CINXE.COM

Електродинамика – Уикипедия

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available" lang="bg" dir="ltr"> <head> <meta charset="UTF-8"> <title>Електродинамика – Уикипедия</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )bgwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t."," \t,"],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"dmy","wgMonthNames":["","януари","февруари","март","април","май","юни","юли","август","септември","октомври","ноември","декември"],"wgRequestId":"bfa5bb40-751d-457b-9c73-5be424936eb1","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Електродинамика","wgTitle":"Електродинамика","wgCurRevisionId":11670474,"wgRevisionId":11670474,"wgArticleId":105323,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Избрани статии на кантонски","Портал:Физика/Тематични статии","Препратки с меташаблони","Портал:Наука/Тематични статии","Електродинамика"],"wgPageViewLanguage":"bg","wgPageContentLanguage":"bg","wgPageContentModel":"wikitext","wgRelevantPageName": "Електродинамика","wgRelevantArticleId":105323,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":true,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"bg","pageLanguageDir":"ltr","pageVariantFallbacks":"bg"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":10000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q377930","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"], "GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.gadget.WatchlistTopSectionWidgetFix":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.QRpediaFix","ext.gadget.EditToolbar","ext.gadget.EditToolbar-menu-page_elements", "ext.gadget.EditToolbar-menu-thematic_templates","ext.gadget.EditToolbar-menu-article_templates","ext.gadget.EditToolbar-menu-talk_templates","ext.gadget.EditToolbar-menu-other_templates","ext.gadget.OpenStreetMap","ext.gadget.Switcher","ext.gadget.ParsePhabLinks","ext.gadget.Mwbot","ext.gadget.UploadRedirectToCommons","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=bg&amp;modules=ext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=bg&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=bg&amp;modules=ext.gadget.WatchlistTopSectionWidgetFix&amp;only=styles&amp;skin=vector-2022"> <link rel="stylesheet" href="/w/load.php?lang=bg&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/0/07/CoulombsLaw.svg/1200px-CoulombsLaw.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="961"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/0/07/CoulombsLaw.svg/800px-CoulombsLaw.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="641"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/0/07/CoulombsLaw.svg/640px-CoulombsLaw.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="513"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Електродинамика – Уикипедия"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//bg.m.wikipedia.org/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0"> <link rel="alternate" type="application/x-wiki" title="Редактиране" href="/w/index.php?title=%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Уикипедия (bg)"> <link rel="EditURI" type="application/rsd+xml" href="//bg.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://bg.wikipedia.org/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.bg"> <link rel="alternate" type="application/atom+xml" title="Емисия на Atom за Уикипедия" href="/w/index.php?title=%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D0%B0%D0%BB%D0%BD%D0%B8:%D0%9F%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BD%D0%B8_%D0%BF%D1%80%D0%BE%D0%BC%D0%B5%D0%BD%D0%B8&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Електродинамика rootpage-Електродинамика skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Направо към съдържанието</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Сайт"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Главно меню" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Главно меню</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Главно меню</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">преместване към страничната лента</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">скриване</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Навигация </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage" class="mw-list-item"><a href="/wiki/%D0%9D%D0%B0%D1%87%D0%B0%D0%BB%D0%BD%D0%B0_%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D0%B0" title="Началната страница [z]" accesskey="z"><span>Начална страница</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D0%B0%D0%BB%D0%BD%D0%B8:%D0%A1%D0%BB%D1%83%D1%87%D0%B0%D0%B9%D0%BD%D0%B0_%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D0%B0" title="Зареждане на случайна страница [x]" accesskey="x"><span>Случайна статия</span></a></li> </ul> </div> </div> <div id="p-Полезно" class="vector-menu mw-portlet mw-portlet-Полезно" > <div class="vector-menu-heading"> Полезно </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-recentchanges" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D0%B0%D0%BB%D0%BD%D0%B8:%D0%9F%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BD%D0%B8_%D0%BF%D1%80%D0%BE%D0%BC%D0%B5%D0%BD%D0%B8" title="Списък на последните промени в уикито [r]" accesskey="r"><span>Последни промени</span></a></li><li id="n-Общи-разговори" class="mw-list-item"><a href="/wiki/%D0%A3%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%A0%D0%B0%D0%B7%D0%B3%D0%BE%D0%B2%D0%BE%D1%80%D0%B8"><span>Общи разговори</span></a></li><li id="n-Обсъждани-статии" class="mw-list-item"><a href="/wiki/%D0%A3%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%90%D0%BA%D1%82%D0%B8%D0%B2%D0%BD%D0%B8_%D0%B1%D0%B5%D1%81%D0%B5%D0%B4%D0%B8"><span>Обсъждани статии</span></a></li><li id="n-Администратори" class="mw-list-item"><a href="/wiki/%D0%A3%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%97%D0%B0%D1%8F%D0%B2%D0%BA%D0%B8_%D0%BA%D1%8A%D0%BC_%D0%B0%D0%B4%D0%BC%D0%B8%D0%BD%D0%B8%D1%81%D1%82%D1%80%D0%B0%D1%82%D0%BE%D1%80%D0%B8%D1%82%D0%B5"><span>Администратори</span></a></li><li id="n-Изтривания" class="mw-list-item"><a href="/wiki/%D0%A3%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%A1%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D0%B8_%D0%B7%D0%B0_%D0%B8%D0%B7%D1%82%D1%80%D0%B8%D0%B2%D0%B0%D0%BD%D0%B5"><span>Изтривания</span></a></li><li id="n-За-контакти" class="mw-list-item"><a href="/wiki/%D0%A3%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%97%D0%B0_%D0%BA%D0%BE%D0%BD%D1%82%D0%B0%D0%BA%D1%82%D0%B8"><span>За контакти</span></a></li> </ul> </div> </div> <div id="p-Включете_се!" class="vector-menu mw-portlet mw-portlet-Включете_се" > <div class="vector-menu-heading"> Включете се! </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-Защо?" class="mw-list-item"><a href="/wiki/%D0%A3%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%9A%D0%BE%D0%B9_%D1%81%D1%8A%D0%B7%D0%B4%D0%B0%D0%B2%D0%B0_%D0%A3%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F"><span>Защо?</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/%D0%A3%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%9F%D1%8A%D1%80%D0%B2%D0%B8_%D1%81%D1%82%D1%8A%D0%BF%D0%BA%D0%B8" title="Място, където може да се информирате"><span>Помощ</span></a></li><li id="n-Картинки" class="mw-list-item"><a href="/wiki/%D0%A3%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:10_%D0%BD%D0%B5%D1%89%D0%B0,_%D0%BA%D0%BE%D0%B8%D1%82%D0%BE_%D1%82%D1%80%D1%8F%D0%B1%D0%B2%D0%B0_%D0%B4%D0%B0_%D1%81%D0%B5_%D0%B7%D0%BD%D0%B0%D1%8F%D1%82_%D0%B7%D0%B0_%D0%BA%D0%B0%D1%80%D1%82%D0%B8%D0%BD%D0%BA%D0%B8%D1%82%D0%B5_%D0%B2_%D0%A3%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F"><span>Картинки</span></a></li><li id="n-Поведение" class="mw-list-item"><a href="/wiki/%D0%A3%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%9F%D0%BE%D0%B2%D0%B5%D0%B4%D0%B5%D0%BD%D0%B8%D0%B5"><span>Поведение</span></a></li><li id="n-Изпробване" class="mw-list-item"><a href="/wiki/%D0%A3%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%9F%D1%8F%D1%81%D1%8A%D1%87%D0%BD%D0%B8%D0%BA"><span>Изпробване</span></a></li><li id="n-Нова-статия" class="mw-list-item"><a href="/wiki/%D0%A3%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%92%D1%8A%D0%BB%D1%88%D0%B5%D0%B1%D0%BD%D0%B8%D0%BA"><span>Нова статия</span></a></li> </ul> </div> </div> <div id="p-Общувайте" class="vector-menu mw-portlet mw-portlet-Общувайте" > <div class="vector-menu-heading"> Общувайте </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-Блог-на-общността" class="mw-list-item"><a href="https://blog.wikimedia.bg/" rel="nofollow"><span>Блог на общността</span></a></li><li id="n-Фейсбук-страница" class="mw-list-item"><a href="https://www.facebook.com/WikipediaBG" rel="nofollow"><span>Фейсбук страница</span></a></li><li id="n-Фейсбук-група" class="mw-list-item"><a href="https://www.facebook.com/groups/WikipediaBG" rel="nofollow"><span>Фейсбук група</span></a></li><li id="n-🎮-Дискорд" class="mw-list-item"><a href="/wiki/%D0%A3%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%94%D0%B8%D1%81%D0%BA%D0%BE%D1%80%D0%B4"><span>🎮 Дискорд</span></a></li><li id="n-Телеграм" class="mw-list-item"><a href="/wiki/%D0%A3%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%A2%D0%B5%D0%BB%D0%B5%D0%B3%D1%80%D0%B0%D0%BC"><span>Телеграм</span></a></li><li id="n-IRC" class="mw-list-item"><a href="/wiki/%D0%A3%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:IRC"><span>IRC</span></a></li><li id="n-GitHub" class="mw-list-item"><a href="https://github.com/wikimedia-bg" rel="nofollow"><span>GitHub</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/%D0%9D%D0%B0%D1%87%D0%B0%D0%BB%D0%BD%D0%B0_%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D0%B0" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Уикипедия" src="/static/images/mobile/copyright/wikipedia-wordmark-bg.svg" style="width: 7.5em; height: 1.3125em;"> <img class="mw-logo-tagline" alt="Свободната енциклопедия" src="/static/images/mobile/copyright/wikipedia-tagline-bg.svg" width="120" height="12" style="width: 7.5em; height: 0.75em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D0%B0%D0%BB%D0%BD%D0%B8:%D0%A2%D1%8A%D1%80%D1%81%D0%B5%D0%BD%D0%B5" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Претърсване на Уикипедия [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Търсене</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Търсене в Уикипедия" aria-label="Търсене в Уикипедия" autocapitalize="sentences" title="Претърсване на Уикипедия [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Специални:Търсене"> </div> <button class="cdx-button cdx-search-input__end-button">Търсене</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Лични инструменти"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Облик"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Облик" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Облик</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_bg.wikipedia.org&amp;uselang=bg" class=""><span>Направете дарение</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D0%B0%D0%BB%D0%BD%D0%B8:%D0%A1%D1%8A%D0%B7%D0%B4%D0%B0%D0%B2%D0%B0%D0%BD%D0%B5_%D0%BD%D0%B0_%D1%81%D0%BC%D0%B5%D1%82%D0%BA%D0%B0&amp;returnto=%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0" title="Насърчаваме Ви да си създадете сметка и да влезете, въпреки че не е задължително." class=""><span>Създаване на сметка</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D0%B0%D0%BB%D0%BD%D0%B8:%D0%A0%D0%B5%D0%B3%D0%B8%D1%81%D1%82%D1%80%D0%B8%D1%80%D0%B0%D0%BD%D0%B5_%D0%B8%D0%BB%D0%B8_%D0%B2%D0%BB%D0%B8%D0%B7%D0%B0%D0%BD%D0%B5&amp;returnto=%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0" title="Препоръчваме Ви да влезете, въпреки, че не е задължително. [o]" accesskey="o" class=""><span>Влизане</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Допълнителни опции" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Лични инструменти" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Лични инструменти</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Потребителско меню" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_bg.wikipedia.org&amp;uselang=bg"><span>Направете дарение</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D0%B0%D0%BB%D0%BD%D0%B8:%D0%A1%D1%8A%D0%B7%D0%B4%D0%B0%D0%B2%D0%B0%D0%BD%D0%B5_%D0%BD%D0%B0_%D1%81%D0%BC%D0%B5%D1%82%D0%BA%D0%B0&amp;returnto=%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0" title="Насърчаваме Ви да си създадете сметка и да влезете, въпреки че не е задължително."><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Създаване на сметка</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D0%B0%D0%BB%D0%BD%D0%B8:%D0%A0%D0%B5%D0%B3%D0%B8%D1%81%D1%82%D1%80%D0%B8%D1%80%D0%B0%D0%BD%D0%B5_%D0%B8%D0%BB%D0%B8_%D0%B2%D0%BB%D0%B8%D0%B7%D0%B0%D0%BD%D0%B5&amp;returnto=%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0" title="Препоръчваме Ви да влезете, въпреки, че не е задължително. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Влизане</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Страници за излезли от системата редактори <a href="/wiki/%D0%9F%D0%BE%D0%BC%D0%BE%D1%89:%D0%92%D1%8A%D0%B2%D0%B5%D0%B4%D0%B5%D0%BD%D0%B8%D0%B5" aria-label="Научете повече за редактирането"><span>научете повече</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D0%B0%D0%BB%D0%BD%D0%B8:%D0%9C%D0%BE%D0%B8%D1%82%D0%B5_%D0%BF%D1%80%D0%B8%D0%BD%D0%BE%D1%81%D0%B8" title="Списък на промените, направени от този IP адрес [y]" accesskey="y"><span>Приноси</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D0%B0%D0%BB%D0%BD%D0%B8:%D0%9C%D0%BE%D1%8F%D1%82%D0%B0_%D0%B1%D0%B5%D1%81%D0%B5%D0%B4%D0%B0" title="Дискусия относно редакциите от този адрес [n]" accesskey="n"><span>Беседа</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Сайт"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Съдържание" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Съдържание</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">преместване към страничната лента</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">скриване</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Начало</div> </a> </li> <li id="toc-Основни_величини" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Основни_величини"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Основни величини</span> </div> </a> <button aria-controls="toc-Основни_величини-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Превключване на подраздел Основни величини</span> </button> <ul id="toc-Основни_величини-sublist" class="vector-toc-list"> <li id="toc-Формулировка" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Формулировка"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Формулировка</span> </div> </a> <ul id="toc-Формулировка-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Означения_и_измерителни_единици" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Означения_и_измерителни_единици"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Означения и измерителни единици</span> </div> </a> <ul id="toc-Означения_и_измерителни_единици-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Основни_зависимости" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Основни_зависимости"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Основни зависимости</span> </div> </a> <ul id="toc-Основни_зависимости-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Съдържание" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Скриване/показване на съдържанието" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Скриване/показване на съдържанието</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Електродинамика</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Към статията на друг език. Налична на 