CINXE.COM

Yi-Kuen Lee | Hong Kong University of Science and Technology - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Yi-Kuen Lee | Hong Kong University of Science and Technology - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="i3nI28UuWERNyS0bjECLj15DqRw3gu8LfNgscmGuu_GSR3gOJiEGCsMMrkwtbUDEoQ01Sxo3hyQBgVXRFIc_Eg" /> <link rel="stylesheet" href="//a.academia-assets.com/assets/wow-3d36c19b4875b226bfed0fcba1dcea3f2fe61148383d97c0465c016b8c969290.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/social/home-79e78ce59bef0a338eb6540ec3d93b4a7952115b56c57f1760943128f4544d42.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/single_work_page/figure_carousel-2004283e0948681916eefa74772df54f56cb5c7413d82b160212231c2f474bb3.css" media="all" /><script type="application/ld+json">{"@context":"https://schema.org","@type":"ProfilePage","mainEntity":{"@context":"https://schema.org","@type":"Person","name":"Yi-Kuen Lee","url":"https://hkust.academia.edu/YiKuenLee","image":"https://0.academia-photos.com/33508741/97759652/86849823/s200_yi-kuen.lee.jpeg","sameAs":[]},"dateCreated":"2015-08-01T03:12:59-07:00","dateModified":"2024-05-05T06:37:01-07:00","name":"Yi-Kuen Lee","description":"","image":"https://0.academia-photos.com/33508741/97759652/86849823/s200_yi-kuen.lee.jpeg","thumbnailUrl":"https://0.academia-photos.com/33508741/97759652/86849823/s65_yi-kuen.lee.jpeg","primaryImageOfPage":{"@type":"ImageObject","url":"https://0.academia-photos.com/33508741/97759652/86849823/s200_yi-kuen.lee.jpeg","width":200},"sameAs":[],"relatedLink":"https://www.academia.edu/105598816/A_Novel_Two_Dimensional_Model_for_Micro_Thermal_Expansion_based_Gyroscopes_towards_Parametric_Analysis_and_Efficient_Optimization"}</script><link rel="stylesheet" href="//a.academia-assets.com/assets/design_system/heading-95367dc03b794f6737f30123738a886cf53b7a65cdef98a922a98591d60063e3.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/design_system/button-8c9ae4b5c8a2531640c354d92a1f3579c8ff103277ef74913e34c8a76d4e6c00.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/design_system/body-170d1319f0e354621e81ca17054bb147da2856ec0702fe440a99af314a6338c5.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/single_work_page/figure_carousel-2004283e0948681916eefa74772df54f56cb5c7413d82b160212231c2f474bb3.css" media="all" /><style type="text/css">@media(max-width: 567px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 32px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 30px;--type-sans-serif-lg-line-height: 36px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 30px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 24px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 24px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 18px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 32px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 20px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 32px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 40px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 24px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 26px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 48px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 52px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 48px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 58px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 80px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 64px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}@media(min-width: 568px)and (max-width: 1279px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 42px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 32px;--type-sans-serif-lg-line-height: 36px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 34px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 28px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 25px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 20px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 30px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 24px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 40px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 48px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 28px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 32px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 58px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 68px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 74px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 82px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 104px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 80px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}@media(min-width: 1280px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 42px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 32px;--type-sans-serif-lg-line-height: 38px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 34px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 28px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 25px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 20px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 30px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 24px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 40px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 48px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 28px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 32px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 58px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 68px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 74px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 82px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 152px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 80px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}</style><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" href="//a.academia-assets.com/assets/design_system/common-57f9da13cef3fd4e2a8b655342c6488eded3e557e823fe67571f2ac77acd7b6f.css" media="all" /> <meta name="author" content="yi-kuen lee" /> <meta name="description" content="Yi-Kuen Lee, Hong Kong University of Science and Technology: 6 Followers, 1 Following, 126 Research papers." /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '96b2434373b3f00cb5f70e21558f98ff585722bd'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":13915,"monthly_visitors":"31 million","monthly_visitor_count":31300000,"monthly_visitor_count_in_millions":31,"user_count":286137802,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1743512614000); window.Aedu.timeDifference = new Date().getTime() - 1743512614000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link rel="preload" href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" as="style" onload="this.rel='stylesheet'"> <link rel="stylesheet" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" media="all" /> <link rel="stylesheet" href="//a.academia-assets.com/assets/academia-9982828ed1de4777566441c35ccf7157c55ca779141fce69380d727ebdbbb926.css" media="all" /> <link rel="stylesheet" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" media="all" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-d4c85e621b8bf4de9d00992b6e343550022a135eb512ccf66e7b5d8a67a65f0d.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-e94cf4c6a5cc17bae92cd463c6a27ba854937d08345e4010eca69ba0053b7599.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://hkust.academia.edu/YiKuenLee" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-6f7b34948ff8bae142425d04a5080634d3d6bb001f584488f23ed7dbbf59ef0f.js" defer="defer"></script><script>$viewedUser = Aedu.User.set_viewed( {"id":33508741,"first_name":"Yi-Kuen","middle_initials":null,"last_name":"Lee","page_name":"YiKuenLee","domain_name":"hkust","created_at":"2015-08-01T03:12:59.639-07:00","display_name":"Yi-Kuen Lee","url":"https://hkust.academia.edu/YiKuenLee","photo":"https://0.academia-photos.com/33508741/97759652/86849823/s65_yi-kuen.lee.jpeg","has_photo":true,"department":{"id":1032817,"name":"Mechanical and Aerospace Engineering","url":"https://hkust.academia.edu/Departments/Mechanical_and_Aerospace_Engineering/Documents","university":{"id":749,"name":"Hong Kong University of Science and Technology","url":"https://hkust.academia.edu/"}},"position":"Faculty Member","position_id":1,"is_analytics_public":false,"interests":[]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://hkust.academia.edu/YiKuenLee&quot;,&quot;location&quot;:&quot;/YiKuenLee&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;hkust.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/YiKuenLee&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-ecd541d2-b159-4bc8-ba44-22536f9e209d"></div> <div id="ProfileCheckPaperUpdate-react-component-ecd541d2-b159-4bc8-ba44-22536f9e209d"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Yi-Kuen Lee" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/33508741/97759652/86849823/s200_yi-kuen.lee.jpeg" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Yi-Kuen Lee</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://hkust.academia.edu/">Hong Kong University of Science and Technology</a>, <a class="u-tcGrayDarker" href="https://hkust.academia.edu/Departments/Mechanical_and_Aerospace_Engineering/Documents">Mechanical and Aerospace Engineering</a>, <span class="u-tcGrayDarker">Faculty Member</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Yi-Kuen" data-follow-user-id="33508741" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="33508741"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">6</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">1</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="suggested-academics-container"><div class="suggested-academics--header"><h3 class="ds2-5-heading-sans-serif-xs">Related Authors</h3></div><ul class="suggested-user-card-list" data-nosnippet="true"><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://unizg.academia.edu/AndrejDujella"><img class="profile-avatar u-positionAbsolute" alt="Andrej Dujella related author profile picture" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/29857/9709/9189/s200_andrej.dujella.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://unizg.academia.edu/AndrejDujella">Andrej Dujella</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Zagreb</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://uppsala.academia.edu/HeminKoyi"><img class="profile-avatar u-positionAbsolute" alt="Hemin Koyi related author profile picture" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/102248/28141/11213115/s200_hemin.koyi.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://uppsala.academia.edu/HeminKoyi">Hemin Koyi</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Uppsala University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://uel.academia.edu/JanaJavornik"><img class="profile-avatar u-positionAbsolute" alt="Jana Javornik related author profile picture" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/113072/30527/13170018/s200_jana.javornik.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://uel.academia.edu/JanaJavornik">Jana Javornik</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of East London</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://leicester.academia.edu/GrahamMartin"><img class="profile-avatar u-positionAbsolute" alt="Graham Martin related author profile picture" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/156189/40499/1481064/s200_graham.martin.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://leicester.academia.edu/GrahamMartin">Graham Martin</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Leicester</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://uncg.academia.edu/GwenRobbinsSchug"><img class="profile-avatar u-positionAbsolute" alt="Gwen Robbins Schug related author profile picture" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/161482/41323/170269686/s200_gwen.robbins_schug.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://uncg.academia.edu/GwenRobbinsSchug">Gwen Robbins Schug</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of North Carolina at Greensboro</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://usal.academia.edu/GabrielGutierrezAlonso"><img class="profile-avatar u-positionAbsolute" alt="Gabriel Gutierrez-Alonso related author profile picture" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/175637/822125/1022101/s200_gabriel.gutierrez-alonso.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://usal.academia.edu/GabrielGutierrezAlonso">Gabriel Gutierrez-Alonso</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Salamanca</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://mq.academia.edu/JohnSutton"><img class="profile-avatar u-positionAbsolute" alt="John Sutton related author profile picture" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/176044/43811/40295/s200_john.sutton.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://mq.academia.edu/JohnSutton">John Sutton</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Macquarie University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://ufrgs.academia.edu/ErosCarvalho"><img class="profile-avatar u-positionAbsolute" alt="Eros Carvalho related author profile picture" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/176585/88715/48865541/s200_eros.carvalho.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://ufrgs.academia.edu/ErosCarvalho">Eros Carvalho</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Universidade Federal do Rio Grande do Sul</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://swansea.academia.edu/KevinArbuckle"><img class="profile-avatar u-positionAbsolute" alt="Kevin Arbuckle related author profile picture" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/191329/90380/6936137/s200_kevin.arbuckle.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://swansea.academia.edu/KevinArbuckle">Kevin Arbuckle</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Swansea University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://ku-dk.academia.edu/JesperHoffmeyer"><img class="profile-avatar u-positionAbsolute" alt="Jesper Hoffmeyer related author profile picture" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/241162/92724/102335/s200_jesper.hoffmeyer.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://ku-dk.academia.edu/JesperHoffmeyer">Jesper Hoffmeyer</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Copenhagen</p></div></div></ul></div><style type="text/css">.suggested-academics--header h3{font-size:16px;font-weight:500;line-height:20px}</style></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Yi-Kuen Lee</h3></div><div class="js-work-strip profile--work_container" data-work-id="105598816"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/105598816/A_Novel_Two_Dimensional_Model_for_Micro_Thermal_Expansion_based_Gyroscopes_towards_Parametric_Analysis_and_Efficient_Optimization"><img alt="Research paper thumbnail of A Novel Two-Dimensional Model for Micro Thermal Expansion-based Gyroscopes towards Parametric Analysis and Efficient Optimization" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">A Novel Two-Dimensional Model for Micro Thermal Expansion-based Gyroscopes towards Parametric Analysis and Efficient Optimization</div><div class="wp-workCard_item"><span>2019 IEEE SENSORS</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We report, for the first time, a novel two-dimensional (2D) model for the micro thermal expansion...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We report, for the first time, a novel two-dimensional (2D) model for the micro thermal expansion-based gyroscope (µTEG) to predict the sensor’s performance, which has been validated by the experimental results. Scaling analysis on the sensor’s performance characteristics by this model enables the optimization of µTEG design, including the normalized distances between the heater and temperature detectors in two directions, the thin film thickness, the heater width, the cavity depth and the heater temperature, to achieve extremely high sensitivity (11.78 mV/°/s) and low power consumption (12.8mW). According to the analysis by 2D model, the sensitivity of the optimized µTEGs by using the working gases (SF6 and C4F8) with larger density, better than the best published µTEG (1.287 mV/°/s) by one order of magnitude, can reach the level of the commercial product (&amp;gt;6 mV/°/s). In particular, our new 2D model can significantly save the CPU time in comparison with the conventional CFD model (1.92s versus 5h) to realize the efficient systematical optimization of the key design parameters. Thus, the proposed 2D model can be a useful tool for µTEGs’ system-level designs for industrial IoT applications.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="105598816"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="105598816"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 105598816; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=105598816]").text(description); $(".js-view-count[data-work-id=105598816]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 105598816; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='105598816']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=105598816]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":105598816,"title":"A Novel Two-Dimensional Model for Micro Thermal Expansion-based Gyroscopes towards Parametric Analysis and Efficient Optimization","translated_title":"","metadata":{"abstract":"We report, for the first time, a novel two-dimensional (2D) model for the micro thermal expansion-based gyroscope (µTEG) to predict the sensor’s performance, which has been validated by the experimental results. Scaling analysis on the sensor’s performance characteristics by this model enables the optimization of µTEG design, including the normalized distances between the heater and temperature detectors in two directions, the thin film thickness, the heater width, the cavity depth and the heater temperature, to achieve extremely high sensitivity (11.78 mV/°/s) and low power consumption (12.8mW). According to the analysis by 2D model, the sensitivity of the optimized µTEGs by using the working gases (SF6 and C4F8) with larger density, better than the best published µTEG (1.287 mV/°/s) by one order of magnitude, can reach the level of the commercial product (\u0026gt;6 mV/°/s). In particular, our new 2D model can significantly save the CPU time in comparison with the conventional CFD model (1.92s versus 5h) to realize the efficient systematical optimization of the key design parameters. Thus, the proposed 2D model can be a useful tool for µTEGs’ system-level designs for industrial IoT applications.","publisher":"IEEE","publication_name":"2019 IEEE SENSORS"},"translated_abstract":"We report, for the first time, a novel two-dimensional (2D) model for the micro thermal expansion-based gyroscope (µTEG) to predict the sensor’s performance, which has been validated by the experimental results. Scaling analysis on the sensor’s performance characteristics by this model enables the optimization of µTEG design, including the normalized distances between the heater and temperature detectors in two directions, the thin film thickness, the heater width, the cavity depth and the heater temperature, to achieve extremely high sensitivity (11.78 mV/°/s) and low power consumption (12.8mW). According to the analysis by 2D model, the sensitivity of the optimized µTEGs by using the working gases (SF6 and C4F8) with larger density, better than the best published µTEG (1.287 mV/°/s) by one order of magnitude, can reach the level of the commercial product (\u0026gt;6 mV/°/s). In particular, our new 2D model can significantly save the CPU time in comparison with the conventional CFD model (1.92s versus 5h) to realize the efficient systematical optimization of the key design parameters. Thus, the proposed 2D model can be a useful tool for µTEGs’ system-level designs for industrial IoT applications.","internal_url":"https://www.academia.edu/105598816/A_Novel_Two_Dimensional_Model_for_Micro_Thermal_Expansion_based_Gyroscopes_towards_Parametric_Analysis_and_Efficient_Optimization","translated_internal_url":"","created_at":"2023-08-14T18:44:33.167-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33508741,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_Novel_Two_Dimensional_Model_for_Micro_Thermal_Expansion_based_Gyroscopes_towards_Parametric_Analysis_and_Efficient_Optimization","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"We report, for the first time, a novel two-dimensional (2D) model for the micro thermal expansion-based gyroscope (µTEG) to predict the sensor’s performance, which has been validated by the experimental results. Scaling analysis on the sensor’s performance characteristics by this model enables the optimization of µTEG design, including the normalized distances between the heater and temperature detectors in two directions, the thin film thickness, the heater width, the cavity depth and the heater temperature, to achieve extremely high sensitivity (11.78 mV/°/s) and low power consumption (12.8mW). According to the analysis by 2D model, the sensitivity of the optimized µTEGs by using the working gases (SF6 and C4F8) with larger density, better than the best published µTEG (1.287 mV/°/s) by one order of magnitude, can reach the level of the commercial product (\u0026gt;6 mV/°/s). In particular, our new 2D model can significantly save the CPU time in comparison with the conventional CFD model (1.92s versus 5h) to realize the efficient systematical optimization of the key design parameters. Thus, the proposed 2D model can be a useful tool for µTEGs’ system-level designs for industrial IoT applications.","owner":{"id":33508741,"first_name":"Yi-Kuen","middle_initials":null,"last_name":"Lee","page_name":"YiKuenLee","domain_name":"hkust","created_at":"2015-08-01T03:12:59.639-07:00","display_name":"Yi-Kuen Lee","url":"https://hkust.academia.edu/YiKuenLee"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":329868,"name":"Gyroscope","url":"https://www.academia.edu/Documents/in/Gyroscope"}],"urls":[{"id":33426920,"url":"http://xplorestaging.ieee.org/ielx7/8949872/8956486/08956539.pdf?arnumber=8956539"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-105598816-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="105598815"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/105598815/Low_Cost_Parylene_Based_Micro_Humidity_Sensor_for_Integrated_Human_Thermal_Comfort_Sensing"><img alt="Research paper thumbnail of Low-Cost Parylene Based Micro Humidity Sensor for Integrated Human Thermal Comfort Sensing" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Low-Cost Parylene Based Micro Humidity Sensor for Integrated Human Thermal Comfort Sensing</div><div class="wp-workCard_item"><span>2020 IEEE 15th International Conference on Nano/Micro Engineered and Molecular System (NEMS)</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper, we report a CMOS-MEMS compatible Parylene C based Humidity Sensor (PHS) to be used...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper, we report a CMOS-MEMS compatible Parylene C based Humidity Sensor (PHS) to be used for integrated human thermal comfort sensing for smart buildings. Interdigitated platinum (Pt) electrodes are deposited on a silicon substrate. A parylene C thin film as hygroscopic layer is coated on the electrodes using room-temperature chemical vapor deposition (CVD) technique. Three sensors with various dimensions (1.2 mm2, 4.8 mm2, and 7.5 mm2) are fabricated to study the size effect of the sensor on the sensitivity. The impedance, phase and capacitive response of the sensor at different frequencies of the operating voltage under various relative humidity (RH) levels are investigated. The overall impedance and capacitance changed from 23.02 to 3.744 MŸ and 64.165 to 194.14 pF respectively at 100 Hz operating frequency for the 4.8 mm2 sensor when RH is increased from 0.1 to 92%. The measured PHS’s sensitivity at the frequencies of 1~100 kHz shows highest (1.428 pF/%RH) at low frequency (100 Hz). The PHS with large sensing area showed higher sensitivity (0.11 ~ 0.53 pF/%RH) compared to medium and small sensors. Moreover, the PHS is tested for 3 days depicting good stability with respect to time.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="105598815"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="105598815"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 105598815; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=105598815]").text(description); $(".js-view-count[data-work-id=105598815]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 105598815; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='105598815']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=105598815]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":105598815,"title":"Low-Cost Parylene Based Micro Humidity Sensor for Integrated Human Thermal Comfort Sensing","translated_title":"","metadata":{"abstract":"In this paper, we report a CMOS-MEMS compatible Parylene C based Humidity Sensor (PHS) to be used for integrated human thermal comfort sensing for smart buildings. Interdigitated platinum (Pt) electrodes are deposited on a silicon substrate. A parylene C thin film as hygroscopic layer is coated on the electrodes using room-temperature chemical vapor deposition (CVD) technique. Three sensors with various dimensions (1.2 mm2, 4.8 mm2, and 7.5 mm2) are fabricated to study the size effect of the sensor on the sensitivity. The impedance, phase and capacitive response of the sensor at different frequencies of the operating voltage under various relative humidity (RH) levels are investigated. The overall impedance and capacitance changed from 23.02 to 3.744 MŸ and 64.165 to 194.14 pF respectively at 100 Hz operating frequency for the 4.8 mm2 sensor when RH is increased from 0.1 to 92%. The measured PHS’s sensitivity at the frequencies of 1~100 kHz shows highest (1.428 pF/%RH) at low frequency (100 Hz). The PHS with large sensing area showed higher sensitivity (0.11 ~ 0.53 pF/%RH) compared to medium and small sensors. Moreover, the PHS is tested for 3 days depicting good stability with respect to time.","publisher":"IEEE","publication_name":"2020 IEEE 15th International Conference on Nano/Micro Engineered and Molecular System (NEMS)"},"translated_abstract":"In this paper, we report a CMOS-MEMS compatible Parylene C based Humidity Sensor (PHS) to be used for integrated human thermal comfort sensing for smart buildings. Interdigitated platinum (Pt) electrodes are deposited on a silicon substrate. A parylene C thin film as hygroscopic layer is coated on the electrodes using room-temperature chemical vapor deposition (CVD) technique. Three sensors with various dimensions (1.2 mm2, 4.8 mm2, and 7.5 mm2) are fabricated to study the size effect of the sensor on the sensitivity. The impedance, phase and capacitive response of the sensor at different frequencies of the operating voltage under various relative humidity (RH) levels are investigated. The overall impedance and capacitance changed from 23.02 to 3.744 MŸ and 64.165 to 194.14 pF respectively at 100 Hz operating frequency for the 4.8 mm2 sensor when RH is increased from 0.1 to 92%. The measured PHS’s sensitivity at the frequencies of 1~100 kHz shows highest (1.428 pF/%RH) at low frequency (100 Hz). The PHS with large sensing area showed higher sensitivity (0.11 ~ 0.53 pF/%RH) compared to medium and small sensors. Moreover, the PHS is tested for 3 days depicting good stability with respect to time.","internal_url":"https://www.academia.edu/105598815/Low_Cost_Parylene_Based_Micro_Humidity_Sensor_for_Integrated_Human_Thermal_Comfort_Sensing","translated_internal_url":"","created_at":"2023-08-14T18:44:32.896-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33508741,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Low_Cost_Parylene_Based_Micro_Humidity_Sensor_for_Integrated_Human_Thermal_Comfort_Sensing","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"In this paper, we report a CMOS-MEMS compatible Parylene C based Humidity Sensor (PHS) to be used for integrated human thermal comfort sensing for smart buildings. Interdigitated platinum (Pt) electrodes are deposited on a silicon substrate. A parylene C thin film as hygroscopic layer is coated on the electrodes using room-temperature chemical vapor deposition (CVD) technique. Three sensors with various dimensions (1.2 mm2, 4.8 mm2, and 7.5 mm2) are fabricated to study the size effect of the sensor on the sensitivity. The impedance, phase and capacitive response of the sensor at different frequencies of the operating voltage under various relative humidity (RH) levels are investigated. The overall impedance and capacitance changed from 23.02 to 3.744 MŸ and 64.165 to 194.14 pF respectively at 100 Hz operating frequency for the 4.8 mm2 sensor when RH is increased from 0.1 to 92%. The measured PHS’s sensitivity at the frequencies of 1~100 kHz shows highest (1.428 pF/%RH) at low frequency (100 Hz). The PHS with large sensing area showed higher sensitivity (0.11 ~ 0.53 pF/%RH) compared to medium and small sensors. Moreover, the PHS is tested for 3 days depicting good stability with respect to time.","owner":{"id":33508741,"first_name":"Yi-Kuen","middle_initials":null,"last_name":"Lee","page_name":"YiKuenLee","domain_name":"hkust","created_at":"2015-08-01T03:12:59.639-07:00","display_name":"Yi-Kuen Lee","url":"https://hkust.academia.edu/YiKuenLee"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":408433,"name":"Parylene","url":"https://www.academia.edu/Documents/in/Parylene"}],"urls":[{"id":33426919,"url":"http://xplorestaging.ieee.org/ielx7/9265537/9265518/09265630.pdf?arnumber=9265630"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-105598815-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="105598814"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/105598814/Two_Dimensional_Theoretical_Modeling_and_Experimental_Investigations_of_Micromachined_Thermal_Expansion_Based_Angular_Motion_Sensor"><img alt="Research paper thumbnail of Two-Dimensional Theoretical Modeling and Experimental Investigations of Micromachined Thermal Expansion-Based Angular Motion Sensor" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Two-Dimensional Theoretical Modeling and Experimental Investigations of Micromachined Thermal Expansion-Based Angular Motion Sensor</div><div class="wp-workCard_item"><span>Journal of Microelectromechanical Systems</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A two-dimensional (2D) model was developed, for the first time, to describe the characteristics o...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A two-dimensional (2D) model was developed, for the first time, to describe the characteristics of the micromachined thermal expansion-based angular motion (TEAM) sensor, which has been validated by the experimental results. Scaling analysis on the performance characteristics through the 2D model was conducted to optimize the TEAM sensor’s design in terms of the normalized distances between the microheaters and temperature detectors in &amp;lt;inline-formula&amp;gt; &amp;lt;tex-math notation=&amp;quot;LaTeX&amp;quot;&amp;gt;$x$ &amp;lt;/tex-math&amp;gt;&amp;lt;/inline-formula&amp;gt; and &amp;lt;inline-formula&amp;gt; &amp;lt;tex-math notation=&amp;quot;LaTeX&amp;quot;&amp;gt;$y$ &amp;lt;/tex-math&amp;gt;&amp;lt;/inline-formula&amp;gt; directions, the thickness of the thin film, the heater width, the cavity depth, and the heater temperature. Furthermore, the proposed 2D model was normalized by two dimensionless numbers, namely Rayleigh number Ra and Peclet number Pe, with a critical Rayleigh number (Ra&amp;lt;inline-formula&amp;gt; &amp;lt;tex-math notation=&amp;quot;LaTeX&amp;quot;&amp;gt;$^{\ast }_{\mathrm {c}} =18$ &amp;lt;/tex-math&amp;gt;&amp;lt;/inline-formula&amp;gt;,000) identified to differentiate linear and nonlinear operation regimes of the TEAM sensor. In particular, our 2D model is much faster than the conventional CFD model by three orders of magnitude (18.91s versus 5.5h), enabling rapid system-level optimization of the critical design parameters. Accordingly, the TEAM sensors with three pairs of platinum thermoresistive temperature sensors were designed and fabricated. The fabricated device demonstrated a normalized sensitivity of &amp;lt;inline-formula&amp;gt; &amp;lt;tex-math notation=&amp;quot;LaTeX&amp;quot;&amp;gt;$11.8~\mu \text{V}$ &amp;lt;/tex-math&amp;gt;&amp;lt;/inline-formula&amp;gt;/°/s/mW based on the working fluid of air, which was more than three times better than previous thermal angular motion sensors. Thus, with the experimental validation, the proposed 2D model should be a reliable tool to realize the systematical design optimization of TEAM sensors integrated with on-chip microelectronics for future industrial IoT applications. [2020-0355]</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="105598814"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="105598814"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 105598814; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=105598814]").text(description); $(".js-view-count[data-work-id=105598814]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 105598814; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='105598814']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=105598814]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":105598814,"title":"Two-Dimensional Theoretical Modeling and Experimental Investigations of Micromachined Thermal Expansion-Based Angular Motion Sensor","translated_title":"","metadata":{"abstract":"A two-dimensional (2D) model was developed, for the first time, to describe the characteristics of the micromachined thermal expansion-based angular motion (TEAM) sensor, which has been validated by the experimental results. Scaling analysis on the performance characteristics through the 2D model was conducted to optimize the TEAM sensor’s design in terms of the normalized distances between the microheaters and temperature detectors in \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$x$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt; and \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$y$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt; directions, the thickness of the thin film, the heater width, the cavity depth, and the heater temperature. Furthermore, the proposed 2D model was normalized by two dimensionless numbers, namely Rayleigh number Ra and Peclet number Pe, with a critical Rayleigh number (Ra\u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$^{\\ast }_{\\mathrm {c}} =18$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt;,000) identified to differentiate linear and nonlinear operation regimes of the TEAM sensor. In particular, our 2D model is much faster than the conventional CFD model by three orders of magnitude (18.91s versus 5.5h), enabling rapid system-level optimization of the critical design parameters. Accordingly, the TEAM sensors with three pairs of platinum thermoresistive temperature sensors were designed and fabricated. The fabricated device demonstrated a normalized sensitivity of \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$11.8~\\mu \\text{V}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt;/°/s/mW based on the working fluid of air, which was more than three times better than previous thermal angular motion sensors. Thus, with the experimental validation, the proposed 2D model should be a reliable tool to realize the systematical design optimization of TEAM sensors integrated with on-chip microelectronics for future industrial IoT applications. [2020-0355]","publisher":"Institute of Electrical and Electronics Engineers (IEEE)","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Journal of Microelectromechanical Systems"},"translated_abstract":"A two-dimensional (2D) model was developed, for the first time, to describe the characteristics of the micromachined thermal expansion-based angular motion (TEAM) sensor, which has been validated by the experimental results. Scaling analysis on the performance characteristics through the 2D model was conducted to optimize the TEAM sensor’s design in terms of the normalized distances between the microheaters and temperature detectors in \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$x$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt; and \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$y$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt; directions, the thickness of the thin film, the heater width, the cavity depth, and the heater temperature. Furthermore, the proposed 2D model was normalized by two dimensionless numbers, namely Rayleigh number Ra and Peclet number Pe, with a critical Rayleigh number (Ra\u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$^{\\ast }_{\\mathrm {c}} =18$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt;,000) identified to differentiate linear and nonlinear operation regimes of the TEAM sensor. In particular, our 2D model is much faster than the conventional CFD model by three orders of magnitude (18.91s versus 5.5h), enabling rapid system-level optimization of the critical design parameters. Accordingly, the TEAM sensors with three pairs of platinum thermoresistive temperature sensors were designed and fabricated. The fabricated device demonstrated a normalized sensitivity of \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$11.8~\\mu \\text{V}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt;/°/s/mW based on the working fluid of air, which was more than three times better than previous thermal angular motion sensors. Thus, with the experimental validation, the proposed 2D model should be a reliable tool to realize the systematical design optimization of TEAM sensors integrated with on-chip microelectronics for future industrial IoT applications. [2020-0355]","internal_url":"https://www.academia.edu/105598814/Two_Dimensional_Theoretical_Modeling_and_Experimental_Investigations_of_Micromachined_Thermal_Expansion_Based_Angular_Motion_Sensor","translated_internal_url":"","created_at":"2023-08-14T18:44:32.079-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33508741,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Two_Dimensional_Theoretical_Modeling_and_Experimental_Investigations_of_Micromachined_Thermal_Expansion_Based_Angular_Motion_Sensor","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"A two-dimensional (2D) model was developed, for the first time, to describe the characteristics of the micromachined thermal expansion-based angular motion (TEAM) sensor, which has been validated by the experimental results. Scaling analysis on the performance characteristics through the 2D model was conducted to optimize the TEAM sensor’s design in terms of the normalized distances between the microheaters and temperature detectors in \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$x$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt; and \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$y$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt; directions, the thickness of the thin film, the heater width, the cavity depth, and the heater temperature. Furthermore, the proposed 2D model was normalized by two dimensionless numbers, namely Rayleigh number Ra and Peclet number Pe, with a critical Rayleigh number (Ra\u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$^{\\ast }_{\\mathrm {c}} =18$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt;,000) identified to differentiate linear and nonlinear operation regimes of the TEAM sensor. In particular, our 2D model is much faster than the conventional CFD model by three orders of magnitude (18.91s versus 5.5h), enabling rapid system-level optimization of the critical design parameters. Accordingly, the TEAM sensors with three pairs of platinum thermoresistive temperature sensors were designed and fabricated. The fabricated device demonstrated a normalized sensitivity of \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$11.8~\\mu \\text{V}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt;/°/s/mW based on the working fluid of air, which was more than three times better than previous thermal angular motion sensors. Thus, with the experimental validation, the proposed 2D model should be a reliable tool to realize the systematical design optimization of TEAM sensors integrated with on-chip microelectronics for future industrial IoT applications. [2020-0355]","owner":{"id":33508741,"first_name":"Yi-Kuen","middle_initials":null,"last_name":"Lee","page_name":"YiKuenLee","domain_name":"hkust","created_at":"2015-08-01T03:12:59.639-07:00","display_name":"Yi-Kuen Lee","url":"https://hkust.academia.edu/YiKuenLee"},"attachments":[],"research_interests":[{"id":1136,"name":"Microelectronics","url":"https://www.academia.edu/Documents/in/Microelectronics"},{"id":23818,"name":"Microelectromechanical systems","url":"https://www.academia.edu/Documents/in/Microelectromechanical_systems"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"}],"urls":[{"id":33426918,"url":"http://xplorestaging.ieee.org/ielx7/84/9329176/09310254.pdf?arnumber=9310254"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-105598814-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="105598813"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/105598813/A_CMOS_MEMS_Thermal_Flow_Sensor_for_Gas_and_Liquid_With_Parylene_C_Coating"><img alt="Research paper thumbnail of A CMOS MEMS Thermal Flow Sensor for Gas and Liquid With Parylene-C Coating" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">A CMOS MEMS Thermal Flow Sensor for Gas and Liquid With Parylene-C Coating</div><div class="wp-workCard_item"><span>IEEE Transactions on Electron Devices</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This brief presents a self-heated thermoresistive flow (SHTF) sensor for both gas and liquid with...