CINXE.COM
Search results for: discord discovery
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: discord discovery</title> <meta name="description" content="Search results for: discord discovery"> <meta name="keywords" content="discord discovery"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="discord discovery" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="discord discovery"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 636</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: discord discovery</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">606</span> Identification of Arglecins B and C and Actinofuranosin A from a Termite Gut-Associated Streptomyces Species</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christian%20A.%20Romero">Christian A. Romero</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanja%20Grkovic"> Tanja Grkovic</a>, <a href="https://publications.waset.org/abstracts/search?q=John.%20R.%20J.%20French"> John. R. J. French</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20%C4%B0pek%20Kurtb%C3%B6ke"> D. İpek Kurtböke</a>, <a href="https://publications.waset.org/abstracts/search?q=Ronald%20J.%20Quinn"> Ronald J. Quinn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A high-throughput and automated 1H NMR metabolic fingerprinting dereplication approach was used to accelerate the discovery of unknown bioactive secondary metabolites. The applied dereplication strategy accelerated the discovery of natural products, provided rapid and competent identification and quantification of the known secondary metabolites and avoided time-consuming isolation procedures. The effectiveness of the technique was demonstrated by the isolation and elucidation of arglecins B (1), C (2) and actinofuranosin A (3) from a termite-gut associated Streptomyces sp. (USC 597) grown under solid state fermentation. The structures of these compounds were elucidated by extensive interpretation of 1H, 13C and 2D NMR spectroscopic data. These represent the first report of arglecin analogs isolated from a termite gut-associated Streptomyces species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=actinomycetes" title="actinomycetes">actinomycetes</a>, <a href="https://publications.waset.org/abstracts/search?q=actinofuranosin" title=" actinofuranosin"> actinofuranosin</a>, <a href="https://publications.waset.org/abstracts/search?q=antibiotics" title=" antibiotics"> antibiotics</a>, <a href="https://publications.waset.org/abstracts/search?q=arglecins" title=" arglecins"> arglecins</a>, <a href="https://publications.waset.org/abstracts/search?q=NMR%20spectroscopy" title=" NMR spectroscopy"> NMR spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/181957/identification-of-arglecins-b-and-c-and-actinofuranosin-a-from-a-termite-gut-associated-streptomyces-species" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181957.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">605</span> Discovery of Two-dimensional Hexagonal MBene HfBO</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nanxi%20Miao">Nanxi Miao</a>, <a href="https://publications.waset.org/abstracts/search?q=Junjie%20Wang"> Junjie Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The discovery of 2D materials with distinct compositions and properties has been a research aim since the report of graphene. One of the latest members of the 2D material family is MXene, which is produced from the topochemical deintercalation of the A layer from a laminate MAX phase. Recently, analogous 2D MBenes (transitional metal borides) have been predicted by theoretical calculations as excellent alternatives in applications such as metal-ion batteries, magnetic devices, and catalysts. However, the practical applications of two-dimensional (2D) transition-metal borides (MBenes) have been severely hindered by the lack of accessible MBenes because of the difficulties in the selective etching of traditional ternary MAB phases with orthorhombic symmetry (ort-MAB). Here, we discover a family of ternary hexagonal MAB (h-MAB) phases and 2D hexagonal MBenes (h-MBenes) by ab initio predictions and experiments. Calculations suggest that the ternary h-MAB phases are more suitable precursors for MBenes than the ort-MAB phases. Based on the prediction, we report the experimental synthesis of h-MBene HfBO by selective removal of in from h-MAB Hf2InB2. The synthesized 2D HfBO delivered a specific capacity of 420 mAh g-1 as an anode material in lithium-ion batteries, demonstrating the potential for energy-storage applications. The discovery of this h-MBene HfBO added a new member to the growing family of 2D materials and provided opportunities for a wide range of novel applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2D%20materials" title="2D materials">2D materials</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT%20calculations" title=" DFT calculations"> DFT calculations</a>, <a href="https://publications.waset.org/abstracts/search?q=high-throughput%20screening" title=" high-throughput screening"> high-throughput screening</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium-ion%20batteries" title=" lithium-ion batteries"> lithium-ion batteries</a> </p> <a href="https://publications.waset.org/abstracts/181936/discovery-of-two-dimensional-hexagonal-mbene-hfbo" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181936.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">604</span> A Distributed Cryptographically Generated Address Computing Algorithm for Secure Neighbor Discovery Protocol in IPv6</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Moslehpour">M. Moslehpour</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Khorsandi"> S. Khorsandi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to shortage in IPv4 addresses, transition to IPv6 has gained significant momentum in recent years. Like Address Resolution Protocol (ARP) in IPv4, Neighbor Discovery Protocol (NDP) provides some functions like address resolution in IPv6. Besides functionality of NDP, it is vulnerable to some attacks. To mitigate these attacks, Internet Protocol Security (IPsec) was introduced, but it was not efficient due to its limitation. Therefore, SEND protocol is proposed to automatic protection of auto-configuration process. It is secure neighbor discovery and address resolution process. To defend against threats on NDP’s integrity and identity, Cryptographically Generated Address (CGA) and asymmetric cryptography are used by SEND. Besides advantages of SEND, its disadvantages like the computation process of CGA algorithm and sequentially of CGA generation algorithm are considerable. In this paper, we parallel this process between network resources in order to improve it. In addition, we compare the CGA generation time in self-computing and distributed-computing process. We focus on the impact of the malicious nodes on the CGA generation time in the network. According to the result, although malicious nodes participate in the generation process, CGA generation time is less than when it is computed in a one-way. By Trust Management System, detecting and insulating malicious nodes is easier. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NDP" title="NDP">NDP</a>, <a href="https://publications.waset.org/abstracts/search?q=IPsec" title=" IPsec"> IPsec</a>, <a href="https://publications.waset.org/abstracts/search?q=SEND" title=" SEND"> SEND</a>, <a href="https://publications.waset.org/abstracts/search?q=CGA" title=" CGA"> CGA</a>, <a href="https://publications.waset.org/abstracts/search?q=modifier" title=" modifier"> modifier</a>, <a href="https://publications.waset.org/abstracts/search?q=malicious%20node" title=" malicious node"> malicious node</a>, <a href="https://publications.waset.org/abstracts/search?q=self-computing" title=" self-computing"> self-computing</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed-computing" title=" distributed-computing"> distributed-computing</a> </p> <a href="https://publications.waset.org/abstracts/45747/a-distributed-cryptographically-generated-address-computing-algorithm-for-secure-neighbor-discovery-protocol-in-ipv6" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45747.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">603</span> Whole Coding Genome Inter-Clade Comparison to Predict Global Cancer-Protecting Variants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lamis%20Naddaf">Lamis Naddaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuval%20Tabach"> Yuval Tabach</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, we identified the missense genetic variants that have the potential to enhance resistance against cancer. Such field has not been widely explored, as researchers tend to investigate mutations that cause diseases, in response to the suffering of patients, rather than those mutations that protect from them. In conjunction with the genomic revolution, and the advances in genetic engineering and synthetic biology, identifying the protective variants will increase the power of genotype-phenotype predictions and can have significant implications on improved risk estimation, diagnostics, prognosis and even for personalized therapy and drug discovery. To approach our goal, we systematically investigated the sites of the coding genomes and picked up the alleles that showed a correlation with the species’ cancer resistance. We predicted 250 protecting variants (PVs) with a 0.01 false discovery rate and more than 20 thousand PVs with a 0.25 false discovery rate. Cancer resistance in Mammals and reptiles was significantly predicted by the number of PVs a species has. Moreover, Genes enriched with the protecting variants are enriched in pathways relevant to tumor suppression like pathways of Hedgehog signaling and silencing, which its improper activation is associated with the most common form of cancer malignancy. We also showed that the PVs are more abundant in healthy people compared to cancer patients within different human races. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=comparative%20genomics" title="comparative genomics">comparative genomics</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20resistance" title=" cancer resistance"> cancer resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer-protecting%20alleles" title="cancer-protecting alleles">cancer-protecting alleles</a> </p> <a href="https://publications.waset.org/abstracts/150807/whole-coding-genome-inter-clade-comparison-to-predict-global-cancer-protecting-variants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150807.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">602</span> The Different Learning Path Analysis of Students with Different Learning Attitudes and Styles in Arts Creation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tracy%20Ho">Tracy Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Huann-Shyang%20Lin"> Huann-Shyang Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mina%20Lin"> Mina Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated the different learning path of students with different learning attitude and learning styles in Arts Creation. Based on direct instruction, guided-discovery learning, and discovery learning theories, a tablet app including the following three learning areas were developed for students: (1) replication and remix practice area, (2) guided creation area, and (3) free creation area. Thirty. students with different learning attitude and learning styles were invited to use this app. Students’ learning behaviors were categorized and defined. The results will provide both educators and researchers with insights that can form a useful foundation for designing different content and strategy with the application of new technologies in school teaching. It also sheds light on how an educational App can be designed to enhance Arts Creation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=App" title="App">App</a>, <a href="https://publications.waset.org/abstracts/search?q=arts%20creation" title=" arts creation"> arts creation</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20attitude" title=" learning attitude"> learning attitude</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20style" title=" learning style"> learning style</a>, <a href="https://publications.waset.org/abstracts/search?q=tablet" title=" tablet"> tablet</a> </p> <a href="https://publications.waset.org/abstracts/72549/the-different-learning-path-analysis-of-students-with-different-learning-attitudes-and-styles-in-arts-creation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">601</span> Machine Learning Methods for Network Intrusion Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mouhammad%20Alkasassbeh">Mouhammad Alkasassbeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Almseidin"> Mohammad Almseidin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Network security engineers work to keep services available all the time by handling intruder attacks. Intrusion Detection System (IDS) is one of the obtainable mechanisms that is used to sense and classify any abnormal actions. Therefore, the IDS must be always up to date with the latest intruder attacks signatures to preserve confidentiality, integrity, and availability of the services. The speed of the IDS is a very important issue as well learning the new attacks. This research work illustrates how the Knowledge Discovery and Data Mining (or Knowledge Discovery in Databases) KDD dataset is very handy for testing and evaluating different Machine Learning Techniques. It mainly focuses on the KDD preprocess part in order to prepare a decent and fair experimental data set. The J48, MLP, and Bayes Network classifiers have been chosen for this study. It has been proven that the J48 classifier has achieved the highest accuracy rate for detecting and classifying all KDD dataset attacks, which are of type DOS, R2L, U2R, and PROBE. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IDS" title="IDS">IDS</a>, <a href="https://publications.waset.org/abstracts/search?q=DDoS" title=" DDoS"> DDoS</a>, <a href="https://publications.waset.org/abstracts/search?q=MLP" title=" MLP"> MLP</a>, <a href="https://publications.waset.org/abstracts/search?q=KDD" title=" KDD"> KDD</a> </p> <a href="https://publications.waset.org/abstracts/93688/machine-learning-methods-for-network-intrusion-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93688.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">600</span> Educating Empathy: Combining Active Listening and Moral Discovery to Facilitate Prosocial Connection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Erika%20Price">Erika Price</a>, <a href="https://publications.waset.org/abstracts/search?q=Lisa%20Johnson"> Lisa Johnson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cognitive and dispositional empathy is decreasing among students worldwide, particularly those at university. This paper looks at the effects of encouraging empathetic positioning in divisive topics by teaching listening skills and moral discovery to university students. Two groups of university students were given the assignment to interview individuals they disagreed with on social issues (e.g. abortion, gun control, legalization of drugs, involvement in Ukraine, etc.). One group completed the assignment with no other instruction. The second group completed the assignment after receiving instruction in active listening and Jonathan Haidt’s theory of moral foundations in politics. Results show that when students are given both active listening techniques and awareness of moral foundations, they are significantly more likely to have socially positive interactions with those they disagree with on issues as compared to those who listen passively to ideological opponents. As students interacted with those they disagreed with, they evidenced prosocial behaviors of acknowledgement, validation, and even commonalities with their opponents’ viewpoints, signifying a heartening trend of empathetic connection that is waning in students. The research suggests that empathy is a skill that can be nurtured by active listening but that it is more fully cultivated when paired with the concept of moral foundations underpinning political ideologies. These findings shed light on how to create more effective pedagogies for social and emotional learning, as well as inclusion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=empathy" title="empathy">empathy</a>, <a href="https://publications.waset.org/abstracts/search?q=listening%20skills" title=" listening skills"> listening skills</a>, <a href="https://publications.waset.org/abstracts/search?q=moral%20discovery" title=" moral discovery"> moral discovery</a>, <a href="https://publications.waset.org/abstracts/search?q=pedagogy" title=" pedagogy"> pedagogy</a>, <a href="https://publications.waset.org/abstracts/search?q=prosocial%20behavior" title=" prosocial behavior"> prosocial behavior</a> </p> <a href="https://publications.waset.org/abstracts/173825/educating-empathy-combining-active-listening-and-moral-discovery-to-facilitate-prosocial-connection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173825.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">599</span> Efficient Subgoal Discovery for Hierarchical Reinforcement Learning Using Local Computations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adrian%20Millea">Adrian Millea</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In hierarchical reinforcement learning, one of the main issues encountered is the discovery of subgoal states or options (which are policies reaching subgoal states) by partitioning the environment in a meaningful way. This partitioning usually requires an expensive global clustering operation or eigendecomposition of the Laplacian of the states graph. We propose a local solution to this issue, much more efficient than algorithms using global information, which successfully discovers subgoal states by computing a simple function, which we call heterogeneity for each state as a function of its neighbors. Moreover, we construct a value function using the difference in heterogeneity from one step to the next, as reward, such that we are able to explore the state space much more efficiently than say epsilon-greedy. The same principle can then be applied to higher level of the hierarchy, where now states are subgoals discovered at the level below. