CINXE.COM

ACP - Upper-stratospheric temperature trends: new results from the Optical Spectrograph and InfraRed Imager System (OSIRIS)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <!--[if lt IE 7]> <html xmlns="https://www.w3.org/1999/xhtml" xml:lang="en" lang="en" class="no-js lt-ie9 lt-ie8 lt-ie7 co-ui"> <![endif]--> <!--[if IE 7]> <html xmlns="https://www.w3.org/1999/xhtml" xml:lang="en" lang="en" class="no-js lt-ie9 lt-ie8 co-ui"> <![endif]--> <!--[if IE 8]> <html xmlns="https://www.w3.org/1999/xhtml" xml:lang="en" lang="en" class="no-js lt-ie9 co-ui"> <![endif]--> <!--[if gt IE 8]><!--> <html xmlns="https://www.w3.org/1999/xhtml" xml:lang="en" lang="en" class="no-js co-ui"> <!--<![endif]--> <!-- remove class no-js if js is available --><head> <!-- BEGIN_HEAD --> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <meta name="theme-color" content="#000000" /> <meta name="application-name" content="1" /> <meta name="msapplication-TileColor" content="#FFFFFF" /> <link rel="preconnect" crossorigin="" href="https://contentmanager.copernicus.org/" /><link rel="icon" size="16x16" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_16x16_.ico" type="image/x-icon" /><link rel="icon" size="24x24" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_24x24_.ico" type="image/x-icon" /><link rel="icon" size="32x32" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_32x32_.ico" type="image/x-icon" /><link rel="icon" size="48x48" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_48x48_.ico" type="image/x-icon" /><link rel="icon" size="64x64" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_64x64_.ico" type="image/x-icon" /><link rel="icon" size="228x228" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_228x228_.png" type="image/png-icon" /><link rel="icon" size="195x195" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_195x195_.png" type="image/png-icon" /><link rel="icon" size="196x196" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_196x196_.png" type="image/png-icon" /><link rel="icon" size="128x128" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_128x128_.png" type="image/png-icon" /><link rel="icon" size="96x96" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_96x96_.png" type="image/png-icon" /><link rel="apple-touch-icon-precomposed" size="180x180" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_180x180_.png" type="image/png-icon" /><link rel="apple-touch-icon-precomposed" size="120x120" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_120x120_.png" type="image/png-icon" /><link rel="apple-touch-icon-precomposed" size="152x152" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_152x152_.png" type="image/png-icon" /><link rel="apple-touch-icon-precomposed" size="76x76" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_76x76_.png" type="image/png-icon" /><link rel="apple-touch-icon-precomposed" size="57x57" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_57x57_.ico" type="image/png-icon" /><link rel="apple-touch-icon-precomposed" size="144x144" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_144x144_.png" type="image/png-icon" /><script type="text/javascript" src="https://cdn.copernicus.org/libraries/mustache/2.3.0/mustache.min.js"></script><script type="text/javascript" src="https://cdn.copernicus.org/libraries/jquery/1.11.1/jquery.min.js"></script><script type="text/javascript" src="https://cdn.copernicus.org/js/copernicus.min.js"></script><script type="text/javascript" src="https://cdn.copernicus.org/apps/htmlgenerator/js/htmlgenerator-v2.js"></script><script type="text/javascript" src="https://cdn.copernicus.org/libraries/photoswipe/4.1/photoswipe.min.js"></script><script type="text/javascript" src="https://cdn.copernicus.org/libraries/photoswipe/4.1/photoswipe-ui-default.min.js"></script><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/libraries/dszparallexer/dzsparallaxer.css" /><script type="text/javascript" src="https://cdn.copernicus.org/libraries/dszparallexer/dzsparallaxer.js"></script><link rel="stylesheet" type="text/css" media="all" id="hasBootstrap" href="https://cdn.copernicus.org/libraries/bootstrap/current/css/bootstrap.min.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/libraries/bootstrap/current/css/bootstrap-media.min.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/libraries/bootstrap/current/css/bootstrap-grid.min.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/libraries/bootstrap/current/css/bootstrap-reboot.min.css" /><script type="text/javascript" src="https://cdn.copernicus.org/libraries/bootstrap/current/js/popper.js"></script><script type="text/javascript" src="https://cdn.copernicus.org/libraries/bootstrap/current/js/bootstrap.min.js"></script><link rel="preconnect" crossorigin="" href="https://cdn.copernicus.org/" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/libraries/unsemantic/unsemantic.min.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/libraries/photoswipe/4.1/photoswipe.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/libraries/photoswipe/4.1/dark-icon-skin/dark-icon-skin.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/css/copernicus-min.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/css/fontawesome.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/fonts/FontAwesome/5.11.2_and_4.7.0/css/all.font.css" /><link rel="stylesheet" type="text/css" media="projection, handheld, screen, tty, tv, print" href="https://contentmanager.copernicus.org/237997/10/ssl" /><link rel="stylesheet" type="text/css" media="projection, handheld, screen, tty, tv, print" href="https://contentmanager.copernicus.org/2154804/10/ssl" /><link rel="stylesheet" type="text/css" media="print" href="https://contentmanager.copernicus.org/2154805/10/ssl" /><script src="https://contentmanager.copernicus.org/1672/10/ssl" type="text/javascript"> </script><script src="https://contentmanager.copernicus.org/1468/10/ssl" type="text/javascript"> </script><script src="https://contentmanager.copernicus.org/402/10/ssl" type="text/javascript"> </script><script src="https://contentmanager.copernicus.org/2154808/10/ssl" type="text/javascript"> </script><!-- END_HEAD --><meta name="global_projectID" content="10" /><meta name="global_pageID" content="297" /><meta name="global_pageIdentifier" content="home" /><meta name="global_moBaseURL" content="https://meetingorganizer.copernicus.org/" /><meta name="global_projectShortcut" content="ACP" /><meta name="global_projectDomain" content="https://www.atmospheric-chemistry-and-physics.net/" /> <title>ACP - Upper-stratospheric temperature trends: new results from the Optical Spectrograph and InfraRed Imager System (OSIRIS)</title> <meta name="data-non-mobile-optimized-message" content="" /><script id="networker"> window.isSafari = /^((?!chrome|android).)*safari/i.test(navigator.userAgent); /** * */ function createToastsFunctionality() { const toastsWrapper = $('<div>') .attr('aria-live', 'polite') .attr('aria-atomic', 'true') .addClass('toasts-notifications-wrapper'); $('body').append(toastsWrapper); } function isOS() { return [ 'iPad Simulator', 'iPhone Simulator', 'iPod Simulator', 'iPad', 'iPhone', 'iPod' ].includes(navigator.platform) || (navigator.userAgent.includes("Mac") && "ontouchend" in document) } /** * * @param notificationContent */ function addToast(notificationContent) { const toast = $('<div>').addClass('toast').attr('role', 'alert').attr('aria-live', 'assertive') .attr('aria-atomic', 'true').attr('data-autohide', 'false'); const toastHeader = $('<div>').addClass('toast-header'); const toastHeaderTitle = $('<strong>').addClass('mr-auto').html(notificationContent.title); const toastHeaderCloseButton = $('<button>').addClass('ml-2').addClass('mb-1').addClass('close').attr('type', 'button') .attr('data-dismiss', 'toast'); const toastHeaderCloseIcon = $('<span>').attr('aria-hidden', 'true').html('&times;'); let url = ''; if (notificationContent.hasOwnProperty('url')) { url = notificationContent.url; } else { url = 'https://networker.copernicus.org/my-network'; } const toastBody = $('<div>').addClass('toast-body').html('<a target="_blank" href="' + url + '">' + notificationContent.text + '</a>'); $(toastHeaderCloseButton).append(toastHeaderCloseIcon); $(toastHeader).append(toastHeaderTitle); $(toastHeader).append(toastHeaderCloseButton); $(toast).append(toastHeader); $(toast).append(toastBody); $('.toasts-notifications-wrapper').append(toast); $('.toast').toast('show'); } function coNetworker_sendUsersLocation(location, userHash, publicLabel, projectID, application) { if (templateHasBootstrap()) { createToastsFunctionality(); } userHash = userHash || 'null'; location = location || 'c_content_manager::getProjectTemplateMobileOpt'; publicLabel = publicLabel || ''; if (publicLabel === ''){ publicLabel = location; } if (userHash !== null && userHash.length > 5) { try { if(typeof window.ws === 'undefined' || window.ws === null || !window.ws) { window.ws = new WebSocket('wss://websockets.copernicus.org:8080'); } else { window.ws.close(1000); window.ws = new WebSocket('wss://websockets.copernicus.org:8080'); } const data = { 'type': 'status', 'action': 'start', 'data': { 'userIdentifier': userHash, 'projectID': projectID, 'coApp': application, 'location': location, 'publicLabel': publicLabel } }; if (window.ws === 1) { window.ws.send(JSON.stringify(data)); } else { window.ws.onopen = function (msg) { window.ws.send(JSON.stringify(data)); dispatchEvent(new CustomEvent('loadCommonNetworker')); }; window.ws.onmessage = function (event) { try { const data = JSON.parse(event.data); switch (data.type) { case 'notification': const pushNotificationData = data.data; if (pushNotificationData.hasOwnProperty('user') && pushNotificationData.user.length > 5 && pushNotificationData.user === userHash) { window.showPushNotification(pushNotificationData); } break; } } catch (e) { console.log(e); } } } } catch (e) { console.error(e); } } } window.showPushNotification = function (notificationContent) { showMessage(notificationContent); function showMessage(notificationContent){ if (templateHasBootstrap()) { showBootstrapModal(notificationContent); } } function showBootstrapModal(notificationContent) { const randomId = getRandomInt(100,999); let modal = $('<div>').addClass('modal').attr('id', 'modal-notification' + randomId); let modalDialog = $('<div>').addClass('modal-dialog'); let modalContent = $('<div>').addClass('modal-content'); let modalBody = $('<div>').addClass('modal-body'); let message = $('<div>').addClass('modal-push-message').html('<h3 class="mb-3">' + notificationContent.title + '</h3><p>' + notificationContent.text + '</p>'); let buttonsWrapper = $('<div>').addClass('row'); let buttonsWrapperCol = $('<div>').addClass('col-12').addClass('text-right'); let buttonCancel = $('<button>').addClass('btn').addClass('btn-danger').addClass('mr-2').html('Cancel') let buttonSuccess = $('<button>').addClass('btn').addClass('btn-success').html('OK') $(buttonsWrapper).append(buttonsWrapperCol); $(buttonsWrapperCol).append(buttonCancel); $(buttonsWrapperCol).append(buttonSuccess); $(modalBody).append(message).append(buttonsWrapper); $(modalContent).append(modalBody); $(modalDialog).append(modalContent); $(modal).append(modalDialog); $(buttonCancel).on('click', (event) => { event.preventDefault(); event.stopPropagation(); event.stopImmediatePropagation(); $(modal).modal('hide'); }); $(buttonSuccess).on('click', (event) => { event.preventDefault(); event.stopPropagation(); event.stopImmediatePropagation(); $(modal).modal('hide'); handleOnclickNotification(notificationContent); }); $(modal).modal('show'); setTimeout(() => { dispatchEvent(new CustomEvent('modalLoaded', {'detail': 'modal-notification' + randomId})); }, 1000); } window.addEventListener('modalLoaded', function (event) { setTimeout(() => { $('#' + event.detail).modal('hide'); }, 9000); }); function handleOnclickNotification(notificationContent) { if (notificationContent.hasOwnProperty('withConnect') && notificationContent.withConnect.length > 0) { acceptContactRequest(notificationContent); } if (notificationContent.hasOwnProperty('url')) { if (window.isSafari && isOS()) { window.location.href = notificationContent.url; } else { window.open(notificationContent.url, '_blank').focus(); } } else { if (window.isSafari && isOS()) { window.open('https://networker.copernicus.org/my-network', '_blank'); } else { window.open('https://networker.copernicus.org/my-network', '_blank').focus(); } } } /** * * @param notificationContent */ function acceptContactRequest(notificationContent) { const formData = new FormData(); formData.append('r', notificationContent.userFrom); formData.append('a', 'a'); $.ajax({ url: 'https://networker.copernicus.org/handle-request-job', type: 'POST', data: formData, processData: false, contentType: false, xhrFields: { withCredentials: true }, beforeSend: function () { $('.splash').fadeIn(); $('.lightbox').fadeIn(); } }) .done(function (dataResponse) { const data = JSON.parse(dataResponse); let text = 'Please consider joining the text chat now.'; window.sendPushNotification({ title: window.userDataCommonNetworker.name + ' aims to chat with you.', text: text, user: data.message.userIdentifier, url: notificationContent.url }); $('.splash').fadeOut(); $('.lightbox').fadeOut(); }) .fail(function (error) { $('.splash').fadeOut(); $('.lightbox').fadeOut(); }); } } function templateHasBootstrap() { const bootstrap = document.getElementById('hasBootstrap'); return bootstrap !== null && typeof bootstrap !== 'undefined'; } coNetworker_sendUsersLocation(); dispatchEvent(new CustomEvent('loadCommonNetworker')); function getRandomInt(min, max) { min = Math.ceil(min); max = Math.floor(max); return Math.floor(Math.random() * (max - min + 1)) + min; } </script> <link rel="stylesheet" type="text/css" href="https://cdn.copernicus.org/libraries/photoswipe/4.1/dark-icon-skin/dark-icon-skin.css"> <base href="/"> <link rel="stylesheet" type="text/css" href="https://cdn.copernicus.org/libraries/unsemantic/unsemantic.min.css"> <link rel="stylesheet" type="text/css" href="https://cdn.copernicus.org/libraries/jquery/1.11.1/ui/jquery-ui.min.css"> <link rel="stylesheet" type="text/css" href="https://cdn.copernicus.org/libraries/jquery/1.11.1/ui/jquery-ui-slider-pips.css"> <link rel="stylesheet" type="text/css" href="https://cdn.copernicus.org/libraries/photoswipe/4.1/photoswipe.css"> <link rel="stylesheet" type="text/css" href="https://cdn.copernicus.org/apps/htmlgenerator/css/htmlgenerator.css?v=1"> <meta name="citation_fulltext_world_readable" content=""> <meta name="citation_publisher" content="Copernicus GmbH"/> <meta name="citation_title" content="Upper-stratospheric temperature trends: new results from the Optical Spectrograph and InfraRed Imager System (OSIRIS)"/> <meta name="citation_abstract" content="&lt;p&gt;&lt;strong class=&quot;journal-contentHeaderColor&quot;&gt;Abstract.&lt;/strong&gt; Temperature trends in the upper stratosphere, particularly above &lt;span class=&quot;inline-formula&quot;&gt;∼&lt;/span&gt; 45 km, are difficult to quantify due to a lack of observational data with high vertical resolution in this region that span multiple decades. The recent v7.3 upper-stratospheric (35–60 km) temperature data product from the Optical Spectrograph and InfraRed Imager System (OSIRIS) includes over 22 years of observations that can be used to estimate temperature trends. The trends in OSIRIS temperatures over 2005–2021 are compared to those from two other satellite limb instruments: Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) and Microwave Limb Sounder (MLS). We find that the upper stratosphere cooled by &lt;span class=&quot;inline-formula&quot;&gt;∼&lt;/span&gt; 0.5 to 1 K per decade during this period. Results from the three instruments are generally in agreement. By merging the OSIRIS observations with those from channel 3 of the Stratospheric Sounding Unit (SSU), we find that the stratosphere cooled at a rate of approximately &lt;span class=&quot;inline-formula&quot;&gt;−&lt;/span&gt;0.6 K per decade between 1979 and 2021 near 45 km, in agreement with earlier results based on SSU and MLS. The similarity between OSIRIS temperature trends and those from other records improves confidence in observed upper-stratospheric temperature changes over the last several decades.&lt;/p&gt;"/> <meta name="citation_publication_date" content="2024/11/21"/> <meta name="citation_online_date" content="2024/11/21"/> <meta name="citation_journal_title" content="Atmospheric Chemistry and Physics"/> <meta name="citation_volume" content="24"/> <meta name="citation_issue" content="22"/> <meta name="citation_issn" content="1680-7316"/> <meta name="citation_doi" content="https://doi.org/10.5194/acp-24-12925-2024"/> <meta name="citation_firstpage" content="12925"/> <meta name="citation_lastpage" content="12941"/> <meta name="citation_author" content="Dubé, Kimberlee"/> <meta name="citation_author_institution" content="Institute of Space and Atmospheric Studies, University of Saskatchewan, Saskatoon, SK, Canada"/> <meta name="citation_author_orcid" content="0000-0001-6103-5918"> <meta name="citation_author_email" content="kimberlee.dube@usask.ca"> <meta name="citation_author" content="Tegtmeier, Susann"/> <meta name="citation_author_institution" content="Institute of Space and Atmospheric Studies, University of Saskatchewan, Saskatoon, SK, Canada"/> <meta name="citation_author_orcid" content="0000-0001-9206-3161"> <meta name="citation_author" content="Bourassa, Adam"/> <meta name="citation_author_institution" content="Institute of Space and Atmospheric Studies, University of Saskatchewan, Saskatoon, SK, Canada"/> <meta name="citation_author" content="Zawada, Daniel"/> <meta name="citation_author_institution" content="Institute of Space and Atmospheric Studies, University of Saskatchewan, Saskatoon, SK, Canada"/> <meta name="citation_author" content="Degenstein, Douglas"/> <meta name="citation_author_institution" content="Institute of Space and Atmospheric Studies, University of Saskatchewan, Saskatoon, SK, Canada"/> <meta name="citation_author" content="Randel, William"/> <meta name="citation_author_institution" content="NSF National Center for Atmospheric Research, Boulder, CO, USA"/> <meta name="citation_author_orcid" content="0000-0002-5999-7162"> <meta name="citation_author" content="Davis, Sean"/> <meta name="citation_author_institution" content="NOAA Chemical Sciences Laboratory, Boulder, CO, USA"/> <meta name="citation_author_orcid" content="0000-0001-9276-6158"> <meta name="citation_author" content="Schwartz, Michael"/> <meta name="citation_author_institution" content="Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA"/> <meta name="citation_author_orcid" content="0000-0001-6169-5094"> <meta name="citation_author" content="Livesey, Nathaniel"/> <meta name="citation_author_institution" content="Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA"/> <meta name="citation_author" content="Smith, Anne"/> <meta name="citation_author_institution" content="NSF National Center for Atmospheric Research, Boulder, CO, USA"/> <meta name="citation_author_orcid" content="0000-0003-2384-5033"> <meta name="citation_reference" content="Bernath, P. F., McElroy, C. T., Abrams, M. C., Boone, C. D., Butler, M., Camy-Peyret, C., Carleer, M., Clerbaux, C., Coheur, P.-F., Colin, R., DeCola, P., DeMazière, M., Drummond, J. R., Dufour, D., Evans, W. F. J., Fast, H., Fussen, D., Gilbert, K., Jennings, D. E., Llewellyn, E. J., Lowe, R. P., Mahieu, E., McConnell, J. C., McHugh, M., McLeod, S. D., Michaud, R., Midwinter, C., Nassar, R., Nichitiu, F., Nowlan, C., Rinsland, C. P., Rochon, Y. J., Rowlands, N., Semeniuk, K., Simon, P., Skelton, R., Sloan, J. J., Soucy, M.-A., Strong, K., Tremblay, P., Turnbull, D., Walker, K. A., Walkty, I., Wardle, D. A., Wehrle, V., Zander, R., and Zou, J.: Atmospheric Chemistry Experiment (ACE): Mission overview, Geophys. Res. Lett., 32, L15S01, https://doi.org/10.1029/2005GL022386, 2005. a"> <meta name="citation_reference" content="Boone, C., Bernath, P., Cok, D., Jones, S., and Steffen, J.: Version 4 retrievals for the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) and imagers, J. Quant. Spectrosc. Ra., 247, 106939, https://doi.org/10.1016/j.jqsrt.2020.106939, 2020. a"> <meta name="citation_reference" content="Bourassa, A. E., Degenstein, D. A., Randel, W. J., Zawodny, J. M., Kyrölä, E., McLinden, C. A., Sioris, C. E., and Roth, C. Z.: Trends in stratospheric ozone derived from merged SAGE II and Odin-OSIRIS satellite observations, Atmos. Chem. Phys., 14, 6983–6994, https://doi.org/10.5194/acp-14-6983-2014, 2014. a"> <meta name="citation_reference" content="Chen, Z., Schwartz, M. J., Bhartia, P. K., Schoeberl, M., Kramarova, N., Jaross, G., and DeLand, M.: Mesospheric and Upper Stratospheric Temperatures From OMPS-LP, Earth and Space Science, 10, e2022EA002763, https://doi.org/10.1029/2022EA002763, 2023. a"> <meta name="citation_reference" content="Damadeo, R., Hassler, B., Zawada, D., Frith, S., Ball, W., Chang, K., Degenstein, D., Hubert, D., Misois, S., Petropavlovskikh, I., Roth, C., Sofieva, V., Steinbrecht, W., Tourpali, K., Zerefos, C., Alsing, J., Balis, D., Coldewey-Egbers, M., Eleftheratos, K., Godin-Beekmann, S., Gruzdev, A., Kapsomenakis, J., Laeng, A., Laine, M., Mail&lt;span id=&quot;page12939&quot;/&gt;lard Barras, E., Taylor, M., von Clarmann, T., Weber, M., and Wild, J.: LOTUS Regression Code, SPARC LOTUS Activity, GitHub [code], https://github.com/usask-arg/lotus-regression (last access: 24 October 2023), 2022. a, b"> <meta name="citation_reference" content="Dubé, K., Randel, W., Bourassa, A., Zawada, D., McLinden, C., and Degenstein, D.: Trends and Variability in Stratospheric NOx Derived From Merged SAGE II and OSIRIS Satellite Observations, J. Geophys. Res.-Atmos., 125, e2019JD031798, https://doi.org/10.1029/2019JD031798, 2020. a, b"> <meta name="citation_reference" content="Fujiwara, M., Wright, J. S., Manney, G. L., Gray, L. J., Anstey, J., Birner, T., Davis, S., Gerber, E. P., Harvey, V. L., Hegglin, M. I., Homeyer, C. R., Knox, J. A., Krüger, K., Lambert, A., Long, C. S., Martineau, P., Molod, A., Monge-Sanz, B. M., Santee, M. L., Tegtmeier, S., Chabrillat, S., Tan, D. G. H., Jackson, D. R., Polavarapu, S., Compo, G. P., Dragani, R., Ebisuzaki, W., Harada, Y., Kobayashi, C., McCarty, W., Onogi, K., Pawson, S., Simmons, A., Wargan, K., Whitaker, J. S., and Zou, C.-Z.: Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems, Atmos. Chem. Phys., 17, 1417–1452, https://doi.org/10.5194/acp-17-1417-2017, 2017. a"> <meta name="citation_reference" content="Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017. a, b, c, d"> <meta name="citation_reference" content="Gettelman, A., Mills, M. J., Kinnison, D. E., Garcia, R. R., Smith, A. K., Marsh, D. R., Tilmes, S., Vitt, F., Bardeen, C. G., McInerny, J., Liu, H.-L., Solomon, S. C., Polvani, L. M., Emmons, L. K., Lamarque, J.-F., Richter, J. H., Glanville, A. S., Bacmeister, J. T., Phillips, A. S., Neale, R. B., Simpson, I. R., DuVivier, A. K., Hodzic, A., and Randel, W. J.: The Whole Atmosphere Community Climate Model Version 6 (WACCM6), J. Geophys. Res.-Atmos., 124, 12380–12403, https://doi.org/10.1029/2019JD030943, 2019. a"> <meta name="citation_reference" content="Global Modeling and Assimilation Office (GMAO): nst3_3d_asm_Nv: MERRA-2 3D IAU State, Meteorology Instantaneous 3-hourly, Goddard Space Flight Center Distributed Active Archive Center (GSFC DAAC) [data set], Greenbelt, MD, USA, https://doi.org/10.5067/WWQSXQ8IVFW8, accessed: 2023-6-5, 2023. a"> <meta name="citation_reference" content="Gray, L. J. and Dunkerton, T. J.: The Role of the Seasonal Cycle in the Quasi-biennial Oscillation Of Ozone, J. Atmos. Sci., 47, 2429–2452, https://doi.org/10.1175/1520-0469(1990)047&amp;lt;2429:TROTSC&amp;gt;2.0.CO;2, 1990. a"> <meta name="citation_reference" content="Gulev, S., P.W., T., Ahn, J., Dentener, F., Domingues, C., Gerland, S., Gong, D., Kaufman, D., Nnamchi, H., Quaas, J., Rivera, J., Sathyendranath, S., Smith, S., Trewin, B., von Schuckmann, K., and Vose, R.: Changing State of the Climate System, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., N. Caud, Y. C., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Chap. 2, 287–422, https://doi.org/10.1017/9781009157896.004, 2021. a, b, c"> <meta name="citation_reference" content="Haimberger, L., Tavolato, C., and Sperka, S.: Homogenization of the Global Radiosonde Temperature Dataset through Combined Comparison with Reanalysis Background Series and Neighboring Stations, J. Climate, 25, 8108–8131, https://doi.org/10.1175/JCLI-D-11-00668.1, 2012. a"> <meta name="citation_reference" content="Hauchecorne, A., Blanot, L., Wing, R., Keckhut, P., Khaykin, S., Bertaux, J.-L., Meftah, M., Claud, C., and Sofieva, V.: A new MesosphEO data set of temperature profiles from 35 to 85 km using Rayleigh scattering at limb from GOMOS/ENVISAT daytime observations, Atmos. Meas. Tech., 12, 749–761, https://doi.org/10.5194/amt-12-749-2019, 2019. a"> <meta name="citation_reference" content="Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a, b"> <meta name="citation_reference" content="Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2023. a"> <meta name="citation_reference" content="Japan Meteorological Agency: JRA-55: Japanese 55-year Reanalysis, Daily 3-Hourly and 6-Hourly Data, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory [data set], https://doi.org/10.5065/D6HH6H41, 2013. a"> <meta name="citation_reference" content="Khaykin, S. M., Funatsu, B. M., Hauchecorne, A., Godin-Beekmann, S., Claud, C., Keckhut, P., Pazmino, A., Gleisner, H., Nielsen, J. K., Syndergaard, S., and Lauritsen, K. B.: Postmillennium changes in stratospheric temperature consistently resolved by GPS radio occultation and AMSU observations, Geophys. Res. Lett. 44, 7510–7518, https://doi.org/10.1002/2017GL074353, 2017. a"> <meta name="citation_reference" content="Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi, K., Kamahori, H., Kobayashi, C., Endo, H., Miyoka, K., and Takahashi, K.: The JRA-55 Reanalysis: General Specifications and Basic Characteristics, J. Meteorol. Soc. Jpn., 93, 5–48, https://doi.org/10.2151/jmsj.2015-001, 2015. a, b"> <meta name="citation_reference" content="Ladstädter, F., Steiner, A. K., and Gleisner, H.: Resolving the 21st century temperature trends of the upper troposphere–lower stratosphere with satellite observations, Scientific Reports, 13, 1306, https://doi.org/10.1038/s41598-023-28222-x, 2023. a"> <meta name="citation_reference" content="Livesey, N. J., Read, W. G., Wagner, P. A., Froidevaux, L., Santee, M. L., Schwartz, M. J., Lambert, A., Millán Valle, L. F., Pumphrey, H. C., Manney, G. L., Fuller, R. A., Jarnot, R. F., Knosp, B. W., and Lay, R. R.: Aura Microwave Limb Sounder (MLS) Version 5.0x Level 2 and 3 data quality and description document, Version 5.0-1.1a, Tech. Rep. JPL D-105336 Rev. B, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, 91109-8099, 2022. a, b"> <meta name="citation_reference" content="Llewellyn, E. J., Lloyd, N. D., Degenstein, D. A., Gattinger, R. L., Petelina, S. V., Bourassa, A. E., Wiensz, J. T., Ivanov, E. V., McDade, I. C., Solheim, B. H., McConnell, J. C., Haley, C. S., von Savigny, C., Sioris, C. E., McLinden, C. A., Griffioen, E., Kaminski, J., Evans, W. F., Puckrin, E., Strong, K., Wehrle, V., Hum, R. H., Kendall, D. J., Matsushita, J., Murtagh, D. P., Brohede, S., Stegman, J., Witt, G., Barnes, G., Payne, W. F., Piché, L., Smith, K., Warshaw, G., Deslauniers, D. L., Marchand, P., Richardson, E. H., King, R. A., Wevers, I., McCreath, W., Kyrölä, E., Oikarinen, L., Leppelmeier, G. W., Auvinen, H., Mégie, G., Hauchecorne, A., Lefèvre, F., de La Noe, J., Ricaud, P., Frisk, U., Sjoberg, F., von Schéele, F., and Nordh, L.: The OSIRIS instrument on the Odin spacecraft, Can. J. Phys., 82, 411–422, https://doi.org/10.1139/p04-005, 2004. a"> <meta name="citation_reference" content="Long, C. S., Fujiwara, M., Davis, S., Mitchell, D. M., and Wright, C. J.: Climatology and interannual variability of dynamic variables in multiple reanalyses evaluated by the SPARC Reanalysis Intercomparison Project (S-RIP), Atmos. Chem. Phys., 17, 14593–14629, https://doi.org/10.5194/acp-17-14593-2017, 2017. a, b"> <meta name="citation_reference" content="Manabe, S. and Wetherald, R. T.: Thermal Equilibrium of the Atmosphere with a Given Distribution of Relative Humidity, J. Atmos. Sci., 24, 241–259, https://doi.org/10.1175/1520-0469(1967)024&amp;lt;0241:TEOTAW&amp;gt;2.0.CO;2, 1967. a"> <meta name="citation_reference" content="Maycock, A. C., Randel, W. J., Steiner, A. K., Karpechko, A. Y., Christy, J., Saunders, R., Thompson, D. W. J., Zou, C.-Z., Chrysanthou, A., Luke Abraham, N., Akiyoshi, H., Archibald, A. T., Butchart, N., Chipperfield, M., Dameris, M., Deushi, M., Dhomse, S., Di Genova, G., Jöckel, P., Kinnison, D. E., Kirner, O., Ladstädter, F., Michou, M., Morgenstern, O., O'Connor, F., Oman, L., Pitari, G., Plummer, D. A., Revell, L. E., Rozanov, E., Stenke, A., Visioni, D., Yamashita, Y., and Zeng, G.: Revisiting the Mystery of Recent Stratospheric Temperature Trends, Geophys. Res. Lett., 45, 9919–9933, https://doi.org/10.1029/2018GL078035, 2018. a"> <meta name="citation_reference" content="Mears, C. A. and Wentz, F. J.: A Satellite-Derived Lower-Tropospheric Atmospheric Temperature Dataset Using an Optimized Adjustment for Diurnal Effects, J. Climate, 30, 7695–7718, https://doi.org/10.1175/JCLI-D-16-0768.1, 2017. a"> <meta name="citation_reference" content="Miller, D. E., Brownscombe, J. L., Carruthers, G. P., Pick, D. R., Stewart, K. H., Massey, H. S. W., Beynon, W. J. G., Houghton, J. T., and Thomas, L.: Operational temperature sounding of the stratosphere, Philos. T. Roy. Soc. A, 296, 65–71, https://doi.org/10.1098/rsta.1980.0156, 1980. a"> <meta name="citation_reference" content="NOAA/STAR: STAR Microwave Sounding Calibration and Trends: Data Products, https://www.star.nesdis.noaa.gov/smcd/emb/mscat/products.php (last access: 21 August 2023), 2023. a"> <meta name="citation_reference" content="OSIRIS team: OSIRIS ftp server – Model output, University of Saskatchewan, ftp://odin-osiris.usask.ca/Models, last access: 20 August 2022. a"> <meta name="citation_reference" content="Picone, J. M., Hedin, A. E., Drob, D. P., and Aikin, A. C.: NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res.-Space, 107, 1468, https://doi.org/10.1029/2002JA009430, 2002. a"> <meta name="citation_reference" content="Plummer, D., Nagashima, T., Tilmes, S. Archibald, A., Chiodo, G., Fadnavis, S., Garny, H., Josse, B., Kim, J., Lamarque, J.-F., Morgenstern, O., Murray, L., Orbe, C., Tai, A., Chipperfield, M., Funke, B., Juckes, M., Kinnison, D., Kunze, M., Luo, B., Matthes, K., Newman, P. A., Pascoe, C., and Peter, T.: CCMI-2022: A new set of Chemistry-Climate Model Initiative (CCMI) Community Simulations to Update the Assessment of Models and Support Upcoming Ozone Assessment Activities, SPARC Newsletter No. 57, http://www.sparc-climate.org/publications/newsletter (last access: 2 April 2023), 2021. a"> <meta name="citation_reference" content="Randel, W. J., Wu, F., Swinbank, R., Nash, J., and O'Neill, A.: Global QBO Circulation Derived from UKMO Stratospheric Analyses, J. Atmos. Sci., 56, 457–474, https://doi.org/10.1175/1520-0469(1999)056&amp;lt;0457:GQCDFU&amp;gt;2.0.CO;2, 1999. a"> <meta name="citation_reference" content="Randel, W. J., Shine, K. P., Austin, J., Barnett, J., Claud, C., Gillett, N. P., Keckhut, P., Langematz, U., Lin, R., Long, C., Mears, C., Miller, A., Nash, J., Seidel, D. J., Thompson, D. W. J., Wu, F., and Yoden, S.: An update of observed stratospheric temperature trends, J. Geophys. Res.