CINXE.COM

Search results for: cellular concrete powder

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: cellular concrete powder</title> <meta name="description" content="Search results for: cellular concrete powder"> <meta name="keywords" content="cellular concrete powder"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="cellular concrete powder" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="cellular concrete powder"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3543</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: cellular concrete powder</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3543</span> Characteristics of Cement Pastes Incorporating Different Amounts of Waste Cellular Concrete Powder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Abed">Mohammed Abed</a>, <a href="https://publications.waset.org/abstracts/search?q=Rita%20Nemes"> Rita Nemes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study different amounts of waste cellular concrete powder (WCCP) as replacement of cement have been investigated as an attempt to produce green binder, which is useful for sustainable construction applications. From zero to up to 60% of WCCP by mass replacement amounts of cement has been conducted. Consistency, compressive strength, bending strength and the activity index of WCCP through seven to ninety days old specimens have been examined, where the optimum WCCP replacement was up to 30%, depending on which the activity index still increased to the end of test period (90 days) and this could be an evidence for its continuity to increase for longer age. Also up to 30% of WCCP increased the bending strength to be higher than the control one. The main point in the present study that there is a possibility of replacing cement by 30% of WCCP, however, it is preferable to be less than this amount. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellular%20concrete%20powder" title="cellular concrete powder">cellular concrete powder</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20cellular%20concrete%20powder%20%28WCCP%29" title=" waste cellular concrete powder (WCCP)"> waste cellular concrete powder (WCCP)</a>, <a href="https://publications.waset.org/abstracts/search?q=supplementary%20cementatious%20material" title=" supplementary cementatious material"> supplementary cementatious material</a>, <a href="https://publications.waset.org/abstracts/search?q=SCM" title=" SCM"> SCM</a>, <a href="https://publications.waset.org/abstracts/search?q=activity%20index" title=" activity index"> activity index</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/94806/characteristics-of-cement-pastes-incorporating-different-amounts-of-waste-cellular-concrete-powder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94806.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3542</span> Characteristics of Different Volumes of Waste Cellular Concrete Powder-Cement Paste for Sustainable Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Abed">Mohammed Abed</a>, <a href="https://publications.waset.org/abstracts/search?q=Rita%20Nemes"> Rita Nemes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cellular concrete powder (CCP) is not used widely as supplementary cementitious material, but in the literature, its efficiency is proved when it used as a replacement of cement in concrete mixtures. In this study, different amounts of raw CCP (CCP as a waste material without any industrial modification) will be used to investigate the characteristics of cement pastes and the effects of CCP on the properties of the cement pastes. It is an attempt to produce green binder paste, which is useful for sustainable construction applications. The fresh and hardened properties of a number of CCP blended cement paste will be tested in different life periods, and the optimized CCP volume will be reported with more significant investigations on durability properties. Different replacing of mass percentage (low and high) of the cement mass will be conducted (0%, 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90%). The consistency, flexural strength, and compressive strength will be the base indicator for the further properties' investigations. The CCP replacement until 50% have been tested until 7 days, and the initial results showed a linear relationship between strength and the percentage of the replacement; that is an optimistic indicator for further replacement percentages of waste CCP. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellular%20concrete%20powder" title="cellular concrete powder">cellular concrete powder</a>, <a href="https://publications.waset.org/abstracts/search?q=supplementary%20cementitious%20material" title=" supplementary cementitious material"> supplementary cementitious material</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20construction" title=" sustainable construction"> sustainable construction</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20concrete" title=" green concrete"> green concrete</a> </p> <a href="https://publications.waset.org/abstracts/85329/characteristics-of-different-volumes-of-waste-cellular-concrete-powder-cement-paste-for-sustainable-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85329.