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exploration" title="exploration">exploration</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20reinforcement%20learning" title=" hierarchical reinforcement learning"> hierarchical reinforcement learning</a>, <a href="https://publications.waset.org/abstracts/search?q=locality" title=" locality"> locality</a>, <a href="https://publications.waset.org/abstracts/search?q=options" title=" options"> options</a>, <a href="https://publications.waset.org/abstracts/search?q=value%20functions" title=" value functions"> value functions</a> </p> <a href="https://publications.waset.org/abstracts/134077/efficient-subgoal-discovery-for-hierarchical-reinforcement-learning-using-local-computations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134077.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">598</span> Combating Malaria: A Drug Discovery Approach Using Thiazole Derivatives Against Prolific Parasite Enzyme PfPKG</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hari%20Bezwada">Hari Bezwada</a>, <a href="https://publications.waset.org/abstracts/search?q=Michelle%20Cheon"> Michelle Cheon</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryan%20Divan"> Ryan Divan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hannah%20Escritor"> Hannah Escritor</a>, <a href="https://publications.waset.org/abstracts/search?q=Michelle%20Kagramian"> Michelle Kagramian</a>, <a href="https://publications.waset.org/abstracts/search?q=Isha%20Korgaonkar"> Isha Korgaonkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Maya%20MacAdams"> Maya MacAdams</a>, <a href="https://publications.waset.org/abstracts/search?q=Udgita%20Pamidigantam"> Udgita Pamidigantam</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Pilny"> Richard Pilny</a>, <a href="https://publications.waset.org/abstracts/search?q=Eleanor%20Race"> Eleanor Race</a>, <a href="https://publications.waset.org/abstracts/search?q=Angadh%20Singh"> Angadh Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Nathan%20Zhang"> Nathan Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=LeeAnn%20Nguyen"> LeeAnn Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Fina%20Liotta"> Fina Liotta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Malaria is a deadly disease caused by the Plasmodium parasite, which continues to develop resistance to current antimalarial drugs. In this research project, the effectiveness of numerous thiazole derivatives was explored in inhibiting the PfPKG, a crucial part of the Plasmodium life cycle. This study involved the synthesis of six thiazole-derived amides to inhibit the PfPKG pathway. Nuclear Magnetic Resonance (NMR) spectroscopy and Infrared (IR) spectroscopy were used to characterize these compounds. Furthermore, AutoDocking software was used to predict binding affinities of these thiazole-derived amides in silico. In silico, compound 6 exhibited the highest predicted binding affinity to PfPKG, while compound 5 had the lowest affinity. Compounds 1-4 displayed varying degrees of predicted binding affinity. In-vitro, it was found that compound 4 had the best percent inhibition, while compound 5 had the worst percent inhibition. Overall, all six compounds had weak inhibition (approximately 30-39% at 10 μM), but these results provide a foundation for future drug discovery experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Medicinal%20Chemistry" title="Medicinal Chemistry">Medicinal Chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=Malaria" title=" Malaria"> Malaria</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20discovery" title=" drug discovery"> drug discovery</a>, <a href="https://publications.waset.org/abstracts/search?q=PfPKG" title=" PfPKG"> PfPKG</a>, <a href="https://publications.waset.org/abstracts/search?q=Thiazole" title=" Thiazole"> Thiazole</a>, <a href="https://publications.waset.org/abstracts/search?q=Plasmodium" title=" Plasmodium"> Plasmodium</a> </p> <a href="https://publications.waset.org/abstracts/174021/combating-malaria-a-drug-discovery-approach-using-thiazole-derivatives-against-prolific-parasite-enzyme-pfpkg" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174021.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">597</span> Realistic Study Discover Some Posture Deformities According to Some Biomechanical Variables for Schoolchildren</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Basman%20Abdul%20Jabbar">Basman Abdul Jabbar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The researchers aimed to improve the importance of the good posture without any divisions & deformities. The importance of research lied in the discovery posture deformities early so easily treated before its transformation into advanced abnormalities difficult to treat and may need surgical intervention. Research problem was noting that some previous studies were based on the discovery of posture deformities, which was dependent on the (self-evaluation) which this type did not have accuracy to discover deformities. The Samples were (500) schoolchildren aged (9-11 years, males) at Baghdad al Karak. They were students at primary schools. The measure included all posture deformities. The researcher used video camera to analyze the posture deformities according to biomechanical variables by Kinovea software for motion analysis. The researcher recommended the need to use accurate scientific methods for early detection of posture deformities in children which contribute to the prevention and reduction of distortions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomechanics" title="biomechanics">biomechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=children" title=" children"> children</a>, <a href="https://publications.waset.org/abstracts/search?q=deformities" title=" deformities"> deformities</a>, <a href="https://publications.waset.org/abstracts/search?q=posture" title=" posture "> posture </a> </p> <a href="https://publications.waset.org/abstracts/47798/realistic-study-discover-some-posture-deformities-according-to-some-biomechanical-variables-for-schoolchildren" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47798.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">596</span> Performance Analysis with the Combination of Visualization and Classification Technique for Medical Chatbot</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shajida%20M.">Shajida M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Sakthiyadharshini%20N.%20P."> Sakthiyadharshini N. P.</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamalesh%20S."> Kamalesh S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Aswitha%20B."> Aswitha B.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural Language Processing (NLP) continues to play a strategic part in complaint discovery and medicine discovery during the current epidemic. This abstract provides an overview of performance analysis with a combination of visualization and classification techniques of NLP for a medical chatbot. Sentiment analysis is an important aspect of NLP that is used to determine the emotional tone behind a piece of text. This technique has been applied to various domains, including medical chatbots. In this, we have compared the combination of the decision tree with heatmap and Naïve Bayes with Word Cloud. The performance of the chatbot was evaluated using accuracy, and the results indicate that the combination of visualization and classification techniques significantly improves the chatbot's performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sentimental%20analysis" title="sentimental analysis">sentimental analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=NLP" title=" NLP"> NLP</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20chatbot" title=" medical chatbot"> medical chatbot</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20tree" title=" decision tree"> decision tree</a>, <a href="https://publications.waset.org/abstracts/search?q=heatmap" title=" heatmap"> heatmap</a>, <a href="https://publications.waset.org/abstracts/search?q=na%C3%AFve%20bayes" title=" naïve bayes"> naïve bayes</a>, <a href="https://publications.waset.org/abstracts/search?q=word%20cloud" title=" word cloud"> word cloud</a> </p> <a href="https://publications.waset.org/abstracts/165924/performance-analysis-with-the-combination-of-visualization-and-classification-technique-for-medical-chatbot" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165924.