CINXE.COM
Search results for: flexural test
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: flexural test</title> <meta name="description" content="Search results for: flexural test"> <meta name="keywords" content="flexural test"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="flexural test" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="flexural test"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 9483</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: flexural test</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9483</span> Flexural Toughness of Fiber Reinforced Reactive Powder Concrete (RPC)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Yousefi%20Oderji">S. Yousefi Oderji</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Chen"> B. Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> According to the ASTM C1018 toughness index method, the single and combined toughness effects of copper coated steel fiber and polypropylene (pp) fiber on reactive powder concrete (RPC) were investigated. Through flexural toughness test of RPC with different fiber volume dosages, the corresponding load-deflection curves were also drawn. Test results indicate that the binary combination of fibers provide the best flexural toughness, and improve the post-peak load-deflection characteristics of RPC. However, the single effect of pp fibers was not pronounced on improving the flexural toughness of RPC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RPC" title="RPC">RPC</a>, <a href="https://publications.waset.org/abstracts/search?q=PP" title=" PP"> PP</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20toughness" title=" flexural toughness"> flexural toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=toughness%20index" title=" toughness index"> toughness index</a> </p> <a href="https://publications.waset.org/abstracts/41865/flexural-toughness-of-fiber-reinforced-reactive-powder-concrete-rpc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41865.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9482</span> Flexural Test of Diversing Foam Core Sandwich Composites </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Santhana%20Krishnan%20R">Santhana Krishnan R</a>, <a href="https://publications.waset.org/abstracts/search?q=Preetha%20C"> Preetha C</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sandwich construction with strong and stiffness facing and light weight cores is increasingly cores being used in structures where the predominant loads are flexural. The objective of this study is to improve the flexural performances of foam core sandwich composite via structural core modifications considering the ease of application. The performances of single core perforated and divided core perforated sandwich composites are compared with each other. The future demands of sandwich composites in recent years on aeronautics and marine industries are being increasing in their research needs and these materials has their superior properties for upgrading engineering products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sandwich%20composites" title="sandwich composites">sandwich composites</a>, <a href="https://publications.waset.org/abstracts/search?q=perforated%20cores" title=" perforated cores"> perforated cores</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20test" title=" flexural test"> flexural test</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20and%20divided%20core%20perforated" title=" single and divided core perforated"> single and divided core perforated</a> </p> <a href="https://publications.waset.org/abstracts/128162/flexural-test-of-diversing-foam-core-sandwich-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128162.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9481</span> Effect of Steel Fibers on Flexural Behavior of Normal and High Strength Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20M.%20Aldossari">K. M. Aldossari</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20A.%20Elsaigh"> W. A. Elsaigh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20J.%20Shannag"> M. J. Shannag</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental study was conducted to investigate the effect of hooked-end steel fibers on the flexural behavior of normal and high strength concrete matrices. The fiber content appropriate for the concrete matrices investigated was also determined based on flexural tests on standard prisms. Parameters investigated include: Matrix compressive strength ranging from 45 MPa to 70 MPa, corresponding to normal and high strength concrete matrices respectively; Fiber volume fraction including 0, 0.5%, 0.76%, and 1%, equivalent to 0, 40, 60, and 80 kg/m3 of hooked-end steel fibers respectively. Test results indicated that flexural strength and toughness of normal and high strength concrete matrices were significantly improved with the increase in the fiber content added; Whereas a slight improvement in compressive strength was observed for the same matrices. Furthermore, the test results indicated that the effect of increasing the fiber content was more pronounced on increasing the flexural strength of high strength concrete than that of normal concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20strength" title=" flexural strength"> flexural strength</a>, <a href="https://publications.waset.org/abstracts/search?q=toughness" title=" toughness"> toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20fibers" title=" steel fibers"> steel fibers</a> </p> <a href="https://publications.waset.org/abstracts/2834/effect-of-steel-fibers-on-flexural-behavior-of-normal-and-high-strength-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2834.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">494</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9480</span> Flexural Strength of Alkali Resistant Glass Textile Reinforced Concrete Beam with Prestressing </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jongho%20Park">Jongho Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Taekyun%20Kim"> Taekyun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jungbhin%20You"> Jungbhin You</a>, <a href="https://publications.waset.org/abstracts/search?q=Sungnam%20Hong"> Sungnam Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Sun-Kyu%20Park"> Sun-Kyu Park </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the aging of bridges, increasing of maintenance costs and decreasing of structural safety is occurred. The steel corrosion of reinforced concrete bridge is the most common problem and this phenomenon is accelerating due to abnormal weather and increasing CO<sub>2</sub> concentration due to climate change. To solve these problems, composite members using textile have been studied. A textile reinforced concrete can reduce carbon emissions by reduced concrete and without steel bars, so a lot of structural behavior studies are needed. Therefore, in this study, textile reinforced concrete beam was made and flexural test was performed. Also, the change of flexural strength according to the prestressing was conducted. As a result, flexural strength of TRC with prestressing was increased compared and flexural behavior was shown as reinforced concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AR-glass" title="AR-glass">AR-glass</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20strength" title=" flexural strength"> flexural strength</a>, <a href="https://publications.waset.org/abstracts/search?q=prestressing" title=" prestressing"> prestressing</a>, <a href="https://publications.waset.org/abstracts/search?q=textile%20reinforced%20concrete" title=" textile reinforced concrete"> textile reinforced concrete</a> </p> <a href="https://publications.waset.org/abstracts/74475/flexural-strength-of-alkali-resistant-glass-textile-reinforced-concrete-beam-with-prestressing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9479</span> Investigation on Flexural Behavior of Non-Crimp 3D Orthogonal Weave Carbon Composite Reinforcement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sh.