-Atmos., 114, D02107, https://doi.org/10.1029/2008JD010421, 2009. a, b"> <meta name="citation_reference" content="Randel, W. J., Smith, A. K., Wu, F., Zou, C.-Z., and Qian, H.: Stratospheric Temperature Trends over 1979–2015 Derived from Combined SSU, MLS, and SABER Satellite Observations, J. Climate, 29, 4843–4859, https://doi.org/10.1175/JCLI-D-15-0629.1, 2016. a, b, c, d, e, f"> <meta name="citation_reference" content="Randel, W. J., Polvani, L., Wu, F., Kinnison, D. E., Zou, C.-Z., and Mears, C.: Troposphere-Stratosphere Temperature Trends Derived From Satellite Data Compared With Ensemble Simulations From WACCM, J. Geophys. Res.-Atmos., 122, 9651–9667, https://doi.org/10.1002/2017JD027158, 2017. a, b"> <meta name="citation_reference" content="Reale, A., Tilley, F., Ferguson, M., and Allegrino, A.: NOAA operational sounding products for advanced TOVS, Int. J. Remote Sens., 29, 4615–4651, https://doi.org/10.1080/01431160802020502, 2008. a"> <meta name="citation_reference" content="Remsberg, E. E., Marshall, B. T., Garcia-Comas, M., Krueger, D., Lingenfelser, G. S., Martin-Torres, J., Mlynczak, M. G., Russell III, J. M., Smith, A. K., Zhao, Y., Brown, C., Gordley, L. L., Lopez-Gonzalez, M. J., Lopez-Puertas, M., She, C.-Y., Taylor, M. J., and Thompson, R. E.: Assessment of the quality of the Version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER, J. Geophys. Res.-Atmos., 113, D17101, https://doi.org/10.1029/2008JD010013, 2008. a, b, c"> <meta name="citation_reference" content="Russell III, J. M., Mlynczak, M. G., Gordley, L. L., Tansock Jr., J., and Esplin, R. W.: Overview of the SABER experiment and preliminary calibration results, in: Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III, edited by: Larar, A. M., SPIE, 3756, 277–288, https://doi.org/10.1117/12.366382, 1999. a"> <meta name="citation_reference" content="SABER Science Team: Level 2 Temp_O3_H2O, version 2.0, GATS Data Server [data set], https://data.gats-inc.com/saber/custom/Temp_O3_H2O/v2.0/, last access: 3 April 2023. a"> <meta name="citation_reference" content="Santer, B. D., Po-Chedley, S., Zhao, L., Zou, C.-Z., Fu, Q., Solomon, S., Thompson, D. W. J., Mears, C., and Taylor, K. E.: Exceptional stratospheric contribution to human fingerprints on atmospheric temperature, P. Natl. Acad. Sci. USA, 120, e2300758120, https://doi.org/10.1073/pnas.2300758120, 2023. a"> <meta name="citation_reference" content="Schwartz, M., Livesey, N., and Read, W.: MLS/Aura Level 2 Geopotential Height V005, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], Greenbelt, MD, USA, https://doi.org/10.5067/Aura/MLS/DATA2507, 2020a. a"> <meta name="citation_reference" content="Schwartz, M., Livesey, N., and Read, W.: MLS/Aura Level 2 Temperature V005, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], Greenbelt, MD, USA, https://doi.org/10.5067/Aura/MLS/DATA2520, 2020b. a"> <meta name="citation_reference" content="Schwartz, M. J., Lambert, A., Manney, G. L., Read, W. G., Livesey, N. J., Froidevaux, L., Ao, C. O., Bernath, P. F., Boone, C. D., Cofield, R. E., Daffer, W. H., Drouin, B. J., Fetzer, E. J., Fuller, R. A., Jarnot, R. F., Jiang, J. H., Jiang, Y. B., Knosp, B. W., Krüger, K., Li, J.-L. F., Mlynczak, M. G., Pawson, S., Russell III, J. M., Santee, M. L., Snyder, W. V., Stek, P. C., Thurstans, R. P., Tompkins, A. M., Wagner, P. A., Walker, K. A., Waters, J. W., and Wu, D. L.: Validation of the Aura Microwave Limb Sounder temperature and geopotential height measurements, J. Geophys. Res.-Atmos., 113, D15S11, https://doi.org/10.1029/2007JD008783, 2008. a, b"> <meta name="citation_reference" content="Simmons, A., Soci, C., Nicolas, J., Bell, B., Berrisford, P., Dragani, R., Flemming, J., Haimberger, L., Healy, S., Hersbach, H., Horányi, A., Inness, A., Munoz-Sabater, J., Radu, R., and Dinand Schepers, D.: Global stratospheric temperature bias and other stratospheric aspects of ERA5 and ERA5.1, ECMWF Technical Memoranda, no. 859, https://doi.org/10.21957/rcxqfmg0, 2020. a, b"> <meta name="citation_reference" content="Steiner, A. K., Ladstädter, F., Randel, W. J., Maycock, A. C., Fu, Q., Claud, C., Gleisner, H., Haimberger, L., Ho, S.-P., Keckhut, P., Leblanc, T., Mears, C., Polvani, L. M., Santer, B. D., Schmidt, T., Sofieva, V., Wing, R., and Zou, C.-Z.: Observed Temperature Changes in the Troposphere and Stratosphere from 1979 to 2018, J. Climate, 33, 8165 – 8194, https://doi.org/10.1175/JCLI-D-19-0998.1, 2020. a, b, c"> <meta name="citation_reference" content="Wallace, J. M., Panetta, R. L., and Estberg, J.: Representation of the Equatorial Stratospheric Quasi-Biennial Oscillation in EOF Phase Space, J. Atmos. Sci., 50, 1751–1762, https://doi.org/10.1175/1520-0469(1993)050&amp;lt;1751:ROTESQ&amp;gt;2.0.CO;2, 1993. a"> <meta name="citation_reference" content="Wang, W. and Zou, C.-Z.: AMSU-A-Only Atmospheric Temperature Data Records from the Lower Troposphere to the Top of the Stratosphere, J. Atmos. Ocean. Tech., 31, 808–825, https://doi.org/10.1175/JTECH-D-13-00134.1, 2014. a"> <meta name="citation_reference" content="Wang, X., Randel, W., Zhu, Y., Tilmes, S., Starr, J., Yu, W., Garcia, R., Toon, O. B., Park, M., Kinnison, D., Zhang, J., Bourassa, A., Rieger, L., Warnock, T., and Li, J.: Stratospheric Climate Anomalies and Ozone Loss Caused by the Hunga Tonga-Hunga Ha'apai Volcanic Eruption, J. Geophys. Res.-Atmos., 128, e2023JD039480, https://doi.org/10.1029/2023JD039480, 2023.  a"> <meta name="citation_reference" content="Waters, J., Froidevaux, L., Harwood, R., Jarnot, R., Pickett, H., Read, W., Siegel, P., Cofield, R., Filipiak, M., Flower, D., Holden, J., Lau, G., Livesey, N., Manney, G., Pumphrey, H., Santee, M., Wu, D., Cuddy, D., Lay, R., Loo, M., Perun, V., Schwartz, M., Stek, P., Thurstans, R., Boyles, M., Chandra, K., Chavez, M., Chen, G.-S., Chudasama, B., Dodge, R., Fuller, R., Girard, M., Jiang, J., Jiang, Y., Knosp, B., LaBelle, R., Lam, J., Lee, K., Miller, D., Oswald, J., Patel, N., Pukala, D., Quintero, O., Scaff, D., Van Snyder, W., Tope, M., Wagner, P., and Walch, M.: The Earth Observing System Microwave Limb Sounder (EOS MLS) on the Aura Satellite, IEEE T. Geosci. Remote, 44, 1075–1092, https://doi.org/10.1109/TGRS.2006.873771, 2006. a, b"> <meta name="citation_reference" content="Yu, W., Garcia, R., Yue, J., Smith, A., Wang, X., Randel, W., Qiao, Z., Zhu, Y., Harvey, V. L., Tilmes, S., and Mlynczak, M.: Mesospheric Temperature and Circulation Response to the Hunga Tonga-Hunga-Ha'apai Volcanic Eruption, J. Geophys. Res.-Atmos., 128, e2023JD039636, https://doi.org/10.1029/2023JD039636, 2023. a"> <meta name="citation_reference" content="Zawada, D., Dubé, K., Warnock, T., Bourassa, A., Tegtmeier, S., and Degenstein, D.: OSIRIS stratospheric temperature, Version 7.3, Zenodo [data set], https://doi.org/10.5281/zenodo.8271140, 2023. a"> <meta name="citation_reference" content="Zawada, D., Dubé, K., Warnock, T., Bourassa, A., Tegtmeier, S., and Degenstein, D.: A multi-decadal time series of upper stratospheric temperature profiles from Odin-OSIRIS limb-scattered spectra, Atmos. Meas. Tech., 17, 1995–2010, https://doi.org/10.5194/amt-17-1995-2024, 2024. a, b, c, d, e"> <meta name="citation_reference" content="Zhao, X. R., Sheng, Z., Shi, H. Q., Weng, L. B., and He, Y.: Middle Atmosphere Temperature Changes Derived from SABER Observations during 2002–20, J. Climate, 34, 7995–8012, https://doi.org/10.1175/JCLI-D-20-1010.1, 2021. a"> <meta name="citation_reference" content="Zou, C.-Z. and Qian, H.: Stratospheric Temperature Climate Data Record from Merged SSU and AMSU-A Observations, J. Atmos. Ocean. Tech., 33, 1967–1984, https://doi.org/10.1175/JTECH-D-16-0018.1, 2016. a, b, c, d"> <meta name="citation_reference" content="Zou, C.-Z., Qian, H., Wang, W., Wang, L., and Long, C.: Recalibration and merging of SSU observations for stratospheric temperature trend studies, J. Geophys. Res.-Atmos., 119, 13180–13205, https://doi.org/10.1002/2014JD021603, 2014. a, b"> <meta name="citation_funding_source" content="citation_funder=Canadian Space Agency;citation_funder_id=501100000016;citation_grant_number=21SUASULSO"> <meta name="citation_funding_source" content="citation_funder=National Aeronautics and Space Administration;citation_funder_id=100000104;citation_grant_number=80NM0018D004"> <meta name="citation_funding_source" content="citation_funder=National Aeronautics and Space Administration;citation_funder_id=100000104;citation_grant_number=80NSSC20K0928"> <meta name="citation_pdf_url" content="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024.pdf"/> <meta name="citation_xml_url" content="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024.xml"/> <meta name="fulltext_pdf" content="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024.pdf"/> <meta name="citation_language" content="English"/> <meta name="libraryUrl" content="https://acp.copernicus.org/articles/"/> <meta property="og:image" content="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-avatar-web.png"/> <meta property="og:title" content="Upper-stratospheric temperature trends: new results from the Optical Spectrograph and InfraRed Imager System (OSIRIS)"> <meta property="og:description" content="Abstract. Temperature trends in the upper stratosphere, particularly above ∼ 45 km, are difficult to quantify due to a lack of observational data with high vertical resolution in this region that span multiple decades. The recent v7.3 upper-stratospheric (35–60 km) temperature data product from the Optical Spectrograph and InfraRed Imager System (OSIRIS) includes over 22 years of observations that can be used to estimate temperature trends. The trends in OSIRIS temperatures over 2005–2021 are compared to those from two other satellite limb instruments: Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) and Microwave Limb Sounder (MLS). We find that the upper stratosphere cooled by ∼ 0.5 to 1 K per decade during this period. Results from the three instruments are generally in agreement. By merging the OSIRIS observations with those from channel 3 of the Stratospheric Sounding Unit (SSU), we find that the stratosphere cooled at a rate of approximately −0.6 K per decade between 1979 and 2021 near 45 km, in agreement with earlier results based on SSU and MLS. The similarity between OSIRIS temperature trends and those from other records improves confidence in observed upper-stratospheric temperature changes over the last several decades."> <meta property="og:url" content="https://acp.copernicus.org/articles/24/12925/2024/"> <meta property="twitter:image" content="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-avatar-web.png"/> <meta name="twitter:card" content="summary_large_image"> <meta name="twitter:title" content="Upper-stratospheric temperature trends: new results from the Optical Spectrograph and InfraRed Imager System (OSIRIS)"> <meta name="twitter:description" content="Abstract. Temperature trends in the upper stratosphere, particularly above ∼ 45 km, are difficult to quantify due to a lack of observational data with high vertical resolution in this region that span multiple decades. The recent v7.3 upper-stratospheric (35–60 km) temperature data product from the Optical Spectrograph and InfraRed Imager System (OSIRIS) includes over 22 years of observations that can be used to estimate temperature trends. The trends in OSIRIS temperatures over 2005–2021 are compared to those from two other satellite limb instruments: Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) and Microwave Limb Sounder (MLS). We find that the upper stratosphere cooled by ∼ 0.5 to 1 K per decade during this period. Results from the three instruments are generally in agreement. By merging the OSIRIS observations with those from channel 3 of the Stratospheric Sounding Unit (SSU), we find that the stratosphere cooled at a rate of approximately −0.6 K per decade between 1979 and 2021 near 45 km, in agreement with earlier results based on SSU and MLS. The similarity between OSIRIS temperature trends and those from other records improves confidence in observed upper-stratospheric temperature changes over the last several decades."> <link rel="icon" href="https://www.atmospheric-chemistry-and-physics.net/favicon.ico" type="image/x-icon"/> <script type="text/javascript" src="https://cdn.copernicus.org/libraries/jquery/1.11.1/ui/jquery-ui.min.js"></script> <script type="text/javascript" src="https://cdn.copernicus.org/libraries/jquery/1.11.1/ui/jquery-ui-slider-pips.js"></script> <script type="text/javascript" src="https://cdn.copernicus.org/libraries/jquery/1.11.1/ui/template_jquery-ui-touch.min.js"></script> <script type="text/javascript" src="https://cdn.copernicus.org/js/respond.js"></script> <script type="text/javascript" src="https://cdn.copernicus.org/libraries/highstock/2.0.4/highstock.js"></script> <script type="text/javascript" src="https://cdn.copernicus.org/apps/htmlgenerator/js/CoPublisher.js"></script> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ "HTML-CSS": { fonts: ["TeX"] ,linebreaks: { automatic: true, width: "90% container" } } }); </script> <script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=MML_HTMLorMML-full"></script> <script type="text/javascript" src="https://cdn.copernicus.org/libraries/photoswipe/4.1/photoswipe-ui-default.min.js"></script> <script type="text/javascript" src="https://cdn.copernicus.org/libraries/photoswipe/4.1/photoswipe.min.js"></script> <script type="text/javascript"> /* <![CDATA[ */ /* ]]> */ </script> <style type="text/css"> .top_menu { margin-right: 0!important; } </style> </head><body><header id="printheader" class="d-none d-print-block container"> <img src="https://contentmanager.copernicus.org/800952/10/ssl" alt="" style="width: 508px; height: 223px;" /> </header> <header class="d-print-none mb-n3 version-2023"> <div class="container"> <div class="row no-gutters mr-0 ml-0 align-items-center header-wrapper mb-lg-3"> <div class="col-auto pr-3"> <div class="layout__moodboard-logo-year-container"> <a class="layout__moodboard-logo-link" target="_blank" href="http://www.egu.eu"> <div class="layout__moodboard-logo"> <img src="https://contentmanager.copernicus.org/800952/10/ssl" alt="" style="width: 508px; height: 223px;" /> </div> </a> </div> </div> <div class="d-none d-lg-block col text-md-right layout__title-desktop"> <div class="layout__m-location-and-time"> <a class="moodboard-title-link" href="https://www.atmospheric-chemistry-and-physics.net/"> Atmospheric Chemistry and Physics </a> </div> </div> <div class="d-none d-md-block d-lg-none col text-md-right layout__title-tablet"> <div class="layout__m-location-and-time"> <a class="moodboard-title-link" href="https://www.atmospheric-chemistry-and-physics.net/"> Atmospheric Chemistry and Physics </a> </div> </div> <div class="col layout__m-location-and-time-mobile d-md-none text-center layout__title-mobile"> <a class="moodboard-title-link" href="https://www.atmospheric-chemistry-and-physics.net/"> ACP </a> </div> <!-- End Logo --> <div class="col-auto text-right"> <button class="navbar-toggler light mx-auto mr-sm-0" type="button" data-toggle="collapse" data-target="#navbar_menu" aria-controls="navbar_menu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon light"></span> </button> </div> <!-- Topbar --> <div class="topbar d-print-none"> <!-- <iframe frameborder="0" id="co_auth_check_authiframecontainer" style="width: 179px; height: 57px; margin: 0; margin-bottom: 5px; margin-left: 10px; margin-top: -15px; padding: 0; border: none; overflow: hidden; background-color: transparent; display: none;" src=""></iframe> --> </div> <!-- End Topbar --> </div> </div> <div class="banner-navigation-breadcrumbs-wrapper"> <div id="navigation"> <nav class="container navbar navbar-expand-lg navbar-light"><!-- Logo --> <div class="collapse navbar-collapse CMSCONTAINER" id="navbar_menu"> <div id="cmsbox_126167" class="cmsbox navbar-collapse"><button style="display: none;" class="navbar-toggler navigation-extended-toggle-button" type="button" data-toggle="collapse" data-target="#navbar_menu" aria-controls="navbarSupportedContent" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="navbar-collapse CMSCONTAINER collapse show" id="navbarSupportedContent"> <ul class="navbar-nav mr-auto no-styling"> <li class="nav-item "> <a target="_parent" class="nav-link active " href="https://www.atmospheric-chemistry-and-physics.net/home.html"><i class='fal fa-home fa-lg' title='Home'></i></a> </li> <li class="nav-item megamenu "> <a target="_self" class="nav-link dropdown-toggle " href="#" id="navbarDropdown10845" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Articles & preprints <span class="caret"></span></a> <div class="dropdown-menu level-1 " aria-labelledby="navbarDropdown10845"> <div class="container"> <div class="row"> <div class="col-md-12 col-lg-4 col-sm-12"> <div class="dropdown-header">Recent</div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/">Recent papers</a> </div> <div class="dropdown-header">Highlights</div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/acp_letters.html">ACP Letters</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/editors_choice.html">Editor's choice</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/opinion.html">Opinions</a> </div> <div class="dropdown-header">Regular articles</div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/research_article.html">Research articles</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/review_article.html">Review articles</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/measurement_report.html">Measurement reports</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/technical_note.html">Technical notes</a> </div> </div> <div class="col-md-12 col-lg-4 col-sm-12"> <div class="dropdown-header">Special issues</div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/special_issue_overview.html">SI overview articles</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/special_issues.html">Published SIs</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/articles_and_preprints/scheduled_sis.html">Scheduled SIs</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/articles_and_preprints/how_to_apply_for_an_si.html">How to apply for an SI</a> </div> <div class="dropdown-header">EGU Compilations</div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_blank" class="" href="https://egu-letters.net/">EGU Letters</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_blank" class="" href="https://encyclopedia-of-geosciences.net/">Encyclopedia of Geosciences</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_blank" class="" href="https://egusphere.net/">EGUsphere</a> </div> </div> <div class="col-md-12 col-lg-4 col-sm-12"> <div class="dropdown-header">Alerts</div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/articles_and_preprints/subscribe_to_alerts.html">Subscribe to alerts</a> </div> </div> </div> </div> </div> </li> <li class="nav-item "> <a target="_parent" class="nav-link " href="https://www.atmospheric-chemistry-and-physics.net/submission.html">Submission</a> </li> <li class="nav-item dropdown "> <a target="_self" class="nav-link dropdown-toggle " href="#" id="navbarDropdown10849" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Policies <span class="caret"></span></a> <div class="dropdown-menu level-1 " aria-labelledby="navbarDropdown10849"> <div > <div > <div class="col-md-12 col-lg-12 col-sm-12"> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/licence_and_copyright.html">Licence & copyright</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/general_terms.html">General terms</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/guidelines_for_authors.html">Guidelines for authors</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/guidelines_for_editors.html">Guidelines for editors</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/publication_policy.html">Publication policy</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/data_policy.html">Data policy</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/publication_ethics.html">Publication ethics</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/inclusivity_in_global_research.html">Inclusivity in global research</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/competing_interests_policy.html">Competing interests policy</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/appeals_and_complaints.html">Appeals & complaints</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/proofreading_guidelines.html">Proofreading guidelines</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/obligations_for_authors.html">Obligations for authors</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/obligations_for_editors.html">Obligations for editors</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/obligations_for_referees.html">Obligations for referees</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/author_name_change.html">Inclusive author name-change policy</a> </div> </div> </div> </div> </div> </li> <li class="nav-item dropdown "> <a target="_self" class="nav-link dropdown-toggle " href="#" id="navbarDropdown300" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Peer review <span class="caret"></span></a> <div class="dropdown-menu level-1 " aria-labelledby="navbarDropdown300"> <div > <div > <div class="col-md-12 col-lg-12 col-sm-12"> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/peer_review/interactive_review_process.html">Interactive review process</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/peer_review/finding_an_editor.html">Finding an editor</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/peer_review/review_criteria.html">Review criteria</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a data-non-mobile-optimized="1" target="_parent" class="" href="https://editor.copernicus.org/ACP/my_manuscript_overview">Manuscript tracking</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/peer_review/reviewer_recognition.html">Reviewer recognition</a> </div> </div> </div> </div> </div> </li> <li class="nav-item "> <a target="_parent" class="nav-link " href="https://www.atmospheric-chemistry-and-physics.net/editorial_board.html">Editorial board</a> </li> <li class="nav-item dropdown "> <a target="_self" class="nav-link dropdown-toggle " href="#" id="navbarDropdown29677" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Awards <span class="caret"></span></a> <div class="dropdown-menu level-1 " aria-labelledby="navbarDropdown29677"> <div > <div > <div class="col-md-12 col-lg-12 col-sm-12"> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/awards/outstanding-referee-awards.html">Outstanding referee awards</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/awards/outstanding-editor-award.html">Outstanding editor award</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/awards/paul-crutzen-publication-award.html">Paul Crutzen Publication award</a> </div> </div> </div> </div> </div> </li> <li class="nav-item dropdown "> <a target="_self" class="nav-link dropdown-toggle " href="#" id="navbarDropdown6086" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">About <span class="caret"></span></a> <div class="dropdown-menu level-1 " aria-labelledby="navbarDropdown6086"> <div > <div > <div class="col-md-12 col-lg-12 col-sm-12"> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/aims_and_scope.html">Aims & scope</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/subject_areas.html">Subject areas</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/manuscript_types.html">Manuscript types</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/article_processing_charges.html">Article processing charges</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/financial_support.html">Financial support</a> </div> <div class="dropdown dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="dropdown-toggle dropdown-item " href="https://www.atmospheric-chemistry-and-physics.net/about/news_and_press.html" > News & press<span class="caret"></span> </a> <div class="dropdown-menu level-2 " aria-labelledby="navbarDropdown316"> <div > <div > <div class="col-md-12 col-lg-12 col-sm-12"> <div class="dropdown-item level-3 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/news_and_press/2019-11-27_thanks-to-cristina-facchini-and-rolf-sander-and-welcome-to-barbara-ervens.html">Many thanks to Cristina Facchini and Rolf Sander and welcome to Barbara Ervens as executive editor of ACP</a> </div> <div class="dropdown-item level-3 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/news_and_press/2020-08-28_first-acp-letter-published.html">First ACP Letter: The value of remote marine aerosol measurements for constraining radiative forcing uncertainty</a> </div> <div class="dropdown-item level-3 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/news_and_press/2021-01-14_atmospheric-evolution-of-emissions-from-a-boreal-forest-fire-the-formation-of-highly-functionalized-oxygen-nitrogen-and-sulfur-containing-organic-compounds.html">Atmospheric evolution of emissions from a boreal forest fire: the formation of highly functionalized oxygen-, nitrogen-, and sulfur-containing organic compounds</a> </div> <div class="dropdown-item level-3 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/news_and_press/2021-04-25_observing-the-timescales-of-aerosol-cloud-interactions-in-snapshot-satellite-images.html">Observing the timescales of aerosol–cloud interactions in snapshot satellite images</a> </div> <div class="dropdown-item level-3 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/news_and_press/2021-10-15_new-acp-letter-how-alkaline-compounds-control-atmospheric-aerosol-particle-acidity.html">New ACP Letter: How alkaline compounds control atmospheric aerosol particle acidity</a> </div> <div class="dropdown-item level-3 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/news_and_press/2021-11-16_changes-in-biomass-burning-wetland-extent-or-agriculture-drive-atmospheric-nh3-trends-in-select-african-regions.html">Changes in biomass burning, wetland extent, or agriculture drive atmospheric NH3 trends in select African regions</a> </div> <div class="dropdown-item level-3 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/news_and_press/2022-07-18_two-of-acps-founding-executive-editors-step-down.html">Two of ACP's founding executive editors step down</a> </div> </div> </div> </div> </div> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/egu_resources.html">EGU resources</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/promote_your_work.html">Promote your work</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/journal_statistics.html">Journal statistics</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/journal_metrics.html">Journal metrics</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/abstracted_and_indexed.html">Abstracted & indexed</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/article_level_metrics.html">Article level metrics</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/faqs.html">FAQs</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/contact.html">Contact</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/xml_harvesting_and_oai-pmh.html">XML harvesting & OAI-PMH</a> </div> </div> </div> </div> </div> </li> <li class="nav-item "> <a target="_parent" class="nav-link " href="https://www.atmospheric-chemistry-and-physics.net/egu_publications.html">EGU publications</a> </li> <li class="nav-item "> <a target="_blank" class="nav-link " data-non-mobile-optimized="1" href="https://editor.copernicus.org/ACP/"><i class='fal fa-sign-in-alt fa-lg' title='Login'></i></a> </li> <!-- Topbar --> <li class="d-print-none d-lg-none pt-2 topbar-mobile"> <!-- <iframe frameborder="0" id="co_auth_check_authiframecontainer" style="width: 179px; height: 57px; margin: 0; margin-bottom: 5px; margin-left: 10px; margin-top: -15px; padding: 0; border: none; overflow: hidden; background-color: transparent; display: none;" src=""></iframe> --> </li> <!-- End Topbar --> </ul> </div> </div></div> </nav> </div> <section id="banner" class="banner dzsparallaxer use-loading auto-init height-is-based-on-content mode-scroll loaded dzsprx-readyall"> <div class="divimage dzsparallaxer--target layout__moodboard-banner" data-src="" style=""></div> <div id="headers-content-container" class="container CMSCONTAINER"> <div id="cmsbox_126230" class="cmsbox "> <span class="header-small text-uppercase">&nbsp;</span> <h1 class="display-4 header-get-function home-header hide-md-on-version2023"> Article &nbsp; </h1> </div></div> </section> <div id="breadcrumbs" class="breadcrumbs"> <div class="container"> <div class="row align-items-center"> <div class="d-none d-sm-block text-nowrap pageactions"></div> <!-- START_SEARCH --> <!-- END_SEARCH --> <!-- The template part snippet fo breadcrubs is in source code--> <div class="justify-content-between col-auto col-md CMSCONTAINER" id="breadcrumbs_content_container"><div id="cmsbox_1088152" class="cmsbox "><!-- tpl: templates/get_functions/get_breadcrumbs/index --> <!-- START_BREADCRUMBS_CONTAINER --> <ol class="breadcrumb"> <li class="breadcrumb-item"><a href="https://acp.copernicus.org/">Articles</a></li><li class="breadcrumb-item"><a href="https://acp.copernicus.org/articles/24/issue22.html">Volume 24, issue 22</a></li><li class="breadcrumb-item active">ACP, 24, 12925&ndash;12941, 2024</li> </ol> <!-- END_BREADCRUMBS_CONTAINER --> </div></div> <div class="col col-md-4 text-right page-search CMSCONTAINER" id="search_content_container"><div id="cmsbox_1088035" class="cmsbox "><!-- v1.31 --> <!-- 1.31: added placeholder for test system sanitizing--> <!-- 1.3: #855 --> <!-- 1.2: #166 --> <!-- CMS ressources/FinderBreadcrumbBox.html --> <!-- START_SITE_SEARCH --> <!-- Root element of PhotoSwipe. Must have class pswp. --> <div class="pswp" tabindex="-1" role="dialog" aria-hidden="true" > <!-- Background of PhotoSwipe. It's a separate element as animating opacity is faster than rgba(). --> <div class="pswp__bg"></div> <!-- Slides wrapper with overflow:hidden. --> <div class="pswp__scroll-wrap"> <!-- Container that holds slides. PhotoSwipe keeps only 3 of them in the DOM to save memory. Don't modify these 3 pswp__item elements, data is added later on. --> <div class="pswp__container"> <div class="pswp__item"></div> <div class="pswp__item"></div> <div class="pswp__item"></div> </div> <!-- Default (PhotoSwipeUI_Default) interface on top of sliding area. Can be changed. --> <div class="pswp__ui pswp__ui--hidden"> <div class="pswp__top-bar"> <!-- Controls are self-explanatory. Order can be changed. --> <div class="pswp__counter"></div> <button class="pswp__button pswp__button--close" title="Close (Esc)"></button> <button class="pswp__button pswp__button--fs" title="Toggle fullscreen"></button> <!-- Preloader demo http://codepen.io/dimsemenov/pen/yyBWoR --> <!