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">595</span> Using Combination of Sets of Features of Molecules for Aqueous Solubility Prediction: A Random Forest Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammet%20Baldan">Muhammet Baldan</a>, <a href="https://publications.waset.org/abstracts/search?q=Emel%20Timu%C3%A7in"> Emel Timuçin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Generally, absorption and bioavailability increase if solubility increases; therefore, it is crucial to predict them in drug discovery applications. Molecular descriptors and Molecular properties are traditionally used for the prediction of water solubility. There are various key descriptors that are used for this purpose, namely Drogan Descriptors, Morgan Descriptors, Maccs keys, etc., and each has different prediction capabilities with differentiating successes between different data sets. Another source for the prediction of solubility is structural features; they are commonly used for the prediction of solubility. However, there are little to no studies that combine three or more properties or descriptors for prediction to produce a more powerful prediction model. Unlike available models, we used a combination of those features in a random forest machine learning model for improved solubility prediction to better predict and, therefore, contribute to drug discovery systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solubility" title="solubility">solubility</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20forest" title=" random forest"> random forest</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20descriptors" title=" molecular descriptors"> molecular descriptors</a>, <a href="https://publications.waset.org/abstracts/search?q=maccs%20keys" title=" maccs keys"> maccs keys</a> </p> <a href="https://publications.waset.org/abstracts/186736/using-combination-of-sets-of-features-of-molecules-for-aqueous-solubility-prediction-a-random-forest-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186736.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">46</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">594</span> Pattern Discovery from Student Feedback: Identifying Factors to Improve Student Emotions in Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Angelina%20A.%20Tzacheva">Angelina A. Tzacheva</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaishree%20Ranganathan"> Jaishree Ranganathan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Interest in (STEM) Science Technology Engineering Mathematics education especially Computer Science education has seen a drastic increase across the country. This fuels effort towards recruiting and admitting a diverse population of students. Thus the changing conditions in terms of the student population, diversity and the expected teaching and learning outcomes give the platform for use of Innovative Teaching models and technologies. It is necessary that these methods adapted should also concentrate on raising quality of such innovations and have positive impact on student learning. Light-Weight Team is an Active Learning Pedagogy, which is considered to be low-stake activity and has very little or no direct impact on student grades. Emotion plays a major role in student’s motivation to learning. In this work we use the student feedback data with emotion classification using surveys at a public research institution in the United States. We use Actionable Pattern Discovery method for this purpose. Actionable patterns are patterns that provide suggestions in the form of rules to help the user achieve better outcomes. The proposed method provides meaningful insight in terms of changes that can be incorporated in the Light-Weight team activities, resources utilized in the course. The results suggest how to enhance student emotions to a more positive state, in particular focuses on the emotions ‘Trust’ and ‘Joy’. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=actionable%20pattern%20discovery" title="actionable pattern discovery">actionable pattern discovery</a>, <a href="https://publications.waset.org/abstracts/search?q=education" title=" education"> education</a>, <a href="https://publications.waset.org/abstracts/search?q=emotion" title=" emotion"> emotion</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a> </p> <a href="https://publications.waset.org/abstracts/126892/pattern-discovery-from-student-feedback-identifying-factors-to-improve-student-emotions-in-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126892.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">593</span> Estimation of Coefficients of Ridge and Principal Components Regressions with Multicollinear Data </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajeshwar%20Singh">Rajeshwar Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The presence of multicollinearity is common in handling with several explanatory variables simultaneously due to exhibiting a linear relationship among them. A great problem arises in understanding the impact of explanatory variables on the dependent variable. Thus, the method of least squares estimation gives inexact estimates. In this case, it is advised to detect its presence first before proceeding further. Using the ridge regression degree of its occurrence is reduced but principal components regression gives good estimates in this situation. This paper discusses well-known techniques of the ridge and principal components regressions and applies to get the estimates of coefficients by both techniques. In addition to it, this paper also discusses the conflicting claim on the discovery of the method of ridge regression based on available documents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conflicting%20claim%20on%20credit%20of%20discovery%20of%20ridge%20regression" title="conflicting claim on credit of discovery of ridge regression">conflicting claim on credit of discovery of ridge regression</a>, <a href="https://publications.waset.org/abstracts/search?q=multicollinearity" title=" multicollinearity"> multicollinearity</a>, <a href="https://publications.waset.org/abstracts/search?q=principal%20components%20and%20ridge%20regressions" title=" principal components and ridge regressions"> principal components and ridge regressions</a>, <a href="https://publications.waset.org/abstracts/search?q=variance%20inflation%20factor" title=" variance inflation factor"> variance inflation factor</a> </p> <a href="https://publications.waset.org/abstracts/31600/estimation-of-coefficients-of-ridge-and-principal-components-regressions-with-multicollinear-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31600.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">592</span> Classification Rule Discovery by Using Parallel Ant Colony Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Waseem%20Shahzad">Waseem Shahzad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayesha%20Tahir%20Khan"> Ayesha Tahir Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Hussain%20Awan"> Hamid Hussain Awan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ant-Miner algorithm that lies under ACO algorithms is used to extract knowledge from data in the form of rules. A variant of Ant-Miner algorithm named as cAnt-MinerPB is used to generate list of rules using pittsburgh approach in order to maintain the rule interaction among the rules that are generated. In this paper, we propose a parallel Ant MinerPB in which Ant colony optimization algorithm runs parallel. In this technique, a data set is divided vertically (i-e attributes) into different subsets. These subsets are created based on the correlation among attributes using Mutual Information (MI). It generates rules in a parallel manner and then merged to form a final list of rules. The results have shown that the proposed technique achieved higher accuracy when compared with original cAnt-MinerPB and also the execution time has also reduced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ant%20colony%20optimization" title="ant colony optimization">ant colony optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20Ant-MinerPB" title=" parallel Ant-MinerPB"> parallel Ant-MinerPB</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20partitioning" title=" vertical partitioning"> vertical partitioning</a>, <a href="https://publications.waset.org/abstracts/search?q=classification%20rule%20discovery" title=" classification rule discovery"> classification rule discovery</a> </p> <a href="https://publications.waset.org/abstracts/43773/classification-rule-discovery-by-using-parallel-ant-colony-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">591</span> An Enhanced Connectivity Aware Routing Protocol for Vehicular Ad Hoc Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmadu%20Maidorawa">Ahmadu Maidorawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamalrulnizam%20Abu%20Bakar"> Kamalrulnizam Abu Bakar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposed an Enhanced Connectivity Aware Routing (ECAR) protocol for Vehicular Ad hoc Network (VANET). The protocol uses a control broadcast to reduce the number of overhead packets needed in a route discovery process. It is also equipped with an alternative backup route that is used whenever a primary path to destination failed, which highly reduces the frequent launching and re-launching of the route discovery process that waste useful bandwidth and unnecessarily prolonging the average packet delay. NS2 simulation results show that the performance of ECAR protocol outperformed the original connectivity aware routing (CAR) protocol by reducing the average packet delay by 28%, control overheads by 27% and increased the packet delivery ratio by 22%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alternative%20path" title="alternative path">alternative path</a>, <a href="https://publications.waset.org/abstracts/search?q=primary%20path" title=" primary path"> primary path</a>, <a href="https://publications.waset.org/abstracts/search?q=protocol" title=" protocol"> protocol</a>, <a href="https://publications.waset.org/abstracts/search?q=routing" title=" routing"> routing</a>, <a href="https://publications.waset.org/abstracts/search?q=VANET" title=" VANET"> VANET</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicular%20ad%20hoc%20networks" title=" vehicular