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This brief presents a self-heated thermoresistive flow (SHTF) sensor for both gas and liquid with Parylene-C coating using a 0.35-&amp;lt;inline-formula&amp;gt; &amp;lt;tex-math notation=&amp;quot;LaTeX&amp;quot;&amp;gt;$ \mu \text{m}$ &amp;lt;/tex-math&amp;gt;&amp;lt;/inline-formula&amp;gt; CMOS MEMS technology. For N&amp;lt;sub&amp;gt;2&amp;lt;/sub&amp;gt; flow, the developed SHTF sensor can achieve the highest normalized sensitivity (&amp;lt;inline-formula&amp;gt; &amp;lt;tex-math notation=&amp;quot;LaTeX&amp;quot;&amp;gt;$S^{ \ast }{ =}\,\, {S}_{c} / {P}$ &amp;lt;/tex-math&amp;gt;&amp;lt;/inline-formula&amp;gt;) of 171 mV/(m/s)/W with its power consumption &amp;lt;inline-formula&amp;gt; &amp;lt;tex-math notation=&amp;quot;LaTeX&amp;quot;&amp;gt;${P}$ &amp;lt;/tex-math&amp;gt;&amp;lt;/inline-formula&amp;gt; of less than 18.3 mW. Meanwhile, the SHTF sensor has an accuracy of ±0.04 m/s within the linear flow range of 0–2.5 m/s, which is capable of indoor airflow measurement even in humid environment. For water flow, the SHTF sensor gains a sensitivity &amp;lt;inline-formula&amp;gt; &amp;lt;tex-math notation=&amp;quot;LaTeX&amp;quot;&amp;gt;${S}_{W} ^{ \ast }$ &amp;lt;/tex-math&amp;gt;&amp;lt;/inline-formula&amp;gt; of 6.42 V/(m/s)/W with the configured calorimetric setup, while its sensitivity increased by more than 4X as it assigned as anemometric for a Nusselt number &amp;lt;italic&amp;gt;Nu&amp;lt;/italic&amp;gt; of 0–9. Therefore, this highly sensitive CMOS MEMS SHTF sensor with the coated Parylene-C will be a very useful device for both gas and liquid flow measurement in heating, ventilation, and air conditioning (HVAC) and microfluidic applications.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="105598813"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="105598813"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 105598813; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=105598813]").text(description); $(".js-view-count[data-work-id=105598813]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 105598813; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='105598813']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=105598813]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":105598813,"title":"A CMOS MEMS Thermal Flow Sensor for Gas and Liquid With Parylene-C Coating","translated_title":"","metadata":{"abstract":"This brief presents a self-heated thermoresistive flow (SHTF) sensor for both gas and liquid with Parylene-C coating using a 0.35-\u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$ \\mu \\text{m}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt; CMOS MEMS technology. For N\u0026lt;sub\u0026gt;2\u0026lt;/sub\u0026gt; flow, the developed SHTF sensor can achieve the highest normalized sensitivity (\u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$S^{ \\ast }{ =}\\,\\, {S}_{c} / {P}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt;) of 171 mV/(m/s)/W with its power consumption \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;${P}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt; of less than 18.3 mW. Meanwhile, the SHTF sensor has an accuracy of ±0.04 m/s within the linear flow range of 0–2.5 m/s, which is capable of indoor airflow measurement even in humid environment. For water flow, the SHTF sensor gains a sensitivity \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;${S}_{W} ^{ \\ast }$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt; of 6.42 V/(m/s)/W with the configured calorimetric setup, while its sensitivity increased by more than 4X as it assigned as anemometric for a Nusselt number \u0026lt;italic\u0026gt;Nu\u0026lt;/italic\u0026gt; of 0–9. Therefore, this highly sensitive CMOS MEMS SHTF sensor with the coated Parylene-C will be a very useful device for both gas and liquid flow measurement in heating, ventilation, and air conditioning (HVAC) and microfluidic applications.","publisher":"Institute of Electrical and Electronics Engineers (IEEE)","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"IEEE Transactions on Electron Devices"},"translated_abstract":"This brief presents a self-heated thermoresistive flow (SHTF) sensor for both gas and liquid with Parylene-C coating using a 0.35-\u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$ \\mu \\text{m}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt; CMOS MEMS technology. For N\u0026lt;sub\u0026gt;2\u0026lt;/sub\u0026gt; flow, the developed SHTF sensor can achieve the highest normalized sensitivity (\u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$S^{ \\ast }{ =}\\,\\, {S}_{c} / {P}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt;) of 171 mV/(m/s)/W with its power consumption \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;${P}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt; of less than 18.3 mW. Meanwhile, the SHTF sensor has an accuracy of ±0.04 m/s within the linear flow range of 0–2.5 m/s, which is capable of indoor airflow measurement even in humid environment. For water flow, the SHTF sensor gains a sensitivity \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;${S}_{W} ^{ \\ast }$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt; of 6.42 V/(m/s)/W with the configured calorimetric setup, while its sensitivity increased by more than 4X as it assigned as anemometric for a Nusselt number \u0026lt;italic\u0026gt;Nu\u0026lt;/italic\u0026gt; of 0–9. Therefore, this highly sensitive CMOS MEMS SHTF sensor with the coated Parylene-C will be a very useful device for both gas and liquid flow measurement in heating, ventilation, and air conditioning (HVAC) and microfluidic applications.","internal_url":"https://www.academia.edu/105598813/A_CMOS_MEMS_Thermal_Flow_Sensor_for_Gas_and_Liquid_With_Parylene_C_Coating","translated_internal_url":"","created_at":"2023-08-14T18:44:30.757-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33508741,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_CMOS_MEMS_Thermal_Flow_Sensor_for_Gas_and_Liquid_With_Parylene_C_Coating","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"This brief presents a self-heated thermoresistive flow (SHTF) sensor for both gas and liquid with Parylene-C coating using a 0.35-\u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$ \\mu \\text{m}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt; CMOS MEMS technology. For N\u0026lt;sub\u0026gt;2\u0026lt;/sub\u0026gt; flow, the developed SHTF sensor can achieve the highest normalized sensitivity (\u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$S^{ \\ast }{ =}\\,\\, {S}_{c} / {P}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt;) of 171 mV/(m/s)/W with its power consumption \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;${P}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt; of less than 18.3 mW. Meanwhile, the SHTF sensor has an accuracy of ±0.04 m/s within the linear flow range of 0–2.5 m/s, which is capable of indoor airflow measurement even in humid environment. For water flow, the SHTF sensor gains a sensitivity \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;${S}_{W} ^{ \\ast }$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt; of 6.42 V/(m/s)/W with the configured calorimetric setup, while its sensitivity increased by more than 4X as it assigned as anemometric for a Nusselt number \u0026lt;italic\u0026gt;Nu\u0026lt;/italic\u0026gt; of 0–9. Therefore, this highly sensitive CMOS MEMS SHTF sensor with the coated Parylene-C will be a very useful device for both gas and liquid flow measurement in heating, ventilation, and air conditioning (HVAC) and microfluidic applications.","owner":{"id":33508741,"first_name":"Yi-Kuen","middle_initials":null,"last_name":"Lee","page_name":"YiKuenLee","domain_name":"hkust","created_at":"2015-08-01T03:12:59.639-07:00","display_name":"Yi-Kuen Lee","url":"https://hkust.academia.edu/YiKuenLee"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":23818,"name":"Microelectromechanical systems","url":"https://www.academia.edu/Documents/in/Microelectromechanical_systems"},{"id":93150,"name":"Coating","url":"https://www.academia.edu/Documents/in/Coating"},{"id":202261,"name":"Cmos","url":"https://www.academia.edu/Documents/in/Cmos"},{"id":408433,"name":"Parylene","url":"https://www.academia.edu/Documents/in/Parylene"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"}],"urls":[{"id":33426917,"url":"http://xplorestaging.ieee.org/ielx7/16/9332190/09286894.pdf?arnumber=9286894"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-105598813-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="105598811"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/105598811/Comparative_study_of_the_viscoelasticity_of_parylene_thin_films_for_MEMS_using_Nano_DMA_and_Molecular_Dynamics"><img alt="Research paper thumbnail of Comparative study of the viscoelasticity of parylene thin films for MEMS using Nano-DMA and Molecular Dynamics" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Comparative study of the viscoelasticity of parylene thin films for MEMS using Nano-DMA and Molecular Dynamics</div><div class="wp-workCard_item"><span>2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS)</span><span>, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We present a comparative study of the viscoelasticity of parylene C (PPXC) by using Nano-DMA (Dyn...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We present a comparative study of the viscoelasticity of parylene C (PPXC) by using Nano-DMA (Dynamical Mechanical Analysis) and Molecular Dynamics (MD) simulations. By applying sinusoidal loading on PPXC films at different temperatures and frequencies, the complex modulus and glass transition temperature (Tg) of the PPXC were obtained. The predicted Tg determined from the temperature-dependent density change in the MD model is consistent with the results in our measurements and previous works. Furthermore, with Time-Temperature Superposition Principle (TTSP), we successfully determined the master curve of PPXC, for the first time, which is critical for the parylene reliability study of bio-MEMS devices.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="105598811"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="105598811"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 105598811; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=105598811]").text(description); $(".js-view-count[data-work-id=105598811]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 105598811; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='105598811']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=105598811]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":105598811,"title":"Comparative study of the viscoelasticity of parylene thin films for MEMS using Nano-DMA and Molecular Dynamics","translated_title":"","metadata":{"abstract":"We present a comparative study of the viscoelasticity of parylene C (PPXC) by using Nano-DMA (Dynamical Mechanical Analysis) and Molecular Dynamics (MD) simulations. By applying sinusoidal loading on PPXC films at different temperatures and frequencies, the complex modulus and glass transition temperature (Tg) of the PPXC were obtained. The predicted Tg determined from the temperature-dependent density change in the MD model is consistent with the results in our measurements and previous works. Furthermore, with Time-Temperature Superposition Principle (TTSP), we successfully determined the master curve of PPXC, for the first time, which is critical for the parylene reliability study of bio-MEMS devices.","publisher":"IEEE","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS)"},"translated_abstract":"We present a comparative study of the viscoelasticity of parylene C (PPXC) by using Nano-DMA (Dynamical Mechanical Analysis) and Molecular Dynamics (MD) simulations. By applying sinusoidal loading on PPXC films at different temperatures and frequencies, the complex modulus and glass transition temperature (Tg) of the PPXC were obtained. The predicted Tg determined from the temperature-dependent density change in the MD model is consistent with the results in our measurements and previous works. Furthermore, with Time-Temperature Superposition Principle (TTSP), we successfully determined the master curve of PPXC, for the first time, which is critical for the parylene reliability study of bio-MEMS devices.","internal_url":"https://www.academia.edu/105598811/Comparative_study_of_the_viscoelasticity_of_parylene_thin_films_for_MEMS_using_Nano_DMA_and_Molecular_Dynamics","translated_internal_url":"","created_at":"2023-08-14T18:44:30.346-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33508741,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Comparative_study_of_the_viscoelasticity_of_parylene_thin_films_for_MEMS_using_Nano_DMA_and_Molecular_Dynamics","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"We present a comparative study of the viscoelasticity of parylene C (PPXC) by using Nano-DMA (Dynamical Mechanical Analysis) and Molecular Dynamics (MD) simulations. By applying sinusoidal loading on PPXC films at different temperatures and frequencies, the complex modulus and glass transition temperature (Tg) of the PPXC were obtained. The predicted Tg determined from the temperature-dependent density change in the MD model is consistent with the results in our measurements and previous works. Furthermore, with Time-Temperature Superposition Principle (TTSP), we successfully determined the master curve of PPXC, for the first time, which is critical for the parylene reliability study of bio-MEMS devices.","owner":{"id":33508741,"first_name":"Yi-Kuen","middle_initials":null,"last_name":"Lee","page_name":"YiKuenLee","domain_name":"hkust","created_at":"2015-08-01T03:12:59.639-07:00","display_name":"Yi-Kuen Lee","url":"https://hkust.academia.edu/YiKuenLee"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":2383,"name":"Viscoelasticity","url":"https://www.academia.edu/Documents/in/Viscoelasticity"},{"id":23818,"name":"Microelectromechanical systems","url":"https://www.academia.edu/Documents/in/Microelectromechanical_systems"},{"id":35638,"name":"Molecular Dynamics","url":"https://www.academia.edu/Documents/in/Molecular_Dynamics"},{"id":49651,"name":"Nano","url":"https://www.academia.edu/Documents/in/Nano"},{"id":282351,"name":"Glass Transition","url":"https://www.academia.edu/Documents/in/Glass_Transition"},{"id":408433,"name":"Parylene","url":"https://www.academia.edu/Documents/in/Parylene"},{"id":1431635,"name":"Dynamic Mechanical Analysis","url":"https://www.academia.edu/Documents/in/Dynamic_Mechanical_Analysis"},{"id":2175732,"name":"Superposition principle","url":"https://www.academia.edu/Documents/in/Superposition_principle"}],"urls":[{"id":33426916,"url":"http://xplorestaging.ieee.org/ielx7/7852393/7863316/07863444.pdf?arnumber=7863444"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-105598811-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="105598810"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/105598810/Temperature_Effect_on_Single_Cell_Electroendocytosis_Using_a_Cell_Array_Chip_with_Micro_Temperature_Sensors_and_a_Peltier_Thermoelectric_Device"><img alt="Research paper thumbnail of Temperature Effect on Single-Cell Electroendocytosis Using a Cell-Array Chip with Micro Temperature Sensors and a Peltier Thermoelectric Device" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Temperature Effect on Single-Cell Electroendocytosis Using a Cell-Array Chip with Micro Temperature Sensors and a Peltier Thermoelectric Device</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="105598810"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="105598810"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 105598810; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=105598810]").text(description); $(".js-view-count[data-work-id=105598810]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 105598810; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='105598810']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=105598810]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":105598810,"title":"Temperature Effect on Single-Cell Electroendocytosis Using a Cell-Array Chip with Micro Temperature Sensors and a Peltier Thermoelectric Device","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2010,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/105598810/Temperature_Effect_on_Single_Cell_Electroendocytosis_Using_a_Cell_Array_Chip_with_Micro_Temperature_Sensors_and_a_Peltier_Thermoelectric_Device","translated_internal_url":"","created_at":"2023-08-14T18:44:30.049-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33508741,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Temperature_Effect_on_Single_Cell_Electroendocytosis_Using_a_Cell_Array_Chip_with_Micro_Temperature_Sensors_and_a_Peltier_Thermoelectric_Device","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":33508741,"first_name":"Yi-Kuen","middle_initials":null,"last_name":"Lee","page_name":"YiKuenLee","domain_name":"hkust","created_at":"2015-08-01T03:12:59.639-07:00","display_name":"Yi-Kuen Lee","url":"https://hkust.academia.edu/YiKuenLee"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":44299,"name":"Optoelectronics","url":"https://www.academia.edu/Documents/in/Optoelectronics"},{"id":335712,"name":"Thermoelectric Cooling","url":"https://www.academia.edu/Documents/in/Thermoelectric_Cooling"},{"id":1574414,"name":"Thermoelectric effect","url":"https://www.academia.edu/Documents/in/Thermoelectric_effect"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-105598810-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="105598808"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/105598808/Characterization_of_an_Integrated_Self_Sensing_Submicron_Bubble_Actuator"><img alt="Research paper thumbnail of Characterization of an Integrated Self-Sensing Submicron Bubble Actuator" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Characterization of an Integrated Self-Sensing Submicron Bubble Actuator</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="105598808"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="105598808"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 105598808; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=105598808]").text(description); $(".js-view-count[data-work-id=105598808]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 105598808; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='105598808']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=105598808]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":105598808,"title":"Characterization of an Integrated Self-Sensing Submicron Bubble Actuator","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2004,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/105598808/Characterization_of_an_Integrated_Self_Sensing_Submicron_Bubble_Actuator","translated_internal_url":"","created_at":"2023-08-14T18:44:29.804-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33508741,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Characterization_of_an_Integrated_Self_Sensing_Submicron_Bubble_Actuator","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":33508741,"first_name":"Yi-Kuen","middle_initials":null,"last_name":"Lee","page_name":"YiKuenLee","domain_name":"hkust","created_at":"2015-08-01T03:12:59.639-07:00","display_name":"Yi-Kuen Lee","url":"https://hkust.academia.edu/YiKuenLee"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":152114,"name":"Bubble","url":"https://www.academia.edu/Documents/in/Bubble"},{"id":334480,"name":"Actuator","url":"https://www.academia.edu/Documents/in/Actuator"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-105598808-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="105598807"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/105598807/A_Wafer_Level_Packaged_CMOS_MEMS_Pirani_Vacuum_Gauge"><img alt="Research paper thumbnail of A Wafer-Level Packaged CMOS MEMS Pirani Vacuum Gauge" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">A Wafer-Level Packaged CMOS MEMS Pirani Vacuum Gauge</div><div class="wp-workCard_item"><span>IEEE Transactions on Electron Devices</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this article, we report a wafer-level packaged Pirani vacuum gauge using the proprietary Inven...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this article, we report a wafer-level packaged Pirani vacuum gauge using the proprietary InvenSense CMOS MEMS technology. The micro Pirani vacuum gauge features three serpentine-shaped molybdenum thermistors on the suspended silicon-on-insulator (SOI) bridges, while the wiring gap of each serpentine-shaped silicon microbridge is 1.6 &amp;lt;inline-formula&amp;gt; &amp;lt;tex-math notation=&amp;quot;LaTeX&amp;quot;&amp;gt;${ {\mu }}\text{m}$ &amp;lt;/tex-math&amp;gt;&amp;lt;/inline-formula&amp;gt;. For the vacuum range of &amp;lt;inline-formula&amp;gt; &amp;lt;tex-math notation=&amp;quot;LaTeX&amp;quot;&amp;gt;$5\times 10^{-{4}}$ &amp;lt;/tex-math&amp;gt;&amp;lt;/inline-formula&amp;gt;–760 Torr, the CMOS MEMS Pirani gauge configured with a constant temperature interface circuit achieves a sensitivity of 0.414 V/Torr in a very fine vacuum regime, while its heating power is less than 21.3 mW. Moreover, the measured output of the micro Pirani gauge shows good agreement with a semi-empirical model, while the model predicts that the proposed Pirani gauge can measure a vacuum pressure as low as &amp;lt;inline-formula&amp;gt; &amp;lt;tex-math notation=&amp;quot;LaTeX&amp;quot;&amp;gt;$2.6\times 10^{-{4}}$ &amp;lt;/tex-math&amp;gt;&amp;lt;/inline-formula&amp;gt; Torr. The performance achieved by this Pirani vacuum gauge combined with its high level of integration makes it a promising Internet of Things (IoT) sensing node for vacuum monitoring in the industry.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="105598807"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="105598807"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 105598807; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=105598807]").text(description); $(".js-view-count[data-work-id=105598807]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 105598807; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='105598807']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=105598807]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":105598807,"title":"A Wafer-Level Packaged CMOS MEMS Pirani Vacuum Gauge","translated_title":"","metadata":{"abstract":"In this article, we report a wafer-level packaged Pirani vacuum gauge using the proprietary InvenSense CMOS MEMS technology. The micro Pirani vacuum gauge features three serpentine-shaped molybdenum thermistors on the suspended silicon-on-insulator (SOI) bridges, while the wiring gap of each serpentine-shaped silicon microbridge is 1.6 \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;${ {\\mu }}\\text{m}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt;. For the vacuum range of \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$5\\times 10^{-{4}}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt;–760 Torr, the CMOS MEMS Pirani gauge configured with a constant temperature interface circuit achieves a sensitivity of 0.414 V/Torr in a very fine vacuum regime, while its heating power is less than 21.3 mW. Moreover, the measured output of the micro Pirani gauge shows good agreement with a semi-empirical model, while the model predicts that the proposed Pirani gauge can measure a vacuum pressure as low as \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$2.6\\times 10^{-{4}}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt; Torr. The performance achieved by this Pirani vacuum gauge combined with its high level of integration makes it a promising Internet of Things (IoT) sensing node for vacuum monitoring in the industry.","publisher":"Institute of Electrical and Electronics Engineers (IEEE)","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"IEEE Transactions on Electron Devices"},"translated_abstract":"In this article, we report a wafer-level packaged Pirani vacuum gauge using the proprietary InvenSense CMOS MEMS technology. The micro Pirani vacuum gauge features three serpentine-shaped molybdenum thermistors on the suspended silicon-on-insulator (SOI) bridges, while the wiring gap of each serpentine-shaped silicon microbridge is 1.6 \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;${ {\\mu }}\\text{m}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt;. For the vacuum range of \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$5\\times 10^{-{4}}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt;–760 Torr, the CMOS MEMS Pirani gauge configured with a constant temperature interface circuit achieves a sensitivity of 0.414 V/Torr in a very fine vacuum regime, while its heating power is less than 21.3 mW. Moreover, the measured output of the micro Pirani gauge shows good agreement with a semi-empirical model, while the model predicts that the proposed Pirani gauge can measure a vacuum pressure as low as \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$2.6\\times 10^{-{4}}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt; Torr. The performance achieved by this Pirani vacuum gauge combined with its high level of integration makes it a promising Internet of Things (IoT) sensing node for vacuum monitoring in the industry.","internal_url":"https://www.academia.edu/105598807/A_Wafer_Level_Packaged_CMOS_MEMS_Pirani_Vacuum_Gauge","translated_internal_url":"","created_at":"2023-08-14T18:44:29.498-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33508741,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_Wafer_Level_Packaged_CMOS_MEMS_Pirani_Vacuum_Gauge","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"In this article, we report a wafer-level packaged Pirani vacuum gauge using the proprietary InvenSense CMOS MEMS technology. The micro Pirani vacuum gauge features three serpentine-shaped molybdenum thermistors on the suspended silicon-on-insulator (SOI) bridges, while the wiring gap of each serpentine-shaped silicon microbridge is 1.6 \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;${ {\\mu }}\\text{m}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt;. For the vacuum range of \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$5\\times 10^{-{4}}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt;–760 Torr, the CMOS MEMS Pirani gauge configured with a constant temperature interface circuit achieves a sensitivity of 0.414 V/Torr in a very fine vacuum regime, while its heating power is less than 21.3 mW. Moreover, the measured output of the micro Pirani gauge shows good agreement with a semi-empirical model, while the model predicts that the proposed Pirani gauge can measure a vacuum pressure as low as \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$2.6\\times 10^{-{4}}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt; Torr. The performance achieved by this Pirani vacuum gauge combined with its high level of integration makes it a promising Internet of Things (IoT) sensing node for vacuum monitoring in the industry.","owner":{"id":33508741,"first_name":"Yi-Kuen","middle_initials":null,"last_name":"Lee","page_name":"YiKuenLee","domain_name":"hkust","created_at":"2015-08-01T03:12:59.639-07:00","display_name":"Yi-Kuen Lee","url":"https://hkust.academia.edu/YiKuenLee"},"attachments":[],"research_interests":[{"id":202261,"name":"Cmos","url":"https://www.academia.edu/Documents/in/Cmos"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"}],"urls":[{"id":33426913,"url":"http://xplorestaging.ieee.org/ielx7/16/9546692/09513470.pdf?arnumber=9513470"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-105598807-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="105598806"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/105598806/A_Three_Dimensional_Integrated_Micro_Calorimetric_Flow_Sensor_in_CMOS_MEMS_Technology"><img alt="Research paper thumbnail of A Three-Dimensional Integrated Micro Calorimetric Flow Sensor in CMOS MEMS Technology" class="work-thumbnail" src="https://attachments.academia-assets.com/105008457/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/105598806/A_Three_Dimensional_Integrated_Micro_Calorimetric_Flow_Sensor_in_CMOS_MEMS_Technology">A Three-Dimensional Integrated Micro Calorimetric Flow Sensor in CMOS MEMS Technology</a></div><div class="wp-workCard_item"><span>IEEE Sensors Letters</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This article presents a 3-D integrated molybdenum (Mo) thermoresistive microcalorimetric flow sen...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This article presents a 3-D integrated molybdenum (Mo) thermoresistive microcalorimetric flow sensor in a 0.18μm CMOS MEMS technology. The sensor consists of a MEMS structure which is fabricated inside a sealed microchannel and a constant temperature control circuit implemented on the CMOS wafer. The MEMS structure and the CMOS circuit are 3-D integrated at the wafer level. For the N 2 gas flow, the proposed flow sensor achieves a high sensitivity of 0.71 mV/(m/s) and a wide bidirectional detection ability of −26-26 m/s. Moreover, an equivalent circuit model is proposed in this article, which depicts the nonlinear output/overheated temperature (V out / T h) sensor response to the input gas flow. This model would be an efficient tool for the design and optimization of high-performance system-on-chip calorimetric flow sensors.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="24531a9ca5e7bd5f267d17f857bc48e0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:105008457,&quot;asset_id&quot;:105598806,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/105008457/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="105598806"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="105598806"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 105598806; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=105598806]").text(description); $(".js-view-count[data-work-id=105598806]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 105598806; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='105598806']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "24531a9ca5e7bd5f267d17f857bc48e0" } } $('.js-work-strip[data-work-id=105598806]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":105598806,"title":"A Three-Dimensional Integrated Micro Calorimetric Flow Sensor in CMOS MEMS Technology","translated_title":"","metadata":{"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","grobid_abstract":"This article presents a 3-D integrated molybdenum (Mo) thermoresistive microcalorimetric flow sensor in a 0.18μm CMOS MEMS technology. The sensor consists of a MEMS structure which is fabricated inside a sealed microchannel and a constant temperature control circuit implemented on the CMOS wafer. The MEMS structure and the CMOS circuit are 3-D integrated at the wafer level. For the N 2 gas flow, the proposed flow sensor achieves a high sensitivity of 0.71 mV/(m/s) and a wide bidirectional detection ability of −26-26 m/s. Moreover, an equivalent circuit model is proposed in this article, which depicts the nonlinear output/overheated temperature (V out / T h) sensor response to the input gas flow. This model would be an efficient tool for the design and optimization of high-performance system-on-chip calorimetric flow sensors.","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"IEEE Sensors Letters","grobid_abstract_attachment_id":105008457},"translated_abstract":null,"internal_url":"https://www.academia.edu/105598806/A_Three_Dimensional_Integrated_Micro_Calorimetric_Flow_Sensor_in_CMOS_MEMS_Technology","translated_internal_url":"","created_at":"2023-08-14T18:44:29.293-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33508741,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":105008457,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/105008457/thumbnails/1.jpg","file_name":"A_203D_20Integrated_20Micro_20Calorimetric_20Flow_20Sensor_20in_20CMOS_20MEMS_20Technology.pdf","download_url":"https://www.academia.edu/attachments/105008457/download_file","bulk_download_file_name":"A_Three_Dimensional_Integrated_Micro_Cal.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/105008457/A_203D_20Integrated_20Micro_20Calorimetric_20Flow_20Sensor_20in_20CMOS_20MEMS_20Technology-libre.pdf?1692069321=\u0026response-content-disposition=attachment%3B+filename%3DA_Three_Dimensional_Integrated_Micro_Cal.pdf\u0026Expires=1743516213\u0026Signature=LwlPSfxgw7PbXxrv4JaggY-L2noQvtHGmr-lvtFGvLKiSC9qCz-G8ITw2791CIwt4AlhbvLuUjG0EKe~rLoROTaOgnWa4UZDzAssm-v~CXbII1wXLGvYeg434nnRPiUBq4wrc2hZl74rNbwYb0Zj8zDclW94IHv2JjMOEnGv43PsK-P3Emcq~EGyPWWiksH91qQCWPiMr4VBZnUKsk-2pjs-ES7vHpL-06nq~yZOwnICCtQ0Otu3eOBZuSQ-nnQRICb-32nEkLnmAjS5z~erByPJto~rmCJ5WWFBdWER3kfETFZSTHmbaFrjW6grqLlbUKFnnw5ADSOY5k4UD9YVnQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_Three_Dimensional_Integrated_Micro_Calorimetric_Flow_Sensor_in_CMOS_MEMS_Technology","translated_slug":"","page_count":4,"language":"en","content_type":"Work","summary":"This article presents a 3-D integrated molybdenum (Mo) thermoresistive microcalorimetric flow sensor in a 0.18μm CMOS MEMS technology. The sensor consists of a MEMS structure which is fabricated inside a sealed microchannel and a constant temperature control circuit implemented on the CMOS wafer. The MEMS structure and the CMOS circuit are 3-D integrated at the wafer level. For the N 2 gas flow, the proposed flow sensor achieves a high sensitivity of 0.71 mV/(m/s) and a wide bidirectional detection ability of −26-26 m/s. Moreover, an equivalent circuit model is proposed in this article, which depicts the nonlinear output/overheated temperature (V out / T h) sensor response to the input gas flow. This model would be an efficient tool for the design and optimization of high-performance system-on-chip calorimetric flow sensors.","owner":{"id":33508741,"first_name":"Yi-Kuen","middle_initials":null,"last_name":"Lee","page_name":"YiKuenLee","domain_name":"hkust","created_at":"2015-08-01T03:12:59.639-07:00","display_name":"Yi-Kuen Lee","url":"https://hkust.academia.edu/YiKuenLee"},"attachments":[{"id":105008457,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/105008457/thumbnails/1.jpg","file_name":"A_203D_20Integrated_20Micro_20Calorimetric_20Flow_20Sensor_20in_20CMOS_20MEMS_20Technology.pdf","download_url":"https://www.academia.edu/attachments/105008457/download_file","bulk_download_file_name":"A_Three_Dimensional_Integrated_Micro_Cal.