%20Minapoor">Sh. Minapoor</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ajeli"> S. Ajeli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Non-crimp three-dimensional (3D) orthogonal carbon fabrics are one of the useful textiles reinforcements in composites. In this paper, flexural and bending properties of a carbon non-crimp 3D orthogonal woven reinforcement are experimentally investigated. The present study is focused on the understanding and measurement of the main bending parameters including flexural stress, strain, and modulus. For this purpose, the three-point bending test method is used and the load-displacement curves are analyzed. The influence of some weave's parameters such as yarn type, geometry of structure, and fiber volume fraction on bending behavior of non-crimp 3D orthogonal carbon fabric is investigated. The obtained results also represent a dataset for the simulation of flexural behavior of non-crimp 3D orthogonal weave carbon composite reinforcement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-crimp%203D%20orthogonal%20weave" title="non-crimp 3D orthogonal weave">non-crimp 3D orthogonal weave</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20composite%20reinforcement" title=" carbon composite reinforcement"> carbon composite reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20behavior" title=" flexural behavior"> flexural behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=three-point%20bending" title=" three-point bending"> three-point bending</a> </p> <a href="https://publications.waset.org/abstracts/50505/investigation-on-flexural-behavior-of-non-crimp-3d-orthogonal-weave-carbon-composite-reinforcement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9478</span> Interaction of Local, Flexural-Torsional, and Flexural Buckling in Cold-Formed Steel Lipped-Angle Compression Members</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20C.%20Kalam%20Aswathy">K. C. Kalam Aswathy</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20V.%20Anil%20Kumar"> M. V. Anil Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The possible failure modes of cold-formed steel (CFS) lipped angle (LA) compression members are yielding, local, flexural-torsional, or flexural buckling, and any possible interaction between these buckling modes. In general, the strength estimated by current design guidelines is conservative for these members when flexural-torsional buckling (FTB) is the first global buckling mode, as the post-buckling strength of this mode is not accounted for in the global buckling strength equations. The initial part of this paper reports the results of an experimental and numerical study of CFS-LA members undergoing independent FTB. The modifications are suggested to global buckling strength equations based on these results. Subsequently, the reduction in the ultimate strength from strength corresponding to independent buckling modes for LA members undergoing interaction between buckling modes such as local-flexural torsional, flexural-flexural torsional, local-flexural, and local-flexural torsional-flexural are studied systematically using finite element analysis results. A simple and more accurate interaction equation that accounts for the above interactions between buckling modes in CFS-LA compression members is proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buckling%20interactions" title="buckling interactions">buckling interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=cold-formed%20steel" title=" cold-formed steel"> cold-formed steel</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural-torsional%20buckling" title=" flexural-torsional buckling"> flexural-torsional buckling</a>, <a href="https://publications.waset.org/abstracts/search?q=lipped%20angle" title=" lipped angle"> lipped angle</a> </p> <a href="https://publications.waset.org/abstracts/172729/interaction-of-local-flexural-torsional-and-flexural-buckling-in-cold-formed-steel-lipped-angle-compression-members" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172729.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9477</span> Effect of Confinement on Flexural Tensile Strength of Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ahmed">M. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Javed%20Mallick"> Javed Mallick</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Abul%20Hasan"> Mohammad Abul Hasan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The flexural tensile strength of concrete is an important parameter for determining cracking behavior of concrete structure and to compute deflection under flexure. Many factors have been shown to influence the flexural tensile strength, particularly the level of concrete strength, size of member, age of concrete and confinement to flexure member etc. Empirical equations have been suggested to relate the flexural tensile strength and compressive strength. Limited literature is available for relationship between flexural tensile strength and compressive strength giving consideration to the factors affecting the flexural tensile strength specially the concrete confinement factor. The concrete member such as slabs, beams and columns critical locations are under confinement effects. The paper presents the experimental study to predict the flexural tensile strength and compressive strength empirical relations using statistical procedures considering the effect of confinement and age of concrete for wide range of concrete strength (from 35 to about 100 MPa). It is concluded from study that due consideration of confinement should be given in deriving the flexural tensile strength and compressive strength proportionality equations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20tensile%20strength" title=" flexural tensile strength"> flexural tensile strength</a>, <a href="https://publications.waset.org/abstracts/search?q=modulus%20of%20rupture" title=" modulus of rupture"> modulus of rupture</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20procedures" title=" statistical procedures"> statistical procedures</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20confinement" title=" concrete confinement"> concrete confinement</a> </p> <a href="https://publications.waset.org/abstracts/2078/effect-of-confinement-on-flexural-tensile-strength-of-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2078.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9476</span> Effect of Size, Geometry and Tensile Strength of Fibers on the Flexure of Hooked Steel Fiber Reinforced Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chuchai%20Sujivorakul">Chuchai Sujivorakul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research focused on the study of various parameters of fiber itself affecting on the flexure of hooked steel fiber reinforced concrete (HSFRC). The size of HSFRC beams was 150x150 mm in cross section and 550 mm in length, and the flexural test was carried out in accordance with EN-14651 standard. The test result was the relationship between centre-point load and crack-mount opening displacement (CMOD) at the centre notch. Controlled concrete had a compressive strength of 42 MPa. The investigated variables related to the hooked fiber itself were: (a) 3 levels of aspect ratio of fibers (65, 80 and 100); (b) 2 different fiber lengths (35 mm and 60 mm); (c) 2 different tensile strength of fibers (1100 MPa and 1500 MPa); and (d) 3 different fiber-end geometries (3D 4D and 5D fibers). The 3D hooked fibers have two plastic hinges at both ends, while the 4D and 5D hooked fibers are the newly developed steel fibers by Bekaert, and they have three and four plastic hinges at both ends, respectively. The hooked steel fibers were used in concrete with three different fiber contents, i.e., 20 30 and 40 kg/m³. From the study, it was found that all variables did not seem to affect the flexural strength at limit of proportionality (LOP) of HSFRC. However, they affected the residual flexural tensile strength (fR,j). It was observed that an increase in fiber lengths and the tensile strength the fibers would significantly increase in the fR,j of HSFRC, while the aspect ratio of the fiber would slightly effect the fR,j of HSFRC. Moreover, it was found that using 5D fibers would better enhance the fR,j and flexural behavior of HSFRC than 3D and 4D fibers, because they gave highest mechanical anchorage effect created by their hooked-end geometry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hooked%20steel%20fibers" title="hooked steel fibers">hooked steel fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20reinforced%20concrete" title=" fiber reinforced concrete"> fiber reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=EN-14651" title=" EN-14651"> EN-14651</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20test" title=" flexural test"> flexural test</a> </p> <a href="https://publications.waset.org/abstracts/96421/effect-of-size-geometry-and-tensile-strength-of-fibers-on-the-flexure-of-hooked-steel-fiber-reinforced-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9475</span> Durability of Lime Treated Soil Reinforced by Natural Fibre under Bending Force</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vivi%20Anggraini">Vivi Anggraini</a>, <a href="https://publications.waset.org/abstracts/search?q=Afshin%20Asadi"> Afshin Asadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Bujang%20B.