CINXE.COM

Search results for: pulp

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: pulp</title> <meta name="description" content="Search results for: pulp"> <meta name="keywords" content="pulp"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="pulp" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="pulp"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 185</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: pulp</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">185</span> Vital Pulp Therapy: A Paradigm Shift in Treating Irreversible Pulpitis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fadwa%20Chtioui">Fadwa Chtioui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vital Pulp Therapy (VPT) is nowadays challenging the deep-rooted dogma of root canal treatment, being the only therapeutic option for permanent teeth diagnosed with irreversible pulpitis or carious pulp exposure. Histologic and clinical research has shown that compromised dental pulp can be treated without the full removal or excavation of all healthy pulp, and the outcome of the partial or full pulpotomy followed by a Tricalcium-Silicate-based dressing seems to show promising results in maintaining pulp vitality and preserving affected teeth in the long term. By reviewing recent advances in the techniques of VPT and their clinical effectiveness and safety in permanent teeth with irreversible Pulpitis, this work provides a new understanding of pulp pathophysiology and defense mechanisms and will reform dental practitioners' decision-making in treating irreversible pulpits from root canal therapy to vital pulp therapy by taking advantage of the biological effects of Tricalcium Silicate materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=irreversible%20pulpitis" title="irreversible pulpitis">irreversible pulpitis</a>, <a href="https://publications.waset.org/abstracts/search?q=vital%20pulp%20therapy" title=" vital pulp therapy"> vital pulp therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=pulpotomy" title=" pulpotomy"> pulpotomy</a>, <a href="https://publications.waset.org/abstracts/search?q=Tricalcium%20Silicate" title=" Tricalcium Silicate"> Tricalcium Silicate</a> </p> <a href="https://publications.waset.org/abstracts/170030/vital-pulp-therapy-a-paradigm-shift-in-treating-irreversible-pulpitis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170030.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">184</span> Valorization Bio-Waste Argan Pulp for Green Synthesis of Silver Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omar%20Drissi">Omar Drissi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadia%20El%20Harfaoui"> Nadia El Harfaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Khalid%20Nouneh"> Khalid Nouneh</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Hsissou"> Rachid Hsissou</a>, <a href="https://publications.waset.org/abstracts/search?q=Badre%20Daoudi"> Badre Daoudi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The pulp endures of having a lower importance, incompletely because of the way that it has been less studied, and it has been recognized as a pivotal product got from biomass that can be utilized in different fields. The current research focuses on pulp of Argania spinosa (L). To this end, the aim is to study the characteristics and properties of Argan pulp, such as shape, chemical and macromineral composition. As a result, X-Ray Fluorescence (XRF), Fourier transform infrared spectroscopy (FTIR), and Scanning Electron Microscopy (SEM) were used in the research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=argania%20spinose" title="argania spinose">argania spinose</a>, <a href="https://publications.waset.org/abstracts/search?q=argan%20pulp" title=" argan pulp"> argan pulp</a>, <a href="https://publications.waset.org/abstracts/search?q=argan%20bio-waste" title=" argan bio-waste"> argan bio-waste</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20synthesis" title=" green synthesis"> green synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20nanoparticles" title=" silver nanoparticles"> silver nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=valorization" title=" valorization"> valorization</a> </p> <a href="https://publications.waset.org/abstracts/167565/valorization-bio-waste-argan-pulp-for-green-synthesis-of-silver-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167565.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">183</span> Storage Influence on Physico-Chemical Composition and Antioxidant Activity of Jamun Drink Prepared From Two Types of Pulp</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Atif%20Randhawa">Muhammad Atif Randhawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahreen%20Akhtar"> Mahreen Akhtar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sidrah"> Sidrah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, Jamun (Syzygium cumini; Myrtaceae) drink enriched with jamun pulp and seed was assessed for different physicochemical parameters (titratable acidity, pH, TSS, ascorbic acid, and total sugars and reducing sugars) and phytochemical aspects at every 15 days interval till 60 days storage period. Jamun pulp both with seed and without seed were used at levels of 7, 10 and 13 percent to prepare jamun drink in six combinations; T1 (7% pulp without seed), T2 (10% pulp without seed), T3 (13% pulp without seed), T4 (7% pulp with seed), T5 (10% pulp with seed), T6 (13% pulp with seed). Storage period resulted decrease in pH (4.18 to 4.08) and ascorbic acid (21.92%) significantly along with phenolic contents (6.13 to 4.85g of GAE/kg) and antioxidant activity (70.68 to 48.62 percent) within treatments. All treatments showed significant increases in total sugars (11.59 to 11.80%), reducing sugars (2.30 to 2.50%), TSS (12.2 to 13.32 °B) and acidity (0.23% to 0.31%) during storage. Treatments T3, T5 and T6 showed best results in terms of all physicochemical parameters during storage. Statistically significant differences were obtained among sensory parameters as a function of pulp type and concentration, while treatment T5 (10% pulp with seed) obtained highest score (7.16) in terms of all sensory parameters. It can be concluded that nutrient rich jamun drink can be prepared as an attempt to add value to the underutilized jamun fruit of Pakistan. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamun%20beverage" title=" Jamun beverage"> Jamun beverage</a>, <a href="https://publications.waset.org/abstracts/search?q=physicochemical" title=" physicochemical"> physicochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=storage" title=" storage"> storage</a> </p> <a href="https://publications.waset.org/abstracts/41444/storage-influence-on-physico-chemical-composition-and-antioxidant-activity-of-jamun-drink-prepared-from-two-types-of-pulp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41444.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">182</span> Production and Evaluation of Mango Pulp by Using Ohmic Heating Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sobhy%20M.%20Mohsen">Sobhy M. Mohsen</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20M.%20El-Nikeety"> Mohamed M. El-Nikeety</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarek%20G.%20Mohamed"> Tarek G. Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Murkovic"> Michael Murkovic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work aimed to study the use of ohmic heating in the processing of mango pulp comparing to conventional method. Mango pulp was processed by using ohmic heating under the studied suitable conditions. Physical, chemical and microbiological properties of mango pulp were studied. The results showed that processing of mango pulp by using either ohmic heating or conventional method caused a decrease in the contents of TSS, total carbohydrates, total acidity, total sugars (reducing and non-reducing sugar) and an increase in phenol content, ascorbic acid and carotenoids compared to the conventional process. The increase in electric conductivity of mango pulp during ohmic heating was due to the addition of some electrolytes (salts) to increase the ions and enhance the process. The results also indicate that mango pulp processed by ohmic heating contained more phenols, carbohydrates and vitamin C and less HMF compared to that produced by conventional one. Total pectin and its fractions had slightly reduced by ohmic heating compared to conventional method. Enzymatic activities showed a reduction in poly phenoloxidase (PPO) and polygalacturonase (PG) activity in mango pulp processed by conventional method. However, ohmic heating completely inhibited PPO and PG activities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ohmic%20heating" title="ohmic heating">ohmic heating</a>, <a href="https://publications.waset.org/abstracts/search?q=mango%20pulp" title=" mango pulp"> mango pulp</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic" title=" phenolic"> phenolic</a>, <a href="https://publications.waset.org/abstracts/search?q=sarotenoids" title=" sarotenoids "> sarotenoids </a> </p> <a href="https://publications.waset.org/abstracts/7967/production-and-evaluation-of-mango-pulp-by-using-ohmic-heating-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7967.