CINXE.COM
Search results for: carbon emission factor
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: carbon emission factor</title> <meta name="description" content="Search results for: carbon emission factor"> <meta name="keywords" content="carbon emission factor"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="carbon emission factor" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="carbon emission factor"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 9236</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: carbon emission factor</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9236</span> Statistically Significant Differences of Carbon Dioxide and Carbon Monoxide Emission in Photocopying Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kiurski%20S.%20Jelena">Kiurski S. Jelena</a>, <a href="https://publications.waset.org/abstracts/search?q=Keci%C4%87%20S.%20Vesna"> Kecić S. Vesna</a>, <a href="https://publications.waset.org/abstracts/search?q=Oros%20B.%20Ivana"> Oros B. Ivana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Experimental results confirmed the temporal variation of carbon dioxide and carbon monoxide concentration during the working shift of the photocopying process in a small photocopying shop in Novi Sad, Serbia. The statistically significant differences of target gases were examined with two-way analysis of variance without replication followed by Scheffe's <em>post hoc</em> test. The existence of statistically significant differences was obtained for carbon monoxide emission which is pointed out with <em>F</em>-values (12.37 and 31.88) greater than <em>F<sub>crit</sub></em> (6.94) in contrary to carbon dioxide emission (<em>F</em>-values of 1.23 and 3.12 were less than <em>F<sub>crit</sub></em>). Scheffe's <em>post hoc</em> test indicated that sampling point A (near the photocopier machine) and second time interval contribute the most on carbon monoxide emission. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analysis%20of%20variance" title="analysis of variance">analysis of variance</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide" title=" carbon dioxide"> carbon dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20monoxide" title=" carbon monoxide"> carbon monoxide</a>, <a href="https://publications.waset.org/abstracts/search?q=photocopying%20indoor" title=" photocopying indoor"> photocopying indoor</a>, <a href="https://publications.waset.org/abstracts/search?q=Scheffe%27s%20test" title=" Scheffe's test"> Scheffe's test</a> </p> <a href="https://publications.waset.org/abstracts/42549/statistically-significant-differences-of-carbon-dioxide-and-carbon-monoxide-emission-in-photocopying-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9235</span> Effects of China's Urban Form on Urban Carbon Emission</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lu%20Lin">Lu Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Urbanization has reshaped physical environment, energy consumption and carbon emission of the urban area. China is a typical developing country under a rapid urbanization process and is the world largest carbon emission country. This study aims to explore the correlation between urban form and carbon emission caused by urban energy consumption in China. 287 provincial-level and prefecture-level cities are studied in 2000, 2005, and 2010. Compact ratio index, shape index, and fractal dimension index are used to quantify urban form. Geographically weighted regression (GWR) model is employed to explore the relationship between urban form, energy consumption, and related carbon emission. The results show the average compact ratio index decreased from 2000 to 2010 which indicates urban in China sprawled. The average fractal dimension index increases by 3%, indicating the spatial layouts of China's cities were more complicated. The results by the GWR model show that shape index and fractal dimension index had a non-significant relationship with carbon emission by urban energy consumption. However, compact urban form reduced carbon emission. The findings of this study will help policy-makers make sustainable urban planning and reduce urban carbon emission. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20emission" title="carbon emission">carbon emission</a>, <a href="https://publications.waset.org/abstracts/search?q=GWR%20model" title=" GWR model"> GWR model</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20energy%20consumption" title=" urban energy consumption"> urban energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20form" title=" urban form"> urban form</a> </p> <a href="https://publications.waset.org/abstracts/88643/effects-of-chinas-urban-form-on-urban-carbon-emission" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88643.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9234</span> NOx Emission and Computational Analysis of Jatropha Curcus Fuel and Crude Oil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vipan%20Kumar%20Sohpal">Vipan Kumar Sohpal</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20K%20Sharma"> Rajesh K Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diminishing of conventional fuels and hysterical vehicles emission leads to deterioration of the environment, which emphasize the research to work on biofuels. Biofuels from different sources attract the attention of research due to low emission and biodegradability. Emission of carbon monoxide, carbon dioxide and H-C reduced drastically using Biofuels (B-20) combustion. Contrary to the conventional fuel, engine emission results indicated that nitrous oxide emission is higher in Biofuels. So this paper examines and compares the nitrogen oxide emission of Jatropha Curcus (JCO) B-20% blends with the vegetable oil. In addition to that computational analysis of crude non edible oil performed to assess the impact of composition on emission quality. In conclusion, JCO have the potential feedstock for the biodiesel production after the genetic modification in the plant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=jatropha%20curcus" title="jatropha curcus">jatropha curcus</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20analysis" title=" computational analysis"> computational analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=emissions" title=" emissions"> emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=NOx%20biofuels" title=" NOx biofuels"> NOx biofuels</a> </p> <a href="https://publications.waset.org/abstracts/48173/nox-emission-and-computational-analysis-of-jatropha-curcus-fuel-and-crude-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">587</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9233</span> Effect of Cap and Trade Policies for Carbon Emission Reduction on Delhi Households</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vikram%20Singh">Vikram Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to take into account carbon tax or cap-and-trade legislation to manage Delhi carbon emissions after a post-Kyoto treaty. This report estimated the influence of the carbon taxes or rebate/compensation cost at the household level. Here, the three possible scenarios will help to comprehend the difference between a straightforward compensation/rebate, and two clearly denoting progressive formula. The straightforward compensation is basically minimizing the regressive applications that will bears on cost. On the other hand, both the progressive formula will generate extra revenue, which will help for feasibility of more efficient, vehicles, appliances and buildings in the low-income household. For the hypothetical case of carbon price $40/tonne, low-income household for both urban and rural region could experience price burden up to 5% and 9% on their income as compared to 3% and 7% for high-income household respectively. The survey report also shown that carbon emission due low-income household are primarily by the substantive requirement like housing and transportation whereas almost 40% emission due to high-income household are by luxurious and non-essential items. The equal distribution of revenue cum incentives will not completely overcome high-income household’s investment in inessential items. However, it will merely help in investing their income in energy efficient and less carbon intensive items. Therefore, the rebate distribution on per capita basis instead on per households will benefit more especially large families at low-income group. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=household%20emission" title="household emission">household emission</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20credit" title=" carbon credit"> carbon credit</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20intensity" title=" carbon intensity"> carbon intensity</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20house%20gas%20emission" title=" green house gas emission"> green house gas emission</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20generation%20based%20insentives" title=" carbon generation based insentives"> carbon generation based insentives</a> </p> <a href="https://publications.waset.org/abstracts/1434/effect-of-cap-and-trade-policies-for-carbon-emission-reduction-on-delhi-households" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1434.