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/105008457/A_203D_20Integrated_20Micro_20Calorimetric_20Flow_20Sensor_20in_20CMOS_20MEMS_20Technology-libre.pdf?1692069321=\u0026response-content-disposition=attachment%3B+filename%3DA_Three_Dimensional_Integrated_Micro_Cal.pdf\u0026Expires=1743516213\u0026Signature=LwlPSfxgw7PbXxrv4JaggY-L2noQvtHGmr-lvtFGvLKiSC9qCz-G8ITw2791CIwt4AlhbvLuUjG0EKe~rLoROTaOgnWa4UZDzAssm-v~CXbII1wXLGvYeg434nnRPiUBq4wrc2hZl74rNbwYb0Zj8zDclW94IHv2JjMOEnGv43PsK-P3Emcq~EGyPWWiksH91qQCWPiMr4VBZnUKsk-2pjs-ES7vHpL-06nq~yZOwnICCtQ0Otu3eOBZuSQ-nnQRICb-32nEkLnmAjS5z~erByPJto~rmCJ5WWFBdWER3kfETFZSTHmbaFrjW6grqLlbUKFnnw5ADSOY5k4UD9YVnQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":23818,"name":"Microelectromechanical systems","url":"https://www.academia.edu/Documents/in/Microelectromechanical_systems"},{"id":202261,"name":"Cmos","url":"https://www.academia.edu/Documents/in/Cmos"}],"urls":[{"id":33426912,"url":"http://xplorestaging.ieee.org/ielx7/7782634/8630840/08613869.pdf?arnumber=8613869"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-105598806-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="105598805"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/105598805/Evaluation_of_thermal_environment_by_coupling_CFD_analysis_and_wireless_sensor_measurements_of_a_full_scale_room_with_cooling_system"><img alt="Research paper thumbnail of Evaluation of thermal environment by coupling CFD analysis and wireless-sensor measurements of a full-scale room with cooling system" class="work-thumbnail" src="https://attachments.academia-assets.com/105008458/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/105598805/Evaluation_of_thermal_environment_by_coupling_CFD_analysis_and_wireless_sensor_measurements_of_a_full_scale_room_with_cooling_system">Evaluation of thermal environment by coupling CFD analysis and wireless-sensor measurements of a full-scale room with cooling system</a></div><div class="wp-workCard_item"><span>Sustainable Cities and Society</span><span>, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">HVAC systems are utilized to construct a thermally comfortable environment for occupants. As peop...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">HVAC systems are utilized to construct a thermally comfortable environment for occupants. As people spend more than 90% of time indoors, thermal conditions of indoor environment constructed by HVAC systems demand precise assessment. Predicted mean vote (PMV), a synthesized index, can reveal thermal conditions by evaluating occupants&#39; thermal sensations. Four environmental parameters affecting PMV: air temperature, air speed, radiant temperature and relative humidity. This study integrates CFD simulations and wireless-sensor measurements to assess distributions of PMV considering radiation models. The distributions of environmental parameters: velocity, temperature, radiant temperature, inside an office room with fan coil unit (FCU) are firstly presented. Based on these distributions, spatial profiles of PMV are obtained to intuitively illustrate thermal conditions. Combined with experimental database collected by thermal-flow wireless-sensors, CFD simulations offer detailed predictions of indoor airflow and thermal parameters. The mean temperature at occupied zone is 23.3°C agreeing well with set-point temperature 23°C. Furthermore, velocity values are below draft sensation limitations. The distribution of PMV indicates the cooling system is capable to construct thermally comfortable environment for occupants as well as the draft sensation conforming the satisfactory status. The research outputs provide useful information for designers of cooling system to build a comfortable indoor environment.</span></div><div class="wp-workCard_item"><div class="carousel-container carousel-container--sm" id="profile-work-105598805-figures"><div class="prev-slide-container js-prev-button-container"><button aria-label="Previous" class="carousel-navigation-button js-profile-work-105598805-figures-prev"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_back_ios</span></button></div><div class="slides-container js-slides-container"><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28530884/table-1-the-setting-of-boundary-conditions-of-the-target"><img alt="The setting of boundary conditions of the target room. Table 1 in the Plane X= 1.3m and Plane Y=1.2m are demonstrated in Fig. 10. " class="figure-slide-image" src="https://figures.academia-assets.com/105008458/table_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28530892/table-2-evaluation-of-thermal-environment-by-coupling-cfd"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/105008458/table_002.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28530725/figure-1-the-flow-chart-of-the-evaluation-process-the-whole"><img alt="Fig. 1. The flow chart of the evaluation process. The whole evaluation process is illustrated as Fig. 1, which involves two parts: numerical simulation and experimental measurement. There are four environmental parameters, i.e., air temperature, air velocity, radiant temperature and relative humidity affecting thermal comfort indices. The prediction of these parameters integrate measurements and CFD simulations. With aid of wireless sensors, the indoor humidity level " class="figure-slide-image" src="https://figures.academia-assets.com/105008458/figure_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28530734/figure-2-physical-model-of-mechanically-ventilated-office"><img alt="Fig. 2. Physical model of mechanically ventilated office room. " class="figure-slide-image" src="https://figures.academia-assets.com/105008458/figure_002.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28530744/figure-3-sensor-collection-system-of-the-target-room"><img alt="Fig. 3. Sensor collection system of the target room. " class="figure-slide-image" src="https://figures.academia-assets.com/105008458/figure_003.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28530752/figure-5-comparisons-of-temperature-profiles-between-cfd"><img alt="Fig. 5. Comparisons of temperature profiles between CFD simulations and sensor data. The velocity profiles along the vertical direction at four positions (A, B, C, and D) are compared in Fig. 8. The velocity curves at these four positions present similar changing patterns with relevant crests along the room height. The positions and velocity values of these peaks are getting higher as the distance closes to the FCU, which are marked as Pa, Pg, Pc, and Pp in Fig. 8. Such varying trends are due to the effect of supply jet from FCU (i.e., 45° beveled down the ceiling) as the con- sumption of jet momentum moving away from the FCU outlet (Srebric Though some discrepancies at Positions A observed at the floor level, the general trend of velocity of CFD simulations is basically in agree- ment with that of sensor data. Concerning the discrepancies of velocity fields nearby Positions A, which are at the end of the supply jet and the thermal interference of occupants, the airflows in such areas are rela- tively complicated which may not be captured by both simulation and sensors and, thus lead to the discrepancies between measurements and predictions. The relative errors between simulations and sensor data at Position A is 26.3%. Different from the monitoring of temperature, the measurement of velocity is more easily interrupted by the room con- ditions and the occupants. Positions C and D are within the effective region of the supply jet, consequently the predicted velocities agree " class="figure-slide-image" src="https://figures.academia-assets.com/105008458/figure_004.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28530767/figure-4-the-experimental-arrangement-of-wireless-sensors"><img alt="Fig. 4. The experimental arrangement of wireless sensors. " class="figure-slide-image" src="https://figures.academia-assets.com/105008458/figure_005.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28530779/figure-6-the-temperature-distributions-predicted-by-cfd"><img alt="Fig. 6. The temperature distributions predicted by CFD simulations at four positions. " class="figure-slide-image" src="https://figures.academia-assets.com/105008458/figure_006.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28530793/figure-7-comparisons-of-velocity-profiles-between-sensor"><img alt="Fig. 7. Comparisons of velocity profiles between sensor data and CFD simulations. Compared with other environmental parameters, the effect of hu- midity level on the global thermal comfort is a little smaller. The non- uniformity of relative humidity can be neglected except there is an open water generation source inside the room. In addition, the water gen- eration ratio of occupants under office activities is very small, the in- fluence on whole indoor humidity level can be omitted. The humidity level is always associated with the air temperature to describe the specific air condition. The variations of relative humidity inside the test facilities display in Fig. 9, which presents that the values of relative humidity vary between 58% and 68% with a periodic change. The mean value of the relative humidity is 64.5%, which is used to evaluate " class="figure-slide-image" src="https://figures.academia-assets.com/105008458/figure_007.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28530800/figure-8-the-velocity-distributions-predicted-by-simulation"><img alt="Fig. 8. The velocity distributions predicted by simulation at four positions. " class="figure-slide-image" src="https://figures.academia-assets.com/105008458/figure_008.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28530807/figure-9-relative-humidity-variations-inside-wireless-room"><img alt="Fig. 9. Relative humidity variations inside wireless room sensors. " class="figure-slide-image" src="https://figures.academia-assets.com/105008458/figure_009.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28530810/figure-10-the-mesh-in-the-middle-planes-of-the-target-room"><img alt="Fig. 10. The mesh schemes in the middle planes of the target room. Before conducting CFD simulation, a grid needs to be generated firstly based on the physical model, and thus all partial differential equations (PDEs) can be transformed into discretized functions to proceed the iterations based on each grid point. Generating a reason- able grid is critically essential for a successful and accurate numerical simulation for the gird quality affects both the accuracy of numerical results and the computing costs. Too coarse mesh cannot get accurate and detailed information of airflow profiles. Too fine mesh may cause much computing power and costs. In this study, the mesh scheme is constructed with the Hexa-structured grid consisting of 1640,000 hex- ahedral elements via balancing the accuracy and computational capa- city. The grid is refined near the area of FCU supply inlet, return vent, and the exhaust vent where the flow patterns are relatively complex and sensitive to the mesh scheme. Furthermore, the grid is refined around the computers and occupants, where the heat convection and thermal radiation need to be elaborately concerned. The mesh schemes " class="figure-slide-image" src="https://figures.academia-assets.com/105008458/figure_010.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28530823/figure-11-the-temperature-contour-in-horizontal-plane-of"><img alt="Fig. 11. The temperature contour in horizontal Plane of Y = 1.1 m (seating head level). " class="figure-slide-image" src="https://figures.academia-assets.com/105008458/figure_011.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28530840/figure-12-the-temperature-contour-in-vertical-central-plane"><img alt="Fig. 12. The temperature contour in vertical, central Plane of X = 1.35 m. " class="figure-slide-image" src="https://figures.academia-assets.com/105008458/figure_012.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28530854/figure-13-the-air-velocity-contour-at-plane-of"><img alt="Fig. 13. The air velocity contour at Plane of Y = 1.1m. " class="figure-slide-image" src="https://figures.academia-assets.com/105008458/figure_013.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28530865/figure-15-radiant-temperature-at-plane-of-radiant"><img alt="Fig. 15. (a) Radiant temperature at Plane of X = 1.35 m. (b) Radiant temperature at Plane of Y = 1.1m where M is metabolic rate, W/m; W, machinal work, generally con- sidered as 0, W/m?; tg, air temperature, °C; Pa, water vapor pressure, Pa; @, the relative humidity; f,, clothing area factor, clo; t., surface temperature of the clothing, °C; h,, heat transfer coefficient by forced convection, W/m2°C; t,, mean radiant temperature, °C. In our study, the " class="figure-slide-image" src="https://figures.academia-assets.com/105008458/figure_014.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28530873/figure-14-the-air-velocity-contour-at-plane"><img alt="Fig. 14. The air velocity contour at Plane X = 1.35m. " class="figure-slide-image" src="https://figures.academia-assets.com/105008458/figure_015.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28530881/figure-16-pmv-values-at-plane-of-pmv-values-at-plane-of"><img alt="Fig. 16. (a)PMV values at Plane of Y = 1.1m. (b) PMV values at Plane of Y = 0.2m. " class="figure-slide-image" src="https://figures.academia-assets.com/105008458/figure_016.jpg" /></a></figure></div><div class="next-slide-container js-next-button-container"><button aria-label="Next" class="carousel-navigation-button js-profile-work-105598805-figures-next"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_forward_ios</span></button></div></div></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="72b591f3da45e8873df355772590a02a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:105008458,&quot;asset_id&quot;:105598805,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/105008458/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="105598805"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="105598805"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 105598805; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=105598805]").text(description); $(".js-view-count[data-work-id=105598805]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 105598805; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='105598805']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "72b591f3da45e8873df355772590a02a" } } $('.js-work-strip[data-work-id=105598805]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":105598805,"title":"Evaluation of thermal environment by coupling CFD analysis and wireless-sensor measurements of a full-scale room with cooling system","translated_title":"","metadata":{"publisher":"Elsevier BV","ai_title_tag":"CFD and Sensor-Based PMV Assessment in Offices","grobid_abstract":"HVAC systems are utilized to construct a thermally comfortable environment for occupants. As people spend more than 90% of time indoors, thermal conditions of indoor environment constructed by HVAC systems demand precise assessment. Predicted mean vote (PMV), a synthesized index, can reveal thermal conditions by evaluating occupants' thermal sensations. Four environmental parameters affecting PMV: air temperature, air speed, radiant temperature and relative humidity. This study integrates CFD simulations and wireless-sensor measurements to assess distributions of PMV considering radiation models. The distributions of environmental parameters: velocity, temperature, radiant temperature, inside an office room with fan coil unit (FCU) are firstly presented. Based on these distributions, spatial profiles of PMV are obtained to intuitively illustrate thermal conditions. Combined with experimental database collected by thermal-flow wireless-sensors, CFD simulations offer detailed predictions of indoor airflow and thermal parameters. The mean temperature at occupied zone is 23.3°C agreeing well with set-point temperature 23°C. Furthermore, velocity values are below draft sensation limitations. The distribution of PMV indicates the cooling system is capable to construct thermally comfortable environment for occupants as well as the draft sensation conforming the satisfactory status. The research outputs provide useful information for designers of cooling system to build a comfortable indoor environment.","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"Sustainable Cities and Society","grobid_abstract_attachment_id":105008458},"translated_abstract":null,"internal_url":"https://www.academia.edu/105598805/Evaluation_of_thermal_environment_by_coupling_CFD_analysis_and_wireless_sensor_measurements_of_a_full_scale_room_with_cooling_system","translated_internal_url":"","created_at":"2023-08-14T18:44:29.091-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33508741,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":105008458,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/105008458/thumbnails/1.jpg","file_name":"j.scs.2018.12.01120230815-1-7jrq8s.pdf","download_url":"https://www.academia.edu/attachments/105008458/download_file","bulk_download_file_name":"Evaluation_of_thermal_environment_by_cou.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/105008458/j.scs.2018.12.01120230815-1-7jrq8s-libre.pdf?1692069319=\u0026response-content-disposition=attachment%3B+filename%3DEvaluation_of_thermal_environment_by_cou.pdf\u0026Expires=1743516213\u0026Signature=Z6VS53oLjfLQ9EJPcgUGqo7m94sQv6zYAcbt94a-xByfvpqCRiIxcjxrLTp6K~p8owm8JJwZmMU5JqfmiZhbsp4juew0fRiUk3QUNKg7-wpLfXUISWHjmcLvwC18hM1W9sUsoe-HtUsBMHgvAi1Iizb3E6QgJJ-FIwmHYHB8-oqeK6SFsPmAEHd4tsWEjz1aGORgbfraJrz9yTW1J2actZ9KETSrWUiSa2FSAgnXb-JupyEfx57fUYwIY3-tScmKwuy1jZZup4RrQiE2orNYLSQtQqjk3BMjAepp-DdN-7JZgvpFLnISzzbv~HmChnxP05JZ8dd7EnDp5SE2Vylbsw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Evaluation_of_thermal_environment_by_coupling_CFD_analysis_and_wireless_sensor_measurements_of_a_full_scale_room_with_cooling_system","translated_slug":"","page_count":11,"language":"en","content_type":"Work","summary":"HVAC systems are utilized to construct a thermally comfortable environment for occupants. As people spend more than 90% of time indoors, thermal conditions of indoor environment constructed by HVAC systems demand precise assessment. Predicted mean vote (PMV), a synthesized index, can reveal thermal conditions by evaluating occupants' thermal sensations. Four environmental parameters affecting PMV: air temperature, air speed, radiant temperature and relative humidity. This study integrates CFD simulations and wireless-sensor measurements to assess distributions of PMV considering radiation models. The distributions of environmental parameters: velocity, temperature, radiant temperature, inside an office room with fan coil unit (FCU) are firstly presented. Based on these distributions, spatial profiles of PMV are obtained to intuitively illustrate thermal conditions. Combined with experimental database collected by thermal-flow wireless-sensors, CFD simulations offer detailed predictions of indoor airflow and thermal parameters. The mean temperature at occupied zone is 23.3°C agreeing well with set-point temperature 23°C. Furthermore, velocity values are below draft sensation limitations. The distribution of PMV indicates the cooling system is capable to construct thermally comfortable environment for occupants as well as the draft sensation conforming the satisfactory status. The research outputs provide useful information for designers of cooling system to build a comfortable indoor environment.","owner":{"id":33508741,"first_name":"Yi-Kuen","middle_initials":null,"last_name":"Lee","page_name":"YiKuenLee","domain_name":"hkust","created_at":"2015-08-01T03:12:59.639-07:00","display_name":"Yi-Kuen Lee","url":"https://hkust.academia.edu/YiKuenLee"},"attachments":[{"id":105008458,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/105008458/thumbnails/1.jpg","file_name":"j.scs.2018.12.01120230815-1-7jrq8s.pdf","download_url":"https://www.academia.edu/attachments/105008458/download_file","bulk_download_file_name":"Evaluation_of_thermal_environment_by_cou.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/105008458/j.scs.2018.12.01120230815-1-7jrq8s-libre.pdf?1692069319=\u0026response-content-disposition=attachment%3B+filename%3DEvaluation_of_thermal_environment_by_cou.pdf\u0026Expires=1743516214\u0026Signature=fQ~d734J6gGkk-ffrrpJnxU59xfM3UGuWAPK1FyA3v8I-dmcMX-ulDet76Q3W7vOgYHuyGc9l81vW0bxtYVGLU-RMN2wslTIbCl9aNCf5uvZ-0~ZauF5c9WM8MXfyW9vJffL556R36nzai8DfmKxhJc54DVA1UWRPzgUfEhOzFGibnarawWKU8tBgUluZs0Z5w14jRtXy2B0DsERjeHPua2YxD9xv4pe7SrBHA3vgbKH-F0eLvmhP0xb3Mt-HYhX~DLhgk2n5XFR5N--1FPuLd7~a9Radf5vVErSaAqC1Inc33nxbclrHZpXgDGKwNUsNiDbwTOu~dRyyCBWhbnQMg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":402,"name":"Environmental Science","url":"https://www.academia.edu/Documents/in/Environmental_Science"},{"id":2298,"name":"Computational Fluid Dynamics","url":"https://www.academia.edu/Documents/in/Computational_Fluid_Dynamics"},{"id":574810,"name":"Full Scale Tests","url":"https://www.academia.edu/Documents/in/Full_Scale_Tests"}],"urls":[{"id":33426911,"url":"https://api.elsevier.com/content/article/PII:S2210670718322455?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (true) { Aedu.setUpFigureCarousel('profile-work-105598805-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="105598804"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/105598804/Low_Cost_Energy_Efficient_3_D_Nano_Spikes_Based_Electric_Cell_Lysis_Chips"><img alt="Research paper thumbnail of Low-Cost Energy-Efficient 3-D Nano-Spikes-Based Electric Cell Lysis Chips" class="work-thumbnail" src="https://attachments.academia-assets.com/105008449/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/105598804/Low_Cost_Energy_Efficient_3_D_Nano_Spikes_Based_Electric_Cell_Lysis_Chips">Low-Cost Energy-Efficient 3-D Nano-Spikes-Based Electric Cell Lysis Chips</a></div><div class="wp-workCard_item"><span>Journal of Microelectromechanical Systems</span><span>, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Electric cell lysis (ECL) is a promising technique 1 to be integrated with portable lab-on-a-chip...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Electric cell lysis (ECL) is a promising technique 1 to be integrated with portable lab-on-a-chip without lysing 2 agent due to its simplicity and fast processing. ECL is usually 3 limited by the requirements of high power/voltage and costly 4 fabrication. In this paper, we present low-cost 3-D nano-spikes-5 based ECL (NSP-ECL) chips for efficient cell lysis at low power 6 consumption. Highly ordered HAR NSP arrays with control-7 lable dimensions were fabricated on commercial aluminum foils 8 through scalable and electrochemical anodization and etching. 9 The optimized multiple pulse protocols with minimized unde-10 sirable electrochemical reactions (gas and bubble generation), 11 common on micro parallel-plate ECL chips. Due to the scalability 12 of fabrication process, 3-D NSPs were fabricated on small chips 13 as well as on 4-in wafers. Phase diagram was constructed by 14 defining critical electric field to induce cell lysis and for cell lysis 15 saturation E sat to define non-ECL and ECL regions for different 16 pulse parameters. NSP-ECL chips have achieved excellent cell 17 lysis efficiencies η l ysis (ca 100%) at low applied voltages (2 V), 18 2∼3 orders of magnitude lower than that of conventional systems. 19 The energy consumption of NSP-ECL chips was 0.5-2 mJ/mL, 20 3∼9 orders of magnitude lower as compared with the other 21 methods (5J/mL-540kJ/mL). [2016-0305] 22 Index Terms-Nano-spikes, electric cell lysis chips, elec-23 trochemical anodization and etching processes, electric field 24 enhancement, energy-efficient, lab on chip. 25 I. INTRODUCTION 26 C ELL LYSIS is an important step in sample preparation 27 procedures and biopharmaceutical product extraction to 28 release intracellular contents, i.e., DNA, RNA, hormones, AQ:1 29 vaccines, antibodies, recombinant proteins, and so forth. by 30 disrupting cell membrane [1]-[6]. Economics of these pro-31 cedures is greatly influenced by downstream processing steps, 32 i.e., separation, purification, and so on. [1]. Sample preparation 33 for molecular, protein and genomic diagnostic and analysis 34 is time-consuming, labor intensive and costly process due 35</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="23f07265c037ac7cfed1acbef0c08cb3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:105008449,&quot;asset_id&quot;:105598804,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/105008449/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="105598804"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="105598804"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 105598804; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=105598804]").text(description); $(".js-view-count[data-work-id=105598804]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 105598804; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='105598804']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "23f07265c037ac7cfed1acbef0c08cb3" } } $('.js-work-strip[data-work-id=105598804]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":105598804,"title":"Low-Cost Energy-Efficient 3-D Nano-Spikes-Based Electric Cell Lysis Chips","translated_title":"","metadata":{"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","grobid_abstract":"Electric cell lysis (ECL) is a promising technique 1 to be integrated with portable lab-on-a-chip without lysing 2 agent due to its simplicity and fast processing. ECL is usually 3 limited by the requirements of high power/voltage and costly 4 fabrication. In this paper, we present low-cost 3-D nano-spikes-5 based ECL (NSP-ECL) chips for efficient cell lysis at low power 6 consumption. Highly ordered HAR NSP arrays with control-7 lable dimensions were fabricated on commercial aluminum foils 8 through scalable and electrochemical anodization and etching. 9 The optimized multiple pulse protocols with minimized unde-10 sirable electrochemical reactions (gas and bubble generation), 11 common on micro parallel-plate ECL chips. Due to the scalability 12 of fabrication process, 3-D NSPs were fabricated on small chips 13 as well as on 4-in wafers. Phase diagram was constructed by 14 defining critical electric field to induce cell lysis and for cell lysis 15 saturation E sat to define non-ECL and ECL regions for different 16 pulse parameters. NSP-ECL chips have achieved excellent cell 17 lysis efficiencies η l ysis (ca 100%) at low applied voltages (2 V), 18 2∼3 orders of magnitude lower than that of conventional systems. 19 The energy consumption of NSP-ECL chips was 0.5-2 mJ/mL, 20 3∼9 orders of magnitude lower as compared with the other 21 methods (5J/mL-540kJ/mL). [2016-0305] 22 Index Terms-Nano-spikes, electric cell lysis chips, elec-23 trochemical anodization and etching processes, electric field 24 enhancement, energy-efficient, lab on chip. 25 I. INTRODUCTION 26 C ELL LYSIS is an important step in sample preparation 27 procedures and biopharmaceutical product extraction to 28 release intracellular contents, i.e., DNA, RNA, hormones, AQ:1 29 vaccines, antibodies, recombinant proteins, and so forth. by 30 disrupting cell membrane [1]-[6]. Economics of these pro-31 cedures is greatly influenced by downstream processing steps, 32 i.e., separation, purification, and so on. [1]. Sample preparation 33 for molecular, protein and genomic diagnostic and analysis 34 is time-consuming, labor intensive and costly process due 35","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Journal of Microelectromechanical Systems","grobid_abstract_attachment_id":105008449},"translated_abstract":null,"internal_url":"https://www.academia.edu/105598804/Low_Cost_Energy_Efficient_3_D_Nano_Spikes_Based_Electric_Cell_Lysis_Chips","translated_internal_url":"","created_at":"2023-08-14T18:44:28.889-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33508741,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":105008449,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/105008449/thumbnails/1.jpg","file_name":"paper_20124.pdf","download_url":"https://www.academia.edu/attachments/105008449/download_file","bulk_download_file_name":"Low_Cost_Energy_Efficient_3_D_Nano_Spike.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/105008449/paper_20124-libre.pdf?1692069333=\u0026response-content-disposition=attachment%3B+filename%3DLow_Cost_Energy_Efficient_3_D_Nano_Spike.pdf\u0026Expires=1743516214\u0026Signature=DVV1j~Tj9osGGgmy3t3gj3Q76iczNunKewoKYQZFeYfInzBNj4sd809M3jegxn6gAog3N0kGSVqmWu0UI67tsfz1metXcbEdq-SrczISBbZn0FY9cThs5gzyGXWQJMd65Yw3d7hjm~UY88qdhEVScGRJu6bw5wTtPNPYuX6RQfnLmRv5bglVaUHwCfOelvNbzWacNNQnQABRN0omtwxhZwHo8CEuxoqWXrsYzAxnDs8xv782C74PK2M~p8r2~JWVvlk0pvOuJKlZCcV57pqvhYCwFwcSs1nKaUQqmH3oP3hywhoY96uT6uvsTxt0tdIKJxGMGKusccbY70ghT83PGA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Low_Cost_Energy_Efficient_3_D_Nano_Spikes_Based_Electric_Cell_Lysis_Chips","translated_slug":"","page_count":24,"language":"en","content_type":"Work","summary":"Electric cell lysis (ECL) is a promising technique 1 to be integrated with portable lab-on-a-chip without lysing 2 agent due to its simplicity and fast processing. ECL is usually 3 limited by the requirements of high power/voltage and costly 4 fabrication. In this paper, we present low-cost 3-D nano-spikes-5 based ECL (NSP-ECL) chips for efficient cell lysis at low power 6 consumption. Highly ordered HAR NSP arrays with control-7 lable dimensions were fabricated on commercial aluminum foils 8 through scalable and electrochemical anodization and etching. 9 The optimized multiple pulse protocols with minimized unde-10 sirable electrochemical reactions (gas and bubble generation), 11 common on micro parallel-plate ECL chips. Due to the scalability 12 of fabrication process, 3-D NSPs were fabricated on small chips 13 as well as on 4-in wafers. Phase diagram was constructed by 14 defining critical electric field to induce cell lysis and for cell lysis 15 saturation E sat to define non-ECL and ECL regions for different 16 pulse parameters. NSP-ECL chips have achieved excellent cell 17 lysis efficiencies η l ysis (ca 100%) at low applied voltages (2 V), 18 2∼3 orders of magnitude lower than that of conventional systems. 19 The energy consumption of NSP-ECL chips was 0.5-2 mJ/mL, 20 3∼9 orders of magnitude lower as compared with the other 21 methods (5J/mL-540kJ/mL). [2016-0305] 22 Index Terms-Nano-spikes, electric cell lysis chips, elec-23 trochemical anodization and etching processes, electric field 24 enhancement, energy-efficient, lab on chip. 25 I. INTRODUCTION 26 C ELL LYSIS is an important step in sample preparation 27 procedures and biopharmaceutical product extraction to 28 release intracellular contents, i.e., DNA, RNA, hormones, AQ:1 29 vaccines, antibodies, recombinant proteins, and so forth. by 30 disrupting cell membrane [1]-[6]. Economics of these pro-31 cedures is greatly influenced by downstream processing steps, 32 i.e., separation, purification, and so on. [1]. Sample preparation 33 for molecular, protein and genomic diagnostic and analysis 34 is time-consuming, labor intensive and costly process due 35","owner":{"id":33508741,"first_name":"Yi-Kuen","middle_initials":null,"last_name":"Lee","page_name":"YiKuenLee","domain_name":"hkust","created_at":"2015-08-01T03:12:59.639-07:00","display_name":"Yi-Kuen Lee","url":"https://hkust.academia.edu/YiKuenLee"},"attachments":[{"id":105008449,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/105008449/thumbnails/1.jpg","file_name":"paper_20124.pdf","download_url":"https://www.academia.edu/attachments/105008449/download_file","bulk_download_file_name":"Low_Cost_Energy_Efficient_3_D_Nano_Spike.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/105008449/paper_20124-libre.pdf?1692069333=\u0026response-content-disposition=attachment%3B+filename%3DLow_Cost_Energy_Efficient_3_D_Nano_Spike.pdf\u0026Expires=1743516214\u0026Signature=DVV1j~Tj9osGGgmy3t3gj3Q76iczNunKewoKYQZFeYfInzBNj4sd809M3jegxn6gAog3N0kGSVqmWu0UI67tsfz1metXcbEdq-SrczISBbZn0FY9cThs5gzyGXWQJMd65Yw3d7hjm~UY88qdhEVScGRJu6bw5wTtPNPYuX6RQfnLmRv5bglVaUHwCfOelvNbzWacNNQnQABRN0omtwxhZwHo8CEuxoqWXrsYzAxnDs8xv782C74PK2M~p8r2~JWVvlk0pvOuJKlZCcV57pqvhYCwFwcSs1nKaUQqmH3oP3hywhoY96uT6uvsTxt0tdIKJxGMGKusccbY70ghT83PGA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":23818,"name":"Microelectromechanical systems","url":"https://www.academia.edu/Documents/in/Microelectromechanical_systems"},{"id":49651,"name":"Nano","url":"https://www.academia.edu/Documents/in/Nano"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"},{"id":1256745,"name":"Lysis","url":"https://www.academia.edu/Documents/in/Lysis"}],"urls":[{"id":33426910,"url":"http://xplorestaging.ieee.org/ielx7/84/7997952/07919169.pdf?arnumber=7919169"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-105598804-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="105598803"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/105598803/Unified_theory_to_evaluate_the_effect_of_concentration_difference_and_Peclet_number_on_electroosmotic_mobility_error_of_micro_electroosmotic_flow"><img alt="Research paper thumbnail of Unified theory to evaluate the effect of concentration difference and Peclet number on electroosmotic mobility error of micro electroosmotic flow" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Unified theory to evaluate the effect of concentration difference and Peclet number on electroosmotic mobility error of micro electroosmotic flow</div><div class="wp-workCard_item"><span>2012 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)</span><span>, 2012</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT Both theoretical analysis and nonlinear 2D numerical simulations are used to study the c...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT Both theoretical analysis and nonlinear 2D numerical simulations are used to study the concentration difference and Peclet number effect on the measurement error of electroosmotic mobility in microchannels. We propose a compact analytical model for this error as a function of normalized concentration difference and Peclet number in micro electroosmotic flow. The analytical predictions of the errors are consistent with the numerical simulations.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="105598803"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="105598803"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 105598803; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=105598803]").text(description); $(".js-view-count[data-work-id=105598803]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 105598803; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='105598803']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=105598803]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":105598803,"title":"Unified theory to evaluate the effect of concentration difference and Peclet number on electroosmotic mobility error of micro electroosmotic flow","translated_title":"","metadata":{"abstract":"ABSTRACT Both theoretical analysis and nonlinear 2D numerical simulations are used to study the concentration difference and Peclet number effect on the measurement error of electroosmotic mobility in microchannels. We propose a compact analytical model for this error as a function of normalized concentration difference and Peclet number in micro electroosmotic flow. The analytical predictions of the errors are consistent with the numerical simulations.","publication_date":{"day":null,"month":null,"year":2012,"errors":{}},"publication_name":"2012 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)"},"translated_abstract":"ABSTRACT Both theoretical analysis and nonlinear 2D numerical simulations are used to study the concentration difference and Peclet number effect on the measurement error of electroosmotic mobility in microchannels. We propose a compact analytical model for this error as a function of normalized concentration difference and Peclet number in micro electroosmotic flow. The analytical predictions of the errors are consistent with the numerical simulations.","internal_url":"https://www.academia.edu/105598803/Unified_theory_to_evaluate_the_effect_of_concentration_difference_and_Peclet_number_on_electroosmotic_mobility_error_of_micro_electroosmotic_flow","translated_internal_url":"","created_at":"2023-08-14T18:44:28.524-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33508741,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Unified_theory_to_evaluate_the_effect_of_concentration_difference_and_Peclet_number_on_electroosmotic_mobility_error_of_micro_electroosmotic_flow","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT Both theoretical analysis and nonlinear 2D numerical simulations are used to study the concentration difference and Peclet number effect on the measurement error of electroosmotic mobility in microchannels. We propose a compact analytical model for this error as a function of normalized concentration difference and Peclet number in micro electroosmotic flow. The analytical predictions of the errors are consistent with the numerical simulations.","owner":{"id":33508741,"first_name":"Yi-Kuen","middle_initials":null,"last_name":"Lee","page_name":"YiKuenLee","domain_name":"hkust","created_at":"2015-08-01T03:12:59.639-07:00","display_name":"Yi-Kuen Lee","url":"https://hkust.academia.edu/YiKuenLee"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":225478,"name":"Electro-Osmosis","url":"https://www.academia.edu/Documents/in/Electro-Osmosis"},{"id":506858,"name":"Nonlinear system","url":"https://www.academia.edu/Documents/in/Nonlinear_system"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-105598803-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="105598802"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/105598802/Study_on_the_Physical_Basis_of_Wave_Particle_Duality_Modelling_the_Vacuum_as_a_Continuous_Mechanical_Medium"><img alt="Research paper thumbnail of Study on the Physical Basis of Wave-Particle Duality: Modelling the Vacuum as a Continuous Mechanical Medium" class="work-thumbnail" src="https://attachments.academia-assets.com/105008452/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/105598802/Study_on_the_Physical_Basis_of_Wave_Particle_Duality_Modelling_the_Vacuum_as_a_Continuous_Mechanical_Medium">Study on the Physical Basis of Wave-Particle Duality: Modelling the Vacuum as a Continuous Mechanical Medium</a></div><div class="wp-workCard_item"><span>Journal of Modern Physics</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">One great surprise discovered in modern physics is that all elementary particles exhibit the prop...