60 езика" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-60" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">60 езика</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-als mw-list-item"><a href="https://als.wikipedia.org/wiki/Elektrodynamik" title="Elektrodynamik – швейцарски немски" lang="gsw" hreflang="gsw" data-title="Elektrodynamik" data-language-autonym="Alemannisch" data-language-local-name="швейцарски немски" class="interlanguage-link-target"><span>Alemannisch</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%83%D9%87%D8%B1%D8%B7%D9%8A%D8%B3%D9%8A%D8%A9_%D8%AA%D9%82%D9%84%D9%8A%D8%AF%D9%8A%D8%A9" title="كهرطيسية تقليدية – арабски" lang="ar" hreflang="ar" data-title="كهرطيسية تقليدية" data-language-autonym="العربية" data-language-local-name="арабски" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Elektrodinamika" title="Elektrodinamika – азербайджански" lang="az" hreflang="az" data-title="Elektrodinamika" data-language-autonym="Azərbaycanca" data-language-local-name="азербайджански" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%AD%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B0%D0%B4%D1%8B%D0%BD%D0%B0%D0%BC%D1%96%D0%BA%D0%B0" title="Электрадынаміка – беларуски" lang="be" hreflang="be" data-title="Электрадынаміка" data-language-autonym="Беларуская" data-language-local-name="беларуски" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%9A%D0%BB%D1%8F%D1%81%D1%8B%D1%87%D0%BD%D0%B0%D1%8F_%D1%8D%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B0%D0%B4%D1%8B%D0%BD%D0%B0%D0%BC%D1%96%D0%BA%D0%B0" title="Клясычная электрадынаміка – Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Клясычная электрадынаміка" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%9A%E0%A6%BF%E0%A6%B0%E0%A6%BE%E0%A6%AF%E0%A6%BC%E0%A6%A4_%E0%A6%A4%E0%A6%A1%E0%A6%BC%E0%A6%BF%E0%A7%8E%E0%A6%9A%E0%A7%81%E0%A6%AE%E0%A7%8D%E0%A6%AC%E0%A6%95%E0%A6%A4%E0%A7%8D%E0%A6%AC" title="চিরায়ত তড়িৎচুম্বকত্ব – бенгалски" lang="bn" hreflang="bn" data-title="চিরায়ত তড়িৎচুম্বকত্ব" data-language-autonym="বাংলা" data-language-local-name="бенгалски" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Elektrodinamika" title="Elektrodinamika – босненски" lang="bs" hreflang="bs" data-title="Elektrodinamika" data-language-autonym="Bosanski" data-language-local-name="босненски" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Electrodin%C3%A0mica_cl%C3%A0ssica" title="Electrodinàmica clàssica – каталонски" lang="ca" hreflang="ca" data-title="Electrodinàmica clàssica" data-language-autonym="Català" data-language-local-name="каталонски" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Elektrodynamika" title="Elektrodynamika – чешки" lang="cs" hreflang="cs" data-title="Elektrodynamika" data-language-autonym="Čeština" data-language-local-name="чешки" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%AD%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0" title="Электродинамика – чувашки" lang="cv" hreflang="cv" data-title="Электродинамика" data-language-autonym="Чӑвашла" data-language-local-name="чувашки" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Klassisk_elektrodynamik" title="Klassisk elektrodynamik – датски" lang="da" hreflang="da" data-title="Klassisk elektrodynamik" data-language-autonym="Dansk" data-language-local-name="датски" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Elektrodynamik" title="Elektrodynamik – немски" lang="de" hreflang="de" data-title="Elektrodynamik" data-language-autonym="Deutsch" data-language-local-name="немски" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%97%CE%BB%CE%B5%CE%BA%CF%84%CF%81%CE%BF%CE%B4%CF%85%CE%BD%CE%B1%CE%BC%CE%B9%CE%BA%CE%AE" title="Ηλεκτροδυναμική – гръцки" lang="el" hreflang="el" data-title="Ηλεκτροδυναμική" data-language-autonym="Ελληνικά" data-language-local-name="гръцки" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Classical_electromagnetism" title="Classical electromagnetism – английски" lang="en" hreflang="en" data-title="Classical electromagnetism" data-language-autonym="English" data-language-local-name="английски" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Klasika_elektromagnetismo" title="Klasika elektromagnetismo – есперанто" lang="eo" hreflang="eo" data-title="Klasika elektromagnetismo" data-language-autonym="Esperanto" data-language-local-name="есперанто" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Electrodin%C3%A1mica" title="Electrodinámica – испански" lang="es" hreflang="es" data-title="Electrodinámica" data-language-autonym="Español" data-language-local-name="испански" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Elektrod%C3%BCnaamika" title="Elektrodünaamika – естонски" lang="et" hreflang="et" data-title="Elektrodünaamika" data-language-autonym="Eesti" data-language-local-name="естонски" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%A7%D9%84%DA%A9%D8%AA%D8%B1%D9%88%D9%85%D8%BA%D9%86%D8%A7%D8%B7%DB%8C%D8%B3_%DA%A9%D9%84%D8%A7%D8%B3%DB%8C%DA%A9" title="الکترومغناطیس کلاسیک – персийски" lang="fa" hreflang="fa" data-title="الکترومغناطیس کلاسیک" data-language-autonym="فارسی" data-language-local-name="персийски" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/S%C3%A4hk%C3%B6dynamiikka" title="Sähködynamiikka – фински" lang="fi" hreflang="fi" data-title="Sähködynamiikka" data-language-autonym="Suomi" data-language-local-name="фински" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/%C3%89lectrodynamique" title="Électrodynamique – френски" lang="fr" hreflang="fr" data-title="Électrodynamique" data-language-autonym="Français" data-language-local-name="френски" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Leictridinimic" title="Leictridinimic – ирландски" lang="ga" hreflang="ga" data-title="Leictridinimic" data-language-autonym="Gaeilge" data-language-local-name="ирландски" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Electrodin%C3%A1mica_cl%C3%A1sica" title="Electrodinámica clásica – галисийски" lang="gl" hreflang="gl" data-title="Electrodinámica clásica" data-language-autonym="Galego" data-language-local-name="галисийски" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%9A%E0%A4%BF%E0%A4%B0%E0%A4%B8%E0%A4%AE%E0%A5%8D%E0%A4%AE%E0%A4%A4_%E0%A4%B5%E0%A4%BF%E0%A4%A6%E0%A5%8D%E0%A4%AF%E0%A5%81%E0%A4%A4%E0%A5%8D_%E0%A4%9A%E0%A5%81%E0%A4%AE%E0%A5%8D%E0%A4%AC%E0%A4%95%E0%A5%80%E0%A4%95%E0%A5%80" title="चिरसम्मत विद्युत् चुम्बकीकी – хинди" lang="hi" hreflang="hi" data-title="चिरसम्मत विद्युत् चुम्बकीकी" data-language-autonym="हिन्दी" data-language-local-name="хинди" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Elektrodinamika" title="Elektrodinamika – хърватски" lang="hr" hreflang="hr" data-title="Elektrodinamika" data-language-autonym="Hrvatski" data-language-local-name="хърватски" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Elektrodinamika" title="Elektrodinamika – унгарски" lang="hu" hreflang="hu" data-title="Elektrodinamika" data-language-autonym="Magyar" data-language-local-name="унгарски" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D4%B7%D5%AC%D5%A5%D5%AF%D5%BF%D6%80%D5%A1%D5%A4%D5%AB%D5%B6%D5%A1%D5%B4%D5%AB%D5%AF%D5%A1" title="Էլեկտրադինամիկա – арменски" lang="hy" hreflang="hy" data-title="Էլեկտրադինամիկա" data-language-autonym="Հայերեն" data-language-local-name="арменски" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Elektrodinamika" title="Elektrodinamika – индонезийски" lang="id" hreflang="id" data-title="Elektrodinamika" data-language-autonym="Bahasa Indonesia" data-language-local-name="индонезийски" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Elettrodinamica_classica" title="Elettrodinamica classica – италиански" lang="it" hreflang="it" data-title="Elettrodinamica classica" data-language-autonym="Italiano" data-language-local-name="италиански" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E5%8F%A4%E5%85%B8%E9%9B%BB%E7%A3%81%E6%B0%97%E5%AD%A6" title="古典電磁気学 – японски" lang="ja" hreflang="ja" data-title="古典電磁気学" data-language-autonym="日本語" data-language-local-name="японски" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%94%E1%83%9A%E1%83%94%E1%83%A5%E1%83%A2%E1%83%A0%E1%83%9D%E1%83%93%E1%83%98%E1%83%9C%E1%83%90%E1%83%9B%E1%83%98%E1%83%99%E1%83%90" title="ელექტროდინამიკა – грузински" lang="ka" hreflang="ka" data-title="ელექტროდინამიკა" data-language-autonym="ქართული" data-language-local-name="грузински" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%AD%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0" title="Электродинамика – казахски" lang="kk" hreflang="kk" data-title="Электродинамика" data-language-autonym="Қазақша" data-language-local-name="казахски" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EA%B3%A0%EC%A0%84_%EC%A0%84%EC%9E%90%EA%B8%B0%ED%95%99" title="고전 전자기학 – корейски" lang="ko" hreflang="ko" data-title="고전 전자기학" data-language-autonym="한국어" data-language-local-name="корейски" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Elektrodinamika" title="Elektrodinamika – литовски" lang="lt" hreflang="lt" data-title="Elektrodinamika" data-language-autonym="Lietuvių" data-language-local-name="литовски" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Elektrodinamika" title="Elektrodinamika – латвийски" lang="lv" hreflang="lv" data-title="Elektrodinamika" data-language-autonym="Latviešu" data-language-local-name="латвийски" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0" title="Електродинамика – македонски" lang="mk" hreflang="mk" data-title="Електродинамика" data-language-autonym="Македонски" data-language-local-name="македонски" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-nds mw-list-item"><a href="https://nds.wikipedia.org/wiki/Elektrodynamik" title="Elektrodynamik – долнонемски" lang="nds" hreflang="nds" data-title="Elektrodynamik" data-language-autonym="Plattdüütsch" data-language-local-name="долнонемски" class="interlanguage-link-target"><span>Plattdüütsch</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Elektrodynamica" title="Elektrodynamica – нидерландски" lang="nl" hreflang="nl" data-title="Elektrodynamica" data-language-autonym="Nederlands" data-language-local-name="нидерландски" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Elektrodynamikk" title="Elektrodynamikk – норвежки (нюношк)" lang="nn" hreflang="nn" data-title="Elektrodynamikk" data-language-autonym="Norsk nynorsk" data-language-local-name="норвежки (нюношк)" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Elektrodynamikk" title="Elektrodynamikk – норвежки (букмол)" lang="nb" hreflang="nb" data-title="Elektrodynamikk" data-language-autonym="Norsk bokmål" data-language-local-name="норвежки (букмол)" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%95%E0%A8%B2%E0%A8%BE%E0%A8%B8%E0%A9%80%E0%A8%95%E0%A8%B2_%E0%A8%87%E0%A8%B2%E0%A9%88%E0%A8%95%E0%A8%9F%E0%A9%8D%E0%A8%B0%E0%A9%8B%E0%A8%AE%E0%A9%88%E0%A8%97%E0%A8%A8%E0%A9%87%E0%A8%9F%E0%A8%BF%E0%A8%9C%E0%A8%BC%E0%A8%AE" title="ਕਲਾਸੀਕਲ ਇਲੈਕਟ੍ਰੋਮੈਗਨੇਟਿਜ਼ਮ – пенджабски" lang="pa" hreflang="pa" data-title="ਕਲਾਸੀਕਲ ਇਲੈਕਟ੍ਰੋਮੈਗਨੇਟਿਜ਼ਮ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="пенджабски" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Elektrodynamika_klasyczna" title="Elektrodynamika klasyczna – полски" lang="pl" hreflang="pl" data-title="Elektrodynamika klasyczna" data-language-autonym="Polski" data-language-local-name="полски" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Eletromagnetismo_cl%C3%A1ssico" title="Eletromagnetismo clássico – португалски" lang="pt" hreflang="pt" data-title="Eletromagnetismo clássico" data-language-autonym="Português" data-language-local-name="португалски" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Electrodinamic%C4%83" title="Electrodinamică – румънски" lang="ro" hreflang="ro" data-title="Electrodinamică" data-language-autonym="Română" data-language-local-name="румънски" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%AD%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0" title="Электродинамика – руски" lang="ru" hreflang="ru" data-title="Электродинамика" data-language-autonym="Русский" data-language-local-name="руски" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Klasi%C4%8Dni_elektromagnetizam" title="Klasični elektromagnetizam – сърбохърватски" lang="sh" hreflang="sh" data-title="Klasični elektromagnetizam" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="сърбохърватски" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Elektrodynamika" title="Elektrodynamika – словашки" lang="sk" hreflang="sk" data-title="Elektrodynamika" data-language-autonym="Slovenčina" data-language-local-name="словашки" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Elektrodinamika_klasike" title="Elektrodinamika klasike – албански" lang="sq" hreflang="sq" data-title="Elektrodinamika klasike" data-language-autonym="Shqip" data-language-local-name="албански" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/Klasi%C4%8Dan_elektromagnetizam" title="Klasičan elektromagnetizam – сръбски" lang="sr" hreflang="sr" data-title="Klasičan elektromagnetizam" data-language-autonym="Српски / srpski" data-language-local-name="сръбски" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Klassisk_elektrodynamik" title="Klassisk elektrodynamik – шведски" lang="sv" hreflang="sv" data-title="Klassisk elektrodynamik" data-language-autonym="Svenska" data-language-local-name="шведски" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%AE%E0%AE%B0%E0%AE%AA%E0%AE%BE%E0%AE%B0%E0%AF%8D%E0%AE%A8%E0%AF%8D%E0%AE%A4_%E0%AE%87%E0%AE%AF%E0%AE%95%E0%AF%8D%E0%AE%95_%E0%AE%AE%E0%AE%BF%E0%AE%A9%E0%AF%8D%E0%AE%A9%E0%AE%BF%E0%AE%AF%E0%AE%B2%E0%AF%8D" title="மரபார்ந்த இயக்க மின்னியல் – тамилски" lang="ta" hreflang="ta" data-title="மரபார்ந்த இயக்க மின்னியல்" data-language-autonym="தமிழ்" data-language-local-name="тамилски" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-tg mw-list-item"><a href="https://tg.wikipedia.org/wiki/%D0%AD%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0" title="Электродинамика – таджикски" lang="tg" hreflang="tg" data-title="Электродинамика" data-language-autonym="Тоҷикӣ" data-language-local-name="таджикски" class="interlanguage-link-target"><span>Тоҷикӣ</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Klasik_elektromanyetizma" title="Klasik elektromanyetizma – турски" lang="tr" hreflang="tr" data-title="Klasik elektromanyetizma" data-language-autonym="Türkçe" data-language-local-name="турски" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-tt mw-list-item"><a href="https://tt.wikipedia.org/wiki/%D0%AD%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0" title="Электродинамика – татарски" lang="tt" hreflang="tt" data-title="Электродинамика" data-language-autonym="Татарча / tatarça" data-language-local-name="татарски" class="interlanguage-link-target"><span>Татарча / tatarça</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9A%D0%BB%D0%B0%D1%81%D0%B8%D1%87%D0%BD%D0%B0_%D0%B5%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D1%96%D0%BA%D0%B0" title="Класична електродинаміка – украински" lang="uk" hreflang="uk" data-title="Класична електродинаміка" data-language-autonym="Українська" data-language-local-name="украински" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Elektrodinamika" title="Elektrodinamika – узбекски" lang="uz" hreflang="uz" data-title="Elektrodinamika" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="узбекски" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/%C4%90i%E1%BB%87n_t%E1%BB%AB_h%E1%BB%8Dc_c%E1%BB%95_%C4%91i%E1%BB%83n" title="Điện từ học cổ điển – виетнамски" lang="vi" hreflang="vi" data-title="Điện từ học cổ điển" data-language-autonym="Tiếng Việt" data-language-local-name="виетнамски" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E7%BB%8F%E5%85%B8%E7%94%B5%E7%A3%81%E5%AD%A6" title="经典电磁学 – ву китайски" lang="wuu" hreflang="wuu" data-title="经典电磁学" data-language-autonym="吴语" data-language-local-name="ву китайски" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-xmf mw-list-item"><a href="https://xmf.wikipedia.org/wiki/%E1%83%94%E1%83%9A%E1%83%94%E1%83%A5%E1%83%A2%E1%83%A0%E1%83%9D%E1%83%93%E1%83%98%E1%83%9C%E1%83%90%E1%83%9B%E1%83%98%E1%83%99%E1%83%90" title="ელექტროდინამიკა – Mingrelian" lang="xmf" hreflang="xmf" data-title="ელექტროდინამიკა" data-language-autonym="მარგალური" data-language-local-name="Mingrelian" class="interlanguage-link-target"><span>მარგალური</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E7%BB%8F%E5%85%B8%E7%94%B5%E7%A3%81%E5%AD%A6" title="经典电磁学 – китайски" lang="zh" hreflang="zh" data-title="经典电磁学" data-language-autonym="中文" data-language-local-name="китайски" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E5%8F%A4%E5%85%B8%E9%9B%BB%E7%A3%81%E5%AD%B8" title="古典電磁學 – кантонски" lang="yue" hreflang="yue" data-title="古典電磁學" data-language-autonym="粵語" data-language-local-name="кантонски" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q377930#sitelinks-wikipedia" title="Редактиране на междуезиковите препратки" class="wbc-editpage">Редактиране</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Именни пространства"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0" title="Преглед на основната страница [c]" accesskey="c"><span>Статия</span></a></li><li id="ca-talk" class="new vector-tab-noicon mw-list-item"><a href="/w/index.php?title=%D0%91%D0%B5%D1%81%D0%B5%D0%B4%D0%B0:%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0&amp;action=edit&amp;redlink=1" rel="discussion" class="new" title="Беседа за страницата (страницата не съществува) [t]" accesskey="t"><span>Беседа</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Промяна на езиковия вариант" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">български</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Прегледи"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0"><span>Преглед</span></a></li><li id="ca-ve-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0&amp;veaction=edit" title="Редактиране на страницата [v]" accesskey="v"><span>Редактиране</span></a></li><li id="ca-edit" class="collapsible vector-tab-noicon mw-list-item"><a href="/w/index.php?title=%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0&amp;action=edit" title="Редактиране на изходния код на страницата [e]" accesskey="e"><span>Редактиране на кода</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0&amp;action=history" title="Предишни версии на страницата [h]" accesskey="h"><span>История</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Инструменти" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Инструменти</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Инструменти</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">преместване към страничната лента</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">скриване</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Допълнителни опции" > <div class="vector-menu-heading"> Действия </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0"><span>Преглед</span></a></li><li id="ca-more-ve-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0&amp;veaction=edit" title="Редактиране на страницата [v]" accesskey="v"><span>Редактиране</span></a></li><li id="ca-more-edit" class="collapsible vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0&amp;action=edit" title="Редактиране на изходния код на страницата [e]" accesskey="e"><span>Редактиране на кода</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0&amp;action=history"><span>История</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> Основни </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D0%B0%D0%BB%D0%BD%D0%B8:%D0%9A%D0%B0%D0%BA%D0%B2%D0%BE_%D1%81%D0%BE%D1%87%D0%B8_%D0%BD%D0%B0%D1%81%D0%B0%D0%BC/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0" title="Списък на всички страници, сочещи насам [j]" accesskey="j"><span>Какво сочи насам</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D0%B0%D0%BB%D0%BD%D0%B8:%D0%A1%D0%B2%D1%8A%D1%80%D0%B7%D0%B0%D0%BD%D0%B8_%D0%BF%D1%80%D0%BE%D0%BC%D0%B5%D0%BD%D0%B8/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0" rel="nofollow" title="Последните промени на страници, сочени от тази страница [k]" accesskey="k"><span>Свързани промени</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/MediaWiki:Uploadtext" title="Качи файлове [u]" accesskey="u"><span>Качване на файл</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D0%B0%D0%BB%D0%BD%D0%B8:%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D0%B0%D0%BB%D0%BD%D0%B8_%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D0%B8" title="Списък на всички специални страници [q]" accesskey="q"><span>Специални страници</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0&amp;oldid=11670474" title="Постоянна препратка към тази версия на страницата"><span>Постоянна препратка</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0&amp;action=info" title="Повече за тази страница"><span>Информация за страницата</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D0%B0%D0%BB%D0%BD%D0%B8:%D0%A6%D0%B8%D1%82%D0%B8%D1%80%D0%B0%D0%BD%D0%B5&amp;page=%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0&amp;id=11670474&amp;wpFormIdentifier=titleform" title="Информация за начините за цитиране на тази страница"><span>Цитиране на статията</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D0%B0%D0%BB%D0%BD%D0%B8:UrlShortener&amp;url=https%3A%2F%2Fbg.wikipedia.org%2Fwiki%2F%25D0%2595%25D0%25BB%25D0%25B5%25D0%25BA%25D1%2582%25D1%2580%25D0%25BE%25D0%25B4%25D0%25B8%25D0%25BD%25D0%25B0%25D0%25BC%25D0%25B8%25D0%25BA%25D0%25B0"><span>Кратък URL адрес</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D0%B0%D0%BB%D0%BD%D0%B8:QrCode&amp;url=https%3A%2F%2Fbg.wikipedia.org%2Fwiki%2F%25D0%2595%25D0%25BB%25D0%25B5%25D0%25BA%25D1%2582%25D1%2580%25D0%25BE%25D0%25B4%25D0%25B8%25D0%25BD%25D0%25B0%25D0%25BC%25D0%25B8%25D0%25BA%25D0%25B0"><span>Изтегляне на QR код</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Отпечатване/изнасяне </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D0%B0%D0%BB%D0%BD%D0%B8:Book&amp;bookcmd=book_creator&amp;referer=%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0"><span>Създаване на книга</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D0%B0%D0%BB%D0%BD%D0%B8:DownloadAsPdf&amp;page=%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0&amp;action=show-download-screen"><span>Изтегляне като PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0&amp;printable=yes" title="Версия за печат на страницата [p]" accesskey="p"><span>Версия за печат</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> В други проекти </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Electrodynamics" hreflang="en"><span>Общомедия</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q377930" title="Препратка към свързания обект от хранилището за данни [g]" accesskey="g"><span>Обект в Уикиданни</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Облик"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Облик</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">преместване към страничната лента</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">скриване</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">от Уикипедия, свободната енциклопедия</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="bg" dir="ltr"><table class="vertical-navbox nowraplinks" style="float:right;clear:right;width:22.0em;margin:0 0 1.0em 1.0em;background:#f9f9f9;border:1px solid #aaa;padding:0.2em;border-spacing:0.4em 0;text-align:center;line-height:1.4em;font-size:88%"><tbody><tr><td style="padding-top:0.4em;line-height:1.2em">Серия статии на тема</td></tr><tr><th class="title physic" style="padding:0.2em 0.4em 0.2em;padding-top:0;font-size:145%;line-height:1.2em;background-color:#D4D4FF; padding: 0.7em"><a href="/wiki/%D0%9A%D0%BB%D0%B0%D1%81%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0_%D0%B5%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0" class="mw-redirect" title="Класическа електродинамика">Класическа електродинамика</a></th></tr><tr><td style="padding:0.2em 0 0.4em"><span typeof="mw:File/Frameless"><a href="/wiki/%D0%A4%D0%B0%D0%B9%D0%BB:CoulombsLaw.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/07/CoulombsLaw.svg/190px-CoulombsLaw.svg.png" decoding="async" width="190" height="152" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/07/CoulombsLaw.svg/285px-CoulombsLaw.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/07/CoulombsLaw.svg/380px-CoulombsLaw.svg.png 2x" data-file-width="512" data-file-height="410" /></a></span></td></tr><tr><td class="hlist" style="padding:0 0.1em 0.4em"> <ul><li><a href="/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D1%82%D0%B2%D0%BE" title="Електричество">Електричество</a></li> <li><a href="/wiki/%D0%9C%D0%B0%D0%B3%D0%BD%D0%B5%D1%82%D0%B8%D0%B7%D1%8A%D0%BC" title="Магнетизъм">Магнетизъм</a></li> <li><a href="/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%BE_%D0%B2%D0%B7%D0%B0%D0%B8%D0%BC%D0%BE%D0%B4%D0%B5%D0%B9%D1%81%D1%82%D0%B2%D0%B8%D0%B5" title="Електромагнитно взаимодействие">Електромагнетизъм</a></li></ul></td> </tr><tr><td class="hlist" style="padding:0 0.1em 0.4em"> <div class="mw-collapsible mw-collapsed" style="border:none;padding:0"><div style="font-size:105%;background:transparent;text-align:left;font-weight:bold"><a href="/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D1%81%D1%82%D0%B0%D1%82%D0%B8%D0%BA%D0%B0" title="Електростатика">Електростатика</a></div><div class="mw-collapsible-content hlist" style="font-size:105%;padding:0.2em 0 0.4em;text-align:center"> <ul><li><a href="/wiki/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD_%D0%BD%D0%B0_%D0%9A%D1%83%D0%BB%D0%BE%D0%BD" title="Закон на Кулон">Закон на Кулон</a></li> <li><a href="/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%BD%D0%B0_%D0%93%D0%B0%D1%83%D1%81" title="Теорема на Гаус">Теорема на Гаус</a></li> <li><a href="/wiki/%D0%94%D0%B8%D0%BF%D0%BE%D0%BB" title="Дипол">Електрически дипол</a></li> <li><a href="/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8_%D0%B7%D0%B0%D1%80%D1%8F%D0%B4" title="Електрически заряд">Електрически заряд</a></li> <li><a href="/wiki/%D0%98%D0%BD%D1%82%D0%B5%D0%BD%D0%B7%D0%B8%D1%82%D0%B5%D1%82_%D0%BD%D0%B0_%D0%B5%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D1%82%D0%BE_%D0%BF%D0%BE%D0%BB%D0%B5" title="Интензитет на електрическото поле">Интензитет на електрическото поле</a></li> <li><a href="/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%87%D0%BD%D0%BE_%D0%BF%D0%BE%D0%BB%D0%B5" class="mw-redirect" title="Електрично поле">Електрично поле</a></li> <li><a href="/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%87%D0%B5%D0%BD_%D0%BF%D0%BE%D1%82%D0%B5%D0%BD%D1%86%D0%B8%D0%B0%D0%BB" title="Електричен потенциал">Електричен потенциал</a></li> <li><a href="/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B5%D1%82" title="Електрет">Електрет</a></li></ul></div></div></td> </tr><tr><td class="hlist" style="padding:0 0.1em 0.4em"> <div class="mw-collapsible mw-collapsed" style="border:none;padding:0"><div style="font-size:105%;background:transparent;text-align:left;font-weight:bold"><a href="/wiki/%D0%9C%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BE%D1%81%D1%82%D0%B0%D1%82%D0%B8%D0%BA%D0%B0" title="Магнитостатика">Магнитостатика</a></div><div class="mw-collapsible-content hlist" style="font-size:105%;padding:0.2em 0 0.4em;text-align:center"> <ul><li><a href="/wiki/%D0%9C%D0%B0%D0%B3%D0%BD%D0%B8%D1%82" title="Магнит">Магнит</a></li> <li><a href="/wiki/%D0%9C%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%BE_%D0%BF%D0%BE%D0%BB%D0%B5" title="Магнитно поле">Магнитно поле</a></li> <li><a href="/wiki/%D0%94%D0%B8%D0%BF%D0%BE%D0%BB" title="Дипол">Дипол</a></li> <li><a href="/wiki/%D0%9C%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%B5%D0%BD_%D0%BF%D0%BE%D1%82%D0%BE%D0%BA" title="Магнитен поток">Магнитен поток</a></li> <li><a href="/wiki/%D0%9C%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B4%D1%83%D0%BA%D1%86%D0%B8%D1%8F" title="Магнитна индукция">Магнитна индукция</a></li> <li><a href="/wiki/%D0%98%D0%BD%D1%82%D0%B5%D0%BD%D0%B7%D0%B8%D1%82%D0%B5%D1%82_%D0%BD%D0%B0_%D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%BE%D1%82%D0%BE_%D0%BF%D0%BE%D0%BB%D0%B5" title="Интензитет на магнитното поле">Интензитет на магнитното поле</a></li> <li><a href="/wiki/%D0%9C%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%B0_%D0%BF%D1%80%D0%BE%D0%BD%D0%B8%D1%86%D0%B0%D0%B5%D0%BC%D0%BE%D1%81%D1%82" title="Магнитна проницаемост">Магнитна проницаемост</a></li> <li><a href="/wiki/%D0%9C%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%B0_%D0%B2%D1%8A%D0%B7%D0%BF%D1%80%D0%B8%D0%B5%D0%BC%D1%87%D0%B8%D0%B2%D0%BE%D1%81%D1%82" title="Магнитна възприемчивост">Магнитна възприемчивост</a></li> <li><a href="/wiki/%D0%9C%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%B5%D0%BD_%D0%BC%D0%BE%D0%BC%D0%B5%D0%BD%D1%82" title="Магнитен момент">Магнитен момент</a></li> <li><a href="/wiki/%D0%9D%D0%B0%D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%B2%D0%B0%D0%BD%D0%B5" title="Намагнитване">Намагнитване</a></li> <li><a href="/wiki/%D0%A4%D0%B5%D1%80%D0%BE%D0%BC%D0%B0%D0%B3%D0%BD%D0%B5%D1%82%D0%B8%D0%B7%D1%8A%D0%BC" title="Феромагнетизъм">Феромагнетизъм</a></li> <li><a href="/wiki/%D0%94%D0%B8%D0%B0%D0%BC%D0%B0%D0%B3%D0%BD%D0%B5%D1%82%D0%B8%D0%B7%D1%8A%D0%BC" title="Диамагнетизъм">Диамагнетизъм</a></li> <li><a href="/wiki/%D0%9F%D0%B0%D1%80%D0%B0%D0%BC%D0%B0%D0%B3%D0%BD%D0%B5%D1%82%D0%B8%D0%B7%D1%8A%D0%BC" title="Парамагнетизъм">Парамагнетизъм</a></li> <li><a href="/wiki/%D0%A1%D1%83%D0%BF%D0%B5%D1%80%D0%BF%D0%B0%D1%80%D0%B0%D0%BC%D0%B0%D0%B3%D0%BD%D0%B5%D1%82%D0%B8%D0%B7%D1%8A%D0%BC" title="Суперпарамагнетизъм">Суперпарамагнетизъм</a></li> <li><a href="/wiki/%D0%90%D0%BD%D1%82%D0%B8%D1%84%D0%B5%D1%80%D0%BE%D0%BC%D0%B0%D0%B3%D0%BD%D0%B5%D1%82%D0%B8%D0%B7%D1%8A%D0%BC" title="Антиферомагнетизъм">Антиферомагнетизъм</a></li> <li><a href="/wiki/%D0%A4%D0%B5%D1%80%D0%B8%D0%BC%D0%B0%D0%B3%D0%BD%D0%B5%D1%82%D0%B8%D0%B7%D1%8A%D0%BC" title="Феримагнетизъм">Феримагнетизъм</a></li> <li><a href="/wiki/%D0%9C%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%B0_%D0%BB%D0%B5%D0%B2%D0%B8%D1%82%D0%B0%D1%86%D0%B8%D1%8F" title="Магнитна левитация">Магнитна левитация</a></li> <li><a href="/wiki/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD_%D0%BD%D0%B0_%D0%91%D0%B8%D0%BE-%D0%A1%D0%B0%D0%B2%D0%B0%D1%80" title="Закон на Био-Савар">Закон на Био-Савар</a></li> <li><a href="/wiki/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD_%D0%BD%D0%B0_%D0%90%D0%BC%D0%BF%D0%B5%D1%80" title="Закон на Ампер">Закон на Ампер</a></li></ul></div></div></td> </tr><tr><td class="hlist" style="padding:0 0.1em 0.4em"> <div class="mw-collapsible mw-collapsed" style="border:none;padding:0"><div style="font-size:105%;background:transparent;text-align:left;font-weight:bold"><a class="mw-selflink selflink">Електродинамика</a></div><div class="mw-collapsible-content hlist" style="font-size:105%;padding:0.2em 0 0.4em;text-align:center"> <ul><li><a href="/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%BE_%D0%BF%D0%BE%D0%BB%D0%B5" title="Електромагнитно поле">Електромагнитно поле</a></li> <li><a href="/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B4%D1%83%D0%BA%D1%86%D0%B8%D1%8F" title="Електромагнитна индукция">Електромагнитна индукция</a></li> <li><a href="/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%BE_%D0%B8%D0%B7%D0%BB%D1%8A%D1%87%D0%B2%D0%B0%D0%BD%D0%B5" title="Електромагнитно излъчване">Електромагнитно