CINXE.COM

Search results for: litter pollution

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <script> var _paq = window._paq = window._paq || []; /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ _paq.push(['trackPageView']); _paq.push(['enableLinkTracking']); (function() { var u="//matomo.waset.org/"; _paq.push(['setTrackerUrl', u+'matomo.php']); _paq.push(['setSiteId', '2']); var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); })(); </script> <!-- End Matomo Code --> <title>Search results for: litter pollution</title> <meta name="description" content="Search results for: litter pollution"> <meta name="keywords" content="litter pollution"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="litter pollution" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2025/2026/2027">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="litter pollution"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1968</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: litter pollution</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1968</span> Marine Litter and Microplastic Pollution in Mangrove Sediments in The Sea of Oman</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muna%20Al-Tarshi">Muna Al-Tarshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Dobretsov%20Sergey"> Dobretsov Sergey</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenresti%20Gallardo"> Wenresti Gallardo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Marine litter pollution is a global concern that has wide-ranging ecological, societal, and economic implications, along with potential health risks for humans. In Oman, inadequate solid waste management has led to the accumulation of litter in mangrove ecosystems. However, there is a dearth of information on marine litter and microplastic pollution in Omani mangroves, impeding the formulation of effective mitigation strategies. To address this knowledge gap, we conducted a comprehensive assessment of marine litter and microplastics in mangrove sediments in the Sea of Oman. Our study measured the average abundance of marine litter, which ranged from 0.83±1.03 to 19.42±8.52 items/m2. Notably, plastics constituted the majority of litter, accounting for 73-96% of all items, with soft plastics being the most prevalent. Furthermore, we investigated microplastic concentrations in the sediments, finding levels ranging from 6 to 256 pieces /kg. Among the studied areas, afforested mangroves in Al-Sawadi exhibited the highest average abundance of microplastics (27.52±5.32 pieces/ kg), while the Marine Protected Area Al Qurum had the lowest average abundance (0.60±1.12 pieces /kg). These findings significantly contribute to our understanding of marine litter and microplastic pollution in Omani mangroves. They provide valuable baseline data for future monitoring initiatives and the development of targeted management strategies. Urgent action is needed to implement effective waste management practices and interventions to protect the ecological integrity of mangrove ecosystems in Oman and mitigate the risks associated with marine litter and microplastics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microplastics" title="microplastics">microplastics</a>, <a href="https://publications.waset.org/abstracts/search?q=anthropogenic%20marine%20litter" title=" anthropogenic marine litter"> anthropogenic marine litter</a>, <a href="https://publications.waset.org/abstracts/search?q=ftir" title=" ftir"> ftir</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer" title=" polymer"> polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=khawr" title=" khawr"> khawr</a>, <a href="https://publications.waset.org/abstracts/search?q=mangrove" title=" mangrove"> mangrove</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a> </p> <a href="https://publications.waset.org/abstracts/168029/marine-litter-and-microplastic-pollution-in-mangrove-sediments-in-the-sea-of-oman" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168029.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1967</span> Effects of Nitrogen Addition on Litter Decomposition and Nutrient Release in a Temperate Grassland in Northern China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lili%20Yang">Lili Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jirui%20Gong"> Jirui Gong</a>, <a href="https://publications.waset.org/abstracts/search?q=Qinpu%20Luo"> Qinpu Luo</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20%20Liu"> Min Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo%20%20Yang"> Bo Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zihe%20Zhang"> Zihe Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Anthropogenic activities have increased nitrogen (N) inputs to grassland ecosystems. Knowledge of the impact of N addition on litter decomposition is critical to understand ecosystem carbon cycling and their responses to global climate change. The aim of this study was to investigate the effects of N addition and litter types on litter decomposition of a semi-arid temperate grassland during growing and non-growing seasons in Inner Mongolia, northern China, and to identify the relation between litter decomposition and C: N: P stoichiometry in the litter-soil continuum. Six levels of N addition were conducted: CK, N1 (0 g Nm−2 yr−1), N2 (2 g Nm−2 yr−1), N3 (5 g Nm−2 yr−1), N4 (10 g Nm−2 yr−1) and N5 (25 g Nm−2 yr−1). Litter decomposition rates and nutrient release differed greatly among N addition gradients and litter types. N addition promoted litter decomposition of S. grandis, but exhibited no significant influence on L. chinensis litter, indicating that the S. grandis litter decomposition was more sensitive to N addition than L. chinensis. The critical threshold for N addition to promote mixed litter decomposition was 10 -25g Nm−2 yr−1. N addition altered the balance of C: N: P stoichiometry between litter, soil and microbial biomass. During decomposition progress, the L. chinensis litter N: P was higher in N2-N4 plots compared to CK, while the S. grandis litter C: N was lower in N3 and N4 plots, indicating that litter N or P content doesn’t satisfy microbial decomposers with the increasing of N addition. As a result, S. grandis litter exhibited net N immobilization, while L. chinensis litter net P immobilization. Mixed litter C: N: P stoichiometry satisfied the demand of microbial decomposers, showed net mineralization during the decomposition process. With the increasing N deposition in the future, mixed litter would potentially promote C and nutrient cycling in grassland ecosystem by increasing litter decomposition and nutrient release. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=C%3A%20N%3A%20P%20stoichiometry" title="C: N: P stoichiometry">C: N: P stoichiometry</a>, <a href="https://publications.waset.org/abstracts/search?q=litter%20decomposition" title=" litter decomposition"> litter decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20addition" title=" nitrogen addition"> nitrogen addition</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrient%20release" title=" nutrient release"> nutrient release</a> </p> <a href="https://publications.waset.org/abstracts/71375/effects-of-nitrogen-addition-on-litter-decomposition-and-nutrient-release-in-a-temperate-grassland-in-northern-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71375.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1966</span> Examining Litter Distributions in Lethbridge, Alberta, Canada, Using Citizen Science and GIS Methods: OpenLitterMap App and Story Maps</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tali%20Neta">Tali Neta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Humans’ impact on the environment has been incredibly brutal, with enormous plastic- and other pollutants (e.g., cigarette buds, paper cups, tires) worldwide. On land, litter costs taxpayers a fortune. Most of the litter pollution comes from the land, yet it is one of the greatest hazards to marine environments. Due to spatial and temporal limitations, previous litter data covered very small areas. Currently, smartphones can be used to obtain information on various pollutants (through citizen science), and they can greatly assist in acknowledging and mitigating the environmental impact of litter. Litter app data, such as the Litterati, are available for study through a global map only; these data are not available for download, and it is not clear whether irrelevant hashtags have been eliminated. Instagram and Twitter open-source geospatial data are available for download; however, these are considered inaccurate, computationally challenging, and impossible to quantify. Therefore, the resulting data are of poor quality. Other downloadable geospatial data (e.g., Marine Debris Tracker8 and Clean Swell10) are focused on marine- rather than terrestrial litter. Therefore, accurate terrestrial geospatial documentation of litter distribution is needed to improve environmental awareness. The current research employed citizen science to examine litter distribution in Lethbridge, Alberta, Canada, using the OpenLitterMap (OLM) app. The OLM app is an application used to track litter worldwide, and it can mark litter locations through photo georeferencing, which can be presented through GIS-designed maps. The OLM app provides open-source data that can be downloaded. It also offers information on various litter types and “hot-spots” areas where litter accumulates. In this study, Lethbridge College students collected litter data with the OLM app. The students produced GIS Story Maps (interactive web GIS illustrations) and presented these to school children to improve awareness of litter's impact on environmental health. Preliminary results indicate that towards the Lethbridge Coulees’ (valleys) East edges, the amount of litter significantly increased due to shrubs’ presence, that acted as litter catches. As wind generally travels from west to east in Lethbridge, litter in West-Lethbridge often finds its way down in the east part of the coulees. The students’ documented various litter types, while the majority (75%) included plastic and paper food packaging. The students also found metal wires, broken glass, plastic bottles, golf balls, and tires. Presentations of the Story Maps to school children had a significant impact, as the children voluntarily collected litter during school recess, and they were looking into solutions to reduce litter. Further litter distribution documentation through Citizen Science is needed to improve public awareness. Additionally, future research will be focused on Drone imagery of highly concentrated litter areas. Finally, a time series analysis of litter distribution will help us determine whether public education through Citizen Science and Story Maps can assist in reducing litter and reaching a cleaner and healthier environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=citizen%20science" title="citizen science">citizen science</a>, <a href="https://publications.waset.org/abstracts/search?q=litter%20pollution" title=" litter pollution"> litter pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=Open%20Litter%20Map" title=" Open Litter Map"> Open Litter Map</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS%20Story%20Map" title=" GIS Story Map"> GIS Story Map</a> </p> <a href="https://publications.waset.org/abstracts/163839/examining-litter-distributions-in-lethbridge-alberta-canada-using-citizen-science-and-gis-methods-openlittermap-app-and-story-maps" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163839.