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">One great surprise discovered in modern physics is that all elementary particles exhibit the property of wave-particle duality. We investigated this problem recently and found a simple way to explain this puzzle. We proposed that all particles, including massless particles such as photon and massive particles such as electron, can be treated as excitation waves in the vacuum, which behaves like a physical medium. Using such a model, the phenomenon of wave-particle duality can be explained naturally. The key question now is to find out what kind of physical properties this vacuum medium may have. In this paper, we investigate if the vacuum can be modeled as an elastic solid or a dielectric medium as envisioned in the Maxwell theory of electricity and magnetism. We show that a similar form of wave equation can be derived in three cases: (1) By modelling the vacuum medium as an elastic solid; (2) By constructing a simple Lagrangian density that is a 3-D extension of a stretched string or a vibrating membrane; (3) By assuming that the vacuum is a dielectric medium, from which the wave equation can be derived directly from Maxwell&#39;s equations. Similarity between results of these three systems suggests that the vacuum can be modelled as a mechanical continuum, and the excitation wave in the vacuum behaves like some of the excitation waves in a physical medium.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="57362e231e77a3e41acfb07e217617af" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:105008452,&quot;asset_id&quot;:105598802,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/105008452/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="105598802"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="105598802"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 105598802; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=105598802]").text(description); $(".js-view-count[data-work-id=105598802]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 105598802; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='105598802']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "57362e231e77a3e41acfb07e217617af" } } $('.js-work-strip[data-work-id=105598802]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":105598802,"title":"Study on the Physical Basis of Wave-Particle Duality: Modelling the Vacuum as a Continuous Mechanical Medium","translated_title":"","metadata":{"publisher":"Scientific Research Publishing, Inc,","ai_title_tag":"Modeling Vacuum for Wave-Particle Duality","grobid_abstract":"One great surprise discovered in modern physics is that all elementary particles exhibit the property of wave-particle duality. We investigated this problem recently and found a simple way to explain this puzzle. We proposed that all particles, including massless particles such as photon and massive particles such as electron, can be treated as excitation waves in the vacuum, which behaves like a physical medium. Using such a model, the phenomenon of wave-particle duality can be explained naturally. The key question now is to find out what kind of physical properties this vacuum medium may have. In this paper, we investigate if the vacuum can be modeled as an elastic solid or a dielectric medium as envisioned in the Maxwell theory of electricity and magnetism. We show that a similar form of wave equation can be derived in three cases: (1) By modelling the vacuum medium as an elastic solid; (2) By constructing a simple Lagrangian density that is a 3-D extension of a stretched string or a vibrating membrane; (3) By assuming that the vacuum is a dielectric medium, from which the wave equation can be derived directly from Maxwell's equations. Similarity between results of these three systems suggests that the vacuum can be modelled as a mechanical continuum, and the excitation wave in the vacuum behaves like some of the excitation waves in a physical medium.","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Journal of Modern Physics","grobid_abstract_attachment_id":105008452},"translated_abstract":null,"internal_url":"https://www.academia.edu/105598802/Study_on_the_Physical_Basis_of_Wave_Particle_Duality_Modelling_the_Vacuum_as_a_Continuous_Mechanical_Medium","translated_internal_url":"","created_at":"2023-08-14T18:44:28.365-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33508741,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":105008452,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/105008452/thumbnails/1.jpg","file_name":"063c0e2bba0e61e9036e583c9bb5872f05ec.pdf","download_url":"https://www.academia.edu/attachments/105008452/download_file","bulk_download_file_name":"Study_on_the_Physical_Basis_of_Wave_Part.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/105008452/063c0e2bba0e61e9036e583c9bb5872f05ec-libre.pdf?1692069319=\u0026response-content-disposition=attachment%3B+filename%3DStudy_on_the_Physical_Basis_of_Wave_Part.pdf\u0026Expires=1743516214\u0026Signature=crdm4-yOSGnLZnd1EQyydAY7My4X~MkCdYZ8hF~x7OwabNo~2TmR9ldHZOignW9TowkXlcst-F95oSpotJIjWbtd66ihpNcptUvhBkAkG7tx8cVM1kxQCbNQxDjqFZS1i7n6zfBNAvPHYgNDyeiYvzM8qDM6qalQKIhGHgdm6oMHR~Wdn-KvQtu8S-u5sWyt7C37m4jkFAMPdPNNgGN96Yhso4MmiI2shBLHCEoBeU-c-wFmcqVle8m8TneTqVGmU~P9Hu5F1H1FqVsIOVtcn6RUAiaR4AZskWB3LMmqR-NkFh45NnjFKFbRjdfBKC5au52LioCmQ1hMQUV4GW1BIw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Study_on_the_Physical_Basis_of_Wave_Particle_Duality_Modelling_the_Vacuum_as_a_Continuous_Mechanical_Medium","translated_slug":"","page_count":13,"language":"en","content_type":"Work","summary":"One great surprise discovered in modern physics is that all elementary particles exhibit the property of wave-particle duality. We investigated this problem recently and found a simple way to explain this puzzle. We proposed that all particles, including massless particles such as photon and massive particles such as electron, can be treated as excitation waves in the vacuum, which behaves like a physical medium. Using such a model, the phenomenon of wave-particle duality can be explained naturally. The key question now is to find out what kind of physical properties this vacuum medium may have. In this paper, we investigate if the vacuum can be modeled as an elastic solid or a dielectric medium as envisioned in the Maxwell theory of electricity and magnetism. We show that a similar form of wave equation can be derived in three cases: (1) By modelling the vacuum medium as an elastic solid; (2) By constructing a simple Lagrangian density that is a 3-D extension of a stretched string or a vibrating membrane; (3) By assuming that the vacuum is a dielectric medium, from which the wave equation can be derived directly from Maxwell's equations. Similarity between results of these three systems suggests that the vacuum can be modelled as a mechanical continuum, and the excitation wave in the vacuum behaves like some of the excitation waves in a physical medium.","owner":{"id":33508741,"first_name":"Yi-Kuen","middle_initials":null,"last_name":"Lee","page_name":"YiKuenLee","domain_name":"hkust","created_at":"2015-08-01T03:12:59.639-07:00","display_name":"Yi-Kuen Lee","url":"https://hkust.academia.edu/YiKuenLee"},"attachments":[{"id":105008452,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/105008452/thumbnails/1.jpg","file_name":"063c0e2bba0e61e9036e583c9bb5872f05ec.pdf","download_url":"https://www.academia.edu/attachments/105008452/download_file","bulk_download_file_name":"Study_on_the_Physical_Basis_of_Wave_Part.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/105008452/063c0e2bba0e61e9036e583c9bb5872f05ec-libre.pdf?1692069319=\u0026response-content-disposition=attachment%3B+filename%3DStudy_on_the_Physical_Basis_of_Wave_Part.pdf\u0026Expires=1743516214\u0026Signature=crdm4-yOSGnLZnd1EQyydAY7My4X~MkCdYZ8hF~x7OwabNo~2TmR9ldHZOignW9TowkXlcst-F95oSpotJIjWbtd66ihpNcptUvhBkAkG7tx8cVM1kxQCbNQxDjqFZS1i7n6zfBNAvPHYgNDyeiYvzM8qDM6qalQKIhGHgdm6oMHR~Wdn-KvQtu8S-u5sWyt7C37m4jkFAMPdPNNgGN96Yhso4MmiI2shBLHCEoBeU-c-wFmcqVle8m8TneTqVGmU~P9Hu5F1H1FqVsIOVtcn6RUAiaR4AZskWB3LMmqR-NkFh45NnjFKFbRjdfBKC5au52LioCmQ1hMQUV4GW1BIw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":508,"name":"Elementary Particle Physics","url":"https://www.academia.edu/Documents/in/Elementary_Particle_Physics"},{"id":34622,"name":"Modern physics","url":"https://www.academia.edu/Documents/in/Modern_physics"},{"id":160877,"name":"Vacuum","url":"https://www.academia.edu/Documents/in/Vacuum"},{"id":271630,"name":"Wave particle duality","url":"https://www.academia.edu/Documents/in/Wave_particle_duality"},{"id":503639,"name":"Matter Waves","url":"https://www.academia.edu/Documents/in/Matter_Waves"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-105598802-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="105598801"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/105598801/New_dimensionless_number_for_superhydrophobicity_study_of_micron_submicron_patterned_surfaces"><img alt="Research paper thumbnail of New dimensionless number for superhydrophobicity study of micron/submicron patterned surfaces" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">New dimensionless number for superhydrophobicity study of micron/submicron patterned surfaces</div><div class="wp-workCard_item"><span>2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS)</span><span>, 2010</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper reports a systematic study of geometric effect of roughness on hydrophobicity by a ser...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper reports a systematic study of geometric effect of roughness on hydrophobicity by a series of post arrays ranging from several hundreds microns to submicron. These devices were fabricated using projection/contact photolithography and etched by Deep RIE with different heights. A 1 µm parylene C layer was then deposited on these devices to improve hydrophobicity and the apparent contact angles were measured. It was found that the apparent contact angle increases with increasing the height of posts and there is a best diameter for each series of devices with a same spacing. With the help of dimensional analysis, all the measured apparent contact angles can be collapsed by a new dimensionless number, Bulk Aspect Ratio (BAR). In addition to a small solid fraction, the superhydrophobic surfaces were found with a bulk aspect ratio larger than 4.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="105598801"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="105598801"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 105598801; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=105598801]").text(description); $(".js-view-count[data-work-id=105598801]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 105598801; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='105598801']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=105598801]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":105598801,"title":"New dimensionless number for superhydrophobicity study of micron/submicron patterned surfaces","translated_title":"","metadata":{"abstract":"This paper reports a systematic study of geometric effect of roughness on hydrophobicity by a series of post arrays ranging from several hundreds microns to submicron. These devices were fabricated using projection/contact photolithography and etched by Deep RIE with different heights. A 1 µm parylene C layer was then deposited on these devices to improve hydrophobicity and the apparent contact angles were measured. It was found that the apparent contact angle increases with increasing the height of posts and there is a best diameter for each series of devices with a same spacing. With the help of dimensional analysis, all the measured apparent contact angles can be collapsed by a new dimensionless number, Bulk Aspect Ratio (BAR). In addition to a small solid fraction, the superhydrophobic surfaces were found with a bulk aspect ratio larger than 4.","publisher":"IEEE","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"publication_name":"2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS)"},"translated_abstract":"This paper reports a systematic study of geometric effect of roughness on hydrophobicity by a series of post arrays ranging from several hundreds microns to submicron. These devices were fabricated using projection/contact photolithography and etched by Deep RIE with different heights. A 1 µm parylene C layer was then deposited on these devices to improve hydrophobicity and the apparent contact angles were measured. It was found that the apparent contact angle increases with increasing the height of posts and there is a best diameter for each series of devices with a same spacing. With the help of dimensional analysis, all the measured apparent contact angles can be collapsed by a new dimensionless number, Bulk Aspect Ratio (BAR). In addition to a small solid fraction, the superhydrophobic surfaces were found with a bulk aspect ratio larger than 4.","internal_url":"https://www.academia.edu/105598801/New_dimensionless_number_for_superhydrophobicity_study_of_micron_submicron_patterned_surfaces","translated_internal_url":"","created_at":"2023-08-14T18:44:28.178-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33508741,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"New_dimensionless_number_for_superhydrophobicity_study_of_micron_submicron_patterned_surfaces","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"This paper reports a systematic study of geometric effect of roughness on hydrophobicity by a series of post arrays ranging from several hundreds microns to submicron. These devices were fabricated using projection/contact photolithography and etched by Deep RIE with different heights. A 1 µm parylene C layer was then deposited on these devices to improve hydrophobicity and the apparent contact angles were measured. It was found that the apparent contact angle increases with increasing the height of posts and there is a best diameter for each series of devices with a same spacing. With the help of dimensional analysis, all the measured apparent contact angles can be collapsed by a new dimensionless number, Bulk Aspect Ratio (BAR). In addition to a small solid fraction, the superhydrophobic surfaces were found with a bulk aspect ratio larger than 4.","owner":{"id":33508741,"first_name":"Yi-Kuen","middle_initials":null,"last_name":"Lee","page_name":"YiKuenLee","domain_name":"hkust","created_at":"2015-08-01T03:12:59.639-07:00","display_name":"Yi-Kuen Lee","url":"https://hkust.academia.edu/YiKuenLee"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":33296,"name":"Surface Roughness","url":"https://www.academia.edu/Documents/in/Surface_Roughness"},{"id":125989,"name":"Photolithography","url":"https://www.academia.edu/Documents/in/Photolithography"},{"id":161126,"name":"Contact angle","url":"https://www.academia.edu/Documents/in/Contact_angle"},{"id":1342788,"name":"Surface Finish","url":"https://www.academia.edu/Documents/in/Surface_Finish"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-105598801-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="105598800"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/105598800/A_new_equivalent_circuit_model_for_micro_electroporation_systems"><img alt="Research paper thumbnail of A new equivalent circuit model for micro electroporation systems" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">A new equivalent circuit model for micro electroporation systems</div><div class="wp-workCard_item"><span>2011 6th IEEE International Conference on Nano/Micro Engineered and Molecular Systems</span><span>, 2011</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Electroporation (EP) is a unique biotechnique in which intense electric pulses are applied on the...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Electroporation (EP) is a unique biotechnique in which intense electric pulses are applied on the cell membrane to temporarily generate nanoscale electropores and to increase the membrane permeability for the delivery of exogenous biomolecules or drugs. We propose a new equivalent circuit model with 8 electric components to predict the electrodynamic response of a micro EP system. As the permeability</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="105598800"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="105598800"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 105598800; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=105598800]").text(description); $(".js-view-count[data-work-id=105598800]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 105598800; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='105598800']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=105598800]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":105598800,"title":"A new equivalent circuit model for micro electroporation systems","translated_title":"","metadata":{"abstract":"Electroporation (EP) is a unique biotechnique in which intense electric pulses are applied on the cell membrane to temporarily generate nanoscale electropores and to increase the membrane permeability for the delivery of exogenous biomolecules or drugs. We propose a new equivalent circuit model with 8 electric components to predict the electrodynamic response of a micro EP system. As the permeability","publisher":"IEEE","publication_date":{"day":null,"month":null,"year":2011,"errors":{}},"publication_name":"2011 6th IEEE International Conference on Nano/Micro Engineered and Molecular Systems"},"translated_abstract":"Electroporation (EP) is a unique biotechnique in which intense electric pulses are applied on the cell membrane to temporarily generate nanoscale electropores and to increase the membrane permeability for the delivery of exogenous biomolecules or drugs. We propose a new equivalent circuit model with 8 electric components to predict the electrodynamic response of a micro EP system. As the permeability","internal_url":"https://www.academia.edu/105598800/A_new_equivalent_circuit_model_for_micro_electroporation_systems","translated_internal_url":"","created_at":"2023-08-14T18:44:28.006-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33508741,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_new_equivalent_circuit_model_for_micro_electroporation_systems","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Electroporation (EP) is a unique biotechnique in which intense electric pulses are applied on the cell membrane to temporarily generate nanoscale electropores and to increase the membrane permeability for the delivery of exogenous biomolecules or drugs. We propose a new equivalent circuit model with 8 electric components to predict the electrodynamic response of a micro EP system. As the permeability","owner":{"id":33508741,"first_name":"Yi-Kuen","middle_initials":null,"last_name":"Lee","page_name":"YiKuenLee","domain_name":"hkust","created_at":"2015-08-01T03:12:59.639-07:00","display_name":"Yi-Kuen Lee","url":"https://hkust.academia.edu/YiKuenLee"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":502,"name":"Biophysics","url":"https://www.academia.edu/Documents/in/Biophysics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":92685,"name":"Electroporation","url":"https://www.academia.edu/Documents/in/Electroporation"},{"id":242298,"name":"Membrane","url":"https://www.academia.edu/Documents/in/Membrane"},{"id":389165,"name":"Voltage","url":"https://www.academia.edu/Documents/in/Voltage"},{"id":620070,"name":"Transfection","url":"https://www.academia.edu/Documents/in/Transfection"},{"id":887736,"name":"Membrane Potential","url":"https://www.academia.edu/Documents/in/Membrane_Potential"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-105598800-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="105598799"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/105598799/Design_and_Fabrication_of_Mini_Vibration_Power_Generator_System_for_Micro_Sensor_Networks"><img alt="Research paper thumbnail of Design and Fabrication of Mini Vibration Power Generator System for Micro Sensor Networks" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Design and Fabrication of Mini Vibration Power Generator System for Micro Sensor Networks</div><div class="wp-workCard_item"><span>2006 IEEE International Conference on Information Acquisition</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">highly efficient energyharvesting interface circuit that Abstract - Thispaperpresents a minivibra...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">highly efficient energyharvesting interface circuit that Abstract - Thispaperpresents a minivibration power showshighpowertransfer efficiency mustbedeveloped to generator system formicrosensor networks withtheoutput recharge theelectrical powerinto energy storage elements. powerof35mW,whichismuchlarger thanthose inthe Furthermore, since thevoltage oftherenewable power literature. The systemconsists ofa minielectromagneticsupply mustbe highenough topowermicrosensor vibration powergenerator and a highly efficient energy networks, thevoltage should beincreased toanacceptable harvesting circuit implemented on a tinyPCB. Using level. feedforward andfeedback DC-DC PWM BoostConverter (DPBC), thedesigned circuit steps uptheelectric voltage and stores theelectric energy into asuper capacitor, which isthen II.THEDESIGNOFELECTROMATNETIC usedasa smallelectrical powersupply foran micro POWER GENERATOR accelerometer network. Todesign apractical powergenerator (1-20mW)(6)for Index Terms -Vibration, integrated powergenerator, micro anielignt sr ner atsimply als of sensor~~ ~~</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="105598799"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="105598799"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 105598799; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=105598799]").text(description); $(".js-view-count[data-work-id=105598799]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 105598799; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='105598799']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=105598799]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":105598799,"title":"Design and Fabrication of Mini Vibration Power Generator System for Micro Sensor Networks","translated_title":"","metadata":{"abstract":"highly efficient energyharvesting interface circuit that Abstract - Thispaperpresents a minivibration power showshighpowertransfer efficiency mustbedeveloped to generator system formicrosensor networks withtheoutput recharge theelectrical powerinto energy storage elements. powerof35mW,whichismuchlarger thanthose inthe Furthermore, since thevoltage oftherenewable power literature. The systemconsists ofa minielectromagneticsupply mustbe highenough topowermicrosensor vibration powergenerator and a highly efficient energy networks, thevoltage should beincreased toanacceptable harvesting circuit implemented on a tinyPCB. Using level. feedforward andfeedback DC-DC PWM BoostConverter (DPBC), thedesigned circuit steps uptheelectric voltage and stores theelectric energy into asuper capacitor, which isthen II.THEDESIGNOFELECTROMATNETIC usedasa smallelectrical powersupply foran micro POWER GENERATOR accelerometer network. Todesign apractical powergenerator (1-20mW)(6)for Index Terms -Vibration, integrated powergenerator, micro anielignt sr ner atsimply als of sensor~~ ~~","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"2006 IEEE International Conference on Information Acquisition"},"translated_abstract":"highly efficient energyharvesting interface circuit that Abstract - Thispaperpresents a minivibration power showshighpowertransfer efficiency mustbedeveloped to generator system formicrosensor networks withtheoutput recharge theelectrical powerinto energy storage elements. powerof35mW,whichismuchlarger thanthose inthe Furthermore, since thevoltage oftherenewable power literature. The systemconsists ofa minielectromagneticsupply mustbe highenough topowermicrosensor vibration powergenerator and a highly efficient energy networks, thevoltage should beincreased toanacceptable harvesting circuit implemented on a tinyPCB. Using level. feedforward andfeedback DC-DC PWM BoostConverter (DPBC), thedesigned circuit steps uptheelectric voltage and stores theelectric energy into asuper capacitor, which isthen II.THEDESIGNOFELECTROMATNETIC usedasa smallelectrical powersupply foran micro POWER GENERATOR accelerometer network. Todesign apractical powergenerator (1-20mW)(6)for Index Terms -Vibration, integrated powergenerator, micro anielignt sr ner atsimply als of sensor~~ ~~","internal_url":"https://www.academia.edu/105598799/Design_and_Fabrication_of_Mini_Vibration_Power_Generator_System_for_Micro_Sensor_Networks","translated_internal_url":"","created_at":"2023-08-14T18:44:27.679-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33508741,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Design_and_Fabrication_of_Mini_Vibration_Power_Generator_System_for_Micro_Sensor_Networks","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"highly efficient energyharvesting interface circuit that Abstract - Thispaperpresents a minivibration power showshighpowertransfer efficiency mustbedeveloped to generator system formicrosensor networks withtheoutput recharge theelectrical powerinto energy storage elements. powerof35mW,whichismuchlarger thanthose inthe Furthermore, since thevoltage oftherenewable power literature. The systemconsists ofa minielectromagneticsupply mustbe highenough topowermicrosensor vibration powergenerator and a highly efficient energy networks, thevoltage should beincreased toanacceptable harvesting circuit implemented on a tinyPCB. Using level. feedforward andfeedback DC-DC PWM BoostConverter (DPBC), thedesigned circuit steps uptheelectric voltage and stores theelectric energy into asuper capacitor, which isthen II.THEDESIGNOFELECTROMATNETIC usedasa smallelectrical powersupply foran micro POWER GENERATOR accelerometer network. Todesign apractical powergenerator (1-20mW)(6)for Index Terms -Vibration, integrated powergenerator, micro anielignt sr ner atsimply als of sensor~~ ~~","owner":{"id":33508741,"first_name":"Yi-Kuen","middle_initials":null,"last_name":"Lee","page_name":"YiKuenLee","domain_name":"hkust","created_at":"2015-08-01T03:12:59.639-07:00","display_name":"Yi-Kuen Lee","url":"https://hkust.academia.edu/YiKuenLee"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":49,"name":"Electrical Engineering","url":"https://www.academia.edu/Documents/in/Electrical_Engineering"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":23077,"name":"Vibration","url":"https://www.academia.edu/Documents/in/Vibration"},{"id":47838,"name":"Energy Harvesting","url":"https://www.academia.edu/Documents/in/Energy_Harvesting"},{"id":213815,"name":"Capacitor","url":"https://www.academia.edu/Documents/in/Capacitor"},{"id":389165,"name":"Voltage","url":"https://www.academia.edu/Documents/in/Voltage"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-105598799-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="105598798"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/105598798/The_effect_of_Cytochalasin_D_on_F_Actin_behavior_of_single_cell_electroendocytosis_using_multi_chamber_micro_cell_chip"><img alt="Research paper thumbnail of The effect of Cytochalasin D on F-Actin behavior of single-cell electroendocytosis using multi-chamber micro cell chip" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">The effect of Cytochalasin D on F-Actin behavior of single-cell electroendocytosis using multi-chamber micro cell chip</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Electroendocytosis (EED) is a pulsed-electric-field (PEF) induced endocytosis, facilitating cells...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Electroendocytosis (EED) is a pulsed-electric-field (PEF) induced endocytosis, facilitating cells uptake molecules through nanometer-sized EED vesicles. We herein investigate the effect of a chemical inhibitor, Cytochalasin D (CD) on the actin-filaments (F-Actin) behavior of single-cell EED. The CD concentration (CCD) can control the depolymerization of F-actin. A multi-chamber micro cell chip was fabricated to study the EED under different conditions. Large-scale single-cell data demonstrated EED highly depends on both electric field and CCD.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="105598798"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="105598798"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 105598798; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=105598798]").text(description); $(".js-view-count[data-work-id=105598798]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 105598798; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='105598798']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=105598798]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":105598798,"title":"The effect of Cytochalasin D on F-Actin behavior of single-cell electroendocytosis using multi-chamber micro cell chip","translated_title":"","metadata":{"abstract":"Electroendocytosis (EED) is a pulsed-electric-field (PEF) induced endocytosis, facilitating cells uptake molecules through nanometer-sized EED vesicles. We herein investigate the effect of a chemical inhibitor, Cytochalasin D (CD) on the actin-filaments (F-Actin) behavior of single-cell EED. The CD concentration (CCD) can control the depolymerization of F-actin. A multi-chamber micro cell chip was fabricated to study the EED under different conditions. Large-scale single-cell data demonstrated EED highly depends on both electric field and CCD."},"translated_abstract":"Electroendocytosis (EED) is a pulsed-electric-field (PEF) induced endocytosis, facilitating cells uptake molecules through nanometer-sized EED vesicles. We herein investigate the effect of a chemical inhibitor, Cytochalasin D (CD) on the actin-filaments (F-Actin) behavior of single-cell EED. The CD concentration (CCD) can control the depolymerization of F-actin. A multi-chamber micro cell chip was fabricated to study the EED under different conditions. Large-scale single-cell data demonstrated EED highly depends on both electric field and CCD.","internal_url":"https://www.academia.edu/105598798/The_effect_of_Cytochalasin_D_on_F_Actin_behavior_of_single_cell_electroendocytosis_using_multi_chamber_micro_cell_chip","translated_internal_url":"","created_at":"2023-08-14T18:44:27.525-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33508741,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_effect_of_Cytochalasin_D_on_F_Actin_behavior_of_single_cell_electroendocytosis_using_multi_chamber_micro_cell_chip","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Electroendocytosis (EED) is a pulsed-electric-field (PEF) induced endocytosis, facilitating cells uptake molecules through nanometer-sized EED vesicles. We herein investigate the effect of a chemical inhibitor, Cytochalasin D (CD) on the actin-filaments (F-Actin) behavior of single-cell EED. The CD concentration (CCD) can control the depolymerization of F-actin. A multi-chamber micro cell chip was fabricated to study the EED under different conditions. Large-scale single-cell data demonstrated EED highly depends on both electric field and CCD.","owner":{"id":33508741,"first_name":"Yi-Kuen","middle_initials":null,"last_name":"Lee","page_name":"YiKuenLee","domain_name":"hkust","created_at":"2015-08-01T03:12:59.639-07:00","display_name":"Yi-Kuen Lee","url":"https://hkust.academia.edu/YiKuenLee"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":502,"name":"Biophysics","url":"https://www.academia.edu/Documents/in/Biophysics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":90156,"name":"Endocytosis","url":"https://www.academia.edu/Documents/in/Endocytosis"},{"id":107533,"name":"Cell","url":"https://www.academia.edu/Documents/in/Cell"},{"id":138131,"name":"Actin","url":"https://www.academia.edu/Documents/in/Actin"},{"id":1130559,"name":"Electric Field","url":"https://www.academia.edu/Documents/in/Electric_Field"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-105598798-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="105598797"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/105598797/Experimental_and_theoretical_study_of_hydrodynamic_cell_lysing_of_cancer_cells_in_a_high_throughput_Circular_Multi_Channel_Microfiltration_device"><img alt="Research paper thumbnail of Experimental and theoretical study of hydrodynamic cell lysing of cancer cells in a high-throughput Circular Multi-Channel Microfiltration device" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Experimental and theoretical study of hydrodynamic cell lysing of cancer cells in a high-throughput Circular Multi-Channel Microfiltration device</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Microfiltration is an important microfluidic technique suitable for enrichment and isolation of c...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Microfiltration is an important microfluidic technique suitable for enrichment and isolation of cells. However, cell lysing could occur due to hydrodynamic damage that may be detrimental for medical diagnostics. Therefore, we conducted a systematic study of hydrodynamic cell lysing in a high-throughput Circular Multi-Channel Microfiltration (CMCM) device integrated with a polycarbonate membrane. HeLa cells (cervical cancer cells) were driven into the CMCM at different flow rates. The viability of the cells in the CMCM was examined by fluorescence microscopy using Acridine Orange (AO)/ Ethidium Bromide (EB) as a marker for viable/dead cells. A simple analytical cell viability model was derived and a 3D numerical model was constructed to examine the correlation of between cell lysing and applied shear stress under varying flow rate and Reynolds number. The measured cell viability as a function of the shear stress was consistent with theoretical and numerical predictions when accounting for cell size distribution.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="105598797"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="105598797"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 105598797; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=105598797]").text(description); $(".js-view-count[data-work-id=105598797]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 105598797; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='105598797']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=105598797]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":105598797,"title":"Experimental and theoretical study of hydrodynamic cell lysing of cancer cells in a high-throughput Circular Multi-Channel Microfiltration device","translated_title":"","metadata":{"abstract":"Microfiltration is an important microfluidic technique suitable for enrichment and isolation of cells. However, cell lysing could occur due to hydrodynamic damage that may be detrimental for medical diagnostics. Therefore, we conducted a systematic study of hydrodynamic cell lysing in a high-throughput Circular Multi-Channel Microfiltration (CMCM) device integrated with a polycarbonate membrane. HeLa cells (cervical cancer cells) were driven into the CMCM at different flow rates. The viability of the cells in the CMCM was examined by fluorescence microscopy using Acridine Orange (AO)/ Ethidium Bromide (EB) as a marker for viable/dead cells. A simple analytical cell viability model was derived and a 3D numerical model was constructed to examine the correlation of between cell lysing and applied shear stress under varying flow rate and Reynolds number. The measured cell viability as a function of the shear stress was consistent with theoretical and numerical predictions when accounting for cell size distribution."