%20K.%20Huat"> Bujang B. K. Huat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earth structures constructed of marine clay soils have tendency to crack. In order to improve the flexural strength and brittleness, a technique of mixing short fibers is introduced to the soil lime mixture. Coir fiber was used in this study as reinforcing elements. An experimental investigation consisting primarily of flexural tensile tests was conducted to examine the influence of coir fibers on the flexural behaviour of the reinforced soils. The test results demonstrated that the coir fibers were effective in improving the flexural strength and young’s modulus of all soils were examined and ductility after peak strength for reinforced marine clay soil was treated by lime. 5% lime treated soil and 1% coir fiber reinforced soil specimen’s demonstrated good strength and durability when submerged in water and retained 45% of their air-cured strengths. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexural%20strength" title="flexural strength">flexural strength</a>, <a href="https://publications.waset.org/abstracts/search?q=durabilty" title=" durabilty"> durabilty</a>, <a href="https://publications.waset.org/abstracts/search?q=lime" title=" lime"> lime</a>, <a href="https://publications.waset.org/abstracts/search?q=coir%20fibers" title=" coir fibers"> coir fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20force" title=" bending force"> bending force</a>, <a href="https://publications.waset.org/abstracts/search?q=ductility" title=" ductility"> ductility</a> </p> <a href="https://publications.waset.org/abstracts/35165/durability-of-lime-treated-soil-reinforced-by-natural-fibre-under-bending-force" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35165.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9474</span> Influence of Modified and Unmodified Cow Bone on the Mechanical Properties of Reinforced Polyester Composites for Biomedical Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20O.%20Oladele">I. O. Oladele</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20A.%20Omotoyinbo"> J. A. Omotoyinbo</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Okoro"> A. M. Okoro</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20G.%20Okikiola"> A. G. Okikiola</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20L.%20Olajide"> J. L. Olajide</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work was carried out to investigate comparatively the effects of modified and unmodified cow bone particles on the mechanical properties of polyester matrix composites in order to investigate the suitability of the materials as biomaterial. Cow bones were procured from an abattoir, sun dried for 4 weeks and crushed. The crushed bones were divided into two, where one part was turned to ash while the other part was pulverized with laboratory ball mill before the two grades were sieved using 75 µm sieve size. Bone ash and bone particle reinforced tensile and flexural composite samples were developed from pre-determined proportions of 2, 4, 6, and 8 %. The samples after curing were stripped from the moulds and were allowed to further cure for 3 weeks before tensile and flexural tests were performed on them. The tensile test result showed that, 8 wt % bone particle reinforced polyester composites has higher tensile properties except for modulus of elasticity where 8 wt % bone ash particle reinforced composites has higher value while for flexural test, bone ash particle reinforced composites demonstrate the best flexural properties. The results show that these materials are structurally compatible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomedical" title="biomedical">biomedical</a>, <a href="https://publications.waset.org/abstracts/search?q=composites" title=" composites"> composites</a>, <a href="https://publications.waset.org/abstracts/search?q=cow%20bone" title=" cow bone"> cow bone</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=polyester" title=" polyester"> polyester</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforcement" title=" reinforcement"> reinforcement</a> </p> <a href="https://publications.waset.org/abstracts/47045/influence-of-modified-and-unmodified-cow-bone-on-the-mechanical-properties-of-reinforced-polyester-composites-for-biomedical-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47045.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9473</span> Utilization of Waste Glass Powder in Mortar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suhaib%20Salahuddin%20Alzubair%20Suliman">Suhaib Salahuddin Alzubair Suliman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper examines the mechanical strength of different binders including pure ordinary Portland cement (OPC) and others having OPC supplemented by two maximum sizes of waste glass powder (GP) of 75-μm and 150μm. Chemical analysis of the GPs using PCEDX test analysis has revealed it silica (SiO2 ) content % is 86.883 and Calcium oxide (CaO) is 12.203%while there are traces of other impurities . Furthermore, the specific gravity of GP was measured. The experiments have been conducted on 63 specimens mortar made with standard sand with 20%,25%, and 30% of GP levels of substituting OPC. The specimens are tested at 3, 7 and 28 days for compressive strength and flexural strength. The specimens made with maximum GP size of 75-μm have outperformed the control OPC mortar at 28 days test age than size 150-μm at various replacement levels. In addition to that, the mechanical strengths were evaluated compressive strength and flexural strength tests were conducted for GPs. The findings from this study indicated that the mortars modified with GP 75μm and replacement ratio of 20% showed an improvement in compressive strength and flexural strength compared to the control mortar at the 28 days of curing with significant development between 7 and 28 days. Mortar with GP size 75-μm containing 30% & 20% replacement of cement have exhibited the highest flexural strength among all mortar mixtures. The improvement in the mechanical strength of the mortars modified with GP can be attributed to the pozzolanic property of GPs, which leads to a more densified microstructure and improved interfacial bonding between sand and cement paste matrix in mortars. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glass%20powder" title="glass powder">glass powder</a>, <a href="https://publications.waset.org/abstracts/search?q=pozzolana" title=" pozzolana"> pozzolana</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20strength" title=" flexural strength"> flexural strength</a>, <a href="https://publications.waset.org/abstracts/search?q=mortar" title=" mortar"> mortar</a> </p> <a href="https://publications.waset.org/abstracts/175562/utilization-of-waste-glass-powder-in-mortar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9472</span> Behaviour of Beam Reinforced with Longitudinal Steel-CFRP Composite Reinforcement under Static Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faris%20A.%20Uriayer">Faris A. Uriayer</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehtab%20Alam"> Mehtab Alam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The concept of using a hybrid composite by combining two or more different materials to produce bilinear stress–strain behaviour has become a subject of interest. Having studied the mechanical properties of steel-CFRP specimens (CFRP Laminate Sandwiched between Mild Steel Strips), full size steel-CFRP composite reinforcement were fabricated and used as a new reinforcing material inside beams in lieu of traditional steel bars. Four beams, three beams reinforced with steel-CFRP composite reinforcement and one beam reinforced with traditional steel bars were cast, cured and tested under quasi-static loading. The flexural test results of the beams reinforced with this composite reinforcement showed that the beams with steel-CFRP composite reinforcement had comparable flexural strength and flexural ductility with beams reinforced with traditional steel bars. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFRP%20laminate" title="CFRP laminate">CFRP laminate</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20strip" title=" steel strip"> steel strip</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20behaviour" title=" flexural behaviour"> flexural behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20model" title=" modified model"> modified model</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20beam" title=" concrete beam"> concrete beam</a> </p> <a href="https://publications.waset.org/abstracts/23469/behaviour-of-beam-reinforced-with-longitudinal-steel-cfrp-composite-reinforcement-under-static-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">689</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9471</span> Development of Combined Cure Type for Rigid Pavement with Reactive Powder Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatih%20Hattatoglu">Fatih Hattatoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulrezzak%20Baki%C5%9F"> Abdulrezzak Bakiş</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, fiberless reactive powder concrete (RPC) was produced with high pressure and flexural strength. C30/37 concrete was chosen as the control sample. In this study, 9 different cure types were applied to fiberless RPC. the most suitable combined cure type was selected according to the pressure and flexure strength. Pressure and flexural strength tests were applied to these samples after curing. As a result of the study, the combined cure type with the highest pressure resistance was obtained. The highest pressure resistance was achieved with consecutive standard water cure at 20 °C for 7 days – hot water cure at 90 °C for 2 days - drying oven cure at 180 °C for 2 days. As a result of the study, the highest pressure resistance of fiberless RPC was found as 123 MPa with water cure at 20 °C for 7 days - hot water cure at 90 °C for 2 days - drying oven cure at 180 °C for 2 days; and the highest flexural resistance was found as 8.37 MPa for the same combined cure type. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combined%20cure" title="combined cure">combined cure</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20test" title=" flexural test"> flexural test</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20powder%20concrete%20%28RPC%29" title=" reactive powder concrete (RPC)"> reactive powder concrete (RPC)</a>, <a href="https://publications.waset.org/abstracts/search?q=rigid%20pavement" title=" rigid pavement"> rigid pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20test" title=" pressure test"> pressure test</a> </p> <a href="https://publications.waset.org/abstracts/44544/development-of-combined-cure-type-for-rigid-pavement-with-reactive-powder-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44544.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9470</span> Flexural Properties of Halloysite Nanotubes-Polyester Nanocomposites Exposed to Aggressive Environment </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Shahneel%20Saharudin">Mohd Shahneel Saharudin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiacheng%20Wei"> Jiacheng Wei</a>, <a href="https://publications.waset.org/abstracts/search?q=Islam%20Shyha"> Islam Shyha</a>, <a href="https://publications.waset.org/abstracts/search?q=Fawad%20Inam"> Fawad Inam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to investigate the effect of aggressive environment on the flexural properties of halloysite nanotubes-polyester nanocomposites. Results showed that the addition of halloysite nanotubes into polyester matrix was found to improve flexural properties of the nanocomposites in dry condition and after water-methanol exposure. Significant increase in surface roughness was also observed and measured by Alicona Infinite Focus optical microscope. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=halloysite%20nanotube" title="halloysite nanotube">halloysite nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=composites" title=" composites"> composites</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20properties" title=" flexural properties"> flexural properties</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a> </p> <a href="https://publications.waset.org/abstracts/68270/flexural-properties-of-halloysite-nanotubes-polyester-nanocomposites-exposed-to-aggressive-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68270.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9469</span> Tensile and Flexural Behavior of Particulate Filled/Polymer Matrix Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Alsaadi">M. Alsaadi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Erkli%C4%9F"> A. Erkliğ</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bulut"> M. Bulut</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper experimentally investigates the flexural and tensile properties of the industrial wastes sewage sludge ash (SSA) and fly ash (FA), and conventional ceramic powder silicon carbide (SiC) filled polyester composites. Four weight fractions (5, 10, 15 and 20 wt%) for each micro filler were used for production of composites. Then, test samples were produced according to ASTM. The resulting degree of particle dispersion in the polymer matrix was visualized by using scanning electron microscope (SEM). Results from this study showed that the tensile strength increased up to its maximum value at filler content 5 wt% of SSA, FA and SiC. Flexural strength increased with addition of particulate filler up to its maximum value at filler content 5 wt% of SSA and FA while for SiC decreased for all weight fractions gradually. The addition of SSA, FA and SiC fillers resulted in increase of tensile and flexural modulus for all the particulate composites. Industrial waste SSA can be used as an additive with polymer to produce composite materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=particle-reinforcement" title="particle-reinforcement">particle-reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage%20sludge%20ash" title=" sewage sludge ash"> sewage sludge ash</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20matrix%20composites" title=" polymer matrix composites"> polymer matrix composites</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/47026/tensile-and-flexural-behavior-of-particulate-filledpolymer-matrix-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47026.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9468</span> Polyolefin Fiber Reinforced Self-Compacting Concrete Replacing 20% Cement by Fly Ash</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suman%20Kumar%20Adhikary">Suman Kumar Adhikary</a>, <a href="https://publications.waset.org/abstracts/search?q=Zymantus%20Rudzionis"> Zymantus Rudzionis</a>, <a href="https://publications.waset.org/abstracts/search?q=Arvind%20Balakrishnan"> Arvind Balakrishnan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the behavior of concrete’s workability in a fresh state and compressive and flexural strength in a hardened state with the addition of polyolefin macro fibers. Four different amounts (3kg/m3, 4.5kg/m3, 6kg/m3 and 9kg/m3) of polyolefin macro fibers mixed in concrete mixture to observe the workability and strength properties difference between the concrete specimens. 