CINXE.COM

Search results for: capacity fade

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: capacity fade</title> <meta name="description" content="Search results for: capacity fade"> <meta name="keywords" content="capacity fade"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="capacity fade" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="capacity fade"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4185</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: capacity fade</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4185</span> Modeling Battery Degradation for Electric Buses: Assessment of Lifespan Reduction from In-Depot Charging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anaissia%20Franca">Anaissia Franca</a>, <a href="https://publications.waset.org/abstracts/search?q=Julian%20Fernandez"> Julian Fernandez</a>, <a href="https://publications.waset.org/abstracts/search?q=Curran%20Crawford"> Curran Crawford</a>, <a href="https://publications.waset.org/abstracts/search?q=Ned%20Djilali"> Ned Djilali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A methodology to estimate the state-of-charge (SOC) of battery electric buses, including degradation effects, for a given driving cycle is presented to support long-term techno-economic analysis integrating electric buses and charging infrastructure. The degradation mechanisms, characterized by both capacity and power fade with time, have been modeled using an electrochemical model for Li-ion batteries. Iterative changes in the negative electrode film resistance and decrease in available lithium as a function of utilization is simulated for every cycle. The cycles are formulated to follow typical transit bus driving patterns. The power and capacity decay resulting from the degradation model are introduced as inputs to a longitudinal chassis dynamic analysis that calculates the power consumption of the bus for a given driving cycle to find the state-of-charge of the battery as a function of time. The method is applied to an in-depot charging scenario, for which the bus is charged exclusively at the depot, overnight and to its full capacity. This scenario is run both with and without including degradation effects over time to illustrate the significant impact of degradation mechanisms on bus performance when doing feasibility studies for a fleet of electric buses. The impact of battery degradation on battery lifetime is also assessed. The modeling tool can be further used to optimize component sizing and charging locations for electric bus deployment projects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=battery%20electric%20bus" title="battery electric bus">battery electric bus</a>, <a href="https://publications.waset.org/abstracts/search?q=E-bus" title=" E-bus"> E-bus</a>, <a href="https://publications.waset.org/abstracts/search?q=in-depot%20charging" title=" in-depot charging"> in-depot charging</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium-ion%20battery" title=" lithium-ion battery"> lithium-ion battery</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20degradation" title=" battery degradation"> battery degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=capacity%20fade" title=" capacity fade"> capacity fade</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20fade" title=" power fade"> power fade</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle" title=" electric vehicle"> electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=SEI" title=" SEI"> SEI</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20models" title=" electrochemical models"> electrochemical models</a> </p> <a href="https://publications.waset.org/abstracts/57537/modeling-battery-degradation-for-electric-buses-assessment-of-lifespan-reduction-from-in-depot-charging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4184</span> Evaluating the Durability and Safety of Lithium-Ion Batterie in High-Temperature Desert Climates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kenza%20Maher">Kenza Maher</a>, <a href="https://publications.waset.org/abstracts/search?q=Yahya%20Zakaria"> Yahya Zakaria</a>, <a href="https://publications.waset.org/abstracts/search?q=Noora%20S.%20Al-Jaidah"> Noora S. Al-Jaidah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Temperature is a critical parameter for lithium-ion battery performance, life, and safety. In this study, four commercially available 18650 lithium-ion cells from four different manufacturers are subjected to accelerated cycle aging for up to 500 cycles at two different temperatures (25°C and 45°C). The cells are also calendar-aged at the same temperatures in both charged and discharged states for 6 months to investigate the effect of aging and temperature on capacity fade and state of health. The results showed that all battery cells demonstrated good cyclability and had a good state of health at both temperatures. However, the capacity loss and state of health of these cells are found to be dependent on the cell chemistry and aging conditions, including temperature. Specifically, the capacity loss is found to be higher at the higher aging temperature, indicating the significant impact of temperature on the aging of lithium-ion batteries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lithium-ion%20battery" title="lithium-ion battery">lithium-ion battery</a>, <a href="https://publications.waset.org/abstracts/search?q=aging%20mechanisms" title=" aging mechanisms"> aging mechanisms</a>, <a href="https://publications.waset.org/abstracts/search?q=cycle%20aging" title=" cycle aging"> cycle aging</a>, <a href="https://publications.waset.org/abstracts/search?q=calendar%20aging." title=" calendar aging."> calendar aging.</a> </p> <a href="https://publications.waset.org/abstracts/165119/evaluating-the-durability-and-safety-of-lithium-ion-batterie-in-high-temperature-desert-climates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4183</span> A Review on Bearing Capacity Factor Nγ of Foundations with Different Shapes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Ziaie%20Moayed">R. Ziaie Moayed</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Taghvamanesh"> S. Taghvamanesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> So far several methods by different researchers have been developed in order to calculate the bearing capacity factors of foundations and retaining walls. In this paper, the bearing capacity factor Ny (shape factor) for different types of foundation have been investigated. The formula for bearing capacity on c–φ–γ soil can still be expressed by Terzaghi’s equation except that the bearing capacity factor Ny depends on the surcharge ratio, and friction angle φ. Many empirical definitions have been used for measurement of the bearing capacity factors N <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bearing%20capacity" title="bearing capacity">bearing capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=bearing%20capacity%20factor%20N%CE%B3" title=" bearing capacity factor Nγ"> bearing capacity factor Nγ</a>, <a href="https://publications.waset.org/abstracts/search?q=irregular%20foundations" title=" irregular foundations"> irregular foundations</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20factor" title=" shape factor"> shape factor</a> </p> <a href="https://publications.waset.org/abstracts/134905/a-review-on-bearing-capacity-factor-ngh-of-foundations-with-different-shapes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4182</span> An Integrated Mathematical Approach to Measure the Capacity of MMTS </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayan%20Bevrani">Bayan Bevrani</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20L.%20Burdett"> Robert L. Burdett</a>, <a href="https://publications.waset.org/abstracts/search?q=Prasad%20K.%20D.%20V.%20Yarlagadda"> Prasad K. D. V. Yarlagadda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article focuses upon multi-modal transportation systems (MMTS) and the issues surrounding the determination of system capacity. For that purpose a multi-objective framework is advocated that integrates all the different modes and many different competing capacity objectives. This framework is analytical in nature and facilitates a variety of capacity querying and capacity expansion planning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytical%20model" title="analytical model">analytical model</a>, <a href="https://publications.waset.org/abstracts/search?q=capacity%20analysis" title=" capacity analysis"> capacity analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=capacity%20query" title=" capacity query"> capacity query</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-modal%20transportation%20system%20%28MMTS%29" title=" multi-modal transportation system (MMTS)"> multi-modal transportation system (MMTS)</a> </p> <a href="https://publications.waset.org/abstracts/40444/an-integrated-mathematical-approach-to-measure-the-capacity-of-mmts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40444.