena odorata </em>L<em>.</em>) were tested on culantro (<em>Eryngium foetidum</em> L.). The biopesticide was investigated for infestation reduction of the major insect pest whitefly (<em>Bemisia tabaci</em> (Gennadius)). The experimental plots were located at a farm in Nakhon Sawan Province, Thailand. This study was undertaken during the drought season (late November to May). Effectiveness of the treatment was evaluated in terms of acute and chronic effect. The populations of whitefly were observed and recorded every hour up to 3 hours with insect nets and yellow sticky traps after the treatments were applied for the acute effect. The results showed that bacteria ISR had the highest effectiveness for controlling whitefly infestation on culantro; the whitefly numbers on insect nets were 12.5, 10.0 and 7.5 after 1 hr, 2 hr, and 3 hr, respectively while the whitefly on yellow sticky traps showed 15.0, 10.0 and 10.0 after 1 hr, 2 hr, and 3 hr, respectively. For chronic effect, the whitefly was continuously collected and recorded at weekly intervals; the result showed that treatment of bacteria ISR found the average whitefly numbers only 8.06 and 11.0 on insect nets and sticky traps respectively, followed by treatment of nematode where the average whitefly was 9.87 and 11.43 on the insect nets and sticky traps, respectively. In addition, the minor insect pests were also observed and collected. The biopesticide influenced the reduction number of minor insect pests (red spider mites, beet armyworm, short-horned grasshopper, pygmy locusts, etc.) with only a few found on the culantro cultivation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=whitefly%20%28Bemisia%20tabaci%20Gennadius%29" title="whitefly (Bemisia tabaci Gennadius)">whitefly (Bemisia tabaci Gennadius)</a>, <a href="https://publications.waset.org/abstracts/search?q=culantro%20%28Eryngium%20foetidum%20L.%29" title=" culantro (Eryngium foetidum L.)"> culantro (Eryngium foetidum L.)</a>, <a href="https://publications.waset.org/abstracts/search?q=acute%20and%20chronic%20effect" title=" acute and chronic effect"> acute and chronic effect</a>, <a href="https://publications.waset.org/abstracts/search?q=entomopathogenic%20nematode%20%28Steinernema%20thailandensis%20n.%20sp.%29" title=" entomopathogenic nematode (Steinernema thailandensis n. sp.)"> entomopathogenic nematode (Steinernema thailandensis n. sp.)</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria%20ISR%20%28Pseudomonas%20fluorescens%29" title=" bacteria ISR (Pseudomonas fluorescens)"> bacteria ISR (Pseudomonas fluorescens)</a> </p> <a href="https://publications.waset.org/abstracts/43237/acute-and-chronic-effect-of-biopesticide-on-infestation-of-whitefly-bemisia-tabaci-gennadius-on-the-culantro-cultivation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43237.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Chemical Composition and Antifungal Activity of Selected Essential Oils against Toxigenic Fungi Associated with Maize (Zea mays L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Birhane%20Atnafu">Birhane Atnafu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chemeda%20Abedeta%20Garbaba"> Chemeda Abedeta Garbaba</a>, <a href="https://publications.waset.org/abstracts/search?q=Fikre%20Lemessa"> Fikre Lemessa</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdi%20Mohammed"> Abdi Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Alemayehu%20Chala"> Alemayehu Chala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Essential oil is a bio-pesticide plant product used as an alternative to pesticides in managing plant pests, including fungal pathogens. Thus, the current study aims to investigate the chemical composition and antifungal activities of essential oils (EO) extracted from three aromatic plants i.e., Thymus vulgaris, Coriandrum sativum, and Cymbopogon martini. The leaf parts of those selected plants were collected from the Jimma area and their essential oil was extracted by hydro-distillation method in a Clevenger apparatus. The chemical composition of selected plant essential oil was analyzed by using Gas chromatography-mass spectrometry (GC/MS) and their inhibitory effects were tested in vitro on toxigenic fungi isolated from maize kernel. Chemical analysis results revealed the presence of 32 compounds in C. sativum with Hexanedioic acid, bis (2-ethylhexyl) ester (46. 9%), 2-Decenal, (E)- (12.6), and linalool (8.3%) being the dominant ones. T. vulgaris essential oils constituted 25 compounds, of which thymol (34.4%), o-cymene (17.5%), and Gamma-Terpinene (16.8%) were the major components. Twenty-five compounds were detected in C. martinii of which geraniol (51.4%), Geranyl acetate (14.5%), and Trans – ß-Ocimene (11.7%) were dominant. The EOs of the tested plants had very high antifungal activity (up to 100% efficacy) against Aspergillus flavus, Aspergillus niger, Fusarium graminearum and Fusarium verticillioides in vitro and on maize grains. The antifungal activities of these essential oils were dependent on the major components such as thymol, hexanedioic acid, bis (2-ethylhexyl) ester, and geraniol. The study affirmed the potential of these essential oils controlling as bio-fungicides to manage the effects of potentially toxigenic fungi associated with maize under post-harvest stages. This can reduce the consequences of the health impacts of the mold and toxigenic compounds produced in maize. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-activity" title="bio-activity">bio-activity</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-pesticides" title=" bio-pesticides"> bio-pesticides</a>, <a href="https://publications.waset.org/abstracts/search?q=maize" title=" maize"> maize</a>, <a href="https://publications.waset.org/abstracts/search?q=mycotoxin" title=" mycotoxin"> mycotoxin</a> </p> <a href="https://publications.waset.org/abstracts/178576/chemical-composition-and-antifungal-activity-of-selected-essential-oils-against-toxigenic-fungi-associated-with-maize-zea-mays-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178576.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Comparative Study of Antimicrobial, Antioxidant and Physicochemical Properties of Four Culinary Herbs Grown in Sri Lanka</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thilini%20Kananke">Thilini Kananke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Culinary herbs have long been considered as significant dietary sources of many potential health-promoting compounds. The present research focused on analysis of antimicrobial, antioxidant and physicochemical properties in selected four culinary herbs namely Murraya koenigii (Curry leaves), Pandanus amaryllifolius (Pandan leaves), Cymbopogon citrates (Lemon grass leaves), and Mentha Piperita (Minchi leaves) obtained from several market sites in Ratnapura District, Sri Lanka. The antimicrobial activity of ethanolic, chloroform and distilled water extracts of culinary herbs were evaluated against the strains of Staphylococcus aureus, Salmonella typhi and Shigella spp. Total phenolic content and the radical scavenging activity (using DPPH assay) of culinary herbs were determined. Four heavy metals (Cu, Cd, Pb and Fe) were analyzed in the selected culinary herbs using the atomic absorption spectroscopy (AAS). Proximate compositions of the selected herbs were analyzed using AOAC official methods. Antimicrobial activity of all selected culinary herbs showed relativity high inhibition zones against S. aureus. Pandan leaves showed the least antimicrobial activity against selected bacterial strains compared with other culinary herbs. Both the highest radical scavenging activity (lower IC50 value) and the total phenolic content (25.57 ±3.54µg GAE/100g) were reported in Mentha piperita extract. The highest concentrations of Cu, Fe and Cd were reported in Curry leaves (29.15 mg/kg), Lemon grass leaves (257.98 mg/kg) and Pandan leaves (6.05 mg/kg) respectively. The heavy metal contents detected in all culinary herbs were below the permitted limits set by WHO/FAO, except Cd. The highest moisture (85.00±0.00%) and fiber (10.66± 2.00%) contents were found in Pandan leaves, while the highest protein (8.94±0.29%), fat (12.3± 2.52%) and ash (3.50± 0.17%) contents were reported in curry leaves. The information obtained from this study highlights the importance of further investigation of other antioxidant, antimicrobial and health promoting compounds of culinary herbs available in Sri Lanka for a detailed comparison. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title="antimicrobial">antimicrobial</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=culinary%20herbs" title=" culinary herbs"> culinary herbs</a>, <a href="https://publications.waset.org/abstracts/search?q=proximate%20analysis" title=" proximate analysis"> proximate analysis</a> </p> <a href="https://publications.waset.org/abstracts/103397/comparative-study-of-antimicrobial-antioxidant-and-physicochemical-properties-of-four-culinary-herbs-grown-in-sri-lanka" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103397.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Depolymerised Natural Polysaccharides Enhance the Production of Medicinal and Aromatic Plants and Their Active Constituents </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Masroor%20Akhtar%20Khan">M. Masroor Akhtar Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Moin%20Uddin"> Moin Uddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Lalit%20Varshney"> Lalit Varshney</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, there has been a rapidly expanding interest in finding applications of natural polymers in view of value addition to agriculture. It is now being realized that radiation processing of natural polysaccharides can be beneficially utilized either to improve the existing methodologies used for processing the natural polymers or to impart value addition to agriculture by converting them into more useful form. Gamma-ray irradiation is employed to degrade and lower the molecular weight of some of the natural polysaccharides like alginates, chitosan and carrageenan into small sized oligomers. When these oligomers are applied to plants as foliar sprays, they elicit various kinds of biological and physiological activities, including promotion of plant growth, seed germination, shoot elongation, root growth, flower