излъчване</a></li> <li><a href="/wiki/%D0%94%D0%B8%D0%BF%D0%BE%D0%BB" title="Дипол">Дипол</a></li> <li><a href="/wiki/%D0%A1%D0%B8%D0%BB%D0%B0_%D0%BD%D0%B0_%D0%9B%D0%BE%D1%80%D0%B5%D0%BD%D1%86" title="Сила на Лоренц">Сила на Лоренц</a></li> <li><a href="/wiki/%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB" title="Уравнения на Максуел">Уравнения на Максуел</a></li> <li><a href="/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%B5%D0%BD_4-%D0%BF%D0%BE%D1%82%D0%B5%D0%BD%D1%86%D0%B8%D0%B0%D0%BB" title="Електромагнитен 4-потенциал">Електромагнитен 4-потенциал</a></li> <li><a href="/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%87%D0%B5%D0%BD_%D0%BF%D0%BE%D1%82%D0%B5%D0%BD%D1%86%D0%B8%D0%B0%D0%BB" title="Електричен потенциал">Електричен потенциал</a></li> <li><a href="/wiki/%D0%9C%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%B5%D0%BD_%D0%B2%D0%B5%D0%BA%D1%82%D0%BE%D1%80%D0%B5%D0%BD_%D0%BF%D0%BE%D1%82%D0%B5%D0%BD%D1%86%D0%B8%D0%B0%D0%BB" title="Магнитен векторен потенциал">Магнитен векторен потенциал</a></li> <li><a href="/wiki/%D0%92%D1%8A%D0%BB%D0%BD%D0%BE%D0%B2%D0%BE_%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5" title="Вълново уравнение">Вълново уравнение</a></li> <li><a href="/wiki/%D0%97%D0%B0%D0%BA%D1%8A%D1%81%D0%BD%D1%8F%D0%B2%D0%B0%D1%89_%D0%BF%D0%BE%D1%82%D0%B5%D0%BD%D1%86%D0%B8%D0%B0%D0%BB" title="Закъсняващ потенциал">Закъсняващ потенциал</a></li> <li><a href="/wiki/%D0%9E%D0%BF%D0%B5%D1%80%D0%B0%D1%82%D0%BE%D1%80_%D0%BD%D0%B0_%D0%94%27%D0%90%D0%BB%D0%B0%D0%BC%D0%B1%D0%B5%D1%80" title="Оператор на Д&#39;Аламбер">Оператор на Д'Аламбер</a></li> <li><a href="/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8_%D0%B4%D0%B8%D0%BF%D0%BE%D0%BB%D0%B5%D0%BD_%D0%BC%D0%BE%D0%BC%D0%B5%D0%BD%D1%82" title="Електрически диполен момент">Електрически диполен момент</a></li> <li><a href="/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82" title="Електромагнит">Електромагнит</a></li> <li><a href="/wiki/%D0%95%D1%84%D0%B5%D0%BA%D1%82_%D0%BD%D0%B0_%D0%9C%D0%B0%D0%B9%D1%81%D0%BD%D0%B5%D1%80" title="Ефект на Майснер">Ефект на Майснер</a></li></ul></div></div></td> </tr><tr><td class="hlist" style="padding:0 0.1em 0.4em"> <div class="mw-collapsible mw-collapsed" style="border:none;padding:0"><div style="font-size:105%;background:transparent;text-align:left;font-weight:bold"><a href="/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0_%D0%B2%D0%B5%D1%80%D0%B8%D0%B3%D0%B0" title="Електрическа верига">Електрическа верига</a></div><div class="mw-collapsible-content hlist" style="font-size:105%;padding:0.2em 0 0.4em;text-align:center"> <ul><li><a href="/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8_%D1%82%D0%BE%D0%BA" title="Електрически ток">Електрически ток</a></li> <li><a href="/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE_%D0%BD%D0%B0%D0%BF%D1%80%D0%B5%D0%B6%D0%B5%D0%BD%D0%B8%D0%B5" title="Електрическо напрежение">Електрическо напрежение</a></li> <li><a href="/wiki/%D0%92%D0%BE%D0%BB%D1%82-%D0%B0%D0%BC%D0%BF%D0%B5%D1%80%D0%BD%D0%B0_%D1%85%D0%B0%D1%80%D0%B0%D0%BA%D1%82%D0%B5%D1%80%D0%B8%D1%81%D1%82%D0%B8%D0%BA%D0%B0" title="Волт-амперна характеристика">Волт-амперна характеристика</a></li> <li><a href="/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE_%D1%81%D1%8A%D0%BF%D1%80%D0%BE%D1%82%D0%B8%D0%B2%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5" title="Електрическо съпротивление">Електрическо съпротивление</a></li> <li><a href="/wiki/%D0%98%D0%BD%D0%B4%D1%83%D0%BA%D1%82%D0%B8%D0%B2%D0%BD%D0%BE%D1%81%D1%82" title="Индуктивност">Индуктивност</a></li> <li><a href="/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8_%D0%BA%D0%B0%D0%BF%D0%B0%D1%86%D0%B8%D1%82%D0%B5%D1%82" title="Електрически капацитет">Електрически капацитет</a></li> <li><a href="/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0_%D0%BF%D1%80%D0%BE%D0%B2%D0%BE%D0%B4%D0%B8%D0%BC%D0%BE%D1%81%D1%82" title="Електрическа проводимост">Електрическа проводимост</a></li> <li><a href="/wiki/%D0%98%D0%BC%D0%BF%D0%B5%D0%B4%D0%B0%D0%BD%D1%81" title="Импеданс">Електрически импеданс</a></li> <li><a href="/wiki/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD_%D0%BD%D0%B0_%D0%9E%D0%BC" title="Закон на Ом">Закон на Ом</a></li> <li><a href="/wiki/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD%D0%B8_%D0%BD%D0%B0_%D0%9A%D0%B8%D1%80%D1%85%D0%BE%D1%84" title="Закони на Кирхоф">Закони на Кирхоф</a></li> <li><a href="/wiki/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD_%D0%BD%D0%B0_%D0%94%D0%B6%D0%B0%D1%83%D0%BB-%D0%9B%D0%B5%D0%BD%D1%86" class="mw-redirect" title="Закон на Джаул-Ленц">Закон на Джаул-Ленц</a></li></ul></div></div></td> </tr><tr><td class="hlist" style="padding:0 0.1em 0.4em"> <div class="mw-collapsible mw-collapsed" style="border:none;padding:0"><div style="font-size:105%;background:transparent;text-align:left;font-weight:bold">Известни учени</div><div class="mw-collapsible-content hlist" style="font-size:105%;padding:0.2em 0 0.4em;text-align:center"> <ul><li><a href="/wiki/%D0%A5%D0%B5%D0%BD%D1%80%D0%B8_%D0%9A%D0%B0%D0%B2%D0%B5%D0%BD%D0%B4%D0%B8%D1%88" title="Хенри Кавендиш">Хенри Кавендиш</a></li> <li><a href="/wiki/%D0%9C%D0%B0%D0%B9%D0%BA%D1%8A%D0%BB_%D0%A4%D0%B0%D1%80%D0%B0%D0%B4%D0%B5%D0%B9" title="Майкъл Фарадей">Майкъл Фарадей</a></li> <li><a href="/wiki/%D0%90%D0%BD%D0%B4%D1%80%D0%B5-%D0%9C%D0%B0%D1%80%D0%B8_%D0%90%D0%BC%D0%BF%D0%B5%D1%80" title="Андре-Мари Ампер">Андре-Мари Ампер</a></li> <li><a href="/wiki/%D0%93%D1%83%D1%81%D1%82%D0%B0%D0%B2_%D0%9A%D0%B8%D1%80%D1%85%D0%BE%D1%84" title="Густав Кирхоф">Густав Кирхоф</a></li> <li><a href="/wiki/%D0%94%D0%B6%D0%B5%D0%B9%D0%BC%D1%81_%D0%9A%D0%BB%D0%B0%D1%80%D0%BA_%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB" title="Джеймс Кларк Максуел">Джеймс Кларк Максуел</a></li> <li><a href="/wiki/%D0%A5%D0%B0%D0%B9%D0%BD%D1%80%D0%B8%D1%85_%D0%A5%D0%B5%D1%80%D1%86" title="Хайнрих Херц">Хайнрих Херц</a></li> <li><a href="/wiki/%D0%90%D0%BB%D0%B1%D0%B5%D1%80%D1%82_%D0%90%D0%B1%D1%80%D0%B0%D1%85%D0%B0%D0%BC_%D0%9C%D0%B0%D0%B9%D0%BA%D0%B5%D0%BB%D1%81%D1%8A%D0%BD" class="mw-redirect" title="Алберт Абрахам Майкелсън">Алберт Абрахам Майкелсън</a></li> <li><a href="/wiki/%D0%A0%D0%BE%D0%B1%D1%8A%D1%80%D1%82_%D0%9C%D0%B8%D0%BB%D0%B8%D0%BA%D0%B0%D0%BD" title="Робърт Миликан">Робърт Миликан</a></li> <li><a href="/wiki/%D0%93%D0%B5%D0%BE%D1%80%D0%B3_%D0%9E%D0%BC" title="Георг Ом">Георг Ом</a></li> <li><a href="/wiki/%D0%9B%D1%83%D0%B8_%D0%9D%D0%B5%D0%B5%D0%BB" title="Луи Неел">Луи Неел</a></li></ul></div></div></td> </tr><tr><td style="text-align:right;font-size:115%;padding-top: 0.6em;"><div class="plainlinks hlist navbar mini"><ul><li class="nv-view"><a href="/wiki/%D0%A8%D0%B0%D0%B1%D0%BB%D0%BE%D0%BD:%D0%9A%D0%BB%D0%B0%D1%81%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0_%D0%B5%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0" title="Шаблон:Класическа електродинамика"><abbr title="Преглед на шаблона">п</abbr></a></li><li class="nv-talk"><a class="external text" href="https://bg.wikipedia.org/w/index.php?title=%D0%A8%D0%B0%D0%B1%D0%BB%D0%BE%D0%BD_%D0%B1%D0%B5%D1%81%D0%B5%D0%B4%D0%B0%3A%D0%9A%D0%BB%D0%B0%D1%81%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0_%D0%B5%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0&amp;action=edit&amp;redlink=1"><abbr title="Беседа на шаблона (страницата не съществува)" style="color:#ba0000">б</abbr></a></li><li class="nv-edit"><a class="external text" href="https://bg.wikipedia.org/w/index.php?title=%D0%A8%D0%B0%D0%B1%D0%BB%D0%BE%D0%BD:%D0%9A%D0%BB%D0%B0%D1%81%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0_%D0%B5%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0&amp;action=edit"><abbr title="Редактиране на шаблона">р</abbr></a></li></ul></div></td></tr></tbody></table> <p><b>Електродинамиката</b> е дял от <a href="/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D1%82%D0%B8%D1%87%D0%BD%D0%B0_%D1%84%D0%B8%D0%B7%D0%B8%D0%BA%D0%B0" title="Теоретична физика">теоретичната физика</a>, който изучава <a href="/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%BE_%D0%BF%D0%BE%D0%BB%D0%B5" title="Електромагнитно поле">електромагнитното поле</a>, зависещо от времето, и неговото взаимодействие с тела, имащи <a href="/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%87%D0%B5%D0%BD_%D0%B7%D0%B0%D1%80%D1%8F%D0%B4" class="mw-redirect" title="Електричен заряд">електричен заряд</a>. </p><p>Предметът на електродинамиката включва връзката между електрически и магнитни явления, <a href="/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%BE_%D0%B8%D0%B7%D0%BB%D1%8A%D1%87%D0%B2%D0%B0%D0%BD%D0%B5" title="Електромагнитно излъчване">електромагнитно излъчване</a> (в различни условия, както свободно, така и в различни случаи на взаимодействие с материята), <a href="/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8_%D1%82%D0%BE%D0%BA" title="Електрически ток">електрически ток</a> (най-общо казано, променлив) и неговото взаимодействие с електромагнитно поле (електрическият ток може да се разглежда при това като набор от движещи се заредени частици). Всяко електрическо и магнитно взаимодействие между заредени тела се разглежда в съвременната физика като осъществяващо се с помощта на електромагнитно поле и следователно също е предмет на електродинамиката. </p><p>В зависимост от условията, в които се намират разглежданите тела, се разделя на <a href="/wiki/%D0%9A%D0%BB%D0%B0%D1%81%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0_%D0%B5%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0" class="mw-redirect" title="Класическа електродинамика">класическа електродинамика</a> и <a href="/wiki/%D0%9A%D0%B2%D0%B0%D0%BD%D1%82%D0%BE%D0%B2%D0%B0_%D0%B5%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0" title="Квантова електродинамика">квантова електродинамика</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Основни_величини"><span id=".D0.9E.D1.81.D0.BD.D0.BE.D0.B2.D0.BD.D0.B8_.D0.B2.D0.B5.D0.BB.D0.B8.D1.87.D0.B8.D0.BD.D0.B8"></span>Основни величини</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0&amp;veaction=edit&amp;section=1" title="Редактиране на раздел: Основни величини" class="mw-editsection-visualeditor"><span>редактиране</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0&amp;action=edit&amp;section=1" title="Edit section&#039;s source code: Основни величини"><span>редактиране на кода</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Формулировка"><span id=".D0.A4.D0.BE.D1.80.D0.BC.D1.83.D0.BB.D0.B8.D1.80.D0.BE.D0.B2.D0.BA.D0.B0"></span>Формулировка</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0&amp;veaction=edit&amp;section=2" title="Редактиране на раздел: Формулировка" class="mw-editsection-visualeditor"><span>редактиране</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0&amp;action=edit&amp;section=2" title="Edit section&#039;s source code: Формулировка"><span>редактиране на кода</span></a><span class="mw-editsection-bracket">]</span></span></div> <table border="1" cellpadding="8" cellspacing="0"> <tbody><tr style="background-color: #aaeecc;"> <td>Въздействие на ел. поле на заряди спрямо: </td> <td>заряд <br />Q </td> <td>затворен контур<br />C </td> <td>затворена повърхнина<br />S </td> <td>затворен контур<br />C </td> <td>затворена повърхнина<br />S </td></tr> <tr> <td>Величина </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8752c7023b4b3286800fe3238271bbca681219ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.838ex; height:2.509ex;" alt="{\displaystyle Q}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {E} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {E} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d7f22b39d51f780fc02859059c1757c606b9de2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.757ex; height:2.176ex;" alt="{\displaystyle \mathbf {E} }"></span> , <br /> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {D} =\varepsilon \ \mathbf {E} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> <mo>=</mo> <mi>&#x03B5;<!-- ε --></mi> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {D} =\varepsilon \ \mathbf {E} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c0d3ff7770366b21156447831bc4daa0ec33ee8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.569ex; height:2.176ex;" alt="{\displaystyle \mathbf {D} =\varepsilon \ \mathbf {E} }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\Phi _{e}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">&#x03A6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {\Phi _{e}} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f03477eab0376c108d8377495487f7366f27c1d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.03ex; height:2.509ex;" alt="{\displaystyle \mathbf {\Phi _{e}} }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {H} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">H</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {H} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f017b876ed763037d8818ec5dfbbdc6703e0f683" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.091ex; height:2.176ex;" alt="{\displaystyle \mathbf {H} }"></span> , <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {B} =\mu \ \mathbf {H} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo>=</mo> <mi>&#x03BC;<!-- μ --></mi> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">H</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {B} =\mu \ \mathbf {H} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0196e4b909b366bbe0bb0085a695d7313cc55b80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.073ex; height:2.676ex;" alt="{\displaystyle \mathbf {B} =\mu \ \mathbf {H} }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\Phi _{m}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">&#x03A6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">m</mi> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {\Phi _{m}} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b7b8589b28085b59bca7df412beabfe021e98189" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.738ex; height:2.509ex;" alt="{\displaystyle \mathbf {\Phi _{m}} }"></span> </td></tr> <tr> <td>Първа производна <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {{d} \over {dt}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {{d} \over {dt}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a740a802e0fbefc8b1aa5986ac0090459828a3a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:2.892ex; height:5.509ex;" alt="{\displaystyle {{d} \over {dt}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i={{dQ} \over {dt}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mi>Q</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i={{dQ} \over {dt}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ecd85af6ba156c668354a46c5be1caf5c4f50f8e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:7.791ex; height:5.509ex;" alt="{\displaystyle i={{dQ} \over {dt}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {{dE} \over {dt}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mi>E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {{dE} \over {dt}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/adc4a8887bb125d2cf81ed0cb3ae283444f39b6b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:3.828ex; height:5.509ex;" alt="{\displaystyle {{dE} \over {dt}}}"></span> , <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {{dD} \over {dt}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mi>D</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {{dD} \over {dt}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e72d69d63d4741b8c29a4ff981e2c3dba0275778" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:3.976ex; height:5.509ex;" alt="{\displaystyle {{dD} \over {dt}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {{d\mathbf {\Phi _{e}} } \over {dt}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">&#x03A6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </msub> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {{d\mathbf {\Phi _{e}} } \over {dt}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4aaf76afe4f5b564de9e66075b5e511081ee608a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:5.082ex; height:5.509ex;" alt="{\displaystyle {{d\mathbf {\Phi _{e}} } \over {dt}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {dH} \over {dt}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mi>H</mi> </mrow> </mstyle> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <annotation encoding="application/x-tex">{\displaystyle {dH} \over {dt}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18d069724027f48a8600817771640e0877d56dea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:4.116ex; height:5.509ex;" alt="{\displaystyle {dH} \over {dt}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {dB} \over {dt}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mi>B</mi> </mrow> </mstyle> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <annotation encoding="application/x-tex">{\displaystyle {dB} \over {dt}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ffdee65d6edf25b1b10bd79caf9e5eafec722f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:3.816ex; height:5.509ex;" alt="{\displaystyle {dB} \over {dt}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {{d\mathbf {\Phi _{m}} } \over {dt}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">&#x03A6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">m</mi> </mrow> </msub> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {{d\mathbf {\Phi _{m}} } \over {dt}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/463fde4ec60a01a5aaf921e112387327a6e13de7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:5.79ex; height:5.509ex;" alt="{\displaystyle {{d\mathbf {\Phi _{m}} } \over {dt}}}"></span> </td></tr> <tr> <td>Втора производна <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {{d^{2}} \over {dt^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {{d^{2}} \over {dt^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5379004f8f57b60f53590c06c86f38982f6c470a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:3.946ex; height:6.009ex;" alt="{\displaystyle {{d^{2}} \over {dt^{2}}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {{di} \over {dt}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {{di} \over {dt}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e5d7da92f888d564e3002a45de524bfef4228b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:2.892ex; height:5.509ex;" alt="{\displaystyle {{di} \over {dt}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {{d^{2}E} \over {dt^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {{d^{2}E} \over {dt^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5de0c456d64c31a03d67be2c78fe3209c63ee35c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:4.884ex; height:6.009ex;" alt="{\displaystyle {{d^{2}E} \over {dt^{2}}}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {{d^{2}D} \over {dt^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>D</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {{d^{2}D} \over {dt^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a59200198d03316ecd819047bd52111a9576f661" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:5.033ex; height:6.009ex;" alt="{\displaystyle {{d^{2}D} \over {dt^{2}}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {{d^{2}\Phi _{e}} \over {dt^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msub> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {{d^{2}\Phi _{e}} \over {dt^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e28bada06d06c431fde36f59add77c39667f1dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:5.785ex; height:6.009ex;" alt="{\displaystyle {{d^{2}\Phi _{e}} \over {dt^{2}}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {{d^{2}H} \over {dt^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>H</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {{d^{2}H} \over {dt^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9ca0402190c52be5e15d9059a9575a41e12edd7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:5.172ex; height:6.009ex;" alt="{\displaystyle {{d^{2}H} \over {dt^{2}}}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {{d^{2}B} \over {dt^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>B</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {{d^{2}B} \over {dt^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0983e75e9431f0896b1b2c6195ae926747d0182c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:4.872ex; height:6.009ex;" alt="{\displaystyle {{d^{2}B} \over {dt^{2}}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {{d^{2}\Phi _{m}} \over {dt^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msub> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {{d^{2}\Phi _{m}} \over {dt^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/285afa0bbf5e4ab8c6994db13ad7311ae491bb16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:6.462ex; height:6.009ex;" alt="{\displaystyle {{d^{2}\Phi _{m}} \over {dt^{2}}}}"></span> </td></tr> </tbody></table> <div class="mw-heading mw-heading3"><h3 id="Означения_и_измерителни_единици"><span id=".D0.9E.D0.B7.D0.BD.D0.B0.D1.87.D0.B5.D0.BD.D0.B8.D1.8F_.D0.B8_.D0.B8.D0.B7.D0.BC.D0.B5.D1.80.D0.B8.D1.82.D0.B5.D0.BB.D0.BD.D0.B8_.D0.B5.D0.B4.D0.B8.D0.BD.D0.B8.D1.86.D0.B8"></span>Означения и измерителни единици</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0&amp;veaction=edit&amp;section=3" title="Редактиране на раздел: Означения и измерителни единици" class="mw-editsection-visualeditor"><span>редактиране</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0&amp;action=edit&amp;section=3" title="Edit section&#039;s source code: Означения и измерителни единици"><span>редактиране на кода</span></a><span class="mw-editsection-bracket">]</span></span></div> <table border="1" cellpadding="8" cellspacing="0"> <tbody><tr style="background-color: #aaeecc;"> <th>Символ </th> <th>Значение </th> <th>Измерителна единица в <a href="/wiki/%D0%A1%D0%98" class="mw-redirect" title="СИ">СИ</a> </th></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {E} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {E} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d7f22b39d51f780fc02859059c1757c606b9de2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.757ex; height:2.176ex;" alt="{\displaystyle \mathbf {E} }"></span> </td> <td>Интензитет (напрегнатост) на електричното поле </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V/m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V/m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0867fd197f33ef76f5a561ce30919a8d3112e40c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.99ex; height:2.843ex;" alt="{\displaystyle V/m}"></span> <br /> <a href="/wiki/%D0%92%D0%BE%D0%BB%D1%82" title="Волт">волт</a> на <a href="/wiki/%D0%9C%D0%B5%D1%82%D1%8A%D1%80" title="Метър">метър</a> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {H} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">H</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {H} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f017b876ed763037d8818ec5dfbbdc6703e0f683" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.091ex; height:2.176ex;" alt="{\displaystyle \mathbf {H} }"></span> </td> <td>Интензитет (напрегнатост) на магнитното поле </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A/m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A/m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b6c1f50f00b3cd8596bf8743be4dd175796d3ff4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.946ex; height:2.843ex;" alt="{\displaystyle A/m}"></span> <br /> <a href="/wiki/%D0%90%D0%BC%D0%BF%D0%B5%D1%80" title="Ампер">ампер</a> на метър </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {D} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {D} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b2345293072878db24e119c580def49ad582e3ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.05ex; height:2.176ex;" alt="{\displaystyle \mathbf {D} }"></span> </td> <td>Електрична индукция <br /> (плътност на електрическия поток) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C/m^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C/m^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed997d1d56047a49805cc1965771dbdb6fad3d51" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.023ex; height:3.176ex;" alt="{\displaystyle C/m^{2}}"></span> <br /> кулон на квадратен метър </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {B} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {B} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cafb0ef39b0f5ffa23c170aa7f7b4e718327c4d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.901ex; height:2.176ex;" alt="{\displaystyle \mathbf {B} }"></span> </td> <td>Магнитна индукция <br /> (плътност на магнитния поток) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Wb/m^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Wb/m^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/047ac5fabc12fb876b0a6a45682ab19501e82dee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.69ex; height:3.176ex;" alt="{\displaystyle Wb/m^{2}}"></span>или <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N \over {A.m}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mo>.</mo> <mi>m</mi> </mrow> </mfrac> </mrow> <annotation encoding="application/x-tex">{\displaystyle N \over {A.m}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/07bb047e36d0b111e0f3ff33a4ce91452b580fa2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:5.654ex; height:5.343ex;" alt="{\displaystyle N \over {A.m}}"></span><br /> <p><a href="/wiki/%D0%A2%D0%B5%D1%81%D0%BB%D0%B0" class="mw-redirect" title="Тесла">тèсла</a>, <a href="/wiki/%D0%92%D0%B5%D0%B1%D0%B5%D1%80" class="mw-disambig" title="Вебер">вебер</a> на квадратен метър<br /> или <a href="/wiki/%D0%9D%D1%8E%D1%82%D0%BE%D0%BD" title="Нютон">Нютон</a>/(Ампер.метър) </p> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \rho \ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>&#x03C1;<!-- ρ --></mi> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \rho \ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d7dff7ad612756660f48dc7d749cccd21947e34" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.363ex; height:2.176ex;" alt="{\displaystyle \ \rho \ }"></span> </td> <td>Плътност на свободните електрични заряди <br /> (не се включват свързаните диполни двойки) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C/m^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C/m^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc07da29593d4fc85dc2d3f3075d8787163c3c8f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.023ex; height:3.176ex;" alt="{\displaystyle C/m^{3}}"></span> <br /> <a href="/wiki/%D0%9A%D1%83%D0%BB%D0%BE%D0%BD" title="Кулон">кулон</a> на кубически метър </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {J_{e}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">J</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {J_{e}} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f07e432263f29c8e15e69414392d2b8f0a74355f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.479ex; height:2.509ex;" alt="{\displaystyle \mathbf {J_{e}} }"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {i_{e}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {i_{e}} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3fe88f38cecb57e224a63d960c719c35e22c7b55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.841ex; height:2.509ex;" alt="{\displaystyle \mathbf {i_{e}} }"></span> </td> <td>Плътност на електрическия ток <br /> (не включва поляризационните токове и токовете на намагнитване в средата) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A/m^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A/m^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b1a3769dafdded0498f0d4367d7c7aa658ed549" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6ex; height:3.176ex;" alt="{\displaystyle A/m^{2}}"></span><br /> ампер на квадратен метър </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {J_{m}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">J</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">m</mi> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {J_{m}} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b31b407e379e5189f1197979bb3fb433d3c08d89" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.187ex; height:2.509ex;" alt="{\displaystyle \mathbf {J_{m}} }"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {i_{m}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">m</mi> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {i_{m}} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0035ec53ebf3c78c3eb5009cc13a0171fac937b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.548ex; height:2.509ex;" alt="{\displaystyle \mathbf {i_{m}} }"></span> </td> <td>Плътност на магнитния ток <br /> (не включва поляризационните токове и токовете на намагнитване в средата) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A/m^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A/m^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b1a3769dafdded0498f0d4367d7c7aa658ed549" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6ex; height:3.176ex;" alt="{\displaystyle A/m^{2}}"></span><br /> ампер на квадратен метър </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d\mathbf {S} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">S</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d\mathbf {S} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85031f8c63b2820ef433af18cbfcc200825ea669" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.701ex; height:2.176ex;" alt="{\displaystyle d\mathbf {S} }"></span> </td> <td>Диференциален вектор, равен по дължина на площта на пренебрежимо малка област <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15a2efec755f08f95da4e8d1f7f2682861fb59be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.435ex; height:2.176ex;" alt="{\displaystyle \Delta S}"></span> → <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span>, с посока по нормалата към повърхността на тази област </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/00d80831ded84ee5d9e1708e304c8868aa246409" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.095ex; height:2.676ex;" alt="{\displaystyle m^{2}}"></span><br /> квадратен метър </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle dV\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>V</mi> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle dV\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3e7717b132e47bb5a4652f38bc82a6c792f52a4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.584ex; height:2.176ex;" alt="{\displaystyle dV\ }"></span> </td> <td>Диференциален елемент от обема <i>V</i> заграден от повърхност <i>S</i> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d82e1360e3e15a1995e28786d2792622e644cd88" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.095ex; height:2.676ex;" alt="{\displaystyle m^{3}}"></span><br /> кубически метър </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d\mathbf {l} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">l</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d\mathbf {l} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/58afb50a9576c617402bccd032d0a251f63b6abb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.958ex; height:2.176ex;" alt="{\displaystyle d\mathbf {l} }"></span> </td> <td>Диференциален вектор на елемента от пътя, с посока по <a href="/wiki/%D0%A2%D0%B0%D0%BD%D0%B3%D0%B5%D0%BD%D1%82%D0%B0" class="mw-redirect" title="Тангента">тангентата</a> към затворен контур <i>C</i>, заграждащ площ <i>S</i> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span> <br /> метър </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \cdot }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \cdot }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6df6024211b717870f07844116e116b2eb314d12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.583ex; height:2.176ex;" alt="{\displaystyle \nabla \cdot }"></span> </td> <td><a href="/wiki/%D0%94%D0%B8%D0%B2%D0%B5%D1%80%D0%B3%D0%B5%D0%BD%D1%86%D0%B8%D1%8F_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Дивергенция (математика)">Дивергенция</a> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1/m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1/m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/398c16f942e75bc5908ad484918c54794cfbe477" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.365ex; height:2.843ex;" alt="{\displaystyle 1/m}"></span> <br /> единица на метър </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \times }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x00D7;<!