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4181</span> Parametric Estimation of U-Turn Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yonas%20Masresha%20Aymeku">Yonas Masresha Aymeku</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of capacity modelling at U-turns is to develop a relationship between capacity and its geometric characteristics. In fact, the few models available for the estimation of capacity at different transportation facilities do not provide specific guidelines for median openings. For this reason, an effort is made to estimate the capacity by collecting the data sets from median openings at different lane roads in Hyderabad City, India. Wide difference (43% -59%) among the capacity values estimated by the existing models shows the limitation to consider for mixed traffic situations. Thus, a distinct model is proposed for the estimation of the capacity of U-turn vehicles at median openings considering mixed traffic conditions, which would further prompt to investigate the effect of different factors that might affect the capacity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geometric" title="geometric">geometric</a>, <a href="https://publications.waset.org/abstracts/search?q=guiddelines" title=" guiddelines"> guiddelines</a>, <a href="https://publications.waset.org/abstracts/search?q=median" title=" median"> median</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicles" title=" vehicles"> vehicles</a> </p> <a href="https://publications.waset.org/abstracts/184454/parametric-estimation-of-u-turn-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4180</span> Compassion Fade: Effects of Mass Perception and Intertemporal Choice on Non-Volunteering Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mariel%20L.%20Alonzo">Mariel L. Alonzo</a>, <a href="https://publications.waset.org/abstracts/search?q=Patricia%20Mae%20T.%20Chi"> Patricia Mae T. Chi</a>, <a href="https://publications.waset.org/abstracts/search?q=Juliana%20Patrice%20P.%20Mayormita"> Juliana Patrice P. Mayormita</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjana%20A.%20Sorio"> Sanjana A. Sorio</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Compassion fade proposes an inverse relationship between the magnitude of stimuli to elicited compassion. This phenomenon is viewed within a framework that integrates a 3-Act Compassion structure with Latané and Darley’s Unresponsive Bystander Model and Prospect Theory of Decision-making under risk. Students (N=211) from Ateneo de Davao were sampled to examine the effects of mass perception (increasing number of needy persons) and intertemporal choice (soon versus later) on volunteering behavior. Collegiate classes in their natural setting were randomly assigned to five different treatment groups and were presented with audiovisual presentations featuring an increasing number of needy persons. The students were deceived to believe that two hypothetical feeding programs for Marawi refugees, taking place in 1 month and 6 months, were in need of volunteers for its preparatory phase. Results show a statistically significant (p=0.000; p=0.013) non-linear trend consistently for both feeding programs. There was a decrease in volunteered time means as identifiable victims increased from 0-47 and an increase as it progressed towards 267 non-identifiable victims. Highest interest was expressed for the 0 needy people shown and least for 47. The 0 hours volunteered was consistently the mode and median in all treatments. There was no statistically significant temporal discounting effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compassion" title="compassion">compassion</a>, <a href="https://publications.waset.org/abstracts/search?q=group%20perception" title=" group perception"> group perception</a>, <a href="https://publications.waset.org/abstracts/search?q=identifiable%20victim" title=" identifiable victim"> identifiable victim</a>, <a href="https://publications.waset.org/abstracts/search?q=intertemporal%20choice" title=" intertemporal choice"> intertemporal choice</a>, <a href="https://publications.waset.org/abstracts/search?q=prosocial%20behavior" title=" prosocial behavior"> prosocial behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=unresponsive%20bystander" title=" unresponsive bystander"> unresponsive bystander</a> </p> <a href="https://publications.waset.org/abstracts/82264/compassion-fade-effects-of-mass-perception-and-intertemporal-choice-on-non-volunteering-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82264.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4179</span> Capacity Loss of Urban Arterial Roads under the Influence of Bus Stop</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sai%20Chand">Sai Chand</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Dhamaniya"> Ashish Dhamaniya</a>, <a href="https://publications.waset.org/abstracts/search?q=Satish%20Chandra"> Satish Chandra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Curbside bus stops are provided on urban roads when sufficient land is not available to construct bus bays. The present study demonstrates the effect of curbside bus stops on midblock capacity of an urban arterial road. Data were collected on seven sections of 6-lane urban arterial roads in New Delhi. Three sections were selected without any side friction to estimate the base value of capacity. Remaining four sections were with curbside bus stop. Speed and volume data were collected in field and these data were used to estimate the capacity of a section. The average base midblock capacity of a 6–lane divided urban road was found to be 6314 PCU/hr which was further referred as base capacity. Effect of curbside bus stop on midblock capacity of urban road was evaluated by comparing the capacity of a section with curbside bus stop with that of the base capacity. Finally, a mathematical relation has been developed between bus frequency and capacity loss. Also a relation has been suggested between dwell time and capacity loss. The developed relations would be very useful for practising engineers to estimate capacity loss due to bus stop. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bus%20frequency" title="bus frequency">bus frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=bus%20stops" title=" bus stops"> bus stops</a>, <a href="https://publications.waset.org/abstracts/search?q=capacity%20loss" title=" capacity loss"> capacity loss</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20arterial" title=" urban arterial"> urban arterial</a> </p> <a href="https://publications.waset.org/abstracts/8595/capacity-loss-of-urban-arterial-roads-under-the-influence-of-bus-stop" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8595.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4178</span> Stainless Steel Swarfs for Replacement of Copper in Non-Asbestos Organic Brake-Pads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vishal%20Mahale">Vishal Mahale</a>, <a href="https://publications.waset.org/abstracts/search?q=Jayashree%20Bijwe"> Jayashree Bijwe</a>, <a href="https://publications.waset.org/abstracts/search?q=Sujeet%20K.