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1965</span> Estimating Heavy Metal Leakage and Environmental Damage from Cigarette Butt Disposal in Urban Areas through CBPI Evaluation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Faisal">Muhammad Faisal</a>, <a href="https://publications.waset.org/abstracts/search?q=Zai-Jin%20You"> Zai-Jin You</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Naeem"> Muhammad Naeem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concerns about the environment, public health, and the economy are raised by the fact that the world produces around 6 trillion cigarettes annually. Arguably the most pervasive forms of environmental litter, this dangerous trash must be eliminated. The researchers wanted to get an idea of how much pollution is seeping out of cigarette butts in metropolitan areas by studying their distribution and concentration. In order to accomplish this goal, the cigarette butt pollution indicator was applied in 29 different areas. The locations were monitored monthly for a full calendar year. The conditions for conducting the investigation of the venues were the same on both weekends and during the weekdays. By averaging the metal leakage ratio in various climates and the average weight of cigarette butts, we were able to estimate the total amount of heavy metal leakage. The findings revealed that the annual average value of the index for the areas that were investigated ranged from 1.38 to 10.4. According to these numbers, just 27.5% of the areas had a low pollution rating, while 43.5% had a major pollution status or worse. Weekends witnessed the largest fall (31% on average) in all locations' indices, while spring and summer saw the largest increase (26% on average) compared to autumn and winter. It was calculated that the average amount of heavy metals such as Cr, Cu, Cd, Zn, and Pb that seep into the environment from discarded cigarette butts in commercial, residential, and park areas, respectively, is 0.25 µg/m2, 0.078 µg/m2, and 0.18 µg/m2. Butt from cigarettes is one of the most prevalent forms of litter in the area that was examined. This litter is the origin of a wide variety of contaminants, including heavy metals. This toxic garbage poses a significant risk to the city. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title="heavy metal">heavy metal</a>, <a href="https://publications.waset.org/abstracts/search?q=hazardous%20waste" title=" hazardous waste"> hazardous waste</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20management" title=" waste management"> waste management</a>, <a href="https://publications.waset.org/abstracts/search?q=litter" title=" litter"> litter</a> </p> <a href="https://publications.waset.org/abstracts/166982/estimating-heavy-metal-leakage-and-environmental-damage-from-cigarette-butt-disposal-in-urban-areas-through-cbpi-evaluation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166982.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1964</span> Mapping the Technological Interventions to the National Action Plan for Marine Litter Management 2018-2025: Addressing the Marine Plastic Litter at the Marine Tourism Destinations in Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaisar%20Akhir">Kaisar Akhir</a>, <a href="https://publications.waset.org/abstracts/search?q=Azhar%20Slamet"> Azhar Slamet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to provide recommendations for addressing marine plastic litter at the ocean tourism destinations in Indonesia sustainably through technological interventions in the framework of the National Action Plan for Marine Litter Management 2018-2025. In Indonesia, marine tourism is a rapidly growing economic sector. However, marine tourism destinations are facing a global challenge called marine plastic litter. Marine plastic litter is a threat to those destinations since it has potential impacts on the reduction of marine environmental sustainability, the health of tourists and local communities as well as tourism business income. Since 2018, the Indonesian government has passed and promulgated the National Plan of Action on Marine Litter Management 2018-2025. This national action plan consists of three important key aspects of interventions (i.e., societal effort, technological application, and institutional coordination) and five strategies for addressing marine litter in Indonesia, in particular, to address 70% of marine plastic litter by 2025. The strategies include 1) National movement for raising awareness of stakeholders, 2) Land-based litter management, 3) Litter management at the sea and coasts, 4) Funding mechanism, institutional strengthening, monitoring, and law enforcement, and 5) Research and development. In this study, technological interventions around the world and in Indonesia are reviewed and analyzed on their relevance to the national action plan based on five criteria. As a result, there are twelve kinds of technological interventions recommended to be implemented for addressing marine plastic litter in the marine tourism destinations in Indonesia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=marine%20litter%20management" title="marine litter management">marine litter management</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20plastic%20litter" title=" marine plastic litter"> marine plastic litter</a>, <a href="https://publications.waset.org/abstracts/search?q=national%20action%20plan" title=" national action plan"> national action plan</a>, <a href="https://publications.waset.org/abstracts/search?q=ocean%20sustainability" title=" ocean sustainability"> ocean sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=ocean%20tourism%20destination" title=" ocean tourism destination"> ocean tourism destination</a>, <a href="https://publications.waset.org/abstracts/search?q=technological%20interventions" title=" technological interventions"> technological interventions</a> </p> <a href="https://publications.waset.org/abstracts/121597/mapping-the-technological-interventions-to-the-national-action-plan-for-marine-litter-management-2018-2025-addressing-the-marine-plastic-litter-at-the-marine-tourism-destinations-in-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121597.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1963</span> Composition and Distribution of Seabed Marine Litter Along Algerian Coast (Western Mediterranean)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Inal">Ahmed Inal</a>, <a href="https://publications.waset.org/abstracts/search?q=Samir%20Rouidi"> Samir Rouidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Samir%20Bachouche"> Samir Bachouche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study is focused on the distribution and composition of seafloor marine litter associated to trawlable fishing areas along Algerian coast. The sampling was done with a GOC73 bottom trawl during four (04) demersal resource assessment cruises, respectively, in 2016, 2019, 2021 and 2022, carried out on board BELKACEM GRINE R/V. A total of 254 fishing hauls were sampled for the assessment of marine litter. Hauls were performed between 22 and 600 m of depth, the duration was between 30 and 60 min. All sampling was conducted during daylight. After the haul, marine litter was sorted and split from the catch. Then, according to the basis of the MEDITS protocol, litters were sorted into six different categories (plastic, rubber, metal, wood, glass and natural fiber). Thereafter, all marine litter were counted and weighed separately to the nearest 0.5 g. The results shows that the maximums of marine litter densities in the seafloor of the trawling fishing areas along Algerian coast are, respectively, 1996 item/km2 in 2016, 5164 item/km2 in 2019, 2173 item/km2 in 2021 and 7319 item/km2 in 2022. Thus, the plastic is the most abundant litter, it represent, respectively, 46% of marine litter in 2016, 67% in 2019, 69% in 2021 and 74% in 2022. Regarding the weight of the marine litter, it varies between 0.00 and 103 kg in 2016, between 0.04 and 81 kg in 2019, between 0.00 and 68 Kg in 2021 and between 0.00 and 318 kg in 2022. Thus, the maximum rate of marine litter compared to the total catch approximate, respectively, 66% in 2016, 90% in 2019, 65% in 2021 and 91% in 2022. In fact, the average loss in catch is estimated, respectively, at 7.4% in 2016, 8.4% in 2019, 5.7% in 2021 and 6.4% in 2022. However, the bathymetric and geographical variability had a significant impact on both density and weight of marine litter. Marine litter monitoring program is necessary for offering more solution proposals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composition" title="composition">composition</a>, <a href="https://publications.waset.org/abstracts/search?q=distribution" title=" distribution"> distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=seabed" title=" seabed"> seabed</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20litter" title=" marine litter"> marine litter</a>, <a href="https://publications.waset.org/abstracts/search?q=algerian%20coast" title=" algerian coast"> algerian coast</a> </p> <a href="https://publications.waset.org/abstracts/176734/composition-and-distribution-of-seabed-marine-litter-along-algerian-coast-western-mediterranean" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176734.