-- × --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \times }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8255aabfb5dba42ab97b2bf70d0dd19a9849a5eb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.744ex; height:2.176ex;" alt="{\displaystyle \nabla \times }"></span> </td> <td><a href="/wiki/%D0%A0%D0%BE%D1%82%D0%B0%D1%86%D0%B8%D1%8F_(%D0%B4%D0%B8%D1%84%D0%B5%D1%80%D0%B5%D0%BD%D1%86%D0%B8%D0%B0%D0%BB%D0%B5%D0%BD_%D0%BE%D0%BF%D0%B5%D1%80%D0%B0%D1%82%D0%BE%D1%80)" title="Ротация (диференциален оператор)">Ротация</a> или завихряне </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1/m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1/m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/398c16f942e75bc5908ad484918c54794cfbe477" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.365ex; height:2.843ex;" alt="{\displaystyle 1/m}"></span> <br /> единица на метър </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \cdot }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \cdot }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6df6024211b717870f07844116e116b2eb314d12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.583ex; height:2.176ex;" alt="{\displaystyle \nabla \cdot }"></span> </td> <td><a href="/wiki/%D0%93%D1%80%D0%B0%D0%B4%D0%B8%D0%B5%D0%BD%D1%82" title="Градиент">Градиент</a> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1/m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1/m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/398c16f942e75bc5908ad484918c54794cfbe477" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.365ex; height:2.843ex;" alt="{\displaystyle 1/m}"></span> <br /> единица на метър </td></tr></tbody></table> <div class="mw-heading mw-heading2"><h2 id="Основни_зависимости"><span id=".D0.9E.D1.81.D0.BD.D0.BE.D0.B2.D0.BD.D0.B8_.D0.B7.D0.B0.D0.B2.D0.B8.D1.81.D0.B8.D0.BC.D0.BE.D1.81.D1.82.D0.B8"></span>Основни зависимости</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0&amp;veaction=edit&amp;section=4" title="Редактиране на раздел: Основни зависимости" class="mw-editsection-visualeditor"><span>редактиране</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0&amp;action=edit&amp;section=4" title="Edit section&#039;s source code: Основни зависимости"><span>редактиране на кода</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Основните зависимости в електродинамиката се определят от четирите <a href="/wiki/%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB" title="Уравнения на Максуел">уравнения на Максуел</a>: </p> <table border="1" cellpadding="8" cellspacing="0"> <tbody><tr style="background-color: #aaeecc;"> <th>№ </th> <th>Наименование </th> <th><a href="/wiki/%D0%94%D0%B8%D1%84%D0%B5%D1%80%D0%B5%D0%BD%D1%86%D0%B8%D0%B0%D0%BB" class="mw-redirect mw-disambig" title="Диференциал">Диференциална</a> форма </th> <th><a href="/wiki/%D0%98%D0%BD%D1%82%D0%B5%D0%B3%D1%80%D0%B0%D0%BB" title="Интеграл">Интегрална</a> форма </th></tr> <tr> <td>1 </td> <td>Закон на Ампер– <br /> (в разширения от Максуел вариант): </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \times \mathbf {H} =\mathbf {J_{np}} +{\frac {\partial \mathbf {D} }{\partial t}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">H</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">J</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> <mi mathvariant="bold">p</mi> </mrow> </msub> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \times \mathbf {H} =\mathbf {J_{np}} +{\frac {\partial \mathbf {D} }{\partial t}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5133c1bf3c1b65372533c91def1d5dfd68ca6f26" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:20.724ex; height:5.509ex;" alt="{\displaystyle \nabla \times \mathbf {H} =\mathbf {J_{np}} +{\frac {\partial \mathbf {D} }{\partial t}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \oint _{L}\mathbf {H} \cdot d\mathbf {l} =\int _{S}\mathbf {J_{np}} \cdot d\mathbf {S} +{d \over dt}\int _{S}\mathbf {D} \cdot d\mathbf {S} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo>&#x222E;<!-- ∮ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">H</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">l</mi> </mrow> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">J</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> <mi mathvariant="bold">p</mi> </mrow> </msub> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">S</mi> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">S</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \oint _{L}\mathbf {H} \cdot d\mathbf {l} =\int _{S}\mathbf {J_{np}} \cdot d\mathbf {S} +{d \over dt}\int _{S}\mathbf {D} \cdot d\mathbf {S} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65116a8616b63720394f391949bfba3a2dad763e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:38.445ex; height:5.843ex;" alt="{\displaystyle \oint _{L}\mathbf {H} \cdot d\mathbf {l} =\int _{S}\mathbf {J_{np}} \cdot d\mathbf {S} +{d \over dt}\int _{S}\mathbf {D} \cdot d\mathbf {S} }"></span> </td></tr> <tr> <td>2 </td> <td>Закон на Фарадей <br /> <p>за промяна на магнитната индукция </p> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \times \mathbf {E} =-{\frac {\partial \mathbf {B} }{\partial t}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \times \mathbf {E} =-{\frac {\partial \mathbf {B} }{\partial t}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2eb118e22c941e34f5537dbbdcaa3d7ba23603e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:15.495ex; height:5.509ex;" alt="{\displaystyle \nabla \times \mathbf {E} =-{\frac {\partial \mathbf {B} }{\partial t}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \oint _{L}\mathbf {E} \cdot d\mathbf {l} =-\ {d \over dt}\int _{S}\mathbf {B} \cdot d\mathbf {S} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo>&#x222E;<!-- ∮ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">l</mi> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">S</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \oint _{L}\mathbf {E} \cdot d\mathbf {l} =-\ {d \over dt}\int _{S}\mathbf {B} \cdot d\mathbf {S} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0d33a3b23c462817c67dbfdb487169451f77bc5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:26.444ex; height:5.843ex;" alt="{\displaystyle \oint _{L}\mathbf {E} \cdot d\mathbf {l} =-\ {d \over dt}\int _{S}\mathbf {B} \cdot d\mathbf {S} }"></span> </td></tr> <tr> <td>3 </td> <td><a href="/wiki/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD_%D0%BD%D0%B0_%D0%93%D0%B0%D1%83%D1%81" class="mw-redirect" title="Закон на Гаус">Закон на Гаус</a> за <br /> <p>потока на електричната индукция </p> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \cdot \mathbf {D} =\rho }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> <mo>=</mo> <mi>&#x03C1;<!-- ρ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \cdot \mathbf {D} =\rho }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76835fc646d3912b71f4157618db7fdca02a174e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.965ex; height:2.676ex;" alt="{\displaystyle \nabla \cdot \mathbf {D} =\rho }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \oint _{S}\mathbf {D} \cdot d\mathbf {S} =\int _{V}\rho \cdot dV}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo>&#x222E;<!-- ∮ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">S</mi> </mrow> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> </mrow> </msub> <mi>&#x03C1;<!-- ρ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>d</mi> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \oint _{S}\mathbf {D} \cdot d\mathbf {S} =\int _{V}\rho \cdot dV}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/98adafd836a7b411605bfef427e4667752dca4a4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:21.56ex; height:5.676ex;" alt="{\displaystyle \oint _{S}\mathbf {D} \cdot d\mathbf {S} =\int _{V}\rho \cdot dV}"></span> </td></tr> <tr> <td>4 </td> <td>Закон на Гаус за <br /> потока на магнитната индукция </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \cdot \mathbf {B} =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \cdot \mathbf {B} =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16ee950683349dacdd9e9c262ff6133812747edd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.777ex; height:2.176ex;" alt="{\displaystyle \nabla \cdot \mathbf {B} =0}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \oint _{S}\mathbf {B} \cdot d\mathbf {S} =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo>&#x222E;<!-- ∮ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">S</mi> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \oint _{S}\mathbf {B} \cdot d\mathbf {S} =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5485477dab99dbe4671de4c13baeaef9c4c02898" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:13.514ex; height:5.676ex;" alt="{\displaystyle \oint _{S}\mathbf {B} \cdot d\mathbf {S} =0}"></span> </td></tr></tbody></table> <p><b>1. Закон на Ампер-Максуел (закон на Ампер за пълния ток)</b>. Циркулацията на вектора на напрегнатостта на магнитното поле по затворен контур е равна на пълния ток, преминаващ през произволна повърхнина, ограничена от контура: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \oint _{L}\mathbf {H} \cdot d\mathbf {l} =I_{np}+I_{c}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo>&#x222E;<!-- ∮ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">H</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">l</mi> </mrow> <mo>=</mo> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mi>p</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \oint _{L}\mathbf {H} \cdot d\mathbf {l} =I_{np}+I_{c}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dbfe83ccc083226d63662749d41e811ccdb148b3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:19.734ex; height:5.676ex;" alt="{\displaystyle \oint _{L}\mathbf {H} \cdot d\mathbf {l} =I_{np}+I_{c}}"></span></dd></dl> <p>Максуел полага, че величината <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i_{c}={{I_{c}} \over {S}}=\varepsilon {{dE} \over {dt}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mi>E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i_{c}={{I_{c}} \over {S}}=\varepsilon {{dE} \over {dt}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eab10ad870c72079fe20bcb06259c38c5cd88a1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:15.658ex; height:5.509ex;" alt="{\displaystyle i_{c}={{I_{c}} \over {S}}=\varepsilon {{dE} \over {dt}}}"></span> има смисъла на плътност на ток <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{c}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I_{c}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7463de5fff5fee0c540ac1d8cd1aca43f4852c65" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.967ex; height:2.509ex;" alt="{\displaystyle I_{c}}"></span>, протичащ през останалата част от затворената повърхност извън областта <i>L</i>, който нарича <i>ток на сместване</i>. С него се обяснява пренасянето на електрична енергия през непроводящи среди чрез изменение на електричното поле във времето. Пълният ток <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span> е сума от тока на проводимост <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{np}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I_{np}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a2eb7dbebc3348c13948bc8e3287b4840fe81bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.068ex; height:2.843ex;" alt="{\displaystyle I_{np}}"></span> и тока на сместване <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{c}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I_{c}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7463de5fff5fee0c540ac1d8cd1aca43f4852c65" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.967ex; height:2.509ex;" alt="{\displaystyle I_{c}}"></span>: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I=I_{np}+I_{c}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo>=</mo> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mi>p</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I=I_{np}+I_{c}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3142347cdd617b0ab3cd3e438474dba832706ead" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:12.146ex; height:2.843ex;" alt="{\displaystyle I=I_{np}+I_{c}}"></span>. Плътността на тока на проводимост е <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {J_{np}} =i_{np}={{I_{np}} \over {S}}=\sigma E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">J</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> <mi mathvariant="bold">p</mi> </mrow> </msub> </mrow> <mo>=</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mi>p</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mi>p</mi> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mi>&#x03C3;<!-- σ --></mi> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {J_{np}} =i_{np}={{I_{np}} \over {S}}=\sigma E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e7c2bdae2ae5e7bc945f314e5c704dd30e69473a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:22.867ex; height:5.676ex;" alt="{\displaystyle \mathbf {J_{np}} =i_{np}={{I_{np}} \over {S}}=\sigma E}"></span> </p><p>Законът на Ампер-Максуел в интегрална форма може да се запише и чрез магнитната индукция <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {B} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {B} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cafb0ef39b0f5ffa23c170aa7f7b4e718327c4d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.901ex; height:2.176ex;" alt="{\displaystyle \mathbf {B} }"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \oint _{L}\mathbf {B} \cdot d\mathbf {l} =\mu .(I_{np}+I_{c})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo>&#x222E;<!-- ∮ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">l</mi> </mrow> <mo>=</mo> <mi>&#x03BC;<!-- μ --></mi> <mo>.</mo> <mo stretchy="false">(</mo> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mi>p</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \oint _{L}\mathbf {B} \cdot d\mathbf {l} =\mu .(I_{np}+I_{c})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0228fe3b9584628177753af0b465efe221977777" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:23.789ex; height:5.676ex;" alt="{\displaystyle \oint _{L}\mathbf {B} \cdot d\mathbf {l} =\mu .