%20Sinha"> Sujeet K. Sinha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays extensive research is going on in the field of friction materials (FMs) for development of eco-friendly brake-materials by removing copper as it is a proven threat to the aquatic organisms. Researchers are keen to find the solution for copper-free FMs by using different metals or without metals. Steel wool is used as a reinforcement in non-asbestos organic (NAO) FMs mainly for increasing thermal conductivity, and it affects wear adversely, most of the times and also adds friction fluctuations. Copper and brass used to be the preferred choices because of superior performance in almost every aspect except cost. Since these are being phased out because of a proven threat to the aquatic life. Keeping this in view, a series of realistic multi-ingredient FMs containing stainless steel (SS) swarfs as a theme ingredient in increasing amount (0, 5, 10 and 15 wt. %- S₅, S₁₀, and S₁₅) were developed in the form of brake-pads. One more composite containing copper instead of SS swarfs (C₁₀) was developed. These composites were characterized for physical, mechanical, chemical and tribological performance. Composites were tribo-evaluated on a chase machine with various test loops as per SAE J661 standards. Various performance parameters such as normal µ, hot µ, performance µ, fade µ, recovery µ, % fade, % recovery, wear resistance, etc. were used to evaluate the role of amount of SS swarfs in FMs. It was concluded that SS swarfs proved successful in Cu replacement almost in all respects except wear resistance. With increase in amount of SS swarfs, most of the properties improved. Worn surface analysis and wear mechanism were studied using SEM and EDAX techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chase%20type%20friction%20tester" title="Chase type friction tester">Chase type friction tester</a>, <a href="https://publications.waset.org/abstracts/search?q=copper-free" title=" copper-free"> copper-free</a>, <a href="https://publications.waset.org/abstracts/search?q=non-asbestos%20organic%20%28NAO%29%20friction%20materials" title=" non-asbestos organic (NAO) friction materials"> non-asbestos organic (NAO) friction materials</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel%20swarfs" title=" stainless steel swarfs"> stainless steel swarfs</a> </p> <a href="https://publications.waset.org/abstracts/80071/stainless-steel-swarfs-for-replacement-of-copper-in-non-asbestos-organic-brake-pads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4177</span> How Technology Import Improve the Enterprise&#039;s Innovation Capacity: The Mediating Role of Absorptive Capacity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhan%20Zheng-Qun">Zhan Zheng-Qun</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Min"> Li Min</a>, <a href="https://publications.waset.org/abstracts/search?q=Xie%20Yan"> Xie Yan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Technology plays a key role in determining productivity and economy development in a country. The process of enterprises’ innovation can be seen as a process of knowledge management including the process of knowledge attainment; acquisition and converting and integrating into new knowledge. This research analyzes the influence factors and mechanism of the independent innovation of high-tech enterprises in the year 1995-2013. The result shows that the technology import has a significant positive effect on the innovation capacity of enterprises. And the absorptive capacity, represented by the research outlay input and research staff input, has a significant positive effect on the innovation capacity of enterprises. Furthermore, the effect of technology import on the independent research capacity of high-tech enterprises is significantly positively affected by their absorptive capacity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=technology%20import" title="technology import">technology import</a>, <a href="https://publications.waset.org/abstracts/search?q=innovation%20capacity" title=" innovation capacity"> innovation capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=absorptive%20capacity" title=" absorptive capacity"> absorptive capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=high-tech%20industry" title=" high-tech industry"> high-tech industry</a> </p> <a href="https://publications.waset.org/abstracts/44722/how-technology-import-improve-the-enterprises-innovation-capacity-the-mediating-role-of-absorptive-capacity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44722.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4176</span> Model of the Increasing the Capacity of the Train and Railway Track by Using the New Type of Wagon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Martin%20Kendra">Martin Kendra</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaroslav%20Ma%C5%A1ek"> Jaroslav Mašek</a>, <a href="https://publications.waset.org/abstracts/search?q=Juraj%20%C4%8Camaj"> Juraj Čamaj</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20B%C3%BAda"> Martin Búda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper deals with possibilities of increase train capacity by using a new type of railway wagon. In the first part is created a mathematical model to calculate the capacity of the train. The model is based on the main limiting parameters of the train - maximum number of axles per train, the maximum gross weight of the train, the maximum length of train and number of TEUs per one wagon. In the second part is the model applied to four different model trains with different composition of the train set and three different average weights of TEU and a train consisting of a new type of wagons. The result is to identify where the carrying capacity of the original trains is higher, respectively less than a capacity of the train consisting of a new type of wagons. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=loading%20units" title="loading units">loading units</a>, <a href="https://publications.waset.org/abstracts/search?q=theoretical%20capacity%20model" title=" theoretical capacity model"> theoretical capacity model</a>, <a href="https://publications.waset.org/abstracts/search?q=train%20capacity" title=" train capacity"> train capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=wagon%20for%20intermodal%20transport" title=" wagon for intermodal transport"> wagon for intermodal transport</a> </p> <a href="https://publications.waset.org/abstracts/35613/model-of-the-increasing-the-capacity-of-the-train-and-railway-track-by-using-the-new-type-of-wagon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4175</span> Capacity Loss at Midblock Sections of Urban Arterials Due to Pedestrian Crossings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Dhamaniya">Ashish Dhamaniya</a>, <a href="https://publications.waset.org/abstracts/search?q=Satish%20Chandra"> Satish Chandra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pedestrian crossings at grade in India are very common and pedestrian cross the carriageway at undesignated locations where they found the path to access the residential and commercial areas. Present paper aims to determine capacity loss on 4-lane urban arterials due to such crossings. Base capacity which is defined as the capacity without any influencing factor is determined on 4-lane roads by collecting speed-flow data in the field. It is observed that base capacity is varying from 1636 pcu/hr/lane to 2043 pcu/hr/lane which is attributed to the different operating conditions at different sections. The variation in base capacity is related with the operating speed on the road sections. Free flow speed of standard car is measured in the field and 85th percentile of this speed is reported as operating speed. Capacity of the 4-lane road sections with different pedestrian cross-flow is also determined and compared with the capacity of base section. The difference in capacity values is reported as capacity loss due to the average number of pedestrian crossings in one hour. It has been observed that capacity of 4-lane road section reduces from 18 to 30 percent with pedestrian cross-flow of 800 to 1550 peds/hr. A model is proposed between capacity loss and pedestrian cross-flow from the observed data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capacity" title="capacity">capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20flow%20speed" title=" free flow speed"> free flow speed</a>, <a href="https://publications.waset.org/abstracts/search?q=pedestrian" title=" pedestrian"> pedestrian</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20arterial" title=" urban arterial"> urban arterial</a>, <a href="https://publications.waset.org/abstracts/search?q=transport" title=" transport"> transport</a> </p> <a href="https://publications.waset.org/abstracts/35845/capacity-loss-at-midblock-sections-of-urban-arterials-due-to-pedestrian-crossings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35845.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4174</span> An Advanced Method of Plant Preservation and Colour Retention of Herbarium Specimens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abduraheem%20K.">Abduraheem K.