-- element will get class pswp__preloader--active when preloader is running --> <div class="pswp__preloader"> <div class="pswp__preloader__icn"> <div class="pswp__preloader__cut"> <div class="pswp__preloader__donut"></div> </div> </div> </div> </div> <div class="pswp__share-modal pswp__share-modal--hidden pswp__single-tap"> <div class="pswp__share-tooltip"></div> </div> <button class="pswp__button pswp__button--arrow--left" title="Previous (arrow left)"> </button> <button class="pswp__button pswp__button--arrow--right" title="Next (arrow right)"> </button> <div class="pswp__caption "> <div class="pswp__caption__center"></div> </div> </div> </div> </div> <div class="row align-items-center no-gutters py-1" id="search-wrapper"> <div class="col-auto pl-0 pr-1"> <a id="templateSearchInfoBtn" role="button" tabindex="99" data-container="body" data-toggle="popover" data-placement="bottom" data-trigger="click"><span class="fal fa-info-circle"></span></a> </div> <div class="col pl-0 pr-1"> <input type="search" placeholder="Search" name="q" class="form-control form-control-sm" id="search_query_solr"/> </div> <div class="col-auto pl-0"> <button title="Start site search" id="start_site_search_solr" class="btn btn-sm btn-success"><span class="co-search"></span></button> </div> </div> <div class="text-left"> <div id="templateSearchInfo" class="d-none"> <div> <p> Multiple terms: term1 term2<br /> <i>red apples</i><br /> returns results with all terms like:<br /> <i>Fructose levels in <strong>red</strong> and <strong>green</strong> apples</i><br /> </p> <p> Precise match in quotes: "term1 term2"<br /> <i>"red apples"</i><br /> returns results matching exactly like:<br /> <i>Anthocyanin biosynthesis in <strong>red apples</strong></i><br /> </p> <p> Exclude a term with -: term1 -term2<br /> <i>apples -red</i><br /> returns results containing <i><strong>apples</strong></i> but not <i><strong>red</strong></i>:<br /> <i>Malic acid in green <strong>apples</strong></i><br /> </p> </div> </div> <div class="modal " id="templateSearchResultModal" role="dialog" aria-labelledby="Search results" aria-hidden="true"> <div class="modal-dialog modal-lg modal-dialog-centered"> <div class="modal-content"> <div class="modal-header modal-header--sticky shadow one-column d-block"> <div class="row no-gutters mx-1"> <div class="col mr-3"> <h1 class="" id="resultsSearchHeader"><span id="templateSearchResultNr"></span> hit<span id="templateSearchResultNrPlural">s</span> for <span id="templateSearchResultTerm"></span></h1> </div> <div class="col-auto"> <a id="scrolltopmodal" href="javascript:void(0)" onclick="scrollModalTop();" style="display: none;"><i class="co-home"></i></a> </div> <div class="col-auto"> <button data-dismiss="modal" aria-label="Close" class="btn btn-danger mt-1">Close</button> </div> </div> </div> <div class="modal-body one-column"> <!-- $$co-sanitizing-slot1$$ --> <div class="grid-container mx-n3"><div class="grid-85 tablet-grid-85"> <button aria-label="Refine" id="refineSearchModal" class="btn btn-primary float-left mt-4">Refine your search</button> <button aria-label="Refine" id="refineSearchModalHide" class="btn btn-danger float-left d-none mt-4">Hide refinement</button> </div></div> <div class="grid-container mx-n3"><div class="grid-100 tablet-grid-100"><div id="templateRefineSearch" class="d-none"></div></div></div> <div id="templateSearchResultContainer" class="searchResultsModal mx-n3"></div> <div class="grid-container mb-0"><div class="grid-100 tablet-grid-100"><div id="templateSearchResultContainerEmpty" class="co-notification d-none">There are no results for your search term.</div></div></div> </div> </div> </div> </div> </div> <!-- feedback network problems --> <div class="modal " id="templateSearchErrorModal1" role="dialog" aria-labelledby="Search results" aria-hidden="true"> <div class="modal-dialog modal-lg modal-dialog-centered"> <div class="modal-content p-3"> <div class="modal-body text-left"> <h1 class="mt-0 pt-0">Network problems</h1> <div class="co-error">We are sorry, but your search could not be completed due to network problems. Please try again later.</div> </div> </div> </div> </div> <!-- feedback server timeout --> <div class="modal " id="templateSearchErrorModal2" role="dialog" aria-labelledby="Search results" aria-hidden="true"> <div class="modal-dialog modal-lg modal-dialog-centered"> <div class="modal-content p-3"> <div class="modal-body text-left"> <h1 class="mt-0 pt-0">Server timeout</h1> <div class="co-error">We are sorry, but your search could not be completed due to server timeouts. Please try again later.</div> </div> </div> </div> </div> <!-- feedback invalid search term --> <div class="modal " id="templateSearchErrorModal3" role="dialog" aria-labelledby="Search results" aria-hidden="true"> <div class="modal-dialog modal-lg modal-dialog-centered"> <div class="modal-content p-3"> <div class="modal-body text-left"> <h1 class="mt-0 pt-0">Empty search term</h1> <div class="co-error">You have applied the search with an empty search term. Please revisit and try again.</div> </div> </div> </div> </div> <!-- feedback too many requests --> <div class="modal " id="templateSearchErrorModal4" role="dialog" aria-labelledby="Search results" aria-hidden="true"> <div class="modal-dialog modal-lg modal-dialog-centered"> <div class="modal-content p-3"> <div class="modal-body text-left"> <h1 class="mt-0 pt-0">Too many requests</h1> <div class="co-error">We are sorry, but we have received too many parallel search requests. Please try again later.</div> </div> </div> </div> </div> <!-- loading --> <div class="modal " id="templateSearchLoadingModal" role="dialog" aria-labelledby="Search results" aria-hidden="true"> <div class="modal-dialog modal-sm modal-dialog-centered"> <div class="modal-content p-3 co_LoadingDotsContainer"> <div class="modal-body"> <div class="text">Searching</div> <div class="dots d-flex justify-content-center"><div class="dot"></div><div class="dot"></div><div class="dot"></div></div></div> </div> </div> </div> </div> <style> /*.modal {*/ /* background: rgba(255, 255, 255, 0.8);*/ /*}*/ .modal-header--sticky { position: sticky; top: 0; background-color: inherit; z-index: 1055; } .grid-container { margin-bottom: 1em; /*padding-left: 0;*/ /*padding-right: 0;*/ } #templateSearchInfo{ display: none; background-color: var(--background-color-primary); margin-top: 1px; z-index: 5; border: 1px solid var(--color-primary); opacity: .8; font-size: .7rem; border-radius: .25rem; } #templateSearchLoadingModal .co_LoadingDotsContainer { z-index: 1000; } #templateSearchLoadingModal .co_LoadingDotsContainer .text { text-align: center; font-weight: bold; padding-bottom: 1rem; } #templateSearchLoadingModal .co_LoadingDotsContainer .dot { background-color: #0072BC; border: 2px solid white; border-radius: 50%; float: left; height: 2rem; width: 2rem; margin: 0 5px; -webkit-transform: scale(0); transform: scale(0); -webkit-animation: animation_dots_breath 1000ms ease infinite 0ms; animation: animation_dots_breath 1000ms ease infinite 0ms; } #templateSearchLoadingModal .co_LoadingDotsContainer .dot:nth-child(2) { -webkit-animation: animation_dots_breath 1000ms ease infinite 300ms; animation: animation_dots_breath 1000ms ease infinite 300ms; } #templateSearchLoadingModal .co_LoadingDotsContainer .dot:nth-child(3) { -webkit-animation: animation_dots_breath 1000ms ease infinite 600ms; animation: animation_dots_breath 1000ms ease infinite 600ms; } #templateSearchResultModal [class*="grid-"] { padding-left: 10px !important; padding-right: 10px !important; } #templateSearchResultTerm { font-weight: bold; } #resultsSearchHeader { display: block !important; } #scrolltopmodal { font-size: 3.0em; margin-top: 0 !important; margin-right: 15px; } @-webkit-keyframes animation_dots_breath { 50% { -webkit-transform: scale(1); transform: scale(1); opacity: 1; } 100% { opacity: 0; } } @keyframes animation_dots_breath { 50% { -webkit-transform: scale(1); transform: scale(1); opacity: 1; } 100% { opacity: 0; } } @media (min-width: 768px) and (max-width: 991px) { #templateSearchResultModal .modal-dialog { max-width: 90%; } } </style> <script> if(document.querySelector('meta[name="global_moBaseURL"]').content == "https://meetingorganizer.copernicus.org/") FINDER_URL = document.querySelector('meta[name="global_moBaseURL"]').content.replace('meetingorganizer', 'finder-app')+"search/library.php"; else FINDER_URL = document.querySelector('meta[name="global_moBaseURL"]').content.replace('meetingorganizer', 'finder')+"search/library.php"; SEARCH_INPUT = document.getElementById('search_query_solr'); SEARCH_INPUT_MODAL = document.getElementById('search_query_modal'); searchRunning = false; offset = 20; INITIAL_OFFSET = 20; var MutationObserver = window.MutationObserver || window.WebKitMutationObserver || window.MozMutationObserver; const targetNodeSearchModal = document.getElementById("templateSearchResultModal"); const configSearchModal = { attributes: true, childList: true, subtree: true }; // Callback function to execute when mutations are observed const callbackSearchModal = (mutationList, observer) => { for (const mutation of mutationList) { if (mutation.type === "childList") { // console.log("A child node has been added or removed."); picturesGallery(); } else if (mutation.type === "attributes") { // console.log(`The ${mutation.attributeName} attribute was modified.`); } } }; // Create an observer instance linked to the callback function const observer = new MutationObserver(callbackSearchModal); // Start observing the target node for configured mutations observer.observe(targetNodeSearchModal, configSearchModal); function _addEventListener() { document.getElementById('search_query_solr').addEventListener('keypress', (e) => { if (e.key === 'Enter') _runSearch(); }); document.getElementById('start_site_search_solr').addEventListener('click', (e) => { _runSearch(); e.stopPropagation(); e.stopImmediatePropagation(); return false; }); $('#templateSearchResultModal').scroll(function() { if ($(this).scrollTop()) { $('#scrolltopmodal:hidden').stop(true, true).fadeIn().css("display","inline-block"); } else { $('#scrolltopmodal').stop(true, true).fadeOut(); } }); } function scrollModalTop() { $('#templateSearchResultModal').animate({ scrollTop: 0 }, 'slow'); // $('#templateSearchResultModal').scrollTop(0); } function picturesGallery() { $('body').off('click', '.paperlist-avatar img'); $('body').off('click', '#templateSearchResultContainer .paperlist-avatar img'); searchPaperListAvatar = []; searchPaperListAvatarThumb = []; search_pswpElement = document.querySelectorAll('.pswp')[0]; if (typeof search_gallery != "undefined") { search_gallery = null; } $('body').on('click', '#templateSearchResultContainer .paperlist-avatar img', function (e) { if(searchPaperListAvatarThumb.length === 0 && searchPaperListAvatar.length === 0) { $('#templateSearchResultContainer .paperlist-avatar img').each(function () { var webversion = $(this).attr('data-web'); var width = $(this).attr('data-width'); var height = $(this).attr('data-height'); var caption = $(this).attr('data-caption'); var figure = { src: webversion, w: width, h: height, title: caption }; searchPaperListAvatarThumb.push($(this)[0]); searchPaperListAvatar.push(figure); }); } var target = $(this); var index = $('#templateSearchResultContainer .paperlist-avatar img').index(target); var options = { showHideOpacity:false, bgOpacity:0.8, index:index, spacing:0.15, history: false, focus:false, getThumbBoundsFn: function(index) { var thumbnail = searchPaperListAvatarThumb[index]; var pageYScroll = window.pageYOffset || document.documentElement.scrollTop; var rect = thumbnail.getBoundingClientRect(); return {x:rect.left, y:rect.top + pageYScroll, w:rect.width}; } }; search_gallery = new PhotoSwipe( search_pswpElement, PhotoSwipeUI_Default,[searchPaperListAvatar[index]],options); search_gallery.init(); }); } function showError(code, msg) { console.error(code, msg); $("#templateSearchLoadingModal").modal("hide"); switch(code) { case -3: // http request fail case -2: // invalid MO response case 4: // CORS case 1: // project $("#templateSearchErrorModal1").modal({}); break; case -1: // timeout $("#templateSearchErrorModal2").modal({}); break; case 2: // empty term $("#templateSearchErrorModal3").modal({}); break; case 3: // DOS $("#templateSearchErrorModal4").modal({}); break; default: $("#templateSearchErrorModal1").modal({}); break; } } function clearForm() { var myFormElement = document.getElementById("library-filters") var elements = myFormElement.elements; $(".form-check-input").prop('checked', false).change().parent().removeClass('active'); for(i=0; i<elements.length; i++) { field_type = elements[i].type.toLowerCase(); switch(field_type) { case "text": case "password": case "textarea": case "hidden": elements[i].value = ""; break; case "radio": case "checkbox": if (elements[i].checked) { elements[i].checked = false; } break; case "select-one": case "select-multi": elements[i].selectedIndex = -1; break; default: break; } } } function generateShowMoreButton(offset, term) { var code = '<button aria-label="ShowMore" id="showMore" class="btn btn-success float-right mr-2" data-offset="' + offset + '">Show more</button>'; return code; } function hideModal(id) { $("#"+id).modal('hide'); } function showModal(id) { $("#"+id).modal({}); } function prepareForPhotoSwipe() { searchPaperListAvatar = []; searchPaperListAvatarThumb = []; search_pswpElement = document.querySelectorAll('.pswp')[0]; } function _sendAjax(projectID, term) { let httpRequest = new XMLHttpRequest(); if(searchRunning) { console.log("Search running"); return; } if (!httpRequest) { console.error("Giving up :( Cannot create an XMLHTTP instance"); showError(-1); return false; } // httpRequest.timeout = 20000; // time in milliseconds httpRequest.withCredentials = false; httpRequest.ontimeout = (e) => { showError(-1, "result timeout"); searchRunning = false; }; httpRequest.onreadystatechange = function() { if (httpRequest.readyState === XMLHttpRequest.DONE) { searchRunning = false; if (httpRequest.status === 200) { let rs = JSON.parse(httpRequest.responseText); if(rs) { if(rs.isError) { showError(rs.errorCode, rs.errorMessage); } else { let html = rs.resultHTMLs; $("#modal_search_query").val(rs.term); $("#templateSearchResultTerm").html(rs.term); $("#templateSearchResultNr").html(rs.resultsNr); $("#templateRefineSearch").html(rs.filter); if(rs.filter == false) { console.log('filter empty'); $("#refineSearchModal").removeClass('d-block').addClass('d-none'); } if(rs.resultsNr==1) $("#templateSearchResultNrPlural").hide(); else $("#templateSearchResultNrPlural").show(); if(rs.resultsNr==0) { hideModal('templateSearchLoadingModal'); $("#templateSearchResultContainer").html(""); $("#templateSearchResultContainerEmpty").removeClass("d-none"); showModal('templateSearchResultModal'); } else { if((rs.resultsNr - offset)>0) { html = html + generateShowMoreButton(offset, term); } $("#templateSearchResultContainerEmpty").addClass("d-none"); if( offset == INITIAL_OFFSET) { hideModal('templateSearchLoadingModal'); $("#templateSearchResultContainer").html(html); showModal('templateSearchResultModal'); } else { $('#showMore').remove(); startHtml = $("#templateSearchResultContainer").html(); $("#templateSearchResultContainer").html(startHtml + html); } // prepareForPhotoSwipe(); } } } else { showError(-2, "invalid result"); } } else { showError(-3, "There was a problem with the request."); } } }; if(offset == INITIAL_OFFSET) { hideModal('templateSearchResultModal'); showModal('templateSearchLoadingModal'); } httpRequest.open("GET", FINDER_URL+"?project="+projectID+"&term="+encodeURI(term)+((offset>INITIAL_OFFSET)?("&offset="+(offset-INITIAL_OFFSET)) : "")); httpRequest.send(); searchRunning = true; } function _runSearch() { var projectID = document.querySelector('meta[name="global_projectID"]').content; var term = _searchTrimInput(SEARCH_INPUT.value); if(term.length > 0) { _sendAjax(projectID, term); } else { showError(2, 'Empty search term') } } function _searchTrimInput(str) { return str.replace(/^\s+|\s+$/gm, ''); } function run() { _addEventListener(); $('#templateSearchInfoBtn, #modalSearchInfoBtn').popover({ sanitize: false, html: true, content: $("#templateSearchInfo").html(), placement: "bottom", template: '<div class="popover" role="tooltip"><div class="arrow"></div><button class="m-1 float-right btn btn-sm btn-danger" id="templateSearchInfoClose"><i class="fas fa-times-circle"></i></button><h3 class="popover-header"></h3><div class="popover-body"></div></div>', title: "Search tips", }); $(document).click(function (e) { let t = $(e.target); let a = t && t.attr("data-toggle")!=="popover" && t.parent().attr("data-toggle")!=="popover"; let b = t && $(".popover").has(t).length===0; if(a && b) { $('#templateSearchInfoBtn').popover('hide'); $('#modalSearchInfoBtn').popover('hide'); } }); $('#templateSearchInfoBtn').on('shown.bs.popover', function () { $("#templateSearchInfoClose").click(function(e){ $('#templateSearchInfoBtn').popover('hide'); e.stopPropagation(); e.stopImmediatePropagation(); return false; }); }) $('#templateSearchResultModal').on('hidden.bs.modal', function(e) { $('body').off('click', '#templateSearchResultContainer .paperlist-avatar img'); var pswpElement = document.querySelectorAll('.pswp')[0]; var gallery = null; var paperListAvatar = []; var paperListAvatarThumb = []; $('.paperlist-avatar img').each(function(){ var webversion = $(this).attr('data-web'); var width = $(this).attr('data-width'); var height = $(this).attr('data-height'); var caption =$(this).attr('data-caption'); var figure = { src:webversion, w:width, h:height, title:caption }; paperListAvatarThumb.push($(this)[0]); paperListAvatar.push(figure); }); $('body').on('click', '.paperlist-avatar img', function (e) { if(paperListAvatarThumb.length === 0 && paperListAvatar.length === 0){ $('.paperlist-avatar img').each(function(){ var webversion = $(this).attr('data-web'); var width = $(this).attr('data-width'); var height = $(this).attr('data-height'); var caption =$(this).attr('data-caption'); var figure = { src:webversion, w:width, h:height, title:caption }; paperListAvatarThumb.push($(this)[0]); paperListAvatar.push(figure); }); } var target = $(this); var index = $('.paperlist-avatar img').index(target); var options = { showHideOpacity:true, bgOpacity:0.8, index:index, spacing:0.15, getThumbBoundsFn: function(index) { var thumbnail = paperListAvatarThumb[index]; var pageYScroll = window.pageYOffset || document.documentElement.scrollTop; var rect = thumbnail.getBoundingClientRect(); return {x:rect.left, y:rect.top + pageYScroll, w:rect.width}; } }; gallery = new PhotoSwipe( pswpElement, PhotoSwipeUI_Default,[paperListAvatar[index]],options); gallery.init(); }); }); $('#templateSearchResultModal').on('hide.bs.modal', function(e) { $("#templateRefineSearch").removeClass('d-block').addClass('d-none'); $("#refineSearchModalHide").removeClass('d-block').addClass('d-none'); $("#refineSearchModal").removeClass('d-none').addClass('d-block'); offset = INITIAL_OFFSET; }) $(document).on("click", "#showMore", function(e){ offset+=INITIAL_OFFSET; runSearchModal() e.stopPropagation(); e.stopImmediatePropagation(); return false; }); $(document).ready(function() { $(document).on("click", "#refineSearchModal", function (e) { $("#templateRefineSearch").removeClass('d-none').addClass('d-block'); $(this).removeClass('d-block').addClass('d-none'); $("#refineSearchModalHide").removeClass('d-none').addClass('d-block'); }); $(document).on("click", "#refineSearchModalHide", function (e) { $("#templateRefineSearch").removeClass('d-block').addClass('d-none'); $(this).removeClass('d-block').addClass('d-none'); $("#refineSearchModal").removeClass('d-none').addClass('d-block'); }); $(document).on("click", "#modal_start_site_search", function (e) { runSearchModal(); e.stopPropagation(); e.stopImmediatePropagation(); return false; }); }); } function runSearchModal() { var projectID = document.querySelector('meta[name="global_projectID"]').content; var queryString = $('#library-filters').serialize(); var term = _searchTrimInput($('#modal_search_query').val()); term+='&'+queryString; if(term.length > 0) { _sendAjax(projectID, term); } else { showError(2, 'Empty search term') } } if(document.getElementById('search_query_solr')) { run(); } </script> <!-- END_SITE_SEARCH --></div></div> </div> </div> </div> </div> </header> <!--=== Content ===--> <main class="one-column version-2023"> <div id="content" class="container"> <div id="page_content_container" class="CMSCONTAINER row"> <div class="col"> <div class="article"> <div id="top"></div> <div class="row no-gutters header-block mb-1 align-items-end"> <div class="col-12 col-xl-5"> <div class="row d-xl-none mb-3"> <div class="col-12" > <div class="d-none d-lg-block articleBackLink"> <a href="https://acp.copernicus.org/">Articles</a> | <a href="https://acp.copernicus.org/articles/24/issue22.html">Volume 24, issue 22</a> </div> <div class="tab co-angel-left d-md-none"></div> <div class="tab co-angel-right d-md-none"></div> <div class="mobile-citation"> <ul class="tab-navigation no-styling"> <li class="tab1.articlf active"><nobr><a href="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024.html">Article</a></nobr></li><li class="tab2.assett"><nobr><a href="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-assets.html">Assets</a></nobr></li><li class="tab3.discussioo"><nobr><a href="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-discussion.html">Peer review</a></nobr></li><li class="tab450.metrict"><nobr><a href="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-metrics.html">Metrics</a></nobr></li><li class="tab500.relationt"><nobr><a href="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-relations.html">Related articles</a></nobr></li> </ul> </div> </div> </div> <div class="d-lg-none"> <span class="articleBackLink"><a href="https://acp.copernicus.org/">Articles</a> | <a href="https://acp.copernicus.org/articles/24/issue22.html">Volume 24, issue 22</a> </span> <div class="citation-header" id="citation-content"> <div class="citation-doi">https://doi.org/10.5194/acp-24-12925-2024</div> <div class="citation-copyright">&copy; Author(s) 2024. This work is distributed under <br class="hide-on-mobile hide-on-tablet" />the Creative Commons Attribution 4.0 License.</div> </div> </div> <div class="hide-on-mobile hide-on-tablet"> <div class="citation-header"> <div class="citation-doi">https://doi.org/10.5194/acp-24-12925-2024</div> <div class="citation-copyright">&copy; Author(s) 2024. This work is distributed under <br class="hide-on-mobile hide-on-tablet" />the Creative Commons Attribution 4.0 License.</div> </div> </div> </div> <div class="col-7 d-none d-xl-block"> <div class="text-right articleBackLink"> <a href="https://acp.copernicus.org/">Articles</a> | <a href="https://acp.copernicus.org/articles/24/issue22.html">Volume 24, issue 22</a> </div> <div class="tab co-angel-left d-md-none"></div> <div class="tab co-angel-right d-md-none"></div> <div class="mobile-citation"> <ul class="tab-navigation no-styling"> <li class="tab1.articlf active"><nobr><a href="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024.html">Article</a></nobr></li><li class="tab2.assett"><nobr><a href="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-assets.html">Assets</a></nobr></li><li class="tab3.discussioo"><nobr><a href="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-discussion.html">Peer review</a></nobr></li><li class="tab450.metrict"><nobr><a href="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-metrics.html">Metrics</a></nobr></li><li class="tab500.relationt"><nobr><a href="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-relations.html">Related articles</a></nobr></li> </ul> </div> </div> </div> <div class="ms-type row no-gutters d-none d-lg-flex mb-1 mt-0 align-items-center"> <div class="col"> <div class="row no-gutters align-items-center"> <div class="col-auto"> Research article </div> <div class="col"> &nbsp;|&nbsp;<a target="_blank" href="https://creativecommons.org/licenses/by/4.0/" rel="license" class="licence-icon-svg"><img src="https://www.atmospheric-chemistry-and-physics.net/licenceSVG_16.svg"></a> </div> </div> </div> <div class="col-auto text-right">21 Nov 2024</div> </div> <div class="ms-type row no-gutters d-lg-none mb-1 align-items-center"> <div class="col-12"> Research article | <a target="_blank" href="https://creativecommons.org/licenses/by/4.0/" rel="license" class="licence-icon-svg "><img src="https://www.atmospheric-chemistry-and-physics.net/licenceSVG_16.svg"></a>&nbsp;|&nbsp;<span>21 Nov 2024</span> </div> </div> <a class="article-avatar hide-on-mobile hide-on-tablet" href="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-avatar-web.png" target="_blank"> <img border="0" src="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-avatar-thumb150.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-avatar-web.png" data-width="600" data-height="436"> </a> <h1>Upper-stratospheric temperature trends: new results from the Optical Spectrograph and InfraRed Imager System (OSIRIS)</h1> <div class="auto-fixed-top-forced article-title"> <div class="grid-container show-on-fixed" style="display: none"> <div class="grid-85 mobile-grid-85 tablet-grid-85 grid-parent"> <span class="d-block hide-on-mobile hide-on-tablet journal-contentHeaderColor">Upper-stratospheric temperature trends: new results from the Optical Spectrograph and InfraRed Imager System (OSIRIS)</span> <span class="d-block hide-on-desktop journal-contentHeaderColor">Upper-stratospheric temperature trends: new results from the Optical Spectrograph and InfraRed...</span> <span>Kimberlee Dubé et al.</span> </div> <div class="grid-1 mobile-grid-15 tablet-grid-15 grid-parent text-right"> <a id="scrolltop" class="scrollto" href="https://acp.copernicus.org/articles/24/12925/2024/#top"><i class="co-home"></i> </a> </div> </div> </div> <div class="mb-3 authors-with-affiliations"> <nobr><span class="hover-cursor-pointer journal-contentLinkColor hover-underline" data-toggle="modal" data-target=".author911085">Kimberlee Dubé<a href="mailto:kimberlee.dube@usask.ca"><i class="fal fa-envelope ml-1"></i></a></span>,</nobr> <nobr><span class="hover-cursor-pointer journal-contentLinkColor hover-underline" data-toggle="modal" data-target=".author911086">Susann Tegtmeier</span>,</nobr> <nobr><span class="hover-cursor-pointer journal-contentLinkColor hover-underline" data-toggle="modal" data-target=".author911087">Adam Bourassa</span>,</nobr> <nobr><span class="hover-cursor-pointer journal-contentLinkColor hover-underline" data-toggle="modal" data-target=".author911088">Daniel Zawada</span>,</nobr> <nobr><span class="hover-cursor-pointer journal-contentLinkColor hover-underline" data-toggle="modal" data-target=".author911089">Douglas Degenstein</span>,</nobr> <nobr><span class="hover-cursor-pointer journal-contentLinkColor hover-underline" data-toggle="modal" data-target=".author911090">William Randel</span>,</nobr> <nobr><span class="hover-cursor-pointer journal-contentLinkColor hover-underline" data-toggle="modal" data-target=".author911091">Sean Davis</span>,</nobr> <nobr><span class="hover-cursor-pointer journal-contentLinkColor hover-underline" data-toggle="modal" data-target=".author911092">Michael Schwartz</span>,</nobr> <nobr><span class="hover-cursor-pointer journal-contentLinkColor hover-underline" data-toggle="modal" data-target=".author911093">Nathaniel Livesey</span>,</nobr> <nobr>and <span class="hover-cursor-pointer journal-contentLinkColor hover-underline" data-toggle="modal" data-target=".author911094">Anne Smith</span></nobr> </div> <div class="modal fade author911085" tabindex="-1" aria-hidden="true"> <div class="modal-dialog modal-dialog-centered modal-dialog-scrollable"> <div class="modal-content"> <div class="modal-header"> <div class="container-fluid p-0"> <h3 class="modal-title">Kimberlee Dubé</h3> <div class="row no-gutters"> <div class="col-12">CORRESPONDING AUTHOR</div> <div class="col-12"><a href="mailto:kimberlee.dube@usask.ca"><i class="fal fa-envelope mr-2"></i>kimberlee.dube@usask.ca</a></div> </div> <div class="row no-gutters"> <div class="col-12"> <a class="orcid-authors-logo" target="_blank" href="https://orcid.org/0000-0001-6103-5918" data-title="https://orcid.org/0000-0001-6103-5918"><svg class="mr-2" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><image xlink:href="https://www.atmospheric-chemistry-and-physics.net/orcid_icon.svg" src="https://www.atmospheric-chemistry-and-physics.net/orcid_icon_128x128.png" width="100%" height="100%"></image></svg>https://orcid.org/0000-0001-6103-5918</a> </div> </div> </div> <button type="button" class="close" data-dismiss="modal" aria-label="Close"> <span aria-hidden="true">&times;</span> </button> </div> <div class="modal-body"> <div class="container-fluid p-0"> <div class="row"> <div class="col-12 mb-3"> Institute of Space and Atmospheric Studies, University of Saskatchewan, Saskatoon, SK, Canada </div> </div> </div> </div> </div> </div> </div> <div class="modal fade author911086" tabindex="-1" aria-hidden="true"> <div class="modal-dialog modal-dialog-centered modal-dialog-scrollable"> <div class="modal-content"> <div class="modal-header"> <div class="container-fluid p-0"> <h3 class="modal-title">Susann Tegtmeier</h3> <div class="row no-gutters"> <div class="col-12"> <a class="orcid-authors-logo" target="_blank" href="https://orcid.org/0000-0001-9206-3161" data-title="https://orcid.org/0000-0001-9206-3161"><svg class="mr-2" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><image xlink:href="https://www.atmospheric-chemistry-and-physics.net/orcid_icon.svg" src="https://www.atmospheric-chemistry-and-physics.net/orcid_icon_128x128.png" width="100%" height="100%"></image></svg>https://orcid.org/0000-0001-9206-3161</a> </div> </div> </div> <button type="button" class="close" data-dismiss="modal" aria-label="Close"> <span aria-hidden="true">&times;</span> </button> </div> <div class="modal-body"> <div class="container-fluid p-0"> <div class="row"> <div class="col-12 mb-3"> Institute of Space and Atmospheric Studies, University of Saskatchewan, Saskatoon, SK, Canada </div> </div> </div> </div> </div> </div> </div> <div class="modal fade author911087" tabindex="-1" aria-hidden="true"> <div class="modal-dialog modal-dialog-centered modal-dialog-scrollable"> <div class="modal-content"> <div class="modal-header"> <div class="container-fluid p-0"> <h3 class="modal-title">Adam Bourassa</h3> </div> <button type="button" class="close" data-dismiss="modal" aria-label="Close"> <span aria-hidden="true">&times;</span> </button> </div> <div class="modal-body"> <div class="container-fluid p-0"> <div class="row"> <div class="col-12 mb-3"> Institute of Space and Atmospheric Studies, University of Saskatchewan, Saskatoon, SK, Canada </div> </div> </div> </div> </div> </div> </div> <div class="modal fade author911088" tabindex="-1" aria-hidden="true"> <div class="modal-dialog modal-dialog-centered modal-dialog-scrollable"> <div class="modal-content"> <div class="modal-header"> <div class="container-fluid p-0"> <h3 class="modal-title">Daniel Zawada</h3> </div> <button type="button" class="close" data-dismiss="modal" aria-label="Close"> <span aria-hidden="true">&times;</span> </button> </div> <div class="modal-body"> <div class="container-fluid p-0"> <div class="row"> <div class="col-12 mb-3"> Institute of Space and Atmospheric Studies, University of Saskatchewan, Saskatoon, SK, Canada </div> </div> </div> </div> </div> </div> </div> <div class="modal fade author911089" tabindex="-1" aria-hidden="true"> <div class="modal-dialog modal-dialog-centered modal-dialog-scrollable"> <div class="modal-content"> <div class="modal-header"> <div class="container-fluid p-0"> <h3 class="modal-title">Douglas Degenstein</h3> </div> <button type="button" class="close" data-dismiss="modal" aria-label="Close"> <span aria-hidden="true">&times;</span> </button> </div> <div class="modal-body"> <div class="container-fluid p-0"> <div class="row"> <div class="col-12 mb-3"> Institute of Space and Atmospheric Studies, University of Saskatchewan, Saskatoon, SK, Canada </div> </div> </div> </div> </div> </div> </div> <div class="modal fade author911090" tabindex="-1" aria-hidden="true"> <div class="modal-dialog modal-dialog-centered modal-dialog-scrollable"> <div class="modal-content"> <div class="modal-header"> <div class="container-fluid p-0"> <h3 class="modal-title">William Randel</h3> <div class="row no-gutters"> <div class="col-12"> <a class="orcid-authors-logo" target="_blank" href="https://orcid.org/0000-0002-5999-7162" data-title="https://orcid.org/0000-0002-5999-7162"><svg