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1962</span> Investigation of the Properties of Biochar Obtained by Dry and Wet Torrefaction in a Fixed and in a Fluidized Bed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Natalia%20Muratova">Natalia Muratova</a>, <a href="https://publications.waset.org/abstracts/search?q=Dmitry%20Klimov"> Dmitry Klimov</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafail%20Isemin"> Rafail Isemin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergey%20Kuzmin"> Sergey Kuzmin</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksandr%20%20Mikhalev"> Aleksandr Mikhalev</a>, <a href="https://publications.waset.org/abstracts/search?q=Oleg%20%20Milovanov"> Oleg Milovanov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We investigated the processing of poultry litter into biochar using dry torrefaction methods (DT) in a fixed and fluidized bed of quartz sand blown with nitrogen, as well as wet torrefaction (WT) in a fluidized bed in a medium of water steam at a temperature of 300 °C. Torrefaction technology affects the duration of the heat treatment process and the characteristics of the biochar: the process of separating CO₂, CO, H₂ and CH₄ from a portion of fresh poultry litter during torrefaction in a fixed bed is completed after 2400 seconds, but in a fluidized bed — after 480 seconds. During WT in a fluidized bed of quartz sand, this process ends in 840 seconds after loading a portion of fresh litter, but in a fluidized bed of litter particles previously subjected to torrefaction, the process ends in 350 - 450 seconds. In terms of the ratio between (H/C) and (O/C), the litter obtained after DT and WT treatment corresponds to lignite. WT in a fluidized bed allows one to obtain biochar, in which the specific pore area is two times larger than the specific pore area of biochar obtained after DT in a fluidized bed. Biochar, obtained as a result of the poultry litter treatment in a fluidized bed using DT or WT method, is recommended to be used not only as a biofuel but also as an adsorbent or the soil fertilizer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biochar" title="biochar">biochar</a>, <a href="https://publications.waset.org/abstracts/search?q=poultry%20litter" title=" poultry litter"> poultry litter</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20and%20wet%20torrefaction" title=" dry and wet torrefaction"> dry and wet torrefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=fixed%20bed" title=" fixed bed"> fixed bed</a>, <a href="https://publications.waset.org/abstracts/search?q=fluidized%20bed" title=" fluidized bed"> fluidized bed</a> </p> <a href="https://publications.waset.org/abstracts/114502/investigation-of-the-properties-of-biochar-obtained-by-dry-and-wet-torrefaction-in-a-fixed-and-in-a-fluidized-bed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1961</span> Influence of Litter Materials on Organs&#039; Relative Weights, Meat Quality, Breast and Footpad Dermatitis of Broiler Chickens under Hot Humid Climate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oyegunle%20Oke">Oyegunle Oke</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20Daramola"> James Daramola</a>, <a href="https://publications.waset.org/abstracts/search?q=Oluwaseun%20Iyasere"> Oluwaseun Iyasere</a>, <a href="https://publications.waset.org/abstracts/search?q=Babatunde%20Modinat"> Babatunde Modinat </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wood shavings are the most common materials used as litter in commercial broiler production in many areas in Nigeria. A study was conducted to determine the effects of litter materials on organ weights, meat quality, footpad, and breast dermatitis of broiler chickens under hot humid climate. One hundred and eighty broiler chicks of marshal strains were randomly assigned to three treatments of wood shavings, maize cobs and chopped Panicum maximum as litter materials replicated four (4) times with 15 birds each in a completely randomized design. Data were collected on the relative body weights, meat quality, breast and foot pad dermatitis. The result showed that birds reared on chopped Panicum maximum had higher relative weight on the liver than those reared on wood shavings and maize cobs. Spleen and bursa of Fabricius were not significantly affected by litter materials. There was no significant effect of litter materials on meat quality. The relative weight of thigh of birds reared on chopped Panicum maximum, and Maize cobs were similar but higher than those reared on Wood shavings. Fresh breast weight of birds reared on wood shavings was higher than those reared on chopped Panicum maximum and maize cobs. It was concluded that chopped Panicum maximum could serve as a replacement for wood shavings as a litter material for broiler chickens. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chickens" title="chickens">chickens</a>, <a href="https://publications.waset.org/abstracts/search?q=dermatitis" title=" dermatitis"> dermatitis</a>, <a href="https://publications.waset.org/abstracts/search?q=organs" title=" organs"> organs</a>, <a href="https://publications.waset.org/abstracts/search?q=litter%20materials" title=" litter materials"> litter materials</a> </p> <a href="https://publications.waset.org/abstracts/71809/influence-of-litter-materials-on-organs-relative-weights-meat-quality-breast-and-footpad-dermatitis-of-broiler-chickens-under-hot-humid-climate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1960</span> Seasonal and Monthly Field Soil Respiration Rate and Litter Fall Amounts of Kasuga-Yama Hill Primeval Forest</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayuko%20Itsuki">Ayuko Itsuki</a>, <a href="https://publications.waset.org/abstracts/search?q=Sachiyo%20Aburatani"> Sachiyo Aburatani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The seasonal (January, April, July and October) and monthly soil respiration rate and the monthly litter fall amounts were examined in the laurel-leaved (B_B-1) and Cryptomeria japonica (B_B-2 and PW) forests in the Kasugayama Hill Primeval Forest (Nara, Japan). The change of the seasonal soil respiration rate corresponded to that of the soil temperature. The soil respiration rate was higher in October when fresh organic matter was supplied in the forest floor than in April in spite of the same temperature. The seasonal soil respiration rate of B_B-1 was higher than that of B_B-2, which corresponded to more numbers of bacteria and fungi counted by the dilution plate method and by the direct count method by microscopy in B_B-1 than that of B_B-2. The seasonal soil respiration rate of B_B-2 was higher than that of PW, which corresponded to more microbial biomass by the direct count method by microscopy in B_B-2 than that of PW. The correlation coefficient with the seasonal soil respiration and the soil temperature was higher than that of the monthly soil respiration. The soil respiration carbon was more than the litter fall carbon. It was suggested that the soil respiration included in the carbon dioxide which was emitted by the plant root and soil animal, or that the litter fall supplied to the forest floor included in animal and plant litter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=field%20soil%20respiration%20rate" title="field soil respiration rate">field soil respiration rate</a>, <a href="https://publications.waset.org/abstracts/search?q=forest%20soil" title=" forest soil"> forest soil</a>, <a href="https://publications.waset.org/abstracts/search?q=litter%20fall" title=" litter fall"> litter fall</a>, <a href="https://publications.waset.org/abstracts/search?q=mineralization%20rate" title=" mineralization rate"> mineralization rate</a> </p> <a href="https://publications.waset.org/abstracts/49812/seasonal-and-monthly-field-soil-respiration-rate-and-litter-fall-amounts-of-kasuga-yama-hill-primeval-forest" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1959</span> Effects of Small Impoundments on Leaf Litter Decomposition and Methane Derived Carbon in the Benthic Foodweb in Streams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=John%20Gichimu%20Mbaka">John Gichimu Mbaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Helmrich%20Martin%20von%20Baumbach"> Jan Helmrich Martin von Baumbach</a>, <a href="https://publications.waset.org/abstracts/search?q=Celia%20Somlai"> Celia Somlai</a>, <a href="https://publications.waset.org/abstracts/search?q=Denis%20K%C3%B6pfer"> Denis Köpfer</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Maeck"> Andreas Maeck</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Lorke"> Andreas Lorke</a>, <a href="https://publications.waset.org/abstracts/search?q=Ralf%20Sch%C3%A4fer"> Ralf Schäfer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Leaf litter decomposition is an important process providing energy to biotic communities. Additionally, methane gas (CH4) has been identified as an important alternative source of carbon and energy in some freshwater food webs.Flow regulation and dams can strongly alter freshwater ecosystems, but little is known about the effect of small impoundments on leaf litter decomposition and methane derived carbon in streams. In this study, we tested the effect of small water storage impoundments on leaf litter decomposition rates and methane derived carbon. Leaf litter decomposition rates were assessed by comparing treatment sites located close to nine impoundments (Rheinland Pfalz state, Germany) and reference sites located far away from the impoundments.CH4 concentrations were measured in eleven impoundments and correlated with the δ13C values of two subfamilies of chironomid larvae (i.e. Chironomini and Tanypodinae). Leaf litter break down rates were significantly lower in study sites located immediately above the impoundments, especially associated with a reduction in the abundance of shredders. Chironomini larvae had the lower mean δ13C values (‒29.2 to ‒25.5 ‰), than Tanypodinae larvae (‒26.9 to ‒25.3 ‰).No significant relationships were established between CH4 concentrations and δ13C values of chironomids (p> 0.05).Mean δ13C values of chironomid larvae (mean: ‒26.8‰, range: ‒ 29.2‰ to ‒ 25.3‰) were similar to those of sedimentary organic matter (SOM) (mean: ‒28.4‰, range: ‒ 29.3‰ to ‒ 27.1‰) and tree leaf litter (mean: ‒29.8 ‰, range: ‒ 30.5‰ to ‒ 29.1‰). In conclusion, this study demonstrates that small impoundments may have a negative effect on leaf litter decomposition in forest streams and that CH4 has limited influence on the benthic food web in stream impoundments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=river%20functioning" title="river functioning">river functioning</a>, <a href="https://publications.waset.org/abstracts/search?q=chironomids" title=" chironomids"> chironomids</a>, <a href="https://publications.waset.org/abstracts/search?q=Alder%20tree" title=" Alder tree"> Alder tree</a>, <a href="https://publications.waset.org/abstracts/search?q=stable%20isotopes" title=" stable isotopes"> stable isotopes</a>, <a href="https://publications.waset.org/abstracts/search?q=methane%20oxidation" title=" methane oxidation"> methane oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=shredder" title=" shredder"> shredder</a> </p> <a href="https://publications.waset.org/abstracts/18714/effects-of-small-impoundments-on-leaf-litter-decomposition-and-methane-derived-carbon-in-the-benthic-foodweb-in-streams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18714.