ad hoc networks"> vehicular ad hoc networks</a> </p> <a href="https://publications.waset.org/abstracts/15880/an-enhanced-connectivity-aware-routing-protocol-for-vehicular-ad-hoc-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">590</span> Algorithms used in Spatial Data Mining GIS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vahid%20Bairami%20Rad">Vahid Bairami Rad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Extracting knowledge from spatial data like GIS data is important to reduce the data and extract information. Therefore, the development of new techniques and tools that support the human in transforming data into useful knowledge has been the focus of the relatively new and interdisciplinary research area ‘knowledge discovery in databases’. Thus, we introduce a set of database primitives or basic operations for spatial data mining which are sufficient to express most of the spatial data mining algorithms from the literature. This approach has several advantages. Similar to the relational standard language SQL, the use of standard primitives will speed-up the development of new data mining algorithms and will also make them more portable. We introduced a database-oriented framework for spatial data mining which is based on the concepts of neighborhood graphs and paths. A small set of basic operations on these graphs and paths were defined as database primitives for spatial data mining. Furthermore, techniques to efficiently support the database primitives by a commercial DBMS were presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spatial%20data%20base" title="spatial data base">spatial data base</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20discovery%20database" title=" knowledge discovery database"> knowledge discovery database</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20relationship" title=" spatial relationship"> spatial relationship</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20data%20mining" title=" predictive data mining"> predictive data mining</a> </p> <a href="https://publications.waset.org/abstracts/29004/algorithms-used-in-spatial-data-mining-gis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29004.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">589</span> Code Embedding for Software Vulnerability Discovery Based on Semantic Information</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Gear">Joseph Gear</a>, <a href="https://publications.waset.org/abstracts/search?q=Yue%20Xu"> Yue Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ernest%20Foo"> Ernest Foo</a>, <a href="https://publications.waset.org/abstracts/search?q=Praveen%20Gauravaran"> Praveen Gauravaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Jadidi"> Zahra Jadidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Leonie%20Simpson"> Leonie Simpson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Deep learning methods have been seeing an increasing application to the long-standing security research goal of automatic vulnerability detection for source code. Attention, however, must still be paid to the task of producing vector representations for source code (code embeddings) as input for these deep learning models. Graphical representations of code, most predominantly Abstract Syntax Trees and Code Property Graphs, have received some use in this task of late; however, for very large graphs representing very large code snip- pets, learning becomes prohibitively computationally expensive. This expense may be reduced by intelligently pruning this input to only vulnerability-relevant information; however, little research in this area has been performed. Additionally, most existing work comprehends code based solely on the structure of the graph at the expense of the information contained by the node in the graph. This paper proposes Semantic-enhanced Code Embedding for Vulnerability Discovery (SCEVD), a deep learning model which uses semantic-based feature selection for its vulnerability classification model. It uses information from the nodes as well as the structure of the code graph in order to select features which are most indicative of the presence or absence of vulnerabilities. This model is implemented and experimentally tested using the SARD Juliet vulnerability test suite to determine its efficacy. It is able to improve on existing code graph feature selection methods, as demonstrated by its improved ability to discover vulnerabilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=code%20representation" title="code representation">code representation</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=source%20code%20semantics" title=" source code semantics"> source code semantics</a>, <a href="https://publications.waset.org/abstracts/search?q=vulnerability%20discovery" title=" vulnerability discovery"> vulnerability discovery</a> </p> <a href="https://publications.waset.org/abstracts/157454/code-embedding-for-software-vulnerability-discovery-based-on-semantic-information" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">588</span> Valorization, Conservation and Sustainable Production of Medicinal Plants in Morocco</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elachouri%20Mostafa">Elachouri Mostafa</a>, <a href="https://publications.waset.org/abstracts/search?q=Fakchich%20Jamila"> Fakchich Jamila</a>, <a href="https://publications.waset.org/abstracts/search?q=Lazaar%20Jamila"> Lazaar Jamila</a>, <a href="https://publications.waset.org/abstracts/search?q=Elmadmad%20Mohammed"> Elmadmad Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Marhom%20Mostafa"> Marhom Mostafa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Of course, there has been a great growth in scientific information about medicinal plants in recent decades, but in many ways this has proved poor compensation, because such information is accessible, in practice, only to a very few people and anyway, rather little of it is relevant to problems of management and utilization, as encountered in the field. Active compounds are used in most traditional medicines and play an important role in advancing sustainable rural livelihoods through their conservation, cultivation, propagation, marketing and commercialization. Medicinal herbs are great resources for various pharmaceutical compounds and urgent measures are required to protect these plant species from their natural destruction and disappearance. Indeed, there is a real danger of indigenous Arab medicinal practices and knowledge disappearing altogether, further weakening traditional Arab culture and creating more insecurity, as well as forsaking a resource of inestimable economic and health care importance. As scientific approach, the ethnopharmacological investigation remains the principal way to improve, evaluate, and increase the odds of finding of biologically active compounds derived from medicinal plants. As developing country, belonging to the Mediterranean basin, Morocco country is endowed with resources of medicinal and aromatic plants. These plants have been used over the millennia for human welfare, even today. Besides, Morocco has a large plant biodiversity, in fact, its medicinal flora account more than 4200 species growing on various bioclimatic zones from subhumide to arid and Saharan. Nevertheless, the human and animal pressure resulting from the increase of rural population needs has led to degradation of this patrimony. In this paper, we focus our attention on ethnopharmacological studies carried out in Morocco. The goal of this work is to clarify the importance of herbs as platform for drugs discovery and further development, to highlight the importance of ethnopharmacological study as approach on discovery of natural products in the health care field, and to discuss the limit of ethnopharmacological investigation of drug discovery in Morocco. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Morocco" title="Morocco">Morocco</a>, <a href="https://publications.waset.org/abstracts/search?q=medicinal%20plants" title=" medicinal plants"> medicinal plants</a>, <a href="https://publications.waset.org/abstracts/search?q=ethnopharmacology" title=" ethnopharmacology"> ethnopharmacology</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20products" title=" natural products"> natural products</a>, <a href="https://publications.waset.org/abstracts/search?q=drug-discovery" title=" drug-discovery"> drug-discovery</a> </p> <a href="https://publications.waset.org/abstracts/40775/valorization-conservation-and-sustainable-production-of-medicinal-plants-in-morocco" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40775.