class="mr-2" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><image xlink:href="https://www.atmospheric-chemistry-and-physics.net/orcid_icon.svg" src="https://www.atmospheric-chemistry-and-physics.net/orcid_icon_128x128.png" width="100%" height="100%"></image></svg>https://orcid.org/0000-0002-5999-7162</a> </div> </div> </div> <button type="button" class="close" data-dismiss="modal" aria-label="Close"> <span aria-hidden="true">&times;</span> </button> </div> <div class="modal-body"> <div class="container-fluid p-0"> <div class="row"> <div class="col-12 mb-3"> NSF National Center for Atmospheric Research, Boulder, CO, USA </div> </div> </div> </div> </div> </div> </div> <div class="modal fade author911091" tabindex="-1" aria-hidden="true"> <div class="modal-dialog modal-dialog-centered modal-dialog-scrollable"> <div class="modal-content"> <div class="modal-header"> <div class="container-fluid p-0"> <h3 class="modal-title">Sean Davis</h3> <div class="row no-gutters"> <div class="col-12"> <a class="orcid-authors-logo" target="_blank" href="https://orcid.org/0000-0001-9276-6158" data-title="https://orcid.org/0000-0001-9276-6158"><svg class="mr-2" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><image xlink:href="https://www.atmospheric-chemistry-and-physics.net/orcid_icon.svg" src="https://www.atmospheric-chemistry-and-physics.net/orcid_icon_128x128.png" width="100%" height="100%"></image></svg>https://orcid.org/0000-0001-9276-6158</a> </div> </div> </div> <button type="button" class="close" data-dismiss="modal" aria-label="Close"> <span aria-hidden="true">&times;</span> </button> </div> <div class="modal-body"> <div class="container-fluid p-0"> <div class="row"> <div class="col-12 mb-3"> NOAA Chemical Sciences Laboratory, Boulder, CO, USA </div> </div> </div> </div> </div> </div> </div> <div class="modal fade author911092" tabindex="-1" aria-hidden="true"> <div class="modal-dialog modal-dialog-centered modal-dialog-scrollable"> <div class="modal-content"> <div class="modal-header"> <div class="container-fluid p-0"> <h3 class="modal-title">Michael Schwartz</h3> <div class="row no-gutters"> <div class="col-12"> <a class="orcid-authors-logo" target="_blank" href="https://orcid.org/0000-0001-6169-5094" data-title="https://orcid.org/0000-0001-6169-5094"><svg class="mr-2" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><image xlink:href="https://www.atmospheric-chemistry-and-physics.net/orcid_icon.svg" src="https://www.atmospheric-chemistry-and-physics.net/orcid_icon_128x128.png" width="100%" height="100%"></image></svg>https://orcid.org/0000-0001-6169-5094</a> </div> </div> </div> <button type="button" class="close" data-dismiss="modal" aria-label="Close"> <span aria-hidden="true">&times;</span> </button> </div> <div class="modal-body"> <div class="container-fluid p-0"> <div class="row"> <div class="col-12 mb-3"> Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA </div> </div> </div> </div> </div> </div> </div> <div class="modal fade author911093" tabindex="-1" aria-hidden="true"> <div class="modal-dialog modal-dialog-centered modal-dialog-scrollable"> <div class="modal-content"> <div class="modal-header"> <div class="container-fluid p-0"> <h3 class="modal-title">Nathaniel Livesey</h3> </div> <button type="button" class="close" data-dismiss="modal" aria-label="Close"> <span aria-hidden="true">&times;</span> </button> </div> <div class="modal-body"> <div class="container-fluid p-0"> <div class="row"> <div class="col-12 mb-3"> Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA </div> </div> </div> </div> </div> </div> </div> <div class="modal fade author911094" tabindex="-1" aria-hidden="true"> <div class="modal-dialog modal-dialog-centered modal-dialog-scrollable"> <div class="modal-content"> <div class="modal-header"> <div class="container-fluid p-0"> <h3 class="modal-title">Anne Smith</h3> <div class="row no-gutters"> <div class="col-12"> <a class="orcid-authors-logo" target="_blank" href="https://orcid.org/0000-0003-2384-5033" data-title="https://orcid.org/0000-0003-2384-5033"><svg class="mr-2" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><image xlink:href="https://www.atmospheric-chemistry-and-physics.net/orcid_icon.svg" src="https://www.atmospheric-chemistry-and-physics.net/orcid_icon_128x128.png" width="100%" height="100%"></image></svg>https://orcid.org/0000-0003-2384-5033</a> </div> </div> </div> <button type="button" class="close" data-dismiss="modal" aria-label="Close"> <span aria-hidden="true">&times;</span> </button> </div> <div class="modal-body"> <div class="container-fluid p-0"> <div class="row"> <div class="col-12 mb-3"> NSF National Center for Atmospheric Research, Boulder, CO, USA </div> </div> </div> </div> </div> </div> </div> <div class="abstract sec" id="abstract"><div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-show="#abstract .co-arrow-open,.abstract-content" data-hide="#abstract .co-arrow-closed,.abstract-mobile-bottom-border"><div class="h1"><span class="section-number"> </span>Abstract<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed" style="display:none"></i><i class="co-arrow-open" style="display:inline-block"></i></span></div></span></div> <div class="abstract-content show-no-js"><p id="d2e184">Temperature trends in the upper stratosphere, particularly above <span class="inline-formula">∼</span> 45 km, are difficult to quantify due to a lack of observational data with high vertical resolution in this region that span multiple decades. The recent v7.3 upper-stratospheric (35–60 km) temperature data product from the Optical Spectrograph and InfraRed Imager System (OSIRIS) includes over 22 years of observations that can be used to estimate temperature trends. The trends in OSIRIS temperatures over 2005–2021 are compared to those from two other satellite limb instruments: Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) and Microwave Limb Sounder (MLS). We find that the upper stratosphere cooled by <span class="inline-formula">∼</span> 0.5 to 1 K per decade during this period. Results from the three instruments are generally in agreement. By merging the OSIRIS observations with those from channel 3 of the Stratospheric Sounding Unit (SSU), we find that the stratosphere cooled at a rate of approximately <span class="inline-formula">−</span>0.6 K per decade between 1979 and 2021 near 45 km, in agreement with earlier results based on SSU and MLS. The similarity between OSIRIS temperature trends and those from other records improves confidence in observed upper-stratospheric temperature changes over the last several decades.</p></div><span class="abstract-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet" style="display:none"></span></div> <div id="oldMobileDownloadBox" class="widget dark-border hide-on-desktop download-and-links"> <div class="legend journal-contentLinkColor">Download & links</div> <div class="content"> <ul class="additional_info no-bullets no-styling"> <li> <a class="triangle" data-toggle=".box-notice" data-duration="300" title="PDF Version (7586 KB)" href="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024.pdf" > Article (PDF, 7586 KB) </a> </li> </ul> </div> </div> <div id="downloadBoxOneColumn" class="widget dark-border hide-on-desktop download-and-links"> <div class="legend journal-contentLinkColor">Download & links</div> <div class="content"> <ul class="additional_info no-bullets no-styling"> <li><a class="triangle" title="PDF Version (7586 KB)" href="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024.pdf">Article</a> <nobr>(7586 KB)</nobr> </li> <li> <a class="triangle" title="XML Version" href="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024.xml">Full-text XML</a> </li> <li><a class="triangle" href="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024.bib">BibTeX</a></li> <li><a class="triangle" href="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024.ris">EndNote</a></li> </ul> </div> </div> <div id="share" class="oneColumnShareMobileBox widget dark-border hide-on-desktop"> <div class="legend journal-contentLinkColor">Share</div> <div class="content row m-0 py-1"> <div class="col-auto pl-0"> <a class="share-one-line" href="https://www.mendeley.com/import/?url=https%3A%2F%2Facp.copernicus.org%2Farticles%2F24%2F12925%2F2024%2F" title="Mendeley" target="_blank"> <img src="https://www.atmospheric-chemistry-and-physics.net/mendeley.png" alt="Mendeley"/> </a> </div> <div class="col-auto"> <a class="share-one-line" href="https://www.reddit.com/submit?url=https%3A%2F%2Facp.copernicus.org%2Farticles%2F24%2F12925%2F2024%2F" title="Reddit" target="_blank"> <img src="https://www.atmospheric-chemistry-and-physics.net/reddit.png" alt="Reddit"> </a> </div> <div class="col-auto"> <a class="share-one-line last" href="https://twitter.com/intent/tweet?text=Upper-stratospheric+temperature+trends%3A+new+results+from+the+Optical+Spectrograph+and+InfraRed+Imager+System+%28OSIRIS%29 https%3A%2F%2Facp.copernicus.org%2Farticles%2F24%2F12925%2F2024%2F" title="Twitter" target="_blank"> <img src="https://www.atmospheric-chemistry-and-physics.net/twitter.png" alt="Twitter"/> </a> </div> <div class="col-auto"> <a class="share-one-line" href="https://www.facebook.com/share.php?u=https%3A%2F%2Facp.copernicus.org%2Farticles%2F24%2F12925%2F2024%2F&t=Upper-stratospheric+temperature+trends%3A+new+results+from+the+Optical+Spectrograph+and+InfraRed+Imager+System+%28OSIRIS%29" title="Facebook" target="_blank"> <img src="https://www.atmospheric-chemistry-and-physics.net/facebook.png" alt="Facebook"/> </a> </div> <div class="col-auto pr-0"> <a class="share-one-line last" href="https://www.linkedin.com/shareArticle?mini=true&url=https%3A%2F%2Facp.copernicus.org%2Farticles%2F24%2F12925%2F2024%2F&title=Upper-stratospheric+temperature+trends%3A+new+results+from+the+Optical+Spectrograph+and+InfraRed+Imager+System+%28OSIRIS%29" title="LinkedIn" target="_blank"> <img src="https://www.atmospheric-chemistry-and-physics.net/linkedin.png" alt="LinkedIn"> </a> </div> <div class="col pr-0 mobile-native-share"> <a href="#" data-title="Atmospheric Chemistry and Physics" data-text="*Upper-stratospheric temperature trends: new results from the Optical Spectrograph and InfraRed Imager System (OSIRIS)* Kimberlee Dubé et al." data-url="https://acp.copernicus.org/articles/24/12925/2024/" class="mobile-native-share share-one-line last"><i class="co-mobile-share display-none"></i></a> </div> </div> </div> <div id="citation-footer" class="sec"> <div class="h1-special journal-contentHeaderColor">How to cite.&nbsp;</div> <div class="citation-footer-content show-no-js"> <p> <div class="citation-footer"> Dubé, K., Tegtmeier, S., Bourassa, A., Zawada, D., Degenstein, D., Randel, W., Davis, S., Schwartz, M., Livesey, N., and Smith, A.: Upper-stratospheric temperature trends: new results from the Optical Spectrograph and InfraRed Imager System (OSIRIS), Atmos. Chem. Phys., 24, 12925&ndash;12941, https://doi.org/10.5194/acp-24-12925-2024, 2024. </div> </p> </div> </div> <div id="article-dates" class="sec"> <div class="article-dates dates-content my-3"> <nobr>Received: 26 Apr 2024</nobr> &ndash; <nobr>Discussion started: 02 May 2024</nobr> &ndash; <nobr>Revised: 12 Sep 2024</nobr> &ndash; <nobr>Accepted: 03 Oct 2024</nobr> &ndash; <nobr>Published: 21 Nov 2024</nobr> </div> </div> <div class="sec intro" id="section1"><div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section1 .co-arrow-open,.section1-content" data-show="#section1 .co-arrow-closed,.section1-mobile-bottom-border"><div id="Ch1.S1" class="h1"><span class="label">1</span> Introduction<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section1-content show-no-js hide-on-mobile-soft"><p id="d2e217">A consequence of increasing anthropogenic greenhouse gas emissions is an altered thermal structure in the atmosphere, consisting of tropospheric warming and stratospheric cooling (e.g. <span class="cit" id="xref_altparen.1"><a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx24" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Manabe and Wetherald</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx24" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">1967</a>; <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx12" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Gulev et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx12" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2021</a></span>). Temperatures in the troposphere and lower stratosphere (below <span class="inline-formula">∼</span> 35 km) have been monitored for several decades by radiosondes <span class="cit" id="xref_paren.2">(<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx13" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Haimberger et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx13" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2012</a>)</span> and satellites <span class="cit" id="xref_paren.3">(<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx18" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Khaykin et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx18" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2017</a>; <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx26" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Mears and Wentz</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx26" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2017</a>)</span>, and temperature changes in this region are well defined <span class="cit" id="xref_paren.4">(<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx20" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Ladstädter et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx20" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2023</a>; <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx12" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Gulev et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx12" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2021</a>)</span>. At higher altitudes, above <span class="inline-formula">∼</span> 35 km, temperature observations are more limited, so there is uncertainty in the magnitude of the middle- and upper-stratospheric cooling rate <span class="cit" id="xref_paren.5">(<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx12" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Gulev et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx12" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2021</a>)</span>. New and updated temperature observations in the middle and upper stratosphere are necessary for better understanding the multidecadal cooling rate (cooling trend) and to more accurately quantify the impact of humanity on the climate. Considering middle- and upper-stratospheric cooling rather than just tropospheric warming increases the confidence that observed atmospheric temperatures are a direct result of human activities and not due to natural variability <span class="cit" id="xref_paren.6">(<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx40" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Santer et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx40" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2023</a>)</span>.</p><p id="d2e253">Most knowledge about temperatures above <span class="inline-formula">∼</span> 35 km comes from a series of nadir sounders that have operated on various National Oceanic and Atmospheric Administration (NOAA) satellites since late 1978 <span class="cit" id="xref_paren.7">(<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx36" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Reale et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx36" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2008</a>; <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx33" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Randel et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx33" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2009</a>)</span>. Measurements are taken by three different instruments: the Stratospheric Sounding Unit (SSU), the Microwave Sounding Unit (MSU), and the Advanced<span id="page12926"></span> Microwave Sounding Unit (AMSU-A). These instruments all have limited vertical resolution as temperatures are measured in different channels covering altitude ranges determined by their weighting functions <span class="cit" id="xref_paren.8">(<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx33" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Randel et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx33" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2009</a>)</span>. Channels 2 and 3 of SSU and channels 13 and 14 of AMSU-A cover the range between <span class="inline-formula">∼</span> 35 and <span class="inline-formula">∼</span> 45 km, while MSU only has tropospheric and lower-stratospheric channels. Each individual SSU and AMSU-A data record is quite short, and it is necessary to merge measurements from multiple instruments before calculating multidecadal trends <span class="cit" id="xref_paren.9">(<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx55" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Zou et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx55" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2014</a>)</span>. It is also necessary to merge the SSU observations with those from AMSU-A (or another instrument) when considering temperature trends over the full 4 decades from 1979 to the present: the last SSU instrument ceased operations in 2006, and the first AMSU-A instrument began operating in 1998 <span class="cit" id="xref_paren.10">(<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx54" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Zou and Qian</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx54" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2016</a>)</span>.</p><p id="d2e290">Satellite limb instruments are the best option available for retrieving temperature profiles that have a high (1–4 km) vertical resolution and extend into the upper stratosphere. Limb observations have been available since the end of the 20th century from an assortment of instruments. Datasets from a single instrument that extend for multiple decades, such as the Atmospheric Chemistry Experiment – Fourier transform spectrometer <span class="cit" id="xref_paren.11">(ACE-FTS, Feb 2004–ongoing; <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx1" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Bernath et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx1" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2005</a>; <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx2" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Boone et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx2" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a>)</span>, the Microwave Limb Sounder <span class="cit" id="xref_paren.12">(MLS, Aug 2004–ongoing; <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx49" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Waters et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx49" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2006</a>; <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx43" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Schwartz et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx43" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2008</a>)</span>, and the Sounding of the Atmosphere using Broadband Emission Radiometry instrument <span class="cit" id="xref_paren.13">(SABER, Sept 2002–ongoing; <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx38" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Russell et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx38" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">1999</a>; <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx37" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Remsberg et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx37" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2008</a>)</span>, are best when considering atmospheric trends. <span class="cit" id="xref_text.14"><a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx34" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Randel et al.</a> (<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx34" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2016</a>)</span> also created a merged SSU+MLS data record covering 1979 to the present; however its vertical resolution is limited to that of the three SSU channels.</p><p id="d2e311">Global mean temperature trends in merged SSU+AMSU-A and SSU+MLS datasets for the ozone recovery period (after <span class="inline-formula">∼</span> 1998) range from <span class="inline-formula">−</span>0.19 to <span class="inline-formula">−</span>0.5 K per decade (SSU channel 2) and from <span class="inline-formula">−</span>0.28 to <span class="inline-formula">−</span>0.6 K per decade (SSU channel 3) <span class="cit" id="xref_paren.15">(<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx34" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Randel et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx34" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2016</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx35" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2017</a>; <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx25" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Maycock et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx25" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2018</a>; <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx45" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Steiner et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx45" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a>)</span>. The disparate time periods and latitude regions that were used make it difficult to compare the cooling rates from different studies directly, but in general the cooling rate is greater at higher altitudes, and including more recent years in the analysis (e.g. <span class="cit" id="xref_altparen.16"><a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx45" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Steiner et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx45" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a></span>) results in a greater stratospheric temperature decrease per decade compared to older studies (e.g. <span class="cit" id="xref_altparen.17"><a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx35" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Randel et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx35" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2017</a></span>).</p><p id="d2e360">Here we focus on results from a new temperature retrieval in the middle and upper stratosphere (35–60 km) that was recently developed for the Optical Spectrograph and InfraRed Imaged System <span class="cit" id="xref_paren.18">(OSIRIS; <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx22" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Llewellyn et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx22" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2004</a>; <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx52" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Zawada et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx52" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2024</a>)</span>. OSIRIS has been in orbit on Odin since 2001, and the more than 22-year data record provides an excellent opportunity to study long-term cooling in the middle and upper stratosphere. In the first part of this work, OSIRIS temperature trends are compared to those from SABER and MLS. The observation-based temperature trends are also compared to temperature trends from several reanalyses and a climate model in order to assess the ability of models and data assimilation products to represent upper-stratospheric cooling. The second main goal of this work is to create a merged SSU+OSIRIS temperature product to complement the existing SSU+MLS and SSU+AMSU-A datasets <span class="cit" id="xref_paren.19">(<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx34" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Randel et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx34" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2016</a>; <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx54" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Zou and Qian</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx54" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2016</a>)</span>. By merging more recent observations with those from SSU, which operated from 1979 to 2006, it is possible to look at changes in stratospheric temperatures over more than 4 decades. Considering each of the OSIRIS, MLS, and AMSU-A observations for the last 20 years of the record provides increased confidence in observed temperature trends during the 21st century.</p></div><span class="section1-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> <div class="sec" id="section2"><div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section2 .co-arrow-open,.section2-content" data-show="#section2 .co-arrow-closed,.section2-mobile-bottom-border"><div id="Ch1.S2" class="h1"><span class="label">2</span> Data and models<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section2-content show-no-js hide-on-mobile-soft"><div class="sec"><h2 id="Ch1.S2.SS1"><span class="label">2.1</span> Satellite observations</h2> <div class="sec"><h3 id="Ch1.S2.SS1.SSS1"><span class="label">2.1.1</span> OSIRIS</h3> <p id="d2e393">The optical spectrograph component of OSIRIS measures limb-scattered sunlight between 280 and 810 nm, with a spectral resolution of approximately 1 nm. Each scan takes about 90 s, and there are 15 orbits per day, resulting in 100–400 vertical solar radiance profile measurements each day, depending on the time of year and the scanning mode.</p> <p id="d2e396">Temperature profiles are retrieved in a multi-stage fashion where the signals at 310 and 350 nm are used to estimate the Rayleigh scattering background number density, which can then be converted to temperature using hydrostatic balance and the ideal gas law. Similar techniques have been applied to measurements from the Global Ozone Monitoring by Occultation of Stars (GOMOS) instrument <span class="cit" id="xref_paren.20">(<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx14" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Hauchecorne et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx14" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2019</a>)</span> and from the Ozone Mapping and Profiler Suite – Limb Profiler (OMPS-LP) <span class="cit" id="xref_paren.21">(<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx4" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Chen et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx4" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2023</a>)</span>, among others. Limb scatter measurements can offer high signal levels with good vertical resolution; however the temperature inversion is subject to several biases partially from complexities in modelling the scattered signal. A detailed discussion of the technique, specifics of the OSIRIS v7.3 temperature data product, and expected biases are given in <span class="cit" id="xref_text.22"><a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx52" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Zawada et al.</a> (<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx52" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2024</a>)</span>. The vertical resolution of the temperature profiles is 3.0–3.5 km, and the retrieval precision is 1–4 K.</p> <p id="d2e408"><span id="page12927"></span>One notable source of bias in the OSIRIS temperature retrieval is stratospheric aerosol contamination of the measured radiances, limiting the useful range of the retrieved data product to <span class="inline-formula">∼</span> 35 km and higher. A second source of bias is the need of an external reference temperature near 65 km to initialize the hydrostatic balance integration. Two versions of the OSIRIS temperature product were developed in order to quantify this second source of bias: one that uses a value from the Modern-Era Retrospective analysis for Research and Applications, Version 2 <span class="cit" id="xref_paren.23">(MERRA-2; <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx8" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Gelaro et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx8" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2017</a>)</span>, interpolated to the OSIRIS profile as a reference temperature at 65 km, and one that uses climatological values from the NRLMSISE-00 model <span class="cit" id="xref_paren.24">(<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx30" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Picone et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx30" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2002</a>)</span> as the reference temperature. The choice of reference temperature introduces a bias of up to 5 K at 65 km that decreases exponentially with decreasing altitude. This is the main source of uncertainty in the OSIRIS retrieval above 45 km <span class="cit" id="xref_paren.25">(<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx52" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Zawada et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx52" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2024</a>)</span>. The MERRA-2 version of the retrieval is more physically realistic as the climatology forces a trend of 0 K per decade at 65 km, so the MERRA-2-based OSIRIS retrieval is used as the default. The effect of the reference temperature choice on the OSIRIS temperature trends is discussed further in Sect. <a href="https://acp.copernicus.org/articles/24/12925/2024/#Ch1.S4" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">4</a>.</p> <p id="d2e431">Only the OSIRIS descending node profiles are used due to a drift in Odin's orbit that has resulted in a loss of ascending node measurements over the course of the mission. The descending node observations occur near a local solar time (LST) of 06:30. The data are further filtered by removing scans with a solar zenith angle greater than 85°. Monthly zonal means are then calculated for months with more than 15 measurements in a given 10° latitude and 1 km altitude bin. Months with fewer profiles typically occur when OSIRIS resumes taking measurements after being in darkness (i.e. following the winter at mid- and high latitudes).