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">735</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1958</span> Variation of Litter Chemistry under Intensified Drought: Consequences on Flammability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Ormeno">E. Ormeno</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Gutigny"> C. Gutigny</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Ruffault"> J. Ruffault</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Madrigal"> J. Madrigal</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Guijarro"> M. Guijarro</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Lecareux"> C. Lecareux</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Ballini"> C. Ballini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mediterranean plant species feature numerous metabolic and morpho-physiological responses crucial to survive under both, typical Mediterranean drought conditions and future aggravated drought expected by climate change. Whether these adaptive responses will, in turn, increase the ecosystem perturbation in terms of fire hazard, is an issue that needs to be addressed. The aim of this study was to test whether recurrent and aggravated drought in the Mediterranean area favors the accumulation of waxes in leaf litter, with an eventual increase of litter flammability. The study was conducted in 2017 in a garrigue in Southern France dominated by Quercus coccifera, where two drought treatments were used: a treatment with recurrent aggravated drought consisting of ten rain exclusion structures which withdraw part of the annual precipitation since January 2012, and a natural drought treatment where Q. coccifera stands are free of such structures and thus grow under natural precipitation. Waxes were extracted with organic solvent and analyzed by GC-MS and litter flammability was assessed through measurements of the ignition delay, flame residence time and flame intensity (flame height) using an epiradiator as well as the heat of combustion using an oxygen bomb calorimeter. Results show that after 5 years of rain restriction, wax content in the cuticle of leaf litter increases significantly compared to shrubs growing under natural precipitation, in accordance with the theoretical knowledge which expects increases of cuticle waxes in green leaves in order to limit water evapotranspiration. Wax concentrations were also linearly and positively correlated to litter flammability, a correlation that lies on the high flammability own to the long-chain alkanes (C25-C31) found in leaf litter waxes. This innovative investigation shows that climate change is likely to favor ecosystem fire hazard through accumulation of highly flammable waxes in litter. It also adds valuable information about the types of metabolites that are associated with increasing litter flammability, since so far, within the leaf metabolic profile, only terpene-like compounds had been related to plant flammability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cuticular%20waxes" title="cuticular waxes">cuticular waxes</a>, <a href="https://publications.waset.org/abstracts/search?q=drought" title=" drought"> drought</a>, <a href="https://publications.waset.org/abstracts/search?q=flammability" title=" flammability"> flammability</a>, <a href="https://publications.waset.org/abstracts/search?q=litter" title=" litter"> litter</a> </p> <a href="https://publications.waset.org/abstracts/89180/variation-of-litter-chemistry-under-intensified-drought-consequences-on-flammability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89180.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1957</span> Pollution-Sources, Controls, and Impact Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aditi%20Acharya">Aditi Acharya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environmental pollution is threatening the environmental and human health in the most drastic way. This paper provides insight about the affects of environmental pollution in the perspective of water pollution. Sewage in drinking water, the increasing contamination of water bodies and water resources and the human beings are the major contributors, increasing the harsh activities of pollution. The research presents information about the sources of pollution, its impacts and control activities to be undertaken to make our environment free from water pollution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20pollution" title="environmental pollution">environmental pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20pollution" title=" water pollution"> water pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title=" nanotechnology"> nanotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title=" nanomaterials"> nanomaterials</a> </p> <a href="https://publications.waset.org/abstracts/27061/pollution-sources-controls-and-impact-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27061.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1956</span> Lagrangian Approach for Modeling Marine Litter Transport</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarra%20Zaied">Sarra Zaied</a>, <a href="https://publications.waset.org/abstracts/search?q=Arthur%20Bonpain"> Arthur Bonpain</a>, <a href="https://publications.waset.org/abstracts/search?q=Pierre%20Yves%20Fravallo"> Pierre Yves Fravallo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The permanent supply of marine litter implies their accumulation in the oceans, which causes the presence of more compact wastes layers. Their Spatio-temporal distribution is never homogeneous and depends mainly on the hydrodynamic characteristics of the environment and the size and location of the wastes. As part of optimizing collect of marine plastic wastes, it is important to measure and monitor their evolution over time. For this, many research studies have been dedicated to describing the wastes behavior in order to identify their accumulation in oceans areas. Several models are therefore developed to understand the mechanisms that allow the accumulation and the displacements of marine litter. These models are able to accurately simulate the drift of wastes to study their behavior and stranding. However, these works aim to study the wastes behavior over a long period of time and not at the time of waste collection. This work investigates the transport of floating marine litter (FML) to provide basic information that can help in optimizing wastes collection by proposing a model for predicting their behavior during collection. The proposed study is based on a Lagrangian modeling approach that uses the main factors influencing the dynamics of the waste. The performance of the proposed method was assessed on real data collected from the Copernicus Marine Environment Monitoring Service (CMEMS). Evaluation results in the Java Sea (Indonesia) prove that the proposed model can effectively predict the position and the velocity of marine wastes during collection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=floating%20marine%20litter" title="floating marine litter">floating marine litter</a>, <a href="https://publications.waset.org/abstracts/search?q=lagrangian%20transport" title=" lagrangian transport"> lagrangian transport</a>, <a href="https://publications.waset.org/abstracts/search?q=particle-tracking%20model" title=" particle-tracking model"> particle-tracking model</a>, <a href="https://publications.waset.org/abstracts/search?q=wastes%20drift" title=" wastes drift"> wastes drift</a> </p> <a href="https://publications.waset.org/abstracts/139690/lagrangian-approach-for-modeling-marine-litter-transport" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139690.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1955</span> Genetic and Non-Genetic Evaluation of Milk Yield and Litter Size of Awassi Sheep in Drylands</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Al-Najjar">Khaled Al-Najjar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Q.%20Al-Momani"> Ahmad Q. Al-Momani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Elnahas"> Ahmed Elnahas</a>, <a href="https://publications.waset.org/abstracts/search?q=Reda%20Elsaid"> Reda Elsaid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research was carried out using records of Awassi sheep bred in drylands at Al-Fjaj Station, Jordan. That aimed to study non-genetic factors affecting milk yield (MK), litter size at birth (LZB); estimate heritability, repeatability, and genetic and phenotypic correlation using SAS and MTDFREML programs. The results were as follows, the average MK and LZB were 92.84 (kg) and 1.16, respectively. MK was highly significantly affected by each parity, age of ewe, year of lambing, and lactation period, while only the year of lambing had a significant effect on LZB. The heritability and repeatability were 0.07 and 0.10 for MK, while it was 0.05 and 0.25 for LZB. The genetic and phenotypic correlations were 0.17 and 0.02 between MK and LZB, respectively. The research concluded that the herd is genetically homozygous and therefore needs to increase genetic variance by introducing LZB-improved rams and selecting females from dams who achieved at least four parties to increase returns in drylands. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Awassi%20sheep" title="Awassi sheep">Awassi sheep</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20parameters" title=" genetic parameters"> genetic parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=litter%20size" title=" litter size"> litter size</a>, <a href="https://publications.waset.org/abstracts/search?q=milk%20yield" title=" milk yield"> milk yield</a> </p> <a href="https://publications.waset.org/abstracts/149418/genetic-and-non-genetic-evaluation-of-milk-yield-and-litter-size-of-awassi-sheep-in-drylands" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149418.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1954</span> Performance and Economics of Goats Fed Poultry Litter and Rumen Content</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Mohammed">A. Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Umar"> A. M. Umar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20Adamu"> S. H. Adamu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study was conducted to evaluate the growth performance and nutrients utilization using 20 entire males of Sahelian goats fed Rumen content (fore-stomach digest) and poultry litter waste (PLW) at various levels of inclusion. The experimental animals were randomly allocated to diet A (Control), B (10% each of FSD and PLW), C (6.67%PLW and 13.33 FSD) and D(13.33% PLW and 6.67% FDS) at the rate of five animals per treatment. After 90 days of feeding trial, It was observed that Diets D had best feed intake and body weight gain which might be due to the good palatability of PLW and less odour of FSD in the diet. Diet C had the least feed cost then followed by diet B and while diet A(control) was more expensive than other treatments. There was the significant difference (P<0.05) between the treatments in the cost of daily feed consumption. Treatment A had the highest value while treatment C recorded the lowest cost of daily feed consumption. There was no significant difference (P > 0.05) between all treatments in terms of Cost of feed kg/ live weight gain, where treatment B had the highest value while the lowest obtained in treatment D. However, it is recommended that more research trial should be carried out to ascertain the true value of incorporating poultry litter waste and fore-stomach digest. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=poultry%20litter" title="poultry litter">poultry litter</a>, <a href="https://publications.waset.org/abstracts/search?q=rumen%20content" title=" rumen content"> rumen content</a>, <a href="https://publications.waset.org/abstracts/search?q=weight%20gain" title=" weight gain"> weight gain</a>, <a href="https://publications.waset.org/abstracts/search?q=economics" title=" economics "> economics </a> </p> <a href="https://publications.waset.org/abstracts/20033/performance-and-economics-of-goats-fed-poultry-litter-and-rumen-content" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20033.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">647</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1953</span> ECO ROADS: A Solution to the Vehicular Pollution on Roads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harshit%20Garg">Harshit Garg</a>, <a href="https://publications.waset.org/abstracts/search?q=Shakshi%20Gupta"> Shakshi Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the major problems in today’s world is the growing pollution. The cause for all environmental problems is the increasing pollution rate. Looking upon the statistics, one can find out that most of the pollution is caused by the vehicular pollution which is more than 70 % of the total pollution, effecting the environment as well as human health proportionally. One is aware of the fact that vehicles run on roads so why not having the roads which could adsorb that pollution, not only once but a number of times. Every problem has a solution which can be solved by the state of art of technology, that is one can use the innovative ideas and thoughts to make technology as a solution to the problem of vehicular pollution on roads. Solving the problem up to a certain limit/ percentage can be formulated into a new term called ECO ROADS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environment" title="environment">environment</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=roads" title=" roads"> roads</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainibility" title=" sustainibility"> sustainibility</a> </p> <a href="https://publications.waset.org/abstracts/35026/eco-roads-a-solution-to-the-vehicular-pollution-on-roads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35026.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">563</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1952</span> Evaluation of Milk Production of an Algerian Rabbit Population Raised in Aures Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moumen%20Souad">Moumen Souad</a>, <a href="https://publications.waset.org/abstracts/search?q=Melizi%20Mohamed"> Melizi Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to characterize rabbits does of an Aures local population raised in Algeria, a study of their milk yield was realized in the experimental rabbitry of El Hadj Lakhdhar University. Milk production of does was measured every day during the days following 215 parturitions. It was estimated by weighing the female before and after the single daily suckling (10–15 min between the two weighing operations). The various calculated parameters were the quantity of milk produced per day, per week and the total quantity produced in 21 days, as well as the intake of milk by young rabbits. The analysis concerned the effects of the number of successive litters (3 classes: 1 to 3 and more) and of the average number of the number of young rabbits suckled per litter (6 classes: from 1-2 kits to more than 6). During the 21 days of controlled lactation, the average litter size was 6±3. The rabbits of the Aures area produced on average 2544.34±747 g in 21 days that is 121 g of milk/day or 21 g of milk/kit/day. The milk yield increased from 526, 1035, 1240 and 2801 g to 760, 1365, 1715 and 3840 for week 1, 2, 3 and the total period of lactation, respectively. Nevertheless, milk production available per kit and per day decreased linearly with kits number in the litter for each of the 3 weeks considered. On the other hand the milk yield was not affected by the weight at birth of kits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=milk%20production" title="milk production">milk production</a>, <a href="https://publications.waset.org/abstracts/search?q=litter%20size" title=" litter size"> litter size</a>, <a href="https://publications.waset.org/abstracts/search?q=rabbit" title=" rabbit"> rabbit</a>, <a href="https://publications.waset.org/abstracts/search?q=Aures%20area" title=" Aures area"> Aures area</a>, <a href="https://publications.waset.org/abstracts/search?q=Algeria" title=" Algeria"> Algeria</a> </p> <a href="https://publications.waset.org/abstracts/4924/evaluation-of-milk-production-of-an-algerian-rabbit-population-raised-in-aures-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4924.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1951</span> Microplastics in Different Coastal Zone Compartments at the South-Eastern Baltic Sea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Viktorija%20Sabaliauskait%C4%97">Viktorija Sabaliauskaitė</a>, <a href="https://publications.waset.org/abstracts/search?q=Ar%C5%ABnas%20Bal%C4%8Di%C5%ABnas"> Arūnas Balčiūnas</a>, <a href="https://publications.waset.org/abstracts/search?q=Renata%20Rubavi%C4%8Di%C5%ABt%C4%97"> Renata Rubavičiūtė</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Research on microplastic pollution in aquatic environments is being conducted worldwide. This presented research focused on the South-Eastern Baltic Sea, where, due to the natural conditions, algae accumulation on beaches is common. The present conditions enabled to apply and integrate of various microplastic extraction techniques: filtration, density separation, and sample aeration in order to investigate the microplastic concentrations within different beach compartments (nearshore water reference zone, nearshore algal scum zone, beach surface sand reference zone, beach wrack zone). This study demonstrates results from a total of 496 collected samples. The comparison of microplastic mean concentrations in water-based (0,016 item/cm³) and land-based (0,29 item/cm³) samples gave a clear insight into the microplastic accumulation hot spots, which pose pollution hazards to marine ecosystems and humans. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beach%20wrack" title="beach wrack">beach wrack</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20litter" title=" marine litter"> marine litter</a>, <a href="https://publications.waset.org/abstracts/search?q=microplastics" title=" microplastics"> microplastics</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a> </p> <a href="https://publications.waset.org/abstracts/178552/microplastics-in-different-coastal-zone-compartments-at-the-south-eastern-baltic-sea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1950</span> Effect of the Magnetite Nanoparticles Concentration on Biogas and Methane Production from Chicken Litter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guadalupe%20Stefanny%20Aguilar-Moreno">Guadalupe Stefanny Aguilar-Moreno</a>, <a href="https://publications.waset.org/abstracts/search?q=Miguel%20Angel%20Aguilar-Mendez"> Miguel Angel Aguilar-Mendez</a>, <a href="https://publications.waset.org/abstracts/search?q=Teodoro%20Espinosa-Solares"> Teodoro Espinosa-Solares</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the agricultural sector, one of the main emitters of greenhouse gases is manure management, which has been increased considerably in recent years. Biogas is an energy source that can be produced from different organic materials through anaerobic digestion (AD); however, production efficiency is still low. Several techniques have been studied to increase its performance, such as co-digestion, the variation of digestion conditions, and nanomaterials used. Therefore, the aim of this investigation was to evaluate the effect of magnetite nanoparticles (NPs) concentration, synthesized by co-precipitation, on the biogas and methane production in AD using chicken litter as a substrate. Synthesis of NPs was performed according to the co-precipitation method, for which a fractional factorial experimental design 25⁻² with two replications was used. The study factors were concentrations (precursors and passivating), time of sonication and dissolution temperatures, and the response variables were size, hydrodynamic diameter (HD) and zeta potential. Subsequently, the treatment that presented the smallest NPs was chosen for their use on AD. The AD was established in serological bottles with a working volume of 250 mL, incubated at 36 ± 1 °C for 80 days. The treatments consisted of the addition of different concentrations of NPs in the microcosms: chicken litter only (control), 20 mg∙L⁻¹ of NPs + chicken litter, 40 mg∙L⁻¹ of NPs + chicken litter and 60 mg∙L⁻¹ of NPs + chicken litter, all by triplicate. Methane and biogas production were evaluated daily. The smallest HD (49.5 nm) and the most stable NPs (21.22 mV) were obtained with the highest passivating concentration and the lower precursors dissolution temperature, which were the only factors that had a significant effect on the HD. In the transmission electron microscopy performed to these NPs, an average size of 4.2 ± 0.73 nm was observed. The highest biogas and methane production was obtained with the treatment that had 20 mg∙L⁻¹ of NPs, being 29.5 and 73.9%, respectively, higher than the control, while the treatment with the highest concentration of NPs was not statistically different from the control. From the above, it can be concluded that the magnetite NPs promote the biogas and methane production in AD; however, high concentrations may cause inhibitory effects among methanogenic microorganisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20sector" title="agricultural sector">agricultural sector</a>, <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title=" anaerobic digestion"> anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title=" nanotechnology"> nanotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20management" title=" waste management"> waste management</a> </p> <a href="https://publications.waset.org/abstracts/114341/effect-of-the-magnetite-nanoparticles-concentration-on-biogas-and-methane-production-from-chicken-litter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114341.