CINXE.COM
Search results for: Gaussian processes
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Gaussian processes</title> <meta name="description" content="Search results for: Gaussian processes"> <meta name="keywords" content="Gaussian processes"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Gaussian processes" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Gaussian processes"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5886</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Gaussian processes</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5886</span> Closed-Form Sharma-Mittal Entropy Rate for Gaussian Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Septimia%20Sarbu">Septimia Sarbu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The entropy rate of a stochastic process is a fundamental concept in information theory. It provides a limit to the amount of information that can be transmitted reliably over a communication channel, as stated by Shannon's coding theorems. Recently, researchers have focused on developing new measures of information that generalize Shannon's classical theory. The aim is to design more efficient information encoding and transmission schemes. This paper continues the study of generalized entropy rates, by deriving a closed-form solution to the Sharma-Mittal entropy rate for Gaussian processes. Using the squeeze theorem, we solve the limit in the definition of the entropy rate, for different values of alpha and beta, which are the parameters of the Sharma-Mittal entropy. In the end, we compare it with Shannon and Rényi's entropy rates for Gaussian processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=generalized%20entropies" title="generalized entropies">generalized entropies</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharma-Mittal%20entropy%20rate" title=" Sharma-Mittal entropy rate"> Sharma-Mittal entropy rate</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20processes" title=" Gaussian processes"> Gaussian processes</a>, <a href="https://publications.waset.org/abstracts/search?q=eigenvalues%20of%20the%20covariance%20matrix" title=" eigenvalues of the covariance matrix"> eigenvalues of the covariance matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=squeeze%20theorem" title=" squeeze theorem "> squeeze theorem </a> </p> <a href="https://publications.waset.org/abstracts/32177/closed-form-sharma-mittal-entropy-rate-for-gaussian-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32177.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">519</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5885</span> Using Gaussian Process in Wind Power Forecasting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hacene%20Benkhoula">Hacene Benkhoula</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Badreddine%20Benabdella"> Mohamed Badreddine Benabdella</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Bouzeboudja"> Hamid Bouzeboudja</a>, <a href="https://publications.waset.org/abstracts/search?q=Abderrahmane%20Asraoui"> Abderrahmane Asraoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The wind is a random variable difficult to master, for this, we developed a mathematical and statistical methods enable to modeling and forecast wind power. Gaussian Processes (GP) is one of the most widely used families of stochastic processes for modeling dependent data observed over time, or space or time and space. GP is an underlying process formed by unrecognized operator’s uses to solve a problem. The purpose of this paper is to present how to forecast wind power by using the GP. The Gaussian process method for forecasting are presented. To validate the presented approach, a simulation under the MATLAB environment has been given. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20power" title="wind power">wind power</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussien%20process" title=" Gaussien process"> Gaussien process</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasting" title=" forecasting"> forecasting</a> </p> <a href="https://publications.waset.org/abstracts/41876/using-gaussian-process-in-wind-power-forecasting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41876.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5884</span> Base Change for Fisher Metrics: Case of the q-Gaussian Inverse Distribution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gabriel%20I.%20Loaiza%20Ossa">Gabriel I. Loaiza Ossa</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20A.%20Cadavid%20Moreno"> Carlos A. Cadavid Moreno</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20C.%20%20Arango%20Parra"> Juan C. Arango Parra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is known that the Riemannian manifold determined by the family of inverse Gaussian distributions endowed with the Fisher metric has negative constant curvature κ= -1/2, as does the family of usual Gaussian distributions. In the present paper, firstly, we arrive at this result by following a different path, much simpler than the previous ones. We first put the family in exponential form, thus endowing the family with a new set of parameters, or coordinates, θ₁, θ₂; then we determine the matrix of the Fisher metric in terms of these parameters; and finally we compute this matrix in the original parameters. Secondly, we define the inverse q-Gaussian distribution family (q < 3) as the family obtained by replacing the usual exponential function with the Tsallis q-exponential function in the expression for the inverse Gaussian distribution and observe that it supports two possible geometries, the Fisher and the q-Fisher geometry. And finally, we apply our strategy to obtain results about the Fisher and q-Fisher geometry of the inverse q-Gaussian distribution family, similar to the ones obtained in the case of the inverse Gaussian distribution family. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=base%20of%20changes" title="base of changes">base of changes</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20geometry" title=" information geometry"> information geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20Gaussian%20distribution" title=" inverse Gaussian distribution"> inverse Gaussian distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20q-Gaussian%20distribution" title=" inverse q-Gaussian distribution"> inverse q-Gaussian distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20manifolds" title=" statistical manifolds"> statistical manifolds</a> </p> <a href="https://publications.waset.org/abstracts/138122/base-change-for-fisher-metrics-case-of-the-q-gaussian-inverse-distribution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138122.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5883</span> Covariance of the Queue Process Fed by Isonormal Gaussian Input Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samaneh%20Rahimirshnani">Samaneh Rahimirshnani</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Jafari"> Hossein Jafari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we consider fluid queueing processes fed by an isonormal Gaussian process. We study the correlation structure of the queueing process and the rate of convergence of the running supremum in the queueing process. The Malliavin calculus techniques are applied to obtain relations that show the workload process inherits the dependence properties of the input process. As examples, we consider two isonormal Gaussian processes, the sub-fractional Brownian motion (SFBM) and the fractional Brownian motion (FBM). For these examples, we obtain upper bounds for the covariance function of the queueing process and its rate of convergence to zero. We also discover that the rate of convergence of the queueing process is related to the structure of the covariance function of the input process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=queue%20length%20process" title="queue length process">queue