production, suppression of heavy metal stress, etc. Furthermore, application of these oligomers can shorten the harvesting period of various crops and help in reducing the use of insecticides and chemical fertilizers. In recent years, the oligomers of sodium alginate obtained by irradiating the latter with gamma-rays at 520 kGy dose are being employed. It was noticed that the oligomers derived from the natural polysaccharides could induce growth, photosynthetic efficiency, enzyme activities and most importantly the production of secondary metabolite in the plants like Artemisia annua, Beta vulgaris, Catharanthus roseus, Chrysopogon zizanioides, Cymbopogon flexuosus, Eucalyptus citriodora, Foeniculum vulgare, Geranium sp., Mentha arvensis, Mentha citrata, Mentha piperita, Mentha virdis, Papaver somniferum and Trigonella foenum-graecum. As a result of the application of these oligomers, the yield and/or contents of the active constituents of the aforesaid plants were significantly enhanced. The productivity, as well as quality of medicinal and aromatic plants, may be ameliorated by this novel technique in an economical way as a very little quantity of these irradiated (depolymerised) polysaccharides is needed. Further, this is a very safe technique, as we did not expose the plants directly to radiation. The radiation was used to depolymerize the polysaccharides into oligomers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title="essential oil">essential oil</a>, <a href="https://publications.waset.org/abstracts/search?q=medicinal%20and%20aromatic%20plants" title=" medicinal and aromatic plants"> medicinal and aromatic plants</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20production" title=" plant production"> plant production</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20processed%20polysaccharides" title=" radiation processed polysaccharides"> radiation processed polysaccharides</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20constituents" title=" active constituents"> active constituents</a> </p> <a href="https://publications.waset.org/abstracts/35869/depolymerised-natural-polysaccharides-enhance-the-production-of-medicinal-and-aromatic-plants-and-their-active-constituents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35869.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Phytochemistry and Alpha-Amylase Inhibitory Activities of Rauvolfia vomitoria (Afzel) Leaves and Picralima nitida (Stapf) Seeds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oseyemi%20Omowunmi%20Olubomehin">Oseyemi Omowunmi Olubomehin</a>, <a href="https://publications.waset.org/abstracts/search?q=Olufemi%20Michael%20Denton"> Olufemi Michael Denton</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diabetes mellitus is a disease that is related to the digestion of carbohydrates, proteins and fats and how this affects the blood glucose levels. Various synthetic drugs employed in the management of the disease work through different mechanisms. Keeping postprandial blood glucose levels within acceptable range is a major factor in the management of type 2 diabetes and its complications. Thus, the inhibition of carbohydrate-hydrolyzing enzymes such as α-amylase is an important strategy in lowering postprandial blood glucose levels, but synthetic inhibitors have undesirable side effects like flatulence, diarrhea, gastrointestinal disorders to mention a few. Therefore, it is necessary to identify and explore the α-amylase inhibitors from plants due to their availability, safety, and low costs. In the present study, extracts from the leaves of Rauvolfia vomitoria and seeds of Picralima nitida which are used in the Nigeria traditional system of medicine to treat diabetes were tested for their α-amylase inhibitory effect. The powdered plant samples were subjected to phytochemical screening using standard procedures. The leaves and seeds macerated successively using n-hexane, ethyl acetate and methanol resulted in the crude extracts which at different concentrations (0.1, 0.5 and 1 mg/mL) alongside the standard drug acarbose, were subjected to α-amylase inhibitory assay using the Benfield and Miller methods, with slight modification. Statistical analysis was done using ANOVA, SPSS version 2.0. The phytochemical screening results of the leaves of Rauvolfia vomitoria and the seeds of Picralima nitida showed the presence of alkaloids, tannins, saponins and cardiac glycosides while in addition Rauvolfia vomitoria had phenols and Picralima nitida had terpenoids. The α-amylase assay results revealed that at 1 mg/mL the methanol, hexane, and ethyl acetate extracts of the leaves of Rauvolfia vomitoria gave (15.74, 23.13 and 26.36 %) α-amylase inhibitions respectively, the seeds of Picralima nitida gave (15.50, 30.68, 36.72 %) inhibitions which were not significantly different from the control at p < 0.05, while acarbose gave a significant 56 % inhibition at p < 0.05. The presence of alkaloids, phenols, tannins, steroids, saponins, cardiac glycosides and terpenoids in these plants are responsible for the observed anti-diabetic activity. However, the low percentages of α-amylase inhibition by these plant samples shows that α-amylase