</a>, <a href="https://publications.waset.org/abstracts/search?q=Suboohi%20Nasrin"> Suboohi Nasrin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Herbaria are specimens of preserved plants, which are very delicate and cellulosic in nature. While these collections are very useful for the enrichment of knowledge and are considered as natural heritage of our entire world, it is very important to preserve and conserve them. The significance is not only to prevent the herbaria from the deterioration of biological agencies but also to preserve its colours and retain natural colour. Colour is not only characteristic of a plant, but it can also help to identify closely related species or to distinguish a plant from a collection of herbaria. Keeping this in mind, a selective solution has been prepared for the conservation and preservation of herbarium in the present study. In this, the quantity of all the selected chemicals, i.e., formaldehyde and copper sulphate was kept constant, and the solution was prepared by dissolving it in distilled water by increasing the amount of picric acid (1, 2, 3, 4, and 5 ml). Fresh specimens of roses and bougainvillea were washed with distilled water and kept in the above solution for 10 to 15 minutes at room temperature. After 10 minutes, the specimen was removed from the solution, dried with the help of paper, and then pressed under the plant press. Blotting sheets were used to absorb the moisture content and were changed every 2 to 3 days to protect against fungal growth. The results revealed that all solutions had insecticidal properties and protected the herbarium specimen against pests. While in the case of colour retention, solution-1 and 2 were not satisfactory colour preservation, and solutions-3 and 5 maintained the colour of rose and bougainvillea leaves for 15 to 20 days and for a month, respectively. After that, the colour begins to fade, and the process is faster in rose leaves than in bougainvillea. And it was also observed that the colour of young leaves started to fade before that of older leaves. When the leaves of rose and bougainvillea are treated with Solution-4, then the colour of rose leaves is maintained for six months. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solutions" title="solutions">solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=colour%20retention" title=" colour retention"> colour retention</a>, <a href="https://publications.waset.org/abstracts/search?q=preservation%20and%20conservation" title=" preservation and conservation"> preservation and conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=leaves%20of%20roses%20and%20bougainvillea" title=" leaves of roses and bougainvillea"> leaves of roses and bougainvillea</a> </p> <a href="https://publications.waset.org/abstracts/153068/an-advanced-method-of-plant-preservation-and-colour-retention-of-herbarium-specimens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4173</span> Discrete Element Modeling on Bearing Capacity Problems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Li">N. Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20M.%20Cheng"> Y. M. Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the classical bearing capacity problem is re-considered from discrete element analysis. In the discrete element approach, the bearing capacity problem is considered from the elastic stage to plastic stage to rupture stage (large displacement). The bearing capacity failure mechanism of a strip footing on soil is investigated, and the influence of micro-parameters on the bearing capacity of soil is also observed. It is found that the distinct element method (DEM) gives very good visualized results, and basically coincides well with that derived by the classical methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bearing%20capacity" title="bearing capacity">bearing capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=distinct%20element%20method" title=" distinct element method"> distinct element method</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20mechanism" title=" failure mechanism"> failure mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20displacement" title=" large displacement"> large displacement</a> </p> <a href="https://publications.waset.org/abstracts/43831/discrete-element-modeling-on-bearing-capacity-problems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43831.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4172</span> Evaluating of Bearing Capacity of Two Adjacent Strip Foundations Located around a Soil Slip </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Meftahi">M. Meftahi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hoseinzadeh"> M. Hoseinzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Naeini"> S. A. Naeini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Selection of soil bearing capacity is an important issue that should be investigated under different conditions. The bearing capacity of foundation around of soil slope is based on the active and passive forces. On the other hand, due to extension of urban structures, it is inevitable to put the foundations together. Concerning the two cases mentioned above, investigating the behavior of adjacent foundations which are constructed besides soil slope is essential. It should be noted that, according to the conditions, the bearing capacity of adjacent foundations can be less or more than mat foundations. Also, soil reinforcement increases the bearing capacity of adjacent foundations, and the amount of its increase depends on the distance between foundations. In this research, based on numerical studies, a method is presented for evaluating ultimate bearing capacity of adjacent foundations at different intervals. In the present study, the effect of foundation width, the center to center distance of adjacent foundations and reinforced soil has been investigated on the bearing capacity of adjacent foundations beside soil slope. The results indicate that, due to interference of failure surfaces created under foundation, it depends on their intervals and the ultimate bearing capacity of foundation varies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adjacent%20foundation" title="adjacent foundation">adjacent foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=bearing%20capacity" title=" bearing capacity"> bearing capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforcements" title=" reinforcements"> reinforcements</a>, <a href="https://publications.waset.org/abstracts/search?q=settlement" title=" settlement"> settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a> </p> <a href="https://publications.waset.org/abstracts/107540/evaluating-of-bearing-capacity-of-two-adjacent-strip-foundations-located-around-a-soil-slip" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4171</span> Undrained Bearing Capacity of Circular Foundations on two Layered Clays</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Benmebarek">S. Benmebarek</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Benmoussa"> S. Benmoussa</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Benmebarek"> N. Benmebarek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural soils are often deposited in layers. The estimation of the bearing capacity of the soil using conventional bearing capacity theory based on the properties of the upper layer introduces significant inaccuracies if the thickness of the top layer is comparable to the width of the foundation placed on the soil surface. In this paper, numerical computations using the FLAC code are reported to evaluate the two clay layers effect on the bearing capacity beneath rigid circular rough footing subject to axial static load. The computation results of the parametric study are used to illustrate the sensibility of the bearing capacity, the shape factor and the failure mechanisms to the layered strength and layered thickness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20modeling" title="numerical modeling">numerical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=circular%20footings" title=" circular footings"> circular footings</a>, <a href="https://publications.waset.org/abstracts/search?q=layered%20clays" title=" layered clays"> layered clays</a>, <a href="https://publications.waset.org/abstracts/search?q=bearing%20capacity" title=" bearing capacity"> bearing capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=failure" title=" failure"> failure</a> </p> <a href="https://publications.waset.org/abstracts/18326/undrained-bearing-capacity-of-circular-foundations-on-two-layered-clays" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">495</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4170</span> A Mathematical Framework for Expanding a Railway’s Theoretical Capacity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Robert%20L.