length process</a>, <a href="https://publications.waset.org/abstracts/search?q=Malliavin%20calculus" title=" Malliavin calculus"> Malliavin calculus</a>, <a href="https://publications.waset.org/abstracts/search?q=covariance%20function" title=" covariance function"> covariance function</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20Brownian%20motion" title=" fractional Brownian motion"> fractional Brownian motion</a>, <a href="https://publications.waset.org/abstracts/search?q=sub-fractional%20Brownian%20motion" title=" sub-fractional Brownian motion"> sub-fractional Brownian motion</a> </p> <a href="https://publications.waset.org/abstracts/182769/covariance-of-the-queue-process-fed-by-isonormal-gaussian-input-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5882</span> Propagation of Cos-Gaussian Beam in Photorefractive Crystal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Keshavarz">A. Keshavarz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A physical model for guiding the wave in photorefractive media is studied. Propagation of cos-Gaussian beam as the special cases of sinusoidal-Gaussian beams in photorefractive crystal is simulated numerically by the Crank-Nicolson method in one dimension. Results show that the beam profile deforms as the energy transfers from the center to the tails under propagation. This simulation approach is of significant interest for application in optical telecommunication. The results are presented graphically and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beam%20propagation" title="beam propagation">beam propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=cos-Gaussian%20beam" title=" cos-Gaussian beam"> cos-Gaussian beam</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=photorefractive%20crystal" title=" photorefractive crystal"> photorefractive crystal</a> </p> <a href="https://publications.waset.org/abstracts/33883/propagation-of-cos-gaussian-beam-in-photorefractive-crystal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5881</span> Frequency Offset Estimation Schemes Based on ML for OFDM Systems in Non-Gaussian Noise Environments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keunhong%20Chae">Keunhong Chae</a>, <a href="https://publications.waset.org/abstracts/search?q=Seokho%20Yoon"> Seokho Yoon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, frequency offset (FO) estimation schemes robust to the non-Gaussian noise environments are proposed for orthogonal frequency division multiplexing (OFDM) systems. First, a maximum-likelihood (ML) estimation scheme in non-Gaussian noise environments is proposed, and then, the complexity of the ML estimation scheme is reduced by employing a reduced set of candidate values. In numerical results, it is demonstrated that the proposed schemes provide a significant performance improvement over the conventional estimation scheme in non-Gaussian noise environments while maintaining the performance similar to the estimation performance in Gaussian noise environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frequency%20offset%20estimation" title="frequency offset estimation">frequency offset estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum-likelihood" title=" maximum-likelihood"> maximum-likelihood</a>, <a href="https://publications.waset.org/abstracts/search?q=non-Gaussian%20noise%0D%0Aenvironment" title=" non-Gaussian noise environment"> non-Gaussian noise environment</a>, <a href="https://publications.waset.org/abstracts/search?q=OFDM" title=" OFDM"> OFDM</a>, <a href="https://publications.waset.org/abstracts/search?q=training%20symbol" title=" training symbol"> training symbol</a> </p> <a href="https://publications.waset.org/abstracts/9430/frequency-offset-estimation-schemes-based-on-ml-for-ofdm-systems-in-non-gaussian-noise-environments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9430.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5880</span> Gaussian Operations with a Single Trapped Ion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bruna%20G.%20M.%20Ara%C3%BAjo">Bruna G. M. Araújo</a>, <a href="https://publications.waset.org/abstracts/search?q=Pedro%20M.%20M.%20Q.%20Cruz"> Pedro M. M. Q. Cruz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this letter, we review the literature of the major concepts that govern Gaussian quantum information. As we work with quantum information and computation with continuous variables, Gaussian states are needed to better describe these systems. Analyzing a single ion locked in a Paul trap we use the interaction picture to obtain a toolbox of Gaussian operations with the ion-laser interaction Hamiltionian. This is achieved exciting the ion through the combination of two lasers of distinct frequencies corresponding to different sidebands of the external degrees of freedom. First we study the case of a trap with 1 mode and then the case with 2 modes. In this way, we achieve different continuous variables gates just by changing the external degrees of freedom of the trap and combining the Hamiltonians of blue and red sidebands. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paul%20trap" title="Paul trap">Paul trap</a>, <a href="https://publications.waset.org/abstracts/search?q=ion-laser%20interaction" title=" ion-laser interaction"> ion-laser interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20operations" title=" Gaussian operations"> Gaussian operations</a> </p> <a href="https://publications.waset.org/abstracts/18445/gaussian-operations-with-a-single-trapped-ion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18445.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">686</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5879</span> Simulation of Propagation of Cos-Gaussian Beam in Strongly Nonlocal Nonlinear Media Using Paraxial Group Transformation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Keshavarz">A. Keshavarz</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Roosta"> Z. Roosta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, propagation of cos-Gaussian beam in strongly nonlocal nonlinear media has been stimulated by using paraxial group transformation. At first, cos-Gaussian beam, nonlocal nonlinear media, critical power, transfer matrix, and paraxial group transformation are introduced. Then, the propagation of the cos-Gaussian beam in strongly nonlocal nonlinear media is simulated. Results show that beam propagation has periodic structure during self-focusing effect in this case. However, this simple method can be used for investigation of propagation of kinds of beams in ABCD optical media. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=paraxial%20group%20transformation" title="paraxial group transformation">paraxial group transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlocal%20nonlinear%20media" title=" nonlocal nonlinear media"> nonlocal nonlinear media</a>, <a href="https://publications.waset.org/abstracts/search?q=cos-Gaussian%20beam" title=" cos-Gaussian beam"> cos-Gaussian beam</a>, <a href="https://publications.waset.org/abstracts/search?q=ABCD%20law" title=" ABCD law"> ABCD law</a> </p> <a href="https://publications.waset.org/abstracts/52660/simulation-of-propagation-of-cos-gaussian-beam-in-strongly-nonlocal-nonlinear-media-using-paraxial-group-transformation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5878</span> Use of Gaussian-Euclidean Hybrid Function Based Artificial Immune System for Breast Cancer Diagnosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cuneyt%20Yucelbas">Cuneyt Yucelbas</a>, <a href="https://publications.waset.org/abstracts/search?q=Seral%20Ozsen"> Seral Ozsen</a>, <a href="https://publications.waset.org/abstracts/search?q=Sule%20Yucelbas"> Sule Yucelbas</a>, <a href="https://publications.waset.org/abstracts/search?q=Gulay%20Tezel"> Gulay Tezel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the fact that there exist only a small number of complex systems in