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">181</span> Calcium Phosphate Cement/Gypsum Composite as Dental Pulp Capping</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jung-Feng%20Lin">Jung-Feng Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Tang%20Chen"> Wei-Tang Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chung-King%20Hsu"> Chung-King Hsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun-Pin%20Lin"> Chun-Pin Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Feng-Huei%20Lin"> Feng-Huei Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the objectives of operative dentistry is to maintain pulp health in compromised teeth. Mostly used methods for this purpose are direct pulp capping and pulpotomy, which consist of placement of biocompatible materials and bio-inductors on the exposed pulp tissue to preserve its health and stimulate repair by mineralized tissue formation. In this study, we developed a material (calcium phosphate cement (CPC)/gypsum composite) as the dental pulp capping material for shortening setting time and improving handling properties. We further discussed the influence of five different ratio of gypsum to CPC on HAP conversion, microstructure, setting time, weight loss, pH value, temperature difference, viscosity, mechanical properties, porosity, and biocompatibility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calcium%20phosphate%20cement" title="calcium phosphate cement">calcium phosphate cement</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20sulphate%20hemihydrate" title=" calcium sulphate hemihydrate"> calcium sulphate hemihydrate</a>, <a href="https://publications.waset.org/abstracts/search?q=pulp%20capping" title=" pulp capping"> pulp capping</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20setting%20time" title=" fast setting time"> fast setting time</a> </p> <a href="https://publications.waset.org/abstracts/63252/calcium-phosphate-cementgypsum-composite-as-dental-pulp-capping" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63252.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">180</span> Role of Pulp Volume Method in Assessment of Age and Gender in Lucknow, India, an Observational Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anurag%20Tripathi">Anurag Tripathi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanad%20Khandelwal"> Sanad Khandelwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Age and gender determination are required in forensic for victim identification. There is secondary dentine deposition throughout life, resulting in decreased pulp volume and size. Evaluation of pulp volume using Cone Beam Computed Tomography (CBCT)is a noninvasive method to evaluate the age and gender of an individual. The study was done to evaluate the efficacy of pulp volume method in the determination of age and gender.Aims/Objectives: The study was conducted to estimate age and determine sex by measuring tooth pulp volume with the help of CBCT. An observational study of one year duration on CBCT data of individuals was conducted in Lucknow. Maxillary central incisors (CI) and maxillary canine (C) of the randomly selected samples were assessed for measurement of pulp volume using a software. Statistical analysis: Chi Square Test, Arithmetic Mean, Standard deviation, Pearson’s Correlation, Linear & Logistic regression analysis. Results: The CBCT data of Ninety individuals with age range between 18-70 years was evaluated for pulp volume of central incisor and canine (CI & C). The Pearson correlation coefficient between the tooth pulp volume (CI & C) and chronological age suggested that pulp volume decreased with age. The validation of the equations for sex determination showed higher prediction accuracy for CI (56.70%) and lower for C (53.30%).Conclusion: Pulp volume obtained from CBCT is a reliable indicator for age estimation and gender prediction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forensic" title="forensic">forensic</a>, <a href="https://publications.waset.org/abstracts/search?q=dental%20age" title=" dental age"> dental age</a>, <a href="https://publications.waset.org/abstracts/search?q=pulp%20volume" title=" pulp volume"> pulp volume</a>, <a href="https://publications.waset.org/abstracts/search?q=cone%20beam%20computed%20tomography" title=" cone beam computed tomography"> cone beam computed tomography</a> </p> <a href="https://publications.waset.org/abstracts/157795/role-of-pulp-volume-method-in-assessment-of-age-and-gender-in-lucknow-india-an-observational-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157795.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">179</span> Algae Biomass as Alternatives to Wood Pulp in Handmade Paper Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Piyali%20Mukherjee">Piyali Mukherjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jai%20Prakash%20Keshri"> Jai Prakash Keshri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Anticipated shortages of raw materials for paper industry have forged the entry of algae as alternatives to wood pulp. Five algal species: Pithophora sp., Lyngbya sp., Hydrodictyon sp., Cladophora sp. and Rhizoclonium sp. were collected from different parts of Burdwan town, West Bengal, India. Their biomass compositional values were determined with respect to eucalyptus wood pulp. Paper characteristics were studied in terms of breaking length, tensile strength, CI index, pH, brightness, recyclability, and durability. Hydrodictyon sp., besides Rhizoclonium sp. and Cladophora sp. were established as the most suitable candidates for paper pulp formulation in terms of high cellulose, hemicelluloses contents and low lignin and silica contents. Paper from pure Hydrodictyon sp. pulp was found to have statistically significant (p < 0.05) improved breaking-length and tensile strength properties compared to that obtained from Lyngbya sp. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algae" title="algae">algae</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=paper" title=" paper"> paper</a>, <a href="https://publications.waset.org/abstracts/search?q=pulp" title=" pulp"> pulp</a>, <a href="https://publications.waset.org/abstracts/search?q=wood" title=" wood"> wood</a> </p> <a href="https://publications.waset.org/abstracts/101196/algae-biomass-as-alternatives-to-wood-pulp-in-handmade-paper-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101196.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">178</span> Effect of the Accelerated Carbonation in Fibercement Composites Reinforced with Eucalyptus Pulp and Nanofibrillated Cellulose</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Viviane%20da%20Costa%20Correia">Viviane da Costa Correia</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergio%20Francisco%20Santos"> Sergio Francisco Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=Holmer%20Savastano%20Junior"> Holmer Savastano Junior</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main purpose of this work was verify the influence of the accelerated carbonation in the physical and mechanical properties of the hybrid composites, reinforced with micro and nanofibers and composites with microfibers. The composites were produced by the slurry vacuum dewatering method, followed by pressing. It was produced using two formulations: 8% of eucalyptus pulp + 1% of the nanofibrillated cellulose and 9% of eucalyptus pulp, both were subjected to accelerated carbonation. The results showed that the accelerated carbonation contributed to improve the physical and mechanical properties of the hybrid composites and of the composites reinforced with microfibers (eucalyptus pulp). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbonation" title="carbonation">carbonation</a>, <a href="https://publications.waset.org/abstracts/search?q=cement%20composites" title=" cement composites"> cement composites</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofibrillated%20cellulose" title=" nanofibrillated cellulose"> nanofibrillated cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=eucalyptus%20pulp" title=" eucalyptus pulp"> eucalyptus pulp</a> </p> <a href="https://publications.waset.org/abstracts/14125/effect-of-the-accelerated-carbonation-in-fibercement-composites-reinforced-with-eucalyptus-pulp-and-nanofibrillated-cellulose" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">177</span> Use of Green Coconut Pulp as Cream, Milk, Stabilizer and Emulsifier Replacer in Germinated Brown Rice Ice Cream</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naruemon%20Prapasuwannakul">Naruemon Prapasuwannakul</a>, <a href="https://publications.waset.org/abstracts/search?q=Supitcha%20Boonchai"> Supitcha Boonchai</a>, <a href="https://publications.waset.org/abstracts/search?q=Nawapat%20Pengpengpit"> Nawapat Pengpengpit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to determine physicochemical and sensory properties of germinated brown rice ice cream as affected by replacement of cream, milk, stabilizer, and emulsifier with green coconut pulp. Five different formulations of ice cream were performed. Regular formulation of ice cream consisted of GBR juice, milk cream, milk