%20Burdett">Robert L. Burdett</a>, <a href="https://publications.waset.org/abstracts/search?q=Bayan%20Bevrani"> Bayan Bevrani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Analytical techniques for measuring and planning railway capacity expansion activities have been considered in this article. A preliminary mathematical framework involving track duplication and section sub divisions is proposed for this task. In railways, these features have a great effect on network performance and for this reason they have been considered. Additional motivations have also arisen from the limitations of prior models that have not included them. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capacity%20analysis" title="capacity analysis">capacity analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=capacity%20expansion" title=" capacity expansion"> capacity expansion</a>, <a href="https://publications.waset.org/abstracts/search?q=railways" title=" railways"> railways</a>, <a href="https://publications.waset.org/abstracts/search?q=track%20sub%20division" title=" track sub division"> track sub division</a>, <a href="https://publications.waset.org/abstracts/search?q=track%20duplication" title=" track duplication"> track duplication</a> </p> <a href="https://publications.waset.org/abstracts/39128/a-mathematical-framework-for-expanding-a-railways-theoretical-capacity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39128.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4169</span> Institutional Capacity and Corruption: Evidence from Brazil </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dalson%20Figueiredo">Dalson Figueiredo</a>, <a href="https://publications.waset.org/abstracts/search?q=Enivaldo%20Rocha"> Enivaldo Rocha</a>, <a href="https://publications.waset.org/abstracts/search?q=Ranulfo%20Paranhos"> Ranulfo Paranhos</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Alexandre"> José Alexandre</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper analyzes the effects of institutional capacity on corruption. Methodologically, the research design combines both descriptive and multivariate statistics to examine two original datasets based on secondary data. In particular, we employ a principal component model to estimate an indicator of institutional capacity for both state audit institutions and subnational judiciary courts. Then, we estimate the effect of institutional capacity on two dependent variables: (1) incidence of administrative irregularities and (2) time elapsed to judge corruption cases. The preliminary results using ordinary least squares, negative binomial and Tobit models suggest the same conclusions: higher the institutional audit capacity, higher is the probability of detecting a corruption case. On the other hand, higher the institutional capacity of state judiciary, the lower is the time to judge corruption cases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=institutional%20capacity" title="institutional capacity">institutional capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=corruption" title=" corruption"> corruption</a>, <a href="https://publications.waset.org/abstracts/search?q=state%20level%20institutions" title=" state level institutions"> state level institutions</a>, <a href="https://publications.waset.org/abstracts/search?q=evidence%20from%20Brazil" title=" evidence from Brazil "> evidence from Brazil </a> </p> <a href="https://publications.waset.org/abstracts/15940/institutional-capacity-and-corruption-evidence-from-brazil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15940.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4168</span> Role of Strategic Human Resource Practices and Knowledge Management Capacity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ploychompoo%20Kittikunchotiwut">Ploychompoo Kittikunchotiwut</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study examines the relationships between human resource practices, knowledge management capacity, and innovation performance. The data were collected by using a questionnaire from 241 firms in the hotels in Thailand. The hypothesized relationships among variables are examined by using ordinary least square (OLS) regression analysis. The findings show that human resource practices have a positive effect on knowledge management capacity. Besides, knowledge management capacity was found to positively affect innovation performance. Finally, the limitations of the study and directions for future research are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=human%20resource%20practices" title="human resource practices">human resource practices</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20management%20capacity" title=" knowledge management capacity"> knowledge management capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=innovation%20performance" title=" innovation performance"> innovation performance</a> </p> <a href="https://publications.waset.org/abstracts/120625/role-of-strategic-human-resource-practices-and-knowledge-management-capacity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4167</span> The Quantitative Analysis of Tourism Carrying Capacity with the Approach of Sustainable Development Case Study: Siahsard Fountain </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoumeh%20Tadayoni">Masoumeh Tadayoni</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Kamyabi"> Saeed Kamyabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Entezari"> Alireza Entezari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and goal of the research: In planning and management system, the tourism carrying capacity is used as a holistic approach and supportive instrument. Evaluating the carrying capacity is used in quantitative the resource exploitation in line with sustainable development and as a foundation for identifying the changes in natural ecosystem and for the final evaluation and monitoring the tensions and decays in regressed ecosystem. Therefore, the present research tries to determine the carrying capacity of effective, physical and real range of Siahsard tourism region. Method: In the present research, the quantitative analysis of tourism carrying capacity is studied by used of effective or permissible carrying capacity (EPCC), real carrying capacity (PCC) and physical carrying capacity (RCC) in Siahsard fountain. It is analyzed based on the field survey and various resources were used for collecting information. Findings: The results of the analysis shows that, 3700 people use the Siahsard tourism region every day and 1350500 people use it annually. However, the evaluation of carrying capacity can be annually 1390650 people in this place. It can be an important tourism place along with other places in the region. Results: Siahsard’s tourism region has a little way to reach to its carrying capacity that needs to be analyzed. However, based on the results, some suggestions were offered for sustainable development of this region and as the most logical alternations for tourism management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carrying%20capacity" title="carrying capacity">carrying capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=evaluation" title=" evaluation"> evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=Siahsard" title=" Siahsard"> Siahsard</a>, <a href="https://publications.waset.org/abstracts/search?q=tourism" title=" tourism "> tourism </a> </p> <a href="https://publications.waset.org/abstracts/53166/the-quantitative-analysis-of-tourism-carrying-capacity-with-the-approach-of-sustainable-development-case-study-siahsard-fountain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53166.