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9232</span> Challenge of Net-Zero Carbon Construction and Measurement of Energy Consumption and Carbon Emission Reduction to Climate Change, Economy and Job Growths in Hong Kong and Australia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kwok%20Tak%20Kit">Kwok Tak Kit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Under the Paris Agreement 2015, the countries committed to address and combat the climate change and its negative impacts and agree to the target of reducing the global greenhouse gas (GHG) emission substantially by limiting the global temperature to 20C above the pre-industrial level in this century. A internationally Submit named “ 26th United Nations Climate Conference” (COP26) was held in Glasgow in 2021 with all committed countries agreed to the finalize the outstanding element in Paris Agreement and Glasgow Climate Pact to keep 1.50C. In this paper, we will focus on the basic approach of waste strategy, recycling policy, circular economy strategy, net-zero strategy and sustainability strategy and the importance of the elements which affect the carbon emission, waste generation and energy conservation will be further reviewed with recommendation for future study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=net-zero%20carbon" title="net-zero carbon">net-zero carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20emission" title=" carbon emission"> carbon emission</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a> </p> <a href="https://publications.waset.org/abstracts/144405/challenge-of-net-zero-carbon-construction-and-measurement-of-energy-consumption-and-carbon-emission-reduction-to-climate-change-economy-and-job-growths-in-hong-kong-and-australia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144405.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9231</span> Supply Chain Decarbonisation – A Cost-Based Decision Support Model in Slow Steaming Maritime Operations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eugene%20Y.%20C.%20Wong">Eugene Y. C. Wong</a>, <a href="https://publications.waset.org/abstracts/search?q=Henry%20Y.%20K.%20Lau"> Henry Y. K. Lau</a>, <a href="https://publications.waset.org/abstracts/search?q=Mardjuki%20Raman"> Mardjuki Raman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> CO2 emissions from maritime transport operations represent a substantial part of the total greenhouse gas emission. Vessels are designed with better energy efficiency. Minimizing CO2 emission in maritime operations plays an important role in supply chain decarbonisation. This paper reviews the initiatives on slow steaming operations towards the reduction of carbon emission. It investigates the relationship and impact among slow steaming cost reduction, carbon emission reduction, and shipment delay. A scenario-based cost-driven decision support model is developed to facilitate the selection of the optimal slow steaming options, considering the cost on bunker fuel consumption, available speed, carbon emission, and shipment delay. The incorporation of the social cost of cargo is reviewed and suggested. Additional measures on the effect of vessels sizes, routing, and type of fuels towards decarbonisation are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=slow%20steaming" title="slow steaming">slow steaming</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20emission" title=" carbon emission"> carbon emission</a>, <a href="https://publications.waset.org/abstracts/search?q=maritime%20logistics" title=" maritime logistics"> maritime logistics</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20supply%20chain" title=" green supply chain"> green supply chain</a> </p> <a href="https://publications.waset.org/abstracts/2594/supply-chain-decarbonisation-a-cost-based-decision-support-model-in-slow-steaming-maritime-operations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2594.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9230</span> The Carbon Emission Seesaw Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adel%20Elomri">Adel Elomri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The notion of carbon footprinting is ever more widespread as companies are becoming increasingly aware that tackling carbon emissions and being seen to do so is a key issue to face governments, customers and other stakeholders’ pressures towards delivering environmentally friendly services and activities. In this contest, many firms are taking self-initiatives to reduce their own carbon emissions while some other are constrained to obey to different regulations/policies (e.g. carbon tax or carbon Cap) designed by higher authorities targeting a low-carbon environment. Using buyer-vendor framework, this paper provides some insights on how effective are these self-initiatives and regulatory policies when only concerning firms at the individual level and not the whole supply chain they are part of. We show that when firms individually engage in reducing their direct carbon emissions either under self-initiatives or regulatory policy, an opposite expected outcome resulting in a higher global supply chain emission can occur. This effect is referred to as the carbon seesaw effect. Moreover, we show that coordinating or centralizing the supply chain -contrary to what one may think at first- is not often the appropriate solution to get rid of this effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20emissions" title="carbon emissions">carbon emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20coordination" title=" supply chain coordination"> supply chain coordination</a>, <a href="https://publications.waset.org/abstracts/search?q=EOQ" title=" EOQ"> EOQ</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20operations" title=" sustainable operations"> sustainable operations</a> </p> <a href="https://publications.waset.org/abstracts/50285/the-carbon-emission-seesaw-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9229</span> White Light Emitting Carbon Dots- Surface Modification of Carbon Dots Using Auxochromes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manasa%20Perikala">Manasa Perikala</a>, <a href="https://publications.waset.org/abstracts/search?q=Asha%20Bhardwaj"> Asha Bhardwaj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fluorescent carbon dots (CDs), a young member of Carbon nanomaterial family, has gained a lot of research attention across the globe due to its highly luminescent emission properties, non-toxic behavior, stable emission properties, and zero re-absorption lose. These dots have the potential to replace the use of traditional semiconductor quantum dots in light-emitting devices (LED’s, fiber lasers) and other photonic devices (temperature sensor, UV detector). However, One major drawback of Carbon dots is that, till date, the actual mechanism of photoluminescence (PL) in carbon dots is still an open topic of discussion among various researchers across the globe. PL mechanism of CDs based on wide particle size distribution, the effect of surface groups, hybridization in carbon, and charge transfer mechanisms have been proposed. Although these mechanisms explain PL of CDs to an extent, no universally accepted mechanism to explain complete PL behavior of these dots is put forth. In our work, we report parameters affecting the size and surface of CDs, such as time of the reaction, synthesis temperature and concentration of precursors and their effects on the optical properties of the carbon dots. The effect of auxochromes on the emission properties and re-modification of carbon surface using an external surface functionalizing agent is discussed in detail. All the explanations have been supported by UV-Visible absorption, emission spectroscopies, Fourier transform infrared spectroscopy and Transmission electron microscopy and X-Ray diffraction techniques. Once the origin of PL in CDs is understood, parameters affecting PL centers can be modified to tailor the optical properties of these dots, which can enhance their applications in the fabrication of LED’s and other photonic devices out of these carbon dots. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20dots" title="carbon dots">carbon dots</a>, <a href="https://publications.waset.org/abstracts/search?q=photoluminescence" title=" photoluminescence"> photoluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=size%20effects%20on%20emission%20in%20CDs" title=" size effects on emission in CDs"> size effects on emission in CDs</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20modification%20of%20carbon%20dots" title=" surface modification of carbon dots"> surface modification of carbon dots</a> </p> <a href="https://publications.waset.org/abstracts/116515/white-light-emitting-carbon-dots-surface-modification-of-carbon-dots-using-auxochromes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116515.