20% class C type fly ash added is the concrete as replacement of cement. The water-cement ratio(W/C) of those concrete mix was 0.35. Masterglenium SKY 700 superplasticizer was added to the concrete mixture for better results. Slump test was carried out for determining the flowability. On 7th, 14th and 28th day of curing process compression strength tests were done and on 28th day flexural strength test and CMOD test were carried to differentiate the strength properties and post-cracking behavior of concrete samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=self-compacting%20concrete" title="self-compacting concrete">self-compacting concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=polyolefin%20fibers" title=" polyolefin fibers"> polyolefin fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20reinforced%20concrete" title=" fiber reinforced concrete"> fiber reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=CMOD%20test%20of%20concrete" title=" CMOD test of concrete"> CMOD test of concrete</a> </p> <a href="https://publications.waset.org/abstracts/101795/polyolefin-fiber-reinforced-self-compacting-concrete-replacing-20-cement-by-fly-ash" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101795.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9467</span> Flexural Fatigue Performance of Self-Compacting Fibre Reinforced Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surinder%20Pal%20Singh">Surinder Pal Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20Goel"> Sanjay Goel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents results of an investigation conducted to study the flexural fatigue characteristics of Self Compacting Concrete (SCC) and Self Compacting Fibre Reinforced Concrete (SCFRC). In total 360 flexural fatigue tests and 270 static flexural strength tests were conducted on SCC and SCFRC specimens to obtain the fatigue test data. The variability in the distribution of fatigue life of SCC and SCFRC have been analyzed and compared with that of NVC and NVFRC containing steel fibres of comparable size and shape. The experimental coefficients of fatigue equations have been estimated to represent relationship between stress level (S) and fatigue life (N) for SCC and SCFRC containing different fibre volume fractions. The probability of failure (Pf) has been incorporated in S-N relationships to obtain families of S-N-Pf relationships. A good agreement between the predicted curves and those obtained from the test data has been observed. The fatigue performance of SCC and SCFRC has been evaluated in terms of two-million cycles fatigue strength/endurance limit. The theoretic fatigue lives were also estimated using single-log fatigue equation for 10% probability of failure to estimate the enhanced extent of theoretic fatigue lives of SCFRC with reference to SCC and NVC. The reduction in variability in the fatigue life, increased endurance limit and increased theoretiac fatigue lives demonstrates an overall better fatigue performance for SCC and SCFRC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fatigue%20life" title="fatigue life">fatigue life</a>, <a href="https://publications.waset.org/abstracts/search?q=fibre" title=" fibre"> fibre</a>, <a href="https://publications.waset.org/abstracts/search?q=probability%20of%20failure" title=" probability of failure"> probability of failure</a>, <a href="https://publications.waset.org/abstracts/search?q=self-compacting%20concrete" title=" self-compacting concrete"> self-compacting concrete</a> </p> <a href="https://publications.waset.org/abstracts/6843/flexural-fatigue-performance-of-self-compacting-fibre-reinforced-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6843.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9466</span> Structural Properties of RC Beam with Progression of Corrosion Induced Delamination Cracking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anupam%20Saxena">Anupam Saxena</a>, <a href="https://publications.waset.org/abstracts/search?q=Achin%20Agrawal"> Achin Agrawal</a>, <a href="https://publications.waset.org/abstracts/search?q=Rishabh%20Shukla"> Rishabh Shukla</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mandal"> S. Mandal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is quite important that the properties of structural elements do not change significantly before and after cracking, and if they do, it adversely affects the structure. Corrosion in rebars causes cracking in concrete which can lead to the change in properties of beam. In the present study, two RC beams with same flexural strength but with different reinforcement arrangements are considered and modelling of cracks of RC beams has been done at different degrees of corrosion in the case of delamination using boundary conditions of Three Point Bending Test. Finite Element Analysis (FEA) has been done at different degree of corrosion to observe the variation of different parameters like modal frequency, Elasticity and Flexural strength in case of delamination. Also, the comparison between two different RC arrangements is made to conclude which one of them is more suitable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=delamination" title="delamination">delamination</a>, <a href="https://publications.waset.org/abstracts/search?q=elasticity" title=" elasticity"> elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=FEA" title=" FEA"> FEA</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20strength" title=" flexural strength"> flexural strength</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20frequency" title=" modal frequency"> modal frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20beam" title=" RC beam"> RC beam</a> </p> <a href="https://publications.waset.org/abstracts/57700/structural-properties-of-rc-beam-with-progression-of-corrosion-induced-delamination-cracking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57700.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9465</span> Using CFRP Sheets and Anchors on Sand-Lightweight Perlite Concrete to Evaluate the Flexural Behaviour of T-Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Zaki">Mohammed Zaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Hayder%20Rasheed"> Hayder Rasheed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper evaluates the flexural response of sand-lightweight Perlite concrete using full-scale reinforced concrete T beams strengthened and anchored with carbon fiber reinforced polymer (CFRP) materials. Four specimens were prepared with the same geometry, steel reinforcements, concrete properties, and span lengths. The anchored beams had a similar number of CFRP sheets but were secured utilizing different arrangements of CFRP fiber anchors. That will allow for effective and easily making comparisons to examine the flexural strengthening behavior of sand-lightweight Perlite concrete beams with anchors. The experimental outcomes were also compared with the numerical study and the comparisons were discussed. The test results showed an improvement in flexural behavior due to the use of CFRP sheets and anchors. Interestingly, the anchored beams recorded similar ultimate strength regardless of the number of CFRP fiber anchors used due to the failure by excessive wide cracks in the concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=perlite%20concrete" title="perlite concrete">perlite concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=CFRP%20fiber%20anchors" title=" CFRP fiber anchors"> CFRP fiber anchors</a>, <a href="https://publications.waset.org/abstracts/search?q=lightweight%20concrete" title=" lightweight concrete"> lightweight concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=full-scale%20T-beams" title=" full-scale T-beams"> full-scale T-beams</a> </p> <a href="https://publications.waset.org/abstracts/167039/using-cfrp-sheets-and-anchors-on-sand-lightweight-perlite-concrete-to-evaluate-the-flexural-behaviour-of-t-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167039.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9464</span> Experimental Investigation on Flexural Properties of Bamboo Fibres Polypropylene Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tigist%20Girma%20Kidane">Tigist Girma Kidane</a>, <a href="https://publications.waset.org/abstracts/search?q=Yalew%20Dessalegn%20Asfaw"> Yalew Dessalegn Asfaw</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Abstract: The current investigation aims to measure the longitudinal and transversal three-point bending tests of bamboo fibres polypropylene composites (BFPPCs) for the application of the automobile industry. Research has not been done on the properties of Ethiopian bamboo fibres for the utilization of composite development. The samples of bamboo plants have been harvested in 3–groups of age, 2–harvesting seasons, and 3–regions of bamboo species. Roll milling machine used for the extraction of bamboo fibres which has been developed by the authors. Chemical constituents measured using gravimetric methods. Unidirectional bamboo fibres prepreg has been produced using PP and hot press machine, then BFPPCs were produced using 6 layers of prepregs at automatic hot press machine. Age, harvesting month, and bamboo species have a statistically significant effect on the longitudinal and transverse flexural strength (FS), modulus of elasticity (MOE), and failure strain at α = 0.05 as evaluated by one-way ANOVA. 