(I_{np}+I_{c})}"></span></dd></dl> <p>Тъй като законът важи за всяка повърхност, ако тя е безкрайно малка, като се разделят двете страни на горните равенства на <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> и се намери граничният преход на лявата част при <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15a2efec755f08f95da4e8d1f7f2682861fb59be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.435ex; height:2.176ex;" alt="{\displaystyle \Delta S}"></span> → <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span>, получава се първото уравнение на Максуел в диференциална форма: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \times \mathbf {H} =\mathbf {J_{np}} +{\frac {\partial \mathbf {D} }{\partial t}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">H</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">J</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> <mi mathvariant="bold">p</mi> </mrow> </msub> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \times \mathbf {H} =\mathbf {J_{np}} +{\frac {\partial \mathbf {D} }{\partial t}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5133c1bf3c1b65372533c91def1d5dfd68ca6f26" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:20.724ex; height:5.509ex;" alt="{\displaystyle \nabla \times \mathbf {H} =\mathbf {J_{np}} +{\frac {\partial \mathbf {D} }{\partial t}}}"></span></dd></dl> <p>или: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {rot} \mathbf {H} =\sigma \mathbf {E} +\varepsilon {\frac {\partial \mathbf {E} }{\partial t}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>rot</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">H</mi> </mrow> <mo>=</mo> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mo>+</mo> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {rot} \mathbf {H} =\sigma \mathbf {E} +\varepsilon {\frac {\partial \mathbf {E} }{\partial t}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc9ecbcc01d7fdabaed021b22d13986529c8a664" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:19.478ex; height:5.509ex;" alt="{\displaystyle \operatorname {rot} \mathbf {H} =\sigma \mathbf {E} +\varepsilon {\frac {\partial \mathbf {E} }{\partial t}}}"></span></dd></dl> <p><b>2. Закон на Фарадей за промяна на магнитната индукция.</b> Електродвижещото напрежение по затворен контур е равно на скоростта на изменение на магнитния поток (промяната на магнитната индукция) през заградената от този контур площ със знак минус: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e=\oint _{S}\mathbf {E} \cdot d\mathbf {S} =-{\frac {d\Phi _{\mathbf {m} }}{dt}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>e</mi> <mo>=</mo> <msub> <mo>&#x222E;<!-- ∮ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">S</mi> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <msub> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">m</mi> </mrow> </mrow> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e=\oint _{S}\mathbf {E} \cdot d\mathbf {S} =-{\frac {d\Phi _{\mathbf {m} }}{dt}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/518d781f5ac31992d6932dd135d88f77d3f148fe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:23.734ex; height:5.843ex;" alt="{\displaystyle e=\oint _{S}\mathbf {E} \cdot d\mathbf {S} =-{\frac {d\Phi _{\mathbf {m} }}{dt}}}"></span> ,</dd></dl> <p>където <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Phi _{\mathbf {m} }=\int _{S}\mathbf {B} \cdot d\mathbf {S} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">m</mi> </mrow> </mrow> </msub> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">S</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Phi _{\mathbf {m} }=\int _{S}\mathbf {B} \cdot d\mathbf {S} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/69aa916e68dc74f34d3b95179f6cb7111c7a5b2e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:15.836ex; height:5.676ex;" alt="{\displaystyle \Phi _{\mathbf {m} }=\int _{S}\mathbf {B} \cdot d\mathbf {S} }"></span> e магнитният поток през областта с площ <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span>. </p><p>Тъй като законът важи за всяка повърхност, ако тя е безкрайно малка, като се разделят двете страни на горното равенство на <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> и се намери граничният преход на лявата част при <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15a2efec755f08f95da4e8d1f7f2682861fb59be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.435ex; height:2.176ex;" alt="{\displaystyle \Delta S}"></span> → <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span>, получава се второто уравнение на Максуел в диференциална форма: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \times \mathbf {E} =-{\frac {dB}{dt}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>B</mi> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \times \mathbf {E} =-{\frac {dB}{dt}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/051f66d918686231833599d8c5bca545e13395ec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:15.256ex; height:5.509ex;" alt="{\displaystyle \nabla \times \mathbf {E} =-{\frac {dB}{dt}}}"></span> или</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {rot} \mathbf {E} =-\mu {\frac {\partial \mathbf {H} }{\partial t}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>rot</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">H</mi> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {rot} \mathbf {E} =-\mu {\frac {\partial \mathbf {H} }{\partial t}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83a3c05ed97e69616311f32221fdfb3ffc4814f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:15.677ex; height:5.509ex;" alt="{\displaystyle \operatorname {rot} \mathbf {E} =-\mu {\frac {\partial \mathbf {H} }{\partial t}}}"></span>.</dd></dl> <p><b>3. <a href="/wiki/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD_%D0%BD%D0%B0_%D0%93%D0%B0%D1%83%D1%81" class="mw-redirect" title="Закон на Гаус">Закон на Гаус</a> за потока на електричната индукция.</b> Потокът на електричната индукция през затворена повърхност е равен на обемната плътност на свободните заряди в обема, заграден от повърхността: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\Phi _{e}} =\oint _{S}\mathbf {D} \cdot d\mathbf {S} ={\rho }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">&#x03A6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </msub> </mrow> <mo>=</mo> <msub> <mo>&#x222E;<!-- ∮ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">S</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C1;<!-- ρ --></mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {\Phi _{e}} =\oint _{S}\mathbf {D} \cdot d\mathbf {S} ={\rho }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e241146eb99e6a7964ef22a3f6ba194f6cb5dca7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:19.831ex; height:5.676ex;" alt="{\displaystyle \mathbf {\Phi _{e}} =\oint _{S}\mathbf {D} \cdot d\mathbf {S} ={\rho }}"></span> или</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\Phi _{e}} =\oint _{S}\mathbf {E} \cdot d\mathbf {S} ={\rho \over {\varepsilon }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">&#x03A6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </msub> </mrow> <mo>=</mo> <msub> <mo>&#x222E;<!-- ∮ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">S</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B5;<!-- ε --></mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {\Phi _{e}} =\oint _{S}\mathbf {E} \cdot d\mathbf {S} ={\rho \over {\varepsilon }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42334ac0fda495acf3192a7100c0c9bcb0e9e5c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:20.374ex; height:5.676ex;" alt="{\displaystyle \mathbf {\Phi _{e}} =\oint _{S}\mathbf {E} \cdot d\mathbf {S} ={\rho \over {\varepsilon }}}"></span>.</dd></dl> <p>При безкрайно малка повърхност <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15a2efec755f08f95da4e8d1f7f2682861fb59be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.435ex; height:2.176ex;" alt="{\displaystyle \Delta S}"></span> → <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span> аналогично се получава третото уравнение на Максуел в диференциален вид: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \cdot \mathbf {D} ={\rho }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C1;<!-- ρ --></mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \cdot \mathbf {D} ={\rho }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/353fbcf2408b5c4c98499e67c5e43fd8306b67b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.965ex; height:2.676ex;" alt="{\displaystyle \nabla \cdot \mathbf {D} ={\rho }}"></span> и <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \cdot \mathbf {E} ={{\rho } \over {\varepsilon }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C1;<!-- ρ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B5;<!-- ε --></mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \cdot \mathbf {E} ={{\rho } \over {\varepsilon }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bfe0844cd6d43d079dd4941fb70add421b50eb7e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:10.509ex; height:4.843ex;" alt="{\displaystyle \nabla \cdot \mathbf {E} ={{\rho } \over {\varepsilon }}}"></span> или</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {div} \mathbf {D} ={\rho }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>div</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C1;<!-- ρ --></mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {div} \mathbf {D} ={\rho }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76749687da6b09e43ac0c9f8fa90976e58f75e5d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.904ex; height:2.676ex;" alt="{\displaystyle \operatorname {div} \mathbf {D} ={\rho }}"></span> и <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {div} \mathbf {E} ={\frac {\rho }{\varepsilon }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>div</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C1;<!-- ρ --></mi> <mi>&#x03B5;<!-- ε --></mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {div} \mathbf {E} ={\frac {\rho }{\varepsilon }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95eabf667296fb2304afae99cbaf246dc4ded751" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:10.448ex; height:4.843ex;" alt="{\displaystyle \operatorname {div} \mathbf {E} ={\frac {\rho }{\varepsilon }}}"></span>.</dd></dl> <p>Ако средата е идеален диелектрик, няма свободни заряди, обемната им плътност <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C1;<!-- ρ --></mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ba6310b27df5f9c9b0b1732e08cce27b99d68cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.463ex; height:2.676ex;" alt="{\displaystyle \rho =0}"></span> и записите на теоремата на Гаус добиват вида: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \cdot \mathbf {D} =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \cdot \mathbf {D} =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9090472e24557b8c02000e3ed9e20afe3ff7f681" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.926ex; height:2.176ex;" alt="{\displaystyle \nabla \cdot \mathbf {D} =0}"></span> и <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \cdot \mathbf {E} =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \cdot \mathbf {E} =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bcbd9a4bd688b1331c2fd3c7fd1d50f0bf87fc28" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.633ex; height:2.176ex;" alt="{\displaystyle \nabla \cdot \mathbf {E} =0}"></span> или</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {div} \mathbf {D} =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>div</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {div} \mathbf {D} =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e142d98770586d036f450ae20a11dbcb0b2c8c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.865ex; height:2.176ex;" alt="{\displaystyle \operatorname {div} \mathbf {D} =0}"></span> и <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {div} \mathbf {E} =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>div</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {div} \mathbf {E} =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51672829acd7dcfebe3f9876f156b3506de48c64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.572ex; height:2.176ex;" alt="{\displaystyle \operatorname {div} \mathbf {E} =0}"></span>.</dd></dl> <p>Това означава, че силовите линии на електрическото поле в идеален диелектрик са непрекъснати. </p><p><b>4. Закон на Гаус за потока на магнитната индукция.</b> Потокът на магнитната индукция през затворена повърхност е равен на нула. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\Phi _{m}} =\oint _{S}\mathbf {B} \cdot d\mathbf {S} =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">&#x03A6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">m</mi> </mrow> </msub> </mrow> <mo>=</mo> <msub> <mo>&#x222E;<!-- ∮ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">S</mi> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {\Phi _{m}} =\oint _{S}\mathbf {B} \cdot d\mathbf {S} =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/013c2e8ef55f6e334d2794b621276b54cf2169aa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:20.35ex; height:5.676ex;" alt="{\displaystyle \mathbf {\Phi _{m}} =\oint _{S}\mathbf {B} \cdot d\mathbf {S} =0}"></span></dd></dl> <p>При безкрайно малка повърхност <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15a2efec755f08f95da4e8d1f7f2682861fb59be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.435ex; height:2.176ex;" alt="{\displaystyle \Delta S}"></span> → <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span> аналогично се получава четвъртото уравнение на Максуел в диференциален вид: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \cdot \mathbf {B} =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \cdot \mathbf {B} =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16ee950683349dacdd9e9c262ff6133812747edd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.777ex; height:2.176ex;" alt="{\displaystyle \nabla \cdot \mathbf {B} =0}"></span> и <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \cdot \mathbf {H} =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">H</mi> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \cdot \mathbf {H} =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e846b782b4d2bf2e7e4d1dbbd6741cc1cb81bfc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.967ex; height:2.176ex;" alt="{\displaystyle \nabla \cdot \mathbf {H} =0}"></span>, или</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {div} \mathbf {B} =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>div</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {div} \mathbf {B} =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/be7ee28e407714a5f9488cb33677e68a7b30fa05" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.716ex; height:2.176ex;" alt="{\displaystyle \operatorname {div} \mathbf {B} =0}"></span> и <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {div} \mathbf {H} =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>div</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">H</mi> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {div} \mathbf {H} =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c71dbb940d774bf587cd841a52376e0744cf6588" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.906ex; height:2.176ex;" alt="{\displaystyle \operatorname {div} \mathbf {H} =0}"></span>.