powder, stabilizer, emulsifier, sucrose and salt. Replacing of cream, milk, stabilizer, and emulsifier with coconut pulp resulted in an increase in viscosity and overrun, but a decrease in hardness, melting rate, lightness (l*) and redness (a*). However, there was no significant difference among all formulations on any sensory attributes. The results also showed that the ice cream with replacement of coconut pulp contained less fat and protein than those of the regular ice cream. The findings suggested that green coconut pulp can be used as alternative ingredient to replace fat, milk stabilizer and emulsifier even in a high carbohydrate ice cream formulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ice%20cream" title="ice cream">ice cream</a>, <a href="https://publications.waset.org/abstracts/search?q=germinated%20brown%20rice" title=" germinated brown rice"> germinated brown rice</a>, <a href="https://publications.waset.org/abstracts/search?q=coconut%20pulp" title=" coconut pulp"> coconut pulp</a>, <a href="https://publications.waset.org/abstracts/search?q=milk" title=" milk"> milk</a>, <a href="https://publications.waset.org/abstracts/search?q=cream" title=" cream"> cream</a> </p> <a href="https://publications.waset.org/abstracts/8201/use-of-green-coconut-pulp-as-cream-milk-stabilizer-and-emulsifier-replacer-in-germinated-brown-rice-ice-cream" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8201.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">176</span> Effect of Substrate Concentration and Pulp Density on Bioleaching of Metals from as Received Spent Refinery Catalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haragobinda%20Srichandan">Haragobinda Srichandan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Pathak"> Ashish Pathak</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong%20Jin%20Kim"> Dong Jin Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Seoung-Won%20Lee"> Seoung-Won Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present investigation deals with bioleaching of spent refinery catalyst (as received) using At. thiooxidans. The effect of substrate concentration and pulp density was studied. XPS analysis concluded that the metals in spent catalyst were present as both sulfide and oxides. The dissolution behavior of metals during bioleaching was different. During bioleaching, higher dissolution of Ni and lower dissolution of Mo, V and Al was observed. An increase in pulp density from 1% to 10% led to a decrease in leaching yields of all the metals. This was due to the substantial increase in medium pH at higher pulp densities. The maximum negative impact of pulp density was observed on the leaching yield of V. An increase in sulfur concentration from 0.5% to 2.5% didn’t bring positive impact on metal leaching yield. 0.5% sulfur was found to be the optimum above which no significant increase in leaching yields of metals was observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=At.%20thiooxidans" title="At. thiooxidans">At. thiooxidans</a>, <a href="https://publications.waset.org/abstracts/search?q=pulp%20density" title=" pulp density"> pulp density</a>, <a href="https://publications.waset.org/abstracts/search?q=spent%20catalyst" title=" spent catalyst"> spent catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=bioleaching" title=" bioleaching"> bioleaching</a> </p> <a href="https://publications.waset.org/abstracts/13314/effect-of-substrate-concentration-and-pulp-density-on-bioleaching-of-metals-from-as-received-spent-refinery-catalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13314.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">175</span> Utilization and Characterizations of Olive Oil Industry By-Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sawsan%20Dacrory">Sawsan Dacrory</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussein%20Abou-Yousef"> Hussein Abou-Yousef</a>, <a href="https://publications.waset.org/abstracts/search?q=Samir%20Kamel"> Samir Kamel</a>, <a href="https://publications.waset.org/abstracts/search?q=Ragab%20E.%20Abou-Zeid"> Ragab E. Abou-Zeid</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20S.%20Abdel-Aziz"> Mohamed S. Abdel-Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Elbadry"> Mohamed Elbadry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A considerable amount of lignocellulosic by-product could be obtained from olive pulp during olive oil extraction industry. The major constituents of the olive pulp are husks and seeds. The separation of each portion of olive pulp (seeds and husks) was carried out by water flotation where seeds were sediment in the bottom. Both seeds and husks were dignified by 15% NaOH followed by complete lignin removal by using sodium chlorite in acidic medium. The isolated holocellulose, &alpha;-cellulose, hydrogel and CMC which prepared from cellulose of both seeds and husk fractions were characterized by FTIR and SEM. The present study focused on the investigation of the chemical components of the lignocellulosic fraction of olive pulp. Biofunctionlization of hydrogel was achieved through loading of silver nanoparticles AgNPs in to the prepared hydrogel. The antimicrobial activity of the loaded silver hydrogel against G-ve, and G+ve, and candida was demonstrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulose" title="cellulose">cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=carboxymethyle%20cellulose" title=" carboxymethyle cellulose"> carboxymethyle cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20pulp" title=" olive pulp"> olive pulp</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogel" title=" hydrogel"> hydrogel</a> </p> <a href="https://publications.waset.org/abstracts/40837/utilization-and-characterizations-of-olive-oil-industry-by-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">174</span> Phenotypic Characterization of Dental Pulp Stem Cells Isolated from Irreversible Pulpitis with Dental Pulp Stem Cells from Impacted Teeth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soumya%20S.">Soumya S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Manju%20Nidagodu%20Jayakumar"> Manju Nidagodu Jayakumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Vellore%20Kannan%20Gopinath"> Vellore Kannan Gopinath</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dental pulp inflammation resulting from dental caries often leads to a pathologic condition known as irreversible pulpitis and the currently managed by root canal treatment. Extirpation of the entire pulp tissue is done during this procedure, and the canal space is filled with synthetic materials. Recent studies in the stem cell biology state that some portion of the irreversibly inflamed pulp tissue could be viable with progenitor cells, having the properties similar to that of Mesenchymal stem cells. Hence, we aim to isolate Dental Pulp Stem Cells (DPSCs) from patients diagnosed with severe irreversible pulpitis and characterize the cells for the MSC specific markers. The pulp tissue was collected from the dental clinic and subjected to collagenase/dispase digestion. The isolated cells were expanded in culture, and the phenotypic characterization was done using flow cytometry. MSC specific markers such as CD-90, CD-73, and CD-105 were analysed along with negative markers such as CD-14 and CD-45. The isolated cells expressed positive expression for CD markers with CD90 and CD105 ( > 95%) and CD73 (19%). The cells did not express the negative markers CD-14 and CD-45. The commercially available DPSCs from vital extracted teeth, preferably molar/wisdom teeth with large pulp cavity or incomplete root growth in young patients (aged 15-30 years) showed more than 90% expression for all the CD markers such as CD-90, 73 and 105, whereas negative for CD-14 and CD-45. The DPSCs isolated from inflamed pulp tissue showed a less expression for CD-73 compared to the commercially available DPSCs whereas, as the other two markers were found to show similar percentage of positive expression. This could be attributed to the fact that the pulp population is very heterogeneous and we used the pooled tissue from different patients. Hence the phenotypic characterization and comparison with the commercially available DPSCs proved that the inflamed pulp tissue is a good source of MSC like cells which can be utilized further for regenerative application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collagenase%2Fdispase" title="collagenase/dispase">collagenase/dispase</a>, <a href="https://publications.waset.org/abstracts/search?q=dental%20pulp%20stem%20cells" title=" dental pulp stem cells"> dental pulp stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20cytometry" title=" flow cytometry"> flow cytometry</a>, <a href="https://publications.waset.org/abstracts/search?q=irreversible%20pulpitis" title=" irreversible pulpitis"> irreversible pulpitis</a> </p> <a href="https://publications.waset.org/abstracts/100818/phenotypic-characterization-of-dental-pulp-stem-cells-isolated-from-irreversible-pulpitis-with-dental-pulp-stem-cells-from-impacted-teeth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100818.