},"translated_abstract":"Microfiltration is an important microfluidic technique suitable for enrichment and isolation of cells. However, cell lysing could occur due to hydrodynamic damage that may be detrimental for medical diagnostics. Therefore, we conducted a systematic study of hydrodynamic cell lysing in a high-throughput Circular Multi-Channel Microfiltration (CMCM) device integrated with a polycarbonate membrane. HeLa cells (cervical cancer cells) were driven into the CMCM at different flow rates. The viability of the cells in the CMCM was examined by fluorescence microscopy using Acridine Orange (AO)/ Ethidium Bromide (EB) as a marker for viable/dead cells. A simple analytical cell viability model was derived and a 3D numerical model was constructed to examine the correlation of between cell lysing and applied shear stress under varying flow rate and Reynolds number. The measured cell viability as a function of the shear stress was consistent with theoretical and numerical predictions when accounting for cell size distribution.","internal_url":"https://www.academia.edu/105598797/Experimental_and_theoretical_study_of_hydrodynamic_cell_lysing_of_cancer_cells_in_a_high_throughput_Circular_Multi_Channel_Microfiltration_device","translated_internal_url":"","created_at":"2023-08-14T18:44:27.374-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33508741,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Experimental_and_theoretical_study_of_hydrodynamic_cell_lysing_of_cancer_cells_in_a_high_throughput_Circular_Multi_Channel_Microfiltration_device","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Microfiltration is an important microfluidic technique suitable for enrichment and isolation of cells. However, cell lysing could occur due to hydrodynamic damage that may be detrimental for medical diagnostics. Therefore, we conducted a systematic study of hydrodynamic cell lysing in a high-throughput Circular Multi-Channel Microfiltration (CMCM) device integrated with a polycarbonate membrane. HeLa cells (cervical cancer cells) were driven into the CMCM at different flow rates. The viability of the cells in the CMCM was examined by fluorescence microscopy using Acridine Orange (AO)/ Ethidium Bromide (EB) as a marker for viable/dead cells. A simple analytical cell viability model was derived and a 3D numerical model was constructed to examine the correlation of between cell lysing and applied shear stress under varying flow rate and Reynolds number. The measured cell viability as a function of the shear stress was consistent with theoretical and numerical predictions when accounting for cell size distribution.","owner":{"id":33508741,"first_name":"Yi-Kuen","middle_initials":null,"last_name":"Lee","page_name":"YiKuenLee","domain_name":"hkust","created_at":"2015-08-01T03:12:59.639-07:00","display_name":"Yi-Kuen Lee","url":"https://hkust.academia.edu/YiKuenLee"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":153972,"name":"Microfiltration","url":"https://www.academia.edu/Documents/in/Microfiltration"},{"id":1256745,"name":"Lysis","url":"https://www.academia.edu/Documents/in/Lysis"},{"id":1335152,"name":"Viability assay","url":"https://www.academia.edu/Documents/in/Viability_assay"},{"id":1335153,"name":"Acridine Orange","url":"https://www.academia.edu/Documents/in/Acridine_Orange"},{"id":2226500,"name":"Ethidium bromide","url":"https://www.academia.edu/Documents/in/Ethidium_bromide"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-105598797-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="105598796"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/105598796/Hele_Shaw_Flow_in_a_Microchannel_with_Cavities"><img alt="Research paper thumbnail of Hele-Shaw Flow in a Microchannel with Cavities" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Hele-Shaw Flow in a Microchannel with Cavities</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="105598796"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="105598796"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 105598796; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=105598796]").text(description); $(".js-view-count[data-work-id=105598796]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 105598796; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='105598796']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=105598796]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":105598796,"title":"Hele-Shaw Flow in a Microchannel with Cavities","translated_title":"","metadata":{"abstract":"ABSTRACT"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/105598796/Hele_Shaw_Flow_in_a_Microchannel_with_Cavities","translated_internal_url":"","created_at":"2023-08-14T18:44:27.228-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33508741,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Hele_Shaw_Flow_in_a_Microchannel_with_Cavities","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT","owner":{"id":33508741,"first_name":"Yi-Kuen","middle_initials":null,"last_name":"Lee","page_name":"YiKuenLee","domain_name":"hkust","created_at":"2015-08-01T03:12:59.639-07:00","display_name":"Yi-Kuen Lee","url":"https://hkust.academia.edu/YiKuenLee"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":60658,"name":"Numerical Simulation","url":"https://www.academia.edu/Documents/in/Numerical_Simulation"},{"id":283531,"name":"Microchannel","url":"https://www.academia.edu/Documents/in/Microchannel"},{"id":898062,"name":"Flow Rate","url":"https://www.academia.edu/Documents/in/Flow_Rate"},{"id":1144265,"name":"Pressure Distribution","url":"https://www.academia.edu/Documents/in/Pressure_Distribution"},{"id":3663955,"name":"Knudsen number","url":"https://www.academia.edu/Documents/in/Knudsen_number"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-105598796-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="105598795"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/105598795/Application_of_Nanoparticle_Based_Giant_Electrorheological_Fluid_to_Microfluidics"><img alt="Research paper thumbnail of Application of Nanoparticle-Based Giant Electrorheological Fluid to Microfluidics" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Application of Nanoparticle-Based Giant Electrorheological Fluid to Microfluidics</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper presents application of nanoparticle-based giant electrorheological (GER) fluid to mic...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper presents application of nanoparticle-based giant electrorheological (GER) fluid to microfluidics. The GER fluid, consisting of urea-coated 20 nm-diameter nanoparticles (barium titanyl oxalate) suspended in silicone oil, can reach a yield stress of 130 kPa, breaking the theoretical upper bound of conventional ER fluids. Multi-layer PDMS and conductive PDMS fabrication technique was developed for a series of basic microfluidic</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="105598795"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="105598795"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 105598795; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=105598795]").text(description); $(".js-view-count[data-work-id=105598795]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 105598795; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='105598795']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=105598795]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":105598795,"title":"Application of Nanoparticle-Based Giant Electrorheological Fluid to Microfluidics","translated_title":"","metadata":{"abstract":"This paper presents application of nanoparticle-based giant electrorheological (GER) fluid to microfluidics. The GER fluid, consisting of urea-coated 20 nm-diameter nanoparticles (barium titanyl oxalate) suspended in silicone oil, can reach a yield stress of 130 kPa, breaking the theoretical upper bound of conventional ER fluids. Multi-layer PDMS and conductive PDMS fabrication technique was developed for a series of basic microfluidic"},"translated_abstract":"This paper presents application of nanoparticle-based giant electrorheological (GER) fluid to microfluidics. The GER fluid, consisting of urea-coated 20 nm-diameter nanoparticles (barium titanyl oxalate) suspended in silicone oil, can reach a yield stress of 130 kPa, breaking the theoretical upper bound of conventional ER fluids. Multi-layer PDMS and conductive PDMS fabrication technique was developed for a series of basic microfluidic","internal_url":"https://www.academia.edu/105598795/Application_of_Nanoparticle_Based_Giant_Electrorheological_Fluid_to_Microfluidics","translated_internal_url":"","created_at":"2023-08-14T18:44:27.082-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33508741,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Application_of_Nanoparticle_Based_Giant_Electrorheological_Fluid_to_Microfluidics","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"This paper presents application of nanoparticle-based giant electrorheological (GER) fluid to microfluidics. The GER fluid, consisting of urea-coated 20 nm-diameter nanoparticles (barium titanyl oxalate) suspended in silicone oil, can reach a yield stress of 130 kPa, breaking the theoretical upper bound of conventional ER fluids. Multi-layer PDMS and conductive PDMS fabrication technique was developed for a series of basic microfluidic","owner":{"id":33508741,"first_name":"Yi-Kuen","middle_initials":null,"last_name":"Lee","page_name":"YiKuenLee","domain_name":"hkust","created_at":"2015-08-01T03:12:59.639-07:00","display_name":"Yi-Kuen Lee","url":"https://hkust.academia.edu/YiKuenLee"},"attachments":[],"research_interests":[{"id":331203,"name":"Pressure Drop","url":"https://www.academia.edu/Documents/in/Pressure_Drop"},{"id":575846,"name":"Upper Bound","url":"https://www.academia.edu/Documents/in/Upper_Bound"},{"id":789709,"name":"Yield stress","url":"https://www.academia.edu/Documents/in/Yield_stress"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-105598795-figures'); } }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="3316477" id="papers"><div class="js-work-strip profile--work_container" data-work-id="105598816"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/105598816/A_Novel_Two_Dimensional_Model_for_Micro_Thermal_Expansion_based_Gyroscopes_towards_Parametric_Analysis_and_Efficient_Optimization"><img alt="Research paper thumbnail of A Novel Two-Dimensional Model for Micro Thermal Expansion-based Gyroscopes towards Parametric Analysis and Efficient Optimization" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">A Novel Two-Dimensional Model for Micro Thermal Expansion-based Gyroscopes towards Parametric Analysis and Efficient Optimization</div><div class="wp-workCard_item"><span>2019 IEEE SENSORS</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We report, for the first time, a novel two-dimensional (2D) model for the micro thermal expansion...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We report, for the first time, a novel two-dimensional (2D) model for the micro thermal expansion-based gyroscope (µTEG) to predict the sensor’s performance, which has been validated by the experimental results. Scaling analysis on the sensor’s performance characteristics by this model enables the optimization of µTEG design, including the normalized distances between the heater and temperature detectors in two directions, the thin film thickness, the heater width, the cavity depth and the heater temperature, to achieve extremely high sensitivity (11.78 mV/°/s) and low power consumption (12.8mW). According to the analysis by 2D model, the sensitivity of the optimized µTEGs by using the working gases (SF6 and C4F8) with larger density, better than the best published µTEG (1.287 mV/°/s) by one order of magnitude, can reach the level of the commercial product (&amp;gt;6 mV/°/s). In particular, our new 2D model can significantly save the CPU time in comparison with the conventional CFD model (1.92s versus 5h) to realize the efficient systematical optimization of the key design parameters. Thus, the proposed 2D model can be a useful tool for µTEGs’ system-level designs for industrial IoT applications.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="105598816"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="105598816"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 105598816; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=105598816]").text(description); $(".js-view-count[data-work-id=105598816]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 105598816; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='105598816']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=105598816]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":105598816,"title":"A Novel Two-Dimensional Model for Micro Thermal Expansion-based Gyroscopes towards Parametric Analysis and Efficient Optimization","translated_title":"","metadata":{"abstract":"We report, for the first time, a novel two-dimensional (2D) model for the micro thermal expansion-based gyroscope (µTEG) to predict the sensor’s performance, which has been validated by the experimental results. Scaling analysis on the sensor’s performance characteristics by this model enables the optimization of µTEG design, including the normalized distances between the heater and temperature detectors in two directions, the thin film thickness, the heater width, the cavity depth and the heater temperature, to achieve extremely high sensitivity (11.78 mV/°/s) and low power consumption (12.8mW). According to the analysis by 2D model, the sensitivity of the optimized µTEGs by using the working gases (SF6 and C4F8) with larger density, better than the best published µTEG (1.287 mV/°/s) by one order of magnitude, can reach the level of the commercial product (\u0026gt;6 mV/°/s). In particular, our new 2D model can significantly save the CPU time in comparison with the conventional CFD model (1.92s versus 5h) to realize the efficient systematical optimization of the key design parameters. Thus, the proposed 2D model can be a useful tool for µTEGs’ system-level designs for industrial IoT applications.","publisher":"IEEE","publication_name":"2019 IEEE SENSORS"},"translated_abstract":"We report, for the first time, a novel two-dimensional (2D) model for the micro thermal expansion-based gyroscope (µTEG) to predict the sensor’s performance, which has been validated by the experimental results. Scaling analysis on the sensor’s performance characteristics by this model enables the optimization of µTEG design, including the normalized distances between the heater and temperature detectors in two directions, the thin film thickness, the heater width, the cavity depth and the heater temperature, to achieve extremely high sensitivity (11.78 mV/°/s) and low power consumption (12.8mW). According to the analysis by 2D model, the sensitivity of the optimized µTEGs by using the working gases (SF6 and C4F8) with larger density, better than the best published µTEG (1.287 mV/°/s) by one order of magnitude, can reach the level of the commercial product (\u0026gt;6 mV/°/s). In particular, our new 2D model can significantly save the CPU time in comparison with the conventional CFD model (1.92s versus 5h) to realize the efficient systematical optimization of the key design parameters. Thus, the proposed 2D model can be a useful tool for µTEGs’ system-level designs for industrial IoT applications.","internal_url":"https://www.academia.edu/105598816/A_Novel_Two_Dimensional_Model_for_Micro_Thermal_Expansion_based_Gyroscopes_towards_Parametric_Analysis_and_Efficient_Optimization","translated_internal_url":"","created_at":"2023-08-14T18:44:33.167-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33508741,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_Novel_Two_Dimensional_Model_for_Micro_Thermal_Expansion_based_Gyroscopes_towards_Parametric_Analysis_and_Efficient_Optimization","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"We report, for the first time, a novel two-dimensional (2D) model for the micro thermal expansion-based gyroscope (µTEG) to predict the sensor’s performance, which has been validated by the experimental results. Scaling analysis on the sensor’s performance characteristics by this model enables the optimization of µTEG design, including the normalized distances between the heater and temperature detectors in two directions, the thin film thickness, the heater width, the cavity depth and the heater temperature, to achieve extremely high sensitivity (11.78 mV/°/s) and low power consumption (12.8mW). According to the analysis by 2D model, the sensitivity of the optimized µTEGs by using the working gases (SF6 and C4F8) with larger density, better than the best published µTEG (1.287 mV/°/s) by one order of magnitude, can reach the level of the commercial product (\u0026gt;6 mV/°/s). In particular, our new 2D model can significantly save the CPU time in comparison with the conventional CFD model (1.92s versus 5h) to realize the efficient systematical optimization of the key design parameters. Thus, the proposed 2D model can be a useful tool for µTEGs’ system-level designs for industrial IoT applications.","owner":{"id":33508741,"first_name":"Yi-Kuen","middle_initials":null,"last_name":"Lee","page_name":"YiKuenLee","domain_name":"hkust","created_at":"2015-08-01T03:12:59.639-07:00","display_name":"Yi-Kuen Lee","url":"https://hkust.academia.edu/YiKuenLee"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":329868,"name":"Gyroscope","url":"https://www.academia.edu/Documents/in/Gyroscope"}],"urls":[{"id":33426920,"url":"http://xplorestaging.ieee.org/ielx7/8949872/8956486/08956539.pdf?arnumber=8956539"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-105598816-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="105598815"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/105598815/Low_Cost_Parylene_Based_Micro_Humidity_Sensor_for_Integrated_Human_Thermal_Comfort_Sensing"><img alt="Research paper thumbnail of Low-Cost Parylene Based Micro Humidity Sensor for Integrated Human Thermal Comfort Sensing" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Low-Cost Parylene Based Micro Humidity Sensor for Integrated Human Thermal Comfort Sensing</div><div class="wp-workCard_item"><span>2020 IEEE 15th International Conference on Nano/Micro Engineered and Molecular System (NEMS)</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper, we report a CMOS-MEMS compatible Parylene C based Humidity Sensor (PHS) to be used...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper, we report a CMOS-MEMS compatible Parylene C based Humidity Sensor (PHS) to be used for integrated human thermal comfort sensing for smart buildings. Interdigitated platinum (Pt) electrodes are deposited on a silicon substrate. A parylene C thin film as hygroscopic layer is coated on the electrodes using room-temperature chemical vapor deposition (CVD) technique. Three sensors with various dimensions (1.2 mm2, 4.8 mm2, and 7.5 mm2) are fabricated to study the size effect of the sensor on the sensitivity. The impedance, phase and capacitive response of the sensor at different frequencies of the operating voltage under various relative humidity (RH) levels are investigated. The overall impedance and capacitance changed from 23.02 to 3.744 MŸ and 64.165 to 194.14 pF respectively at 100 Hz operating frequency for the 4.8 mm2 sensor when RH is increased from 0.1 to 92%. The measured PHS’s sensitivity at the frequencies of 1~100 kHz shows highest (1.428 pF/%RH) at low frequency (100 Hz). The PHS with large sensing area showed higher sensitivity (0.11 ~ 0.53 pF/%RH) compared to medium and small sensors. Moreover, the PHS is tested for 3 days depicting good stability with respect to time.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="105598815"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="105598815"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 105598815; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=105598815]").text(description); $(".js-view-count[data-work-id=105598815]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 105598815; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='105598815']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=105598815]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":105598815,"title":"Low-Cost Parylene Based Micro Humidity Sensor for Integrated Human Thermal Comfort Sensing","translated_title":"","metadata":{"abstract":"In this paper, we report a CMOS-MEMS compatible Parylene C based Humidity Sensor (PHS) to be used for integrated human thermal comfort sensing for smart buildings. Interdigitated platinum (Pt) electrodes are deposited on a silicon substrate. A parylene C thin film as hygroscopic layer is coated on the electrodes using room-temperature chemical vapor deposition (CVD) technique. Three sensors with various dimensions (1.2 mm2, 4.8 mm2, and 7.5 mm2) are fabricated to study the size effect of the sensor on the sensitivity. The impedance, phase and capacitive response of the sensor at different frequencies of the operating voltage under various relative humidity (RH) levels are investigated. The overall impedance and capacitance changed from 23.02 to 3.744 MŸ and 64.165 to 194.14 pF respectively at 100 Hz operating frequency for the 4.8 mm2 sensor when RH is increased from 0.1 to 92%. The measured PHS’s sensitivity at the frequencies of 1~100 kHz shows highest (1.428 pF/%RH) at low frequency (100 Hz). The PHS with large sensing area showed higher sensitivity (0.11 ~ 0.53 pF/%RH) compared to medium and small sensors. Moreover, the PHS is tested for 3 days depicting good stability with respect to time.","publisher":"IEEE","publication_name":"2020 IEEE 15th International Conference on Nano/Micro Engineered and Molecular System (NEMS)"},"translated_abstract":"In this paper, we report a CMOS-MEMS compatible Parylene C based Humidity Sensor (PHS) to be used for integrated human thermal comfort sensing for smart buildings. Interdigitated platinum (Pt) electrodes are deposited on a silicon substrate. A parylene C thin film as hygroscopic layer is coated on the electrodes using room-temperature chemical vapor deposition (CVD) technique. Three sensors with various dimensions (1.2 mm2, 4.8 mm2, and 7.5 mm2) are fabricated to study the size effect of the sensor on the sensitivity. The impedance, phase and capacitive response of the sensor at different frequencies of the operating voltage under various relative humidity (RH) levels are investigated. The overall impedance and capacitance changed from 23.02 to 3.744 MŸ and 64.165 to 194.14 pF respectively at 100 Hz operating frequency for the 4.8 mm2 sensor when RH is increased from 0.1 to 92%. The measured PHS’s sensitivity at the frequencies of 1~100 kHz shows highest (1.428 pF/%RH) at low frequency (100 Hz). The PHS with large sensing area showed higher sensitivity (0.11 ~ 0.53 pF/%RH) compared to medium and small sensors. Moreover, the PHS is tested for 3 days depicting good stability with respect to time.","internal_url":"https://www.academia.edu/105598815/Low_Cost_Parylene_Based_Micro_Humidity_Sensor_for_Integrated_Human_Thermal_Comfort_Sensing","translated_internal_url":"","created_at":"2023-08-14T18:44:32.896-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33508741,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Low_Cost_Parylene_Based_Micro_Humidity_Sensor_for_Integrated_Human_Thermal_Comfort_Sensing","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"In this paper, we report a CMOS-MEMS compatible Parylene C based Humidity Sensor (PHS) to be used for integrated human thermal comfort sensing for smart buildings. Interdigitated platinum (Pt) electrodes are deposited on a silicon substrate. A parylene C thin film as hygroscopic layer is coated on the electrodes using room-temperature chemical vapor deposition (CVD) technique. Three sensors with various dimensions (1.2 mm2, 4.8 mm2, and 7.5 mm2) are fabricated to study the size effect of the sensor on the sensitivity. The impedance, phase and capacitive response of the sensor at different frequencies of the operating voltage under various relative humidity (RH) levels are investigated. The overall impedance and capacitance changed from 23.02 to 3.744 MŸ and 64.165 to 194.14 pF respectively at 100 Hz operating frequency for the 4.8 mm2 sensor when RH is increased from 0.1 to 92%. The measured PHS’s sensitivity at the frequencies of 1~100 kHz shows highest (1.428 pF/%RH) at low frequency (100 Hz). The PHS with large sensing area showed higher sensitivity (0.11 ~ 0.53 pF/%RH) compared to medium and small sensors. Moreover, the PHS is tested for 3 days depicting good stability with respect to time.","owner":{"id":33508741,"first_name":"Yi-Kuen","middle_initials":null,"last_name":"Lee","page_name":"YiKuenLee","domain_name":"hkust","created_at":"2015-08-01T03:12:59.639-07:00","display_name":"Yi-Kuen Lee","url":"https://hkust.academia.edu/YiKuenLee"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":408433,"name":"Parylene","url":"https://www.academia.edu/Documents/in/Parylene"}],"urls":[{"id":33426919,"url":"http://xplorestaging.ieee.org/ielx7/9265537/9265518/09265630.pdf?arnumber=9265630"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-105598815-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="105598814"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/105598814/Two_Dimensional_Theoretical_Modeling_and_Experimental_Investigations_of_Micromachined_Thermal_Expansion_Based_Angular_Motion_Sensor"><img alt="Research paper thumbnail of Two-Dimensional Theoretical Modeling and Experimental Investigations of Micromachined Thermal Expansion-Based Angular Motion Sensor" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Two-Dimensional Theoretical Modeling and Experimental Investigations of Micromachined Thermal Expansion-Based Angular Motion Sensor</div><div class="wp-workCard_item"><span>Journal of Microelectromechanical Systems</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A two-dimensional (2D) model was developed, for the first time, to describe the characteristics o...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A two-dimensional (2D) model was developed, for the first time, to describe the characteristics of the micromachined thermal expansion-based angular motion (TEAM) sensor, which has been validated by the experimental results. Scaling analysis on the performance characteristics through the 2D model was conducted to optimize the TEAM sensor’s design in terms of the normalized distances between the microheaters and temperature detectors in &amp;lt;inline-formula&amp;gt; &amp;lt;tex-math notation=&amp;quot;LaTeX&amp;quot;&amp;gt;$x$ &amp;lt;/tex-math&amp;gt;&amp;lt;/inline-formula&amp;gt; and &amp;lt;inline-formula&amp;gt; &amp;lt;tex-math notation=&amp;quot;LaTeX&amp;quot;&amp;gt;$y$ &amp;lt;/tex-math&amp;gt;&amp;lt;/inline-formula&amp;gt; directions, the thickness of the thin film, the heater width, the cavity depth, and the heater temperature. Furthermore, the proposed 2D model was normalized by two dimensionless numbers, namely Rayleigh number Ra and Peclet number Pe, with a critical Rayleigh number (Ra&amp;lt;inline-formula&amp;gt; &amp;lt;tex-math notation=&amp;quot;LaTeX&amp;quot;&amp;gt;$^{\ast }_{\mathrm {c}} =18$ &amp;lt;/tex-math&amp;gt;&amp;lt;/inline-formula&amp;gt;,000) identified to differentiate linear and nonlinear operation regimes of the TEAM sensor. In particular, our 2D model is much faster than the conventional CFD model by three orders of magnitude (18.91s versus 5.5h), enabling rapid system-level optimization of the critical design parameters. Accordingly, the TEAM sensors with three pairs of platinum thermoresistive temperature sensors were designed and fabricated. The fabricated device demonstrated a normalized sensitivity of &amp;lt;inline-formula&amp;gt; &amp;lt;tex-math notation=&amp;quot;LaTeX&amp;quot;&amp;gt;$11.8~\mu \text{V}$ &amp;lt;/tex-math&amp;gt;&amp;lt;/inline-formula&amp;gt;/°/s/mW based on the working fluid of air, which was more than three times better than previous thermal angular motion sensors. Thus, with the experimental validation, the proposed 2D model should be a reliable tool to realize the systematical design optimization of TEAM sensors integrated with on-chip microelectronics for future industrial IoT applications. [2020-0355]</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="105598814"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="105598814"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 105598814; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=105598814]").text(description); $(".js-view-count[data-work-id=105598814]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 105598814; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='105598814']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=105598814]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":105598814,"title":"Two-Dimensional Theoretical Modeling and Experimental Investigations of Micromachined Thermal Expansion-Based Angular Motion Sensor","translated_title":"","metadata":{"abstract":"A two-dimensional (2D) model was developed, for the first time, to describe the characteristics of the micromachined thermal expansion-based angular motion (TEAM) sensor, which has been validated by the experimental results. Scaling analysis on the performance characteristics through the 2D model was conducted to optimize the TEAM sensor’s design in terms of the normalized distances between the microheaters and temperature detectors in \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$x$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt; and \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$y$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt; directions, the thickness of the thin film, the heater width, the cavity depth, and the heater temperature. Furthermore, the proposed 2D model was normalized by two dimensionless numbers, namely Rayleigh number Ra and Peclet number Pe, with a critical Rayleigh number (Ra\u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$^{\\ast }_{\\mathrm {c}} =18$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt;,000) identified to differentiate linear and nonlinear operation regimes of the TEAM sensor. In particular, our 2D model is much faster than the conventional CFD model by three orders of magnitude (18.91s versus 5.5h), enabling rapid system-level optimization of the critical design parameters. Accordingly, the TEAM sensors with three pairs of platinum thermoresistive temperature sensors were designed and fabricated. The fabricated device demonstrated a normalized sensitivity of \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$11.8~\\mu \\text{V}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt;/°/s/mW based on the working fluid of air, which was more than three times better than previous thermal angular motion sensors. Thus, with the experimental validation, the proposed 2D model should be a reliable tool to realize the systematical design optimization of TEAM sensors integrated with on-chip microelectronics for future industrial IoT applications. [2020-0355]","publisher":"Institute of Electrical and Electronics Engineers (IEEE)","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Journal of Microelectromechanical Systems"},"translated_abstract":"A two-dimensional (2D) model was developed, for the first time, to describe the characteristics of the micromachined thermal expansion-based angular motion (TEAM) sensor, which has been validated by the experimental results. Scaling analysis on the performance characteristics through the 2D model was conducted to optimize the TEAM sensor’s design in terms of the normalized distances between the microheaters and temperature detectors in \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$x$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt; and \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$y$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt; directions, the thickness of the thin film, the heater width, the cavity depth, and the heater temperature. Furthermore, the proposed 2D model was normalized by two dimensionless numbers, namely Rayleigh number Ra and Peclet number Pe, with a critical Rayleigh number (Ra\u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$^{\\ast }_{\\mathrm {c}} =18$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt;,000) identified to differentiate linear and nonlinear operation regimes of the TEAM sensor. In particular, our 2D model is much faster than the conventional CFD model by three orders of magnitude (18.91s versus 5.5h), enabling rapid system-level optimization of the critical design parameters. Accordingly, the TEAM sensors with three pairs of platinum thermoresistive temperature sensors were designed and fabricated. The fabricated device demonstrated a normalized sensitivity of \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$11.8~\\mu \\text{V}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt;/°/s/mW based on the working fluid of air, which was more than three times better than previous thermal angular motion sensors. Thus, with the experimental validation, the proposed 2D model should be a reliable tool to realize the systematical design optimization of TEAM sensors integrated with on-chip microelectronics for future industrial IoT applications. [2020-0355]","internal_url":"https://www.academia.edu/105598814/Two_Dimensional_Theoretical_Modeling_and_Experimental_Investigations_of_Micromachined_Thermal_Expansion_Based_Angular_Motion_Sensor","translated_internal_url":"","created_at":"2023-08-14T18:44:32.079-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33508741,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Two_Dimensional_Theoretical_Modeling_and_Experimental_Investigations_of_Micromachined_Thermal_Expansion_Based_Angular_Motion_Sensor","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"A two-dimensional (2D) model was developed, for the first time, to describe the characteristics of the micromachined thermal expansion-based angular motion (TEAM) sensor, which has been validated by the experimental results. Scaling analysis on the performance characteristics through the 2D model was conducted to optimize the TEAM sensor’s design in terms of the normalized distances between the microheaters and temperature detectors in \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$x$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt; and \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$y$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt; directions, the thickness of the thin film, the heater width, the cavity depth, and the heater temperature. Furthermore, the proposed 2D model was normalized by two dimensionless numbers, namely Rayleigh number Ra and Peclet number Pe, with a critical Rayleigh number (Ra\u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$^{\\ast }_{\\mathrm {c}} =18$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt;,000) identified to differentiate linear and nonlinear operation regimes of the TEAM sensor. In particular, our 2D model is much faster than the conventional CFD model by three orders of magnitude (18.91s versus 5.5h), enabling rapid system-level optimization of the critical design parameters. Accordingly, the TEAM sensors with three pairs of platinum thermoresistive temperature sensors were designed and fabricated. The fabricated device demonstrated a normalized sensitivity of \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$11.8~\\mu \\text{V}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt;/°/s/mW based on the working fluid of air, which was more than three times better than previous thermal angular motion sensors. Thus, with the experimental validation, the proposed 2D model should be a reliable tool to realize the systematical design optimization of TEAM sensors integrated with on-chip microelectronics for future industrial IoT applications. [2020-0355]","owner":{"id":33508741,"first_name":"Yi-Kuen","middle_initials":null,"last_name":"Lee","page_name":"YiKuenLee","domain_name":"hkust","created_at":"2015-08-01T03:12:59.639-07:00","display_name":"Yi-Kuen Lee","url":"https://hkust.academia.edu/YiKuenLee"},"attachments":[],"research_interests":[{"id":1136,"name":"Microelectronics","url":"https://www.academia.edu/Documents/in/Microelectronics"},{"id":23818,"name":"Microelectromechanical systems","url":"https://www.academia.edu/Documents/in/Microelectromechanical_systems"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"}],"urls":[{"id":33426918,"url":"http://xplorestaging.ieee.org/ielx7/84/9329176/09310254.pdf?arnumber=9310254"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-105598814-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="105598813"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/105598813/A_CMOS_MEMS_Thermal_Flow_Sensor_for_Gas_and_Liquid_With_Parylene_C_Coating"><img alt="Research paper thumbnail of A CMOS MEMS Thermal Flow Sensor for Gas and Liquid With Parylene-C Coating" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">A CMOS MEMS Thermal Flow Sensor for Gas and Liquid With Parylene-C Coating</div><div class="wp-workCard_item"><span>IEEE Transactions on Electron Devices</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This brief presents a self-heated thermoresistive flow (SHTF) sensor for both gas and liquid with...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This brief presents a self-heated thermoresistive flow (SHTF) sensor for both gas and liquid with Parylene-C coating using a 0.35-&amp;lt;inline-formula&amp;gt; &amp;lt;tex-math notation=&amp;quot;LaTeX&amp;quot;&amp;gt;$ \mu \text{m}$ &amp;lt;/tex-math&amp;gt;&amp;lt;/inline-formula&amp;gt; CMOS MEMS technology. For N&amp;lt;sub&amp;gt;2&amp;lt;/sub&amp;gt; flow, the developed SHTF sensor can achieve the highest normalized sensitivity (&amp;lt;inline-formula&amp;gt; &amp;lt;tex-math notation=&amp;quot;LaTeX&amp;quot;&amp;gt;$S^{ \ast }{ =}\,\, {S}_{c} / {P}$ &amp;lt;/tex-math&amp;gt;&amp;lt;/inline-formula&amp;gt;) of 171 mV/(m/s)/W with its power consumption &amp;lt;inline-formula&amp;gt; &amp;lt;tex-math notation=&amp;quot;LaTeX&amp;quot;&amp;gt;${P}$ &amp;lt;/tex-math&amp;gt;&amp;lt;/inline-formula&amp;gt; of less than 18.3 mW. Meanwhile, the SHTF sensor has an accuracy of ±0.04 m/s within the linear flow range of 0–2.5 m/s, which is capable of indoor airflow measurement even in humid environment. For water flow, the SHTF sensor gains a sensitivity &amp;lt;inline-formula&amp;gt; &amp;lt;tex-math notation=&amp;quot;LaTeX&amp;quot;&amp;gt;${S}_{W} ^{ \ast }$ &amp;lt;/tex-math&amp;gt;&amp;lt;/inline-formula&amp;gt; of 6.42 V/(m/s)/W with the configured calorimetric setup, while its sensitivity increased by more than 4X as it assigned as anemometric for a Nusselt number &amp;lt;italic&amp;gt;Nu&amp;lt;/italic&amp;gt; of 0–9. Therefore, this highly sensitive CMOS MEMS SHTF sensor with the coated Parylene-C will be a very useful device for both gas and liquid flow measurement in heating, ventilation, and air conditioning (HVAC) and microfluidic applications.