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9228</span> Investigating The Nexus Between Energy Deficiency, Environmental Sustainability and Renewable Energy: The Role of Energy Trade in Global Perspectives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fahim%20Ullah">Fahim Ullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Usman"> Muhammad Usman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Energy consumption and environmental sustainability are hard challenges of 21st century. Energy richness increases environmental pollution while energy poverty hinders economic growth. Considering these two aspects, present study calculates energy deficiency and examines the role of renewable energy to overcome rising energy deficiency and carbon emission for selected countries from 1990 to 2021. For empirical analysis, this study uses methods of moments panel quantile regression analysis and to check the robustness, study used panel quantile robust analysis. Graphical analysis indicated rising global energy deficiency since last three decades where energy consumption is higher than energy production. Empirical results showed that renewable energy is a significant factor for reducing energy deficiency. Secondly, the energy deficiency increases carbon emission level and again renewable energy decreases emissions level. This study recommends that global energy deficiency and rising carbon emissions can be controlled through structural change in the form of energy transition to replace non-renewable resources with renewable resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20deficiency" title="energy deficiency">energy deficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20emission" title=" carbon emission"> carbon emission</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20trade" title=" energy trade"> energy trade</a>, <a href="https://publications.waset.org/abstracts/search?q=PQL%20analysis" title=" PQL analysis"> PQL analysis</a> </p> <a href="https://publications.waset.org/abstracts/183640/investigating-the-nexus-between-energy-deficiency-environmental-sustainability-and-renewable-energy-the-role-of-energy-trade-in-global-perspectives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9227</span> A Review on Aviation Emissions and Their Role in Climate Change Scenarios</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Niemisto">J. Niemisto</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Nissinen"> A. Nissinen</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Soimakallio"> S. Soimakallio</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aviation causes carbon dioxide (CO2) emissions and other climate forcers which increase the contribution of aviation on climate change. Aviation industry and number of air travellers are constantly increasing. Aviation industry has an ambitious goal to strongly cut net CO2 emissions. Modern fleet, alternative jet fuels technologies and route optimisation are important technological tools in the emission reduction. Faster approaches are needed as well. Emission trade systems, voluntary carbon offset compensation schemes and taxation are already in operation. Global scenarios of aviation industry and its greenhouse gas emissions and other climate forcers are discussed in this review study based on literature and other published data. The focus is on the aviation in Nordic countries, but also European and global situation are considered. Different emission reduction technologies and compensation modes are examined. In addition, the role of aviation in a single passenger’s (a Finnish consumer) annual carbon footprint is analysed and a comparison of available emission calculators and carbon offset systems is performed. Long-haul fights have a significant role in a single consumer´s and company´s carbon footprint, but remarkable change in global emission level would need a huge change in attitudes towards flying. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aviation" title="aviation">aviation</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=emissions" title=" emissions"> emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a> </p> <a href="https://publications.waset.org/abstracts/95370/a-review-on-aviation-emissions-and-their-role-in-climate-change-scenarios" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9226</span> Carbon Footprint Reduction Using Cleaner Production Strategies in a Otoshimi Producing Plant </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Razuana%20Rahim">Razuana Rahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Aziz%20Abdul%20Raman"> Abdul Aziz Abdul Raman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, a study was conducted to evaluate the feasibility of using Cleaner Production (CP) strategy to reduce carbon dioxide emission (CO2) in a plant that produces Otoshimi. CP strategy is meant to reduce CO2 emission while taking into consideration the economic aspect. For this purpose, a CP audit was conducted and the information obtained were analyzed and major contributors of CO2 emission inside the boundary of the production plant was identified. Electricity, water and fuel consumption and generation of solid waste and wastewater were identified as the main contributors. Total CO2 emission generated was 0.27 kg CO2 per kg of Otoshimi produced, where 68% was contributed by electricity consumption. Subsequently, a total of three CP options were generated and implementations of these options are expected to reduce the CO2 emission from electricity consumption to 0.16 kg CO2 per kg of Otoshimi produced, a reduction of about 14%. The study proves that CP strategy can be implemented even without any investment to reduce CO2 for a plant that produces Otoshimi. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide%20emission" title="carbon dioxide emission">carbon dioxide emission</a>, <a href="https://publications.waset.org/abstracts/search?q=cleaner%20production%20audit" title=" cleaner production audit"> cleaner production audit</a>, <a href="https://publications.waset.org/abstracts/search?q=cleaner%20production%20options" title=" cleaner production options"> cleaner production options</a>, <a href="https://publications.waset.org/abstracts/search?q=otoshimi%20production" title=" otoshimi production"> otoshimi production</a> </p> <a href="https://publications.waset.org/abstracts/28110/carbon-footprint-reduction-using-cleaner-production-strategies-in-a-otoshimi-producing-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28110.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9225</span> Effect of Carbon Amount of Dual-Phase Steels on Deformation Behavior Using Acoustic Emission</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramin%20Khamedi">Ramin Khamedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Isa%20Ahmadi"> Isa Ahmadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study acoustic emission (AE) signals obtained during deformation and fracture of two types of ferrite-martensite dual phase steels (DPS) specimens have been analyzed in frequency domain. For this reason two low carbon steels with various amounts of carbon were chosen, and intercritically heat treated. In the introduced method, identifying the mechanisms of failure in the various phases of DPS is done. For this aim, AE monitoring has been used during tensile test of several DPS with various volume fraction of the martensite (VM) and attempted to relate the AE signals and failure mechanisms in these steels. Different signals, which referred to 2-3 micro-mechanisms of failure due to amount of carbon and also VM have been seen. By Fast Fourier Transformation (FFT) of signals in distinct locations, an excellent relationship between peak frequencies in these areas and micro-mechanisms of failure were seen. The results were verified by microscopic observations (SEM). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20emission" title="acoustic emission">acoustic emission</a>, <a href="https://publications.waset.org/abstracts/search?q=dual%20phase%20steels" title=" dual phase steels"> dual phase steels</a>, <a href="https://publications.waset.org/abstracts/search?q=deformation" title=" deformation"> deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=failure" title=" failure"> failure</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture" title=" fracture"> fracture</a> </p> <a href="https://publications.waset.org/abstracts/10129/effect-of-carbon-amount-of-dual-phase-steels-on-deformation-behavior-using-acoustic-emission" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10129.