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">173</span> Effect of Pulp Density on Biodesulfurization of Mongolian Lignite Coal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Pathak">Ashish Pathak</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Jin%20Kim"> Dong-Jin Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Byoung-Gon%20Kim"> Byoung-Gon Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biological processes based on oxidation of sulfur compounds by chemolithotrophic microorganisms are emerging as an efficient and eco-friendly technique for removal of sulfur from the coal. In the present article, study was carried out to investigate the potential of biodesulfurization process in removing the sulfur from lignite coal sample collected from a Mongolian coal mine. The batch biodesulfurization experiments were conducted in 2.5 L borosilicate baffle type reactors at 35 &ordm;C using Acidithiobacillus ferrooxidans. The effect of pulp density on efficiency of biodesulfurization was investigated at different solids concentration (1-10%) of coal. The results of the present study suggested that the rate of desulfurization was retarded at higher coal pulp density. The optimum pulp density found 5% at which about 48% of the total sulfur was removed from the coal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodesulfurization" title="biodesulfurization">biodesulfurization</a>, <a href="https://publications.waset.org/abstracts/search?q=bioreactor" title=" bioreactor"> bioreactor</a>, <a href="https://publications.waset.org/abstracts/search?q=coal" title=" coal"> coal</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrite" title=" pyrite "> pyrite </a> </p> <a href="https://publications.waset.org/abstracts/13312/effect-of-pulp-density-on-biodesulfurization-of-mongolian-lignite-coal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13312.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">495</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">172</span> Experimental Study of the Fiber Dispersion of Pulp Liquid Flow in Channels with Application to Papermaking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masaru%20Sumida">Masaru Sumida</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study explored the feasibility of improving the hydraulic headbox of papermaking machines by studying the flow of wood-pulp suspensions behind a flat plate inserted in parallel and convergent channels. Pulp fiber concentrations of the wake downstream of the plate were investigated by flow visualization and optical measurements. Changes in the time-averaged and fluctuation of the fiber concentration along the flow direction were examined. In addition, the control of the flow characteristics in the two channels was investigated. The behaviors of the pulp fibers and the wake flow were found to be strongly related to the flow states in the upstream passages partitioned by the plate. The distribution of the fiber concentration was complex because of the formation of a thin water layer on the plate and the generation of Karman’s vortices at the trailing edge of the plate. Compared with the flow in the parallel channel, fluctuations in the fiber concentration decreased in the convergent channel. However, at low flow velocities, the convergent channel has a weak effect on equilibrating the time-averaged fiber concentration. This shows that a rectangular trailing edge cannot adequately disperse pulp suspensions; thus, at low flow velocities, a convergent channel is ineffective in ensuring uniform fiber concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiber%20dispersion" title="fiber dispersion">fiber dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=headbox" title=" headbox"> headbox</a>, <a href="https://publications.waset.org/abstracts/search?q=pulp%20liquid" title=" pulp liquid"> pulp liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=wake%20flow" title=" wake flow"> wake flow</a> </p> <a href="https://publications.waset.org/abstracts/62014/experimental-study-of-the-fiber-dispersion-of-pulp-liquid-flow-in-channels-with-application-to-papermaking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">171</span> Vital Pulp Therapy: The Minimally Invasive Endodontic Therapy for Mature Permanent Teeth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fadwa%20Chtioui">Fadwa Chtioui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vital Pulp Therapy (VPT) is nowadays challenging the deep-rooted dogma of root canal treatment, being the only therapeutic option for permanent teeth diagnosed with irreversible pulpitis or carious pulp exposure. Histologic and clinical research has shown that compromised dental pulp can be treated without the full removal or excavation of all healthy pulp, and the outcome of the partial or full pulpotomy followed by a Tricalcium-Silicate-based dressing seems to show promising results in maintaining pulp vitality and preserving affected teeth in the long term. By reviewing recent advances in the techniques of VPT and their clinical effectiveness and safety in permanent teeth with irreversible Pulpitis, this work provides a new understanding of pulp pathophysiology and defense mechanisms and will reform dental practitioners' decision-making in treating irreversible pulpits from root canal therapy to vital pulp therapy by taking advantage of the biological effects of Tricalcium Silicate materials. Biography of presenting author: Fadwa Chitoui graduated from the school of Dental Medicine of Monastir, Tunisia, in 2015. After getting her DDS degree with honors, she earned her Postgraduate master's Degree in Endodontics and Restorative Dentistry from her Faculty. Since 2021, she has Started her own private and specialized practice based in the capital Tunis. She enjoys the sphere of associative life, worked with national and international associations, and got engaged in scientific dental research, whereby she tailored her passion for her field of specialty towards broadening her knowledge and ambitions, holding conferences and workshops nationally and internationally and publishing scientific articles in several journals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=irreversible%20pulpitis" title="irreversible pulpitis">irreversible pulpitis</a>, <a href="https://publications.waset.org/abstracts/search?q=permanenet%20teeth" title=" permanenet teeth"> permanenet teeth</a>, <a href="https://publications.waset.org/abstracts/search?q=vital%20pulp%20therapy" title=" vital pulp therapy"> vital pulp therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=pulpotomy" title=" pulpotomy"> pulpotomy</a> </p> <a href="https://publications.waset.org/abstracts/170027/vital-pulp-therapy-the-minimally-invasive-endodontic-therapy-for-mature-permanent-teeth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170027.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">170</span> Energy Conversion from Waste Paper Industry Using Fluidized Bed Combustion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Dyah%20Ayu%20Yuli">M. Dyah Ayu Yuli</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Faisal%20Dhio"> S. Faisal Dhio</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Johandi"> P. Johandi</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Muhammad%20Sofyan"> P. Muhammad Sofyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pulp and paper mills generate various quantities of energy-rich biomass as wastes, depending on technological level, pulp and paper grades and wood quality. These wastes are produced in all stages of the process: wood preparation, pulp and paper manufacture, chemical recovery, recycled paper processing, waste water treatment. Energy recovery from wastes of different origin has become a generally accepted alternative to their disposal. Pulp and paper industry expresses an interest in adapting and integrating advanced biomass energy conversion technologies into its mill operations using Fluidized Bed Combustion. Industrial adoption of these new technologies has the potential for higher efficiency, lower capital cost, and safer operation than conventional operations that burn fossil fuels for energy. Incineration with energy recovery has the advantage of hygienic disposal, volume reduction, and the recovery of thermal energy by means of steam or super heated water that can be used for heating and power generation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass" title="biomass">biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=fluidized%20bed%20combustion" title=" fluidized bed combustion"> fluidized bed combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=pulp%20and%20paper%20mills" title=" pulp and paper mills"> pulp and paper mills</a>, <a href="https://publications.waset.org/abstracts/search?q=waste" title=" waste"> waste</a> </p> <a href="https://publications.waset.org/abstracts/19407/energy-conversion-from-waste-paper-industry-using-fluidized-bed-combustion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">169</span> Effects Induced by Dispersion-Promoting Cylinder on Fiber-Concentration Distributions in Pulp Suspension Flows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Sumida">M. Sumida</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Fujimoto"> T. Fujimoto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fiber-concentration