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">587</span> Patent Protection for AI Innovations in Pharmaceutical Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nerella%20Srinivas">Nerella Srinivas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study explores the significance of patent protection for artificial intelligence (AI) innovations in the pharmaceutical sector, emphasizing applications in drug discovery, personalized medicine, and clinical trial optimization. The challenges of patenting AI-driven inventions are outlined, focusing on the classification of algorithms as abstract ideas, meeting the non-obviousness standard, and issues around defining inventorship. The methodology includes examining case studies and existing patents, with an emphasis on how companies like Benevolent AI and Insilico Medicine have successfully secured patent rights. Findings demonstrate that a strategic approach to patent protection is essential, with particular attention to showcasing AI’s technical contributions to pharmaceutical advancements. Conclusively, the study underscores the critical role of understanding patent law and innovation strategies in leveraging intellectual property rights in the rapidly advancing field of AI-driven pharmaceuticals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title="artificial intelligence">artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmaceutical%20industry" title=" pharmaceutical industry"> pharmaceutical industry</a>, <a href="https://publications.waset.org/abstracts/search?q=patent%20protection" title=" patent protection"> patent protection</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20discovery" title=" drug discovery"> drug discovery</a>, <a href="https://publications.waset.org/abstracts/search?q=personalized%20medicine" title=" personalized medicine"> personalized medicine</a>, <a href="https://publications.waset.org/abstracts/search?q=clinical%20trials" title=" clinical trials"> clinical trials</a>, <a href="https://publications.waset.org/abstracts/search?q=intellectual%20property" title=" intellectual property"> intellectual property</a>, <a href="https://publications.waset.org/abstracts/search?q=non-obviousness" title=" non-obviousness"> non-obviousness</a> </p> <a href="https://publications.waset.org/abstracts/193083/patent-protection-for-ai-innovations-in-pharmaceutical-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193083.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">12</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">586</span> The Use of Alternative Material to Fabric in Stage Costume</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Melahat%20%C3%87evik">Melahat Çevik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The discovery of fabric has a quite old historical perspective because of veiling, heating and shelter needs of human. Since the days which fashion has a say, this situation has pasted beyond needs and has become status symbols. For the theater art drama which tell people by people, in the concern of reflecting daily life there will be such regards also we may see alternative products to artistically reshaped fabric. The stage is determined in the consensus of costume designer and director. Costume Designer does the research, taking into account the alternative products. Approaching nature as inventor, discovering products, shapes the work because in this work, cost is considerable. All types of fabric will be used but also new materials which are not presented to clothing industry yet are of great importance. In the discovery of new materials there priorities of the costume designer. In the scene everything should be determined in the axis of actor. The material discussed should have positive qualities which allow the performer to move and invigorate him or her in terms of physical and also should be positive in terms of health. This point must be approached in a more precise in high action plays and the obtained material should be tested before the presentation process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fabric" title="fabric">fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=stage%20design" title=" stage design"> stage design</a>, <a href="https://publications.waset.org/abstracts/search?q=alternative%20materials" title=" alternative materials"> alternative materials</a>, <a href="https://publications.waset.org/abstracts/search?q=clothing%20industry" title=" clothing industry"> clothing industry</a> </p> <a href="https://publications.waset.org/abstracts/28421/the-use-of-alternative-material-to-fabric-in-stage-costume" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">576</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">585</span> Improvement of the Aerodynamic Behaviour of a Land Rover Discovery 4 in Turbulent Flow Using Computational Fluid Dynamics (CFD)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Al-Saadi">Ahmed Al-Saadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Hassanpour"> Ali Hassanpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Tariq%20Mahmud"> Tariq Mahmud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this study is to investigate ways to reduce the aerodynamic drag coefficient and to increase the stability of the full-size Sport Utility Vehicle using three-dimensional Computational Fluid Dynamics (CFD) simulation. The baseline model in the simulation was the Land Rover Discovery 4. Many aerodynamic devices and external design modifications were used in this study. These reduction aerodynamic techniques were tested individually or in combination to get the best design. All new models have the same capacity and comfort of the baseline model. Uniform freestream velocity of the air at inlet ranging from 28 m/s to 40 m/s was used. ANSYS Fluent software (version 16.0) was used to simulate all models. The drag coefficient obtained from the ANSYS Fluent for the baseline model was validated with experimental data. It is found that the use of modern aerodynamic add-on devices and modifications has a significant effect in reducing the aerodynamic drag coefficient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title="aerodynamics">aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=RANS" title=" RANS"> RANS</a>, <a href="https://publications.waset.org/abstracts/search?q=sport%20utility%20vehicle" title=" sport utility vehicle"> sport utility vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20flow" title=" turbulent flow"> turbulent flow</a> </p> <a href="https://publications.waset.org/abstracts/63731/improvement-of-the-aerodynamic-behaviour-of-a-land-rover-discovery-4-in-turbulent-flow-using-computational-fluid-dynamics-cfd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63731.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">584</span> A Teaching Method for Improving Sentence Fluency in Writing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manssour%20Habbash">Manssour Habbash</a>, <a href="https://publications.waset.org/abstracts/search?q=Srinivasa%20Rao%20Idapalapati"> Srinivasa Rao Idapalapati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although writing is a multifaceted task, teaching writing is a demanding task basically for two reasons: Grammar and Syntax. This article provides a method of teaching writing that was found to be effective in improving students’ academic writing composition skill. The article explains the concepts of ‘guided-discovery’ and ‘guided-construction’ upon which a method of teaching writing is grounded and developed. Providing a brief commentary on what the core could mean primarily, the article presents an exposition of understanding and identifying the core and building upon the core that can demonstrate the way a teacher can make use of the concepts in teaching for improving the writing skills of their students. The method is an adaptation of grammar translation method that has been improvised to suit to a student-centered classroom environment. An intervention of teaching writing through this method was tried out with positive outcomes in formal classroom research setup, and in view of the content’s quality that relates more to the classroom practices and also in consideration of its usefulness to the practicing teachers the process and the findings are presented in a narrative form along with the results in tabular form. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=core%20of%20a%20text" title="core of a text">core of a text</a>, <a href="https://publications.waset.org/abstracts/search?q=guided%20construction" title=" guided construction"> guided construction</a>, <a href="https://publications.waset.org/abstracts/search?q=guided%20discovery" title=" guided discovery"> guided discovery</a>, <a href="https://publications.waset.org/abstracts/search?q=theme%20of%20a%20text" title=" theme of a text"> theme of a text</a> </p> <a href="https://publications.waset.org/abstracts/42210/a-teaching-method-for-improving-sentence-fluency-in-writing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">583</span> The Early Pleistocene Mustelidae and Hyaena Record of the Yuanmou Basin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arya%20Farjand">Arya Farjand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study delves into the Early Pleistocene fauna of the Yuanmou Basin, highlighting two significant findings. The first is the discovery of exceptionally well-preserved canid coprolites, which provide a rare glimpse into the diet and ecological niche of these ancient carnivores. The analysis of these coprolites has revealed a diet rich in diverse prey species, suggesting a complex food web and a dynamic ecological environment. This discovery not only sheds light on the dietary habits of these canids but also offers broader insights into the region's ecological dynamics during the Early Pleistocene. Additionally, the preservation of these coprolites allows for detailed study of