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9224</span> A Brief Exploration on the Green Urban Design for Carbon Neutrality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gaoyuan%20Wang">Gaoyuan Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Tian%20Chen">Tian Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> China’s emission peak and carbon neutrality strategies lead to the transformation of development patterns and call for new green urban design thinking. This paper begins by revealing the evolution of green urban design thinking during the periods of carbon enlightenment, carbon dependency, and carbon decoupling from the perspective of the energy transition. Combined with the current energy situation, national strengths, and technological trends, the emergence of green urban design towards carbon neutrality becomes inevitable. Based on the preliminary analysis of its connotation, the characteristics of the new type of green urban design are generalized as low-carbon orientation, carbon-related objects, carbon-reduction means, and carbon-control patterns. Its theory is briefly clarified in terms of the human-earth synergism, quality-energy interconnection, and form-flow interpromotion. Then, its mechanism is analyzed combined with the core tasks of carbon neutrality, and the scope of design issues is defined, including carbon flow mapping, carbon source regulation, carbon sink construction, and carbon emission management. Finally, a multi-scale spatial response system is proposed across the region, city, cluster, and neighborhood level. The discussion aims to provide support for the innovation of green urban design theories and methods in the context of peak neutrality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20neutrality" title="carbon neutrality">carbon neutrality</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20urban%20design" title=" green urban design"> green urban design</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20transition" title=" energy transition"> energy transition</a>, <a href="https://publications.waset.org/abstracts/search?q=theoretical%20exploration" title=" theoretical exploration"> theoretical exploration</a> </p> <a href="https://publications.waset.org/abstracts/140514/a-brief-exploration-on-the-green-urban-design-for-carbon-neutrality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140514.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9223</span> Environmental, Climate Change, and Health Outcomes in the World</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Felix%20Aberu">Felix Aberu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The high rate of greenhouse gas (CO₂) emission and increased concentration of Carbon Dioxide in the atmosphere are not unconnected to both human and natural activities. This has caused climate change and global warming in the world. The adverse effect of these climatic changes has no doubt threatened human existence. Hence, this study examined the effects of environmental and climate influence on mortality and morbidity rates, with particular reference to the world’s leading CO₂ emission countries, using both the pre-estimation, estimation, and post-estimation techniques for more dependable outcomes. Hence, the System Generalized Method of Moments (SGMM) was adopted as the main estimation technique for the data analysis from 1996 to 2023. The coefficient of carbon emissions confirmed a positive and significant relationship among CO₂ emission, mortality, and morbidity rates in the world’s leading CO₂ emissions countries, which implies that carbon emission has contributed to mortality and morbidity rates in the world. Therefore, significant action should be taken to facilitate the expansion of environmental protection and sustainability initiatives in any CO₂ emissions nations of the world. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental" title="environmental">environmental</a>, <a href="https://publications.waset.org/abstracts/search?q=mortality" title=" mortality"> mortality</a>, <a href="https://publications.waset.org/abstracts/search?q=morbidity" title=" morbidity"> morbidity</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20outcomes" title=" health outcomes"> health outcomes</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20emissions" title=" carbon emissions"> carbon emissions</a> </p> <a href="https://publications.waset.org/abstracts/184613/environmental-climate-change-and-health-outcomes-in-the-world" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">54</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9222</span> Carbon Dioxide (CO₂) and Methane (CH₄) Fluxes from Irrigated Wheat in a Subtropical Floodplain Soil Increased by Reduced Tillage, Residue Retention, and Nitrogen Application Rate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Begum">R. Begum</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20R.%20Jahangir"> M. M. R. Jahangir</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Jahiruddin"> M. Jahiruddin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Islam"> M. R. Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Rahman"> M. M. Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20B.%20Hossain"> M. B. Hossain</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Hossain"> P. Hossain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quantifying carbon (C) sequestration in soils is necessary to help better understand the effect of agricultural practices on the C cycle. The estimated contribution of agricultural carbon dioxide (CO₂) and methane (CH₄) to global warming potential (GWP) has a wide range. The underlying causes of this huge uncertainty are the difficulties to predict the regional CO₂ and CH₄ loss due to the lack of experimental evidence on CO₂ and CH₄ emissions and associated drivers. The CH₄ and CO₂ emissions were measured in irrigated wheat in subtropical floodplain soils which have been under two soil disturbance levels (strip vs. conventional tillage; ST vs. CT being both with 30% residue retention) and three N fertilizer rates (60, 100, and 140% of the recommended N fertilizer dose, RD) in annual wheat (Triticum aestivum)-mungbean (Vigna radiata)-rice (Oryza sativa L) for seven consecutive years. The highest CH₄ and CO₂ emission peak was observed on day 3 after urea application in both tillages except CO₂ flux in CT. Nitrogen fertilizer application rate significantly influenced mean and cumulative CH₄ and CO₂ fluxes. The CH₄ and CO₂ fluxes decreased in an optimum dose of N fertilizer except for ST for CH₄. The CO₂ emission significantly showed higher emission at minimum (60% of RD) fertilizer application at both tillages. Soil microbial biomass carbon (MBC), organic carbon (SOC), Particulate organic carbon (POC), permanganate oxidisable carbon (POXC), basal respiration (BR) were significantly higher in ST which were negative and significantly correlated with CO₂. However, POC and POXC were positively and significantly correlated with CH₄ emission. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide%20emissions" title="carbon dioxide emissions">carbon dioxide emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=methane%20emission" title=" methane emission"> methane emission</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20rate" title=" nitrogen rate"> nitrogen rate</a>, <a href="https://publications.waset.org/abstracts/search?q=tillage" title=" tillage"> tillage</a> </p> <a href="https://publications.waset.org/abstracts/168130/carbon-dioxide-co2-and-methane-ch4-fluxes-from-irrigated-wheat-in-a-subtropical-floodplain-soil-increased-by-reduced-tillage-residue-retention-and-nitrogen-application-rate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9221</span> Climate Change Effects of Vehicular Carbon Monoxide Emission from Road Transportation in Part of Minna Metropolis, Niger State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Liman">H. M. Liman</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20M.%20Suleiman%20%20A.%20A.%20David"> Y. M. Suleiman A. A. David </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Poor air quality often considered one of the greatest environmental threats facing the world today is caused majorly by the emission of carbon monoxide into the atmosphere. The principal air pollutant is carbon monoxide. One prominent source of carbon monoxide emission is the transportation sector. Not much was known about the emission levels of carbon monoxide, the primary pollutant from the road transportation in the study area. Therefore, this study assessed the levels of carbon monoxide emission from road transportation in the Minna, Niger State. The database shows the carbon monoxide data collected. MSA Altair gas alert detector was used to take the carbon monoxide emission readings in Parts per Million for the peak and off-peak periods of vehicular movement at the road intersections. Their Global Positioning System (GPS) coordinates were recorded in the Universal Transverse Mercator (UTM). Bar chart graphs were plotted by using the emissions level of carbon dioxide as recorded on the field against the scientifically established internationally accepted safe limit of 8.7 Parts per Million of carbon monoxide in the atmosphere. Further statistical analysis was also carried out on the data recorded from the field using the Statistical Package for Social Sciences (SPSS) software and Microsoft excel to show the variance of the emission levels of each of the parameters in the study area. The results established that emissions’ level of atmospheric carbon monoxide from the road transportation in the study area exceeded the internationally accepted safe limits of 8.7 parts per million. In addition, the variations in the average emission levels of CO between the four parameters showed that morning peak is having the highest average emission level of 24.5PPM followed by evening peak with 22.84PPM while morning off peak is having 15.33 and the least is evening off peak 12.94PPM. Based on these results, recommendations made for poor air quality mitigation via carbon monoxide emissions reduction from transportation include Introduction of the urban mass transit would definitely reduce the number of traffic on the roads, hence the emissions from several vehicles that would have been on the road. This would also be a cheaper means of transportation for the masses and Encouraging the use of vehicles using alternative sources of energy like solar, electric and biofuel will also result in less emission levels as the these alternative energy sources other than fossil fuel originated diesel and petrol vehicles do not emit especially carbon monoxide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20monoxide" title="carbon monoxide">carbon monoxide</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change%20emissions" title=" climate change emissions"> climate change emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20transportation" title=" road transportation"> road transportation</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicular" title=" vehicular"> vehicular</a> </p> <a href="https://publications.waset.org/abstracts/38061/climate-change-effects-of-vehicular-carbon-monoxide-emission-from-road-transportation-in-part-of-minna-metropolis-niger-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38061.