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1949</span> Effect of the Average Kits Birth Weight and of the Number of Born Alive per Liter on the Milk Production of Algerian Rabbit Raised in Aures Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Moumen">S. Moumen</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Melizi"> M. Melizi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to characterize rabbits does of an Aures local population raised in Algeria; a study of their milk yield was realized in the experimental rabbitry of El Hadj Lakhdhar University. Milk production of does was measured every day during the days following 215 parturitions. It was estimated by weighing the female before and after the single daily suckling (10-15 min between the 2 weighing operations). The various calculated parameters were the quantity of milk produced per day, per week and the total quantity produced in 21 days, as well as the intake of milk by young rabbits. The analysis concerned the effects of the number of successive litters (3 classes: 1 to 3 and more) and of the average number of the number of young rabbits suckled per litter (6 classes: from 1-2 kits to more than 6). During the 21 days of controlled lactation, the average litter size was 6±3. The rabbits of the Aures area produced on average 2544.34±747 g in 21 days that is 121 g of milk/day or 21g of milk/kit/day. The milk yield increased from 526, 1035, 1240, and 2801g to 760, 1365, 1715 and 3840 for week 1, 2, 3 and the total period of lactation respectively. Nevertheless, milk production available per kit and per day decreased linearly with kits number in the litter for each of the 3 weeks considered. On the other hand the milk yield was not affected by the weight at birth of kits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=milk%20production" title="milk production">milk production</a>, <a href="https://publications.waset.org/abstracts/search?q=litter%20size" title=" litter size"> litter size</a>, <a href="https://publications.waset.org/abstracts/search?q=rabbit" title=" rabbit"> rabbit</a>, <a href="https://publications.waset.org/abstracts/search?q=Aures%20area" title=" Aures area"> Aures area</a>, <a href="https://publications.waset.org/abstracts/search?q=Algeria" title=" Algeria"> Algeria</a> </p> <a href="https://publications.waset.org/abstracts/4926/effect-of-the-average-kits-birth-weight-and-of-the-number-of-born-alive-per-liter-on-the-milk-production-of-algerian-rabbit-raised-in-aures-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4926.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">526</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1948</span> Association of Leptin Gene T3469C Polymorphism on Reproductive Performance of Purebred Sows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mariedel%20Autriz">Mariedel Autriz</a>, <a href="https://publications.waset.org/abstracts/search?q=Angel%20Lambio"> Angel Lambio</a>, <a href="https://publications.waset.org/abstracts/search?q=Renato%20Vega"> Renato Vega</a>, <a href="https://publications.waset.org/abstracts/search?q=Severino%20Capitan"> Severino Capitan</a>, <a href="https://publications.waset.org/abstracts/search?q=Rita%20Laude"> Rita Laude</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study was conducted to associate genetic polymorphism of the leptin gene T3469C with reproductive performance in purebred sows. DNA were isolated from hair follicles of 29 Landrace and 24 Large White sows. Amplification of the leptin gene was done followed by Hinf1digestion to determine the base at the T3469C site. Electrophoresis of the digestion products revealed that there were 25 Landrace and 15 Large White sows with the TT genotype while there were 3 Landrace and 6 Large White TC. There was 1 CC for Landrace and 3 for Large White. Significant genotype associations were observed for total litter size born and total born alive. Significant breed differences, on the other hand, was observed for gestation length and average birth weight. Significant breed by genotype interaction was observed in litter size total born and litter size born alive. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20polymorphism" title="genetic polymorphism">genetic polymorphism</a>, <a href="https://publications.waset.org/abstracts/search?q=leptin" title=" leptin"> leptin</a>, <a href="https://publications.waset.org/abstracts/search?q=swine" title=" swine"> swine</a>, <a href="https://publications.waset.org/abstracts/search?q=T3469C" title=" T3469C"> T3469C</a> </p> <a href="https://publications.waset.org/abstracts/67141/association-of-leptin-gene-t3469c-polymorphism-on-reproductive-performance-of-purebred-sows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67141.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1947</span> The Correlation between Air Pollution and Tourette Syndrome</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mengnan%20Sun">Mengnan Sun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is unclear about the association between air pollution and Tourette Syndrome (TS), although people have suspected that air pollution might trigger TS. TS is a type of neural system disease usually found among children. The number of TS patients has significantly increased in recent decades, suggesting an importance and urgency to examine the possible triggers or conditions that are associated with TS. In this study, the correlation between air pollution and three allergic diseases---asthma, allergic conjunctivitis (AC), and allergic rhinitis (AR)---is examined. Then, a correlation between these allergic diseases and TS is proved. In this way, this study establishes a positive correlation between air pollution and TS. Measures the public can take to help TS patients are also analyzed at the end of this article. The article hopes to raise people’s awareness to reduce air pollution for the good of TS patients or people with other disorders that are associated with air pollution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20pollution" title="air pollution">air pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=allergic%20diseases" title=" allergic diseases"> allergic diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=Tourette%20Syndrome" title=" Tourette Syndrome"> Tourette Syndrome</a> </p> <a href="https://publications.waset.org/abstracts/179234/the-correlation-between-air-pollution-and-tourette-syndrome" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179234.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1946</span> The Community Structure of Fish and its Correlation with Mangrove Forest Litter Production in Panjang Island, Banten Bay, Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meilisha%20Putri%20Pertiwi">Meilisha Putri Pertiwi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mufti%20Petala%20Patria"> Mufti Petala Patria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mangrove forest often categorized as a productive ecosystem in trophic water and the highest carbon storage among all the forest types. Mangrove-derived organic matter determines the food web of fish and invertebrates. In Indonesia trophic water ecosystem, 80% commersial fish caught in coastal area are high related to food web in mangrove forest ecosystem. Based on the previous research in Panjang Island, Bojonegara, Banten, Indonesia, removed mangrove litterfall to the sea water were 9,023 g/m³/s for two stations (west station–5,169 g/m³/s and north station-3,854 g/m³/s). The vegetation were dominated from Rhizophora apiculata and Rhizopora stylosa. C element is the highest content (27,303% and 30,373%) than N element (0,427% and 0,35%) and P element (0,19% and 0,143%). The aim of research also to know the diversity of fish inhabit in mangrove forest. Fish sampling is by push net. Fish caught are collected into plastics, total length measured, weigh measured, and individual and total counted. Meanwhile, the 3 modified pipes (1 m long, 5 inches diameter, and a closed one hole part facing the river by using a nylon cloth) set in the water channel connecting mangrove forest and sea water for each stasiun. They placed for 1 hour at low tide. Then calculate the speed of water flow and volume of modified pipes. The fish and mangrove litter will be weigh for wet weight, dry weight, and analyze the C, N, and P element content. The sampling data will be conduct 3 times of month in full moon. The salinity, temperature, turbidity, pH, DO, and the sediment of mangrove forest will be measure too. This research will give information about the fish diversity in mangrove forest, the removed mangrove litterfall to the sea water, the composition of sediment, the total element content (C, N, P) of fish and mangrove litter, and the correlation of element content absorption between fish and mangrove litter. The data will be use for the fish and mangrove ecosystem conservation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fish%20diversity" title="fish diversity">fish diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=mangrove%20forest" title=" mangrove forest"> mangrove forest</a>, <a href="https://publications.waset.org/abstracts/search?q=mangrove%20litter" title=" mangrove litter"> mangrove litter</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20element" title=" carbon element"> carbon element</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20element" title=" nitrogen element"> nitrogen element</a>, <a href="https://publications.waset.org/abstracts/search?q=P%20element" title=" P element"> P element</a>, <a href="https://publications.waset.org/abstracts/search?q=conservation" title=" conservation"> conservation</a> </p> <a href="https://publications.waset.org/abstracts/23670/the-community-structure-of-fish-and-its-correlation-with-mangrove-forest-litter-production-in-panjang-island-banten-bay-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23670.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">489</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1945</span> Effect of Weaning Regimes on Growth and Reproductive Performance of Sows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Temitope%20O.