distributions in pulp liquid flows behind dispersion promoters were experimentally investigated to explore the feasibility of improving operational performance of hydraulic headboxes in papermaking machines. The proposed research was performed in the form of a basic test conducted on a screen-type model comprising a circular cylinder inserted within a channel. Tests were performed using pulp liquid possessing fiber concentrations ranging from 0.3-1.0 wt% under different flow velocities of 0.016-0.74 m/s. Fiber-concentration distributions were measured using the transmitted light attenuation method. Obtained test results were analyzed, and the influence of the flow velocities on wake characteristics behind the cylinder has been investigated with reference to findings of our preceding studies concerning pulp liquid flows in straight channels. Changes in fiber-concentration distribution along the flow direction were observed to be substantially large in the section from the cylinder to four times its diameter downstream of its centerline. Findings of this study provide useful information concerning the development of hydraulic headboxes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dispersion%20promoter" title="dispersion promoter">dispersion promoter</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber-concentration%20distribution" title=" fiber-concentration distribution"> fiber-concentration distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20headbox" title=" hydraulic headbox"> hydraulic headbox</a>, <a href="https://publications.waset.org/abstracts/search?q=pulp%20liquid%20flow" title=" pulp liquid flow"> pulp liquid flow</a> </p> <a href="https://publications.waset.org/abstracts/93888/effects-induced-by-dispersion-promoting-cylinder-on-fiber-concentration-distributions-in-pulp-suspension-flows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93888.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">168</span> Storage Study of Bael (Aegle marmelos Correa.) Fruit and Pulp of Cv. Pant Sujata </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20R.%20Jana">B. R. Jana</a>, <a href="https://publications.waset.org/abstracts/search?q=Madhumita%20Singh"> Madhumita Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Storage study of bael fruit and pulp were conducted at ICAR-RCER, Research Centre Ranchi to find out suitable storage life to extent the availability of the fruit and produce the value added product in form of fruit. The cultivar under storage is Pant Sujata. CFB box packing resulted in minimum 21 % PLW during 2010-11 during its 28-35 days storage under ambient temperature. CFB box and Gunny bag retains maximum total sugar (17.3-17.4 °B) after 28 days storage. Bael pulp of cultivar Pant Sujata can be stored up to 2 months at 4 °C with good quality condition. Treatments were highly significant in the characters such as T.S.S., acidity, reducing sugar and total sugar. Storage conditions and treatments interaction were insignificant in all characters except acidity. The maximum T.S.S. of 21.87 °B has been found in sample treated with 800 ppm benzoic acid when kept for two months at 4 °C temperature. This treatment also resulted in retaining the maximum reducing sugar (8.09 %) and total sugar content (9.52 %) at same storage condition than other treatments. From the present experiments, it is concluded that CFB box packing and pulp storage with 800 ppm benzoic acid at 4 °C are important to extent the availability of bael for two months. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bael" title="bael">bael</a>, <a href="https://publications.waset.org/abstracts/search?q=storage" title=" storage"> storage</a>, <a href="https://publications.waset.org/abstracts/search?q=fruits" title=" fruits"> fruits</a>, <a href="https://publications.waset.org/abstracts/search?q=pulp" title=" pulp"> pulp</a>, <a href="https://publications.waset.org/abstracts/search?q=benzoic%20acid" title=" benzoic acid"> benzoic acid</a> </p> <a href="https://publications.waset.org/abstracts/42619/storage-study-of-bael-aegle-marmelos-correa-fruit-and-pulp-of-cv-pant-sujata" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42619.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">167</span> Optimizing Fermented Paper Production Using Spyrogira sp. Interpolating with Banana Pulp</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hadiatullah">Hadiatullah</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20S.%20D.%20Desak%20Ketut"> T. S. D. Desak Ketut</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Ayu"> A. A. Ayu</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20N.%20Isna"> A. N. Isna</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20P.%20Ririn"> D. P. Ririn </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spirogyra sp. is genus of microalgae which has a high carbohydrate content that used as a best medium for bacterial fermentation to produce cellulose. This study objective to determine the effect of pulp banana in the fermented paper production process using Spirogyra sp. and characterizing of the paper product. The method includes the production of bacterial cellulose, assay of the effect fermented paper interpolating with banana pulp using Spirogyra sp., and the assay of paper characteristics include gram-mage paper, water assay absorption, thickness, power assay of tensile resistance, assay of tear resistance, density, and organoleptic assay. Experiments were carried out with completely randomized design with a variation of the concentration of sewage treatment in the fermented paper production interpolating banana pulp using Spirogyra sp. Each parameter data to be analyzed by Anova variance that continued by real difference test with an error rate of 5% using the SPSS. Nata production results indicate that different carbon sources (glucose and sugar) did not show any significant differences from cellulose parameters assay. Significantly different results only indicated for the control treatment. Although not significantly different from the addition of a carbon source, sugar showed higher potency to produce high cellulose. Based on characteristic assay of the fermented paper showed that the paper gram-mage indicated that the control treatment without interpolation of a carbon source and a banana pulp have better result than banana pulp interpolation. Results of control gram-mage is 260 gsm that show optimized by cardboard. While on paper gram-mage produced with the banana pulp interpolation is about 120-200 gsm that show optimized by magazine paper and art paper. Based on the density, weight, water absorption assays, and organoleptic assay of paper showing the highest results in the treatment of pulp banana interpolation with sugar source as carbon is 14.28 g/m2, 0.02 g and 0.041 g/cm2.minutes. The conclusion found that paper with nata material interpolating with sugar and banana pulp has the potential formulation to produce super-quality paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulose" title="cellulose">cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=grammage" title=" grammage"> grammage</a>, <a href="https://publications.waset.org/abstracts/search?q=paper" title=" paper"> paper</a>, <a href="https://publications.waset.org/abstracts/search?q=Spirogyra%20sp." title=" Spirogyra sp."> Spirogyra sp.</a> </p> <a href="https://publications.waset.org/abstracts/32790/optimizing-fermented-paper-production-using-spyrogira-sp-interpolating-with-banana-pulp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32790.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">166</span> Role of Nano Gelatin and Hydrogel Based Scaffolds in Odontogenic Differentiation of Human Dental Pulp Stem Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Husain%20S.%20Yawer">Husain S. Yawer</a>, <a href="https://publications.waset.org/abstracts/search?q=Vasim%20Raja%20Panwar"> Vasim Raja Panwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Nidhi%20Priya"> Nidhi Priya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is to evaluate and compare the role of nano-gelatin and Bioengineered Scaffolds on the attachment, proliferation, and osteogenic differentiation of human dental pulp stem cells (DPSCs). Tooth decay and early fall have each been one of the most prevailing dental disorders which cause physical and emotional suffering and compromise the patient's quality of life. The design of novel scaffolding materials will be based on mimicking the architecture of natural dental extracellular matrix which may provide as in vivo environments for proper cell growth. This methodology will involve the combination of nano-fibred gelatin as well as biodegradable hydrogel based tooth scaffold. We have measured and optimized the Dental Pulp Stem Cells growth profile in cultures carried out on collagen-coated plastic surface, however, for tissue regeneration study, we aim to develop an enhanced microenvironment for stem cell growth and dental tissue regeneration. We believe biomimetic cell adhesion and scaffolds might provide a near in vivo growth environment for proper growth and differentiation of human DPSCs, which further help in dentin/pulp tissue regeneration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano-gelatin" title="nano-gelatin">nano-gelatin</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20cells" title=" stem cells"> stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=dental%20pulp" title=" dental pulp"> dental pulp</a>, <a href="https://publications.waset.org/abstracts/search?q=scaffold" title=" scaffold"> scaffold</a> </p> <a href="https://publications.waset.org/abstracts/49373/role-of-nano-gelatin-and-hydrogel-based-scaffolds-in-odontogenic-differentiation-of-human-dental-pulp-stem-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49373.