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="105598813"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="105598813"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 105598813; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=105598813]").text(description); $(".js-view-count[data-work-id=105598813]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 105598813; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='105598813']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=105598813]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":105598813,"title":"A CMOS MEMS Thermal Flow Sensor for Gas and Liquid With Parylene-C Coating","translated_title":"","metadata":{"abstract":"This brief presents a self-heated thermoresistive flow (SHTF) sensor for both gas and liquid with Parylene-C coating using a 0.35-\u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$ \\mu \\text{m}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt; CMOS MEMS technology. For N\u0026lt;sub\u0026gt;2\u0026lt;/sub\u0026gt; flow, the developed SHTF sensor can achieve the highest normalized sensitivity (\u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$S^{ \\ast }{ =}\\,\\, {S}_{c} / {P}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt;) of 171 mV/(m/s)/W with its power consumption \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;${P}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt; of less than 18.3 mW. Meanwhile, the SHTF sensor has an accuracy of ±0.04 m/s within the linear flow range of 0–2.5 m/s, which is capable of indoor airflow measurement even in humid environment. For water flow, the SHTF sensor gains a sensitivity \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;${S}_{W} ^{ \\ast }$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt; of 6.42 V/(m/s)/W with the configured calorimetric setup, while its sensitivity increased by more than 4X as it assigned as anemometric for a Nusselt number \u0026lt;italic\u0026gt;Nu\u0026lt;/italic\u0026gt; of 0–9. Therefore, this highly sensitive CMOS MEMS SHTF sensor with the coated Parylene-C will be a very useful device for both gas and liquid flow measurement in heating, ventilation, and air conditioning (HVAC) and microfluidic applications.","publisher":"Institute of Electrical and Electronics Engineers (IEEE)","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"IEEE Transactions on Electron Devices"},"translated_abstract":"This brief presents a self-heated thermoresistive flow (SHTF) sensor for both gas and liquid with Parylene-C coating using a 0.35-\u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$ \\mu \\text{m}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt; CMOS MEMS technology. For N\u0026lt;sub\u0026gt;2\u0026lt;/sub\u0026gt; flow, the developed SHTF sensor can achieve the highest normalized sensitivity (\u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$S^{ \\ast }{ =}\\,\\, {S}_{c} / {P}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt;) of 171 mV/(m/s)/W with its power consumption \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;${P}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt; of less than 18.3 mW. Meanwhile, the SHTF sensor has an accuracy of ±0.04 m/s within the linear flow range of 0–2.5 m/s, which is capable of indoor airflow measurement even in humid environment. For water flow, the SHTF sensor gains a sensitivity \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;${S}_{W} ^{ \\ast }$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt; of 6.42 V/(m/s)/W with the configured calorimetric setup, while its sensitivity increased by more than 4X as it assigned as anemometric for a Nusselt number \u0026lt;italic\u0026gt;Nu\u0026lt;/italic\u0026gt; of 0–9. Therefore, this highly sensitive CMOS MEMS SHTF sensor with the coated Parylene-C will be a very useful device for both gas and liquid flow measurement in heating, ventilation, and air conditioning (HVAC) and microfluidic applications.","internal_url":"https://www.academia.edu/105598813/A_CMOS_MEMS_Thermal_Flow_Sensor_for_Gas_and_Liquid_With_Parylene_C_Coating","translated_internal_url":"","created_at":"2023-08-14T18:44:30.757-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33508741,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_CMOS_MEMS_Thermal_Flow_Sensor_for_Gas_and_Liquid_With_Parylene_C_Coating","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"This brief presents a self-heated thermoresistive flow (SHTF) sensor for both gas and liquid with Parylene-C coating using a 0.35-\u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$ \\mu \\text{m}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt; CMOS MEMS technology. For N\u0026lt;sub\u0026gt;2\u0026lt;/sub\u0026gt; flow, the developed SHTF sensor can achieve the highest normalized sensitivity (\u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$S^{ \\ast }{ =}\\,\\, {S}_{c} / {P}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt;) of 171 mV/(m/s)/W with its power consumption \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;${P}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt; of less than 18.3 mW. Meanwhile, the SHTF sensor has an accuracy of ±0.04 m/s within the linear flow range of 0–2.5 m/s, which is capable of indoor airflow measurement even in humid environment. For water flow, the SHTF sensor gains a sensitivity \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;${S}_{W} ^{ \\ast }$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt; of 6.42 V/(m/s)/W with the configured calorimetric setup, while its sensitivity increased by more than 4X as it assigned as anemometric for a Nusselt number \u0026lt;italic\u0026gt;Nu\u0026lt;/italic\u0026gt; of 0–9. Therefore, this highly sensitive CMOS MEMS SHTF sensor with the coated Parylene-C will be a very useful device for both gas and liquid flow measurement in heating, ventilation, and air conditioning (HVAC) and microfluidic applications.","owner":{"id":33508741,"first_name":"Yi-Kuen","middle_initials":null,"last_name":"Lee","page_name":"YiKuenLee","domain_name":"hkust","created_at":"2015-08-01T03:12:59.639-07:00","display_name":"Yi-Kuen Lee","url":"https://hkust.academia.edu/YiKuenLee"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":23818,"name":"Microelectromechanical systems","url":"https://www.academia.edu/Documents/in/Microelectromechanical_systems"},{"id":93150,"name":"Coating","url":"https://www.academia.edu/Documents/in/Coating"},{"id":202261,"name":"Cmos","url":"https://www.academia.edu/Documents/in/Cmos"},{"id":408433,"name":"Parylene","url":"https://www.academia.edu/Documents/in/Parylene"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"}],"urls":[{"id":33426917,"url":"http://xplorestaging.ieee.org/ielx7/16/9332190/09286894.pdf?arnumber=9286894"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-105598813-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="105598811"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/105598811/Comparative_study_of_the_viscoelasticity_of_parylene_thin_films_for_MEMS_using_Nano_DMA_and_Molecular_Dynamics"><img alt="Research paper thumbnail of Comparative study of the viscoelasticity of parylene thin films for MEMS using Nano-DMA and Molecular Dynamics" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Comparative study of the viscoelasticity of parylene thin films for MEMS using Nano-DMA and Molecular Dynamics</div><div class="wp-workCard_item"><span>2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS)</span><span>, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We present a comparative study of the viscoelasticity of parylene C (PPXC) by using Nano-DMA (Dyn...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We present a comparative study of the viscoelasticity of parylene C (PPXC) by using Nano-DMA (Dynamical Mechanical Analysis) and Molecular Dynamics (MD) simulations. By applying sinusoidal loading on PPXC films at different temperatures and frequencies, the complex modulus and glass transition temperature (Tg) of the PPXC were obtained. The predicted Tg determined from the temperature-dependent density change in the MD model is consistent with the results in our measurements and previous works. Furthermore, with Time-Temperature Superposition Principle (TTSP), we successfully determined the master curve of PPXC, for the first time, which is critical for the parylene reliability study of bio-MEMS devices.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="105598811"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="105598811"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 105598811; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=105598811]").text(description); $(".js-view-count[data-work-id=105598811]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 105598811; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='105598811']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=105598811]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":105598811,"title":"Comparative study of the viscoelasticity of parylene thin films for MEMS using Nano-DMA and Molecular Dynamics","translated_title":"","metadata":{"abstract":"We present a comparative study of the viscoelasticity of parylene C (PPXC) by using Nano-DMA (Dynamical Mechanical Analysis) and Molecular Dynamics (MD) simulations. By applying sinusoidal loading on PPXC films at different temperatures and frequencies, the complex modulus and glass transition temperature (Tg) of the PPXC were obtained. The predicted Tg determined from the temperature-dependent density change in the MD model is consistent with the results in our measurements and previous works. Furthermore, with Time-Temperature Superposition Principle (TTSP), we successfully determined the master curve of PPXC, for the first time, which is critical for the parylene reliability study of bio-MEMS devices.","publisher":"IEEE","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS)"},"translated_abstract":"We present a comparative study of the viscoelasticity of parylene C (PPXC) by using Nano-DMA (Dynamical Mechanical Analysis) and Molecular Dynamics (MD) simulations. By applying sinusoidal loading on PPXC films at different temperatures and frequencies, the complex modulus and glass transition temperature (Tg) of the PPXC were obtained. The predicted Tg determined from the temperature-dependent density change in the MD model is consistent with the results in our measurements and previous works. Furthermore, with Time-Temperature Superposition Principle (TTSP), we successfully determined the master curve of PPXC, for the first time, which is critical for the parylene reliability study of bio-MEMS devices.","internal_url":"https://www.academia.edu/105598811/Comparative_study_of_the_viscoelasticity_of_parylene_thin_films_for_MEMS_using_Nano_DMA_and_Molecular_Dynamics","translated_internal_url":"","created_at":"2023-08-14T18:44:30.346-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33508741,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Comparative_study_of_the_viscoelasticity_of_parylene_thin_films_for_MEMS_using_Nano_DMA_and_Molecular_Dynamics","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"We present a comparative study of the viscoelasticity of parylene C (PPXC) by using Nano-DMA (Dynamical Mechanical Analysis) and Molecular Dynamics (MD) simulations. By applying sinusoidal loading on PPXC films at different temperatures and frequencies, the complex modulus and glass transition temperature (Tg) of the PPXC were obtained. The predicted Tg determined from the temperature-dependent density change in the MD model is consistent with the results in our measurements and previous works. Furthermore, with Time-Temperature Superposition Principle (TTSP), we successfully determined the master curve of PPXC, for the first time, which is critical for the parylene reliability study of bio-MEMS devices.","owner":{"id":33508741,"first_name":"Yi-Kuen","middle_initials":null,"last_name":"Lee","page_name":"YiKuenLee","domain_name":"hkust","created_at":"2015-08-01T03:12:59.639-07:00","display_name":"Yi-Kuen Lee","url":"https://hkust.academia.edu/YiKuenLee"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":2383,"name":"Viscoelasticity","url":"https://www.academia.edu/Documents/in/Viscoelasticity"},{"id":23818,"name":"Microelectromechanical systems","url":"https://www.academia.edu/Documents/in/Microelectromechanical_systems"},{"id":35638,"name":"Molecular Dynamics","url":"https://www.academia.edu/Documents/in/Molecular_Dynamics"},{"id":49651,"name":"Nano","url":"https://www.academia.edu/Documents/in/Nano"},{"id":282351,"name":"Glass Transition","url":"https://www.academia.edu/Documents/in/Glass_Transition"},{"id":408433,"name":"Parylene","url":"https://www.academia.edu/Documents/in/Parylene"},{"id":1431635,"name":"Dynamic Mechanical Analysis","url":"https://www.academia.edu/Documents/in/Dynamic_Mechanical_Analysis"},{"id":2175732,"name":"Superposition principle","url":"https://www.academia.edu/Documents/in/Superposition_principle"}],"urls":[{"id":33426916,"url":"http://xplorestaging.ieee.org/ielx7/7852393/7863316/07863444.pdf?arnumber=7863444"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-105598811-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="105598810"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/105598810/Temperature_Effect_on_Single_Cell_Electroendocytosis_Using_a_Cell_Array_Chip_with_Micro_Temperature_Sensors_and_a_Peltier_Thermoelectric_Device"><img alt="Research paper thumbnail of Temperature Effect on Single-Cell Electroendocytosis Using a Cell-Array Chip with Micro Temperature Sensors and a Peltier Thermoelectric Device" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Temperature Effect on Single-Cell Electroendocytosis Using a Cell-Array Chip with Micro Temperature Sensors and a Peltier Thermoelectric Device</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="105598810"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="105598810"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 105598810; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=105598810]").text(description); $(".js-view-count[data-work-id=105598810]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 105598810; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='105598810']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=105598810]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":105598810,"title":"Temperature Effect on Single-Cell Electroendocytosis Using a Cell-Array Chip with Micro Temperature Sensors and a Peltier Thermoelectric Device","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2010,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/105598810/Temperature_Effect_on_Single_Cell_Electroendocytosis_Using_a_Cell_Array_Chip_with_Micro_Temperature_Sensors_and_a_Peltier_Thermoelectric_Device","translated_internal_url":"","created_at":"2023-08-14T18:44:30.049-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33508741,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Temperature_Effect_on_Single_Cell_Electroendocytosis_Using_a_Cell_Array_Chip_with_Micro_Temperature_Sensors_and_a_Peltier_Thermoelectric_Device","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":33508741,"first_name":"Yi-Kuen","middle_initials":null,"last_name":"Lee","page_name":"YiKuenLee","domain_name":"hkust","created_at":"2015-08-01T03:12:59.639-07:00","display_name":"Yi-Kuen Lee","url":"https://hkust.academia.edu/YiKuenLee"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":44299,"name":"Optoelectronics","url":"https://www.academia.edu/Documents/in/Optoelectronics"},{"id":335712,"name":"Thermoelectric Cooling","url":"https://www.academia.edu/Documents/in/Thermoelectric_Cooling"},{"id":1574414,"name":"Thermoelectric effect","url":"https://www.academia.edu/Documents/in/Thermoelectric_effect"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-105598810-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="105598808"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/105598808/Characterization_of_an_Integrated_Self_Sensing_Submicron_Bubble_Actuator"><img alt="Research paper thumbnail of Characterization of an Integrated Self-Sensing Submicron Bubble Actuator" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Characterization of an Integrated Self-Sensing Submicron Bubble Actuator</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="105598808"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="105598808"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 105598808; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=105598808]").text(description); $(".js-view-count[data-work-id=105598808]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 105598808; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='105598808']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=105598808]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":105598808,"title":"Characterization of an Integrated Self-Sensing Submicron Bubble Actuator","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2004,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/105598808/Characterization_of_an_Integrated_Self_Sensing_Submicron_Bubble_Actuator","translated_internal_url":"","created_at":"2023-08-14T18:44:29.804-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33508741,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Characterization_of_an_Integrated_Self_Sensing_Submicron_Bubble_Actuator","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":33508741,"first_name":"Yi-Kuen","middle_initials":null,"last_name":"Lee","page_name":"YiKuenLee","domain_name":"hkust","created_at":"2015-08-01T03:12:59.639-07:00","display_name":"Yi-Kuen Lee","url":"https://hkust.academia.edu/YiKuenLee"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":152114,"name":"Bubble","url":"https://www.academia.edu/Documents/in/Bubble"},{"id":334480,"name":"Actuator","url":"https://www.academia.edu/Documents/in/Actuator"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-105598808-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="105598807"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/105598807/A_Wafer_Level_Packaged_CMOS_MEMS_Pirani_Vacuum_Gauge"><img alt="Research paper thumbnail of A Wafer-Level Packaged CMOS MEMS Pirani Vacuum Gauge" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">A Wafer-Level Packaged CMOS MEMS Pirani Vacuum Gauge</div><div class="wp-workCard_item"><span>IEEE Transactions on Electron Devices</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this article, we report a wafer-level packaged Pirani vacuum gauge using the proprietary Inven...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this article, we report a wafer-level packaged Pirani vacuum gauge using the proprietary InvenSense CMOS MEMS technology. The micro Pirani vacuum gauge features three serpentine-shaped molybdenum thermistors on the suspended silicon-on-insulator (SOI) bridges, while the wiring gap of each serpentine-shaped silicon microbridge is 1.6 &amp;lt;inline-formula&amp;gt; &amp;lt;tex-math notation=&amp;quot;LaTeX&amp;quot;&amp;gt;${ {\mu }}\text{m}$ &amp;lt;/tex-math&amp;gt;&amp;lt;/inline-formula&amp;gt;. For the vacuum range of &amp;lt;inline-formula&amp;gt; &amp;lt;tex-math notation=&amp;quot;LaTeX&amp;quot;&amp;gt;$5\times 10^{-{4}}$ &amp;lt;/tex-math&amp;gt;&amp;lt;/inline-formula&amp;gt;–760 Torr, the CMOS MEMS Pirani gauge configured with a constant temperature interface circuit achieves a sensitivity of 0.414 V/Torr in a very fine vacuum regime, while its heating power is less than 21.3 mW. Moreover, the measured output of the micro Pirani gauge shows good agreement with a semi-empirical model, while the model predicts that the proposed Pirani gauge can measure a vacuum pressure as low as &amp;lt;inline-formula&amp;gt; &amp;lt;tex-math notation=&amp;quot;LaTeX&amp;quot;&amp;gt;$2.6\times 10^{-{4}}$ &amp;lt;/tex-math&amp;gt;&amp;lt;/inline-formula&amp;gt; Torr. The performance achieved by this Pirani vacuum gauge combined with its high level of integration makes it a promising Internet of Things (IoT) sensing node for vacuum monitoring in the industry.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="105598807"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="105598807"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 105598807; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=105598807]").text(description); $(".js-view-count[data-work-id=105598807]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 105598807; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='105598807']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=105598807]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":105598807,"title":"A Wafer-Level Packaged CMOS MEMS Pirani Vacuum Gauge","translated_title":"","metadata":{"abstract":"In this article, we report a wafer-level packaged Pirani vacuum gauge using the proprietary InvenSense CMOS MEMS technology. The micro Pirani vacuum gauge features three serpentine-shaped molybdenum thermistors on the suspended silicon-on-insulator (SOI) bridges, while the wiring gap of each serpentine-shaped silicon microbridge is 1.6 \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;${ {\\mu }}\\text{m}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt;. For the vacuum range of \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$5\\times 10^{-{4}}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt;–760 Torr, the CMOS MEMS Pirani gauge configured with a constant temperature interface circuit achieves a sensitivity of 0.414 V/Torr in a very fine vacuum regime, while its heating power is less than 21.3 mW. Moreover, the measured output of the micro Pirani gauge shows good agreement with a semi-empirical model, while the model predicts that the proposed Pirani gauge can measure a vacuum pressure as low as \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$2.6\\times 10^{-{4}}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt; Torr. The performance achieved by this Pirani vacuum gauge combined with its high level of integration makes it a promising Internet of Things (IoT) sensing node for vacuum monitoring in the industry.","publisher":"Institute of Electrical and Electronics Engineers (IEEE)","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"IEEE Transactions on Electron Devices"},"translated_abstract":"In this article, we report a wafer-level packaged Pirani vacuum gauge using the proprietary InvenSense CMOS MEMS technology. The micro Pirani vacuum gauge features three serpentine-shaped molybdenum thermistors on the suspended silicon-on-insulator (SOI) bridges, while the wiring gap of each serpentine-shaped silicon microbridge is 1.6 \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;${ {\\mu }}\\text{m}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt;. For the vacuum range of \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$5\\times 10^{-{4}}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt;–760 Torr, the CMOS MEMS Pirani gauge configured with a constant temperature interface circuit achieves a sensitivity of 0.414 V/Torr in a very fine vacuum regime, while its heating power is less than 21.3 mW. Moreover, the measured output of the micro Pirani gauge shows good agreement with a semi-empirical model, while the model predicts that the proposed Pirani gauge can measure a vacuum pressure as low as \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$2.6\\times 10^{-{4}}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt; Torr. The performance achieved by this Pirani vacuum gauge combined with its high level of integration makes it a promising Internet of Things (IoT) sensing node for vacuum monitoring in the industry.","internal_url":"https://www.academia.edu/105598807/A_Wafer_Level_Packaged_CMOS_MEMS_Pirani_Vacuum_Gauge","translated_internal_url":"","created_at":"2023-08-14T18:44:29.498-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33508741,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_Wafer_Level_Packaged_CMOS_MEMS_Pirani_Vacuum_Gauge","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"In this article, we report a wafer-level packaged Pirani vacuum gauge using the proprietary InvenSense CMOS MEMS technology. The micro Pirani vacuum gauge features three serpentine-shaped molybdenum thermistors on the suspended silicon-on-insulator (SOI) bridges, while the wiring gap of each serpentine-shaped silicon microbridge is 1.6 \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;${ {\\mu }}\\text{m}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt;. For the vacuum range of \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$5\\times 10^{-{4}}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt;–760 Torr, the CMOS MEMS Pirani gauge configured with a constant temperature interface circuit achieves a sensitivity of 0.414 V/Torr in a very fine vacuum regime, while its heating power is less than 21.3 mW. Moreover, the measured output of the micro Pirani gauge shows good agreement with a semi-empirical model, while the model predicts that the proposed Pirani gauge can measure a vacuum pressure as low as \u0026lt;inline-formula\u0026gt; \u0026lt;tex-math notation=\u0026quot;LaTeX\u0026quot;\u0026gt;$2.6\\times 10^{-{4}}$ \u0026lt;/tex-math\u0026gt;\u0026lt;/inline-formula\u0026gt; Torr. The performance achieved by this Pirani vacuum gauge combined with its high level of integration makes it a promising Internet of Things (IoT) sensing node for vacuum monitoring in the industry.","owner":{"id":33508741,"first_name":"Yi-Kuen","middle_initials":null,"last_name":"Lee","page_name":"YiKuenLee","domain_name":"hkust","created_at":"2015-08-01T03:12:59.639-07:00","display_name":"Yi-Kuen Lee","url":"https://hkust.academia.edu/YiKuenLee"},"attachments":[],"research_interests":[{"id":202261,"name":"Cmos","url":"https://www.academia.edu/Documents/in/Cmos"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"}],"urls":[{"id":33426913,"url":"http://xplorestaging.ieee.org/ielx7/16/9546692/09513470.pdf?arnumber=9513470"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-105598807-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="105598806"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/105598806/A_Three_Dimensional_Integrated_Micro_Calorimetric_Flow_Sensor_in_CMOS_MEMS_Technology"><img alt="Research paper thumbnail of A Three-Dimensional Integrated Micro Calorimetric Flow Sensor in CMOS MEMS Technology" class="work-thumbnail" src="https://attachments.academia-assets.com/105008457/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/105598806/A_Three_Dimensional_Integrated_Micro_Calorimetric_Flow_Sensor_in_CMOS_MEMS_Technology">A Three-Dimensional Integrated Micro Calorimetric Flow Sensor in CMOS MEMS Technology</a></div><div class="wp-workCard_item"><span>IEEE Sensors Letters</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This article presents a 3-D integrated molybdenum (Mo) thermoresistive microcalorimetric flow sen...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This article presents a 3-D integrated molybdenum (Mo) thermoresistive microcalorimetric flow sensor in a 0.18μm CMOS MEMS technology. The sensor consists of a MEMS structure which is fabricated inside a sealed microchannel and a constant temperature control circuit implemented on the CMOS wafer. The MEMS structure and the CMOS circuit are 3-D integrated at the wafer level. For the N 2 gas flow, the proposed flow sensor achieves a high sensitivity of 0.71 mV/(m/s) and a wide bidirectional detection ability of −26-26 m/s. Moreover, an equivalent circuit model is proposed in this article, which depicts the nonlinear output/overheated temperature (V out / T h) sensor response to the input gas flow. This model would be an efficient tool for the design and optimization of high-performance system-on-chip calorimetric flow sensors.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="24531a9ca5e7bd5f267d17f857bc48e0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:105008457,&quot;asset_id&quot;:105598806,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/105008457/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="105598806"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="105598806"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 105598806; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=105598806]").text(description); $(".js-view-count[data-work-id=105598806]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 105598806; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='105598806']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "24531a9ca5e7bd5f267d17f857bc48e0" } } $('.js-work-strip[data-work-id=105598806]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":105598806,"title":"A Three-Dimensional Integrated Micro Calorimetric Flow Sensor in CMOS MEMS Technology","translated_title":"","metadata":{"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","grobid_abstract":"This article presents a 3-D integrated molybdenum (Mo) thermoresistive microcalorimetric flow sensor in a 0.18μm CMOS MEMS technology. The sensor consists of a MEMS structure which is fabricated inside a sealed microchannel and a constant temperature control circuit implemented on the CMOS wafer. The MEMS structure and the CMOS circuit are 3-D integrated at the wafer level. For the N 2 gas flow, the proposed flow sensor achieves a high sensitivity of 0.71 mV/(m/s) and a wide bidirectional detection ability of −26-26 m/s. Moreover, an equivalent circuit model is proposed in this article, which depicts the nonlinear output/overheated temperature (V out / T h) sensor response to the input gas flow. This model would be an efficient tool for the design and optimization of high-performance system-on-chip calorimetric flow sensors.","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"IEEE Sensors Letters","grobid_abstract_attachment_id":105008457},"translated_abstract":null,"internal_url":"https://www.academia.edu/105598806/A_Three_Dimensional_Integrated_Micro_Calorimetric_Flow_Sensor_in_CMOS_MEMS_Technology","translated_internal_url":"","created_at":"2023-08-14T18:44:29.293-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33508741,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":105008457,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/105008457/thumbnails/1.jpg","file_name":"A_203D_20Integrated_20Micro_20Calorimetric_20Flow_20Sensor_20in_20CMOS_20MEMS_20Technology.pdf","download_url":"https://www.academia.edu/attachments/105008457/download_file","bulk_download_file_name":"A_Three_Dimensional_Integrated_Micro_Cal.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/105008457/A_203D_20Integrated_20Micro_20Calorimetric_20Flow_20Sensor_20in_20CMOS_20MEMS_20Technology-libre.pdf?1692069321=\u0026response-content-disposition=attachment%3B+filename%3DA_Three_Dimensional_Integrated_Micro_Cal.pdf\u0026Expires=1743516213\u0026Signature=LwlPSfxgw7PbXxrv4JaggY-L2noQvtHGmr-lvtFGvLKiSC9qCz-G8ITw2791CIwt4AlhbvLuUjG0EKe~rLoROTaOgnWa4UZDzAssm-v~CXbII1wXLGvYeg434nnRPiUBq4wrc2hZl74rNbwYb0Zj8zDclW94IHv2JjMOEnGv43PsK-P3Emcq~EGyPWWiksH91qQCWPiMr4VBZnUKsk-2pjs-ES7vHpL-06nq~yZOwnICCtQ0Otu3eOBZuSQ-nnQRICb-32nEkLnmAjS5z~erByPJto~rmCJ5WWFBdWER3kfETFZSTHmbaFrjW6grqLlbUKFnnw5ADSOY5k4UD9YVnQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_Three_Dimensional_Integrated_Micro_Calorimetric_Flow_Sensor_in_CMOS_MEMS_Technology","translated_slug":"","page_count":4,"language":"en","content_type":"Work","summary":"This article presents a 3-D integrated molybdenum (Mo) thermoresistive microcalorimetric flow sensor in a 0.18μm CMOS MEMS technology. The sensor consists of a MEMS structure which is fabricated inside a sealed microchannel and a constant temperature control circuit implemented on the CMOS wafer. The MEMS structure and the CMOS circuit are 3-D integrated at the wafer level. For the N 2 gas flow, the proposed flow sensor achieves a high sensitivity of 0.71 mV/(m/s) and a wide bidirectional detection ability of −26-26 m/s. Moreover, an equivalent circuit model is proposed in this article, which depicts the nonlinear output/overheated temperature (V out / T h) sensor response to the input gas flow. This model would be an efficient tool for the design and optimization of high-performance system-on-chip calorimetric flow sensors.","owner":{"id":33508741,"first_name":"Yi-Kuen","middle_initials":null,"last_name":"Lee","page_name":"YiKuenLee","domain_name":"hkust","created_at":"2015-08-01T03:12:59.639-07:00","display_name":"Yi-Kuen Lee","url":"https://hkust.academia.edu/YiKuenLee"},"attachments":[{"id":105008457,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/105008457/thumbnails/1.jpg","file_name":"A_203D_20Integrated_20Micro_20Calorimetric_20Flow_20Sensor_20in_20CMOS_20MEMS_20Technology.pdf","download_url":"https://www.academia.edu/attachments/105008457/download_file","bulk_download_file_name":"A_Three_Dimensional_Integrated_Micro_Cal.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/105008457/A_203D_20Integrated_20Micro_20Calorimetric_20Flow_20Sensor_20in_20CMOS_20MEMS_20Technology-libre.pdf?1692069321=\u0026response-content-disposition=attachment%3B+filename%3DA_Three_Dimensional_Integrated_Micro_Cal.pdf\u0026Expires=1743516213\u0026Signature=LwlPSfxgw7PbXxrv4JaggY-L2noQvtHGmr-lvtFGvLKiSC9qCz-G8ITw2791CIwt4AlhbvLuUjG0EKe~rLoROTaOgnWa4UZDzAssm-v~CXbII1wXLGvYeg434nnRPiUBq4wrc2hZl74rNbwYb0Zj8zDclW94IHv2JjMOEnGv43PsK-P3Emcq~EGyPWWiksH91qQCWPiMr4VBZnUKsk-2pjs-ES7vHpL-06nq~yZOwnICCtQ0Otu3eOBZuSQ-nnQRICb-32nEkLnmAjS5z~erByPJto~rmCJ5WWFBdWER3kfETFZSTHmbaFrjW6grqLlbUKFnnw5ADSOY5k4UD9YVnQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":23818,"name":"Microelectromechanical systems","url":"https://www.academia.edu/Documents/in/Microelectromechanical_systems"},{"id":202261,"name":"Cmos","url":"https://www.academia.edu/Documents/in/Cmos"}],"urls":[{"id":33426912,"url":"http://xplorestaging.ieee.org/ielx7/7782634/8630840/08613869.pdf?arnumber=8613869"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-105598806-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="105598805"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/105598805/Evaluation_of_thermal_environment_by_coupling_CFD_analysis_and_wireless_sensor_measurements_of_a_full_scale_room_with_cooling_system"><img alt="Research paper thumbnail of Evaluation of thermal environment by coupling CFD analysis and wireless-sensor measurements of a full-scale room with cooling system" class="work-thumbnail" src="https://attachments.academia-assets.com/105008458/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/105598805/Evaluation_of_thermal_environment_by_coupling_CFD_analysis_and_wireless_sensor_measurements_of_a_full_scale_room_with_cooling_system">Evaluation of thermal environment by coupling CFD analysis and wireless-sensor measurements of a full-scale room with cooling system</a></div><div class="wp-workCard_item"><span>Sustainable Cities and Society</span><span>, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">HVAC systems are utilized to construct a thermally comfortable environment for occupants. As peop...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">HVAC systems are utilized to construct a thermally comfortable environment for occupants. As people spend more than 90% of time indoors, thermal conditions of indoor environment constructed by HVAC systems demand precise assessment. Predicted mean vote (PMV), a synthesized index, can reveal thermal conditions by evaluating occupants&#39; thermal sensations. Four environmental parameters affecting PMV: air temperature, air speed, radiant temperature and relative humidity. This study integrates CFD simulations and wireless-sensor measurements to assess distributions of PMV considering radiation models. The distributions of environmental parameters: velocity, temperature, radiant temperature, inside an office room with fan coil unit (FCU) are firstly presented. Based on these distributions, spatial profiles of PMV are obtained to intuitively illustrate thermal conditions. Combined with experimental database collected by thermal-flow wireless-sensors, CFD simulations offer detailed predictions of indoor airflow and thermal parameters. The mean temperature at occupied zone is 23.3°C agreeing well with set-point temperature 23°C. Furthermore, velocity values are below draft sensation limitations. The distribution of PMV indicates the cooling system is capable to construct thermally comfortable environment for occupants as well as the draft sensation conforming the satisfactory status. The research outputs provide useful information for designers of cooling system to build a comfortable indoor environment.</span></div><div class="wp-workCard_item"><div class="carousel-container carousel-container--sm" id="profile-work-105598805-figures"><div class="prev-slide-container js-prev-button-container"><button aria-label="Previous" class="carousel-navigation-button js-profile-work-105598805-figures-prev"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_back_ios</span></button></div><div class="slides-container js-slides-container"><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28530884/table-1-the-setting-of-boundary-conditions-of-the-target"><img alt="The setting of boundary conditions of the target room. Table 1 in the Plane X= 1.3m and Plane Y=1.2m are demonstrated in Fig. 10. " class="figure-slide-image" src="https://figures.academia-assets.com/105008458/table_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28530892/table-2-evaluation-of-thermal-environment-by-coupling-cfd"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/105008458/table_002.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28530725/figure-1-the-flow-chart-of-the-evaluation-process-the-whole"><img alt="Fig. 1. The flow chart of the evaluation process. The whole evaluation process is illustrated as Fig. 1, which involves two parts: numerical simulation and experimental measurement. There are four environmental parameters, i.e., air temperature, air velocity, radiant temperature and relative humidity affecting thermal comfort indices. The prediction of these parameters integrate measurements and CFD simulations. With aid of wireless sensors, the indoor humidity level " class="figure-slide-image" src="https://figures.academia-assets.com/105008458/figure_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28530734/figure-2-physical-model-of-mechanically-ventilated-office"><img alt="Fig. 2. Physical model of mechanically ventilated office room. " class="figure-slide-image" src="https://figures.academia-assets.com/105008458/figure_002.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28530744/figure-3-sensor-collection-system-of-the-target-room"><img alt="Fig. 3. Sensor collection system of the target room. " class="figure-slide-image" src="https://figures.academia-assets.com/105008458/figure_003.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28530752/figure-5-comparisons-of-temperature-profiles-between-cfd"><img alt="Fig. 5. Comparisons of temperature profiles between CFD simulations and sensor data. The velocity profiles along the vertical direction at four positions (A, B, C, and D) are compared in Fig. 8. The velocity curves at these four positions present similar changing patterns with relevant crests along the room height. The positions and velocity values of these peaks are getting higher as the distance closes to the FCU, which are marked as Pa, Pg, Pc, and Pp in Fig. 8. Such varying trends are due to the effect of supply jet from FCU (i.e., 45° beveled down the ceiling) as the con- sumption of jet momentum moving away from the FCU outlet (Srebric Though some discrepancies at Positions A observed at the floor level, the general trend of velocity of CFD simulations is basically in agree- ment with that of sensor data. Concerning the discrepancies of velocity fields nearby Positions A, which are at the end of the supply jet and the thermal interference of occupants, the airflows in such areas are rela- tively complicated which may not be captured by both simulation and sensors and, thus lead to the discrepancies between measurements and predictions. The relative errors between simulations and sensor data at Position A is 26.3%. Different from the monitoring of temperature, the measurement of velocity is more easily interrupted by the room con- ditions and the occupants. Positions C and D are within the effective region of the supply jet, consequently the predicted velocities agree " class="figure-slide-image" src="https://figures.academia-assets.com/105008458/figure_004.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28530767/figure-4-the-experimental-arrangement-of-wireless-sensors"><img alt="Fig. 4. The experimental arrangement of wireless sensors. " class="figure-slide-image" src="https://figures.academia-assets.com/105008458/figure_005.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28530779/figure-6-the-temperature-distributions-predicted-by-cfd"><img alt="Fig. 6. The temperature distributions predicted by CFD simulations at four positions. " class="figure-slide-image" src="https://figures.academia-assets.com/105008458/figure_006.