artificial immune system (AIS) that work out nonlinear problems, nonlinear AIS approaches, among the well-known solution techniques, need to be developed. Gaussian function is usually used as similarity estimation in classification problems and pattern recognition. In this study, diagnosis of breast cancer, the second type of the most widespread cancer in women, was performed with different distance calculation functions that euclidean, gaussian and gaussian-euclidean hybrid function in the clonal selection model of classical AIS on Wisconsin Breast Cancer Dataset (WBCD), which was taken from the University of California, Irvine Machine-Learning Repository. We used 3-fold cross validation method to train and test the dataset. According to the results, the maximum test classification accuracy was reported as 97.35% by using of gaussian-euclidean hybrid function for fold-3. Also, mean of test classification accuracies for all of functions were obtained as 94.78%, 94.45% and 95.31% with use of euclidean, gaussian and gaussian-euclidean, respectively. With these results, gaussian-euclidean hybrid function seems to be a potential distance calculation method, and it may be considered as an alternative distance calculation method for hard nonlinear classification problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20immune%20system" title="artificial immune system">artificial immune system</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer%20diagnosis" title=" breast cancer diagnosis"> breast cancer diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=Euclidean%20function" title=" Euclidean function"> Euclidean function</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20function" title=" Gaussian function"> Gaussian function</a> </p> <a href="https://publications.waset.org/abstracts/5135/use-of-gaussian-euclidean-hybrid-function-based-artificial-immune-system-for-breast-cancer-diagnosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5135.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5877</span> System of Linear Equations, Gaussian Elimination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rabia%20Khan">Rabia Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Nargis%20Munir"> Nargis Munir</a>, <a href="https://publications.waset.org/abstracts/search?q=Suriya%20Gharib"> Suriya Gharib</a>, <a href="https://publications.waset.org/abstracts/search?q=Syeda%20Roshana%20Ali"> Syeda Roshana Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper linear equations are discussed in detail along with elimination method. Gaussian elimination and Gauss Jordan schemes are carried out to solve the linear system of equation. This paper comprises of matrix introduction, and the direct methods for linear equations. The goal of this research was to analyze different elimination techniques of linear equations and measure the performance of Gaussian elimination and Gauss Jordan method, in order to find their relative importance and advantage in the field of symbolic and numeric computation. The purpose of this research is to revise an introductory concept of linear equations, matrix theory and forms of Gaussian elimination through which the performance of Gauss Jordan and Gaussian elimination can be measured. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=direct" title="direct">direct</a>, <a href="https://publications.waset.org/abstracts/search?q=indirect" title=" indirect"> indirect</a>, <a href="https://publications.waset.org/abstracts/search?q=backward%20stage" title=" backward stage"> backward stage</a>, <a href="https://publications.waset.org/abstracts/search?q=forward%20stage" title=" forward stage"> forward stage</a> </p> <a href="https://publications.waset.org/abstracts/33569/system-of-linear-equations-gaussian-elimination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33569.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">596</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5876</span> Self-Action Effects of a Non-Gaussian Laser Beam Through Plasma </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20Kumar">Sandeep Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Naveen%20Gupta"> Naveen Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The propagation of the Non-Gaussian laser beam results in strong self-focusing as compare to the Gaussian laser beam, which helps to achieve a prerequisite of the plasma-based electron, Terahertz generation, and higher harmonic generations. The theoretical investigation on the evolution of non-Gaussian laser beam through the collisional plasma with ramped density has been presented. The non-uniform irradiance over the cross-section of the laser beam results in redistribution of the carriers that modifies the optical response of the plasma in such a way that the plasma behaves like a converging lens to the laser beam. The formulation is based on finding a semi-analytical solution of the nonlinear Schrodinger wave equation (NLSE) with the help of variational theory. It has been observed that the decentred parameter ‘q’ of laser and wavenumber of ripples of medium contribute to providing the required conditions for the improvement of self-focusing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-Gaussian%20beam" title="non-Gaussian beam">non-Gaussian beam</a>, <a href="https://publications.waset.org/abstracts/search?q=collisional%20plasma" title=" collisional plasma"> collisional plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=variational%20theory" title=" variational theory"> variational theory</a>, <a href="https://publications.waset.org/abstracts/search?q=self-focusing" title=" self-focusing"> self-focusing</a> </p> <a href="https://publications.waset.org/abstracts/124754/self-action-effects-of-a-non-gaussian-laser-beam-through-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124754.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5875</span> Marker-Controlled Level-Set for Segmenting Breast Tumor from Thermal Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Swathi%20Gopakumar">Swathi Gopakumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sruthi%20Krishna"> Sruthi Krishna</a>, <a href="https://publications.waset.org/abstracts/search?q=Shivasubramani%20Krishnamoorthy"> Shivasubramani Krishnamoorthy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Contactless, painless and radiation-free thermal imaging technology is one of the preferred screening modalities for detection of breast cancer. However, poor signal to noise ratio and the inexorable need to preserve edges defining cancer cells and normal cells, make the segmentation process difficult and hence unsuitable for computer-aided diagnosis of breast cancer. This paper presents key findings from a research conducted on the appraisal of two promising techniques, for the detection of breast cancer: (I) marker-controlled, Level-set segmentation of anisotropic diffusion filtered preprocessed image versus (II) Segmentation using marker-controlled level-set on a Gaussian-filtered image. Gaussian-filtering processes the image uniformly, whereas anisotropic filtering processes only in specific areas of a thermographic image. The pre-processed (Gaussian-filtered and anisotropic-filtered) images of breast samples were then applied for segmentation. The segmentation of breast starts with initial level-set function. In this study, marker refers to the position of the image to which initial level-set function is applied. The markers are generally placed on the left and right side of the breast, which may vary with the breast size. The proposed method was carried out on images from an online database with samples collected from women of varying breast characteristics. It was observed that the breast was able to be segmented out from the background by adjustment of the markers. From the results, it was observed that as a pre-processing technique, anisotropic filtering with level-set segmentation, preserved the edges more effectively than Gaussian filtering. Segmented image, by application of anisotropic filtering was found to be more suitable for feature extraction, enabling automated computer-aided diagnosis of breast cancer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anisotropic%20diffusion" title="anisotropic diffusion">anisotropic diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=breast" title=" breast"> breast</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian" title=" Gaussian"> Gaussian</a>, <a href="https://publications.waset.org/abstracts/search?q=level-set" title=" level-set"> level-set</a>, <a href="https://publications.waset.org/abstracts/search?q=thermograms" title=" thermograms"> thermograms</a> </p> <a href="https://publications.waset.org/abstracts/85030/marker-controlled-level-set-for-segmenting-breast-tumor-from-thermal-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85030.