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4166</span> Evaluation of Bearing Capacity of Vertically Loaded Strip Piled-Raft Embedded in Soft Clay</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Abolhasan%20Naeini">Seyed Abolhasan Naeini</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Hosseinzade"> Mohammad Hosseinzade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Settlement and bearing capacity of a piled raft are the two important issues for the foundations of the structures built on coastal areas from the geotechnical engineering point of view. Strip piled raft as a load carrying system could be used to reduce the possible extensive consolidation settlements and improve bearing capacity of structures in soft ground. The aim of this research was to evaluate the efficiency of strip piled raft embedded in soft clay. The efficiency of bearing capacity of strip piled raft foundation is evaluated numerically in two cases: in first case, the cap is placed directly on the ground surface and in the second, the cap is placed above the ground. Regarding to the fact that the geotechnical parameters of the soft clay are considered at low level, low bearing capacity is expected. The length, diameter and axe-to-axe distance of piles are the parameters which varied in this research to find out how they affect the bearing capacity. Results indicate that increasing the length and the diameter of the piles increase the bearing capacity. The complementary results will be presented in the final version of the paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soft%20clay" title="soft clay">soft clay</a>, <a href="https://publications.waset.org/abstracts/search?q=strip%20piled%20raft" title=" strip piled raft"> strip piled raft</a>, <a href="https://publications.waset.org/abstracts/search?q=bearing%20capacity" title=" bearing capacity"> bearing capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=settlement" title=" settlement"> settlement</a> </p> <a href="https://publications.waset.org/abstracts/1963/evaluation-of-bearing-capacity-of-vertically-loaded-strip-piled-raft-embedded-in-soft-clay" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4165</span> Effect of Slope Height and Horizontal Forces on the Bearing Capacity of Strip Footings near Slopes in Cohesionless Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sven%20Krabbenhoft">Sven Krabbenhoft</a>, <a href="https://publications.waset.org/abstracts/search?q=Kristian%20Krabbenhoft"> Kristian Krabbenhoft</a>, <a href="https://publications.waset.org/abstracts/search?q=Lars%20Damkilde"> Lars Damkilde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of determining the bearing capacity of a strip foundation located near a slope of infinite height has been dealt with by several authors. Very often in practical problems the slope is of limited height, and furthermore the resulting load may be inclined at an angle to the horizontal, and in such cases the bearing capacity of the footing cannot be found using the existing methods. The present work comprises finite element based upper- and lower-bound calculations, using the geotechnical software OptumG2 to investigate the effect of the slope height and horizontal forces on the total bearing capacity, both without and with using superposition as presupposed in the traditional bearing capacity equation. The results for friction angles 30, 35 and 40 degrees, slope inclinations 1:2, 1:3 and 1:4, for selfweight and surcharge are given as charts showing the slope inclination factors suitable for design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=footings" title="footings">footings</a>, <a href="https://publications.waset.org/abstracts/search?q=bearing%20capacity" title=" bearing capacity"> bearing capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=slopes" title=" slopes"> slopes</a>, <a href="https://publications.waset.org/abstracts/search?q=cohesionnless%20soil" title=" cohesionnless soil"> cohesionnless soil</a> </p> <a href="https://publications.waset.org/abstracts/12708/effect-of-slope-height-and-horizontal-forces-on-the-bearing-capacity-of-strip-footings-near-slopes-in-cohesionless-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12708.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4164</span> Aftershock Collapse Capacity Assessment of Mid-Rise Steel Moment Frames Subjected to As-Recorded Mainshock-Aftershock</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammadmehdi%20Torfehnejada">Mohammadmehdi Torfehnejada</a>, <a href="https://publications.waset.org/abstracts/search?q=Serhan%20Senso"> Serhan Senso</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aftershock collapse capacity of Special Steel Moment Frames (SSMFs) is evaluated under aftershock earthquakes by considering building heights 8 and 12 stories. The assessment evaluates the residual collapse capacity under aftershock excitation when various levels of damage have been induced by the mainshock. For this purpose, incremental dynamic analysis (IDA) under aftershock follows the mainshock imposing the intended damage level. The study results indicate that aftershock collapse capacity of this structure may decrease remarkably when the structure is subjected to large mainshock damage. The capacity reduction under aftershock is finally related to the mainshock damage level through regression equations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aftershock%20collapse%20capacity" title="aftershock collapse capacity">aftershock collapse capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=special%20steel%20moment%20frames" title=" special steel moment frames"> special steel moment frames</a>, <a href="https://publications.waset.org/abstracts/search?q=mainshock-aftershock%20sequences" title=" mainshock-aftershock sequences"> mainshock-aftershock sequences</a>, <a href="https://publications.waset.org/abstracts/search?q=incremental%20dynamic%20analysis" title=" incremental dynamic analysis"> incremental dynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=mainshock%20damage" title=" mainshock damage"> mainshock damage</a> </p> <a href="https://publications.waset.org/abstracts/144073/aftershock-collapse-capacity-assessment-of-mid-rise-steel-moment-frames-subjected-to-as-recorded-mainshock-aftershock" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144073.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4163</span> Evaluation of Flange Bending Capacity near Member End Using a Finite Element Analysis Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alicia%20Kamischke">Alicia Kamischke</a>, <a href="https://publications.waset.org/abstracts/search?q=Souhail%20Elhouar"> Souhail Elhouar</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasser%20Khodair"> Yasser Khodair</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The American Institute of Steel Construction (AISC) Specification (360-10) provides equations for calculating the capacity of a W-shaped steel member to resist concentrated forces applied to its flange. In the case of flange local bending, the capacity equations were primarily formulated for an interior point along the member, which is defined to be at a distance larger than ten flange thicknesses away from the member’s end. When a concentrated load is applied within ten flange thicknesses from the member’s end, AISC requires a fifty percent reduction to be applied to the flange bending capacity. This reduction, however, is not supported by any research. In this study, finite element modeling is used to investigate the actual reduction in capacity near the end of such a steel member. The results indicate that the AISC equation for flange local bending is quite conservative for forces applied at less than ten flange thicknesses from the member’s end and a new equation is suggested for the evaluation of available flange local bending capacity within that distance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flange%20local%20bending" title="flange local bending">flange local bending</a>, <a href="https://publications.waset.org/abstracts/search?q=concentrated%20forces" title=" concentrated forces"> concentrated forces</a>, <a href="https://publications.waset.org/abstracts/search?q=column" title=" column"> column</a>, <a href="https://publications.waset.org/abstracts/search?q=flange%20capacity" title=" flange capacity"> flange capacity</a> </p> <a href="https://publications.waset.org/abstracts/22697/evaluation-of-flange-bending-capacity-near-member-end-using-a-finite-element-analysis-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22697.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">686</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4162</span> Effect of Sand Wall Stabilized with Different Percentages of Lime on Bearing Capacity of Foundation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20S.