%20Bankole">Temitope O. Bankole</a>, <a href="https://publications.waset.org/abstracts/search?q=Olufemi%20A.%20Adebiyi"> Olufemi A. Adebiyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20O.%20Ewuola"> Emmanuel O. Ewuola</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayoola%20A.%20Oluyemi"> Ayoola A. Oluyemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Olusoji%20J.%20Abiola"> Olusoji J. Abiola</a>, <a href="https://publications.waset.org/abstracts/search?q=Funmilayo%20G.%20Adebiyi"> Funmilayo G. Adebiyi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conventionally, piglets are weaned at 3-4 weeks, but extending the weaning time may enhance piglet’s growth while causing excessive sow weight loss, delaying their return to optimal body condition for rebreeding. Also, prolonged lactation can negatively affect sow’s reproductive performance. Therefore, this study investigates the effects of different weaning regimes on sow weight changes and reproductive outcomes to determine the optimal balance between piglet development and sow reproductive efficiency. Eighteen sows and 72 piglets randomly allotted to 3 treatments and 6 replicates were used for this study. The piglets were weaned at four weeks (T1), six weeks (T2), and eight weeks (T3). Data were collected on body weight changes (kg) and average weekly feed intake (kg) of the sows at pre-weaning stage which lasted 8 weeks, and their reproductive performance; weaning to oestrus interval (days), percentage conception (%), average litter birth weight, average litter size, average number of piglets born alive and average number of still births) at post-weaning stage which lasted approximately 18 weeks. Data were analysed using ANOVA at α0.05. The average weekly feed intake of the lactating sows ranged from 27.81±0.64 kg in T1 to 27.19±0.16 kg in T3. However, there were significant differences (p<0.05) among the treatments for average weight loss. The mean values showed that, T1 (-5.00±1.41 kg) was significantly higher (p<0.05) than T2 (-6.25±0.33 kg) and T3 (-10.00±1.58 kg). Also, there were significant differences (p<0.05) among the treatments for weaning to oestrus interval. The mean values showed that, T3 (10.00±1.58 days) was significantly higher (p<0.05) than T2 (7.00±1.22 days) and T1 (6.00±0.71 days). However, there were no significant differences (p>0.05) among the treatments for the percentage conception which ranged from 100.00 % in T1 and T2 to 83.33 % in T3, and average litter birth weight which ranged from 1.38±0.14 kg in T1 to 1.30±0.19 kg in T3. There were significant differences (p<0.05) among the treatments for average litter size and average number of piglets born alive. The mean values for average litter size and average number of piglets born alive showed that T1 (8.00±0.71) and T2 (7.00±1.58) were significantly higher (p<0.05) than T3 (5.00±1.22). However, there were no still births recorded for all the treatments. In conclusion, weaning at 8 weeks resulted in the highest weight loss, longest weaning to oestrus interval, and lower litter size in sows compared to weaning at four weeks and six weeks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=weaning%20regimes" title="weaning regimes">weaning regimes</a>, <a href="https://publications.waset.org/abstracts/search?q=lactating%20sows" title=" lactating sows"> lactating sows</a>, <a href="https://publications.waset.org/abstracts/search?q=weight%20changes" title=" weight changes"> weight changes</a>, <a href="https://publications.waset.org/abstracts/search?q=reproductive%20performance" title=" reproductive performance"> reproductive performance</a> </p> <a href="https://publications.waset.org/abstracts/199025/effect-of-weaning-regimes-on-growth-and-reproductive-performance-of-sows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/199025.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1944</span> Microplastics in Fish from Grenada, West Indies: Problems and Opportunities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michelle%20E.%20Taylor">Michelle E. Taylor</a>, <a href="https://publications.waset.org/abstracts/search?q=Clare%20E.%20Morrall"> Clare E. Morrall</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microplastics are small particles produced for industrial purposes or formed by breakdown of anthropogenic debris. Caribbean nations import large quantities of plastic products. The Caribbean region is vulnerable to natural disasters and Climate Change is predicted to bring multiple additional challenges to island nations. Microplastics have been found in an array of marine environments and in a diversity of marine species. Occurrence of microplastic in the intestinal tracts of marine fish is a concern to human and ecosystem health as pollutants and pathogens can associate with plastics. Studies have shown that the incidence of microplastics in marine fish varies with species and location. Prevalence of microplastics (≤ 5 mm) in fish species from Grenadian waters (representing pelagic, semi-pelagic and demersal lifestyles) harvested for human consumption have been investigated via gut analysis. Harvested tissue was digested in 10% KOH and particles retained on a 0.177 mm sieve were examined. Microplastics identified have been classified according to type, colour and size. Over 97% of fish examined thus far (n=34) contained microplastics. Current and future work includes examining the invasive Lionfish (Pterois spp.) for microplastics, investigating marine invertebrate species as well as examining environmental sources of microplastics (i.e. rivers, coastal waters and sand). Owing to concerns of pollutant accumulation on microplastics and potential migration into organismal tissues, we plan to analyse fish tissue for mercury and other persistent pollutants. Despite having ~110,000 inhabitants, the island nation of Grenada imported approximately 33 million plastic bottles in 2013, of which it is estimated less than 5% were recycled. Over 30% of the imported bottles were ‘unmanaged’, and as such are potential litter/marine debris. A revised Litter Abatement Act passed into law in Grenada in 2015, but little enforcement of the law is evident to date. A local Non-governmental organization (NGO) ‘The Grenada Green Group’ (G3) is focused on reducing litter in Grenada through lobbying government to implement the revised act and running sessions in schools, community groups and on local media and social media to raise awareness of the problems associated with plastics. A local private company has indicated willingness to support an Anti-Litter Campaign in 2018 and local awareness of the need for a reduction of single use plastic use and litter seems to be high. The Government of Grenada have called for a Sustainable Waste Management Strategy and a ban on both Styrofoam and plastic grocery bags are among recommendations recently submitted. A Styrofoam ban will be in place at the St. George’s University campus from January 1st, 2018 and many local businesses have already voluntarily moved away from Styrofoam. Our findings underscore the importance of continuing investigations into microplastics in marine life; this will contribute to understanding the associated health risks. Furthermore, our findings support action to mitigate the volume of plastics entering the world’s oceans. We hope that Grenada’s future will involve a lot less plastic. This research was supported by the Caribbean Node of the Global Partnership on Marine Litter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Caribbean" title="Caribbean">Caribbean</a>, <a href="https://publications.waset.org/abstracts/search?q=microplastics" title=" microplastics"> microplastics</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20island%20developing%20nation" title=" small island developing nation"> small island developing nation</a> </p> <a href="https://publications.waset.org/abstracts/85482/microplastics-in-fish-from-grenada-west-indies-problems-and-opportunities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85482.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1943</span> Trial of Faecal Microbial Transplantation for the Prevention of Canine Atopic Dermatitis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Caroline%20F.%20Moeser">Caroline F. Moeser</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The skin-gut axis defines the relationship between the intestinal microbiota and the development of pathological skin diseases. Low diversity within the gut can predispose to the development of allergic skin conditions, and a greater diversity of the gastrointestinal microflora has been associated with a reduction of skin flares in people with atopic dermatitis. Manipulation of the gut microflora has been used as a treatment option for several conditions in people, but there is limited data available on the use of faecal transplantation as a preventative measure in either people or dogs. Six, 4-month-old pups from a litter of ten were presented for diarrhea and/or signs of skin disease (chronic scratching, otitis externa). Of these pups, two were given probiotics with a resultant resolution of diarrhea. The other four pups were given faecal transplantation, either as a sole treatment or in combination with other treatments. Follow-up on the litter of ten pups was performed at 18 months of age. At this stage, the four pups that had received faecal transplantation had resolved all clinical signs and had no recurrence of either skin or gastrointestinal symptoms. Of the remaining six pups from the litter, all had developed at least one episode of Malassezia otitis externa within the period of 5 months to 18 months of age. Two pups had developed two Malassezia otitis infections, and one had developed three Malassezia otitis infections during this period. Favrot’s criteria for the diagnosis of canine atopic dermatitis include chronic or recurrent Malassezia infections by the age of three years. Early results from this litter predict a reduction in the development of canine atopic disease in dogs given faecal microbial transplantation. Follow-up studies at three years of age and within a larger population of dogs can enhance understanding of the impact of early faecal transplantation in the prevention of canine atopic dermatitis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=canine%20atopic%20dermatitis" title="canine atopic dermatitis">canine atopic dermatitis</a>, <a href="https://publications.waset.org/abstracts/search?q=faecal%20microbial%20transplant" title=" faecal microbial transplant"> faecal microbial transplant</a>, <a href="https://publications.waset.org/abstracts/search?q=skin-gut%20axis" title=" skin-gut axis"> skin-gut axis</a>, <a href="https://publications.waset.org/abstracts/search?q=otitis" title=" otitis"> otitis</a> </p> <a href="https://publications.waset.org/abstracts/133176/trial-of-faecal-microbial-transplantation-for-the-prevention-of-canine-atopic-dermatitis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133176.