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5874</span> Adaptive Target Detection of High-Range-Resolution Radar in Non-Gaussian Clutter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lina%20Pan">Lina Pan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In non-Gaussian clutter of a spherically invariant random vector, in the cases that a certain estimated covariance matrix could become singular, the adaptive target detection of high-range-resolution radar is addressed. Firstly, the restricted maximum likelihood (RML) estimates of unknown covariance matrix and scatterer amplitudes are derived for non-Gaussian clutter. And then the RML estimate of texture is obtained. Finally, a novel detector is devised. It is showed that, without secondary data, the proposed detector outperforms the existing Kelly binary integrator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-Gaussian%20clutter" title="non-Gaussian clutter">non-Gaussian clutter</a>, <a href="https://publications.waset.org/abstracts/search?q=covariance%20matrix%20estimation" title=" covariance matrix estimation"> covariance matrix estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=target%20detection" title=" target detection"> target detection</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20likelihood" title=" maximum likelihood"> maximum likelihood</a> </p> <a href="https://publications.waset.org/abstracts/24879/adaptive-target-detection-of-high-range-resolution-radar-in-non-gaussian-clutter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24879.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5873</span> Least Squares Solution for Linear Quadratic Gaussian Problem with Stochastic Approximation Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sie%20Long%20Kek">Sie Long Kek</a>, <a href="https://publications.waset.org/abstracts/search?q=Wah%20June%20Leong"> Wah June Leong</a>, <a href="https://publications.waset.org/abstracts/search?q=Kok%20Lay%20Teo"> Kok Lay Teo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Linear quadratic Gaussian model is a standard mathematical model for the stochastic optimal control problem. The combination of the linear quadratic estimation and the linear quadratic regulator allows the state estimation and the optimal control policy to be designed separately. This is known as the separation principle. In this paper, an efficient computational method is proposed to solve the linear quadratic Gaussian problem. In our approach, the Hamiltonian function is defined, and the necessary conditions are derived. In addition to this, the output error is defined and the least-square optimization problem is introduced. By determining the first-order necessary condition, the gradient of the sum squares of output error is established. On this point of view, the stochastic approximation approach is employed such that the optimal control policy is updated. Within a given tolerance, the iteration procedure would be stopped and the optimal solution of the linear-quadratic Gaussian problem is obtained. For illustration, an example of the linear-quadratic Gaussian problem is studied. The result shows the efficiency of the approach proposed. In conclusion, the applicability of the approach proposed for solving the linear quadratic Gaussian problem is highly demonstrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=iteration%20procedure" title="iteration procedure">iteration procedure</a>, <a href="https://publications.waset.org/abstracts/search?q=least%20squares%20solution" title=" least squares solution"> least squares solution</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20quadratic%20Gaussian" title=" linear quadratic Gaussian"> linear quadratic Gaussian</a>, <a href="https://publications.waset.org/abstracts/search?q=output%20error" title=" output error"> output error</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20approximation" title=" stochastic approximation"> stochastic approximation</a> </p> <a href="https://publications.waset.org/abstracts/113018/least-squares-solution-for-linear-quadratic-gaussian-problem-with-stochastic-approximation-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5872</span> Learning the Dynamics of Articulated Tracked Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mario%20Gianni">Mario Gianni</a>, <a href="https://publications.waset.org/abstracts/search?q=Manuel%20A.%20Ruiz%20Garcia"> Manuel A. Ruiz Garcia</a>, <a href="https://publications.waset.org/abstracts/search?q=Fiora%20Pirri"> Fiora Pirri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we present a Bayesian non-parametric approach to model the motion control of ATVs. The motion control model is based on a Dirichlet Process-Gaussian Process (DP-GP) mixture model. The DP-GP mixture model provides a flexible representation of patterns of control manoeuvres along trajectories of different lengths and discretizations. The model also estimates the number of patterns, sufficient for modeling the dynamics of the ATV. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dirichlet%20processes" title="Dirichlet processes">Dirichlet processes</a>, <a href="https://publications.waset.org/abstracts/search?q=gaussian%20mixture%20models" title=" gaussian mixture models"> gaussian mixture models</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20motion%20patterns" title=" learning motion patterns"> learning motion patterns</a>, <a href="https://publications.waset.org/abstracts/search?q=tracked%20robots%20for%20urban%20search%20and%20rescue" title=" tracked robots for urban search and rescue"> tracked robots for urban search and rescue</a> </p> <a href="https://publications.waset.org/abstracts/45613/learning-the-dynamics-of-articulated-tracked-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5871</span> The Extended Skew Gaussian Process for Regression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20T.%20Alodat">M. T. Alodat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose a generalization to the Gaussian process regression(GPR) model called the extended skew Gaussian process for regression(ESGPr) model. The ESGPR model works better than the GPR model when the errors are skewed. We derive the predictive distribution for the ESGPR model at a new input. Also we apply the ESGPR model to FOREX data and we find that it fits the Forex data better than the GPR model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extended%20skew%20normal%20distribution" title="extended skew normal distribution">extended skew normal distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20process%20for%20regression" title=" Gaussian process for regression"> Gaussian process for regression</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20distribution" title=" predictive distribution"> predictive distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=ESGPr%20model" title=" ESGPr model"> ESGPr model</a> </p> <a href="https://publications.waset.org/abstracts/2233/the-extended-skew-gaussian-process-for-regression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2233.