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9220</span> Vehicular Emission Estimation of Islamabad by Using Copert-5 Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Jahanzaib">Muhammad Jahanzaib</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Z.%20A.%20Khan"> Muhammad Z. A. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Junaid%20Khayyam"> Junaid Khayyam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Islamabad is the capital of Pakistan with the population of 1.365 million people and with a vehicular fleet size of 0.75 million. The vehicular fleet size is growing annually by the rate of 11%. Vehicular emissions are major source of Black carbon (BC). In developing countries like Pakistan, most of the vehicles consume conventional fuels like Petrol, Diesel, and CNG. These fuels are the major emitters of pollutants like CO, CO2, NOx, CH4, VOCs, and particulate matter (PM10). Carbon dioxide and methane are the leading contributor to the global warming with a global share of 9-26% and 4-9% respectively. NOx is the precursor of nitrates which ultimately form aerosols that are noxious to human health. In this study, COPERT (Computer program to Calculate Emissions from Road Transport) was used for vehicular emission estimation in Islamabad. COPERT is a windows based program which is developed for the calculation of emissions from the road transport sector. The emissions were calculated for the year of 2016 include pollutants like CO, NOx, VOC, and PM and energy consumption. The different variable was input to the model for emission estimation including meteorological parameters, average vehicular trip length and respective time duration, fleet configuration, activity data, degradation factor, and fuel effect. The estimated emissions for CO, CH4, CO2, NOx, and PM10 were found to be 9814.2, 44.9, 279196.7, 3744.2 and 304.5 tons respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=COPERT%20Model" title="COPERT Model">COPERT Model</a>, <a href="https://publications.waset.org/abstracts/search?q=emission%20estimation" title=" emission estimation"> emission estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=PM10" title=" PM10"> PM10</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicular%20emission" title=" vehicular emission"> vehicular emission</a> </p> <a href="https://publications.waset.org/abstracts/77778/vehicular-emission-estimation-of-islamabad-by-using-copert-5-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77778.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9219</span> Research on the Influencing Factors of Residents' Energy Consumption and Carbon Emission in Different Types of Communities - Taking Caijia New Town of Chongqing as an Example</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shuo%20Lei">Shuo Lei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to explore the influencing factors of residents' energy consumption and carbon emissions in different types of communities, this paper conducted research on residents' household energy consumption and carbon emissions in different types of communities in Caijia New Town, Chongqing. By calculating the carbon emissions of residents' household energy consumption, we analyze the structure and characteristics of the energy consumption of households in each type of community. At the same time, the key influencing factors affecting the carbon emissions of residents' energy consumption in Caijia New Town are analyzed from both social and spatial perspectives. The results of the study show that: (1) different types of neighborhoods have a clustering and locking effect on different types of resident groups, which makes the distribution of household energy consumption and carbon emissions closely related to the characteristics of the residents; (2) social and spatial factors have an impact on the residents' energy consumption and carbon emissions, and there is a significant difference in the carbon emission levels of different types of neighborhoods. Accordingly, an identification method is proposed to recognize the carbon emissions of Caijia New Town and even Chongqing City, which provides technical reference for the sustainable planning of low-carbon communities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=community%20type" title="community type">community type</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20energy%20consumption%20and%20carbon%20emissions" title=" residential energy consumption and carbon emissions"> residential energy consumption and carbon emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20differentiation" title=" residential differentiation"> residential differentiation</a>, <a href="https://publications.waset.org/abstracts/search?q=influencing%20factors" title=" influencing factors"> influencing factors</a>, <a href="https://publications.waset.org/abstracts/search?q=low-carbon%20community" title=" low-carbon community"> low-carbon community</a> </p> <a href="https://publications.waset.org/abstracts/192386/research-on-the-influencing-factors-of-residents-energy-consumption-and-carbon-emission-in-different-types-of-communities-taking-caijia-new-town-of-chongqing-as-an-example" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192386.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">20</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9218</span> CO2 Emissions Quantification of the Modular Bridge Superstructure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chanhyuck%20Jeon">Chanhyuck Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Jongho%20Park"> Jongho Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinwoong%20Choi"> Jinwoong Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sungnam%20Hong"> Sungnam Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Sun-Kyu%20Park"> Sun-Kyu Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many industries put emphasis on environmentally-friendliness as environmental problems are on the rise all over the world. Among themselves, the Modular Bridge research is going on. Also performing cross-section optimization and duration reducing, this research aims at developing the modular bridge with Environment-Friendliness and economic feasibility. However, the difficulty lies in verifying environmental effectiveness because there are no field applications of the modular bridge until now. Therefore, this thesis is categorized according to the form of the modular bridge superstructure and assessed CO₂ emission quantification per work types and materials according to each form to verify the environmental effectiveness of the modular bridge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modular%20bridge" title="modular bridge">modular bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2%20emission" title=" CO2 emission"> CO2 emission</a>, <a href="https://publications.waset.org/abstracts/search?q=environmentally%20friendly" title=" environmentally friendly"> environmentally friendly</a>, <a href="https://publications.waset.org/abstracts/search?q=quantification" title=" quantification"> quantification</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20emission%20factor" title=" carbon emission factor"> carbon emission factor</a>, <a href="https://publications.waset.org/abstracts/search?q=LCA%20%28Life%20Cycle%20Assessment%29" title=" LCA (Life Cycle Assessment)"> LCA (Life Cycle Assessment)</a> </p> <a href="https://publications.waset.org/abstracts/28224/co2-emissions-quantification-of-the-modular-bridge-superstructure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28224.