</p> </div> <div class="sec"><h3 id="Ch1.S2.SS1.SSS2"><span class="label">2.1.2</span> MLS</h3> <p id="d2e442">MLS has been operating from the Aura satellite since August 2004 <span class="cit" id="xref_paren.26">(<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx49" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Waters et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx49" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2006</a>)</span>. MLS observes microwave limb emissions, measuring <span class="inline-formula">∼</span> 3500 vertical profiles each day. Temperatures are retrieved near the O<span class="inline-formula"><sub>2</sub></span> spectral lines at 118 and 239 GHz <span class="cit" id="xref_paren.27">(<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx21" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Livesey et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx21" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2022</a>)</span>. The vertical resolution of the temperature profiles is 3 km at 30 hPa (<span class="inline-formula">∼</span> 25 km), and it decreases to 9 km at 0.1 hPa (<span class="inline-formula">∼</span> 65 km) <span class="cit" id="xref_paren.28">(<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx43" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Schwartz et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx43" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2008</a>)</span>. Temperatures from version 5 of the MLS retrieval are used here. All profiles are filtered per the guidelines provided in <span class="cit" id="xref_text.29"><a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx21" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Livesey et al.</a> (<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx21" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2022</a>)</span>. As MLS is retrieved on a native pressure grid, the profiles must be converted to a vertical altitude grid before comparison with OSIRIS. This is done using the geopotential height (GPH) profiles that are retrieved along with each MLS temperature profile to calculate the geometric height of each pressure level and then interpolating to the 1 km OSIRIS altitude grid.</p> </div> <div class="sec"><h3 id="Ch1.S2.SS1.SSS3"><span class="label">2.1.3</span> SABER</h3> <p id="d2e496">SABER measures infrared CO<span class="inline-formula"><sub>2</sub></span> emissions from its platform on board the Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics (TIMED) satellite. It has been in orbit since December 2001. Temperatures are retrieved between 10 and 100 km, with a vertical resolution of 2 km <span class="cit" id="xref_paren.30">(<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx37" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Remsberg et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx37" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2008</a>)</span>. Profiles from version 2.0 of the SABER retrieval are used here. The SABER viewing mode is such that continuous coverage is only available from 52° S to 52° N, with higher latitudes observed for 60–63 d periods that alternate between the hemispheres <span class="cit" id="xref_paren.31">(<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx37" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Remsberg et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx37" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2008</a>)</span>. To avoid any bias that this might introduce in the trends, we only use SABER observations from 50° S–50° N.</p> <p id="d2e514">Due to the sampling pattern, the SABER measurement time changes with each scan rather than observing near a fixed LST like OSIRIS and MLS. It takes approximately 60 d for SABER to observe the full 24 h cycle. This could introduce a bias when considering monthly mean temperatures as only half of the LSTs will be sampled. We tried accounting for this by using 30 d on either side of the 15th day of each month to calculate the monthly zonal means such that the full range of LSTs was included in the mean, as suggested by <span class="cit" id="xref_text.32"><a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx53" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Zhao et al.</a> (<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx53" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2021</a>)</span>. It was found that the temperature trends were nearly the same whether regular monthly means (averaging from the first to last day of a month) or this more complicated technique was used, so only results for the regular monthly means are shown in Sect. <a href="https://acp.copernicus.org/articles/24/12925/2024/#Ch1.S4" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">4</a>.</p> </div> <div class="sec"><h3 id="Ch1.S2.SS1.SSS4"><span class="label">2.1.4</span> SSU and AMSU-A</h3> <p id="d2e530">The SSU and AMSU-A instruments were designed to be used for weather forecasting, but the global coverage and extensive length of the data record allows their observations to be used for climate-length trend studies. SSU is a three-channel radiometer that measures infrared CO<span class="inline-formula"><sub>2</sub></span> emissions <span class="cit" id="xref_paren.33">(<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx27" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Miller et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx27" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">1980</a>)</span>. The weighting functions of the channels peak near 30, 39, and 45 km and have vertical resolutions (calculated as the full width at half maximum) of 19, 17, and 15 km, respectively. SSU instruments were flown on numerous NOAA satellites between November 1978 and April 2006. We use the NOAA version 2 SSU temperature dataset developed by <span class="cit" id="xref_text.34"><a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx55" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Zou et al.</a> (<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx55" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2014</a>)</span>. This version of the data uses reprocessed temperatures retrieved from recalibrated radiances, which improved agreement between SSU observations taken from different spacecraft.</p> <p id="d2e548">AMSU-A measures molecular oxygen emissions between 50 and 58 GHz <span class="cit" id="xref_paren.35">(<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx54" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Zou and Qian</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx54" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2016</a>)</span>. AMSU-A has higher vertical resolution than SSU. There are 15 channels, with channels 9–14 dedicated to measuring temperatures at approximately 18, 20, 25, 30, 35, and 40 km. Channels 13 and 14 each have a vertical resolution of around 12 km. Various iterations of AMSU-A have flown on NOAA, NASA, and MetOp spacecrafts since 1998. The process for combining these observations into a single record is described in <span class="cit" id="xref_text.36"><a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx47" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Wang and Zou</a> (<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx47" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2014</a>)</span>.</p> <p id="d2e557">We also consider two merged stratospheric temperature datasets that use the SSU measurements. The SSU+AMSU-A dataset created by <span class="cit" id="xref_text.37"><a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx54" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Zou and Qian</a> (<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx54" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2016</a>)</span> uses a merging process that combines information from multiple AMSU-A channels to weight the higher-resolution AMSU-A observations such that they match the three SSU channels. <span class="cit" id="xref_text.38"><a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx34" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Randel et al.</a> (<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx34" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2016</a>)</span> combined the SSU temperature observations with temperature retrieved from MLS. The much higher vertical resolution of MLS compared to SSU means that the MLS profiles can simply be weighted with the SSU weighting functions before using the overlap period to combine the datasets. <span class="cit" id="xref_text.39"><a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx34" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Randel et al.</a> (<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx34" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2016</a>)</span> and <span class="cit" id="xref_text.40"><a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx45" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Steiner et al.</a> (<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx45" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a>)</span> found that trends in the SSU+MLS record agreed with trends<span id="page12928"></span> in SSU+AMSU-A temperatures within the regression uncertainties.</p> </div> </div><div class="sec"><h2 id="Ch1.S2.SS2"><span class="label">2.2</span> Reanalyses and climate model</h2> <p id="d2e581">The observed temperature trends are compared to reanalysis and model results to evaluate the ability of these systems to accurately represent changes in upper-stratospheric temperatures. The lack of temperature observations above 45 km (prior to <span class="inline-formula">∼</span> 2004) makes it particularly difficult to evaluate model simulations in this region.</p> <p id="d2e591">The three most up-to-date reanalyses are considered: MERRA-2, ERA5, and the Japanese 55-year Reanalysis (JRA-55). MERRA-2 is the latest reanalysis from the NASA Global Modelling and Assimilation Office (GMAO), based on the Goddard Earth Observing System (GEOS) model <span class="cit" id="xref_paren.41">(<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx8" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Gelaro et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx8" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2017</a>)</span>. JRA-55 is produced by the Japan Meteorological Agency (JMA) <span class="cit" id="xref_paren.42">(<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx19" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Kobayashi et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx19" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2015</a>)</span>. ERA5 is the fifth generation reanalysis from the European Centre for Medium Range Weather Forecasting (ECMWF) <span class="cit" id="xref_paren.43">(<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx15" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Hersbach et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx15" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a>)</span>. ERA5, JRA-55, and MERRA-2 all assimilate radiances from SSU, MSU, and AMSU, as well as bending angles from GNSS-RO instruments <span class="cit" id="xref_paren.44">(<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx8" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Gelaro et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx8" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2017</a>; <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx15" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Hersbach et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx15" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a>; <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx19" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Kobayashi et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx19" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2015</a>)</span>. MERRA-2 also assimilates MLS temperatures, which are included above 5 hPa beginning in August 2004 <span class="cit" id="xref_paren.45">(<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx8" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Gelaro et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx8" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2017</a>)</span>. It should be noted that despite including many of the same observations, each reanalysis deals with the transitions between satellites and instruments in a different way. These transitions, along with changes in the reanalysis production streams, can create discontinuities that occur at different times in each reanalysis <span class="cit" id="xref_paren.46">(<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx23" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Long et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx23" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2017</a>; <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx7" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Fujiwara et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx7" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2017</a>)</span>.</p> <p id="d2e613">A cold bias in the stratosphere exists in ERA5 between 2000 and 2006 <span class="cit" id="xref_paren.47">(<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx44" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Simmons et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx44" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a>)</span>. This motivated the development of a corrected reanalysis for those years, called ERA5.1. For simplicity, when we refer to ERA5, we are actually referring to the combined ERA5 and ERA5.1 dataset. It should be noted that while ERA5.1 is generally an improvement, <span class="cit" id="xref_text.48"><a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx44" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Simmons et al.</a> (<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx44" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a>)</span> found that the combination of ERA5 and ERA5.1 does not perform as well as the previous generation reanalysis, ERA-Interim, with regards to upper-stratospheric temperatures for years prior to <span class="inline-formula">∼</span> 2010.</p> <p id="d2e629">The OSIRIS temperatures are retrieved on an altitude grid with 1 km spacing, so the reanalysis results must be converted to this same grid before doing any comparisons. First, reanalysis temperatures are interpolated to the latitude, longitude, and time of each OSIRIS profile. In the case of MERRA-2 we start with the 3-hourly temperature profiles on pressure levels and use the corresponding geopotential height to compute the geometric altitude corresponding to each pressure level for each profile. This relationship is then used to interpolate the temperature profiles to the OSIRIS altitude grid. For ERA5 we start with the hourly model-level results and calculate the geopotential height of each model level from the surface pressure, before computing the geometric altitude of each level and interpolating to the OSIRIS grid. For JRA-55 we use 6-hourly model-level results. The geopotential height on each model level is provided, so we only have to calculate the geometric altitude and interpolate to the OSIRIS profiles' locations and times. The same process is repeated for ERA5, JRA-55, and MERRA-2 but interpolated to the MLS profile locations and times so that we can determine the impact of the OSIRIS sampling on the resulting trends.</p> <p id="d2e633">In addition to the three reanalyses, we also consider temperature trends from simulations using the Whole Atmosphere Community Climate Model (WACCM) version 6 <span class="cit" id="xref_paren.49">(<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx9" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Gettelman et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx9" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2019</a>)</span>. WACCM version 6 has 70 vertical levels extending from the surface to 140 km and a horizontal resolution of 0.95° latitude by 1.25° longitude. We consider four ensemble members from the free-running version of the model, covering the period 1960–2018 and following the REFD1 scenario. This scenario includes forcing from observed sea surface temperatures, greenhouse gases, ozone-depleting substances, and volcanic aerosol <span class="cit" id="xref_paren.50">(<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx31" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Plummer et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx31" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2021</a>)</span>. The quasi-biennial oscillation <span class="cit" id="xref_paren.51">(QBO; <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx46" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Wallace et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx46" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">1993</a>)</span> was nudged to match observations.</p> </div></div><span class="section2-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> <div class="sec" id="section3"><div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section3 .co-arrow-open,.section3-content" data-show="#section3 .co-arrow-closed,.section3-mobile-bottom-border"><div id="Ch1.S3" class="h1"><span class="label">3</span> Regression analysis<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section3-content show-no-js hide-on-mobile-soft"><p id="d2e656">A multiple linear regression (MLR) model is applied to monthly zonal mean observations in 10° latitude and 1 km altitude bins to study the long-term trends and variability in upper-stratospheric temperatures. The MLR model is defined as </p><div class="disp-formula" content-type="numbered" id="Ch1.E1"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M23" display="block" overflow="scroll" dspmath="mathml"><mtable><mlabeledtr><mtd><mtext>(1)</mtext></mtd><mtd><mtable rowspacing="0.2ex" class="split" displaystyle="true" columnalign="right left"> <mtr> <mtd> <mrow> <mi>T</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> <mtd> <mrow> <mspace linebreak="nobreak" width="0.25em"></mspace> <mo>=</mo> <mi mathvariant="italic">β</mi> <mo>+</mo> <msub> <mi mathvariant="italic">β</mi> <mi mathvariant="normal">trend</mi> </msub> <mo>×</mo> <mtext>linear</mtext> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>+</mo> <msubsup> <mi mathvariant="italic">β</mi> <mi mathvariant="normal">qboa</mi> <mrow> <mo>(</mo> <mn mathvariant="normal">2</mn> <mo>)</mo> </mrow> </msubsup> <mo>×</mo> <msub> <mtext>QBO</mtext> <mi>a</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mrow> <mspace width="0.25em" linebreak="nobreak"></mspace> <mo>+</mo> <msubsup> <mi mathvariant="italic">β</mi> <mi mathvariant="normal">qbob</mi> <mrow> <mo>(</mo> <mn mathvariant="normal">2</mn> <mo>)</mo> </mrow> </msubsup> <mo>×</mo> <msub> <mtext>QBO</mtext> <mi>b</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>+</mo> <msub> <mi mathvariant="italic">β</mi> <mi mathvariant="normal">solar</mi> </msub> <mo>×</mo> <msub> <mi>F</mi> <mn mathvariant="normal">10.7</mn> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>+</mo> <mi>R</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mspace width="0.125em" linebreak="nobreak"></mspace> <mo>,</mo> </mrow> </mtd> </mtr> </mtable></mtd></mlabeledtr></mtable></math><div><svg xmlns:svg="http://www.w3.org/2000/svg" width="416pt" height="43pt" class="hide-js svg-formula" dspmath="mathimg" md5hash="cfc6c1a58b6f65bad953336dc7b73e1b"><image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-e_1.svg" width="100%" height="43pt" src="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-e_1.png"></image></svg></div></div><p id="d2e656-3"> where each <span class="inline-formula"><i>β</i><sub><i>i</i></sub></span> defines a regression coefficient. The superscripts in Eq. (<a href="https://acp.copernicus.org/articles/24/12925/2024/#Ch1.E1" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">1</a>) define the highest-order seasonal harmonic included for a term. Thus, the coefficient for the QBO<span class="inline-formula"><sub><i>a</i></sub>(<i>t</i>)</span> term is </p><div class="disp-formula" content-type="numbered" id="Ch1.E2"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M26" display="block" overflow="scroll" dspmath="mathml"><mtable><mlabeledtr><mtd><mtext>(2)</mtext></mtd><mtd><mtable rowspacing="0.2ex" class="split" displaystyle="true" columnalign="right left"> <mtr> <mtd> <mrow> <msubsup> <mi mathvariant="italic">β</mi> <mi mathvariant="normal">qboA</mi> <mrow> <mo>(</mo> <mn mathvariant="normal">2</mn> <mo>)</mo> </mrow> </msubsup> </mrow> </mtd> <mtd> <mrow> <mspace width="0.25em" linebreak="nobreak"></mspace> <mo>=</mo> <msubsup> <mi mathvariant="italic">β</mi> <mi mathvariant="normal">qboA</mi> <mn mathvariant="normal">0</mn> </msubsup> <mo>+</mo> <munderover> <mo movablelimits="false">∑</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn mathvariant="normal">1</mn> </mrow> <mn mathvariant="normal">2</mn> </munderover> </mrow> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mrow> <mspace linebreak="nobreak" width="0.25em"></mspace> <mfenced open="(" close=")"> <mrow> <msubsup> <mi mathvariant="italic">β</mi> <mi mathvariant="normal">qboA</mi> <mrow> <mn mathvariant="normal">2</mn> <mi>k</mi> <mo>-</mo> <mn mathvariant="normal">1</mn> </mrow> </msubsup> <mi>sin</mi> <mspace width="0.125em" linebreak="nobreak"></mspace> <mstyle displaystyle="true"> <mfrac style="display"> <mrow> <mn mathvariant="normal">2</mn> <mi mathvariant="italic">π</mi> </mrow> <mn mathvariant="normal">365.25</mn> </mfrac> </mstyle> <mi>k</mi> <mi>t</mi> <mo>+</mo> <msubsup> <mi mathvariant="italic">β</mi> <mi mathvariant="normal">qboA</mi> <mrow> <mn mathvariant="normal">2</mn> <mi>k</mi> </mrow> </msubsup> <mi>cos</mi> <mspace width="0.125em" linebreak="nobreak"></mspace> <mstyle displaystyle="true"> <mfrac style="display"> <mrow> <mn mathvariant="normal">2</mn> <mi mathvariant="italic">π</mi> </mrow> <mn mathvariant="normal">365.25</mn> </mfrac> </mstyle> <mi>k</mi> <mi>t</mi> </mrow> </mfenced> <mspace width="0.125em" linebreak="nobreak"></mspace> <mo>.</mo> </mrow> </mtd> </mtr> </mtable></mtd></mlabeledtr></mtable></math><div><svg xmlns:svg="http://www.w3.org/2000/svg" width="416pt" height="68pt" class="hide-js svg-formula" dspmath="mathimg" md5hash="d594d4542e1451db7210ddfe03c3fb3c"><image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-e_2.svg" width="100%" height="68pt" src="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-e_2.png"></image></svg></div></div><p id="d2e656-5"> <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M27" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi mathvariant="italic">β</mi><mi mathvariant="normal">qboB</mi><mrow><mo>(</mo><mn mathvariant="normal">2</mn><mo>)</mo></mrow></msubsup></mrow></math><span><svg xmlns:svg="http://www.w3.org/2000/svg" width="28pt" height="20pt" class="hide-js svg-formula" dspmath="mathimg" md5hash="436882d8b0b523e5dd88552cd5fd34f5"><image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-ie00001.svg" width="100%" height="20pt" src="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-ie00001.png"></image></svg></span></span> is also expanded in the same way. There are 13 regression coefficients in total: three corresponding to the constant, trend, and <span class="inline-formula"><i>F</i><sub>10.7</sub>(<i>t</i>)</span> terms in Eq. (<a href="https://acp.copernicus.org/articles/24/12925/2024/#Ch1.E1" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">1</a>) and five coefficients from each of the QBO<span class="inline-formula"><sub><i>a</i></sub>(<i>t</i>)</span> and QBO<span class="inline-formula"><sub><i>b</i></sub>(<i>t</i>)</span> terms. The data are deseasonalized prior to applying the regression model, so there is no need to include regression terms for annual oscillations. The deseasonalization is done to monthly zonal mean data by subtracting the mean temperature of a given month from all values for that month for a specified latitude and altitude bin.<span id="page12929"></span> Seasonal harmonics are nonetheless included for the QBO predictors, QBO<span class="inline-formula"><sub><i>a</i></sub>(<i>t</i>)</span> and QBO<span class="inline-formula"><sub><i>b</i></sub>(<i>t</i>)</span>, to account for coupling between the QBO and the seasonal cycle. It was found by <span class="cit" id="xref_text.52"><a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx6" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Dubé et al.</a> (<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx6" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a>)</span> that the MLR does not capture the full QBO signal in the mid-stratosphere when the seasonal harmonics are not included, even if the data have been deseasonalized, because the extratropical QBO signal is modulated by the annual cycle (e.g. <span class="cit" id="xref_altparen.53"><a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx11" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Gray and Dunkerton</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx11" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">1990</a>; <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx32" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Randel et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx32" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">1999</a></span>).</p><p id="d2e1048">In Eq. (<a href="https://acp.copernicus.org/articles/24/12925/2024/#Ch1.E1" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">1</a>), <span class="inline-formula"><i>β</i><sub>trend</sub></span> is the temperature trend in units of kelvin per decade, and <span class="inline-formula"><i>F</i><sub>10.7</sub>(<i>t</i>)</span> is the solar flux at 10.7 cm. QBO<span class="inline-formula"><sub><i>a</i></sub>(<i>t</i>)</span> and QBO<span class="inline-formula"><sub><i>b</i></sub>(<i>t</i>)</span> are the first two principal components of the monthly mean zonal winds between 300 and 10 hPa measured in Singapore. The MLR was also tested with terms representing the El Niño–Southern Oscillation and the aerosol optical depth; however these were found to play a negligible role in explaining the temperature variability between 35 and 60 km. Further details on the regression model, as well as the proxy data sources, are described in <span class="cit" id="xref_text.54"><a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx5" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Damadeo et al.</a> (<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx5" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2022</a>)</span>.</p><p id="d2e1117">We only consider temperatures to the end of 2021 when calculating trends to avoid the influence of the Hunga Tonga–Hunga Ha'apai (HTHH) volcanic eruption, which significantly altered stratospheric temperatures throughout 2022 <span class="cit" id="xref_paren.55">(<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx48" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Wang et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx48" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2023</a>; <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx50" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Yu et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx50" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2023</a>)</span>. As this occurred near the end of our dataset, it could skew the trend values by altering the end point. Including an aerosol optical depth proxy in the MLR is not adequate to account for the effects of HTHH as water vapour played a significant role in altering the dynamics and composition of the stratosphere following the eruption.</p><p id="d2e1123">OSIRIS measures limb-scattered sunlight, so there are only observations available during daylight. This means that there are no data available when the measurement time of the descending node (local time of approximately 06:30) occurs during the night, i.e. at higher latitudes in the winter. In more recent years there are also some gaps in the monthly mean observations because the aging OSIRIS instrument does not have power for as much of each orbit as it used to. These months without OSIRIS measurements, which are different for each latitude bin, are removed from the MLS and SABER observations before applying the MLR in order to most directly compare trends in all three datasets. The effect on the trends of removing these points, as well as of the overall OSIRIS sampling pattern, is discussed in Sect. <a href="https://acp.copernicus.org/articles/24/12925/2024/#Ch1.S4" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">4</a>.</p></div><span class="section3-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> <div class="sec" id="section4"><div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section4 .co-arrow-open,.section4-content" data-show="#section4 .co-arrow-closed,.section4-mobile-bottom-border"><div id="Ch1.S4" class="h1"><span class="label">4</span> Results<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section4-content show-no-js hide-on-mobile-soft"><div class="sec"><h2 id="Ch1.S4.SS1"><span class="label">4.1</span> Vertically resolved temperature trends</h2> <p id="d2e1143">An initial validation of the OSIRIS temperature observations is provided in <span class="cit" id="xref_text.56"><a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx52" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Zawada et al.</a> (<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx52" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2024</a>)</span>. MLS and OSIRIS temperatures were shown to agree within <span class="inline-formula">±5</span> K between 35 and 55 km, with some of the bias caused by differences in the measurement time of day. The OSIRIS and MLS time series also agree very well: Fig. <a href="https://acp.copernicus.org/articles/24/12925/2024/#Ch1.F1" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">1</a> shows the deseasonalized temperature anomalies for OSIRIS, MLS, and SABER in four example latitude and altitude bins. The variability is similar across all three datasets, and the correlations are greater than 0.5 in all bins and greater than 0.8 in most bins below 45 km (Appendix A, Fig. <a href="https://acp.copernicus.org/articles/24/12925/2024/#App1.Ch1.S1.F9" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">A1</a>). MLS and SABER are more similar to one another than either is to OSIRIS: much of this difference is likely due to the sparser OSIRIS sampling pattern.</p> <div class="fig" id="Ch1.F1"><a target="_blank" class="figure-link" href="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f01-web.png"><img alt="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f01" data-webversion="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f01-web.png" src="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f01-thumb.png" data-printversion="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f01-high-res.png" data-width="2067" data-height="1446"></a><div class="caption"><p id="d2e1165"><strong class="caption-number">Figure 1</strong>Deseasonalized monthly zonal mean anomaly of OSIRIS, SABER, and MLS temperatures in four representative 10° latitude and 1 km altitude bins. Results are shown only for months when data from all three instruments are available.</p></div><p class="downloads"><a class="triangle journal-contentLinkColor figure-download" href="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f01-high-res.png" target="_blank">Download</a></p></div> <p id="d2e1174">In the tropics the largest source of variability up to <span class="inline-formula">∼</span> 45 km is the QBO (Fig. <a href="https://acp.copernicus.org/articles/24/12925/2024/#Ch1.F1" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">1</a>b). At latitudes greater than <span class="inline-formula">±40</span>° the magnitude of the temperature anomalies peaks in the winter and lasts to the spring. Only the tail ends of these peaks, in September, are visible in Fig. <a href="https://acp.copernicus.org/articles/24/12925/2024/#Ch1.F1" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">1</a>c due to the lack of OSIRIS observations in the winter at 50° S. At this time of year there is significant interannual variability in the temperatures that does not get removed when deseasonalizing the data.