the carnivore's role in the ecosystem, including their interactions with other species and the overall health of the environment. The second major finding is the identification of a mustelid species, Eirictis yuanmouensis, from the same fossil horizon as the coprolites. This discovery is crucial for understanding the diversity and evolution of Mustelidae in the region. The detailed analysis of cranial and dental morphology of Eirictis yuanmouensis indicates unique adaptations that suggest a specialized ecological niche. This finding, in conjunction with the coprolite analysis, provides a comprehensive view of the ecological niches occupied by both mustelids and hyenas, enhancing our understanding of their adaptations and interactions within this paleoenvironment. The study's significance is further amplified by the analysis of pollen data from the same horizon, which indicates a paleoenvironment characterized by rapid climatic changes and a dominant semiarid climate. This combination of faunal and floral data paints a detailed picture of the Early Pleistocene environment in the Yuanmou Basin, offering valuable insights into the interactions between different carnivore species and their adaptation strategies in response to changing environmental conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuanmou%20Basin" title="Yuanmou Basin">Yuanmou Basin</a>, <a href="https://publications.waset.org/abstracts/search?q=coprolite" title=" coprolite"> coprolite</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyaena" title=" Hyaena"> Hyaena</a>, <a href="https://publications.waset.org/abstracts/search?q=eirictis%20yuanmouensis" title=" eirictis yuanmouensis"> eirictis yuanmouensis</a>, <a href="https://publications.waset.org/abstracts/search?q=early%20pleistocene" title=" early pleistocene"> early pleistocene</a> </p> <a href="https://publications.waset.org/abstracts/188752/the-early-pleistocene-mustelidae-and-hyaena-record-of-the-yuanmou-basin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188752.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">30</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">582</span> Unprecedented Bioactive Naturally-occurring Compounds from the Rare and Endangered Plants Endemic to China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jin-Feng%20Hu">Jin-Feng Hu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the past decades, the global biodiversity has continued to decline. The threats to the terrestrial plant species have increased under anthropogenic activities and other massive ecological change impacts. The situation is much more serious in China, the third richest countries regarding plant biodiversity in the world. It was not until 1992 that the first volume of the China Plant Red Data Book was published. Nowadays, a significant number of Chinese endemic plants have been threatened (The IUCN Red List). Nevertheless, plant-originated natural products (NPs) have continued to play a crucial role in the drug discovery and development process. The opportunity for identifying new chemical entities for emerging and malignant diseases depends on a diversity of drug-producing species. Several statistical surveys unveiled that the rare and endangered plants (REPs) have proven to be better sources for drug discovery than other botanic sources. The identification of bioactive NPs from REPs reveals the importance of conservation efforts in preventing species diversity loss and addressing human diseases at the same time. Thus, there is an urgent need to investigate these fragile REPs. Since 2013, our group has initially launched a special program to systematically identify bioactive/novel NPs from REPs native to China. The selected plant species were generally collected from the remote Mountain areas, and have never been chemically or pharmacologically investigated. Due to the difficult collection of the mass-limited samples of REPs, studies on the secondary metabolites of REPs-associated endophytes would provide a promising alternative potential solution. This presentation details the achievements that related to a series of “Phytochemical and biological studies on rare and endangered plants endemic to China”. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioactive%20naturally-occrring%20compounds" title="bioactive naturally-occrring compounds">bioactive naturally-occrring compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=rare%20and%20endengered%20plants%20%28REPs%29" title=" rare and endengered plants (REPs)"> rare and endengered plants (REPs)</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20endophytes" title=" plant endophytes"> plant endophytes</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20discovery" title=" drug discovery"> drug discovery</a> </p> <a href="https://publications.waset.org/abstracts/188876/unprecedented-bioactive-naturally-occurring-compounds-from-the-rare-and-endangered-plants-endemic-to-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188876.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">33</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">581</span> High-Throughput, Purification-Free, Multiplexed Profiling of Circulating miRNA for Discovery, Validation, and Diagnostics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Hidalgo%20de%20Quintana">J. Hidalgo de Quintana</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Stoner"> I. Stoner</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Tackett"> M. Tackett</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Doran"> G. Doran</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Rafferty"> C. Rafferty</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Windemuth"> A. Windemuth</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Tytell"> J. Tytell</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Pregibon"> D. Pregibon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have developed the Multiplexed Circulating microRNA assay that allows the detection of up to 68 microRNA targets per sample. The assay combines particlebased multiplexing, using patented Firefly hydrogel particles, with single step RT-PCR signal. Thus, the Circulating microRNA assay leverages PCR sensitivity while eliminating the need for separate reverse transcription reactions and mitigating amplification biases introduced by target-specific qPCR. Furthermore, the ability to multiplex targets in each well eliminates the need to split valuable samples into multiple reactions. Results from the Circulating microRNA assay are interpreted using Firefly Analysis Workbench, which allows visualization, normalization, and export of experimental data. To aid discovery and validation of biomarkers, we have generated fixed panels for Oncology, Cardiology, Neurology, Immunology, and Liver Toxicology. Here we present the data from several studies investigating circulating and tumor microRNA, showcasing the ability of the technology to sensitively and specifically detect microRNA biomarker signatures from fluid specimens. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomarkers" title="biomarkers">biomarkers</a>, <a href="https://publications.waset.org/abstracts/search?q=biofluids" title=" biofluids"> biofluids</a>, <a href="https://publications.waset.org/abstracts/search?q=miRNA" title=" miRNA"> miRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=photolithography" title=" photolithography"> photolithography</a>, <a href="https://publications.waset.org/abstracts/search?q=flowcytometry" title=" flowcytometry"> flowcytometry</a> </p> <a href="https://publications.waset.org/abstracts/46466/high-throughput-purification-free-multiplexed-profiling-of-circulating-mirna-for-discovery-validation-and-diagnostics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">580</span> Role of Medicinal Plants in Treatment of Diseases and Drug Discovery in Azad Kashmir, Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neelam%20Rashid">Neelam Rashid</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Zafar"> Muhammad Zafar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mushtaq%20Ahmad"> Mushtaq Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Khafsa%20Malik"> Khafsa Malik</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Nasar%20Shah"> Syed Nasar Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was conducted to study the role of medicinal plants used to cure different ailments in Azad Kashmir. Various ethno medicinal surveys were carried out during 2016 to enlist the uses of plants against various ailments by rural communities of the area. Information was obtained from 60 local people including 45 males (10 traditional health practitioners) and 15 females by semi structured interviews and group discussions. 