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">165</span> Drying Kinetics of Okara (Soy Pulp) Using the Multi-Commodity Heat Pump Dryer (MCHPD)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lorcelie%20B.%20Taclan">Lorcelie B. Taclan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jolly%20S.%20Balila"> Jolly S. Balila</a>, <a href="https://publications.waset.org/abstracts/search?q=Maribel%20Balagtas"> Maribel Balagtas</a>, <a href="https://publications.waset.org/abstracts/search?q=Eunice%20M.%20Aclan"> Eunice M. Aclan</a>, <a href="https://publications.waset.org/abstracts/search?q=Myrtle%20C.%20Orbon"> Myrtle C. Orbon</a>, <a href="https://publications.waset.org/abstracts/search?q=Emson%20Y.%20Taclan"> Emson Y. Taclan</a>, <a href="https://publications.waset.org/abstracts/search?q=Irenea%20A.%20Centeno"> Irenea A. Centeno</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Okara (soy pulp), a by-product and waste from the production of soymilk, tufo and tokwa and soybean-based vegan food products is readily available in the university thrice a week. The Food Factory owned and managed by AUP produces these food products weekly. Generally the study was conducted to determine the drying kinetics of soya pulp using the MCHPD. Specifically, it aimed to establish the time of drying; moisture loss per hour and percent moisture content of soya pulp and to establish the dried okara as an ingredient to other foods. The MCHPD is drying equipment that has an ideal drying condition of 50.00C and 10.0% relative humidity. Fresh and wet soya pulp were weighed at 1.0 kg per tray (21 drying trays), laid on the trays lined with cheese cloth. The MCHPD was set to desired drying conditions. Weight loss was monitored every hour and calculated using standard formulas. Research results indicated that the drying time for soya pulp was 19.0 hours; the % moisture content was reduced from 87.6.0% to 9.7.0% at an average moisture loss of 3.0 g/hr. The nutritional values of okara were favorably maintained with enhanced color. The dried okara was added as an ingredient to other healthy bakery products produced by the AUP Food Factory. Making use of okara would add nutritional values to other food products and would also help waste management concerns inside the university. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=okara" title="okara">okara</a>, <a href="https://publications.waset.org/abstracts/search?q=MCHPD" title=" MCHPD"> MCHPD</a>, <a href="https://publications.waset.org/abstracts/search?q=drying%20kinetics" title=" drying kinetics"> drying kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=nutritional%20values" title=" nutritional values"> nutritional values</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20management" title=" waste management"> waste management</a> </p> <a href="https://publications.waset.org/abstracts/14359/drying-kinetics-of-okara-soy-pulp-using-the-multi-commodity-heat-pump-dryer-mchpd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14359.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">164</span> Batch Biodrying of Pulp and Paper Secondary Sludge: Influence of Initial Moisture Content on the Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C%C3%A9sar%20Huili%C3%B1ir">César Huiliñir</a>, <a href="https://publications.waset.org/abstracts/search?q=Danilo%20Villanueva"> Danilo Villanueva</a>, <a href="https://publications.waset.org/abstracts/search?q=Pedro%20Iv%C3%A1n%20Alvarez"> Pedro Iván Alvarez</a>, <a href="https://publications.waset.org/abstracts/search?q=Francisco%20Cubillos"> Francisco Cubillos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biodrying aims at removing water from biowastes and has been mostly studied for municipal solid wastes (MSW), while few studies have dealt with secondary sludge from the paper and pulp industry. The goal of this study was to investigate the effect of initial moisture content (MC) on the batch biodrying of pulp and paper secondary sludge, using rice husks as bulking agents. Three initial MCs were studied (54, 65, and 74% w.b.) in closed batch laboratory-scale reactors under adiabatic conditions and with a constant air-flow rate (0.65 l min-1 kg-1 wet solid). The initial MC of the mixture of secondary sludge and rice husks showed a significant effect on the biodrying process. Using initial moisture content between 54-65% w.b., the solid moisture content was reduce up to 37 % w.b. in ten days, getting calorific values between 8000-9000 kJ kg-1. It was concluded that a decreasing of initial MC improves the drying rate and decreases the solid volatile consumption, therefore, the optimization of biodrying should consider this parameter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodrying" title="biodrying">biodrying</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20sludge" title=" secondary sludge"> secondary sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=initial%20moisture%20content" title=" initial moisture content"> initial moisture content</a>, <a href="https://publications.waset.org/abstracts/search?q=pulp%20and%20paper%20industry" title=" pulp and paper industry"> pulp and paper industry</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20husk" title=" rice husk "> rice husk </a> </p> <a href="https://publications.waset.org/abstracts/18173/batch-biodrying-of-pulp-and-paper-secondary-sludge-influence-of-initial-moisture-content-on-the-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">509</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">163</span> Age Estimation from Upper Anterior Teeth by Pulp/Tooth Ratio Using Peri-Apical X-Rays among Egyptians</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatma%20Mohamed%20Magdy%20Badr%20El%20Dine">Fatma Mohamed Magdy Badr El Dine</a>, <a href="https://publications.waset.org/abstracts/search?q=Amr%20Mohamed%20Abd%20Allah"> Amr Mohamed Abd Allah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Age estimation of individuals is one of the crucial steps in forensic practice. Different traditional methods rely on the length of the diaphysis of long bones of limbs, epiphyseal-diaphyseal union, fusion of the primary ossification centers as well as dental eruption. However, there is a growing need for the development of precise and reliable methods to estimate age, especially in cases where dismembered corpses, burnt bodies, purified or fragmented parts are recovered. Teeth are the hardest and indestructible structure in the human body. In recent years, assessment of pulp/tooth area ratio, as an indirect quantification of secondary dentine deposition has received a considerable attention. However, scanty work has been done in Egypt in terms of applicability of pulp/tooth ratio for age estimation. Aim of the Work: The present work was designed to assess the Cameriere’s method for age estimation from pulp/tooth ratio of maxillary canines, central and lateral incisors among a sample from Egyptian population. In addition, to formulate regression equations to be used as population-based standards for age determination. Material and Methods: The present study was conducted on 270 peri-apical X-rays of maxillary canines, central and lateral incisors (collected from 131 males and 139 females aged between 19 and 52 years). The pulp and tooth areas were measured using the Adobe Photoshop software program and the pulp/tooth area ratio was computed. Linear regression equations were determined separately for canines, central and lateral incisors. Results: A significant correlation was recorded between the pulp/tooth area ratio and the chronological age. The linear regression analysis revealed a coefficient of determination (R² = 0.824 for canine, 0.588 for central incisor and 0.737 for lateral incisor teeth). Three regression equations were derived. Conclusion: As a conclusion, the pulp/tooth ratio is a useful technique for estimating age among Egyptians. Additionally, the regression equation derived from canines gave better result than the incisors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=age%20determination" title="age determination">age determination</a>, <a href="https://publications.waset.org/abstracts/search?q=canines" title=" canines"> canines</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20incisors" title=" central incisors"> central incisors</a>, <a href="https://publications.waset.org/abstracts/search?q=Egypt" title=" Egypt"> Egypt</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20incisors" title=" lateral incisors"> lateral incisors</a>, <a href="https://publications.waset.org/abstracts/search?q=pulp%2Ftooth%20ratio" title=" pulp/tooth