2–yrs old of BFPPCs have the highest FS and MOE, whereas November has the highest value of flexural properties. The highest to the lowest FS and MOE of BFPPCs has measured in Injibara, Mekaneselam, and Kombolcha, respectively. The transverse 3-point bending test has a lower FS and MOE compared to the longitudinal direction. The chemical constituents of Injibara, Mekaneselam, and Kombolcha have the highest to the lowest, respectively. 2-years old of bamboo fibres has the highest chemical constituent. The chemical constituents improved the flexural properties. Bamboo fibres in Ethiopia can be relevant for composite development, which has been applied in the area of requiring higher flexural properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=age" title="age">age</a>, <a href="https://publications.waset.org/abstracts/search?q=bamboo%20species" title=" bamboo species"> bamboo species</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20properties" title=" flexural properties"> flexural properties</a>, <a href="https://publications.waset.org/abstracts/search?q=harvesting%20season" title=" harvesting season"> harvesting season</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene" title=" polypropylene"> polypropylene</a> </p> <a href="https://publications.waset.org/abstracts/183518/experimental-investigation-on-flexural-properties-of-bamboo-fibres-polypropylene-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183518.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">51</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9463</span> High Volume Fly Ash Concrete for Paver Blocks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Som%20Nath%20Sachdeva">Som Nath Sachdeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Vanita%20Aggarwal"> Vanita Aggarwal</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Gupta"> S. M. Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Use of concrete paver blocks is becoming increasingly popular. They are used for paving of approaches, paths and parking areas including their application in pre-engineered buildings. This paper discusses the results of an experimental study conducted on Fly Ash Concrete with the aim to report its suitability for concrete paver blocks. In this study, the effect of varying proportions of fly ash, 20 % to 40 %, on compressive strength and flexural strength of concrete has been evaluated. The mix designs studied are M-30, M-35, M-40 and M-50. It is observed that all the fly ash based mixes are able to achieve the required compressive and flexural strengths. In comparison to control mixes, the compressive and flexural strengths of the fly ash based mixes are found to be slightly less at 7 days and 28 days and a little more at 90 days. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fly%20ash%20concrete" title="fly ash concrete">fly ash concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=paver%20blocks" title=" paver blocks"> paver blocks</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive" title=" compressive"> compressive</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20strength" title=" flexural strength"> flexural strength</a> </p> <a href="https://publications.waset.org/abstracts/6437/high-volume-fly-ash-concrete-for-paver-blocks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9462</span> The Flexural Improvement of RC Beams Using an Inserted Plate between Concrete and FRP Bonding Surface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Woo%20Young%20Jung">Woo Young Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20Ho%20Kwon"> Min Ho Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Bu%20Seog%20Ju"> Bu Seog Ju</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The primary objective of this research is to improve the flexural capacity of FRP strengthened RC Beam structures with Aluminum and Titanium laminates. FRP rupture of flexural strengthened RC beams using FRP plates generally occurs at the interface between FRP plate and the beam. Therefore, in order to prevent brittle rupture and improve the ductility of the system, this research was performed by using Aluminum and Titanium materials between the two different structural systems. The research also aims to provide various strengthening/retrofitting methods for RC beam structures and to conduct a preliminary analysis of the demands on the structural systems. This was achieved by estimation using the experimental data from this research to identify a flexural capacity for the systems. Ultimately, the preliminary analysis of current study showed that the flexural capacity and system demand ductility was significantly improved by the systems inserted with Aluminum and Titanium anchor plates. Further verification of the experimental research is currently on its way to develop a new or reliable design guideline to retrofit/strengthen the concrete-FRP structural system can be evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete" title="reinforced concrete">reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=FRP%20laminate" title=" FRP laminate"> FRP laminate</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20capacity" title=" flexural capacity"> flexural capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=ductility" title=" ductility"> ductility</a> </p> <a href="https://publications.waset.org/abstracts/12364/the-flexural-improvement-of-rc-beams-using-an-inserted-plate-between-concrete-and-frp-bonding-surface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12364.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9461</span> Flexural Strength Design of RC Beams with Consideration of Strain Gradient Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mantai%20Chen">Mantai Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Johnny%20Ching%20Ming%20Ho"> Johnny Ching Ming Ho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The stress-strain relationship of concrete under flexure is one of the essential parameters in assessing ultimate flexural strength capacity of RC beams. Currently, the concrete stress-strain curve in flexure is obtained by incorporating a constant scale-down factor of 0.85 in the uniaxial stress-strain curve. However, it was revealed that strain gradient would improve the maximum concrete stress under flexure and concrete stress-strain curve is strain gradient dependent. Based on the strain-gradient-dependent concrete stress-strain curve, the investigation of the combined effects of strain gradient and concrete strength on flexural strength of RC beams was extended to high strength concrete up to 100 MPa by theoretical analysis. As an extension and application of the authors’ previous study, a new flexural strength design method incorporating the combined effects of strain gradient and concrete strength is developed. A set of equivalent rectangular concrete stress block parameters is proposed and applied to produce a series of design charts showing that the flexural strength of RC beams are improved with strain gradient effect considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beams" title="beams">beams</a>, <a href="https://publications.waset.org/abstracts/search?q=equivalent%20concrete%20stress%20block" title=" equivalent concrete stress block"> equivalent concrete stress block</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20strength" title=" flexural strength"> flexural strength</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20gradient" title=" strain gradient"> strain gradient</a> </p> <a href="https://publications.waset.org/abstracts/5486/flexural-strength-design-of-rc-beams-with-consideration-of-strain-gradient-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5486.