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1942</span> Marine Litter Dispersion in the Southern Shores of the Caspian Sea (Case Study: Mazandaran Province)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siamak%20Jamshidi">Siamak Jamshidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the major environmental problems in the southern coasts of the Caspian Sea is that the marine and coastal debris is being deposited and accumulated due to industrial, urban and tourism activities. Study, sampling and analysis on the type, size, amount and origin of human-made (anthropogenic) waste in the coastal areas of this sea can be very effective in implementing management, cultural and informative programs to reduce marine environmental pollutants. Investigation on marine litter distribution under impact of seawater dynamics was performed for the first time in this research. The rate of entry and distribution of marine and coastal pollutants and wastes, which are mainly of urban, tourist and hospital origin, has multiplied on the southern shore of the Caspian Sea in the last decade. According to the results, the two most important sources of hospital waste in the coastal areas are Tonekabon and Mahmoudabad. In this case, the effect of dynamic parameters of seawater such as flow (with speeds of up to about 1 m/s) and waves, as well as the flow of rivers leading to the shoreline are also influential factors in the distribution of marine litter in the region. Marine litters in the southern coastal region were transported from west to east by the shallow waters of the southern Caspian Sea. In other words, the marine debris density has been observed more in the eastern part. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=southern%20shelf" title="southern shelf">southern shelf</a>, <a href="https://publications.waset.org/abstracts/search?q=coastal%20oceanography" title=" coastal oceanography"> coastal oceanography</a>, <a href="https://publications.waset.org/abstracts/search?q=seawater%20flow" title=" seawater flow"> seawater flow</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20structure" title=" vertical structure"> vertical structure</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20environment" title=" marine environment"> marine environment</a> </p> <a href="https://publications.waset.org/abstracts/173438/marine-litter-dispersion-in-the-southern-shores-of-the-caspian-sea-case-study-mazandaran-province" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173438.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1941</span> Using Environmental Life Cycle Assessment to Design Sustainable Packaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Timothy%20Francis%20Grant">Timothy Francis Grant</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are conflicting purposes at play with the design of sustainable packaging which include material reduction, recycling compatibility, use of secondary content and performance of the package in protecting and delivering the product. Life Cycle Assessment (LCA) is able to evaluate these different strategies against environmental metrics such as climate change, land and water use and marine litter pollution. However, LCA has traditionally been too time consuming and expensive to be used effectively in packaging design process. To make LCA practical for packaging technologist and designers a simplified tool is needed to make LCA possible for non-environmental specialists. The Packaging Quick Evaluation Tool (PIQET) is a web-based solution for undertaking LCA of new and existing packaging designs considering the global supply chain and impacts from cradle to grave. PIQET is based on a pre-calculated LCA database covering the materials and processes involved in the packaging lifecycle from cradle to grave. This includes both virgin materials and recycled content, conversion of materials into packaging, and the transportation of packaging to the product filling. In addition, PIQET assesses the impacts once the package is filled looking at storage, transport and product loss through the supply chain. When applied to consumer packaging light weight packages which are note recyclable have lower impacts than more recyclable packages which have a higher mass. Its also apparent that for many products the impacts of product failure and product loss are more important environmentally compared to packaging material efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Climate%20change" title="Climate change">Climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=Life%20Cycle%20Assessment" title=" Life Cycle Assessment"> Life Cycle Assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=Marine%20litter" title=" Marine litter"> Marine litter</a>, <a href="https://publications.waset.org/abstracts/search?q=Packaging%20sustainability" title=" Packaging sustainability"> Packaging sustainability</a> </p> <a href="https://publications.waset.org/abstracts/120493/using-environmental-life-cycle-assessment-to-design-sustainable-packaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1940</span> Reproduction Characteristics of Saanen Goats Raised under Intensive Conditions in Konya Province</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vahdettin%20Sariyel">Vahdettin Sariyel</a>, <a href="https://publications.waset.org/abstracts/search?q=Birol%20Dag"> Birol Dag</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, it is aimed to determine the effects of several environmental factors on adaptation and some yield parameters of Saanen goats reared under intensive conditions at a private farm in Konya province. Gestation rate, twins rate and litter size were evaluated as reproductive traits. Gestation rate was determined as 93.8% and 90.5% for 2011 and 2012 years respectively. Twins rate was determined as 59.35 % and 70.00 % for 2011 and 2012 years respectively. Litter size was 1.49 and 1.46 for 2011 and 2012 years respectively. Survival rates of kids from birth to weaning at three months of age were found as 87.74 % and 98.54 % for 2011 and 2012 years respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gestation%20rate" title="gestation rate">gestation rate</a>, <a href="https://publications.waset.org/abstracts/search?q=reproduction" title=" reproduction"> reproduction</a>, <a href="https://publications.waset.org/abstracts/search?q=saanen" title=" saanen"> saanen</a>, <a href="https://publications.waset.org/abstracts/search?q=twins%20rate" title=" twins rate"> twins rate</a>, <a href="https://publications.waset.org/abstracts/search?q=vitality" title=" vitality"> vitality</a> </p> <a href="https://publications.waset.org/abstracts/30217/reproduction-characteristics-of-saanen-goats-raised-under-intensive-conditions-in-konya-province" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30217.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">594</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1939</span> Carbon Stock Estimation of Urban Forests in Selected Public Parks in Addis Ababa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meseret%20Habtamu">Meseret Habtamu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mekuria%20Argaw"> Mekuria Argaw</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Urban forests can help to improve the microclimate and air quality. Urban forests in Addis Ababa are important sinks for GHGs as the number of vehicles and the traffic constrain is steadily increasing. The objective of this study was to characterize the vegetation types in selected public parks and to estimate the carbon stock potential of urban forests by assessing carbon in the above, below ground biomass, in the litter and soil. Species which vegetation samples were taken using a systematic transect sampling within value DBH ≥ 5cm were recorded to measure the above, the below ground biomass and the amount of C stored. Allometric models (Y= 34.4703 - 8.0671(DBH) + 0.6589(DBH2) were used to calculate the above ground and Below ground biomass (BGB) = AGB × 0.2 and sampling of soil and litter was based on quadrates. There were 5038 trees recorded from the selected study sites with DBH ≥ 5cm. Most of the Parks had large number of indigenous species, but the numbers of exotic trees are much larger than the indigenous trees. The mean above ground and below ground biomass is 305.7 ± 168.3 and 61.1± 33.7 respectively and the mean carbon in the above ground and below ground biomass is 143.3±74.2 and 28.1 ± 14.4 respectively. The mean CO2 in the above ground and below ground biomass is 525.9 ± 272.2 and 103.1 ± 52.9 respectively. The mean carbon in dead litter and soil carbon were 10.5 ± 2.4 and 69.2t ha-1 respectively. Urban trees reduce atmospheric carbon dioxide (CO2) through sequestration which is important for climate change mitigation, they are also important for recreational, medicinal value and aesthetic and biodiversity conservation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiversity" title="biodiversity">biodiversity</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20sequestration" title=" carbon sequestration"> carbon sequestration</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20forests" title=" urban forests"> urban forests</a> </p> <a href="https://publications.waset.org/abstracts/81454/carbon-stock-estimation-of-urban-forests-in-selected-public-parks-in-addis-ababa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=litter%20pollution&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=litter%20pollution&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=litter%20pollution&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=litter%20pollution&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=litter%20pollution&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=litter%20pollution&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=litter%20pollution&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=litter%20pollution&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=litter%20pollution&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=litter%20pollution&amp;page=65">65</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=litter%20pollution&amp;page=66">66</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=litter%20pollution&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2025 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10