inhibition is not the major way by which both plants exhibit their anti-diabetic effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alpha-amylase" title="alpha-amylase">alpha-amylase</a>, <a href="https://publications.waset.org/abstracts/search?q=Picralima%20nitida" title=" Picralima nitida"> Picralima nitida</a>, <a href="https://publications.waset.org/abstracts/search?q=postprandial%20hyperglycemia" title=" postprandial hyperglycemia"> postprandial hyperglycemia</a>, <a href="https://publications.waset.org/abstracts/search?q=Rauvolfia%20vomitoria" title=" Rauvolfia vomitoria"> Rauvolfia vomitoria</a> </p> <a href="https://publications.waset.org/abstracts/93002/phytochemistry-and-alpha-amylase-inhibitory-activities-of-rauvolfia-vomitoria-afzel-leaves-and-picralima-nitida-stapf-seeds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93002.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Developing a High Performance Cement Based Material: The Influence of Silica Fume and Organosilane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andrea%20Cretu">Andrea Cretu</a>, <a href="https://publications.waset.org/abstracts/search?q=Calin%20Cadar"> Calin Cadar</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Miclaus"> Maria Miclaus</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucian%20Barbu-Tudoran"> Lucian Barbu-Tudoran</a>, <a href="https://publications.waset.org/abstracts/search?q=Siegfried%20Stapf"> Siegfried Stapf</a>, <a href="https://publications.waset.org/abstracts/search?q=Ioan%20Ardelean"> Ioan Ardelean</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Additives and mineral admixtures have become an integral part of cement-based materials. It is common practice to add silica fume to cement based mixes in order to produce high-performance concrete. There is still a lack of scientific understanding regarding the effects that silica fume has on the microstructure of hydrated cement paste. The aim of the current study is to develop high-performance materials with low permeability and high resistance to flexural stress using silica fume and an organosilane. Organosilane bonds with cement grains and silica fume, influencing both the workability and the final properties of the mix, especially the pore size distributions and pore connectivity. Silica fume is a known pozzolanic agent which reacts with the calcium hydroxide in hydrated cement paste, producing more C-S-H and improving the mechanical properties of the mix. It is believed that particles of silica fume act as capillary pore fillers and nucleation centers for C-S-H and other hydration products. In order to be able to design cement-based materials with added silica fume and organosilane, it is necessary first to understand the formation of the porous network during hydration and to observe the distribution of pores and their connectivity. Nuclear magnetic resonance (NMR) methods in low-fields are non-destructive and allow the study of cement-based materials from the standpoint of their porous structure. Other methods, such as XRD and SEM-EDS, help create a comprehensive picture of the samples, along with the classic mechanical tests (compressive and flexural strength measurements). The transverse relaxation time (T₂) was measured during the hydration of 16 samples prepared with two water/cement ratios (0.3 and 0.4) and different concentrations or organosilane (APTES, up to 2% by mass of cement) and silica fume (up to 6%). After their hydration, the pore size distribution was assessed using the same NMR approach on the samples filled with cyclohexane. The SEM-EDS and XRD measurements were applied on pieces and powders prepared from the samples that were used in mechanical testing, which were kept under water for 28 days. Adding silica fume does not influence the hydration dynamics of cement paste, while the addition of organosilane extends the dormancy stage up to 10 hours. The size distribution of the capillary pores is not influenced by the addition of silica fume or organosilane, while the connectivity of capillary pores is decreased only when there is organosilane in the mix. No filling effect is observed even at the highest concentration of silica fume. There is an apparent increase in flexural strength of samples prepared only with silica fume and a decrease for those prepared with organosilane, with a few exceptions. XRD reveals that the pozzolanic reactivity of silica fume can only be observed when there is no organosilane present and the SEM-EDS method reveals the pore distribution, as well as hydration products and the presence or absence of calcium hydroxide. The current work was funded by the Romanian National Authority for Scientific Research, CNCS – UEFISCDI, through project PN-III-P2-2.1-PED-2016-0719. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cement%20hydration" title="cement hydration">cement hydration</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20admixtures" title=" concrete admixtures"> concrete admixtures</a>, <a href="https://publications.waset.org/abstracts/search?q=NMR" title=" NMR"> NMR</a>, <a href="https://publications.waset.org/abstracts/search?q=organosilane" title=" organosilane"> organosilane</a>, <a href="https://publications.waset.org/abstracts/search?q=porosity" title=" porosity"> porosity</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20fume" title=" silica fume"> silica fume</a> </p> <a href="https://publications.waset.org/abstracts/86572/developing-a-high-performance-cement-based-material-the-influence-of-silica-fume-and-organosilane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86572.