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9460</span> The Flexural Strength of Fiber-Reinforced Polymer Cement Mortars Using UM Resin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Min%20Ho%20Kwon">Min Ho Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Woo%20Young%20Jung"> Woo Young Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun%20Su%20Seo"> Hyun Su Seo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Polymer Cement Mortar (PCM) has been widely used as the material of repair and restoration work for concrete structure; however a PCM usually induces an environmental pollutant. Therefore, there is a need to develop PCM which is less impact to environments. Usually, UM resin is known to be harmless to the environment. Accordingly, in this paper, the properties of the PCM using UM resin were studied. The general cement mortar and UM resin was mixed in the specified ratio. A certain percentage of PVA fibers, steel fibers and mixed fibers (PVA fiber and steel fiber) were added to enhance the flexural strength. The flexural tests were performed in order to investigate the flexural strength of each PCM. Experimental results showed that the strength of proposed PCM using UM resin is improved when they are compared with general cement mortar. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymer%20cement%20mortar" title="polymer cement mortar">polymer cement mortar</a>, <a href="https://publications.waset.org/abstracts/search?q=UM%20resin" title=" UM resin"> UM resin</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=PVA%20fiber" title=" PVA fiber"> PVA fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20fiber" title=" steel fiber"> steel fiber</a> </p> <a href="https://publications.waset.org/abstracts/3903/the-flexural-strength-of-fiber-reinforced-polymer-cement-mortars-using-um-resin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3903.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9459</span> Shear Strength Evaluation of Ultra-High-Performance Concrete Flexural Members Using Adaptive Neuro-Fuzzy System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minsu%20Kim">Minsu Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hae-Chang%20Cho"> Hae-Chang Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae%20Hoon%20Chung"> Jae Hoon Chung</a>, <a href="https://publications.waset.org/abstracts/search?q=Inwook%20Heo"> Inwook Heo</a>, <a href="https://publications.waset.org/abstracts/search?q=Kang%20Su%20Kim"> Kang Su Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For safe design of the UHPC flexural members, accurate estimations of their shear strengths are very important. However, since the shear strengths are significantly affected by various factors such as tensile strength of concrete, shear span to depth ratio, volume ratio of steel fiber, and steel fiber factor, the accurate estimations of their shear strengths are very challenging. In this study, therefore, the Adaptive Neuro-Fuzzy System (ANFIS), which has been widely used to solve many complex problems in engineering fields, was introduced to estimate the shear strengths of UHPC flexural members. A total of 32 experimental results has been collected from previous studies for training of the ANFIS algorithm, and the well-trained ANFIS algorithm provided good estimations on the shear strengths of the UHPC test specimens. Acknowledgement: This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning(NRF-2016R1A2B2010277). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultra-high-performance%20concrete" title="ultra-high-performance concrete">ultra-high-performance concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=ANFIS" title=" ANFIS"> ANFIS</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title=" shear strength"> shear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20member" title=" flexural member"> flexural member</a> </p> <a href="https://publications.waset.org/abstracts/75871/shear-strength-evaluation-of-ultra-high-performance-concrete-flexural-members-using-adaptive-neuro-fuzzy-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75871.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9458</span> The Influence of Basalt and Steel Fibers on the Flexural Behavior of RC Beams </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasmin%20Z.%20Murad">Yasmin Z. Murad</a>, <a href="https://publications.waset.org/abstracts/search?q=Haneen%20M.%20Abdl-Jabbar"> Haneen M. Abdl-Jabbar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental program is conducted in this research to investigate the influence of basalt fibers and steel fibers on the flexural behavior of RC beams. Reinforced concrete beams are constructed using steel fiber concrete and basalt fiber concrete. Steel and basalt fibers are included in a percentage of 15% and 2.5% of the total cement weight, respectively. Test results have shown that basalt fibers have increased the load carrying capacity of the beams up to 30% and the maximum deflection to almost 2.4 times that measured in the control specimen. It has also shown that steel fibers have increased the load carrying capacity of the beams up to 47% and the ultimate deflection is almost duplicated compared to the control beam. Steel and basalt fibers have increased the ductility of the reinforced concrete beams. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=basalt%20fiber" title="basalt fiber">basalt fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20fiber" title=" steel fiber"> steel fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20beams" title=" reinforced concrete beams"> reinforced concrete beams</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20behavior" title=" flexural behavior"> flexural behavior</a> </p> <a href="https://publications.waset.org/abstracts/111281/the-influence-of-basalt-and-steel-fibers-on-the-flexural-behavior-of-rc-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111281.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9457</span> Influence of Flexural Reinforcement on the Shear Strength of RC Beams Without Stirrups</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guray%20Arslan">Guray Arslan</a>, <a href="https://publications.waset.org/abstracts/search?q=Riza%20Secer%20Orkun%20Keskin"> Riza Secer Orkun Keskin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical investigations were conducted to study the influence of flexural reinforcement ratio on the diagonal cracking strength and ultimate shear strength of reinforced concrete (RC) beams without stirrups. Three-dimensional nonlinear finite element analyses (FEAs) of the beams with flexural reinforcement ratios ranging from 0.58% to 2.20% subjected to a mid-span concentrated load were carried out. It is observed that the load-deflection and load-strain curves obtained from the numerical analyses agree with those obtained from the experiments. It is concluded that flexural reinforcement ratio has a significant effect on the shear strength and deflection capacity of RC beams without stirrups. The predictions of the diagonal cracking strength and ultimate shear strength of beams obtained by using the equations defined by a number of codes and researchers are compared with each other and with the experimental values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title="finite element">finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20reinforcement" title=" flexural reinforcement"> flexural reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20beam" title=" reinforced concrete beam"> reinforced concrete beam</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title=" shear strength"> shear strength</a> </p> <a href="https://publications.waset.org/abstracts/25278/influence-of-flexural-reinforcement-on-the-shear-strength-of-rc-beams-without-stirrups" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9456</span> Flexural Properties of RC Beams Strengthened with A Composite Reinforcement Layer: FRP Grid and ECC</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu-Zhou%20Zheng">Yu-Zhou Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Wen-Wei%20Wang"> Wen-Wei Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a new strengthening technique for reinforced concrete (RC) beams is proposed by combining Basalt Fibre Reinforced Polymer (BFRP) grid and Engineered Cementitious Composites (ECC) as a composite reinforcement layer (CRL). Five RC beams externally bonded with the CRL at the soffit and one control RC beam was tested to investigate their flexural behaviour. The thickness of BFRP grids (i.e., 1mm, 3mm and 5mm) and the