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">555</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9217</span> Calculating the Carbon Footprint of Laser Cutting Machines from Cradle to Grave and Examination the Effect of the Use of the Machine on the Carbon Footprint</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Melike%20Yaylac%C4%B1">Melike Yaylacı</a>, <a href="https://publications.waset.org/abstracts/search?q=Tu%C4%9Fba%20Bilgin"> Tuğba Bilgin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Against the climate crisis, an increasing number of countries are working on green energy, carbon emission measurement, calculation and reduction. The work of industrial organizations with the highest carbon emissions on these issues is increasing. Aim of this paper is calculating carbon emissions of laser cutting machine with cradle-to-grave approach and discuss the potential affects of usage condisions, such as laser power, gas type, gas pressure, on carbon footprint. In particular, this study includes consumption of electricity used in production, laser cutting machine raw materials, and disposal of the machine. In the process of raw material supplying, machine procesing and shipping, all calculations were studied using the Tier1 approach. Laser cutting machines require a specified cutting parameter set for each different material in different thickneses, this parameters are a combination of laser power, gas type, cutting speed, gas pressure and focus point, The another purpose of this study is examine the potential affect of different cutting parameters for the same material in same thickness on carbon footprint. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title="life cycle assessment">life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20emission" title=" carbon emission"> carbon emission</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20cutting%20machine" title=" laser cutting machine"> laser cutting machine</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20parameters" title=" cutting parameters"> cutting parameters</a> </p> <a href="https://publications.waset.org/abstracts/165120/calculating-the-carbon-footprint-of-laser-cutting-machines-from-cradle-to-grave-and-examination-the-effect-of-the-use-of-the-machine-on-the-carbon-footprint" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165120.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9216</span> Highlighting of the Factors and Policies affecting CO2 Emissions level in Malaysian Transportation Sector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siti%20Indati%20Mustapa">Siti Indati Mustapa</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussain%20Ali%20Bekhet"> Hussain Ali Bekhet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Global CO2 emission and increasing fuel consumption to meet energy demand requirement has become a threat in recent decades. Effort to reduce the CO2 emission is now a matter of priority in most countries of the world including Malaysia. Transportation has been identified as the most intensive sector of carbon-based fuels and achievement of the voluntary target to meet 40% carbon intensity reduction set at the 15th Conference of the Parties (COP15) means that the emission from the transport sector must be reduced accordingly. This posed a great challenge to Malaysia and effort has to be made to embrace suitable and appropriate energy policy for sustainable energy and emission reduction of this sector. The focus of this paper is to analyse the trends of Malaysia’s energy consumption and emission of four different transport sub-sectors (road, rail, aviation and maritime). Underlying factors influencing the growth of energy consumption and emission trends are discussed. Besides, technology status towards energy efficiency in transportation sub-sectors is presented. By reviewing the existing policies and trends of energy used, the paper highlights prospective policy options towards achieving emission reduction in the transportation sector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO2%20emissions" title="CO2 emissions">CO2 emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=transportation%20sector" title=" transportation sector"> transportation sector</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20consumption" title=" fuel consumption"> fuel consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20policy" title=" energy policy"> energy policy</a>, <a href="https://publications.waset.org/abstracts/search?q=Malaysia" title=" Malaysia"> Malaysia</a> </p> <a href="https://publications.waset.org/abstracts/3404/highlighting-of-the-factors-and-policies-affecting-co2-emissions-level-in-malaysian-transportation-sector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9215</span> Ramp Rate and Constriction Factor Based Dual Objective Economic Load Dispatch Using Particle Swarm Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Himanshu%20Shekhar%20Maharana">Himanshu Shekhar Maharana</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K%20.Dash"> S. K .Dash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Economic Load Dispatch (ELD) proves to be a vital optimization process in electric power system for allocating generation amongst various units to compute the cost of generation, the cost of emission involving global warming gases like sulphur dioxide, nitrous oxide and carbon monoxide etc. In this dissertation, we emphasize ramp rate constriction factor based particle swarm optimization (RRCPSO) for analyzing various performance objectives, namely cost of generation, cost of emission, and a dual objective function involving both these objectives through the experimental simulated results. A 6-unit 30 bus IEEE test case system has been utilized for simulating the results involving improved weight factor advanced ramp rate limit constraints for optimizing total cost of generation and emission. This method increases the tendency of particles to venture into the solution space to ameliorate their convergence rates. Earlier works through dispersed PSO (DPSO) and constriction factor based PSO (CPSO) give rise to comparatively higher computational time and less good optimal solution at par with current dissertation. This paper deals with ramp rate and constriction factor based well defined ramp rate PSO to compute various objectives namely cost, emission and total objective etc. and compares the result with DPSO and weight improved PSO (WIPSO) techniques illustrating lesser computational time and better optimal solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=economic%20load%20dispatch%20%28ELD%29" title="economic load dispatch (ELD)">economic load dispatch (ELD)</a>, <a href="https://publications.waset.org/abstracts/search?q=constriction%20factor%20based%20particle%20swarm%20optimization%20%28CPSO%29" title=" constriction factor based particle swarm optimization (CPSO)"> constriction factor based particle swarm optimization (CPSO)</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersed%20particle%20swarm%20optimization%20%28DPSO%29" title=" dispersed particle swarm optimization (DPSO)"> dispersed particle swarm optimization (DPSO)</a>, <a href="https://publications.waset.org/abstracts/search?q=weight%20improved%20particle%20swarm%20optimization%20%28WIPSO%29" title=" weight improved particle swarm optimization (WIPSO)"> weight improved particle swarm optimization (WIPSO)</a>, <a href="https://publications.waset.org/abstracts/search?q=ramp%20rate%20and%20constriction%20factor%20based%20particle%20swarm%20optimization%20%28RRCPSO%29" title=" ramp rate and constriction factor based particle swarm optimization (RRCPSO)"> ramp rate and constriction factor based particle swarm optimization (RRCPSO)</a> </p> <a href="https://publications.waset.org/abstracts/67047/ramp-rate-and-constriction-factor-based-dual-objective-economic-load-dispatch-using-particle-swarm-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67047.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9214</span> Photo-Enhanced Catalytic Dry Reforming of Methane on Ni@SiO2 with High Resistance to Carbon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinrui%20Zhang">Jinrui Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Tianlong%20Yang"> Tianlong Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ying%20Pan"> Ying Pan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Methane and carbon dioxide are major greenhouse gases contributor. CO₂ dry reforming of methane (DRM) for syngas production is a promising approach to reducing global CO₂ emission and extensive utilization of natural gas. However, the reported catalysts endured rapid deactivation due to severe carbon deposition at high temperature. Here, CO₂ reduction by CH4 on hexagonal nano-nickel flakes packed by porous SiO₂ (Ni@SiO₂) catalysts driven by thermal and solar light are tested. High resistance to carbon deposition and higher reactive activity are demonstrated under focused solar light at moderate temperature (400-500 ℃). Furthermore, the photocatalytic DRM under different wavelength is investigated, and even IR irradiation can enhance the catalytic activity. The mechanism of light-enhanced reaction reactivity and equilibrium is investigated by Infrared and Raman spectroscopy, and the unique reaction pathway with light is depicted. The photo-enhanced DRM provides a promising method of renewable solar energy conversion and CO₂ emission reduction due to the excellent activity and durability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20emission%20reduction" title="CO₂ emission reduction">CO₂ emission reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=methane" title=" methane"> methane</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalytic%20DRM" title=" photocatalytic