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28530793/figure-7-comparisons-of-velocity-profiles-between-sensor"><img alt="Fig. 7. Comparisons of velocity profiles between sensor data and CFD simulations. Compared with other environmental parameters, the effect of hu- midity level on the global thermal comfort is a little smaller. The non- uniformity of relative humidity can be neglected except there is an open water generation source inside the room. In addition, the water gen- eration ratio of occupants under office activities is very small, the in- fluence on whole indoor humidity level can be omitted. The humidity level is always associated with the air temperature to describe the specific air condition. The variations of relative humidity inside the test facilities display in Fig. 9, which presents that the values of relative humidity vary between 58% and 68% with a periodic change. The mean value of the relative humidity is 64.5%, which is used to evaluate " class="figure-slide-image" src="https://figures.academia-assets.com/105008458/figure_007.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28530800/figure-8-the-velocity-distributions-predicted-by-simulation"><img alt="Fig. 8. The velocity distributions predicted by simulation at four positions. " class="figure-slide-image" src="https://figures.academia-assets.com/105008458/figure_008.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28530807/figure-9-relative-humidity-variations-inside-wireless-room"><img alt="Fig. 9. Relative humidity variations inside wireless room sensors. " class="figure-slide-image" src="https://figures.academia-assets.com/105008458/figure_009.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28530810/figure-10-the-mesh-in-the-middle-planes-of-the-target-room"><img alt="Fig. 10. The mesh schemes in the middle planes of the target room. Before conducting CFD simulation, a grid needs to be generated firstly based on the physical model, and thus all partial differential equations (PDEs) can be transformed into discretized functions to proceed the iterations based on each grid point. Generating a reason- able grid is critically essential for a successful and accurate numerical simulation for the gird quality affects both the accuracy of numerical results and the computing costs. Too coarse mesh cannot get accurate and detailed information of airflow profiles. Too fine mesh may cause much computing power and costs. In this study, the mesh scheme is constructed with the Hexa-structured grid consisting of 1640,000 hex- ahedral elements via balancing the accuracy and computational capa- city. The grid is refined near the area of FCU supply inlet, return vent, and the exhaust vent where the flow patterns are relatively complex and sensitive to the mesh scheme. Furthermore, the grid is refined around the computers and occupants, where the heat convection and thermal radiation need to be elaborately concerned. The mesh schemes " class="figure-slide-image" src="https://figures.academia-assets.com/105008458/figure_010.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28530823/figure-11-the-temperature-contour-in-horizontal-plane-of"><img alt="Fig. 11. The temperature contour in horizontal Plane of Y = 1.1 m (seating head level). " class="figure-slide-image" src="https://figures.academia-assets.com/105008458/figure_011.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28530840/figure-12-the-temperature-contour-in-vertical-central-plane"><img alt="Fig. 12. The temperature contour in vertical, central Plane of X = 1.35 m. " class="figure-slide-image" src="https://figures.academia-assets.com/105008458/figure_012.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28530854/figure-13-the-air-velocity-contour-at-plane-of"><img alt="Fig. 13. The air velocity contour at Plane of Y = 1.1m. " class="figure-slide-image" src="https://figures.academia-assets.com/105008458/figure_013.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28530865/figure-15-radiant-temperature-at-plane-of-radiant"><img alt="Fig. 15. (a) Radiant temperature at Plane of X = 1.35 m. (b) Radiant temperature at Plane of Y = 1.1m where M is metabolic rate, W/m; W, machinal work, generally con- sidered as 0, W/m?; tg, air temperature, °C; Pa, water vapor pressure, Pa; @, the relative humidity; f,, clothing area factor, clo; t., surface temperature of the clothing, °C; h,, heat transfer coefficient by forced convection, W/m2°C; t,, mean radiant temperature, °C. In our study, the " class="figure-slide-image" src="https://figures.academia-assets.com/105008458/figure_014.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28530873/figure-14-the-air-velocity-contour-at-plane"><img alt="Fig. 14. The air velocity contour at Plane X = 1.35m. " class="figure-slide-image" src="https://figures.academia-assets.com/105008458/figure_015.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28530881/figure-16-pmv-values-at-plane-of-pmv-values-at-plane-of"><img alt="Fig. 16. (a)PMV values at Plane of Y = 1.1m. (b) PMV values at Plane of Y = 0.2m. " class="figure-slide-image" src="https://figures.academia-assets.com/105008458/figure_016.jpg" /></a></figure></div><div class="next-slide-container js-next-button-container"><button aria-label="Next" class="carousel-navigation-button js-profile-work-105598805-figures-next"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_forward_ios</span></button></div></div></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="72b591f3da45e8873df355772590a02a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:105008458,&quot;asset_id&quot;:105598805,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/105008458/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="105598805"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="105598805"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 105598805; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=105598805]").text(description); $(".js-view-count[data-work-id=105598805]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 105598805; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='105598805']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "72b591f3da45e8873df355772590a02a" } } $('.js-work-strip[data-work-id=105598805]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":105598805,"title":"Evaluation of thermal environment by coupling CFD analysis and wireless-sensor measurements of a full-scale room with cooling system","translated_title":"","metadata":{"publisher":"Elsevier BV","ai_title_tag":"CFD and Sensor-Based PMV Assessment in Offices","grobid_abstract":"HVAC systems are utilized to construct a thermally comfortable environment for occupants. As people spend more than 90% of time indoors, thermal conditions of indoor environment constructed by HVAC systems demand precise assessment. Predicted mean vote (PMV), a synthesized index, can reveal thermal conditions by evaluating occupants' thermal sensations. Four environmental parameters affecting PMV: air temperature, air speed, radiant temperature and relative humidity. This study integrates CFD simulations and wireless-sensor measurements to assess distributions of PMV considering radiation models. The distributions of environmental parameters: velocity, temperature, radiant temperature, inside an office room with fan coil unit (FCU) are firstly presented. Based on these distributions, spatial profiles of PMV are obtained to intuitively illustrate thermal conditions. Combined with experimental database collected by thermal-flow wireless-sensors, CFD simulations offer detailed predictions of indoor airflow and thermal parameters. The mean temperature at occupied zone is 23.3°C agreeing well with set-point temperature 23°C. Furthermore, velocity values are below draft sensation limitations. The distribution of PMV indicates the cooling system is capable to construct thermally comfortable environment for occupants as well as the draft sensation conforming the satisfactory status. The research outputs provide useful information for designers of cooling system to build a comfortable indoor environment.","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"Sustainable Cities and Society","grobid_abstract_attachment_id":105008458},"translated_abstract":null,"internal_url":"https://www.academia.edu/105598805/Evaluation_of_thermal_environment_by_coupling_CFD_analysis_and_wireless_sensor_measurements_of_a_full_scale_room_with_cooling_system","translated_internal_url":"","created_at":"2023-08-14T18:44:29.091-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33508741,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":105008458,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/105008458/thumbnails/1.jpg","file_name":"j.scs.2018.12.01120230815-1-7jrq8s.pdf","download_url":"https://www.academia.edu/attachments/105008458/download_file","bulk_download_file_name":"Evaluation_of_thermal_environment_by_cou.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/105008458/j.scs.2018.12.01120230815-1-7jrq8s-libre.pdf?1692069319=\u0026response-content-disposition=attachment%3B+filename%3DEvaluation_of_thermal_environment_by_cou.pdf\u0026Expires=1743516213\u0026Signature=Z6VS53oLjfLQ9EJPcgUGqo7m94sQv6zYAcbt94a-xByfvpqCRiIxcjxrLTp6K~p8owm8JJwZmMU5JqfmiZhbsp4juew0fRiUk3QUNKg7-wpLfXUISWHjmcLvwC18hM1W9sUsoe-HtUsBMHgvAi1Iizb3E6QgJJ-FIwmHYHB8-oqeK6SFsPmAEHd4tsWEjz1aGORgbfraJrz9yTW1J2actZ9KETSrWUiSa2FSAgnXb-JupyEfx57fUYwIY3-tScmKwuy1jZZup4RrQiE2orNYLSQtQqjk3BMjAepp-DdN-7JZgvpFLnISzzbv~HmChnxP05JZ8dd7EnDp5SE2Vylbsw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Evaluation_of_thermal_environment_by_coupling_CFD_analysis_and_wireless_sensor_measurements_of_a_full_scale_room_with_cooling_system","translated_slug":"","page_count":11,"language":"en","content_type":"Work","summary":"HVAC systems are utilized to construct a thermally comfortable environment for occupants. As people spend more than 90% of time indoors, thermal conditions of indoor environment constructed by HVAC systems demand precise assessment. Predicted mean vote (PMV), a synthesized index, can reveal thermal conditions by evaluating occupants' thermal sensations. Four environmental parameters affecting PMV: air temperature, air speed, radiant temperature and relative humidity. This study integrates CFD simulations and wireless-sensor measurements to assess distributions of PMV considering radiation models. The distributions of environmental parameters: velocity, temperature, radiant temperature, inside an office room with fan coil unit (FCU) are firstly presented. Based on these distributions, spatial profiles of PMV are obtained to intuitively illustrate thermal conditions. Combined with experimental database collected by thermal-flow wireless-sensors, CFD simulations offer detailed predictions of indoor airflow and thermal parameters. The mean temperature at occupied zone is 23.3°C agreeing well with set-point temperature 23°C. Furthermore, velocity values are below draft sensation limitations. The distribution of PMV indicates the cooling system is capable to construct thermally comfortable environment for occupants as well as the draft sensation conforming the satisfactory status. The research outputs provide useful information for designers of cooling system to build a comfortable indoor environment.","owner":{"id":33508741,"first_name":"Yi-Kuen","middle_initials":null,"last_name":"Lee","page_name":"YiKuenLee","domain_name":"hkust","created_at":"2015-08-01T03:12:59.639-07:00","display_name":"Yi-Kuen Lee","url":"https://hkust.academia.edu/YiKuenLee"},"attachments":[{"id":105008458,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/105008458/thumbnails/1.jpg","file_name":"j.scs.2018.12.01120230815-1-7jrq8s.pdf","download_url":"https://www.academia.edu/attachments/105008458/download_file","bulk_download_file_name":"Evaluation_of_thermal_environment_by_cou.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/105008458/j.scs.2018.12.01120230815-1-7jrq8s-libre.pdf?1692069319=\u0026response-content-disposition=attachment%3B+filename%3DEvaluation_of_thermal_environment_by_cou.pdf\u0026Expires=1743516214\u0026Signature=fQ~d734J6gGkk-ffrrpJnxU59xfM3UGuWAPK1FyA3v8I-dmcMX-ulDet76Q3W7vOgYHuyGc9l81vW0bxtYVGLU-RMN2wslTIbCl9aNCf5uvZ-0~ZauF5c9WM8MXfyW9vJffL556R36nzai8DfmKxhJc54DVA1UWRPzgUfEhOzFGibnarawWKU8tBgUluZs0Z5w14jRtXy2B0DsERjeHPua2YxD9xv4pe7SrBHA3vgbKH-F0eLvmhP0xb3Mt-HYhX~DLhgk2n5XFR5N--1FPuLd7~a9Radf5vVErSaAqC1Inc33nxbclrHZpXgDGKwNUsNiDbwTOu~dRyyCBWhbnQMg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":402,"name":"Environmental Science","url":"https://www.academia.edu/Documents/in/Environmental_Science"},{"id":2298,"name":"Computational Fluid Dynamics","url":"https://www.academia.edu/Documents/in/Computational_Fluid_Dynamics"},{"id":574810,"name":"Full Scale Tests","url":"https://www.academia.edu/Documents/in/Full_Scale_Tests"}],"urls":[{"id":33426911,"url":"https://api.elsevier.com/content/article/PII:S2210670718322455?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (true) { Aedu.setUpFigureCarousel('profile-work-105598805-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="105598804"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/105598804/Low_Cost_Energy_Efficient_3_D_Nano_Spikes_Based_Electric_Cell_Lysis_Chips"><img alt="Research paper thumbnail of Low-Cost Energy-Efficient 3-D Nano-Spikes-Based Electric Cell Lysis Chips" class="work-thumbnail" src="https://attachments.academia-assets.com/105008449/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/105598804/Low_Cost_Energy_Efficient_3_D_Nano_Spikes_Based_Electric_Cell_Lysis_Chips">Low-Cost Energy-Efficient 3-D Nano-Spikes-Based Electric Cell Lysis Chips</a></div><div class="wp-workCard_item"><span>Journal of Microelectromechanical Systems</span><span>, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Electric cell lysis (ECL) is a promising technique 1 to be integrated with portable lab-on-a-chip...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Electric cell lysis (ECL) is a promising technique 1 to be integrated with portable lab-on-a-chip without lysing 2 agent due to its simplicity and fast processing. ECL is usually 3 limited by the requirements of high power/voltage and costly 4 fabrication. In this paper, we present low-cost 3-D nano-spikes-5 based ECL (NSP-ECL) chips for efficient cell lysis at low power 6 consumption. Highly ordered HAR NSP arrays with control-7 lable dimensions were fabricated on commercial aluminum foils 8 through scalable and electrochemical anodization and etching. 9 The optimized multiple pulse protocols with minimized unde-10 sirable electrochemical reactions (gas and bubble generation), 11 common on micro parallel-plate ECL chips. Due to the scalability 12 of fabrication process, 3-D NSPs were fabricated on small chips 13 as well as on 4-in wafers. Phase diagram was constructed by 14 defining critical electric field to induce cell lysis and for cell lysis 15 saturation E sat to define non-ECL and ECL regions for different 16 pulse parameters. NSP-ECL chips have achieved excellent cell 17 lysis efficiencies η l ysis (ca 100%) at low applied voltages (2 V), 18 2∼3 orders of magnitude lower than that of conventional systems. 19 The energy consumption of NSP-ECL chips was 0.5-2 mJ/mL, 20 3∼9 orders of magnitude lower as compared with the other 21 methods (5J/mL-540kJ/mL). [2016-0305] 22 Index Terms-Nano-spikes, electric cell lysis chips, elec-23 trochemical anodization and etching processes, electric field 24 enhancement, energy-efficient, lab on chip. 25 I. INTRODUCTION 26 C ELL LYSIS is an important step in sample preparation 27 procedures and biopharmaceutical product extraction to 28 release intracellular contents, i.e., DNA, RNA, hormones, AQ:1 29 vaccines, antibodies, recombinant proteins, and so forth. by 30 disrupting cell membrane [1]-[6]. Economics of these pro-31 cedures is greatly influenced by downstream processing steps, 32 i.e., separation, purification, and so on. [1]. Sample preparation 33 for molecular, protein and genomic diagnostic and analysis 34 is time-consuming, labor intensive and costly process due 35</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="23f07265c037ac7cfed1acbef0c08cb3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:105008449,&quot;asset_id&quot;:105598804,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/105008449/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="105598804"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="105598804"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 105598804; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=105598804]").text(description); $(".js-view-count[data-work-id=105598804]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 105598804; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='105598804']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "23f07265c037ac7cfed1acbef0c08cb3" } } $('.js-work-strip[data-work-id=105598804]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":105598804,"title":"Low-Cost Energy-Efficient 3-D Nano-Spikes-Based Electric Cell Lysis Chips","translated_title":"","metadata":{"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","grobid_abstract":"Electric cell lysis (ECL) is a promising technique 1 to be integrated with portable lab-on-a-chip without lysing 2 agent due to its simplicity and fast processing. ECL is usually 3 limited by the requirements of high power/voltage and costly 4 fabrication. In this paper, we present low-cost 3-D nano-spikes-5 based ECL (NSP-ECL) chips for efficient cell lysis at low power 6 consumption. Highly ordered HAR NSP arrays with control-7 lable dimensions were fabricated on commercial aluminum foils 8 through scalable and electrochemical anodization and etching. 9 The optimized multiple pulse protocols with minimized unde-10 sirable electrochemical reactions (gas and bubble generation), 11 common on micro parallel-plate ECL chips. Due to the scalability 12 of fabrication process, 3-D NSPs were fabricated on small chips 13 as well as on 4-in wafers. Phase diagram was constructed by 14 defining critical electric field to induce cell lysis and for cell lysis 15 saturation E sat to define non-ECL and ECL regions for different 16 pulse parameters. NSP-ECL chips have achieved excellent cell 17 lysis efficiencies η l ysis (ca 100%) at low applied voltages (2 V), 18 2∼3 orders of magnitude lower than that of conventional systems. 19 The energy consumption of NSP-ECL chips was 0.5-2 mJ/mL, 20 3∼9 orders of magnitude lower as compared with the other 21 methods (5J/mL-540kJ/mL). [2016-0305] 22 Index Terms-Nano-spikes, electric cell lysis chips, elec-23 trochemical anodization and etching processes, electric field 24 enhancement, energy-efficient, lab on chip. 25 I. INTRODUCTION 26 C ELL LYSIS is an important step in sample preparation 27 procedures and biopharmaceutical product extraction to 28 release intracellular contents, i.e., DNA, RNA, hormones, AQ:1 29 vaccines, antibodies, recombinant proteins, and so forth. by 30 disrupting cell membrane [1]-[6]. Economics of these pro-31 cedures is greatly influenced by downstream processing steps, 32 i.e., separation, purification, and so on. [1]. Sample preparation 33 for molecular, protein and genomic diagnostic and analysis 34 is time-consuming, labor intensive and costly process due 35","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Journal of Microelectromechanical Systems","grobid_abstract_attachment_id":105008449},"translated_abstract":null,"internal_url":"https://www.academia.edu/105598804/Low_Cost_Energy_Efficient_3_D_Nano_Spikes_Based_Electric_Cell_Lysis_Chips","translated_internal_url":"","created_at":"2023-08-14T18:44:28.889-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33508741,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":105008449,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/105008449/thumbnails/1.jpg","file_name":"paper_20124.pdf","download_url":"https://www.academia.edu/attachments/105008449/download_file","bulk_download_file_name":"Low_Cost_Energy_Efficient_3_D_Nano_Spike.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/105008449/paper_20124-libre.pdf?1692069333=\u0026response-content-disposition=attachment%3B+filename%3DLow_Cost_Energy_Efficient_3_D_Nano_Spike.pdf\u0026Expires=1743516214\u0026Signature=DVV1j~Tj9osGGgmy3t3gj3Q76iczNunKewoKYQZFeYfInzBNj4sd809M3jegxn6gAog3N0kGSVqmWu0UI67tsfz1metXcbEdq-SrczISBbZn0FY9cThs5gzyGXWQJMd65Yw3d7hjm~UY88qdhEVScGRJu6bw5wTtPNPYuX6RQfnLmRv5bglVaUHwCfOelvNbzWacNNQnQABRN0omtwxhZwHo8CEuxoqWXrsYzAxnDs8xv782C74PK2M~p8r2~JWVvlk0pvOuJKlZCcV57pqvhYCwFwcSs1nKaUQqmH3oP3hywhoY96uT6uvsTxt0tdIKJxGMGKusccbY70ghT83PGA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Low_Cost_Energy_Efficient_3_D_Nano_Spikes_Based_Electric_Cell_Lysis_Chips","translated_slug":"","page_count":24,"language":"en","content_type":"Work","summary":"Electric cell lysis (ECL) is a promising technique 1 to be integrated with portable lab-on-a-chip without lysing 2 agent due to its simplicity and fast processing. ECL is usually 3 limited by the requirements of high power/voltage and costly 4 fabrication. In this paper, we present low-cost 3-D nano-spikes-5 based ECL (NSP-ECL) chips for efficient cell lysis at low power 6 consumption. Highly ordered HAR NSP arrays with control-7 lable dimensions were fabricated on commercial aluminum foils 8 through scalable and electrochemical anodization and etching. 9 The optimized multiple pulse protocols with minimized unde-10 sirable electrochemical reactions (gas and bubble generation), 11 common on micro parallel-plate ECL chips. Due to the scalability 12 of fabrication process, 3-D NSPs were fabricated on small chips 13 as well as on 4-in wafers. Phase diagram was constructed by 14 defining critical electric field to induce cell lysis and for cell lysis 15 saturation E sat to define non-ECL and ECL regions for different 16 pulse parameters. NSP-ECL chips have achieved excellent cell 17 lysis efficiencies η l ysis (ca 100%) at low applied voltages (2 V), 18 2∼3 orders of magnitude lower than that of conventional systems. 19 The energy consumption of NSP-ECL chips was 0.5-2 mJ/mL, 20 3∼9 orders of magnitude lower as compared with the other 21 methods (5J/mL-540kJ/mL). [2016-0305] 22 Index Terms-Nano-spikes, electric cell lysis chips, elec-23 trochemical anodization and etching processes, electric field 24 enhancement, energy-efficient, lab on chip. 25 I. INTRODUCTION 26 C ELL LYSIS is an important step in sample preparation 27 procedures and biopharmaceutical product extraction to 28 release intracellular contents, i.e., DNA, RNA, hormones, AQ:1 29 vaccines, antibodies, recombinant proteins, and so forth. by 30 disrupting cell membrane [1]-[6]. Economics of these pro-31 cedures is greatly influenced by downstream processing steps, 32 i.e., separation, purification, and so on. [1]. Sample preparation 33 for molecular, protein and genomic diagnostic and analysis 34 is time-consuming, labor intensive and costly process due 35","owner":{"id":33508741,"first_name":"Yi-Kuen","middle_initials":null,"last_name":"Lee","page_name":"YiKuenLee","domain_name":"hkust","created_at":"2015-08-01T03:12:59.639-07:00","display_name":"Yi-Kuen Lee","url":"https://hkust.academia.edu/YiKuenLee"},"attachments":[{"id":105008449,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/105008449/thumbnails/1.jpg","file_name":"paper_20124.pdf","download_url":"https://www.academia.edu/attachments/105008449/download_file","bulk_download_file_name":"Low_Cost_Energy_Efficient_3_D_Nano_Spike.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/105008449/paper_20124-libre.pdf?1692069333=\u0026response-content-disposition=attachment%3B+filename%3DLow_Cost_Energy_Efficient_3_D_Nano_Spike.pdf\u0026Expires=1743516214\u0026Signature=DVV1j~Tj9osGGgmy3t3gj3Q76iczNunKewoKYQZFeYfInzBNj4sd809M3jegxn6gAog3N0kGSVqmWu0UI67tsfz1metXcbEdq-SrczISBbZn0FY9cThs5gzyGXWQJMd65Yw3d7hjm~UY88qdhEVScGRJu6bw5wTtPNPYuX6RQfnLmRv5bglVaUHwCfOelvNbzWacNNQnQABRN0omtwxhZwHo8CEuxoqWXrsYzAxnDs8xv782C74PK2M~p8r2~JWVvlk0pvOuJKlZCcV57pqvhYCwFwcSs1nKaUQqmH3oP3hywhoY96uT6uvsTxt0tdIKJxGMGKusccbY70ghT83PGA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":23818,"name":"Microelectromechanical systems","url":"https://www.academia.edu/Documents/in/Microelectromechanical_systems"},{"id":49651,"name":"Nano","url":"https://www.academia.edu/Documents/in/Nano"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"},{"id":1256745,"name":"Lysis","url":"https://www.academia.edu/Documents/in/Lysis"}],"urls":[{"id":33426910,"url":"http://xplorestaging.ieee.org/ielx7/84/7997952/07919169.pdf?arnumber=7919169"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-105598804-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="105598803"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/105598803/Unified_theory_to_evaluate_the_effect_of_concentration_difference_and_Peclet_number_on_electroosmotic_mobility_error_of_micro_electroosmotic_flow"><img alt="Research paper thumbnail of Unified theory to evaluate the effect of concentration difference and Peclet number on electroosmotic mobility error of micro electroosmotic flow" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Unified theory to evaluate the effect of concentration difference and Peclet number on electroosmotic mobility error of micro electroosmotic flow</div><div class="wp-workCard_item"><span>2012 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)</span><span>, 2012</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT Both theoretical analysis and nonlinear 2D numerical simulations are used to study the c...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT Both theoretical analysis and nonlinear 2D numerical simulations are used to study the concentration difference and Peclet number effect on the measurement error of electroosmotic mobility in microchannels. We propose a compact analytical model for this error as a function of normalized concentration difference and Peclet number in micro electroosmotic flow. The analytical predictions of the errors are consistent with the numerical simulations.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="105598803"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="105598803"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 105598803; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=105598803]").text(description); $(".js-view-count[data-work-id=105598803]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 105598803; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='105598803']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=105598803]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":105598803,"title":"Unified theory to evaluate the effect of concentration difference and Peclet number on electroosmotic mobility error of micro electroosmotic flow","translated_title":"","metadata":{"abstract":"ABSTRACT Both theoretical analysis and nonlinear 2D numerical simulations are used to study the concentration difference and Peclet number effect on the measurement error of electroosmotic mobility in microchannels. We propose a compact analytical model for this error as a function of normalized concentration difference and Peclet number in micro electroosmotic flow. The analytical predictions of the errors are consistent with the numerical simulations.","publication_date":{"day":null,"month":null,"year":2012,"errors":{}},"publication_name":"2012 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)"},"translated_abstract":"ABSTRACT Both theoretical analysis and nonlinear 2D numerical simulations are used to study the concentration difference and Peclet number effect on the measurement error of electroosmotic mobility in microchannels. We propose a compact analytical model for this error as a function of normalized concentration difference and Peclet number in micro electroosmotic flow. The analytical predictions of the errors are consistent with the numerical simulations.","internal_url":"https://www.academia.edu/105598803/Unified_theory_to_evaluate_the_effect_of_concentration_difference_and_Peclet_number_on_electroosmotic_mobility_error_of_micro_electroosmotic_flow","translated_internal_url":"","created_at":"2023-08-14T18:44:28.524-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33508741,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Unified_theory_to_evaluate_the_effect_of_concentration_difference_and_Peclet_number_on_electroosmotic_mobility_error_of_micro_electroosmotic_flow","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT Both theoretical analysis and nonlinear 2D numerical simulations are used to study the concentration difference and Peclet number effect on the measurement error of electroosmotic mobility in microchannels. We propose a compact analytical model for this error as a function of normalized concentration difference and Peclet number in micro electroosmotic flow. The analytical predictions of the errors are consistent with the numerical simulations.","owner":{"id":33508741,"first_name":"Yi-Kuen","middle_initials":null,"last_name":"Lee","page_name":"YiKuenLee","domain_name":"hkust","created_at":"2015-08-01T03:12:59.639-07:00","display_name":"Yi-Kuen Lee","url":"https://hkust.academia.edu/YiKuenLee"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":225478,"name":"Electro-Osmosis","url":"https://www.academia.edu/Documents/in/Electro-Osmosis"},{"id":506858,"name":"Nonlinear system","url":"https://www.academia.edu/Documents/in/Nonlinear_system"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-105598803-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="105598802"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/105598802/Study_on_the_Physical_Basis_of_Wave_Particle_Duality_Modelling_the_Vacuum_as_a_Continuous_Mechanical_Medium"><img alt="Research paper thumbnail of Study on the Physical Basis of Wave-Particle Duality: Modelling the Vacuum as a Continuous Mechanical Medium" class="work-thumbnail" src="https://attachments.academia-assets.com/105008452/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/105598802/Study_on_the_Physical_Basis_of_Wave_Particle_Duality_Modelling_the_Vacuum_as_a_Continuous_Mechanical_Medium">Study on the Physical Basis of Wave-Particle Duality: Modelling the Vacuum as a Continuous Mechanical Medium</a></div><div class="wp-workCard_item"><span>Journal of Modern Physics</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">One great surprise discovered in modern physics is that all elementary particles exhibit the prop...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">One great surprise discovered in modern physics is that all elementary particles exhibit the property of wave-particle duality. We investigated this problem recently and found a simple way to explain this puzzle. We proposed that all particles, including massless particles such as photon and massive particles such as electron, can be treated as excitation waves in the vacuum, which behaves like a physical medium. Using such a model, the phenomenon of wave-particle duality can be explained naturally. The key question now is to find out what kind of physical properties this vacuum medium may have. In this paper, we investigate if the vacuum can be modeled as an elastic solid or a dielectric medium as envisioned in the Maxwell theory of electricity and magnetism. We show that a similar form of wave equation can be derived in three cases: (1) By modelling the vacuum medium as an elastic solid; (2) By constructing a simple Lagrangian density that is a 3-D extension of a stretched string or a vibrating membrane; (3) By assuming that the vacuum is a dielectric medium, from which the wave equation can be derived directly from Maxwell&#39;s equations. Similarity between results of these three systems suggests that the vacuum can be modelled as a mechanical continuum, and the excitation wave in the vacuum behaves like some of the excitation waves in a physical medium.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="57362e231e77a3e41acfb07e217617af" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:105008452,&quot;asset_id&quot;:105598802,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/105008452/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="105598802"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="105598802"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 105598802; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=105598802]").text(description); $(".js-view-count[data-work-id=105598802]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 105598802; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='105598802']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "57362e231e77a3e41acfb07e217617af" } } $('.js-work-strip[data-work-id=105598802]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":105598802,"title":"Study on the Physical Basis of Wave-Particle Duality: Modelling the Vacuum as a Continuous Mechanical Medium","translated_title":"","metadata":{"publisher":"Scientific Research Publishing, Inc,","ai_title_tag":"Modeling Vacuum for Wave-Particle Duality","grobid_abstract":"One great surprise discovered in modern physics is that all elementary particles exhibit the property of wave-particle duality. We investigated this problem recently and found a simple way to explain this puzzle. We proposed that all particles, including massless particles such as photon and massive particles such as electron, can be treated as excitation waves in the vacuum, which behaves like a physical medium. Using such a model, the phenomenon of wave-particle duality can be explained naturally. The key question now is to find out what kind of physical properties this vacuum medium may have. In this paper, we investigate if the vacuum can be modeled as an elastic solid or a dielectric medium as envisioned in the Maxwell theory of electricity and magnetism. We show that a similar form of wave equation can be derived in three cases: (1) By modelling the vacuum medium as an elastic solid; (2) By constructing a simple Lagrangian density that is a 3-D extension of a stretched string or a vibrating membrane; (3) By assuming that the vacuum is a dielectric medium, from which the wave equation can be derived directly from Maxwell's equations. Similarity between results of these three systems suggests that the vacuum can be modelled as a mechanical continuum, and the excitation wave in the vacuum behaves like some of the excitation waves in a physical medium.","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Journal of Modern Physics","grobid_abstract_attachment_id":105008452},"translated_abstract":null,"internal_url":"https://www.academia.edu/105598802/Study_on_the_Physical_Basis_of_Wave_Particle_Duality_Modelling_the_Vacuum_as_a_Continuous_Mechanical_Medium","translated_internal_url":"","created_at":"2023-08-14T18:44:28.365-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33508741,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":105008452,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/105008452/thumbnails/1.jpg","file_name":"063c0e2bba0e61e9036e583c9bb5872f05ec.pdf","download_url":"https://www.academia.edu/attachments/105008452/download_file","bulk_download_file_name":"Study_on_the_Physical_Basis_of_Wave_Part.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/105008452/063c0e2bba0e61e9036e583c9bb5872f05ec-libre.pdf?1692069319=\u0026response-content-disposition=attachment%3B+filename%3DStudy_on_the_Physical_Basis_of_Wave_Part.pdf\u0026Expires=1743516214\u0026Signature=crdm4-yOSGnLZnd1EQyydAY7My4X~MkCdYZ8hF~x7OwabNo~2TmR9ldHZOignW9TowkXlcst-F95oSpotJIjWbtd66ihpNcptUvhBkAkG7tx8cVM1kxQCbNQxDjqFZS1i7n6zfBNAvPHYgNDyeiYvzM8qDM6qalQKIhGHgdm6oMHR~Wdn-KvQtu8S-u5sWyt7C37m4jkFAMPdPNNgGN96Yhso4MmiI2shBLHCEoBeU-c-wFmcqVle8m8TneTqVGmU~P9Hu5F1H1FqVsIOVtcn6RUAiaR4AZskWB3LMmqR-NkFh45NnjFKFbRjdfBKC5au52LioCmQ1hMQUV4GW1BIw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Study_on_the_Physical_Basis_of_Wave_Particle_Duality_Modelling_the_Vacuum_as_a_Continuous_Mechanical_Medium","translated_slug":"","page_count":13,"language":"en","content_type":"Work","summary":"One great surprise discovered in modern physics is that all elementary particles exhibit the property of wave-particle duality. We investigated this problem recently and found a simple way to explain this puzzle. We proposed that all particles, including massless particles such as photon and massive particles such as electron, can be treated as excitation waves in the vacuum, which behaves like a physical medium. Using such a model, the phenomenon of wave-particle duality can be explained naturally. The key question now is to find out what kind of physical properties this vacuum medium may have. In this paper, we investigate if the vacuum can be modeled as an elastic solid or a dielectric medium as envisioned in the Maxwell theory of electricity and magnetism. We show that a similar form of wave equation can be derived in three cases: (1) By modelling the vacuum medium as an elastic solid; (2) By constructing a simple Lagrangian density that is a 3-D extension of a stretched string or a vibrating membrane; (3) By assuming that the vacuum is a dielectric medium, from which the wave equation can be derived directly from Maxwell's equations. Similarity between results of these three systems suggests that the vacuum can be modelled as a mechanical continuum, and the excitation wave in the vacuum behaves like some of the excitation waves in a physical medium.","owner":{"id":33508741,"first_name":"Yi-Kuen","middle_initials":null,"last_name":"Lee","page_name":"YiKuenLee","domain_name":"hkust","created_at":"2015-08-01T03:12:59.639-07:00","display_name":"Yi-Kuen Lee","url":"https://hkust.academia.edu/YiKuenLee"},"attachments":[{"id":105008452,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/105008452/thumbnails/1.jpg","file_name":"063c0e2bba0e61e9036e583c9bb5872f05ec.pdf","download_url":"https://www.academia.edu/attachments/105008452/download_file","bulk_download_file_name":"Study_on_the_Physical_Basis_of_Wave_Part.