sizes of CRL in test program were selected as the test parameters, while the thickness of CRL was fixed approximately at 30mm. The test results showed that there is no debonding of CRL to occur obviously in the strengthened beams. The final failure modes were the concrete crushing or the rupture of BFRP grids, indicating that the proposed technique is effective in suppressing the debonding of externally bonded materials and fully utilizing the material strengths. Compared with the non-strengthened beam, the increments of crack loading for strengthened beams were 58%~97%, 15%~35% for yield loading and 4%~33% for the ultimate loading, respectively. An analytical model is also presented to predict the full-range load-deflection responses of the strengthened beams and validated through comparisons with the test results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=basalt%20fiber-reinforced%20polymer%20%28BFRP%29%20grid" title="basalt fiber-reinforced polymer (BFRP) grid">basalt fiber-reinforced polymer (BFRP) grid</a>, <a href="https://publications.waset.org/abstracts/search?q=ECC" title=" ECC"> ECC</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20beams" title=" RC beams"> RC beams</a>, <a href="https://publications.waset.org/abstracts/search?q=strengthening" title=" strengthening"> strengthening</a> </p> <a href="https://publications.waset.org/abstracts/39890/flexural-properties-of-rc-beams-strengthened-with-a-composite-reinforcement-layer-frp-grid-and-ecc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39890.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9455</span> Using 3-Glycidoxypropyltrimethoxysilane Functionalized Silica Nanoparticles to Improve Flexural Properties of E-Glass/Epoxy Grid-Stiffened Composite Panels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Eslami-Farsani">Reza Eslami-Farsani</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Khosravi"> Hamed Khosravi</a>, <a href="https://publications.waset.org/abstracts/search?q=Saba%20Fayazzadeh"> Saba Fayazzadeh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lightweight and efficient structures have the aim to enhance the efficiency of the components in various industries. Toward this end, composites are one of the most widely used materials because of durability, high strength and modulus, and low weight. One type of the advanced composites is grid-stiffened composite (GSC) structures which have been extensively considered in aerospace, automotive, and aircraft industries. They are one of the top candidates for replacing some of the traditional components which are used here. Although there are a good number of published surveys on the design aspects and fabrication of GSC structures, little systematic work has been reported on their material modification to improve their properties, to our knowledge. Matrix modification using nanoparticles is an effective method to enhance the flexural properties of the fibrous composites. In the present study, a silane coupling agent (3-glycidoxypropyltrimethoxysilane/3-GPTS) was introduced onto the silica (SiO2) nanoparticle surface and its effects on the three-point flexural response of isogrid E-glass/epoxy composites were assessed. Based on the fourier transform infrared spectrometer (FTIR) spectra, it was inferred that the 3-GPTS coupling agent was successfully grafted onto the surface of SiO2 nanoparticles after modification. Flexural test revealed an improvement of 16%, 14%, and 36% in stiffness, maximum load and energy absorption of the isogrid specimen filled with 3 wt.% 3-GPTS/SiO2 compared to the neat one. It would be worth mentioning that in these structures, a considerable energy absorption was observed after the primary failure related to the load peak. Also, 3-GPTMS functionalization had a positive effect on the flexural behavior of the multiscale isogrid composites. In conclusion, this study suggests that the addition of modified silica nanoparticles is a promising method to improve the flexural properties of the grid-stiffened fibrous composite structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=isogrid-stiffened%20composite%20panels" title="isogrid-stiffened composite panels">isogrid-stiffened composite panels</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20nanoparticles" title=" silica nanoparticles"> silica nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20modification" title=" surface modification"> surface modification</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20properties" title=" flexural properties"> flexural properties</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20absorption" title=" energy absorption"> energy absorption</a> </p> <a href="https://publications.waset.org/abstracts/37842/using-3-glycidoxypropyltrimethoxysilane-functionalized-silica-nanoparticles-to-improve-flexural-properties-of-e-glassepoxy-grid-stiffened-composite-panels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37842.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9454</span> Performance Improvement of SBR Polymer Concrete Used in Construction of Rigid Pavement Highway</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Abbas%20Al-Jumaili">Mohammed Abbas Al-Jumaili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are some studies which have been conducted in resent years to investigate the possibility of producing high performance polymer concrete. However, despite the great important of this subject, very limited amount of literature is available about the strength and performance of this type of concrete in case using in rigid pavement highway. In this study, the possibility of producing high performance polymer concrete by using Styrene Butadiene Rubber (SBR) emulsion with various (SBR) percents of 5,10 ,15, and 20 % by weight of cement has been investigated. The compressive, splitting tensile and flexural strengths and dynamic modulus of elasticity tests were conducted after age of 7 and 28 days for control without polymer and SBR concretes. A total of (30) cubes, (30) cylinders and (30) prisms were prepared using different types of concrete mixes. The AASHTO guide-1993 method was used to determine slab concrete thickness of rigid pavement highway in case of using various SBR polymer concrete mixture types. The research results indicate that the use of 10% SBR by weight of cement leads to produce high performance concrete especially with regard to mechanical properties and structural relative to corresponding control concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rigid%20pavement%20highway" title="rigid pavement highway">rigid pavement highway</a>, <a href="https://publications.waset.org/abstracts/search?q=styrene%E2%80%93butadiene%20rubber%20%28SBR%29%20latex" title=" styrene–butadiene rubber (SBR) latex"> styrene–butadiene rubber (SBR) latex</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20test" title=" compressive test"> compressive test</a>, <a href="https://publications.waset.org/abstracts/search?q=splitting%20tensile%20test" title=" splitting tensile test"> splitting tensile test</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20test%20and%20dynamic%20modulus%20of%20elasticity%20test" title=" flexural test and dynamic modulus of elasticity test"> flexural test and dynamic modulus of elasticity test</a> </p> <a href="https://publications.waset.org/abstracts/41354/performance-improvement-of-sbr-polymer-concrete-used-in-construction-of-rigid-pavement-highway" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flexural%20test&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flexural%20test&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flexural%20test&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flexural%20test&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flexural%20test&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flexural%20test&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flexural%20test&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flexural%20test&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flexural%20test&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flexural%20test&page=316">316</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flexural%20test&page=317">317</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flexural%20test&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>