</dd></dl> <p>Следователно, силовите линии на магнитното поле винаги са непрекъснати. </p> <ul id="bandeau-portal" class="bandeau-portal"><li><span class="bandeau-portal-element"><span class="bandeau-portal-icon"><span typeof="mw:File"><a href="/wiki/%D0%9F%D0%BE%D1%80%D1%82%D0%B0%D0%BB:%D0%A4%D0%B8%D0%B7%D0%B8%D0%BA%D0%B0" title="Портал:Физика"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/cc/Logo_physics.svg/24px-Logo_physics.svg.png" decoding="async" width="24" height="24" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/cc/Logo_physics.svg/36px-Logo_physics.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/cc/Logo_physics.svg/48px-Logo_physics.svg.png 2x" data-file-width="438" data-file-height="438" /></a></span></span> <span class="bandeau-portal-text"><a href="/wiki/%D0%9F%D0%BE%D1%80%D1%82%D0%B0%D0%BB:%D0%A4%D0%B8%D0%B7%D0%B8%D0%BA%D0%B0" title="Портал:Физика">Портал „Физика“</a></span> </span></li></ul> <table cellspacing="0" class="navbox" style="border-spacing:0;"><tbody><tr><td style="padding:2px;"><table cellspacing="0" class="collapsible collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit;"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div class="plainlinks hlist navbar mini"><ul><li class="nv-view"><a href="/wiki/%D0%A8%D0%B0%D0%B1%D0%BB%D0%BE%D0%BD:%D0%A4%D0%B8%D0%B7%D0%B8%D0%BA%D0%B0_%D1%80%D0%B0%D0%B7%D0%B4%D0%B5%D0%BB%D0%B8" title="Шаблон:Физика раздели"><abbr title="Преглед на шаблона" style=";;background:none transparent;border:none;">п</abbr></a></li><li class="nv-talk"><a class="external text" href="https://bg.wikipedia.org/w/index.php?title=%D0%A8%D0%B0%D0%B1%D0%BB%D0%BE%D0%BD_%D0%B1%D0%B5%D1%81%D0%B5%D0%B4%D0%B0%3A%D0%A4%D0%B8%D0%B7%D0%B8%D0%BA%D0%B0_%D1%80%D0%B0%D0%B7%D0%B4%D0%B5%D0%BB%D0%B8&amp;action=edit&amp;redlink=1"><abbr title="Беседа на шаблона (страницата не съществува)" style="color:#ba0000;;;background:none transparent;border:none;">б</abbr></a></li><li class="nv-edit"><a class="external text" href="https://bg.wikipedia.org/w/index.php?title=%D0%A8%D0%B0%D0%B1%D0%BB%D0%BE%D0%BD:%D0%A4%D0%B8%D0%B7%D0%B8%D0%BA%D0%B0_%D1%80%D0%B0%D0%B7%D0%B4%D0%B5%D0%BB%D0%B8&amp;action=edit"><abbr title="Редактиране на шаблона" style=";;background:none transparent;border:none;">р</abbr></a></li></ul></div><div style="font-size:110%;"> Раздели на <a href="/wiki/%D0%A4%D0%B8%D0%B7%D0%B8%D0%BA%D0%B0" title="Физика">физиката</a></div></th></tr><tr style="height:2px;"><td></td></tr><tr><td colspan="2" class="navbox-list nowraplinks navbox-odd" style="width:100%;padding:0px;"><div style="padding:0em 0.25em;"> <a href="/wiki/%D0%90%D0%BA%D1%83%D1%81%D1%82%D0%B8%D0%BA%D0%B0" title="Акустика">Акустика</a><span style="font-weight:bold;">&#160;·</span>&#32; <a href="/wiki/%D0%90%D1%81%D1%82%D1%80%D0%BE%D0%BD%D0%BE%D0%BC%D0%B8%D1%8F" title="Астрономия">Астрономия</a><span style="font-weight:bold;">&#160;·</span>&#32; <a href="/wiki/%D0%90%D1%81%D1%82%D1%80%D0%BE%D1%84%D0%B8%D0%B7%D0%B8%D0%BA%D0%B0" title="Астрофизика">Астрофизика</a><span style="font-weight:bold;">&#160;·</span>&#32; <a href="/wiki/%D0%90%D1%82%D0%BC%D0%BE%D1%81%D1%84%D0%B5%D1%80%D0%BD%D0%B0_%D1%84%D0%B8%D0%B7%D0%B8%D0%BA%D0%B0" title="Атмосферна физика">Атмосферна физика</a><span style="font-weight:bold;">&#160;·</span>&#32; <a href="/wiki/%D0%90%D1%82%D0%BE%D0%BC%D0%BD%D0%B0,_%D0%BC%D0%BE%D0%BB%D0%B5%D0%BA%D1%83%D0%BB%D1%8F%D1%80%D0%BD%D0%B0_%D0%B8_%D0%BE%D0%BF%D1%82%D0%B8%D1%87%D0%BD%D0%B0_%D1%84%D0%B8%D0%B7%D0%B8%D0%BA%D0%B0" title="Атомна, молекулярна и оптична физика">Атомна, молекулярна и оптична физика</a><span style="font-weight:bold;">&#160;·</span>&#32; <a href="/wiki/%D0%91%D0%B8%D0%BE%D1%84%D0%B8%D0%B7%D0%B8%D0%BA%D0%B0" title="Биофизика">Биофизика</a> (<small><a href="/wiki/%D0%9C%D0%B5%D0%B4%D0%B8%D1%86%D0%B8%D0%BD%D1%81%D0%BA%D0%B0_%D1%84%D0%B8%D0%B7%D0%B8%D0%BA%D0%B0" title="Медицинска физика">Медицинска физика</a><span style="font-weight:bold;">&#160;·</span>&#32; <a href="/wiki/%D0%9D%D0%B5%D0%B2%D1%80%D0%BE%D1%84%D0%B8%D0%B7%D0%B8%D0%BA%D0%B0" title="Неврофизика">Неврофизика</a></small>)<span style="font-weight:bold;">&#160;·</span>&#32; <a href="/wiki/%D0%93%D0%B5%D0%BE%D1%84%D0%B8%D0%B7%D0%B8%D0%BA%D0%B0" title="Геофизика">Геофизика</a><span style="font-weight:bold;">&#160;·</span>&#32; <a class="mw-selflink selflink">Електродинамика</a><span style="font-weight:bold;">&#160;·</span>&#32; <a href="/wiki/%D0%9A%D0%B2%D0%B0%D0%BD%D1%82%D0%BE%D0%B2%D0%B0_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%BF%D0%BE%D0%BB%D0%B5%D1%82%D0%BE" title="Квантова теория на полето">Квантова теория на полето</a><span style="font-weight:bold;">&#160;·</span>&#32; <a href="/wiki/%D0%9A%D0%B2%D0%B0%D0%BD%D1%82%D0%BE%D0%B2%D0%B0_%D1%84%D0%B8%D0%B7%D0%B8%D0%BA%D0%B0" title="Квантова физика">Квантова физика</a><span style="font-weight:bold;">&#160;·</span>&#32; <a href="/wiki/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0_%D1%84%D0%B8%D0%B7%D0%B8%D0%BA%D0%B0" title="Математическа физика">Математическа физика</a><span style="font-weight:bold;">&#160;·</span>&#32; <a href="/wiki/%D0%9C%D0%B5%D1%85%D0%B0%D0%BD%D0%B8%D0%BA%D0%B0" title="Механика">Механика</a> (<small><a href="/wiki/%D0%9A%D0%BB%D0%B0%D1%81%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0_%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D0%B8%D0%BA%D0%B0" title="Класическа механика">Класическа механика</a><span style="font-weight:bold;">&#160;·</span>&#32; <a href="/wiki/%D0%9C%D0%B5%D1%85%D0%B0%D0%BD%D0%B8%D0%BA%D0%B0_%D0%BD%D0%B0_%D0%BD%D0%B5%D0%BF%D1%80%D0%B5%D0%BA%D1%8A%D1%81%D0%BD%D0%B0%D1%82%D0%B8%D1%82%D0%B5_%D1%81%D1%80%D0%B5%D0%B4%D0%B8" title="Механика на непрекъснатите среди">Механика на непрекъснатите среди</a><span style="font-weight:bold;">&#160;·</span>&#32; <a href="/wiki/%D0%9A%D0%B2%D0%B0%D0%BD%D1%82%D0%BE%D0%B2%D0%B0_%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D0%B8%D0%BA%D0%B0" title="Квантова механика">Квантова механика</a><span style="font-weight:bold;">&#160;·</span>&#32; <a href="/wiki/%D0%9C%D0%B5%D1%85%D0%B0%D0%BD%D0%B8%D0%BA%D0%B0_%D0%BD%D0%B0_%D1%84%D0%BB%D1%83%D0%B8%D0%B4%D0%B8%D1%82%D0%B5" title="Механика на флуидите">Механика на флуидите</a></small>)<span style="font-weight:bold;">&#160;·</span>&#32; <a href="/wiki/%D0%9D%D0%B5%D0%BB%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D0%B0_%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0" class="mw-redirect" title="Нелинейна динамика">Нелинейна динамика</a><span style="font-weight:bold;">&#160;·</span>&#32; <a href="/wiki/%D0%9E%D0%BF%D1%82%D0%B8%D0%BA%D0%B0" title="Оптика">Оптика</a><span style="font-weight:bold;">&#160;·</span>&#32; <a href="/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D0%B0%D0%BB%D0%BD%D0%B0_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%BE%D1%82%D0%BD%D0%BE%D1%81%D0%B8%D1%82%D0%B5%D0%BB%D0%BD%D0%BE%D1%81%D1%82%D1%82%D0%B0" title="Специална теория на относителността">Специална</a> и <a href="/wiki/%D0%9E%D0%B1%D1%89%D0%B0_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%BE%D1%82%D0%BD%D0%BE%D1%81%D0%B8%D1%82%D0%B5%D0%BB%D0%BD%D0%BE%D1%81%D1%82%D1%82%D0%B0" title="Обща теория на относителността">обща теория</a> на <a href="/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%BE%D1%82%D0%BD%D0%BE%D1%81%D0%B8%D1%82%D0%B5%D0%BB%D0%BD%D0%BE%D1%81%D1%82%D1%82%D0%B0" title="Теория на относителността">относителността</a><span style="font-weight:bold;">&#160;·</span>&#32; <a href="/wiki/%D0%A1%D1%82%D0%B0%D1%82%D0%B8%D1%81%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0_%D1%84%D0%B8%D0%B7%D0%B8%D0%BA%D0%B0" class="mw-redirect" title="Статистическа физика">Статистическа физика</a><span style="font-weight:bold;">&#160;·</span>&#32; <a href="/wiki/%D0%A2%D0%B5%D1%80%D0%BC%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0" title="Термодинамика">Термодинамика</a><span style="font-weight:bold;">&#160;·</span>&#32; <a href="/wiki/%D0%A4%D0%B8%D0%B7%D0%B8%D0%BA%D0%B0_%D0%BD%D0%B0_%D0%B5%D0%BB%D0%B5%D0%BC%D0%B5%D0%BD%D1%82%D0%B0%D1%80%D0%BD%D0%B8%D1%82%D0%B5_%D1%87%D0%B0%D1%81%D1%82%D0%B8%D1%86%D0%B8" title="Физика на елементарните частици">Физика на елементарните частици</a><span style="font-weight:bold;">&#160;·</span>&#32; <a href="/wiki/%D0%A4%D0%B8%D0%B7%D0%B8%D0%BA%D0%B0_%D0%BD%D0%B0_%D1%82%D0%B2%D1%8A%D1%80%D0%B4%D0%BE%D1%82%D0%BE_%D1%82%D1%8F%D0%BB%D0%BE" title="Физика на твърдото тяло">Физика на твърдото тяло</a><span style="font-weight:bold;">&#160;·</span>&#32; <a href="/wiki/%D0%A4%D0%B8%D0%B7%D0%B8%D0%BA%D0%B0_%D0%BD%D0%B0_%D0%BA%D0%BE%D0%BD%D0%B4%D0%B5%D0%BD%D0%B7%D0%B8%D1%80%D0%B0%D0%BD%D0%B0%D1%82%D0%B0_%D0%BC%D0%B0%D1%82%D0%B5%D1%80%D0%B8%D1%8F" title="Физика на кондензираната материя">Физика на кондензираната материя</a><span style="font-weight:bold;">&#160;·</span>&#32; <a href="/wiki/%D0%A4%D0%B8%D0%B7%D0%B8%D0%BA%D0%BE%D1%85%D0%B8%D0%BC%D0%B8%D1%8F" title="Физикохимия">Физикохимия</a><span style="font-weight:bold;">&#160;·</span>&#32; <a href="/wiki/%D0%AF%D0%B4%D1%80%D0%B5%D0%BD%D0%B0_%D1%84%D0%B8%D0%B7%D0%B8%D0%BA%D0%B0" title="Ядрена физика">Ядрена физика</a></div></td></tr><tr style="height:2px;"><td></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <b><a href="/wiki/%D0%95%D0%BA%D1%81%D0%BF%D0%B5%D1%80%D0%B8%D0%BC%D0%B5%D0%BD%D1%82%D0%B0%D0%BB%D0%BD%D0%B0_%D1%84%D0%B8%D0%B7%D0%B8%D0%BA%D0%B0" title="Експериментална физика">Експериментална физика</a><span style="font-weight:bold;">&#160;·</span>&#32; <a href="/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D1%82%D0%B8%D1%87%D0%BD%D0%B0_%D1%84%D0%B8%D0%B7%D0%B8%D0%BA%D0%B0" title="Теоретична физика">Теоретична физика</a></b></div></td></tr></tbody></table></td></tr></tbody></table> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐84d8f4b96‐shpmb Cached time: 20241115053634 Cache expiry: 2592000 Reduced expiry: false Complications: [show‐toc] CPU time usage: 0.204 seconds Real time usage: 0.402 seconds Preprocessor visited node count: 766/1000000 Post‐expand include size: 35996/2097152 bytes Template argument size: 127/2097152 bytes Highest expansion depth: 9/100 Expensive parser function count: 2/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 3816/5000000 bytes Lua time usage: 0.029/10.000 seconds Lua memory usage: 1228548/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 105.616 1 -total 42.66% 45.058 1 Шаблон:Портал_Физика 39.74% 41.971 1 Шаблон:Портал_линк 35.54% 37.532 1 Шаблон:Класическа_електродинамика 31.71% 33.487 1 Шаблон:Sidebar_with_collapsible_lists 27.69% 29.246 1 Шаблон:Catégorisation_badges 17.72% 18.714 1 Шаблон:Физика_раздели 13.40% 14.152 1 Шаблон:Навигационен_шаблон 7.15% 7.550 1 Шаблон:Портал_линк/Категоризация 1.88% 1.988 26 Шаблон:· --> <!-- Saved in parser cache with key bgwiki:pcache:idhash:105323-0!canonical and timestamp 20241115053634 and revision id 11670474. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Взето от „<a dir="ltr" href="https://bg.wikipedia.org/w/index.php?title=Електродинамика&amp;oldid=11670474">https://bg.wikipedia.org/w/index.php?title=Електродинамика&amp;oldid=11670474</a>“.</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D0%B0%D0%BB%D0%BD%D0%B8:%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D0%B8" title="Специални:Категории">Категория</a>: <ul><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%8F:%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0" title="Категория:Електродинамика">Електродинамика</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Скрити категории: <ul><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%8F:%D0%98%D0%B7%D0%B1%D1%80%D0%B0%D0%BD%D0%B8_%D1%81%D1%82%D0%B0%D1%82%D0%B8%D0%B8_%D0%BD%D0%B0_%D0%BA%D0%B0%D0%BD%D1%82%D0%BE%D0%BD%D1%81%D0%BA%D0%B8" title="Категория:Избрани статии на кантонски">Избрани статии на кантонски</a></li><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%8F:%D0%9F%D0%BE%D1%80%D1%82%D0%B0%D0%BB:%D0%A4%D0%B8%D0%B7%D0%B8%D0%BA%D0%B0/%D0%A2%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D1%87%D0%BD%D0%B8_%D1%81%D1%82%D0%B0%D1%82%D0%B8%D0%B8" title="Категория:Портал:Физика/Тематични статии">Портал:Физика/Тематични статии</a></li><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%8F:%D0%9F%D1%80%D0%B5%D0%BF%D1%80%D0%B0%D1%82%D0%BA%D0%B8_%D1%81_%D0%BC%D0%B5%D1%82%D0%B0%D1%88%D0%B0%D0%B1%D0%BB%D0%BE%D0%BD%D0%B8" title="Категория:Препратки с меташаблони">Препратки с меташаблони</a></li><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%8F:%D0%9F%D0%BE%D1%80%D1%82%D0%B0%D0%BB:%D0%9D%D0%B0%D1%83%D0%BA%D0%B0/%D0%A2%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D1%87%D0%BD%D0%B8_%D1%81%D1%82%D0%B0%D1%82%D0%B8%D0%B8" title="Категория:Портал:Наука/Тематични статии">Портал:Наука/Тематични статии</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Последната промяна на страницата е извършена на 1 февруари 2023 г. в 23:07 ч.</li> <li id="footer-info-copyright">Текстът е достъпен под лиценза <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by-sa/4.0/deed.bg">Creative Commons Признание-Споделяне на споделеното</a>; може да са приложени допълнителни условия. За подробности вижте <a class="external text" href="https://foundation.wikimedia.org/wiki/Policy:Terms_of_Use/bg">Условия за ползване</a>.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Поверителност</a></li> <li id="footer-places-about"><a href="/wiki/%D0%A3%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%97%D0%B0_%D0%BA%D0%BE%D0%BD%D1%82%D0%B0%D0%BA%D1%82%D0%B8">За контакт с Уикипедия</a></li> <li id="footer-places-disclaimers"><a href="/wiki/%D0%A3%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%9F%D1%80%D0%B5%D0%B4%D1%83%D0%BF%D1%80%D0%B5%D0%B6%D0%B4%D0%B5%D0%BD%D0%B8%D0%B5">Предупреждение</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Кодекс на поведение</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">За разработчици</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/bg.wikipedia.org">Статистика</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Използване на „бисквитки“</a></li> <li id="footer-places-mobileview"><a href="//bg.m.wikipedia.org/w/index.php?title=%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Мобилен изглед</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-78s75","wgBackendResponseTime":169,"wgPageParseReport":{"limitreport":{"cputime":"0.204","walltime":"0.402","ppvisitednodes":{"value":766,"limit":1000000},"postexpandincludesize":{"value":35996,"limit":2097152},"templateargumentsize":{"value":127,"limit":2097152},"expansiondepth":{"value":9,"limit":100},"expensivefunctioncount":{"value":2,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":3816,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 105.616 1 -total"," 42.66% 45.058 1 Шаблон:Портал_Физика"," 39.74% 41.971 1 Шаблон:Портал_линк"," 35.54% 37.532 1 Шаблон:Класическа_електродинамика"," 31.71% 33.487 1 Шаблон:Sidebar_with_collapsible_lists"," 27.69% 29.246 1 Шаблон:Catégorisation_badges"," 17.72% 18.714 1 Шаблон:Физика_раздели"," 13.40% 14.152 1 Шаблон:Навигационен_шаблон"," 7.15% 7.550 1 Шаблон:Портал_линк/Категоризация"," 1.88% 1.988 26 Шаблон:·"]},"scribunto":{"limitreport-timeusage":{"value":"0.029","limit":"10.000"},"limitreport-memusage":{"value":1228548,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-84d8f4b96-shpmb","timestamp":"20241115053634","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"\u0415\u043b\u0435\u043a\u0442\u0440\u043e\u0434\u0438\u043d\u0430\u043c\u0438\u043a\u0430","url":"https:\/\/bg.wikipedia.org\/wiki\/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0","sameAs":"http:\/\/www.wikidata.org\/entity\/Q377930","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q377930","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"\u0424\u043e\u043d\u0434\u0430\u0446\u0438\u044f \u0423\u0438\u043a\u0438\u043c\u0435\u0434\u0438\u044f","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2006-09-23T16:26:49Z","dateModified":"2023-02-01T23:07:55Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/0\/07\/CoulombsLaw.svg"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10