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">553</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5870</span> Interaction of Tungsten Tips with Laguerre-Gaussian Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhisek%20Sinha">Abhisek Sinha</a>, <a href="https://publications.waset.org/abstracts/search?q=Debobrata%20Rajak"> Debobrata Rajak</a>, <a href="https://publications.waset.org/abstracts/search?q=Shilpa%20Rani"> Shilpa Rani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ram%20Gopal"> Ram Gopal</a>, <a href="https://publications.waset.org/abstracts/search?q=Vandana%20Sharma"> Vandana Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The interaction of femtosecond laser pulses with metallic tips has been studied extensively, and they have proved to be a very good source of ultrashort electron pulses. A study of the interaction of femtosecond Laguerre-Gaussian (LG) laser modes with Tungsten tips is presented here. Laser pulses of 35 fs pulse durations were incident on Tungsten tips, and their electron emission rates were studied for LG (l=1, p=0) and Gaussian modes. A change in the order of the interaction for LG beams is reported, and the difference in the order of interaction is attributed to ponderomotive shifts in the energy levels corresponding to the enhanced near-field intensity supported by numerical simulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=femtosecond" title="femtosecond">femtosecond</a>, <a href="https://publications.waset.org/abstracts/search?q=Laguerre-Gaussian" title=" Laguerre-Gaussian"> Laguerre-Gaussian</a>, <a href="https://publications.waset.org/abstracts/search?q=OAM" title=" OAM"> OAM</a>, <a href="https://publications.waset.org/abstracts/search?q=tip" title=" tip"> tip</a> </p> <a href="https://publications.waset.org/abstracts/139164/interaction-of-tungsten-tips-with-laguerre-gaussian-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139164.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5869</span> ML-Based Blind Frequency Offset Estimation Schemes for OFDM Systems in Non-Gaussian Noise Environments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keunhong%20Chae">Keunhong Chae</a>, <a href="https://publications.waset.org/abstracts/search?q=Seokho%20Yoon"> Seokho Yoon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes frequency offset (FO) estimation schemes robust to the non-Gaussian noise for orthogonal frequency division multiplexing (OFDM) systems. A maximum-likelihood (ML) scheme and a low-complexity estimation scheme are proposed by applying the probability density function of the cyclic prefix of OFDM symbols to the ML criterion. From simulation results, it is confirmed that the proposed schemes offer a significant FO estimation performance improvement over the conventional estimation scheme in non-Gaussian noise environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frequency%20offset" title="frequency offset">frequency offset</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20prefix" title=" cyclic prefix"> cyclic prefix</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum-likelihood" title=" maximum-likelihood"> maximum-likelihood</a>, <a href="https://publications.waset.org/abstracts/search?q=non-Gaussian%0D%0Anoise" title=" non-Gaussian noise"> non-Gaussian noise</a>, <a href="https://publications.waset.org/abstracts/search?q=OFDM" title=" OFDM"> OFDM</a> </p> <a href="https://publications.waset.org/abstracts/10266/ml-based-blind-frequency-offset-estimation-schemes-for-ofdm-systems-in-non-gaussian-noise-environments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10266.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">476</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5868</span> Generative AI: A Comparison of Conditional Tabular Generative Adversarial Networks and Conditional Tabular Generative Adversarial Networks with Gaussian Copula in Generating Synthetic Data with Synthetic Data Vault</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lakshmi%20Prayaga">Lakshmi Prayaga</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandra%20Prayaga.%20Aaron%20Wade"> Chandra Prayaga. Aaron Wade</a>, <a href="https://publications.waset.org/abstracts/search?q=Gopi%20Shankar%20Mallu"> Gopi Shankar Mallu</a>, <a href="https://publications.waset.org/abstracts/search?q=Harsha%20Satya%20Pola"> Harsha Satya Pola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synthetic data generated by Generative Adversarial Networks and Autoencoders is becoming more common to combat the problem of insufficient data for research purposes. However, generating synthetic data is a tedious task requiring extensive mathematical and programming background. Open-source platforms such as the Synthetic Data Vault (SDV) and Mostly AI have offered a platform that is user-friendly and accessible to non-technical professionals to generate synthetic data to augment existing data for further analysis. The SDV also provides for additions to the generic GAN, such as the Gaussian copula. We present the results from two synthetic data sets (CTGAN data and CTGAN with Gaussian Copula) generated by the SDV and report the findings. The results indicate that the ROC and AUC curves for the data generated by adding the layer of Gaussian copula are much higher than the data generated by the CTGAN. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=synthetic%20data%20generation" title="synthetic data generation">synthetic data generation</a>, <a href="https://publications.waset.org/abstracts/search?q=generative%20adversarial%20networks" title=" generative adversarial networks"> generative adversarial networks</a>, <a href="https://publications.waset.org/abstracts/search?q=conditional%20tabular%20GAN" title=" conditional tabular GAN"> conditional tabular GAN</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20copula" title=" Gaussian copula"> Gaussian copula</a> </p> <a href="https://publications.waset.org/abstracts/183000/generative-ai-a-comparison-of-conditional-tabular-generative-adversarial-networks-and-conditional-tabular-generative-adversarial-networks-with-gaussian-copula-in-generating-synthetic-data-with-synthetic-data-vault" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5867</span> Physically Informed Kernels for Wave Loading Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20James%20Pitchforth">Daniel James Pitchforth</a>, <a href="https://publications.waset.org/abstracts/search?q=Timothy%20James%20Rogers"> Timothy James Rogers</a>, <a href="https://publications.waset.org/abstracts/search?q=Ulf%20Tyge%20Tygesen"> Ulf Tyge Tygesen</a>, <a href="https://publications.waset.org/abstracts/search?q=Elizabeth%20Jane%20Cross"> Elizabeth Jane Cross</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wave loading is a primary cause of fatigue within offshore structures and its quantification presents a challenging and important subtask within the SHM framework. The accurate representation of physics in such environments is difficult, however, driving the development of data-driven techniques in recent years. Within many industrial applications, empirical laws remain the preferred method of wave loading prediction due to their low computational cost and ease of implementation. This paper aims to develop an approach that combines data-driven Gaussian process models with physical empirical solutions for wave loading, including Morison’s Equation. The aim here is to incorporate physics directly into the covariance function (kernel) of the Gaussian process, enforcing derived behaviors whilst still allowing enough flexibility to account for phenomena such as vortex shedding, which may not be represented within the empirical laws. The combined approach has a number of advantages, including improved performance over either component used independently and interpretable hyperparameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=offshore%20structures" title="offshore structures">offshore structures</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20processes" title=" Gaussian processes"> Gaussian processes</a>, <a href="https://publications.waset.org/abstracts/search?q=Physics%20informed%20machine%20learning" title=" Physics informed machine learning"> Physics informed machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=Kernel%20design" title=" Kernel design"> Kernel design</a> </p> <a href="https://publications.waset.org/abstracts/146250/physically-informed-kernels-for-wave-loading-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146250.