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/105008452/063c0e2bba0e61e9036e583c9bb5872f05ec-libre.pdf?1692069319=\u0026response-content-disposition=attachment%3B+filename%3DStudy_on_the_Physical_Basis_of_Wave_Part.pdf\u0026Expires=1743516214\u0026Signature=crdm4-yOSGnLZnd1EQyydAY7My4X~MkCdYZ8hF~x7OwabNo~2TmR9ldHZOignW9TowkXlcst-F95oSpotJIjWbtd66ihpNcptUvhBkAkG7tx8cVM1kxQCbNQxDjqFZS1i7n6zfBNAvPHYgNDyeiYvzM8qDM6qalQKIhGHgdm6oMHR~Wdn-KvQtu8S-u5sWyt7C37m4jkFAMPdPNNgGN96Yhso4MmiI2shBLHCEoBeU-c-wFmcqVle8m8TneTqVGmU~P9Hu5F1H1FqVsIOVtcn6RUAiaR4AZskWB3LMmqR-NkFh45NnjFKFbRjdfBKC5au52LioCmQ1hMQUV4GW1BIw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":508,"name":"Elementary Particle Physics","url":"https://www.academia.edu/Documents/in/Elementary_Particle_Physics"},{"id":34622,"name":"Modern physics","url":"https://www.academia.edu/Documents/in/Modern_physics"},{"id":160877,"name":"Vacuum","url":"https://www.academia.edu/Documents/in/Vacuum"},{"id":271630,"name":"Wave particle duality","url":"https://www.academia.edu/Documents/in/Wave_particle_duality"},{"id":503639,"name":"Matter Waves","url":"https://www.academia.edu/Documents/in/Matter_Waves"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-105598802-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="105598801"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/105598801/New_dimensionless_number_for_superhydrophobicity_study_of_micron_submicron_patterned_surfaces"><img alt="Research paper thumbnail of New dimensionless number for superhydrophobicity study of micron/submicron patterned surfaces" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">New dimensionless number for superhydrophobicity study of micron/submicron patterned surfaces</div><div class="wp-workCard_item"><span>2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS)</span><span>, 2010</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper reports a systematic study of geometric effect of roughness on hydrophobicity by a ser...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper reports a systematic study of geometric effect of roughness on hydrophobicity by a series of post arrays ranging from several hundreds microns to submicron. These devices were fabricated using projection/contact photolithography and etched by Deep RIE with different heights. A 1 µm parylene C layer was then deposited on these devices to improve hydrophobicity and the apparent contact angles were measured. It was found that the apparent contact angle increases with increasing the height of posts and there is a best diameter for each series of devices with a same spacing. With the help of dimensional analysis, all the measured apparent contact angles can be collapsed by a new dimensionless number, Bulk Aspect Ratio (BAR). In addition to a small solid fraction, the superhydrophobic surfaces were found with a bulk aspect ratio larger than 4.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="105598801"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="105598801"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 105598801; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=105598801]").text(description); $(".js-view-count[data-work-id=105598801]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 105598801; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='105598801']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=105598801]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":105598801,"title":"New dimensionless number for superhydrophobicity study of micron/submicron patterned surfaces","translated_title":"","metadata":{"abstract":"This paper reports a systematic study of geometric effect of roughness on hydrophobicity by a series of post arrays ranging from several hundreds microns to submicron. These devices were fabricated using projection/contact photolithography and etched by Deep RIE with different heights. A 1 µm parylene C layer was then deposited on these devices to improve hydrophobicity and the apparent contact angles were measured. It was found that the apparent contact angle increases with increasing the height of posts and there is a best diameter for each series of devices with a same spacing. With the help of dimensional analysis, all the measured apparent contact angles can be collapsed by a new dimensionless number, Bulk Aspect Ratio (BAR). In addition to a small solid fraction, the superhydrophobic surfaces were found with a bulk aspect ratio larger than 4.","publisher":"IEEE","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"publication_name":"2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS)"},"translated_abstract":"This paper reports a systematic study of geometric effect of roughness on hydrophobicity by a series of post arrays ranging from several hundreds microns to submicron. These devices were fabricated using projection/contact photolithography and etched by Deep RIE with different heights. A 1 µm parylene C layer was then deposited on these devices to improve hydrophobicity and the apparent contact angles were measured. It was found that the apparent contact angle increases with increasing the height of posts and there is a best diameter for each series of devices with a same spacing. With the help of dimensional analysis, all the measured apparent contact angles can be collapsed by a new dimensionless number, Bulk Aspect Ratio (BAR). In addition to a small solid fraction, the superhydrophobic surfaces were found with a bulk aspect ratio larger than 4.","internal_url":"https://www.academia.edu/105598801/New_dimensionless_number_for_superhydrophobicity_study_of_micron_submicron_patterned_surfaces","translated_internal_url":"","created_at":"2023-08-14T18:44:28.178-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33508741,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"New_dimensionless_number_for_superhydrophobicity_study_of_micron_submicron_patterned_surfaces","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"This paper reports a systematic study of geometric effect of roughness on hydrophobicity by a series of post arrays ranging from several hundreds microns to submicron. These devices were fabricated using projection/contact photolithography and etched by Deep RIE with different heights. A 1 µm parylene C layer was then deposited on these devices to improve hydrophobicity and the apparent contact angles were measured. It was found that the apparent contact angle increases with increasing the height of posts and there is a best diameter for each series of devices with a same spacing. With the help of dimensional analysis, all the measured apparent contact angles can be collapsed by a new dimensionless number, Bulk Aspect Ratio (BAR). In addition to a small solid fraction, the superhydrophobic surfaces were found with a bulk aspect ratio larger than 4.","owner":{"id":33508741,"first_name":"Yi-Kuen","middle_initials":null,"last_name":"Lee","page_name":"YiKuenLee","domain_name":"hkust","created_at":"2015-08-01T03:12:59.639-07:00","display_name":"Yi-Kuen Lee","url":"https://hkust.academia.edu/YiKuenLee"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":33296,"name":"Surface Roughness","url":"https://www.academia.edu/Documents/in/Surface_Roughness"},{"id":125989,"name":"Photolithography","url":"https://www.academia.edu/Documents/in/Photolithography"},{"id":161126,"name":"Contact angle","url":"https://www.academia.edu/Documents/in/Contact_angle"},{"id":1342788,"name":"Surface Finish","url":"https://www.academia.edu/Documents/in/Surface_Finish"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-105598801-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="105598800"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/105598800/A_new_equivalent_circuit_model_for_micro_electroporation_systems"><img alt="Research paper thumbnail of A new equivalent circuit model for micro electroporation systems" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">A new equivalent circuit model for micro electroporation systems</div><div class="wp-workCard_item"><span>2011 6th IEEE International Conference on Nano/Micro Engineered and Molecular Systems</span><span>, 2011</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Electroporation (EP) is a unique biotechnique in which intense electric pulses are applied on the...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Electroporation (EP) is a unique biotechnique in which intense electric pulses are applied on the cell membrane to temporarily generate nanoscale electropores and to increase the membrane permeability for the delivery of exogenous biomolecules or drugs. We propose a new equivalent circuit model with 8 electric components to predict the electrodynamic response of a micro EP system. As the permeability</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="105598800"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="105598800"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 105598800; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=105598800]").text(description); $(".js-view-count[data-work-id=105598800]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 105598800; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='105598800']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=105598800]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":105598800,"title":"A new equivalent circuit model for micro electroporation systems","translated_title":"","metadata":{"abstract":"Electroporation (EP) is a unique biotechnique in which intense electric pulses are applied on the cell membrane to temporarily generate nanoscale electropores and to increase the membrane permeability for the delivery of exogenous biomolecules or drugs. We propose a new equivalent circuit model with 8 electric components to predict the electrodynamic response of a micro EP system. As the permeability","publisher":"IEEE","publication_date":{"day":null,"month":null,"year":2011,"errors":{}},"publication_name":"2011 6th IEEE International Conference on Nano/Micro Engineered and Molecular Systems"},"translated_abstract":"Electroporation (EP) is a unique biotechnique in which intense electric pulses are applied on the cell membrane to temporarily generate nanoscale electropores and to increase the membrane permeability for the delivery of exogenous biomolecules or drugs. We propose a new equivalent circuit model with 8 electric components to predict the electrodynamic response of a micro EP system. As the permeability","internal_url":"https://www.academia.edu/105598800/A_new_equivalent_circuit_model_for_micro_electroporation_systems","translated_internal_url":"","created_at":"2023-08-14T18:44:28.006-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33508741,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_new_equivalent_circuit_model_for_micro_electroporation_systems","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Electroporation (EP) is a unique biotechnique in which intense electric pulses are applied on the cell membrane to temporarily generate nanoscale electropores and to increase the membrane permeability for the delivery of exogenous biomolecules or drugs. We propose a new equivalent circuit model with 8 electric components to predict the electrodynamic response of a micro EP system. As the permeability","owner":{"id":33508741,"first_name":"Yi-Kuen","middle_initials":null,"last_name":"Lee","page_name":"YiKuenLee","domain_name":"hkust","created_at":"2015-08-01T03:12:59.639-07:00","display_name":"Yi-Kuen Lee","url":"https://hkust.academia.edu/YiKuenLee"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":502,"name":"Biophysics","url":"https://www.academia.edu/Documents/in/Biophysics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":92685,"name":"Electroporation","url":"https://www.academia.edu/Documents/in/Electroporation"},{"id":242298,"name":"Membrane","url":"https://www.academia.edu/Documents/in/Membrane"},{"id":389165,"name":"Voltage","url":"https://www.academia.edu/Documents/in/Voltage"},{"id":620070,"name":"Transfection","url":"https://www.academia.edu/Documents/in/Transfection"},{"id":887736,"name":"Membrane Potential","url":"https://www.academia.edu/Documents/in/Membrane_Potential"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-105598800-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="105598799"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/105598799/Design_and_Fabrication_of_Mini_Vibration_Power_Generator_System_for_Micro_Sensor_Networks"><img alt="Research paper thumbnail of Design and Fabrication of Mini Vibration Power Generator System for Micro Sensor Networks" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Design and Fabrication of Mini Vibration Power Generator System for Micro Sensor Networks</div><div class="wp-workCard_item"><span>2006 IEEE International Conference on Information Acquisition</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">highly efficient energyharvesting interface circuit that Abstract - Thispaperpresents a minivibra...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">highly efficient energyharvesting interface circuit that Abstract - Thispaperpresents a minivibration power showshighpowertransfer efficiency mustbedeveloped to generator system formicrosensor networks withtheoutput recharge theelectrical powerinto energy storage elements. powerof35mW,whichismuchlarger thanthose inthe Furthermore, since thevoltage oftherenewable power literature. The systemconsists ofa minielectromagneticsupply mustbe highenough topowermicrosensor vibration powergenerator and a highly efficient energy networks, thevoltage should beincreased toanacceptable harvesting circuit implemented on a tinyPCB. Using level. feedforward andfeedback DC-DC PWM BoostConverter (DPBC), thedesigned circuit steps uptheelectric voltage and stores theelectric energy into asuper capacitor, which isthen II.THEDESIGNOFELECTROMATNETIC usedasa smallelectrical powersupply foran micro POWER GENERATOR accelerometer network. Todesign apractical powergenerator (1-20mW)(6)for Index Terms -Vibration, integrated powergenerator, micro anielignt sr ner atsimply als of sensor~~ ~~</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="105598799"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="105598799"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 105598799; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=105598799]").text(description); $(".js-view-count[data-work-id=105598799]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 105598799; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='105598799']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=105598799]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":105598799,"title":"Design and Fabrication of Mini Vibration Power Generator System for Micro Sensor Networks","translated_title":"","metadata":{"abstract":"highly efficient energyharvesting interface circuit that Abstract - Thispaperpresents a minivibration power showshighpowertransfer efficiency mustbedeveloped to generator system formicrosensor networks withtheoutput recharge theelectrical powerinto energy storage elements. powerof35mW,whichismuchlarger thanthose inthe Furthermore, since thevoltage oftherenewable power literature. The systemconsists ofa minielectromagneticsupply mustbe highenough topowermicrosensor vibration powergenerator and a highly efficient energy networks, thevoltage should beincreased toanacceptable harvesting circuit implemented on a tinyPCB. Using level. feedforward andfeedback DC-DC PWM BoostConverter (DPBC), thedesigned circuit steps uptheelectric voltage and stores theelectric energy into asuper capacitor, which isthen II.THEDESIGNOFELECTROMATNETIC usedasa smallelectrical powersupply foran micro POWER GENERATOR accelerometer network. Todesign apractical powergenerator (1-20mW)(6)for Index Terms -Vibration, integrated powergenerator, micro anielignt sr ner atsimply als of sensor~~ ~~","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"2006 IEEE International Conference on Information Acquisition"},"translated_abstract":"highly efficient energyharvesting interface circuit that Abstract - Thispaperpresents a minivibration power showshighpowertransfer efficiency mustbedeveloped to generator system formicrosensor networks withtheoutput recharge theelectrical powerinto energy storage elements. powerof35mW,whichismuchlarger thanthose inthe Furthermore, since thevoltage oftherenewable power literature. The systemconsists ofa minielectromagneticsupply mustbe highenough topowermicrosensor vibration powergenerator and a highly efficient energy networks, thevoltage should beincreased toanacceptable harvesting circuit implemented on a tinyPCB. Using level. feedforward andfeedback DC-DC PWM BoostConverter (DPBC), thedesigned circuit steps uptheelectric voltage and stores theelectric energy into asuper capacitor, which isthen II.THEDESIGNOFELECTROMATNETIC usedasa smallelectrical powersupply foran micro POWER GENERATOR accelerometer network. Todesign apractical powergenerator (1-20mW)(6)for Index Terms -Vibration, integrated powergenerator, micro anielignt sr ner atsimply als of sensor~~ ~~","internal_url":"https://www.academia.edu/105598799/Design_and_Fabrication_of_Mini_Vibration_Power_Generator_System_for_Micro_Sensor_Networks","translated_internal_url":"","created_at":"2023-08-14T18:44:27.679-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33508741,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Design_and_Fabrication_of_Mini_Vibration_Power_Generator_System_for_Micro_Sensor_Networks","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"highly efficient energyharvesting interface circuit that Abstract - Thispaperpresents a minivibration power showshighpowertransfer efficiency mustbedeveloped to generator system formicrosensor networks withtheoutput recharge theelectrical powerinto energy storage elements. powerof35mW,whichismuchlarger thanthose inthe Furthermore, since thevoltage oftherenewable power literature. The systemconsists ofa minielectromagneticsupply mustbe highenough topowermicrosensor vibration powergenerator and a highly efficient energy networks, thevoltage should beincreased toanacceptable harvesting circuit implemented on a tinyPCB. Using level. feedforward andfeedback DC-DC PWM BoostConverter (DPBC), thedesigned circuit steps uptheelectric voltage and stores theelectric energy into asuper capacitor, which isthen II.THEDESIGNOFELECTROMATNETIC usedasa smallelectrical powersupply foran micro POWER GENERATOR accelerometer network. Todesign apractical powergenerator (1-20mW)(6)for Index Terms -Vibration, integrated powergenerator, micro anielignt sr ner atsimply als of sensor~~ ~~","owner":{"id":33508741,"first_name":"Yi-Kuen","middle_initials":null,"last_name":"Lee","page_name":"YiKuenLee","domain_name":"hkust","created_at":"2015-08-01T03:12:59.639-07:00","display_name":"Yi-Kuen Lee","url":"https://hkust.academia.edu/YiKuenLee"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":49,"name":"Electrical Engineering","url":"https://www.academia.edu/Documents/in/Electrical_Engineering"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":23077,"name":"Vibration","url":"https://www.academia.edu/Documents/in/Vibration"},{"id":47838,"name":"Energy Harvesting","url":"https://www.academia.edu/Documents/in/Energy_Harvesting"},{"id":213815,"name":"Capacitor","url":"https://www.academia.edu/Documents/in/Capacitor"},{"id":389165,"name":"Voltage","url":"https://www.academia.edu/Documents/in/Voltage"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-105598799-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="105598798"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/105598798/The_effect_of_Cytochalasin_D_on_F_Actin_behavior_of_single_cell_electroendocytosis_using_multi_chamber_micro_cell_chip"><img alt="Research paper thumbnail of The effect of Cytochalasin D on F-Actin behavior of single-cell electroendocytosis using multi-chamber micro cell chip" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">The effect of Cytochalasin D on F-Actin behavior of single-cell electroendocytosis using multi-chamber micro cell chip</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Electroendocytosis (EED) is a pulsed-electric-field (PEF) induced endocytosis, facilitating cells...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Electroendocytosis (EED) is a pulsed-electric-field (PEF) induced endocytosis, facilitating cells uptake molecules through nanometer-sized EED vesicles. We herein investigate the effect of a chemical inhibitor, Cytochalasin D (CD) on the actin-filaments (F-Actin) behavior of single-cell EED. The CD concentration (CCD) can control the depolymerization of F-actin. A multi-chamber micro cell chip was fabricated to study the EED under different conditions. Large-scale single-cell data demonstrated EED highly depends on both electric field and CCD.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="105598798"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="105598798"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 105598798; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=105598798]").text(description); $(".js-view-count[data-work-id=105598798]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 105598798; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='105598798']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=105598798]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":105598798,"title":"The effect of Cytochalasin D on F-Actin behavior of single-cell electroendocytosis using multi-chamber micro cell chip","translated_title":"","metadata":{"abstract":"Electroendocytosis (EED) is a pulsed-electric-field (PEF) induced endocytosis, facilitating cells uptake molecules through nanometer-sized EED vesicles. We herein investigate the effect of a chemical inhibitor, Cytochalasin D (CD) on the actin-filaments (F-Actin) behavior of single-cell EED. The CD concentration (CCD) can control the depolymerization of F-actin. A multi-chamber micro cell chip was fabricated to study the EED under different conditions. Large-scale single-cell data demonstrated EED highly depends on both electric field and CCD."},"translated_abstract":"Electroendocytosis (EED) is a pulsed-electric-field (PEF) induced endocytosis, facilitating cells uptake molecules through nanometer-sized EED vesicles. We herein investigate the effect of a chemical inhibitor, Cytochalasin D (CD) on the actin-filaments (F-Actin) behavior of single-cell EED. The CD concentration (CCD) can control the depolymerization of F-actin. A multi-chamber micro cell chip was fabricated to study the EED under different conditions. Large-scale single-cell data demonstrated EED highly depends on both electric field and CCD.","internal_url":"https://www.academia.edu/105598798/The_effect_of_Cytochalasin_D_on_F_Actin_behavior_of_single_cell_electroendocytosis_using_multi_chamber_micro_cell_chip","translated_internal_url":"","created_at":"2023-08-14T18:44:27.525-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33508741,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_effect_of_Cytochalasin_D_on_F_Actin_behavior_of_single_cell_electroendocytosis_using_multi_chamber_micro_cell_chip","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Electroendocytosis (EED) is a pulsed-electric-field (PEF) induced endocytosis, facilitating cells uptake molecules through nanometer-sized EED vesicles. We herein investigate the effect of a chemical inhibitor, Cytochalasin D (CD) on the actin-filaments (F-Actin) behavior of single-cell EED. The CD concentration (CCD) can control the depolymerization of F-actin. A multi-chamber micro cell chip was fabricated to study the EED under different conditions. Large-scale single-cell data demonstrated EED highly depends on both electric field and CCD.","owner":{"id":33508741,"first_name":"Yi-Kuen","middle_initials":null,"last_name":"Lee","page_name":"YiKuenLee","domain_name":"hkust","created_at":"2015-08-01T03:12:59.639-07:00","display_name":"Yi-Kuen Lee","url":"https://hkust.academia.edu/YiKuenLee"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":502,"name":"Biophysics","url":"https://www.academia.edu/Documents/in/Biophysics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":90156,"name":"Endocytosis","url":"https://www.academia.edu/Documents/in/Endocytosis"},{"id":107533,"name":"Cell","url":"https://www.academia.edu/Documents/in/Cell"},{"id":138131,"name":"Actin","url":"https://www.academia.edu/Documents/in/Actin"},{"id":1130559,"name":"Electric Field","url":"https://www.academia.edu/Documents/in/Electric_Field"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-105598798-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="105598797"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/105598797/Experimental_and_theoretical_study_of_hydrodynamic_cell_lysing_of_cancer_cells_in_a_high_throughput_Circular_Multi_Channel_Microfiltration_device"><img alt="Research paper thumbnail of Experimental and theoretical study of hydrodynamic cell lysing of cancer cells in a high-throughput Circular Multi-Channel Microfiltration device" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Experimental and theoretical study of hydrodynamic cell lysing of cancer cells in a high-throughput Circular Multi-Channel Microfiltration device</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Microfiltration is an important microfluidic technique suitable for enrichment and isolation of c...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Microfiltration is an important microfluidic technique suitable for enrichment and isolation of cells. However, cell lysing could occur due to hydrodynamic damage that may be detrimental for medical diagnostics. Therefore, we conducted a systematic study of hydrodynamic cell lysing in a high-throughput Circular Multi-Channel Microfiltration (CMCM) device integrated with a polycarbonate membrane. HeLa cells (cervical cancer cells) were driven into the CMCM at different flow rates. The viability of the cells in the CMCM was examined by fluorescence microscopy using Acridine Orange (AO)/ Ethidium Bromide (EB) as a marker for viable/dead cells. A simple analytical cell viability model was derived and a 3D numerical model was constructed to examine the correlation of between cell lysing and applied shear stress under varying flow rate and Reynolds number. The measured cell viability as a function of the shear stress was consistent with theoretical and numerical predictions when accounting for cell size distribution.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="105598797"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="105598797"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 105598797; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=105598797]").text(description); $(".js-view-count[data-work-id=105598797]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 105598797; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='105598797']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=105598797]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":105598797,"title":"Experimental and theoretical study of hydrodynamic cell lysing of cancer cells in a high-throughput Circular Multi-Channel Microfiltration device","translated_title":"","metadata":{"abstract":"Microfiltration is an important microfluidic technique suitable for enrichment and isolation of cells. However, cell lysing could occur due to hydrodynamic damage that may be detrimental for medical diagnostics. Therefore, we conducted a systematic study of hydrodynamic cell lysing in a high-throughput Circular Multi-Channel Microfiltration (CMCM) device integrated with a polycarbonate membrane. HeLa cells (cervical cancer cells) were driven into the CMCM at different flow rates. The viability of the cells in the CMCM was examined by fluorescence microscopy using Acridine Orange (AO)/ Ethidium Bromide (EB) as a marker for viable/dead cells. A simple analytical cell viability model was derived and a 3D numerical model was constructed to examine the correlation of between cell lysing and applied shear stress under varying flow rate and Reynolds number. The measured cell viability as a function of the shear stress was consistent with theoretical and numerical predictions when accounting for cell size distribution."},"translated_abstract":"Microfiltration is an important microfluidic technique suitable for enrichment and isolation of cells. However, cell lysing could occur due to hydrodynamic damage that may be detrimental for medical diagnostics. Therefore, we conducted a systematic study of hydrodynamic cell lysing in a high-throughput Circular Multi-Channel Microfiltration (CMCM) device integrated with a polycarbonate membrane. HeLa cells (cervical cancer cells) were driven into the CMCM at different flow rates. The viability of the cells in the CMCM was examined by fluorescence microscopy using Acridine Orange (AO)/ Ethidium Bromide (EB) as a marker for viable/dead cells. A simple analytical cell viability model was derived and a 3D numerical model was constructed to examine the correlation of between cell lysing and applied shear stress under varying flow rate and Reynolds number. The measured cell viability as a function of the shear stress was consistent with theoretical and numerical predictions when accounting for cell size distribution.","internal_url":"https://www.academia.edu/105598797/Experimental_and_theoretical_study_of_hydrodynamic_cell_lysing_of_cancer_cells_in_a_high_throughput_Circular_Multi_Channel_Microfiltration_device","translated_internal_url":"","created_at":"2023-08-14T18:44:27.374-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33508741,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Experimental_and_theoretical_study_of_hydrodynamic_cell_lysing_of_cancer_cells_in_a_high_throughput_Circular_Multi_Channel_Microfiltration_device","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Microfiltration is an important microfluidic technique suitable for enrichment and isolation of cells. However, cell lysing could occur due to hydrodynamic damage that may be detrimental for medical diagnostics. Therefore, we conducted a systematic study of hydrodynamic cell lysing in a high-throughput Circular Multi-Channel Microfiltration (CMCM) device integrated with a polycarbonate membrane. HeLa cells (cervical cancer cells) were driven into the CMCM at different flow rates. The viability of the cells in the CMCM was examined by fluorescence microscopy using Acridine Orange (AO)/ Ethidium Bromide (EB) as a marker for viable/dead cells. A simple analytical cell viability model was derived and a 3D numerical model was constructed to examine the correlation of between cell lysing and applied shear stress under varying flow rate and Reynolds number. The measured cell viability as a function of the shear stress was consistent with theoretical and numerical predictions when accounting for cell size distribution.","owner":{"id":33508741,"first_name":"Yi-Kuen","middle_initials":null,"last_name":"Lee","page_name":"YiKuenLee","domain_name":"hkust","created_at":"2015-08-01T03:12:59.639-07:00","display_name":"Yi-Kuen Lee","url":"https://hkust.academia.edu/YiKuenLee"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":153972,"name":"Microfiltration","url":"https://www.academia.edu/Documents/in/Microfiltration"},{"id":1256745,"name":"Lysis","url":"https://www.academia.edu/Documents/in/Lysis"},{"id":1335152,"name":"Viability assay","url":"https://www.academia.edu/Documents/in/Viability_assay"},{"id":1335153,"name":"Acridine Orange","url":"https://www.academia.edu/Documents/in/Acridine_Orange"},{"id":2226500,"name":"Ethidium bromide","url":"https://www.academia.edu/Documents/in/Ethidium_bromide"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-105598797-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="105598796"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/105598796/Hele_Shaw_Flow_in_a_Microchannel_with_Cavities"><img alt="Research paper thumbnail of Hele-Shaw Flow in a Microchannel with Cavities" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Hele-Shaw Flow in a Microchannel with Cavities</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="105598796"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="105598796"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 105598796; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=105598796]").text(description); $(".js-view-count[data-work-id=105598796]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 105598796; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='105598796']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=105598796]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":105598796,"title":"Hele-Shaw Flow in a Microchannel with Cavities","translated_title":"","metadata":{"abstract":"ABSTRACT"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/105598796/Hele_Shaw_Flow_in_a_Microchannel_with_Cavities","translated_internal_url":"","created_at":"2023-08-14T18:44:27.228-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33508741,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Hele_Shaw_Flow_in_a_Microchannel_with_Cavities","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT","owner":{"id":33508741,"first_name":"Yi-Kuen","middle_initials":null,"last_name":"Lee","page_name":"YiKuenLee","domain_name":"hkust","created_at":"2015-08-01T03:12:59.639-07:00","display_name":"Yi-Kuen Lee","url":"https://hkust.academia.edu/YiKuenLee"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":60658,"name":"Numerical Simulation","url":"https://www.academia.edu/Documents/in/Numerical_Simulation"},{"id":283531,"name":"Microchannel","url":"https://www.academia.edu/Documents/in/Microchannel"},{"id":898062,"name":"Flow Rate","url":"https://www.academia.edu/Documents/in/Flow_Rate"},{"id":1144265,"name":"Pressure Distribution","url":"https://www.academia.edu/Documents/in/Pressure_Distribution"},{"id":3663955,"name":"Knudsen number","url":"https://www.academia.edu/Documents/in/Knudsen_number"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-105598796-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="105598795"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/105598795/Application_of_Nanoparticle_Based_Giant_Electrorheological_Fluid_to_Microfluidics"><img alt="Research paper thumbnail of Application of Nanoparticle-Based Giant Electrorheological Fluid to Microfluidics" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Application of Nanoparticle-Based Giant Electrorheological Fluid to Microfluidics</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper presents application of nanoparticle-based giant electrorheological (GER) fluid to mic...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper presents application of nanoparticle-based giant electrorheological (GER) fluid to microfluidics. The GER fluid, consisting of urea-coated 20 nm-diameter nanoparticles (barium titanyl oxalate) suspended in silicone oil, can reach a yield stress of 130 kPa, breaking the theoretical upper bound of conventional ER fluids. Multi-layer PDMS and conductive PDMS fabrication technique was developed for a series of basic microfluidic</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="105598795"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="105598795"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 105598795; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=105598795]").text(description); $(".js-view-count[data-work-id=105598795]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 105598795; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='105598795']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=105598795]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":105598795,"title":"Application of Nanoparticle-Based Giant Electrorheological Fluid to Microfluidics","translated_title":"","metadata":{"abstract":"This paper presents application of nanoparticle-based giant electrorheological (GER) fluid to microfluidics. The GER fluid, consisting of urea-coated 20 nm-diameter nanoparticles (barium titanyl oxalate) suspended in silicone oil, can reach a yield stress of 130 kPa, breaking the theoretical upper bound of conventional ER fluids. Multi-layer PDMS and conductive PDMS fabrication technique was developed for a series of basic microfluidic"},"translated_abstract":"This paper presents application of nanoparticle-based giant electrorheological (GER) fluid to microfluidics. The GER fluid, consisting of urea-coated 20 nm-diameter nanoparticles (barium titanyl oxalate) suspended in silicone oil, can reach a yield stress of 130 kPa, breaking the theoretical upper bound of conventional ER fluids. Multi-layer PDMS and conductive PDMS fabrication technique was developed for a series of basic microfluidic","internal_url":"https://www.academia.edu/105598795/Application_of_Nanoparticle_Based_Giant_Electrorheological_Fluid_to_Microfluidics","translated_internal_url":"","created_at":"2023-08-14T18:44:27.082-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33508741,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Application_of_Nanoparticle_Based_Giant_Electrorheological_Fluid_to_Microfluidics","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"This paper presents application of nanoparticle-based giant electrorheological (GER) fluid to microfluidics. The GER fluid, consisting of urea-coated 20 nm-diameter nanoparticles (barium titanyl oxalate) suspended in silicone oil, can reach a yield stress of 130 kPa, breaking the theoretical upper bound of conventional ER fluids. Multi-layer PDMS and conductive PDMS fabrication technique was developed for a series of basic microfluidic","owner":{"id":33508741,"first_name":"Yi-Kuen","middle_initials":null,"last_name":"Lee","page_name":"YiKuenLee","domain_name":"hkust","created_at":"2015-08-01T03:12:59.639-07:00","display_name":"Yi-Kuen Lee","url":"https://hkust.academia.edu/YiKuenLee"},"attachments":[],"research_interests":[{"id":331203,"name":"Pressure Drop","url":"https://www.academia.edu/Documents/in/Pressure_Drop"},{"id":575846,"name":"Upper Bound","url":"https://www.academia.edu/Documents/in/Upper_Bound"},{"id":789709,"name":"Yield stress","url":"https://www.academia.edu/Documents/in/Yield_stress"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-105598795-figures'); } }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; } .sign-in-with-apple-button > div { margin: 0 auto; / This centers the Apple-rendered button horizontally }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "0f9d8fe7a601976f80d2c9d99c6c20f84e5f16bc7f3a26a3836b67f31f42b070", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="bYieDpJbeIWcdk7dg6g2KGTmfagySjl8OVWmuvHr5Ht0ti7bcVQmyxKzzYoihf1jm6jh_x__UVNEDN8ZhMJgmA" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://hkust.academia.edu/YiKuenLee" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="yYER8Up7PN934O75avs_3EDLkq7_s4twoUzS-EY0F87Qv6EkqXRikfklba7L1vSXv4UO-dIG41_cFatbMx2TLQ" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2025</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10