</p> <p id="d2e1199">The MLR described in Sect. <a href="https://acp.copernicus.org/articles/24/12925/2024/#Ch1.S3" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">3</a> is used to determine temperature trends over 2005–2021 (2005 is the first full year when all three instruments were operating). Trends are calculated independently at each altitude (every 1 km from 34.5 to 59.5 km). The trends are shown in Fig. <a href="https://acp.copernicus.org/articles/24/12925/2024/#Ch1.F2" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2</a>. Observations from each of MLS, SABER, and OSIRIS show stratospheric cooling during 2005–2021, ranging from about <span class="inline-formula">−</span>0.5 to <span class="inline-formula">−</span>1.5 K per decade. OSIRIS observations have the greatest cooling in the Southern Hemisphere (SH) and tropics, while SABER observations show the greatest cooling in the Northern Hemisphere (NH). Despite this difference, the OSIRIS and SABER temperature trend profiles (Fig. <a href="https://acp.copernicus.org/articles/24/12925/2024/#Ch1.F2" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2</a>d to h) have a similar vertical structure, particularly in the tropics (Fig. <a href="https://acp.copernicus.org/articles/24/12925/2024/#Ch1.F2" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2</a>f). When considering the larger latitude bins, OSIRIS and SABER temperature trends agree within the regression uncertainty everywhere except at 50 km and above 56 km in the 30–10° S bin.</p> <div class="fig" id="Ch1.F2"><a target="_blank" class="figure-link" href="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f02-web.png"><img alt="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f02" data-webversion="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f02-web.png" src="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f02-thumb.png" data-printversion="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f02-high-res.png" data-width="2067" data-height="1489"></a><div class="caption"><p id="d2e1227"><strong class="caption-number">Figure 2</strong>Temperature trends for 2005–2021. Trends are shown for <strong>(a)</strong> MLS, <strong>(b)</strong> SABER, and <strong>(c)</strong> OSIRIS. Hatching denotes statistically insignificant trends at the 2<span class="inline-formula"><i>σ</i></span> level. The bottom row, panels <strong>(d)</strong> to <strong>(h)</strong>, shows vertical profiles comparing the same trends from the three instruments in 20° latitude bins. The shaded regions denote the 2<span class="inline-formula"><i>σ</i></span> uncertainty in the MLR.</p></div><p class="downloads"><a class="triangle journal-contentLinkColor figure-download" href="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f02-high-res.png" target="_blank">Download</a></p></div> <p id="d2e1266">The MLS temperature trends agree with those from OSIRIS and SABER in the tropics, but at higher latitudes the MLS trends oscillate in altitude (Fig. <a href="https://acp.copernicus.org/articles/24/12925/2024/#Ch1.F2" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2</a>d and h): at the stratopause (48–50 km) the MLS cooling rate is <span class="inline-formula">∼</span> <span class="inline-formula">−</span>1.5 K per decade, but the trend quickly drops to nearly 0 K per decade at 45 km before going back to <span class="inline-formula">∼</span> <span class="inline-formula">−</span>1 K per decade at 40 km. The effect is more pronounced in the SH compared to the NH. The OSIRIS and SABER trends change very little between 40 and 50 km in either hemisphere. More work is required to determine if the vertical structure in the MLS trends is physical.</p> <p id="d2e1299"><span id="page12931"></span>The MLR used to compute the temperature trends also includes terms for the QBO and the solar cycle. The regression coefficients corresponding to these terms for OSIRIS, SABER, and MLS are provided in Fig. <a href="https://acp.copernicus.org/articles/24/12925/2024/#App1.Ch1.S1.F10" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">A2</a> in Appendix A. The QBO coefficients that are shown are the zeroth-order terms, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M48" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi mathvariant="italic">β</mi><mi mathvariant="normal">qboA</mi><mn mathvariant="normal">0</mn></msubsup></mrow></math><span><svg xmlns:svg="http://www.w3.org/2000/svg" width="28pt" height="18pt" class="hide-js svg-formula" dspmath="mathimg" md5hash="a17dcb63e527ed4eea5ccbc23327b1a0"><image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-ie00002.svg" width="100%" height="18pt" src="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-ie00002.png"></image></svg></span></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M49" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi mathvariant="italic">β</mi><mi mathvariant="normal">qboB</mi><mn mathvariant="normal">0</mn></msubsup></mrow></math><span><svg xmlns:svg="http://www.w3.org/2000/svg" width="28pt" height="18pt" class="hide-js svg-formula" dspmath="mathimg" md5hash="66d549daf0c28aba0ea027b01b0e93c3"><image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-ie00003.svg" width="100%" height="18pt" src="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-ie00003.png"></image></svg></span></span>. The coefficients are very similar for all three datasets. The solar cycle, represented by the <span class="inline-formula"><i>F</i><sub>10.7</sub></span> solar flux proxy, has a positive impact on the temperature throughout the upper stratosphere as expected, as higher levels of solar irradiance lead to greater warming. The high values for the QBO coefficients in the SH are caused by the OSIRIS sampling pattern and not by a real physical phenomenon. OSIRIS only measures at higher latitudes in the SH for a few months of the year. When months without OSIRIS observations are not removed from MLS and SABER, the SH QBO coefficients for these two datasets look more similar to their NH counterparts (not shown here)</p> <p id="d2e1341">There are two main factors that introduce uncertainties into the OSIRIS temperature trends: the choice of the reference temperature used in the retrieval and the spatial and temporal sampling pattern. We quantify how the choice of reference temperature influences the trends by comparing the trends in OSIRIS temperatures retrieved using MERRA-2 to the trends in temperatures retrieved using NRLMSISE-00 reference temperatures. NRLMSISE-00 is a climatology, and there is no trend (0 K per decade trend) in the temperatures at the reference altitude of 65 km, even after interpolating to the OSIRIS profiles locations and times. Therefore the difference in the trends for the two OSIRIS retrieval versions shows how much MERRA-2 is contributing to the resulting OSIRIS temperature trend at each latitude and altitude (Fig. <a href="https://acp.copernicus.org/articles/24/12925/2024/#Ch1.F3" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">3</a>). The influence of the reference temperature on the retrieved temperatures decreases exponentially downward in altitude, becoming small below <span class="inline-formula">∼</span> 45 km <span class="cit" id="xref_paren.57">(<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx52" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Zawada et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx52" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2024</a>)</span>. Similarly, the effect of the reference temperature on the temperature trends is greatest at 60 km and negligible below <span class="inline-formula">∼</span> 45 km. The reference temperature does not have the same impact on the OSIRIS trends at all latitudes. This is because the trend in MERRA-2 at the reference altitude is more negative in the SH compared to the NH, resulting in an OSIRIS trend that is further away from the climatological 0 K per decade trend in the SH. Overall, the effect of the reference temperature on the trends is less than 0.3 K per decade below 50 km in the NH and tropics and at almost all levels in the SH. It is important to note that the effect of the reference temperature trend does not correspond directly to an error in the retrieved OSIRIS trends: MERRA-2 assimilates MLS observations, so the temperatures are more physically realistic than those from a climatology. Comparing the temperature trends from the two versions of the OSIRIS retrieval only tells us how much of an effect the reference temperature choice can have on the trends.</p> <div class="fig" id="Ch1.F3"><a target="_blank" class="figure-link" href="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f03-web.png"><img alt="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f03" data-webversion="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f03-web.png" src="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f03-thumb.png" data-printversion="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f03.png" data-width="1432" data-height="994"></a><div class="caption"><p id="d2e1366"><strong class="caption-number">Figure 3</strong>The difference between temperature trends from OSIRIS retrieved with a MERRA-2 reference temperature and OSIRIS retrieved with a climatological (NRLMSISE-00) reference temperature. Trends are calculated over 2005–2021.</p></div><p class="downloads"><a class="triangle journal-contentLinkColor figure-download" href="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f03.png" target="_blank">Download</a></p></div> <p id="d2e1375">To evaluate the impact of the OSIRIS sampling pattern on the temperature trends, we compare trends in reanalysis temperatures that are sampled like OSIRIS and that are sampled like MLS. The OSIRIS temperature trends and the trends in each of MERRA-2, ERA5, and JRA-55 sampled to the OSIRIS profiles are shown in the top row of Fig. <a href="https://acp.copernicus.org/articles/24/12925/2024/#Ch1.F4" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">4</a>. The middle row of the figure shows the MLS temperature trends and trends in the same three reanalyses but sampled like MLS. The MLS trends are slightly different from those in Fig. <a href="https://acp.copernicus.org/articles/24/12925/2024/#Ch1.F2" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2</a>, as months when OSIRIS does not have any observations were removed from MLS before calculating the trends in Fig. <a href="https://acp.copernicus.org/articles/24/12925/2024/#Ch1.F2" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2</a>. The differences in the reanalysis trends with MLS sampling compared to OSIRIS sampling are in the bottom row of Fig. <a href="https://acp.copernicus.org/articles/24/12925/2024/#Ch1.F4" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">4</a>. This direct comparison shows that the effect of the OSIRIS sampling pattern on the trends is largest at latitudes greater than <span class="inline-formula">±30</span>°. The effect of sampling is also slightly greater in the SH compared to the NH. As OSIRIS can only measure the sunlit portion of the atmosphere, there are regularly gaps in the data record at middle–high latitudes, depending on the season, so it is logical for the sampling pattern to affect the trends more at these latitudes. The OSIRIS orbit is also such that there are more observations in the NH compared to the SH, resulting in the greater impact of sampling on the SH trends. As with the reference temperature, it is not possible to relate these sampling biases directly to an error in the OSIRIS trends, and we can only conclude that caution should be taken when considering latitudes greater than <span class="inline-formula">±30</span>°, particularly above 50 km.</p> <div class="fig" id="Ch1.F4"><a target="_blank" class="figure-link" href="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f04-web.png"><img alt="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f04" data-webversion="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f04-web.png" src="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f04-thumb.png" data-printversion="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f04-high-res.png" data-width="2067" data-height="1456"></a><div class="caption"><p id="d2e1409"><strong class="caption-number">Figure 4</strong>Temperature trends for 2005–2021. Trends are shown for <strong>(a)</strong> OSIRIS and <strong>(e)</strong> MLS, along with MERRA-2, ERA5, and JRA-55 sampled like OSIRIS <strong>(b, c, d)</strong> and sampled like MLS <strong>(f, g, h)</strong>. Panels <strong>(i)</strong>, <strong>(j)</strong>, and <strong>(k)</strong> show the difference between trends with the two types of sampling for each reanalysis. The black contour lines mark differences of <span class="inline-formula">−</span>0.5 (dashed) and <span class="inline-formula">+</span>0.5 K per decade (solid). In all panels hatching denotes statistically insignificant trends at the 2<span class="inline-formula"><i>σ</i></span> level.</p></div><p class="downloads"><a class="triangle journal-contentLinkColor figure-download" href="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f04-high-res.png" target="_blank">Download</a></p></div> <p id="d2e1461">In addition to their use for discussing the OSIRIS sampling issues, the reanalysis temperature trends are also worth considering on their own. Reanalyses are often taken to be the best measure of the truth when validating and tuning climate models, but they are limited by the data that are assimilated and often have discontinuities whenever there are changes in the observational records that are assimilated <span class="cit" id="xref_paren.58">(<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx23" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Long et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx23" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2017</a>)</span>. MERRA-2 is the only reanalysis that assimilates temperatures above <span class="inline-formula">∼</span> 45 km, corresponding to the upper limit of SSU and AMSU-A observations. MLS temperatures are assimilated above <span class="inline-formula">∼</span> 30 km, and the result is that the MERRA-2 temperature trends are similar to the MLS temperature trends. The ERA5 temperature trends look similar to those in OSIRIS and MLS in the tropics below 45 km where there are data assimilated, but the cooling rate at higher altitudes is more than twice what is seen in observations. JRA-55 also does not assimilate MLS, but the JRA-55 temperature trends above 45 km are nonetheless more similar to MERRA-2 and the observations than they are to ERA5. This suggests that the problem with ERA5 is not solely because of the lack of assimilated observations at higher altitudes. There are discontinuities in the ERA5 temperature time series at the higher altitudes that contribute to the more negative trends. Further work is needed to determine the<span id="page12932"></span> origin of these discontinuities in ERA5 as they are not obviously related to changes in the processing or in the assimilated observations.</p> <p id="d2e1481">Finally, we consider temperature trends in four ensemble members from the WACCM REFD1 scenario (Appendix A, Fig. <a href="https://acp.copernicus.org/articles/24/12925/2024/#App1.Ch1.S1.F11" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">A3</a>). The WACCM results are only available to the end of 2018, so these trends cannot be compared directly with the results from observations and reanalyses. The key point here is rather that the temperature trends from each WACCM ensemble member have substantial variability – up to 2 K per decade in some latitude and pressure bins. Since the emissions and radiative calculations are identical in each ensemble member, this suggests that upper-stratospheric temperature trends are significantly affected by internal variability (over the relatively short period of 2005–2021).</p> </div><div class="sec"><h2 id="Ch1.S4.SS2"><span class="label">4.2</span> Merging with SSU and trends in SSU channel 3</h2> <p id="d2e1494">It is necessary to combine observations from multiple instruments to study upper-stratospheric temperature trends prior to the 21st century. The most consistent data source available to use is SSU, which operated from 1979 to 2006. As discussed in Sect. <a href="https://acp.copernicus.org/articles/24/12925/2024/#Ch1.S2" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2</a>, SSU temperatures have been previously merged with those from MLS and AMSU-A. We now create a third merged dataset using OSIRIS temperatures.</p> <p id="d2e1499">Before they can be merged with SSU temperatures, it is necessary to weight the OSIRIS temperature profiles using the SSU weighting functions. We only consider SSU channel 3, as it is the channel that best matches the OSIRIS altitude range: 82 % of the channel 3 weighting function falls between 35 and 60 km (Fig. <a href="https://acp.copernicus.org/articles/24/12925/2024/#Ch1.F5" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">5</a>). As another point of comparison, we also weight the OSIRIS temperature profiles using the narrower AMSU-A channel 14 weighting function, 92 % of which falls within the OSIRIS altitude range.</p> <div class="fig" id="Ch1.F5"><a target="_blank" class="figure-link" href="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f05-web.png"><img alt="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f05" data-webversion="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f05-web.png" src="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f05-thumb.png" data-printversion="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f05.png" data-width="1299" data-height="1302"></a><div class="caption"><p id="d2e1506"><strong class="caption-number">Figure 5</strong>Weighting functions for SSU channels 2 and 3 and AMSU-A channels 13 and 14. The yellow shaded region denotes the altitude range of the OSIRIS temperature product.</p></div><p class="downloads"><a class="triangle journal-contentLinkColor figure-download" href="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f05.png" target="_blank">Download</a></p></div> <div class="fig" id="Ch1.F6"><a target="_blank" class="figure-link" href="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f06-web.png"><img alt="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f06" data-webversion="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f06-web.png" src="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f06-thumb.png" data-printversion="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f06-high-res.png" data-width="2067" data-height="2454"></a><div class="caption"><p id="d2e1518"><strong class="caption-number">Figure 6</strong><strong>(a)</strong> Bias between OSIRIS and SSU and OSIRIS and AMSU-A temperature for the overlap periods. OSIRIS is weighted separately to match SSU channel (Ch.) 3 and AMSU-A Ch. 14. The error bars are the standard deviation of the mean bias. <strong>(b, c, d)</strong> SSU Ch. 3 temperatures and OSIRIS temperature weighted like SSU Ch. 3 for three latitude bands. <strong>(e, f, g)</strong> AMSU-A Ch. 14 temperatures and OSIRIS temperature weighted like AMSU-A Ch. 14 for three latitude bands.</p></div><p class="downloads"><a class="triangle journal-contentLinkColor figure-download" href="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f06-high-res.png" target="_blank">Download</a></p></div> <p id="d2e1535"><span id="page12933"></span>Each OSIRIS profile is individually weighted by the weighting functions before calculating the monthly zonal means. Figure <a href="https://acp.copernicus.org/articles/24/12925/2024/#Ch1.F6" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">6</a>a shows the mean bias between monthly zonal mean temperatures from SSU channel 3 with OSIRIS and between temperatures from AMSU-A channel 14 and OSIRIS. In both cases the bias is slightly higher in the tropics compared to other latitudes. OSIRIS and SSU agree within 6–7 K, while OSIRIS and AMSU-A agree within 1–2 K. Figure <a href="https://acp.copernicus.org/articles/24/12925/2024/#Ch1.F6" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">6</a>b–d compare the OSIRIS and SSU time series at northern and southern mid-latitudes and in the tropics. While the monthly variability is similar, OSIRIS is consistently biased high. Figure <a href="https://acp.copernicus.org/articles/24/12925/2024/#Ch1.F6" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">6</a>e–g show the same comparison for AMSU-A and OSIRIS. The datasets are extremely similar, and there are no changes in the bias with time, which provides confidence that the various AMSU-A datasets were merged correctly. It is likely that OSIRIS agrees better with AMSU-A than with SSU because AMSU-A has narrower weighting functions, and AMSU-A channel 14 aligns better with the OSIRIS retrieval range than SSU channel 3. While AMSU-A is not particularly useful for extending the OSIRIS observations as the measurement periods are nearly the same, the similarity between OSIRIS and AMSU-A provides further confidence in the accuracy of the OSIRIS temperature retrieval, at least below 45 km.</p> <div class="fig" id="Ch1.F7"><a target="_blank" class="figure-link" href="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f07-web.png"><img alt="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f07" data-webversion="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f07-web.png" src="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f07-thumb.png" data-printversion="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f07-high-res.png" data-width="2067" data-height="1624"></a><div class="caption"><p id="d2e1546"><strong class="caption-number">Figure 7</strong>Merged SSU+AMSU-A, SSU+MLS, and SSU+OSIRIS temperature anomalies for five latitude bands. All datasets are weighted like SSU Ch. 3.</p></div><p class="downloads"><a class="triangle journal-contentLinkColor figure-download" href="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f07-high-res.png" target="_blank">Download</a></p></div> <p id="d2e1555">After weighting the OSIRIS profiles with the SSU channel 3 weighting function, the merging process is the same as the one used to merge OSIRIS <span class="inline-formula">O<sub>3</sub></span> and <span class="inline-formula">NO<sub>2</sub></span> with observations from the Stratospheric Aerosol and Gas Experiment II <span class="cit" id="xref_paren.59">(<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx3" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Bourassa et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx3" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2014</a>; <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx6" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Dubé et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx6" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a>)</span>. First, the bias between the OSIRIS and SSU temperatures is removed by<span id="page12934"></span> subtracting the bias from OSIRIS in each latitude bin. The bias is calculated by grouping the observations by month and finding the mean difference for each month when both instruments have observations and then taking the average of these monthly values. Then the datasets are deseasonalized individually to account for differences in their sampling patterns that could affect the seasonal cycle. Finally, the OSIRIS and SSU temperatures are merged by taking the mean in months when both instruments have observations. The resulting time series, for several 10° latitude bins, are shown in Fig. <a href="https://acp.copernicus.org/articles/24/12925/2024/#Ch1.F7" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">7</a>. While the OSIRIS sampling affects the results somewhat, the SSU+OSIRIS temperatures are extremely similar to both the SSU+MLS and SSU+AMSU-A temperatures at all latitudes.</p> <p id="d2e1585">Trends in each of the merged datasets are calculated using the MLR described in Sect. <a href="https://acp.copernicus.org/articles/24/12925/2024/#Ch1.S3" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">3</a>. Figure <a href="https://acp.copernicus.org/articles/24/12925/2024/#Ch1.F8" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">8</a>a shows the temperature trends as a function of latitude between 1979 and 2021. The trends from all three merged datasets are nearly identical. At this level, near 45 km, the stratosphere cooled by <span class="inline-formula">∼</span> 0.6 K per decade during the 42 years considered. The cooling rate is slightly greater in the NH than in the SH. For just the OSIRIS period, from 2002–2021, the merged temperature records are mainly based on the other instrument, rather than SSU, so we are comparing MLS, AMSU-A, and OSIRIS trends only. These temperature trends agree within the regression error at all latitudes (Fig. <a href="https://acp.copernicus.org/articles/24/12925/2024/#Ch1.F8" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">8</a>b). At all latitudes the cooling rate is about 0.5 K per decade. The SSU+OSIRIS temperature trends are more variable than those from SSU+AMSU-A and SSU+MLS because of the less regular OSIRIS sampling pattern.</p> <div class="fig" id="Ch1.F8"><a target="_blank" class="figure-link" href="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f08-web.png"><img alt="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f08" data-webversion="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f08-web.png" src="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f08-thumb.png" data-printversion="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f08-high-res.png" data-width="2067" data-height="1843"></a><div class="caption"><p id="d2e1604"><strong class="caption-number">Figure 8</strong>Trends in temperatures from merged SSU+AMSU-A, SSU+MLS, and SSU+OSIRIS in 10° latitude bins. Trends are shown for <strong>(a)</strong> 1979–2021 and <strong>(b)</strong> 2002–2021. Error bars are the 2<span class="inline-formula"><i>σ</i></span> uncertainty in the MLR.</p></div><p class="downloads"><a class="triangle journal-contentLinkColor figure-download" href="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f08-high-res.png" target="_blank">Download</a></p></div> </div></div><span class="section4-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> <div class="sec conclusions" id="section5"><div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section5 .co-arrow-open,.section5-content" data-show="#section5 .co-arrow-closed,.section5-mobile-bottom-border"><div id="Ch1.S5" class="h1"><span class="label">5</span> Conclusions<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section5-content show-no-js hide-on-mobile-soft"><p id="d2e1636">Upper-stratospheric temperature trends have historically been difficult to quantify due to a deficit of observations with high vertical resolution above 35 km. Using the new OSIRIS v7.3 temperature product, we find that the upper stratosphere, between 35 and 60 km, cooled by 0.5–1 K per decade during 2005–2021. The two main sources of uncertainty in the OSIRIS temperature trends are due to sampling biases and the choice of the reference temperatures used in the OSIRIS retrieval. These factors somewhat limit our confidence in the OSIRIS temperature trends at latitudes greater than <span class="inline-formula">±30</span>° and at altitudes above 50 km. Despite this, the OSIRIS temperature trends agree with trends from SABER and MLS within the regression uncertainties at most latitudes and altitudes between <span class="inline-formula">±50</span>° and 35–60 km. By having a third temperature record in the upper stratosphere, where previously there were only MLS and SABER, we increase confidence in the stratospheric cooling rate. We are also able to observe a possible issue with MLS temperatures at latitudes outside <span class="inline-formula">±30</span>°. At these latitudes the MLS temperature trends oscillate in altitude, with trends becoming significantly more negative than those from SABER and OSIRIS near 50 km.</p><p id="d2e1669">We also compared the OSIRIS and MLS temperature trends to temperature trends from reanalyses and a climate model. The modelled temperature trends from four WACCM ensemble members are generally within the range of those from the observational datasets, but internal variability alters the trends by up to 2 K per decade, highlighting trend uncertainties in short data records. The reanalysis trends agree reasonably well with the observations below 45 km, where SSU and AMSU-A observations are assimilated, but are highly variable at higher altitudes. MERRA-2 is the only reanalysis that assimilates temperatures (from MLS) above 45 km, and it is clear from the large trend differences with ERA5 and JRA-55 that this constraint is important. However, this is not the only factor affecting the reanalysis temperature trends above 45 km. JRA-55 trends are at most <span class="inline-formula">∼</span>1 K per decade too low, while ERA5 trends in some bins are more than 3 K per decade lower than the trends in observations. This suggests that there is some issue with the ERA5 temperatures at these altitudes, apart from the lack of assimilated observations. The ERA5 temperature time series has discontinuities above <span class="inline-formula">∼</span> 54 km that contribute to the more negative trends. Further work is needed to understand these discontinuities as they cannot be clearly attributed to changes in the production stream or to changes in the input observations.</p><p id="d2e1686">For the comparison of OSIRIS temperature observations to those from the nadir sounders SSU and AMSU-A, the OSIRIS profiles were weighted to match either channel 3 of SSU or channel 14 of AMSU-A. OSIRIS and AMSU-A temperatures agree extremely well, with OSIRIS biased high by at most 2 K. The bias between OSIRIS and SSU channel 3 is greater: OSIRIS is warmer by 6–7 K.</p><p id="d2e1689">By merging the OSIRIS observations with SSU we determined temperature trends over the 42 years from 1979–2021. The cooling rate for this extended period is about 0.6 K per decade. This is in agreement with the cooling rate in temperatures from SSU merged with MLS and from SSU merged with AMSU-A. The temperature trends in the<span id="page12936"></span> merged SSU+OSIRIS, SSU+MLS, and SSU+AMSU-A also all agree for 2002–2021. During this period the trends are mainly based on the data records that are merged with SSU, as SSU ceased operations in 2006.</p><p id="d2e1693">In summary, our results show that the upper stratosphere, from 35–60 km, cooled at a rate of 0.5–1 K per decade between 1979 and 2021. The consistent trends across all observations from OSIRIS, MLS, SABER, SSU, and AMSU-A provide confidence that these cooling trends are accurate. Initial comparisons with reanalysis and model trends highlight the need for further model development in order to accurately represent upper-stratospheric temperature changes. The significant stratospheric cooling rate is yet another sign that anthropogenic activities are altering the climate, and it is necessary to model this cooling correctly in order to understand the effects of climate change on the whole atmosphere.