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5866</span> Virtual Assessment of Measurement Error in the Fractional Flow Reserve</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keltoum%20Chahour">Keltoum Chahour</a>, <a href="https://publications.waset.org/abstracts/search?q=Mickael%20Binois"> Mickael Binois</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to a lack of standardization during the invasive fractional flow reserve (FFR) procedure, the index is subject to many sources of uncertainties. In this paper, we investigate -through simulation- the effect of the (FFR) device position and configuration on the obtained value of the (FFR) fraction. For this purpose, we use computational fluid dynamics (CFD) in a 3D domain corresponding to a diseased arterial portion. The (FFR) pressure captor is introduced inside it with a given length and coefficient of bending to capture the (FFR) value. To get over the computational limitations, basically, the time of the simulation is about 2h 15min for one (FFR) value; we generate a Gaussian Process (GP) model for (FFR) prediction. The (GP) model indicates good accuracy and demonstrates the effective error in the measurement created by the random configuration of the pressure captor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractional%20flow%20reserve" title="fractional flow reserve">fractional flow reserve</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20processes" title=" Gaussian processes"> Gaussian processes</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=drift" title=" drift"> drift</a> </p> <a href="https://publications.waset.org/abstracts/158055/virtual-assessment-of-measurement-error-in-the-fractional-flow-reserve" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158055.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5865</span> Machine Learning Analysis of Student Success in Introductory Calculus Based Physics I Course</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chandra%20Prayaga">Chandra Prayaga</a>, <a href="https://publications.waset.org/abstracts/search?q=Aaron%20Wade"> Aaron Wade</a>, <a href="https://publications.waset.org/abstracts/search?q=Lakshmi%20Prayaga"> Lakshmi Prayaga</a>, <a href="https://publications.waset.org/abstracts/search?q=Gopi%20Shankar%20Mallu"> Gopi Shankar Mallu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the use of machine learning algorithms to predict the success of students in an introductory physics course. Data having 140 rows pertaining to the performance of two batches of students was used. The lack of sufficient data to train robust machine learning models was compensated for by generating synthetic data similar to the real data. CTGAN and CTGAN with Gaussian Copula (Gaussian) were used to generate synthetic data, with the real data as input. To check the similarity between the real data and each synthetic dataset, pair plots were made. The synthetic data was used to train machine learning models using the PyCaret package. For the CTGAN data, the Ada Boost Classifier (ADA) was found to be the ML model with the best fit, whereas the CTGAN with Gaussian Copula yielded Logistic Regression (LR) as the best model. Both models were then tested for accuracy with the real data. ROC-AUC analysis was performed for all the ten classes of the target variable (Grades A, A-, B+, B, B-, C+, C, C-, D, F). The ADA model with CTGAN data showed a mean AUC score of 0.4377, but the LR model with the Gaussian data showed a mean AUC score of 0.6149. ROC-AUC plots were obtained for each Grade value separately. The LR model with Gaussian data showed consistently better AUC scores compared to the ADA model with CTGAN data, except in two cases of the Grade value, C- and A-. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title="machine learning">machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=student%20success" title=" student success"> student success</a>, <a href="https://publications.waset.org/abstracts/search?q=physics%20course" title=" physics course"> physics course</a>, <a href="https://publications.waset.org/abstracts/search?q=grades" title=" grades"> grades</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20data" title=" synthetic data"> synthetic data</a>, <a href="https://publications.waset.org/abstracts/search?q=CTGAN" title=" CTGAN"> CTGAN</a>, <a href="https://publications.waset.org/abstracts/search?q=gaussian%20copula%20CTGAN" title=" gaussian copula CTGAN"> gaussian copula CTGAN</a> </p> <a href="https://publications.waset.org/abstracts/183001/machine-learning-analysis-of-student-success-in-introductory-calculus-based-physics-i-course" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183001.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">44</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5864</span> Unsupervised Reciter Recognition Using Gaussian Mixture Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Alwosheel">Ahmad Alwosheel</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Alqaraawi"> Ahmed Alqaraawi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work proposes an unsupervised text-independent probabilistic approach to recognize Quran reciter voice. It is an accurate approach that works on real time applications. This approach does not require a prior information about reciter models. It has two phases, where in the training phase the reciters' acoustical features are modeled using Gaussian Mixture Models, while in the testing phase, unlabeled reciter's acoustical features are examined among GMM models. Using this approach, a high accuracy results are achieved with efficient computation time process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Quran" title="Quran">Quran</a>, <a href="https://publications.waset.org/abstracts/search?q=speaker%20recognition" title=" speaker recognition"> speaker recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=reciter%20recognition" title=" reciter recognition"> reciter recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20Mixture%20Model" title=" Gaussian Mixture Model"> Gaussian Mixture Model</a> </p> <a href="https://publications.waset.org/abstracts/46532/unsupervised-reciter-recognition-using-gaussian-mixture-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5863</span> Second Harmonic Generation of Higher-Order Gaussian Laser Beam in Density Rippled Plasma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jyoti%20Wadhwa">Jyoti Wadhwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Arvinder%20Singh"> Arvinder Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents the theoretical investigation of an enhanced second-harmonic generation of higher-order Gaussian laser beam in plasma having a density ramp. The mechanism responsible for the self-focusing of a laser beam in plasma is considered to be the relativistic mass variation of plasma electrons under the effect of a highly intense laser beam. Using the moment theory approach and considering the Wentzel-Kramers-Brillouin approximation for the non-linear Schrodinger wave equation, the differential equation is derived, which governs the spot size of the higher-order Gaussian laser beam in plasma. The nonlinearity induced by the laser beam creates the density gradient in the background plasma electrons, which is responsible for the excitation of the electron plasma wave. The large amplitude electron plasma wave interacts with the fundamental beam, which further produces the coherent radiations with double the frequency of the incident beam. The analysis shows the important role of the different modes of higher-order Gaussian laser beam and density ramp on the efficiency of generated harmonics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=density%20rippled%20plasma" title="density rippled plasma">density rippled plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=higher%20order%20Gaussian%20laser%20beam" title=" higher order Gaussian laser beam"> higher order Gaussian laser beam</a>, <a href="https://publications.waset.org/abstracts/search?q=moment%20theory%20approach" title=" moment theory approach"> moment theory approach</a>, <a href="https://publications.waset.org/abstracts/search?q=second%20harmonic%20generation." title=" second harmonic generation. "> second harmonic generation. </a> </p> <a href="https://publications.waset.org/abstracts/124846/second-harmonic-generation-of-higher-order-gaussian-laser-beam-in-density-rippled-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124846.