%20Abdulrasool">Ahmed S. Abdulrasool</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently sand wall started to gain more attention as the sand is easy to compact by using vibroflotation technique. An advantage of sand wall is the availability of different additives that can be mixed with sand to increase the stiffness of the sand wall and hence to increase its performance. In this paper, the bearing capacity of circular foundation surrounded by sand wall stabilized with lime is evaluated through laboratory testing. The studied parameters include different sand-lime walls depth (H/D) ratio (wall depth to foundation diameter) ranged between (0.0-3.0). Effect of lime percentages on the bearing capacity of skirted foundation models is investigated too. From the results, significant change is occurred in the behavior of shallow foundations due to confinement of the soil. It has been found that (H/D) ratio of 2 gives substantial improvement in bearing capacity, and beyond (H/D) ratio of 2, there is no significant improvement in bearing capacity. The results show that the optimum lime content is 11%, and the maximum increase in bearing capacity reaches approximately 52% at (H/D) ratio of 2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bearing%20capacity" title="bearing capacity">bearing capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=circular%20foundation" title=" circular foundation"> circular foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=clay%20soil" title=" clay soil"> clay soil</a>, <a href="https://publications.waset.org/abstracts/search?q=lime-sand%20wall" title=" lime-sand wall"> lime-sand wall</a> </p> <a href="https://publications.waset.org/abstracts/62996/effect-of-sand-wall-stabilized-with-different-percentages-of-lime-on-bearing-capacity-of-foundation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62996.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4161</span> Soil Bearing Capacity of Shallow Foundation and Consolidation Settlement at Around the Prospective Area of Sei Gong Dam Batam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andri%20Hidayat">Andri Hidayat</a>, <a href="https://publications.waset.org/abstracts/search?q=Zufialdi%20Zakaria"> Zufialdi Zakaria</a>, <a href="https://publications.waset.org/abstracts/search?q=Raden%20Irvan%20Sophian"> Raden Irvan Sophian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Batam city within next five years are expected to experience water crisis. Sei Gong dam which is located in the Sijantung village, Galang District, Batam City, Riau Islands Province is one of 13 dams that will be built to solve the problems of raw water crisis in the Batam city. The purpose of this study are to determine the condition of engineering geology around Sei Gong Dam area, knowing the value of the soil bearing capacity and recommended pile foundation, and knowing the characteristics of the soil consolidation as one of the factors that affect the incidence of soil subsidence. Based on calculations for shallow foundation in general - soil shear condition and local - soil condition indicates that the highest value in ultimate soil bearing capacity (qu) for each depth was in the square foundations at two meters depth. The zonations of shallow foundation of the research area are divided into five zones, they are bearing capacity zone <10 ton/m2, bearing capacity zone 10-15 ton/m2, bearing capacity zone 15-20 ton/m2, bearing capacity zone 20-25 ton/m2, and bearing capacity zone >25 ton/m2. Based on the parameters of soil engineering analysis, Sei Gong Dam areas at the middle part has a higher value for land subsidence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultimate%20bearing%20capacity" title="ultimate bearing capacity">ultimate bearing capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=type%20of%20foundation" title=" type of foundation"> type of foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=consolidation" title=" consolidation"> consolidation</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20subsidence" title=" land subsidence"> land subsidence</a>, <a href="https://publications.waset.org/abstracts/search?q=Batam" title=" Batam"> Batam</a> </p> <a href="https://publications.waset.org/abstracts/67476/soil-bearing-capacity-of-shallow-foundation-and-consolidation-settlement-at-around-the-prospective-area-of-sei-gong-dam-batam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67476.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4160</span> Establishing Digital Forensics Capability and Capacity among Malaysia&#039;s Law Enforcement Agencies: Issues, Challenges and Recommendations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarah%20Taylor">Sarah Taylor</a>, <a href="https://publications.waset.org/abstracts/search?q=Nor%20Zarina%20Zainal%20Abidin"> Nor Zarina Zainal Abidin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Zabri%20Adil%20Talib"> Mohd Zabri Adil Talib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although cybercrime is on the rise, yet many Law Enforcement Agencies in Malaysia faces difficulty in establishing own digital forensics capability and capacity. The main reasons are undoubtedly because of the high cost and difficulty in convincing their management. A survey has been conducted among Malaysia’s Law Enforcement Agencies owning a digital forensics laboratory to understand their history of building digital forensics capacity and capability, the challenges and the impact of having own laboratory to their case investigation. The result of the study shall be used by other Law Enforcement Agencies in justifying to their management to establish own digital forensics capability and capacity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20forensics" title="digital forensics">digital forensics</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20forensics%20capacity%20and%20capability" title=" digital forensics capacity and capability"> digital forensics capacity and capability</a>, <a href="https://publications.waset.org/abstracts/search?q=laboratory" title=" laboratory"> laboratory</a>, <a href="https://publications.waset.org/abstracts/search?q=law%20enforcement%20agency" title=" law enforcement agency"> law enforcement agency</a> </p> <a href="https://publications.waset.org/abstracts/85550/establishing-digital-forensics-capability-and-capacity-among-malaysias-law-enforcement-agencies-issues-challenges-and-recommendations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85550.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4159</span> Road Transition Design on Freeway Tunnel Entrance and Exit Based on Traffic Capacity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Han%20Bai">Han Bai</a>, <a href="https://publications.waset.org/abstracts/search?q=Tong%20Zhang"> Tong Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lemei%20Yu"> Lemei Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Doudou%20Xie"> Doudou Xie</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang%20Zhao"> Liang Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Road transition design on freeway tunnel entrance and exit is one vital factor in realizing smooth transition and improving traveling safety for vehicles. The goal of this research is to develop a horizontal road transition design tool that considers the transition technology of traffic capacity consistency to explore its accommodation mechanism. The influencing factors of capacity are synthesized and a modified capacity calculation model focusing on the influence of road width and lateral clearance is developed based on the VISSIM simulation to calculate the width of road transition sections. To keep the traffic capacity consistency, the right side of the transition section of the tunnel entrance and exit is divided into three parts: front arc, an intermediate transition section, and end arc; an optimization design on each transition part is conducted to improve the capacity stability and horizontal alignment transition. A case study on the Panlong Tunnel in Ji-Qing freeway illustrates the application of the tool. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traffic%20safety" title="traffic safety">traffic safety</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20transition" title=" road transition"> road transition</a>, <a href="https://publications.waset.org/abstracts/search?q=freeway%20tunnel" title=" freeway tunnel"> freeway tunnel</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20capacity" title=" traffic capacity"> traffic capacity</a> </p> <a href="https://publications.waset.org/abstracts/88916/road-transition-design-on-freeway-tunnel-entrance-and-exit-based-on-traffic-capacity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88916.