ratio"> pulp/tooth ratio</a> </p> <a href="https://publications.waset.org/abstracts/83832/age-estimation-from-upper-anterior-teeth-by-pulptooth-ratio-using-peri-apical-x-rays-among-egyptians" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">162</span> Effects of Cassava Pulp Fermentation by Yeast on Meat Goats Performances and Nitrogen Retention</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Paengkoum">S. Paengkoum</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Paengkoum"> P. Paengkoum</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Kaewwongsa"> W. Kaewwongsa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Twenty-four male growing goats were randomly assigned to a Randomized Complete Block Design. Dietary treatments were different level of feeding concentrate diet at 1.0, 1.5, 2.0, and 2.5% of body weight (BW). The results showed that average daily gain, microbial N supply, N retention of meat goats in the group of feeding level at 2.0% BW and 2.5% BW were significantly higher (P<0.05) than those goats fed with feeding levels of 1.0% BW and 1.5% BW. Based on this result the conclusion can be made that using 75% fermented cassava pulp by Saccharomyces cerevisiae as the main source of protein to completely replace soybean meal was beneficial to meat goats in terms of feed intake. The feeding concentrate at levels between 2.0-2.5% BW gives highest in the growth of meat goat in this experiment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cassava%20pulp" title="cassava pulp">cassava pulp</a>, <a href="https://publications.waset.org/abstracts/search?q=yeast" title=" yeast"> yeast</a>, <a href="https://publications.waset.org/abstracts/search?q=goat" title=" goat"> goat</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20retention" title=" nitrogen retention"> nitrogen retention</a> </p> <a href="https://publications.waset.org/abstracts/12949/effects-of-cassava-pulp-fermentation-by-yeast-on-meat-goats-performances-and-nitrogen-retention" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12949.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">161</span> Investigation of the Use of Surface-Modified Waste Orange Pulp for the Adsorption of Remazol Black B</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ceren%20Karaman">Ceren Karaman</a>, <a href="https://publications.waset.org/abstracts/search?q=Onur%20Karaman"> Onur Karaman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The adsorption of Remazol Black B (RBB), an anionic dye, onto dried orange pulp (DOP) adsorbent prepared by only drying and by treating with cetyltrimetylammonium bromide (CTAB), a cationic surfactant, surface-modified orange pulp (SMOP) was studied in a stirred batch experiments system at 25°C. The adsorption of RBB on each adsorbent as a function of surfactant dosage, initial pH of the solution and initial dye concentration was investigated. The optimum amount of CTAB was found to be 25g/l. For RBB adsorption studies, while working pH value for the DOP adsorbent system was determined as 2.0, it was observed that this value shifted to 8.0 when the 25 g/l CTAB treated-orange pulp (SMOP) adsorbent was used. It was obtained that the adsorption rate and capacity increased to a certain value, and the adsorption efficiency decreased with increasing initial RBB concentration for both DOP and SMOP adsorbents at pH 2.0 and pH 8.0. While the highest adsorption capacity for DOP was determined as 62.4 mg/g at pH 2.0, and as 325.0 mg/g for SMOP at pH 8.0. As a result, it can be said that permanent cationic coating of the adsorbent surface by CTAB surfactant shifted the working pH from 2.0 to 8.0 and it increased the dye adsorption rate and capacity of orange pulp much more significantly at pH 8.0. The equilibrium RBB adsorption data on each adsorbent were best described by the Langmuir isotherm model. The adsorption kinetics of RBB on each adsorbent followed a pseudo-second-order model. Moreover, the intraparticle diffusion model was used to describe the kinetic data. It was found that diffusion is not the only rate controlling step. The adsorbent was characterized by the Brunauer–Emmett–Teller (BET) analysis, Fourier-transform-infrared (FTIR) spectroscopy, and scanning-electron-microscopy (SEM). The mechanism for the adsorption of RBB on the SMOP may include hydrophobic interaction, van der Waals interaction, stacking and electrostatic interaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=Cetyltrimethylammonium%20Bromide%20%28CTAB%29" title=" Cetyltrimethylammonium Bromide (CTAB)"> Cetyltrimethylammonium Bromide (CTAB)</a>, <a href="https://publications.waset.org/abstracts/search?q=orange%20pulp" title=" orange pulp"> orange pulp</a>, <a href="https://publications.waset.org/abstracts/search?q=Remazol%20Black%20B%20%28RBB%29" title=" Remazol Black B (RBB)"> Remazol Black B (RBB)</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20modification" title=" surface modification"> surface modification</a> </p> <a href="https://publications.waset.org/abstracts/70127/investigation-of-the-use-of-surface-modified-waste-orange-pulp-for-the-adsorption-of-remazol-black-b" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70127.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">160</span> Production of Bio-Composites from Cocoa Pod Husk for Use in Packaging Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Kanoksak">L. Kanoksak</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Sukanya"> N. Sukanya</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Napatsorn"> L. Napatsorn</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Siriporn"> T. Siriporn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A growing population and demand for packaging are driving up the usage of natural resources as raw materials in the pulp and paper industry. Long-term effects of environmental is disrupting people's way of life all across the planet. Finding pulp sources to replace wood pulp is therefore necessary. To produce wood pulp, various other potential plants or plant parts can be employed as substitute raw materials. For example, pulp and paper were made from agricultural residue that mainly included pulp can be used in place of wood. In this study, cocoa pod husks were an agricultural residue of the cocoa and chocolate industries. To develop composite materials to replace wood pulp in packaging materials. The paper was coated with polybutylene adipate-co-terephthalate (PBAT). By selecting and cleaning fresh cocoa pod husks, the size was reduced. And the cocoa pod husks were dried. The morphology and elemental composition of cocoa pod husks were studied. To evaluate the mechanical and physical properties, dried cocoa husks were extracted using the soda-pulping process. After selecting the best formulations, paper with a PBAT bioplastic coating was produced on a paper-forming machine Physical and mechanical properties were studied. By using the Field Emission Scanning Electron Microscope/Energy Dispersive X-Ray Spectrometer (FESEM/EDS) technique, the structure of dried cocoa pod husks showed the main components of cocoa pod husks. The appearance of porous has not been found. The fibers were firmly bound for use as a raw material for pulp manufacturing. Dry cocoa pod husks contain the major elements carbon (C) and oxygen (O). Magnesium (Mg), potassium (K), and calcium (Ca) were minor elements that were found in very small levels. After that cocoa pod husks were removed from the soda-pulping process. It found that the SAQ5 formula produced pulp yield, moisture content, and water drainage. To achieve the basis weight by TAPPI T205 sp-02 standard, cocoa pod husk pulp and modified starch were mixed. The paper was coated with bioplastic PBAT. It was produced using bioplastic resin from the blown film extrusion technique. It showed the contact angle, dispersion component and polar component. It is an effective hydrophobic material for rigid packaging applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cocoa%20pod%20husks" title="cocoa pod husks">cocoa pod husks</a>, <a href="https://publications.waset.org/abstracts/search?q=agricultural%20residue" title=" agricultural residue"> agricultural residue</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20material" title=" composite material"> composite material</a>, <a href="https://publications.waset.org/abstracts/search?q=rigid%20packaging" title=" rigid packaging"> rigid packaging</a> </p> <a href="https://publications.waset.org/abstracts/170772/production-of-bio-composites-from-cocoa-pod-husk-for-use-in-packaging-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">159</span> Biodiesel Production from Fruit Pulp of Cassia fistula L. Using Green Microalga Chlorella minutissima</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Chandra">Rajesh Chandra</a>, <a href="https://publications.waset.org/abstracts/search?q=Uttam%20K.%20Ghosh"> Uttam K. Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study demonstrates microalgal bio-diesel generation from a cheap, abundant, non-edible fruit pulp of Cassia fistula L. The Cassia fistula L. fruit pulp aqueous extract (CFAE) was utilized as a growth medium for cultivation of microalga Chlorella minutissima (C. minutissima). This microalga accumulated a high amount of lipids when cultivated with CFAE as a source of nutrition in comparison to BG-11 medium. Different concentrations (10, 20, 30, 40 and 50%) of CFAE diluted with distilled water were used to cultivate microalga. Effects of light intensity and photoperiod were also observed on biomass and lipid yield of microalga. Light intensity of 8000 lux with a photoperiod of 18 h resulted in maximum biomass and lipid yield of 1.28 ± 0.03 and 0.3968 ± 0.05 g/L, respectively when cultivated with 40% CFAE. Fatty acid methyl ester (FAME) profile of bio-diesel obtained shown the presence of myristic acid (C14:0), palmitic acid (C16:0), palmitoleic acid (C16:1), stearic acid (C18:0), linoleic acid (C18:2), linolenic acid (C18:3), arachidic acid (C20:0), and gondoic acid (C20:1), as major fatty acids. These facts reflect that the fruit pulp of Cassia fistula L. can be used for cultivation of C. minutissima. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass" title="biomass">biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-diesel" title=" bio-diesel"> bio-diesel</a>, <a href="https://publications.waset.org/abstracts/search?q=Cassia%20fistula%20L." title=" Cassia fistula L."> Cassia fistula L.</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20minutissima" title=" C. minutissima"> C. minutissima</a>, <a href="https://publications.waset.org/abstracts/search?q=GC-MS" title=" GC-MS"> GC-MS</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid" title=" lipid"> lipid</a> </p> <a href="https://publications.waset.org/abstracts/104778/biodiesel-production-from-fruit-pulp-of-cassia-fistula-l-using-green-microalga-chlorella-minutissima" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104778.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">158</span> Economic Development and New Challenges: Biomass Energy and Sustainability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fabricia%20G.%20F.%20S.%20Rossato">Fabricia G. F. S. Rossato</a>, <a href="https://publications.waset.org/abstracts/search?q=Ieda%20G.%20Hidalgo"> Ieda G. Hidalgo</a>, <a href="https://publications.waset.org/abstracts/search?q=Andres%20Susseta"> Andres Susseta</a>, <a href="https://publications.waset.org/abstracts/search?q=Felipe%20Casale"> Felipe Casale</a>, <a href="https://publications.waset.org/abstracts/search?q=Leticia%20H.%20Nakamiti"> Leticia H. Nakamiti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research was conducted to show the useful source of biomass energy provided from forest waste and the black liquor from the pulping process. This energy source could be able to assist and improve its area environment in a sustainable way. The research will demonstrate the challenges from producing the biomass energy and the implantation of the pulp industry in the city of Três Lagoas, MS. – Brazil. Planted forest’s potential, energy production in the pulp industries and its consequence of impacts on the local region environmental was also studied and examined. The present study is classified as descriptive purposes as it exposes the characteristics of a given population and the means such as bibliographical and documentary. All the data and information collected and demonstrate in this study was carefully analyzed and provided from reliable sources such as official government agencies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brazil" title="Brazil">Brazil</a>, <a href="https://publications.waset.org/abstracts/search?q=pulp%20industry" title=" pulp industry"> pulp industry</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=Tr%C3%AAs%20Lagoas" title=" Três Lagoas"> Três Lagoas</a> </p> <a href="https://publications.waset.org/abstracts/67877/economic-development-and-new-challenges-biomass-energy-and-sustainability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67877.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">157</span> Nanocrystalline Cellulose from Oil Palm Fiber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ridzuan%20Ramli">Ridzuan Ramli</a>, <a href="https://publications.waset.org/abstracts/search?q=Zianor%20Azrina%20Zianon%20Abdin"> Zianor Azrina Zianon Abdin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Dalour%20Beg"> Mohammad Dalour Beg</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosli%20M.%20Yunus"> Rosli M. Yunus </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanocrystalline cellulose (NCC) were produced by using the ultrasound assisted acid hydrolysis from oil palm empty fruit bunch (EFB) pulp with different hydrolysis time then were analyzed by using FESEM and TGA as in comparison with EFB fiber and EFB pulp. Based on the FESEM analysis, it was found that NCC has a rod like shaped under the acid hydrolysis with an assistant of ultrasound. According to thermal stability, the NCC obtained show remarkable sign of high thermal stability compared to EFB fiber and EFB pulp. However, as the hydrolysis time increase, the thermal stability of NCC was deceased. As in conclusion, the NCC can be prepared by using ultrasound assisted acid hydrolysis. The NCC obtained have good thermal stability and have a great potential as the reinforcement in composite materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nanocrystalline%20cellulose" title="Nanocrystalline cellulose">Nanocrystalline cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound%20assisted%20acid%20hydrolysis" title=" ultrasound assisted acid hydrolysis"> ultrasound assisted acid hydrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20stability" title=" thermal stability"> thermal stability</a>, <a href="https://publications.waset.org/abstracts/search?q=morphology" title=" morphology"> morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=empty%20fruit%20bunch%20%28EFB%29" title=" empty fruit bunch (EFB)"> empty fruit bunch (EFB)</a> </p> <a href="https://publications.waset.org/abstracts/16060/nanocrystalline-cellulose-from-oil-palm-fiber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">156</span> Extraction of Cellulose Nanofibrils from Pulp Using Enzymatic Pretreatment and Evaluation of Their Papermaking Potential</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Kumar%20Singh">Ajay Kumar Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Arvind%20Kumar"> Arvind Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20P.%20Singh"> S. P. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cellulose nanofibrils (CNF) have shown potential of their extensive use in various fields, including papermaking, due to their unique characteristics. In this study, CNF’s were prepared by fibrillating the pulp obtained from raw materials e.g. bagasse, hardwood and softwood using enzymatic pretreatment followed by mechanical refining. These nanofibrils, when examined under FE-SEM, show that partial fibrillation on fiber surface has resulted in production of nanofibers. Mixing these nanofibers with the unrefined and normally refined fibers show their reinforcing effect. This effect is manifested in observing the improvement in the physical and mechanical properties e.g. tensile index and burst index of paper. Tear index, however, was observed to decrease on blending with nanofibers. The optical properties of paper sheets made from blended fibers showed no significant change in comparison to those made from only mechanically refined pulp. Mixing of normal pulp fibers with nanofibers show increase in ºSR and consequent decrease in drainage rate. These changes observed in mechanical, optical and other physical properties of the paper sheets made from nanofibrils blended pulp have been tried to explain considering the distribution of the nanofibrils alongside microfibrils in the fibrous network. Since usually, paper/boards with higher strength are observed to have diminished optical properties which is a drawback in their quality, the present work has the potential for developing paper/boards having improved strength alongwith undiminished optical properties utilising the concepts of nanoscience and nanotechnology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20pretreatment" title="enzymatic pretreatment">enzymatic pretreatment</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20refining" title=" mechanical refining"> mechanical refining</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofibrils" title=" nanofibrils"> nanofibrils</a>, <a href="https://publications.waset.org/abstracts/search?q=paper%20properties" title=" paper properties"> paper properties</a> </p> <a href="https://publications.waset.org/abstracts/38650/extraction-of-cellulose-nanofibrils-from-pulp-using-enzymatic-pretreatment-and-evaluation-of-their-papermaking-potential" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38650.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pulp&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pulp&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pulp&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pulp&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pulp&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pulp&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pulp&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10