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5862</span> Stimulated Raman Scattering of Ultra Intense Hollow Gaussian Beam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prerana%20Sharma">Prerana Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effect of relativistic nonlinearity on stimulated Raman scattering of the propagating laser beam carrying null intensity in center (hollow Gaussian beam) by excited plasma wave are studied in a collisionless plasma. The construction of the equations is done employing the fluid theory which is developed with partial differential equation and Maxwell’s equations. The analysis is done using eikonal method. The phenonmenon of Stimulated Raman scattering is shown along with the excitation of seed plasma wave. The power of plasma wave and back reflectivity is observed for higher order of hollow Gaussian beam. Back reflectivity is studied numerically for various orders of HGLB with different value of plasma density, laser power and beam radius. Numerical analysis shows that these parameters play vital role on reflectivity characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hollow%20Gaussian%20beam" title="Hollow Gaussian beam">Hollow Gaussian beam</a>, <a href="https://publications.waset.org/abstracts/search?q=relativistic%20nonlinearity" title=" relativistic nonlinearity"> relativistic nonlinearity</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20physics" title=" plasma physics"> plasma physics</a>, <a href="https://publications.waset.org/abstracts/search?q=Raman%20scattering" title=" Raman scattering"> Raman scattering</a> </p> <a href="https://publications.waset.org/abstracts/15768/stimulated-raman-scattering-of-ultra-intense-hollow-gaussian-beam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15768.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">638</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5861</span> Solving Single Machine Total Weighted Tardiness Problem Using Gaussian Process Regression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wanatchapong%20Kongkaew">Wanatchapong Kongkaew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes an application of probabilistic technique, namely Gaussian process regression, for estimating an optimal sequence of the single machine with total weighted tardiness (SMTWT) scheduling problem. In this work, the Gaussian process regression (GPR) model is utilized to predict an optimal sequence of the SMTWT problem, and its solution is improved by using an iterated local search based on simulated annealing scheme, called GPRISA algorithm. The results show that the proposed GPRISA method achieves a very good performance and a reasonable trade-off between solution quality and time consumption. Moreover, in the comparison of deviation from the best-known solution, the proposed mechanism noticeably outperforms the recently existing approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20process%20regression" title="Gaussian process regression">Gaussian process regression</a>, <a href="https://publications.waset.org/abstracts/search?q=iterated%20local%20search" title=" iterated local search"> iterated local search</a>, <a href="https://publications.waset.org/abstracts/search?q=simulated%20annealing" title=" simulated annealing"> simulated annealing</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20machine%20total%20weighted%20tardiness" title=" single machine total weighted tardiness"> single machine total weighted tardiness</a> </p> <a href="https://publications.waset.org/abstracts/6433/solving-single-machine-total-weighted-tardiness-problem-using-gaussian-process-regression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5860</span> Facial Expression Recognition Using Sparse Gaussian Conditional Random Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammadamin%20Abbasnejad">Mohammadamin Abbasnejad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The analysis of expression and facial Action Units (AUs) detection are very important tasks in fields of computer vision and Human Computer Interaction (HCI) due to the wide range of applications in human life. Many works have been done during the past few years which has their own advantages and disadvantages. In this work, we present a new model based on Gaussian Conditional Random Field. We solve our objective problem using ADMM and we show how well the proposed model works. We train and test our work on two facial expression datasets, CK+, and RU-FACS. Experimental evaluation shows that our proposed approach outperform state of the art expression recognition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20Conditional%20Random%20Field" title="Gaussian Conditional Random Field">Gaussian Conditional Random Field</a>, <a href="https://publications.waset.org/abstracts/search?q=ADMM" title=" ADMM"> ADMM</a>, <a href="https://publications.waset.org/abstracts/search?q=convergence" title=" convergence"> convergence</a>, <a href="https://publications.waset.org/abstracts/search?q=gradient%20descent" title=" gradient descent"> gradient descent</a> </p> <a href="https://publications.waset.org/abstracts/26245/facial-expression-recognition-using-sparse-gaussian-conditional-random-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26245.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5859</span> Novel Inference Algorithm for Gaussian Process Classification Model with Multiclass and Its Application to Human Action Classification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wanhyun%20Cho">Wanhyun Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Soonja%20Kang"> Soonja Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sangkyoon%20Kim"> Sangkyoon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Soonyoung%20Park"> Soonyoung Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose a novel inference algorithm for the multi-class Gaussian process classification model that can be used in the field of human behavior recognition. This algorithm can drive simultaneously both a posterior distribution of a latent function and estimators of hyper-parameters in a Gaussian process classification model with multi-class. Our algorithm is based on the Laplace approximation (LA) technique and variational EM framework. This is performed in two steps: called expectation and maximization steps. First, in the expectation step, using the Bayesian formula and LA technique, we derive approximately the posterior distribution of the latent function indicating the possibility that each observation belongs to a certain class in the Gaussian process classification model. Second, in the maximization step, using a derived posterior distribution of latent function, we compute the maximum likelihood estimator for hyper-parameters of a covariance matrix necessary to define prior distribution for latent function. These two steps iteratively repeat until a convergence condition satisfies. Moreover, we apply the proposed algorithm with human action classification problem using a public database, namely, the KTH human action data set. Experimental results reveal that the proposed algorithm shows good performance on this data set. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bayesian%20rule" title="bayesian rule">bayesian rule</a>, <a href="https://publications.waset.org/abstracts/search?q=gaussian%20process%20classification%20model%20with%20multiclass" title=" gaussian process classification model with multiclass"> gaussian process classification model with multiclass</a>, <a href="https://publications.waset.org/abstracts/search?q=gaussian%20process%20prior" title=" gaussian process prior"> gaussian process prior</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20action%20classification" title=" human action classification"> human action classification</a>, <a href="https://publications.waset.org/abstracts/search?q=laplace%20approximation" title=" laplace approximation"> laplace approximation</a>, <a href="https://publications.waset.org/abstracts/search?q=variational%20EM%20algorithm" title=" variational EM algorithm"> variational EM algorithm</a> </p> <a href="https://publications.waset.org/abstracts/34103/novel-inference-algorithm-for-gaussian-process-classification-model-with-multiclass-and-its-application-to-human-action-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34103.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5858</span> Fast Bayesian Inference of Multivariate Block-Nearest Neighbor Gaussian Process (NNGP) Models for Large Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Gonzales">Carlos Gonzales</a>, <a href="https://publications.waset.org/abstracts/search?q=Zaida%20Quiroz"> Zaida Quiroz</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcos%20Prates"> Marcos Prates</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several spatial variables collected at the same location that share a common spatial distribution can be modeled simultaneously through a multivariate geostatistical model that takes into account the correlation between these variables and the spatial autocorrelation. The main goal of this model is to perform spatial prediction of these variables in the region of study. Here we focus on a geostatistical multivariate formulation that relies on sharing common spatial random effect terms. In particular, the first response variable can be modeled by a mean that incorporates a shared random spatial effect, while the other response variables depend on this shared spatial term, in addition to specific random spatial effects. Each spatial random effect is defined through a Gaussian process with a valid covariance function, but in order to improve the computational efficiency when the data are large, each Gaussian process is approximated to a Gaussian random Markov field (GRMF), specifically to the block nearest neighbor Gaussian process (Block-NNGP). This approach involves dividing the spatial domain into several dependent blocks under certain constraints, where the cross blocks allow capturing the spatial dependence on a large scale, while each individual block captures the spatial dependence on a smaller scale. The multivariate geostatistical model belongs to the class of Latent Gaussian Models; thus, to achieve fast Bayesian inference, it is used the integrated nested Laplace approximation (INLA) method. The good performance of the proposed model is shown through simulations and applications for massive data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Block-NNGP" title="Block-NNGP">Block-NNGP</a>, <a href="https://publications.waset.org/abstracts/search?q=geostatistics" title=" geostatistics"> geostatistics</a>, <a href="https://publications.waset.org/abstracts/search?q=gaussian%20process" title=" gaussian process"> gaussian process</a>, <a href="https://publications.waset.org/abstracts/search?q=GRMF" title=" GRMF"> GRMF</a>, <a href="https://publications.waset.org/abstracts/search?q=INLA" title=" INLA"> INLA</a>, <a href="https://publications.waset.org/abstracts/search?q=multivariate%20models." title=" multivariate models."> multivariate models.</a> </p> <a href="https://publications.waset.org/abstracts/170871/fast-bayesian-inference-of-multivariate-block-nearest-neighbor-gaussian-process-nngp-models-for-large-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170871.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5857</span> Multinomial Dirichlet Gaussian Process Model for Classification of Multidimensional Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wanhyun%20Cho">Wanhyun Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Soonja%20Kang"> Soonja Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanggoon%20Kim"> Sanggoon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Soonyoung%20Park"> Soonyoung Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present probabilistic multinomial Dirichlet classification model for multidimensional data and Gaussian process priors. Here, we have considered an efficient computational method that can be used to obtain the approximate posteriors for latent variables and parameters needed to define the multiclass Gaussian process classification model. We first investigated the process of inducing a posterior distribution for various parameters and latent function by using the variational Bayesian approximations and important sampling method, and next we derived a predictive distribution of latent function needed to classify new samples. The proposed model is applied to classify the synthetic multivariate dataset in order to verify the performance of our model. Experiment result shows that our model is more accurate than the other approximation methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multinomial%20dirichlet%20classification%20model" title="multinomial dirichlet classification model">multinomial dirichlet classification model</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20process%20priors" title=" Gaussian process priors"> Gaussian process priors</a>, <a href="https://publications.waset.org/abstracts/search?q=variational%20Bayesian%20approximation" title=" variational Bayesian approximation"> variational Bayesian approximation</a>, <a href="https://publications.waset.org/abstracts/search?q=importance%20sampling" title=" importance sampling"> importance sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=approximate%20posterior%20distribution" title=" approximate posterior distribution"> approximate posterior distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=marginal%20likelihood%20evidence" title=" marginal likelihood evidence"> marginal likelihood evidence</a> </p> <a href="https://publications.waset.org/abstracts/33816/multinomial-dirichlet-gaussian-process-model-for-classification-of-multidimensional-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33816.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Gaussian%20processes&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Gaussian%20processes&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Gaussian%20processes&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Gaussian%20processes&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Gaussian%20processes&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Gaussian%20processes&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Gaussian%20processes&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Gaussian%20processes&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Gaussian%20processes&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Gaussian%20processes&page=196">196</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Gaussian%20processes&page=197">197</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Gaussian%20processes&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>