DRM"> photocatalytic DRM</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance%20to%20carbon%20deposition" title=" resistance to carbon deposition"> resistance to carbon deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=syngas" title=" syngas"> syngas</a> </p> <a href="https://publications.waset.org/abstracts/162389/photo-enhanced-catalytic-dry-reforming-of-methane-on-ni-at-sio2-with-high-resistance-to-carbon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9213</span> A Comparative Study on the Impact of Global Warming of Applying Low Carbon Factor Concrete Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Su-Hyun%20Cho">Su-Hyun Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang-U%20Chae"> Chang-U Chae</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environmental impact assessment techniques have been developed as a result of the worldwide efforts to reduce the environmental impact of global warming. By using the quantification method in the construction industry, it is now possible to manage the greenhouse gas is to systematically evaluate the impact on the environment over the entire construction process. In particular, the proportion of greenhouse gas emissions at the production stage of construction material occupied is high, and efforts are needed in particular in the construction field. In this study, intended for concrete products for the construction materials, by using the LCA evaluation method, we compared the results of environmental impact assessment and carbon emissions of developing products that have been applied low-carbon technologies compared to existing products. As a results, by introducing a raw material of industrial waste, showed carbon reduction. Through a comparison of the carbon emission reduction effect of low-carbon technologies, it is intended to provide academic data for the evaluation of greenhouse gases in the construction sector and the development of low-carbon technologies of the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20emissions" title="CO₂ emissions">CO₂ emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20reduction" title=" CO₂ reduction"> CO₂ reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=ready-mixed%20concrete" title=" ready-mixed concrete"> ready-mixed concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impact%20assessment" title=" environmental impact assessment"> environmental impact assessment</a> </p> <a href="https://publications.waset.org/abstracts/16912/a-comparative-study-on-the-impact-of-global-warming-of-applying-low-carbon-factor-concrete-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16912.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">479</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9212</span> Green Supply Chain Design: A Mathematical Modeling Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nusrat%20T.%20Chowdhury">Nusrat T. Chowdhury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Green Supply Chain Management (GSCM) is becoming a key to success for profitable businesses. The various activities contributing to carbon emissions in a supply chain are transportation, ordering and holding of inventory. This research work develops a mixed-integer nonlinear programming (MINLP) model that considers the scenario of a supply chain with multiple periods, multiple products and multiple suppliers. The model assumes that the demand is deterministic, the buyer has a limited storage space in each period, the buyer is responsible for the transportation cost, a supplier-dependent ordering cost applies for each period in which an order is placed on a supplier and inventory shortage is permissible. The model provides an optimal decision regarding what products to order, in what quantities, with which suppliers, and in which periods in order to maximize the profit. For the purpose of evaluating the carbon emissions, three different carbon regulating policies i.e., carbon cap-and-trade, the strict cap on carbon emission and carbon tax on emissions, have been considered. The proposed MINLP has been validated using a randomly generated data set. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20supply%20chain" title="green supply chain">green supply chain</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20emission" title=" carbon emission"> carbon emission</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20integer%20non-linear%20program" title=" mixed integer non-linear program"> mixed integer non-linear program</a>, <a href="https://publications.waset.org/abstracts/search?q=inventory%20shortage" title=" inventory shortage"> inventory shortage</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20cap-and-trade" title=" carbon cap-and-trade"> carbon cap-and-trade</a> </p> <a href="https://publications.waset.org/abstracts/141434/green-supply-chain-design-a-mathematical-modeling-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141434.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9211</span> Load Balancing Technique for Energy - Efficiency in Cloud Computing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rani%20Danavath">Rani Danavath</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20B.%20Narsimha"> V. B. Narsimha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cloud computing is emerging as a new paradigm of large scale distributed computing. Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., three service models, and four deployment networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction. This cloud model is composed of five essential characteristics models. Load balancing is one of the main challenges in cloud computing, which is required to distribute the dynamic workload across multiple nodes, to ensure that no single node is overloaded. It helps in optimal utilization of resources, enhancing the performance of the system. The goal of the load balancing is to minimize the resource consumption and carbon emission rate, that is the direct need of cloud computing. This determined the need of new metrics energy consumption and carbon emission for energy-efficiency load balancing techniques in cloud computing. Existing load balancing techniques mainly focuses on reducing overhead, services, response time and improving performance etc. In this paper we introduced a Technique for energy-efficiency, but none of the techniques have considered the energy consumption and carbon emission. Therefore, our proposed work will go towards energy – efficiency. So this energy-efficiency load balancing technique can be used to improve the performance of cloud computing by balancing the workload across all the nodes in the cloud with the minimum resource utilization, in turn, reducing energy consumption, and carbon emission to an extent, which will help to achieve green computing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title="cloud computing">cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20computing" title=" distributed computing"> distributed computing</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20computing" title=" green computing"> green computing</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20balancing" title=" load balancing"> load balancing</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20emission" title=" carbon emission"> carbon emission</a> </p> <a href="https://publications.waset.org/abstracts/36652/load-balancing-technique-for-energy-efficiency-in-cloud-computing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36652.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9210</span> Research on the Public Policy of Vehicle Restriction under Traffic Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wang%20Qian">Wang Qian</a>, <a href="https://publications.waset.org/abstracts/search?q=Bian%20Cheng%20Xiang"> Bian Cheng Xiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, with the improvement of China's urbanization level, the number of urban motor vehicles has grown rapidly. As residents' daily commuting necessities, cars cause a lot of exhaust emissions and urban traffic congestion. In the "Fourteenth Five Year Plan" of China, it is proposed to strive to reach the peak of carbon dioxide emissions by 2030 and achieve carbon neutrality by 2060. Urban transport accounts for a high proportion of carbon emission sources. It is an important driving force for the realization of China's carbon peak strategy. Some cities have introduced and implemented the policy of "car restriction" to solve related urban problems by reducing the use of cars. This paper analyzes the implementation of the "automobile restriction" policy, evaluates the relevant effects of the automobile restriction policy, and discusses how to better optimize the "automobile restriction" policy in the process of urban governance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20emission" title="carbon emission">carbon emission</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20jams" title=" traffic jams"> traffic jams</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20restrictions" title=" vehicle restrictions"> vehicle restrictions</a>, <a href="https://publications.waset.org/abstracts/search?q=evaluate" title=" evaluate"> evaluate</a> </p> <a href="https://publications.waset.org/abstracts/159386/research-on-the-public-policy-of-vehicle-restriction-under-traffic-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159386.