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Economic Impacts of Nitrogen Fertilizer Use into Tropical Pastures for Beef Cattle in Brazil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elieder%20P.%20Romanzini">Elieder P. Romanzini</a>, <a href="https://publications.waset.org/abstracts/search?q=Lutti%20M.%20Delevatti"> Lutti M. Delevatti</a>, <a href="https://publications.waset.org/abstracts/search?q=Rhaony%20G.%20Leite"> Rhaony G. Leite</a>, <a href="https://publications.waset.org/abstracts/search?q=Ricardo%20A.%20Reis"> Ricardo A. Reis</a>, <a href="https://publications.waset.org/abstracts/search?q=Euclides%20B.%20Malheiros"> Euclides B. Malheiros</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Brazilian beef cattle production systems are an important profitability source for the national gross domestic product. The main characteristic of these systems is forage utilization as the exclusive feed source. Forage utilization had been causing on owners the false feeling of low production costs. However, this low cost is followed to low profit causing a lot times worst animal index what can result in activities changes or until land sold. Aiming to evaluate economic impacts into Brazilian beef cattle systems were evaluated four nitrogen fertilizer (N) application levels (0, 90, 180 and 270 kg per hectare [kg.ha-1]). Research was developed during 2015 into Forage Crops and Grasslands section of São Paulo State University, “Júlio de Mesquita Filho” (Unesp) (Jaboticabal, São Paulo, Brazil). Pastures were seeded with Brachiaria brizantha Stapf. ‘Marandu’ (Palisade grass) handled using continuous grazing system, with variable stocking rate, sward height maintained at 25 cm. The economic evaluation was developed in rearing e finishing phases. We evaluated the cash flows inside each phase on different N levels. Economic valuations were considering: cost-effective operating (CEO), cost-total operating (CTO), gross revenue (GR), operating profit (OP) and net income (NI), every measured in US$. Complementary analyses were developed, profitability was calculated by [OP/GR]. Pay back (measured in years) was calculated considering average capital stocktaking pondered by area in use (ACS) divided by [GR-CEO]. And the internal rate of return (IRR) was calculated by 100/(pay back). Input prices were prices during 2015 and were obtained from Anuário Brasileiro da Pecuária, Centro de Estudos Avançados em Economia Aplicada and quotation in the same region of animal production (northeast São Paulo State) during the period above mentioned. Values were calculated in US$ according exchange rate US$1.00 equal R$3.34. The CEO, CTO, GR, OP and NI per hectare for each N level were respectively US$1,919.66; US$2,048.47; US$2,905.72; US$857.25 and US$986.06 to 0 kg.ha-1; US$2,403.20; US$2,551.80; US$3,530.19; US$978.39 and US$1,126.99 to 90 kg.ha-1; US$3,180.42; US$3,364.81; US$4,985.03; US$1,620.23 and US$1,804.62 to 180 kg.ha-1andUS$3,709.14; US$3,915.15; US$5,554.95; US$1,639.80 and US$1,845.81 to 270 kg.ha-1. Relationship to another economic indexes, profitability, pay back and IRR, the results were respectively 29.50%, 6.44 and 15.54% to 0 kg.ha-1; 27.72%, 6.88 and 14.54% to 90 kg.ha-1; 32.50%, 4.08 and 24.50% to 180 kg.ha-1 and 29.52%, 3.42 and 29.27% to 270 kg.ha-1. Values previously presented in this evaluation allowing to affirm that the best result was obtained to N level 270 kg.ha-1. These results among all N levels evaluated could be explained by improve occurred on stocking rate caused by increase on N level. However, a crucial information about high N level application into pastures is the efficiency of N utilization (associated to environmental impacts) that normally decrease with the increase on N level. Hence, considering all situations (efficiency of N utilization and economic results) into tropical pastures used to beef cattle production could be recommended N level equal to 180kg.ha-1, which had better profitability and cause lesser environmental impacts, proved by other studies developed in the same area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brachiaria%20brizantha" title="Brachiaria brizantha">Brachiaria brizantha</a>, <a href="https://publications.waset.org/abstracts/search?q=cost-total%20operating" title=" cost-total operating"> cost-total operating</a>, <a href="https://publications.waset.org/abstracts/search?q=gross%20revenue" title=" gross revenue"> gross revenue</a>, <a href="https://publications.waset.org/abstracts/search?q=profitability" title=" profitability"> profitability</a> </p> <a href="https://publications.waset.org/abstracts/96968/economic-impacts-of-nitrogen-fertilizer-use-into-tropical-pastures-for-beef-cattle-in-brazil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10