65 plant species belonging to 45 families were reported. The dominant plant habit was herbaceous (56%) while decoction was the most common method of utilization (40%). The most cited turmoil was the gastrointestinal disorders. The data obtained were analyzed using ethno medicinal indices such as FL, UV, ICF, FC, and RFC. Results revealed that various species had numerous uses in curing of diseases. So conservation of biodiversity of these medicinal plants and traditional knowledge can play important role in improving the local health conditions of rural people and modern drug discovery and development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=medicinal%20plants" title="medicinal plants">medicinal plants</a>, <a href="https://publications.waset.org/abstracts/search?q=ailments" title=" ailments"> ailments</a>, <a href="https://publications.waset.org/abstracts/search?q=drug" title=" drug"> drug</a>, <a href="https://publications.waset.org/abstracts/search?q=health" title=" health"> health</a>, <a href="https://publications.waset.org/abstracts/search?q=traditional" title=" traditional"> traditional</a> </p> <a href="https://publications.waset.org/abstracts/85709/role-of-medicinal-plants-in-treatment-of-diseases-and-drug-discovery-in-azad-kashmir-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">579</span> Object-Centric Process Mining Using Process Cubes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anahita%20Farhang%20Ghahfarokhi">Anahita Farhang Ghahfarokhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Alessandro%20Berti"> Alessandro Berti</a>, <a href="https://publications.waset.org/abstracts/search?q=Wil%20M.P.%20van%20der%20Aalst"> Wil M.P. van der Aalst</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Process mining provides ways to analyze business processes. Common process mining techniques consider the process as a whole. However, in real-life business processes, different behaviors exist that make the overall process too complex to interpret. Process comparison is a branch of process mining that isolates different behaviors of the process from each other by using process cubes. Process cubes organize event data using different dimensions. Each cell contains a set of events that can be used as an input to apply process mining techniques. Existing work on process cubes assume single case notions. However, in real processes, several case notions (e.g., order, item, package, etc.) are intertwined. Object-centric process mining is a new branch of process mining addressing multiple case notions in a process. To make a bridge between object-centric process mining and process comparison, we propose a process cube framework, which supports process cube operations such as slice and dice on object-centric event logs. To facilitate the comparison, the framework is integrated with several object-centric process discovery approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multidimensional%20process%20mining" title="multidimensional process mining">multidimensional process mining</a>, <a href="https://publications.waset.org/abstracts/search?q=mMulti-perspective%20business%20processes" title=" mMulti-perspective business processes"> mMulti-perspective business processes</a>, <a href="https://publications.waset.org/abstracts/search?q=OLAP" title=" OLAP"> OLAP</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20cubes" title=" process cubes"> process cubes</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20discovery" title=" process discovery"> process discovery</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20mining" title=" process mining"> process mining</a> </p> <a href="https://publications.waset.org/abstracts/131006/object-centric-process-mining-using-process-cubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131006.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">578</span> Application of Knowledge Discovery in Database Techniques in Cost Overruns of Construction Projects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mai%20Ghazal">Mai Ghazal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Hammad"> Ahmed Hammad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cost overruns in construction projects are considered as worldwide challenges since the cost performance is one of the main measures of success along with schedule performance. To overcome this problem, studies were conducted to investigate the cost overruns' factors, also projects' historical data were analyzed to extract new and useful knowledge from it. This research is studying and analyzing the effect of some factors causing cost overruns using the historical data from completed construction projects. Then, using these factors to estimate the probability of cost overrun occurrence and predict its percentage for future projects. First, an intensive literature review was done to study all the factors that cause cost overrun in construction projects, then another review was done for previous researcher papers about mining process in dealing with cost overruns. Second, a proposed data warehouse was structured which can be used by organizations to store their future data in a well-organized way so it can be easily analyzed later. Third twelve quantitative factors which their data are frequently available at construction projects were selected to be the analyzed factors and suggested predictors for the proposed model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction%20management" title="construction management">construction management</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20projects" title=" construction projects"> construction projects</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20overrun" title=" cost overrun"> cost overrun</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20performance" title=" cost performance"> cost performance</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20warehousing" title=" data warehousing"> data warehousing</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20discovery" title=" knowledge discovery"> knowledge discovery</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20management" title=" knowledge management"> knowledge management</a> </p> <a href="https://publications.waset.org/abstracts/85161/application-of-knowledge-discovery-in-database-techniques-in-cost-overruns-of-construction-projects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85161.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">577</span> Unseen Classes: The Paradigm Shift in Machine Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vani%20Singhal">Vani Singhal</a>, <a href="https://publications.waset.org/abstracts/search?q=Jitendra%20Parmar"> Jitendra Parmar</a>, <a href="https://publications.waset.org/abstracts/search?q=Satyendra%20Singh%20Chouhan"> Satyendra Singh Chouhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Unseen class discovery has now become an important part of a machine-learning algorithm to judge new classes. Unseen classes are the classes on which the machine learning model is not trained on. With the advancement in technology and AI replacing humans, the amount of data has increased to the next level. So while implementing a model on real-world examples, we come across unseen new classes. Our aim is to find the number of unseen classes by using a hierarchical-based active learning algorithm. The algorithm is based on hierarchical clustering as well as active sampling. The number of clusters that we will get in the end will give the number of unseen classes. The total clusters will also contain some clusters that have unseen classes. Instead of first discovering unseen classes and then finding their number, we directly calculated the number by applying the algorithm. The dataset used is for intent classification. The target data is the intent of the corresponding query. We conclude that when the machine learning model will encounter real-world data, it will automatically find the number of unseen classes. In the future, our next work would be to label these unseen classes correctly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20sampling" title="active sampling">active sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20clustering" title=" hierarchical clustering"> hierarchical clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20world%20learning" title=" open world learning"> open world learning</a>, <a href="https://publications.waset.org/abstracts/search?q=unseen%20class%20discovery" title=" unseen class discovery"> unseen class discovery</a> </p> <a href="https://publications.waset.org/abstracts/137110/unseen-classes-the-paradigm-shift-in-machine-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137110.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=discord%20discovery&page=1" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=discord%20discovery&page=1">1</a></li> <li class="page-item active"><span class="page-link">2</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=discord%20discovery&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=discord%20discovery&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=discord%20discovery&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=discord%20discovery&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=discord%20discovery&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=discord%20discovery&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=discord%20discovery&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=discord%20discovery&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=discord%20discovery&page=21">21</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=discord%20discovery&page=22">22</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=discord%20discovery&page=3" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>