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9209</span> Determinants of Intensity of Greenhouse Gas Emission in Lithuanian Agriculture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Makuteniene">D. Makuteniene</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agriculture, as one of the human activities, emits a significant amount of greenhouse gas emission and undoubtedly has an impact on climate change. The main gaseous products of agricultural greenhouse gases are carbon dioxide, methane, and nitroxadoxide. The sources and emission of these gases depend on land use, soil, crops, manure, livestock, and energy consumption. One of the indicators showing the agricultural impact on climate change is an intensity of GHG emission and its dynamics. This study analyzed the determinants of an intensity of greenhouse gas emission in Lithuanian agriculture using data decomposition. The research revealed that, although greenhouse gas emission increased during the research period, however, agricultural net value added grew more rapidly, which contributed to a reduction of intensity of greenhouse gas emission in Lithuania between 2000 and 2015. It was identified that during the research period intensity of greenhouse gas emission was mostly increased by the change of the use of nitrogen in agriculture, as compared to the change of the area of agricultural land, and by the change of the number of full-time employees, as compared to the change of net value added. Conversely, the change of energy consumption in agriculture, as compared to the change of the use of nitrogen in agriculture, had a bigger impact in decreasing intensity of greenhouse gas emission. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture" title="agriculture">agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=determinants%20of%20intensity" title=" determinants of intensity"> determinants of intensity</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20gas%20emission" title=" greenhouse gas emission"> greenhouse gas emission</a>, <a href="https://publications.waset.org/abstracts/search?q=intensity" title=" intensity"> intensity</a> </p> <a href="https://publications.waset.org/abstracts/97199/determinants-of-intensity-of-greenhouse-gas-emission-in-lithuanian-agriculture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97199.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9208</span> Impact of Nitrogen Fertilization on Soil Respiration and Net Ecosystem Production in Maize</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shirley%20Lamptey">Shirley Lamptey</a>, <a href="https://publications.waset.org/abstracts/search?q=Lingling%20Li"> Lingling Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Junhong%20Xie"> Junhong Xie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agriculture in the semi-arid is often challenged by overuse of N, inadequate soil water, and heavy carbon emissions thereby threatening sustainability. Field experiments were conducted to investigate the effect of nitrogen fertilization levels (0-N₀, 100-N₁₀₀, 200-N₂₀₀, and 300 kg ha⁻¹-N₃₀₀) on soil water dynamics, soil respiration (Rs), net ecosystem production (NEP), and biomass yield. Zero nitrogen soils decreased Rs by 23% and 16% compared to N₃₀₀ and N₂₀₀ soils, respectively. However, biomass yield was greatest under N₃₀₀ compared with N₀, which therefore translated into increased net primary production (NPP) by 89% and NEP by 101% compared to N₀. To a lesser extent, N₂₀₀ increased net primary production by 69% and net ecosystem production by 79% compared to N₀. Grain yields were greatest under N₃₀₀ compared with N₁₀₀ and N₀, which therefore translated into increased carbon emission efficiency (CEE) by 53%, 39% and 3% under N₃₀₀ compared to N₀, N₁₀₀, and N₂₀₀ treatments respectively. Under the conditions of this study, crop yield and CEE may be optimized at nitrogen application rates in the range of 200-300 kg ha⁻¹. Based on these results, there appears potential for 200 kg N ha⁻¹ to be used to improve yield and increase CEE in the context of the rainfall-limiting environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20emission" title="carbon emission">carbon emission</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20emission%20efficiency" title=" carbon emission efficiency"> carbon emission efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=C%20sequestration" title=" C sequestration"> C sequestration</a>, <a href="https://publications.waset.org/abstracts/search?q=N%20rates" title=" N rates"> N rates</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-arid" title=" semi-arid "> semi-arid </a> </p> <a href="https://publications.waset.org/abstracts/93600/impact-of-nitrogen-fertilization-on-soil-respiration-and-net-ecosystem-production-in-maize" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93600.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9207</span> Analysis of Co2 Emission from Thailand's Thermal Power Sector by Divisia Decomposition Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isara%20Muangthai">Isara Muangthai</a>, <a href="https://publications.waset.org/abstracts/search?q=Lin%20Sue%20Jane"> Lin Sue Jane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electricity is vital to every country’s economy in the world. For Thailand, the electricity generation sector plays an important role in the economic system, and it is the largest source of CO2 emissions. The aim of this paper is to use the decomposition analysis to investigate the key factors contributing to the changes of CO2 emissions from the electricity sector. The decomposition analysis has been widely used to identify and assess the contributors to the changes in emission trends. Our study adopted the Divisia index decomposition to identify the key factors affecting the evolution of CO2 emissions from Thailand’s thermal power sector during 2000-2011. The change of CO2 emissions were decomposed into five factors, including: Emission coefficient, heat rate, fuel intensity, electricity intensity, and economic growth. Results have shown that CO2 emission in Thailand’s thermal power sector increased 29,173 thousand tons during 2000-2011. Economic growth was found to be the primary factor for increasing CO2 emissions, while the electricity intensity played a dominant role in decreasing CO2 emissions. The increasing effect of economic growth was up to 55,924 million tons of CO2 emissions because the growth and development of the economy relied on a large electricity supply. On the other hand, the shifting of fuel structure towards a lower-carbon content resulted in CO2 emission decline. Since the CO2 emissions released from Thailand’s electricity generation are rapidly increasing, the Thailand government will be required to implement a CO2 reduction plan in the future. In order to cope with the impact of CO2 emissions related to the power sector and to achieve sustainable development, this study suggests that Thailand’s government should focus on restructuring the fuel supply in power generation towards low carbon fuels by promoting the use of renewable energy for electricity, improving the efficiency of electricity use by reducing electricity transmission and the distribution of line losses, implementing energy conservation strategies by enhancing the purchase of energy-saving products, substituting the new power plant technology in the old power plants, promoting a shift of economic structure towards less energy-intensive services and orienting Thailand’s power industry towards low carbon electricity generation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=co2%20emission" title="co2 emission">co2 emission</a>, <a href="https://publications.waset.org/abstracts/search?q=decomposition%20analysis" title=" decomposition analysis"> decomposition analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=electricity%20generation" title=" electricity generation"> electricity generation</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a> </p> <a href="https://publications.waset.org/abstracts/30469/analysis-of-co2-emission-from-thailands-thermal-power-sector-by-divisia-decomposition-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20emission%20factor&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20emission%20factor&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20emission%20factor&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20emission%20factor&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20emission%20factor&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20emission%20factor&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20emission%20factor&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20emission%20factor&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20emission%20factor&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20emission%20factor&page=307">307</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20emission%20factor&page=308">308</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20emission%20factor&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>