</p></div><span class="section5-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> <div class="app sec" id="section6"> <div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section6 .co-arrow-open,.section6-content" data-show="#section6 .co-arrow-closed,.section6-mobile-bottom-border"><div id="App1.Ch1.S1" class="h1"><span>Appendix A:</span> Extra figures<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section6-content show-no-js hide-on-mobile-soft"><div class="fig" id="App1.Ch1.S1.F9"><a target="_blank" class="figure-link" href="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f09-web.png"><img alt="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f09" data-webversion="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f09-web.png" src="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f09-thumb.png" data-printversion="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f09-high-res.png" data-width="2067" data-height="754"></a><div class="caption"><p id="d2e1709"><strong class="caption-number">Figure A1</strong>Correlation coefficient for deseasonalized monthly mean anomalies during 2005–2021 in 10° latitude and 1 km altitude bins. Only months when OSIRIS has observations are considered.</p></div><p class="downloads"><a class="triangle journal-contentLinkColor figure-download" href="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f09-high-res.png" target="_blank">Download</a></p></div><div class="fig" id="App1.Ch1.S1.F10"><a target="_blank" class="figure-link" href="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f10-web.png"><img alt="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f10" data-webversion="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f10-web.png" src="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f10-thumb.png" data-printversion="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f10-high-res.png" data-width="2067" data-height="1498"></a><div class="caption"><p id="d2e1723"><strong class="caption-number">Figure A2</strong>Regression coefficients for the solar <span class="inline-formula"><i>F</i><sub>10.7</sub></span> flux and the first two principal components of the QBO. Coefficients are shown for each of MLS, SABER, and OSIRIS temperatures over 2005–2021. Only months when OSIRIS has observations are considered.</p></div><p class="downloads"><a class="triangle journal-contentLinkColor figure-download" href="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f10-high-res.png" target="_blank">Download</a></p></div><div class="fig" id="App1.Ch1.S1.F11"><a target="_blank" class="figure-link" href="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f11-web.png"><img alt="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f11" data-webversion="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f11-web.png" src="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f11-thumb.png" data-printversion="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f11-high-res.png" data-width="2067" data-height="633"></a><div class="caption"><p id="d2e1748"><strong class="caption-number">Figure A3</strong>Temperature trends for 2005–2018 for four WACCM ensemble members. The shaded regions denote the 2<span class="inline-formula"><i>σ</i></span> uncertainty in the MLR.</p></div><p class="downloads"><a class="triangle journal-contentLinkColor figure-download" href="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024-f11-high-res.png" target="_blank">Download</a></p></div></div><span class="section6-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> <div id="section7" class="sec"><div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section7 .co-arrow-open,.section7-content" data-show="#section7 .co-arrow-closed,.section7-mobile-bottom-border"><div class="h1"><span class="section-number"> </span>Code and data availability<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section7-content show-no-js hide-on-mobile-soft"><ul> <li> <p id="d2e1777">OSIRIS v7.3 temperature profiles are available at <span class="uri"><a href="https://doi.org/10.5281/zenodo.8271140" target="_blank">https://doi.org/10.5281/zenodo.8271140</a></span> <span class="cit" id="xref_paren.60">(<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx51" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Zawada et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx51" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2023</a>)</span>.</p> </li> <li> <p id="d2e1789">MLS v5 temperature profiles are available at <span class="uri"><a href="https://doi.org/10.5067/Aura/MLS/DATA2520" target="_blank">https://doi.org/10.5067/Aura/MLS/DATA2520</a></span> <span class="cit" id="xref_paren.61">(<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx42" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Schwartz et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx42" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a><a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx42" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a>)</span>.</p> </li> <li> <p id="d2e1801">MLS v5 geopotential heights are available at <span class="uri"><a href="https://doi.org/10.5067/Aura/MLS/DATA2507" target="_blank">https://doi.org/10.5067/Aura/MLS/DATA2507</a></span> <span class="cit" id="xref_paren.62">(<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx41" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Schwartz et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx41" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a><a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx41" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>)</span>.</p> </li> <li> <p id="d2e1813">SABER v2 temperature profiles are available at <span class="uri"><a href="https://data.gats-inc.com/saber/custom/Temp_O3_H2O/v2.0/" target="_blank">https://data.gats-inc.com/saber/custom/Temp_O3_H2O/v2.0/</a></span> <span class="cit" id="xref_paren.63">(<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx39" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">SABER Science Team</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx39" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2023</a>)</span>.</p> </li> <li> <p id="d2e1825">The SSU v2 temperatures and weighting functions, the AMSU-A v2 temperatures and weighting functions, and the merged v3 SSU+AMSU-A temperatures are all available at <span class="uri"><a href="https://www.star.nesdis.noaa.gov/smcd/emb/mscat/products.php" target="_blank">https://www.star.nesdis.noaa.gov/smcd/emb/mscat/products.php</a></span> <span class="cit" id="xref_paren.64">(<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx28" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">NOAA/STAR</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx28" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2023</a>)</span>.</p> </li> <li> <p id="d2e1838">SSU+MLS temperatures are available upon request from William Randel (randel@ucar.edu) (<span class="uri"><a href="https://doi.org/10.1175/JCLI-D-15-0629.1" target="_blank">https://doi.org/10.1175/JCLI-D-15-0629.1</a></span>; <span class="cit" id="xref_altparen.65"><a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx34" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Randel et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx34" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2016</a></span>).</p> </li> <li> <p id="d2e1850">MERRA-2 temperatures are available at <span class="uri"><a href="https://doi.org/10.5067/WWQSXQ8IVFW8" target="_blank">https://doi.org/10.5067/WWQSXQ8IVFW8</a></span> <span class="cit" id="xref_paren.66">(<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx10" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Global Modeling and Assimilation Office (GMAO)</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx10" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2023</a>)</span>.</p> </li> <li> <p id="d2e1862">ERA5 temperatures are available at <span class="uri"><a href="https://doi.org/10.24381/cds.adbb2d47" target="_blank">https://doi.org/10.24381/cds.adbb2d47</a></span> <span class="cit" id="xref_paren.67">(<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx16" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Hersbach et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx16" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2023</a>)</span>.</p> </li> <li> <p id="d2e1874">JRA-55 temperatures are available at <span class="uri"><a href="https://doi.org/10.5065/D6HH6H41" target="_blank">https://doi.org/10.5065/D6HH6H41</a></span> <span class="cit" id="xref_paren.68">(<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx17" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Japan Meteorological Agency</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx17" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2013</a>)</span>.</p> </li> <li> <p id="d2e1886">The WACCM results are available at <span class="uri"><a href="ftp://odin-osiris.usask.ca/Models" target="_blank">ftp://odin-osiris.usask.ca/Models</a></span> <span class="cit" id="xref_paren.69">(<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx29" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">OSIRIS team</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx29" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2022</a>)</span>. Instructions for downloading the WACCM files are at <span class="uri"><a href="https://research-groups.usask.ca/osiris/data-products.php#Download" target="_blank">https://research-groups.usask.ca/osiris/data-products.php#Download</a></span> (last access: 20 August 2022).</p> </li> <li> <p id="d2e1901">The LOTUS regression code and documentation are available at <span class="uri"><a href="https://github.com/usask-arg/lotus-regression" target="_blank">https://github.com/usask-arg/lotus-regression</a></span> <span class="cit" id="xref_paren.70">(<a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx5" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Damadeo et al.</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#bib1.bibx5" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2022</a>)</span>.</p> </li> </ul></div><span class="section7-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> <div id="section8" class="sec"><div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section8 .co-arrow-open,.section8-content" data-show="#section8 .co-arrow-closed,.section8-mobile-bottom-border"><div class="h1"><span class="section-number"> </span>Author contributions<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section8-content show-no-js hide-on-mobile-soft"><p id="d2e1915">KD performed the analysis and prepared the manuscript. DZ developed the OSIRIS retrieval. WR provided the WACCM results and the merged SSU+MLS data. ST, AB, DZ, DD, and WR provided input on the method and analysis. ST, AB, and DD supervised the project. SD provided the ERA5 results interpolated to the OSIRIS and MLS profiles. All authors provided significant feedback on the manuscript.</p></div><span class="section8-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> <div id="section9" class="sec"><div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section9 .co-arrow-open,.section9-content" data-show="#section9 .co-arrow-closed,.section9-mobile-bottom-border"><div class="h1"><span class="section-number"> </span>Competing interests<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section9-content show-no-js hide-on-mobile-soft"><p id="d2e1921">The contact author has declared that none of the authors has any competing interests.</p></div><span class="section9-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> <div id="section10" class="sec"><div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section10 .co-arrow-open,.section10-content" data-show="#section10 .co-arrow-closed,.section10-mobile-bottom-border"><div class="h1"><span class="section-number"> </span>Disclaimer<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section10-content show-no-js hide-on-mobile-soft"><p id="d2e1927">Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this paper. While Copernicus Publications makes every effort to include appropriate place names, the final responsibility lies with the authors.</p></div><span class="section10-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> <div class="ack sec" id="section11"> <div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section11 .co-arrow-open,.section11-content" data-show="#section11 .co-arrow-closed,.section11-mobile-bottom-border"><div class="h1"><span class="section-number"> </span>Acknowledgements<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section11-content show-no-js hide-on-mobile-soft"><p id="d2e1933">This research was supported by the Canadian Space Agency (grant no. 21SUASULSO). The authors thank the Swedish National Space Agency and the Canadian Space Agency for the continued operation and support of Odin and OSIRIS. The National Center for Atmospheric Research is sponsored by the US National Science Foundation. This work was partly supported by the NASA Aura Science Team under grant no. 80NSSC20K0928. Work at the Jet Propulsion Laboratory, California Institute of Technology, was carried out under contract with NASA (grant no. 80NM0018D004).</p></div><span class="section11-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> <div id="section12" class="sec"><div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section12 .co-arrow-open,.section12-content" data-show="#section12 .co-arrow-closed,.section12-mobile-bottom-border"><div class="h1"><span class="section-number"> </span>Financial support<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section12-content show-no-js hide-on-mobile-soft"><p id="d2e1938">This research has been supported by the Canadian Space Agency (grant no. 21SUASULSO), the National Aeronautics and Space Administration (grant no. 80NM0018D004), and the National Aeronautics and Space Administration (grant no. 80NSSC20K0928).</p></div><span class="section12-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> <div id="section13" class="sec"><div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section13 .co-arrow-open,.section13-content" data-show="#section13 .co-arrow-closed,.section13-mobile-bottom-border"><div class="h1"><span class="section-number"> </span>Review statement<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section13-content show-no-js hide-on-mobile-soft"><p id="d2e1944">This paper was edited by John Plane and reviewed by two anonymous referees.</p></div><span class="section13-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> <div class="ref-list sec" id="section14"> <div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section14 .co-arrow-open,.section14-content" data-show="#section14 .co-arrow-closed,.section14-mobile-bottom-border"><div class="h1"><span class="section-number"> </span>References<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section14-content show-no-js hide-on-mobile-soft"><p class="ref" id="bib1.bibx1"><span class="mixed-citation">Bernath, P. F., McElroy, C. T., Abrams, M. C., Boone, C. D., Butler, M., Camy-Peyret, C., Carleer, M., Clerbaux, C., Coheur, P.-F., Colin, R., DeCola, P., DeMazière, M., Drummond, J. R., Dufour, D., Evans, W. F. J., Fast, H., Fussen, D., Gilbert, K., Jennings, D. E., Llewellyn, E. J., Lowe, R. P., Mahieu, E., McConnell, J. C., McHugh, M., McLeod, S. D., Michaud, R., Midwinter, C., Nassar, R., Nichitiu, F., Nowlan, C., Rinsland, C. P., Rochon, Y. J., Rowlands, N., Semeniuk, K., Simon, P., Skelton, R., Sloan, J. J., Soucy, M.-A., Strong, K., Tremblay, P., Turnbull, D., Walker, K. A., Walkty, I., Wardle, D. A., Wehrle, V., Zander, R., and Zou, J.: Atmospheric Chemistry Experiment (ACE): Mission overview, Geophys. Res. Lett., 32, L15S01, <a href="https://doi.org/10.1029/2005GL022386">https://doi.org/10.1029/2005GL022386</a>, 2005. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.11" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx2"><span class="mixed-citation">Boone, C., Bernath, P., Cok, D., Jones, S., and Steffen, J.: Version 4 retrievals for the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) and imagers, J. Quant. Spectrosc. Ra., 247, 106939, <a href="https://doi.org/10.1016/j.jqsrt.2020.106939">https://doi.org/10.1016/j.jqsrt.2020.106939</a>, 2020. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.11" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx3"><span class="mixed-citation">Bourassa, A. E., Degenstein, D. A., Randel, W. J., Zawodny, J. M., Kyrölä, E., McLinden, C. A., Sioris, C. E., and Roth, C. Z.: Trends in stratospheric ozone derived from merged SAGE II and Odin-OSIRIS satellite observations, Atmos. Chem. Phys., 14, 6983–6994, <a href="https://doi.org/10.5194/acp-14-6983-2014">https://doi.org/10.5194/acp-14-6983-2014</a>, 2014. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.59" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx4"><span class="mixed-citation">Chen, Z., Schwartz, M. J., Bhartia, P. K., Schoeberl, M., Kramarova, N., Jaross, G., and DeLand, M.: Mesospheric and Upper Stratospheric Temperatures From OMPS-LP, Earth and Space Science, 10, e2022EA002763, <a href="https://doi.org/10.1029/2022EA002763">https://doi.org/10.1029/2022EA002763</a>, 2023. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.21" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx5"><span class="mixed-citation">Damadeo, R., Hassler, B., Zawada, D., Frith, S., Ball, W., Chang, K., Degenstein, D., Hubert, D., Misois, S., Petropavlovskikh, I., Roth, C., Sofieva, V., Steinbrecht, W., Tourpali, K., Zerefos, C., Alsing, J., Balis, D., Coldewey-Egbers, M., Eleftheratos, K., Godin-Beekmann, S., Gruzdev, A., Kapsomenakis, J., Laeng, A., Laine, M., Mail<span id="page12939"></span>lard Barras, E., Taylor, M., von Clarmann, T., Weber, M., and Wild, J.: LOTUS Regression Code, SPARC LOTUS Activity, GitHub [code], <span class="uri"><a href="https://github.com/usask-arg/lotus-regression" target="_blank">https://github.com/usask-arg/lotus-regression</a></span> (last access: 24 October 2023), 2022. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_text.54" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.70" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx6"><span class="mixed-citation">Dubé, K., Randel, W., Bourassa, A., Zawada, D., McLinden, C., and Degenstein, D.: Trends and Variability in Stratospheric NOx Derived From Merged SAGE II and OSIRIS Satellite Observations, J. Geophys. Res.-Atmos., 125, e2019JD031798, <a href="https://doi.org/10.1029/2019JD031798">https://doi.org/10.1029/2019JD031798</a>, 2020. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_text.52" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.59" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx7"><span class="mixed-citation">Fujiwara, M., Wright, J. S., Manney, G. L., Gray, L. J., Anstey, J., Birner, T., Davis, S., Gerber, E. P., Harvey, V. L., Hegglin, M. I., Homeyer, C. R., Knox, J. A., Krüger, K., Lambert, A., Long, C. S., Martineau, P., Molod, A., Monge-Sanz, B. M., Santee, M. L., Tegtmeier, S., Chabrillat, S., Tan, D. G. H., Jackson, D. R., Polavarapu, S., Compo, G. P., Dragani, R., Ebisuzaki, W., Harada, Y., Kobayashi, C., McCarty, W., Onogi, K., Pawson, S., Simmons, A., Wargan, K., Whitaker, J. S., and Zou, C.-Z.: Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems, Atmos. Chem. Phys., 17, 1417–1452, <a href="https://doi.org/10.5194/acp-17-1417-2017">https://doi.org/10.5194/acp-17-1417-2017</a>, 2017. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.46" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx8"><span class="mixed-citation">Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), J. Climate, 30, 5419–5454, <a href="https://doi.org/10.1175/JCLI-D-16-0758.1">https://doi.org/10.1175/JCLI-D-16-0758.1</a>, 2017. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.23" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.41" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.44" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">c</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.45" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">d</a></span></p><p class="ref" id="bib1.bibx9"><span class="mixed-citation">Gettelman, A., Mills, M. J., Kinnison, D. E., Garcia, R. R., Smith, A. K., Marsh, D. R., Tilmes, S., Vitt, F., Bardeen, C. G., McInerny, J., Liu, H.-L., Solomon, S. C., Polvani, L. M., Emmons, L. K., Lamarque, J.-F., Richter, J. H., Glanville, A. S., Bacmeister, J. T., Phillips, A. S., Neale, R. B., Simpson, I. R., DuVivier, A. K., Hodzic, A., and Randel, W. J.: The Whole Atmosphere Community Climate Model Version 6 (WACCM6), J. Geophys. Res.-Atmos., 124, 12380–12403, <a href="https://doi.org/10.1029/2019JD030943">https://doi.org/10.1029/2019JD030943</a>, 2019. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.49" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx10"><span class="mixed-citation">Global Modeling and Assimilation Office (GMAO): nst3_3d_asm_Nv: MERRA-2 3D IAU State, Meteorology Instantaneous 3-hourly, Goddard Space Flight Center Distributed Active Archive Center (GSFC DAAC) [data set], Greenbelt, MD, USA, <a href="https://doi.org/10.5067/WWQSXQ8IVFW8">https://doi.org/10.5067/WWQSXQ8IVFW8</a>, accessed: 2023-6-5, 2023. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.66" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx11"><span class="mixed-citation">Gray, L. J. and Dunkerton, T. J.: The Role of the Seasonal Cycle in the Quasi-biennial Oscillation Of Ozone, J. Atmos. Sci., 47, 2429–2452, <a href="https://doi.org/10.1175/1520-0469(1990)047%3C2429:TROTSC%3E2.0.CO;2">https://doi.org/10.1175/1520-0469(1990)047&lt;2429:TROTSC&gt;2.0.CO;2</a>, 1990. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_altparen.53" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx12"><span class="mixed-citation">Gulev, S., P.W., T., Ahn, J., Dentener, F., Domingues, C., Gerland, S., Gong, D., Kaufman, D., Nnamchi, H., Quaas, J., Rivera, J., Sathyendranath, S., Smith, S., Trewin, B., von Schuckmann, K., and Vose, R.: Changing State of the Climate System, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., N. Caud, Y. C., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Chap. 2, 287–422, <a href="https://doi.org/10.1017/9781009157896.004">https://doi.org/10.1017/9781009157896.004</a>, 2021. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_altparen.1" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.4" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.5" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">c</a></span></p><p class="ref" id="bib1.bibx13"><span class="mixed-citation">Haimberger, L., Tavolato, C., and Sperka, S.: Homogenization of the Global Radiosonde Temperature Dataset through Combined Comparison with Reanalysis Background Series and Neighboring Stations, J. Climate, 25, 8108–8131, <a href="https://doi.org/10.1175/JCLI-D-11-00668.1">https://doi.org/10.1175/JCLI-D-11-00668.1</a>, 2012. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.2" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx14"><span class="mixed-citation">Hauchecorne, A., Blanot, L., Wing, R., Keckhut, P., Khaykin, S., Bertaux, J.-L., Meftah, M., Claud, C., and Sofieva, V.: A new MesosphEO data set of temperature profiles from 35 to 85 km using Rayleigh scattering at limb from GOMOS/ENVISAT daytime observations, Atmos. Meas. Tech., 12, 749–761, <a href="https://doi.org/10.5194/amt-12-749-2019">https://doi.org/10.5194/amt-12-749-2019</a>, 2019. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.20" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx15"><span class="mixed-citation">Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, <a href="https://doi.org/10.1002/qj.3803">https://doi.org/10.1002/qj.3803</a>, 2020. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.43" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.44" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx16"><span class="mixed-citation">Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], <a href="https://doi.org/10.24381/cds.adbb2d47">https://doi.org/10.24381/cds.adbb2d47</a>, 2023. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.67" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx17"><span class="mixed-citation">Japan Meteorological Agency: JRA-55: Japanese 55-year Reanalysis, Daily 3-Hourly and 6-Hourly Data, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory [data set], <a href="https://doi.org/10.5065/D6HH6H41">https://doi.org/10.5065/D6HH6H41</a>, 2013. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.68" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx18"><span class="mixed-citation">Khaykin, S. M., Funatsu, B. M., Hauchecorne, A., Godin-Beekmann, S., Claud, C., Keckhut, P., Pazmino, A., Gleisner, H., Nielsen, J. K., Syndergaard, S., and Lauritsen, K. B.: Postmillennium changes in stratospheric temperature consistently resolved by GPS radio occultation and AMSU observations, Geophys. Res. Lett. 44, 7510–7518, <a href="https://doi.org/10.1002/2017GL074353">https://doi.org/10.1002/2017GL074353</a>, 2017. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.3" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx19"><span class="mixed-citation">Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi, K., Kamahori, H., Kobayashi, C., Endo, H., Miyoka, K., and Takahashi, K.: The JRA-55 Reanalysis: General Specifications and Basic Characteristics, J. Meteorol. Soc. Jpn., 93, 5–48, <a href="https://doi.org/10.2151/jmsj.2015-001">https://doi.org/10.2151/jmsj.2015-001</a>, 2015. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.42" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.44" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx20"><span class="mixed-citation">Ladstädter, F., Steiner, A. K., and Gleisner, H.: Resolving the 21st century temperature trends of the upper troposphere–lower stratosphere with satellite observations, Scientific Reports, 13, 1306, <a href="https://doi.org/10.1038/s41598-023-28222-x">https://doi.org/10.1038/s41598-023-28222-x</a>, 2023. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.4" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><span id="page12940"></span><p class="ref" id="bib1.bibx21"><span class="mixed-citation"> Livesey, N. J., Read, W. G., Wagner, P. A., Froidevaux, L., Santee, M. L., Schwartz, M. J., Lambert, A., Millán Valle, L. F., Pumphrey, H. C., Manney, G. L., Fuller, R. A., Jarnot, R. F., Knosp, B. W., and Lay, R. R.: Aura Microwave Limb Sounder (MLS) Version 5.0x Level 2 and 3 data quality and description document, Version 5.0-1.1a, Tech. Rep. JPL D-105336 Rev. B, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, 91109-8099, 2022. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.27" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_text.29" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx22"><span class="mixed-citation">Llewellyn, E. J., Lloyd, N. D., Degenstein, D. A., Gattinger, R. L., Petelina, S. V., Bourassa, A. E., Wiensz, J. T., Ivanov, E. V., McDade, I. C., Solheim, B. H., McConnell, J. C., Haley, C. S., von Savigny, C., Sioris, C. E., McLinden, C. A., Griffioen, E., Kaminski, J., Evans, W. F., Puckrin, E., Strong, K., Wehrle, V., Hum, R. H., Kendall, D. J., Matsushita, J., Murtagh, D. P., Brohede, S., Stegman, J., Witt, G., Barnes, G., Payne, W. F., Piché, L., Smith, K., Warshaw, G., Deslauniers, D. L., Marchand, P., Richardson, E. H., King, R. A., Wevers, I., McCreath, W., Kyrölä, E., Oikarinen, L., Leppelmeier, G. W., Auvinen, H., Mégie, G., Hauchecorne, A., Lefèvre, F., de La Noe, J., Ricaud, P., Frisk, U., Sjoberg, F., von Schéele, F., and Nordh, L.: The OSIRIS instrument on the Odin spacecraft, Can. J. Phys., 82, 411–422, <a href="https://doi.org/10.1139/p04-005">https://doi.org/10.1139/p04-005</a>, 2004. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.18" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx23"><span class="mixed-citation">Long, C. S., Fujiwara, M., Davis, S., Mitchell, D. M., and Wright, C. J.: Climatology and interannual variability of dynamic variables in multiple reanalyses evaluated by the SPARC Reanalysis Intercomparison Project (S-RIP), Atmos. Chem. Phys., 17, 14593–14629, <a href="https://doi.org/10.5194/acp-17-14593-2017">https://doi.org/10.5194/acp-17-14593-2017</a>, 2017. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.46" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.58" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx24"><span class="mixed-citation">Manabe, S. and Wetherald, R. T.: Thermal Equilibrium of the Atmosphere with a Given Distribution of Relative Humidity, J. Atmos. Sci., 24, 241–259, <a href="https://doi.org/10.1175/1520-0469(1967)024%3C0241:TEOTAW%3E2.0.CO;2">https://doi.org/10.1175/1520-0469(1967)024&lt;0241:TEOTAW&gt;2.0.CO;2</a>, 1967. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_altparen.1" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx25"><span class="mixed-citation">Maycock, A. C., Randel, W. J., Steiner, A. K., Karpechko, A. Y., Christy, J., Saunders, R., Thompson, D. W. J., Zou, C.-Z., Chrysanthou, A., Luke Abraham, N., Akiyoshi, H., Archibald, A. T., Butchart, N., Chipperfield, M., Dameris, M., Deushi, M., Dhomse, S., Di Genova, G., Jöckel, P., Kinnison, D. E., Kirner, O., Ladstädter, F., Michou, M., Morgenstern, O., O'Connor, F., Oman, L., Pitari, G., Plummer, D. A., Revell, L. E., Rozanov, E., Stenke, A., Visioni, D., Yamashita, Y., and Zeng, G.: Revisiting the Mystery of Recent Stratospheric Temperature Trends, Geophys. Res. Lett., 45, 9919–9933, <a href="https://doi.org/10.1029/2018GL078035">https://doi.org/10.1029/2018GL078035</a>, 2018. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.15" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx26"><span class="mixed-citation">Mears, C. A. and Wentz, F. J.: A Satellite-Derived Lower-Tropospheric Atmospheric Temperature Dataset Using an Optimized Adjustment for Diurnal Effects, J. Climate, 30, 7695–7718, <a href="https://doi.org/10.1175/JCLI-D-16-0768.1">https://doi.org/10.1175/JCLI-D-16-0768.1</a>, 2017. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.3" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx27"><span class="mixed-citation">Miller, D. E., Brownscombe, J. L., Carruthers, G. P., Pick, D. R., Stewart, K. H., Massey, H. S. W., Beynon, W. J. G., Houghton, J. T., and Thomas, L.: Operational temperature sounding of the stratosphere, Philos. T. Roy. Soc. A, 296, 65–71, <a href="https://doi.org/10.1098/rsta.1980.0156">https://doi.org/10.1098/rsta.1980.0156</a>, 1980. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.33" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx28"><span class="mixed-citation">NOAA/STAR: STAR Microwave Sounding Calibration and Trends: Data Products, <span class="uri"><a href="https://www.star.nesdis.noaa.gov/smcd/emb/mscat/products.php" target="_blank">https://www.star.nesdis.noaa.gov/smcd/emb/mscat/products.php</a></span> (last access: 21 August 2023), 2023. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.64" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx29"><span class="mixed-citation">OSIRIS team: OSIRIS ftp server – Model output, University of Saskatchewan, <span class="uri"><a href="ftp://odin-osiris.usask.ca/Models" target="_blank">ftp://odin-osiris.usask.ca/Models</a></span>, last access: 20 August 2022. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.69" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx30"><span class="mixed-citation">Picone, J. M., Hedin, A. E., Drob, D. P., and Aikin, A. C.: NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res.-Space, 107, 1468, <a href="https://doi.org/10.1029/2002JA009430">https://doi.org/10.1029/2002JA009430</a>, 2002. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.24" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx31"><span class="mixed-citation">Plummer, D., Nagashima, T., Tilmes, S. Archibald, A., Chiodo, G., Fadnavis, S., Garny, H., Josse, B., Kim, J., Lamarque, J.-F., Morgenstern, O., Murray, L., Orbe, C., Tai, A., Chipperfield, M., Funke, B., Juckes, M., Kinnison, D., Kunze, M., Luo, B., Matthes, K., Newman, P. A., Pascoe, C., and Peter, T.: CCMI-2022: A new set of Chemistry-Climate Model Initiative (CCMI) Community Simulations to Update the Assessment of Models and Support Upcoming Ozone Assessment Activities, SPARC Newsletter No. 57, <span class="uri"><a href="http://www.sparc-climate.org/publications/newsletter" target="_blank">http://www.sparc-climate.org/publications/newsletter</a></span> (last access: 2 April 2023), 2021. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.50" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx32"><span class="mixed-citation">Randel, W. J., Wu, F., Swinbank, R., Nash, J., and O'Neill, A.: Global QBO Circulation Derived from UKMO Stratospheric Analyses, J. Atmos. Sci., 56, 457–474, <a href="https://doi.org/10.1175/1520-0469(1999)056%3C0457:GQCDFU%3E2.0.CO;2">https://doi.org/10.1175/1520-0469(1999)056&lt;0457:GQCDFU&gt;2.0.CO;2</a>, 1999. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_altparen.53" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx33"><span class="mixed-citation">Randel, W. J., Shine, K. P., Austin, J., Barnett, J., Claud, C., Gillett, N. P., Keckhut, P., Langematz, U., Lin, R., Long, C., Mears, C., Miller, A., Nash, J., Seidel, D. J., Thompson, D. W. J., Wu, F., and Yoden, S.: An update of observed stratospheric temperature trends, J. Geophys. Res.-Atmos., 114, D02107, <a href="https://doi.org/10.1029/2008JD010421">https://doi.org/10.1029/2008JD010421</a>, 2009. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.7" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.8" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx34"><span class="mixed-citation">Randel, W. J., Smith, A. K., Wu, F., Zou, C.-Z., and Qian, H.: Stratospheric Temperature Trends over 1979–2015 Derived from Combined SSU, MLS, and SABER Satellite Observations, J. Climate, 29, 4843–4859, <a href="https://doi.org/10.1175/JCLI-D-15-0629.1">https://doi.org/10.1175/JCLI-D-15-0629.1</a>, 2016. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_text.14" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.15" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.19" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">c</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_text.38" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">d</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_text.39" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">e</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_altparen.65" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">f</a></span></p><p class="ref" id="bib1.bibx35"><span class="mixed-citation">Randel, W. J., Polvani, L., Wu, F., Kinnison, D. E., Zou, C.-Z., and Mears, C.: Troposphere-Stratosphere Temperature Trends Derived From Satellite Data Compared With Ensemble Simulations From WACCM, J. Geophys. Res.-Atmos., 122, 9651–9667, <a href="https://doi.org/10.1002/2017JD027158">https://doi.org/10.1002/2017JD027158</a>, 2017. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.15" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_altparen.17" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx36"><span class="mixed-citation">Reale, A., Tilley, F., Ferguson, M., and Allegrino, A.: NOAA operational sounding products for advanced TOVS, Int. J. Remote Sens., 29, 4615–4651, <a href="https://doi.org/10.1080/01431160802020502">https://doi.org/10.1080/01431160802020502</a>, 2008. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.7" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx37"><span class="mixed-citation">Remsberg, E. E., Marshall, B. T., Garcia-Comas, M., Krueger, D., Lingenfelser, G. S., Martin-Torres, J., Mlynczak, M. G., Russell III, J. M., Smith, A. K., Zhao, Y., Brown, C., Gordley, L. L., Lopez-Gonzalez, M. J., Lopez-Puertas, M., She, C.-Y., Taylor, M. J., and Thompson, R. E.: Assessment of the quality of the Version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER, J. Geophys. Res.-Atmos., 113, D17101, <a href="https://doi.org/10.1029/2008JD010013">https://doi.org/10.1029/2008JD010013</a>, 2008. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.13" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.30" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.31" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">c</a></span></p><p class="ref" id="bib1.bibx38"><span class="mixed-citation">Russell III, J. M., Mlynczak, M. G., Gordley, L. L., Tansock Jr., J., and Esplin, R. W.: Overview of the SABER experiment and preliminary calibration results, in: Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III, edited by: Larar, A. M., SPIE, 3756, 277–288, <a href="https://doi.org/10.1117/12.366382">https://doi.org/10.1117/12.366382</a>, 1999. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.13" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx39"><span class="mixed-citation">SABER Science Team: Level 2 Temp_O3_H2O, version 2.0, GATS Data Server [data set], <span class="uri"><a href="https://data.gats-inc.com/saber/custom/Temp_O3_H2O/v2.0/" target="_blank">https://data.gats-inc.com/saber/custom/Temp_O3_H2O/v2.0/</a></span>, last access: 3 April 2023. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.63" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx40"><span class="mixed-citation">Santer, B. D., Po-Chedley, S., Zhao, L., Zou, C.-Z., Fu, Q., Solomon, S., Thompson, D. W. J., Mears, C., and Taylor, K. E.: Exceptional stratospheric contribution to human fingerprints on atmospheric temperature, P. Natl. Acad. Sci. USA, 120, e2300758120, <a href="https://doi.org/10.1073/pnas.2300758120">https://doi.org/10.1073/pnas.2300758120</a>, 2023. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.6" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx41"><span class="mixed-citation">Schwartz, M., Livesey, N., and Read, W.: MLS/Aura Level 2 Geopotential Height V005, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], Greenbelt, MD, USA, <a href="https://doi.org/10.5067/Aura/MLS/DATA2507">https://doi.org/10.5067/Aura/MLS/DATA2507</a>, 2020a. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.62" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><span id="page12941"></span><p class="ref" id="bib1.bibx42"><span class="mixed-citation">Schwartz, M., Livesey, N., and Read, W.: MLS/Aura Level 2 Temperature V005, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], Greenbelt, MD, USA, <a href="https://doi.org/10.5067/Aura/MLS/DATA2520">https://doi.org/10.5067/Aura/MLS/DATA2520</a>, 2020b. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.61" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx43"><span class="mixed-citation">Schwartz, M. J., Lambert, A., Manney, G. L., Read, W. G., Livesey, N. J., Froidevaux, L., Ao, C. O., Bernath, P. F., Boone, C. D., Cofield, R. E., Daffer, W. H., Drouin, B. J., Fetzer, E. J., Fuller, R. A., Jarnot, R. F., Jiang, J. H., Jiang, Y. B., Knosp, B. W., Krüger, K., Li, J.-L. F., Mlynczak, M. G., Pawson, S., Russell III, J. M., Santee, M. L., Snyder, W. V., Stek, P. C., Thurstans, R. P., Tompkins, A. M., Wagner, P. A., Walker, K. A., Waters, J. W., and Wu, D. L.: Validation of the Aura Microwave Limb Sounder temperature and geopotential height measurements, J. Geophys. Res.-Atmos., 113, D15S11, <a href="https://doi.org/10.1029/2007JD008783">https://doi.org/10.1029/2007JD008783</a>, 2008. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.12" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.28" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx44"><span class="mixed-citation">Simmons, A., Soci, C., Nicolas, J., Bell, B., Berrisford, P., Dragani, R., Flemming, J., Haimberger, L., Healy, S., Hersbach, H., Horányi, A., Inness, A., Munoz-Sabater, J., Radu, R., and Dinand Schepers, D.: Global stratospheric temperature bias and other stratospheric aspects of ERA5 and ERA5.1, ECMWF Technical Memoranda, no. 859, <a href="https://doi.org/10.21957/rcxqfmg0">https://doi.org/10.21957/rcxqfmg0</a>, 2020. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.47" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_text.48" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx45"><span class="mixed-citation">Steiner, A. K., Ladstädter, F., Randel, W. J., Maycock, A. C., Fu, Q., Claud, C., Gleisner, H., Haimberger, L., Ho, S.-P., Keckhut, P., Leblanc, T., Mears, C., Polvani, L. M., Santer, B. D., Schmidt, T., Sofieva, V., Wing, R., and Zou, C.-Z.: Observed Temperature Changes in the Troposphere and Stratosphere from 1979 to 2018, J. Climate, 33, 8165 – 8194, <a href="https://doi.org/10.1175/JCLI-D-19-0998.1">https://doi.org/10.1175/JCLI-D-19-0998.1</a>, 2020. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.15" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_altparen.16" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_text.40" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">c</a></span></p><p class="ref" id="bib1.bibx46"><span class="mixed-citation">Wallace, J. M., Panetta, R. L., and Estberg, J.: Representation of the Equatorial Stratospheric Quasi-Biennial Oscillation in EOF Phase Space, J. Atmos. Sci., 50, 1751–1762, <a href="https://doi.org/10.1175/1520-0469(1993)050%3C1751:ROTESQ%3E2.0.CO;2">https://doi.org/10.1175/1520-0469(1993)050&lt;1751:ROTESQ&gt;2.0.CO;2</a>, 1993. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.51" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx47"><span class="mixed-citation">Wang, W. and Zou, C.-Z.: AMSU-A-Only Atmospheric Temperature Data Records from the Lower Troposphere to the Top of the Stratosphere, J. Atmos. Ocean. Tech., 31, 808–825, <a href="https://doi.org/10.1175/JTECH-D-13-00134.1">https://doi.org/10.1175/JTECH-D-13-00134.1</a>, 2014. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_text.36" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx48"><span class="mixed-citation">Wang, X., Randel, W., Zhu, Y., Tilmes, S., Starr, J., Yu, W., Garcia, R., Toon, O. B., Park, M., Kinnison, D., Zhang, J., Bourassa, A., Rieger, L., Warnock, T., and Li, J.: Stratospheric Climate Anomalies and Ozone Loss Caused by the Hunga Tonga-Hunga Ha'apai Volcanic Eruption, J. Geophys. Res.-Atmos., 128, e2023JD039480, <a href="https://doi.org/10.1029/2023JD039480">https://doi.org/10.1029/2023JD039480</a>, 2023.  <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.55" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx49"><span class="mixed-citation">Waters, J., Froidevaux, L., Harwood, R., Jarnot, R., Pickett, H., Read, W., Siegel, P., Cofield, R., Filipiak, M., Flower, D., Holden, J., Lau, G., Livesey, N., Manney, G., Pumphrey, H., Santee, M., Wu, D., Cuddy, D., Lay, R., Loo, M., Perun, V., Schwartz, M., Stek, P., Thurstans, R., Boyles, M., Chandra, K., Chavez, M., Chen, G.-S., Chudasama, B., Dodge, R., Fuller, R., Girard, M., Jiang, J., Jiang, Y., Knosp, B., LaBelle, R., Lam, J., Lee, K., Miller, D., Oswald, J., Patel, N., Pukala, D., Quintero, O., Scaff, D., Van Snyder, W., Tope, M., Wagner, P., and Walch, M.: The Earth Observing System Microwave Limb Sounder (EOS MLS) on the Aura Satellite, IEEE T. Geosci. Remote, 44, 1075–1092, <a href="https://doi.org/10.1109/TGRS.2006.873771">https://doi.org/10.1109/TGRS.2006.873771</a>, 2006. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.12" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.26" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx50"><span class="mixed-citation">Yu, W., Garcia, R., Yue, J., Smith, A., Wang, X., Randel, W., Qiao, Z., Zhu, Y., Harvey, V. L., Tilmes, S., and Mlynczak, M.: Mesospheric Temperature and Circulation Response to the Hunga Tonga-Hunga-Ha'apai Volcanic Eruption, J. Geophys. Res.-Atmos., 128, e2023JD039636, <a href="https://doi.org/10.1029/2023JD039636">https://doi.org/10.1029/2023JD039636</a>, 2023. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.55" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx51"><span class="mixed-citation">Zawada, D., Dubé, K., Warnock, T., Bourassa, A., Tegtmeier, S., and Degenstein, D.: OSIRIS stratospheric temperature, Version 7.3, Zenodo [data set], <a href="https://doi.org/10.5281/zenodo.8271140">https://doi.org/10.5281/zenodo.8271140</a>, 2023. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.60" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx52"><span class="mixed-citation">Zawada, D., Dubé, K., Warnock, T., Bourassa, A., Tegtmeier, S., and Degenstein, D.: A multi-decadal time series of upper stratospheric temperature profiles from Odin-OSIRIS limb-scattered spectra, Atmos. Meas. Tech., 17, 1995–2010, <a href="https://doi.org/10.5194/amt-17-1995-2024">https://doi.org/10.5194/amt-17-1995-2024</a>, 2024. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.18" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_text.22" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.25" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">c</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_text.56" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">d</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.57" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">e</a></span></p><p class="ref" id="bib1.bibx53"><span class="mixed-citation">Zhao, X. R., Sheng, Z., Shi, H. Q., Weng, L. B., and He, Y.: Middle Atmosphere Temperature Changes Derived from SABER Observations during 2002–20, J. Climate, 34, 7995–8012, <a href="https://doi.org/10.1175/JCLI-D-20-1010.1">https://doi.org/10.1175/JCLI-D-20-1010.1</a>, 2021. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_text.32" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx54"><span class="mixed-citation">Zou, C.-Z. and Qian, H.: Stratospheric Temperature Climate Data Record from Merged SSU and AMSU-A Observations, J. Atmos. Ocean. Tech., 33, 1967–1984, <a href="https://doi.org/10.1175/JTECH-D-16-0018.1">https://doi.org/10.1175/JTECH-D-16-0018.1</a>, 2016. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.10" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.19" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.35" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">c</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_text.37" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">d</a></span></p><p class="ref" id="bib1.bibx55"><span class="mixed-citation">Zou, C.-Z., Qian, H., Wang, W., Wang, L., and Long, C.: Recalibration and merging of SSU observations for stratospheric temperature trend studies, J. Geophys. Res.-Atmos., 119, 13180–13205, <a href="https://doi.org/10.1002/2014JD021603">https://doi.org/10.1002/2014JD021603</a>, 2014. <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_paren.9" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12925/2024/#xref_text.34" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p></div><span class="section14-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> </div> <!-- Root element of PhotoSwipe. Must have class pswp. --> <div class="pswp" tabindex="-1" role="dialog" aria-hidden="true" > <!-- Background of PhotoSwipe. It's a separate element as animating opacity is faster than rgba(). --> <div class="pswp__bg"></div> <!-- Slides wrapper with overflow:hidden. --> <div class="pswp__scroll-wrap"> <!-- Container that holds slides. PhotoSwipe keeps only 3 of them in the DOM to save memory. Don't modify these 3 pswp__item elements, data is added later on. --> <div class="pswp__container"> <div class="pswp__item"></div> <div class="pswp__item"></div> <div class="pswp__item"></div> </div> <!-- Default (PhotoSwipeUI_Default) interface on top of sliding area. Can be changed. --> <div class="pswp__ui pswp__ui--hidden"> <div class="pswp__top-bar"> <!-- Controls are self-explanatory. Order can be changed. --> <div class="pswp__counter"></div> <button class="pswp__button pswp__button--close" title="Close (Esc)"></button> <button class="pswp__button pswp__button--fs" title="Toggle fullscreen"></button> <!-- Preloader demo http://codepen.io/dimsemenov/pen/yyBWoR --> <!-- element will get class pswp__preloader--active when preloader is running --> <div class="pswp__preloader"> <div class="pswp__preloader__icn"> <div class="pswp__preloader__cut"> <div class="pswp__preloader__donut"></div> </div> </div> </div> </div> <div class="pswp__share-modal pswp__share-modal--hidden pswp__single-tap"> <div class="pswp__share-tooltip"></div> </div> <button class="pswp__button pswp__button--arrow--left" title="Previous (arrow left)"> </button> <button class="pswp__button pswp__button--arrow--right" title="Next (arrow right)"> </button> <div class="pswp__caption "> <div class="pswp__caption__center"></div> </div> </div> </div> </div></div> <!-- CO c_contentmanager_services::callProjectTemplate::899 21.11.2024 01:13:07, memcached, 0.0012178421020508secs --> <div id="page_colum_left_container" class="CMSCONTAINER w-sidebar col-auto d-none d-lg-block"> <div class="auto-fixed-top no-shadow old-articleNavigation"> <div id="quicklaunch_buttons" class="cmsbox jo_quicklaunch-bar"> <a href="https://acp.copernicus.org/" class="article-button journal-contentLinkColor journal-contentBorderColor">Articles </a> </div> <div id="main-navigation" class="cmsbox j-navigation"> <ul class="co_function_get_navigation menu_level1"> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://acp.copernicus.org/articles/24/12925/2024/#abstract" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Abstract</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://acp.copernicus.org/articles/24/12925/2024/#section1" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Introduction</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://acp.copernicus.org/articles/24/12925/2024/#section2" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Data and models</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://acp.copernicus.org/articles/24/12925/2024/#section3" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Regression analysis</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://acp.copernicus.org/articles/24/12925/2024/#section4" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Results</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://acp.copernicus.org/articles/24/12925/2024/#section5" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Conclusions</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://acp.copernicus.org/articles/24/12925/2024/#section6" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title"><span>Appendix A:</span> Extra figures</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://acp.copernicus.org/articles/24/12925/2024/#section7" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Code and data availability</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://acp.copernicus.org/articles/24/12925/2024/#section8" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Author contributions</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://acp.copernicus.org/articles/24/12925/2024/#section9" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Competing interests</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://acp.copernicus.org/articles/24/12925/2024/#section10" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Disclaimer</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://acp.copernicus.org/articles/24/12925/2024/#section11" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Acknowledgements</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://acp.copernicus.org/articles/24/12925/2024/#section12" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Financial support</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://acp.copernicus.org/articles/24/12925/2024/#section13" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Review statement</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://acp.copernicus.org/articles/24/12925/2024/#section14" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">References</a></li> </ul> </div> </div> <div id="leftColumnExtras" class="CMSCONTAINER w-sidebar col-auto d-none d-lg-block pt-2"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Download</div> <div class="content"> <ul class="additional_info no-bullets no-styling"> <li><a class="triangle" title="PDF Version (7586 KB)" href="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024.pdf">Article</a> <nobr>(7586 KB)</nobr> </li> <li> <a class="triangle" title="XML Version" href="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024.xml">Full-text XML</a> </li> </ul> </div> <div class="content"> <ul class="additional_info no-bullets no-styling"> <li><a class="triangle" href="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024.bib">BibTeX</a></li> <li><a class="triangle" href="https://acp.copernicus.org/articles/24/12925/2024/acp-24-12925-2024.ris">EndNote</a></li> </ul> </div> </div> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content hide-js shortSummaryFull">Greenhouse gas emissions that warm the troposphere also result in stratospheric cooling. The cooling rate is difficult to quantify above 35 km due to a deficit of long-term observational data with high vertical resolution in this region. We use satellite observations from several instruments, including a new temperature product from OSIRIS, to show that the upper stratosphere, from 35&ndash;60 km, cooled by 0.5 to 1 K per decade over 2005&ndash;2021 and by 0.6 K per decade over 1979&ndash;2021.</div> <div style="display: none" class="content show-js shortSummaryShorten">Greenhouse gas emissions that warm the troposphere also result in stratospheric cooling. The...</div> <div class="content"> <a href="#" class="more-less show-js triangle" data-hide=".shortSummaryFull" data-show=".shortSummaryShorten" data-toggleCaption='Hide'>Read more</a> </div> </div> <div class="widget dark-border hide-on-mobile hide-on-tablet p-0" id="share"> <div class="legend journal-contentLinkColor">Share</div> <div class="row p-0"> <div class="col-auto pl-0"> <a class="share-one-line" href="https://www.mendeley.com/import/?url=https%3A%2F%2Facp.copernicus.org%2Farticles%2F24%2F12925%2F2024%2F" title="Mendeley" target="_blank"> <img src="https://www.atmospheric-chemistry-and-physics.net/mendeley.png" alt="Mendeley"/> </a> </div> <div class="col-auto"> <a class="share-one-line" href="https://www.reddit.com/submit?url=https%3A%2F%2Facp.copernicus.org%2Farticles%2F24%2F12925%2F2024%2F" title="Reddit" target="_blank"> <img src="https://www.atmospheric-chemistry-and-physics.net/reddit.png" alt="Reddit"> </a> </div> <div class="col-auto"> <a class="share-one-line last" href="https://twitter.com/intent/tweet?text=Upper-stratospheric+temperature+trends%3A+new+results+from+the+Optical+Spectrograph+and+InfraRed+Imager+System+%28OSIRIS%29 https%3A%2F%2Facp.copernicus.org%2Farticles%2F24%2F12925%2F2024%2F" title="Twitter" target="_blank"> <img src="https://www.atmospheric-chemistry-and-physics.net/twitter.png" alt="Twitter"/> </a> </div> <div class="col-auto"> <a class="share-one-line" href="https://www.facebook.com/share.php?u=https%3A%2F%2Facp.copernicus.org%2Farticles%2F24%2F12925%2F2024%2F&t=Upper-stratospheric+temperature+trends%3A+new+results+from+the+Optical+Spectrograph+and+InfraRed+Imager+System+%28OSIRIS%29" title="Facebook" target="_blank"> <img src="https://www.atmospheric-chemistry-and-physics.net/facebook.png" alt="Facebook"/> </a> </div> <div class="col-auto pr-0"> <a class="share-one-line last" href="https://www.linkedin.com/shareArticle?mini=true&url=https%3A%2F%2Facp.copernicus.org%2Farticles%2F24%2F12925%2F2024%2F&title=Upper-stratospheric+temperature+trends%3A+new+results+from+the+Optical+Spectrograph+and+InfraRed+Imager+System+%28OSIRIS%29" title="LinkedIn" target="_blank"> <img src="https://www.atmospheric-chemistry-and-physics.net/linkedin.png" alt="LinkedIn"> </a> </div> <div class="col pr-0 mobile-native-share"> <a href="#" data-title="Atmospheric Chemistry and Physics" data-text="*Upper-stratospheric temperature trends: new results from the Optical Spectrograph and InfraRed Imager System (OSIRIS)* Kimberlee Dubé et al." data-url="https://acp.copernicus.org/articles/24/12925/2024/" class="mobile-native-share share-one-line last"><i class="co-mobile-share display-none"></i></a> </div> </div> </div> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Altmetrics</div> <div class="wrapper"> <div class="content text-center"> Final-revised paper </div> <div class="content text-center"> <div class="altmetric-embed" data-link-target="_blank" data-hide-less-than="1" data-no-score data-badge-type="medium-donut" data-doi="10.5194/acp-24-12925-2024"></div> </div> </div> <div class="wrapper"> <div class="content text-center"> Preprint </div> <div class="content text-center"> <div class="altmetric-embed" data-link-target="_blank" data-hide-less-than="1" data-no-score data-badge-type="medium-donut" data-doi="10.5194/egusphere-2024-1252"></div> </div> </div> </div> <script type="text/javascript"> !function (e, t, n) { var d = "createElement", c = "getElementsByTagName", m = "setAttribute", n = document.getElementById(e); return n && n.parentNode && n.parentNode.removeChild(n), n = document[d + "NS"] && document.documentElement.namespaceURI, n = n ? document[d + "NS"](n, "script") : document[d]("script"), n[m]("id", e), n[m]("src", t), (document[c]("head")[0] || document[c]("body")[0]).appendChild(n), n = new Image, void n[m]("src", "https://www.atmospheric-chemistry-and-physics.net/altmetric_donut.png") }("altmetric-embed-js", "https://www.atmospheric-chemistry-and-physics.net/altmetric_badges.min.js"); $(function () { $('div.altmetric-embed').on('altmetric:hide', function () { if($(this).closest('.widget').find('.altmetric-embed:not(.altmetric-hidden)').length === 0) { $(this).closest('.widget').hide(); } $(this).closest('.wrapper').hide(); }); }); </script> <div class="ajax-content" data-src="https://editor.copernicus.org/similarArticles.php?article=119738&journal=10&isSecondStage=1&ajax=true"> </div> </div> <div class="auto-fixed-top px-1 mb-3 articleNavigation" data-fixet-top-target="#section1"> <button class="btn btn-success mb-3 btn-block" id="mathjax-turn"><i class="fal fa-function"></i> Turn MathJax on</button> <div class="widget dark-border m-0"> <div class="legend journal-contentLinkColor">Sections</div> <div class="content"> <ul class="toc-styling p-0"> <li> <a href="https://acp.copernicus.org/articles/24/12925/2024/#abstract" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Abstract</a> </li> <li> <a href="https://acp.copernicus.org/articles/24/12925/2024/#section1" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Introduction</a> </li> <li> <a href="https://acp.copernicus.org/articles/24/12925/2024/#section2" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Data and models</a> </li> <li> <a href="https://acp.copernicus.org/articles/24/12925/2024/#section3" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Regression analysis</a> </li> <li> <a href="https://acp.copernicus.org/articles/24/12925/2024/#section4" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Results</a> </li> <li> <a href="https://acp.copernicus.org/articles/24/12925/2024/#section5" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Conclusions</a> </li> <li> <a href="https://acp.copernicus.org/articles/24/12925/2024/#section6" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title"><span>Appendix A:</span> Extra figures</a> </li> <li> <a href="https://acp.copernicus.org/articles/24/12925/2024/#section7" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Code and data availability</a> </li> <li> <a href="https://acp.copernicus.org/articles/24/12925/2024/#section8" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Author contributions</a> </li> <li> <a href="https://acp.copernicus.org/articles/24/12925/2024/#section9" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Competing interests</a> </li> <li> <a href="https://acp.copernicus.org/articles/24/12925/2024/#section10" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Disclaimer</a> </li> <li> <a href="https://acp.copernicus.org/articles/24/12925/2024/#section11" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Acknowledgements</a> </li> <li> <a href="https://acp.copernicus.org/articles/24/12925/2024/#section12" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Financial support</a> </li> <li> <a href="https://acp.copernicus.org/articles/24/12925/2024/#section13" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Review statement</a> </li> <li> <a href="https://acp.copernicus.org/articles/24/12925/2024/#section14" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">References</a> </li> </ul> </div> </div> </div> </div> </div> </div> </main> <!--=== End Content ===--> <footer class="d-print-none version-2023"> <div class="footer"> <div class="container"> <div class="row align-items-center mb-3"> <div class="col-12 col-lg-auto text-center text-md-left title-wrapper"> <div id="j-header-footer" class="text-center text-md-left"> <div class="h1 text-center text-md-left"> Atmospheric Chemistry and Physics </div> <p>An interactive open-access journal of the European Geosciences Union</p> </div> </div> <div class="col-12 col-lg-auto text-center text-md-left pt-lg-2"> <div class="row align-items-center"> <div class="col-12 col-sm col-md-auto text-center text-md-left mb-3 mb-sm-0"> <span class="egu-logo"><a href="http://www.egu.eu/" target="_blank"><img src="https://contentmanager.copernicus.org/319373/10/ssl" alt="" style="width: 410px; height: 325px;" /></a></span> </div> <div class="col-12 col-sm text-center text-md-left"> <span class="copernicus-logo"><a href="https://publications.copernicus.org/" target="_blank"><img src="https://contentmanager.copernicus.org/319376/10/ssl" alt="" style="width: 1784px; height: 330px;" /></a></span> </div> </div> </div> </div> </div> </div> <div class="links pb-4 pt-4"> <div class="container"> <div class="row align-items-center"> <div class="col-12 col-xl-auto mt-3"> <div class="row align-items-start align-items-lg-center"> <div class="col-12 mb-3 mb-md-0 pl-md-0 text-center text-md-left"><a href="https://creativecommons.org/licenses/by/4.0/" target="_blank"><i class="fab fa-creative-commons fa-lg mr-1"></i><i class="fab fa-creative-commons-by fa-lg"></i></a> All site content, except where otherwise noted, is licensed under the <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank">Creative Commons Attribution 4.0 License</a>.</div> </div> </div> <div class="col-12 text-center text-md-left col-lg-auto mt-3"> <div class="row align-items-center"> <div class="col d-md-none px-0"></div> <div class="col-auto pr-1"><a href="https://www.atmospheric-chemistry-and-physics.net/about/contact.html">Contact</a></div> <div class="col-auto px-1">|</div> <div class="col-auto px-1"><a href="https://www.atmospheric-chemistry-and-physics.net/imprint.html">Imprint</a></div> <div class="col-auto px-1">|</div> <div class="col-auto px-1"><a href="https://www.copernicus.org/data_protection.html" target="_blank">Data protection</a></div> <div class="col-auto pl-2"><a class="twitter-follow-button" target="_blank" href="https://twitter.com/EGU_ACP"><i class="fa-brands fa-square-x-twitter fa-2x"></i></a></div> <div class="col d-md-none px-0"></div> </div> </div> </div> </div> </div> </footer> <!-- --></body> <!--CMS get_project_template.php::126 21.11.2024 01:13:07, CMS generated: 3.3265659809113sec --></html>

Pages: 1 2 3 4 5 6 7 8 9 10