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4158</span> Estimation of Reservoir Capacity and Sediment Deposition Using Remote Sensing Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Odai%20Ibrahim%20Mohammed%20Al%20Balasmeh">Odai Ibrahim Mohammed Al Balasmeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Tapas%20Karmaker"> Tapas Karmaker</a>, <a href="https://publications.waset.org/abstracts/search?q=Richa%20Babbar"> Richa Babbar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the reservoir capacity and sediment deposition were estimated using remote sensing data. The satellite images were synchronized with water level and storage capacity to find out the change in sediment deposition due to soil erosion and transport by streamflow. The water bodies spread area was estimated using vegetation indices, e.g., normalize differences vegetation index (NDVI) and normalize differences water index (NDWI). The 3D reservoir bathymetry was modeled by integrated water level, storage capacity, and area. From the models of different time span, the change in reservoir storage capacity was estimated. Another reservoir with known water level, storage capacity, area, and sediment deposition was used to validate the estimation technique. The t-test was used to assess the results between observed and estimated reservoir capacity and sediment deposition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=satellite%20data" title="satellite data">satellite data</a>, <a href="https://publications.waset.org/abstracts/search?q=normalize%20differences%20vegetation%20index" title=" normalize differences vegetation index"> normalize differences vegetation index</a>, <a href="https://publications.waset.org/abstracts/search?q=NDVI" title=" NDVI"> NDVI</a>, <a href="https://publications.waset.org/abstracts/search?q=normalize%20differences%20water%20index" title=" normalize differences water index"> normalize differences water index</a>, <a href="https://publications.waset.org/abstracts/search?q=NDWI" title=" NDWI"> NDWI</a>, <a href="https://publications.waset.org/abstracts/search?q=reservoir%20capacity" title=" reservoir capacity"> reservoir capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=sedimentation" title=" sedimentation"> sedimentation</a>, <a href="https://publications.waset.org/abstracts/search?q=t-test%20hypothesis" title=" t-test hypothesis"> t-test hypothesis</a> </p> <a href="https://publications.waset.org/abstracts/125321/estimation-of-reservoir-capacity-and-sediment-deposition-using-remote-sensing-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4157</span> Exploration of Copper Fabric in Non-Asbestos Organic Brake-Pads for Thermal Conductivity Enhancement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vishal%20Mahale">Vishal Mahale</a>, <a href="https://publications.waset.org/abstracts/search?q=Jayashree%20Bijwe"> Jayashree Bijwe</a>, <a href="https://publications.waset.org/abstracts/search?q=Sujeet%20K.%20Sinha"> Sujeet K. Sinha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Range of thermal conductivity (TC) of Friction Materials (FMs) is a critical issue since lower TC leads to accumulation of frictional heat on the working surface, which results in excessive fade while higher TC leads to excessive heat flow towards back-plate resulting in boiling of brake-fluid leading to ‘spongy brakes’. This phenomenon prohibits braking action, which is most undesirable. Therefore, TC of the FMs across the brake pads should not be high while along the brake pad, it should be high. To enhance TC, metals in the forms of powder and fibers are used in the FMs. Apart from TC improvement, metals provide strength and structural integrity to the composites. Due to higher TC Copper (Cu) powder/fiber is a most preferred metallic ingredient in FM industry. However, Cu powders/fibers are responsible for metallic wear debris generation, which has harmful effects on aquatic organisms. Hence to get rid of a problem of metallic wear debris generation and to keep the positive effect of TC improvement, incorporation of Cu fabric in NAO brake-pads can be an innovative solution. Keeping this in view, two realistic multi-ingredient FM composites with identical formulations were developed in the form of brake-pads. Out of which one composite series consisted of a single layer of Cu fabric in the body of brake-pad and designated as C1 while double layer of Cu fabric was incorporated in another brake-pad series with designation of C2. Distance of Cu fabric layer from the back-plate was kept constant for C1 and C2. One more composite (C0) was developed without Cu fabric for the sake of comparison. Developed composites were characterized for physical properties. Tribological performance was evaluated on full scale inertia dynamometer by following JASO C 406 testing standard. It was concluded that Cu fabric successfully improved fade resistance by increasing conductivity of the composite and also showed slight improvement in wear resistance. Worn surfaces of pads and disc were analyzed by SEM and EDAX to study wear mechanism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brake%20inertia%20dynamometer" title="brake inertia dynamometer">brake inertia dynamometer</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20fabric" title=" copper fabric"> copper fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=non-asbestos%20organic%20%28NAO%29%20friction%20materials" title=" non-asbestos organic (NAO) friction materials"> non-asbestos organic (NAO) friction materials</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity%20enhancement" title=" thermal conductivity enhancement "> thermal conductivity enhancement </a> </p> <a href="https://publications.waset.org/abstracts/96533/exploration-of-copper-fabric-in-non-asbestos-organic-brake-pads-for-thermal-conductivity-enhancement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96533.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4156</span> Impact of the Operation and Infrastructure Parameters to the Railway Track Capacity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Martin%20Kendra">Martin Kendra</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaroslav%20Ma%C5%A1ek"> Jaroslav Mašek</a>, <a href="https://publications.waset.org/abstracts/search?q=Juraj%20%C4%8Camaj"> Juraj Čamaj</a>, <a href="https://publications.waset.org/abstracts/search?q=Matej%20Babin"> Matej Babin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The railway transport is considered as a one of the most environmentally friendly mode of transport. With future prediction of increasing of freight transport there are lines facing problems with demanded capacity. Increase of the track capacity could be achieved by infrastructure constructive adjustments. The contribution shows how the travel time can be minimized and the track capacity increased by changing some of the basic infrastructure and operation parameters, for example, the minimal curve radius of the track, the number of tracks, or the usable track length at stations. Calculation of the necessary parameter changes is based on the fundamental physical laws applied to the train movement, and calculation of the occupation time is dependent on the changes of controlling the traffic between the stations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curve%20radius" title="curve radius">curve radius</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20curve%20speed" title=" maximum curve speed"> maximum curve speed</a>, <a href="https://publications.waset.org/abstracts/search?q=track%20mass%20capacity" title=" track mass capacity"> track mass capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=reconstruction" title=" reconstruction"> reconstruction</a> </p> <a href="https://publications.waset.org/abstracts/35579/impact-of-the-operation-and-infrastructure-parameters-to-the-railway-track-capacity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35579.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=capacity%20fade&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=capacity%20fade&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=capacity%20fade&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=capacity%20fade&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=capacity%20fade&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=capacity%20fade&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=capacity%20fade&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=capacity%20fade&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=capacity%20fade&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=capacity%20fade&amp;page=139">139</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=capacity%20fade&amp;page=140">140</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=capacity%20fade&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10