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3541</span> Unconfined Strength of Nano Reactive Silica Sand Powder Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Kabir">Hossein Kabir</a>, <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Sadeghi"> Mojtaba Sadeghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, high-strength concrete is an integral element of a variety of high-rise buildings. On the other hand, finding a suitable aggregate size distribution is a great concern; hence, the concrete mix proportion is presented that has no coarse aggregate, which still withstands enough desirable strength. Nano Reactive Silica sand powder concrete (NRSSPC) is a type of concrete with no coarse material in its own composition. In this concrete, the only aggregate found in the mix design is silica sand powder with a size less than 150 mm that is infinitesimally small regarding the normal concrete. The research aim is to find the compressive strength of this particular concrete under the applied different conditions of curing and consolidation to compare the approaches. In this study, the young concrete specimens were compacted with a pressing or vibrating process. It is worthwhile to mention that in order to show the influence of temperature in the curing process, the concrete specimen was cured either in 20 ⁰C lime water or autoclaved in 90 ⁰C oven. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reactive%20silica%20sand%20powder%20concrete%20%28RSSPC%29" title="reactive silica sand powder concrete (RSSPC)">reactive silica sand powder concrete (RSSPC)</a>, <a href="https://publications.waset.org/abstracts/search?q=consolidation" title=" consolidation"> consolidation</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=normal%20curing" title=" normal curing"> normal curing</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20accelerated%20curing" title=" thermal accelerated curing"> thermal accelerated curing</a> </p> <a href="https://publications.waset.org/abstracts/56116/unconfined-strength-of-nano-reactive-silica-sand-powder-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56116.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3540</span> Effects of the Usage of Marble Powder as Partial Replacement of Cement on the Durability of High Performance Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Talah%20Aissa">Talah Aissa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports an experimental study of the influence of marble powder used as a partial substitute for Portland cement (PC) on the mechanical properties and durability of high-performance concretes. The analysis of the experimental results on concrete at 15% content of marble powder with a fineness modulus of 11500 cm2/g, in a chloride environment, showed that it contributes positively to the perfection of its mechanical characteristics, its durability with respect to migration of chloride ions and oxygen permeability. On the basis of the experiments performed, it can be concluded that the marble powder is suitable for formulation of high performance concretes (HPC) and their properties are significantly better compared to the reference concrete (RC). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=marble%20powder" title="marble powder">marble powder</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=cement" title=" cement"> cement</a> </p> <a href="https://publications.waset.org/abstracts/34467/effects-of-the-usage-of-marble-powder-as-partial-replacement-of-cement-on-the-durability-of-high-performance-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3539</span> Durability Study of Binary Blended High Performance Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vatsal%20Patel">Vatsal Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Niraj%20Shah"> Niraj Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the results of a laboratory study on the properties of binary blended High Performance cementitious systems containing blends of ordinary Portland cement (OPC), Porcelain Powder or Marble Powder blend proportions of 100:00, 95:05, 90:10, 85:15, 80:20 for OPC: Porcelain Powder/Marble Powder. Studies on the Engineering Properties of the cementitious concrete, namely compressive strength, flexural strength, sorptivity, rapid chloride penetration test and accelerated corrosion test have been performed and those of OPC concrete. The results show that the inclusion of Porcelain powder or Marble Powder as binary blended cement alters to a great degree the properties of the binder as well as the resulting concrete. In addition, the results show that the Porcelain powder with 85:15 proportions and Marble powder with 90:10 proportions as binary systems to produce high-performance concrete could potentially be used in the concrete construction industry particular in lowering down the volume of OPC used and lowering emission of CO2 produces during manufacturing of cement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accelerated%20corrosion" title="accelerated corrosion">accelerated corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=binary%20blended%20cementitious%20system" title=" binary blended cementitious system"> binary blended cementitious system</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20chloride%20penetration" title=" rapid chloride penetration"> rapid chloride penetration</a>, <a href="https://publications.waset.org/abstracts/search?q=sorptivity" title=" sorptivity"> sorptivity</a> </p> <a href="https://publications.waset.org/abstracts/21368/durability-study-of-binary-blended-high-performance-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3538</span> XRD and Image Analysis of Low Carbon Type Recycled Cement Using Waste Cementitious Powder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyeonuk%20Shin">Hyeonuk Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Hun%20Song"> Hun Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongsik%20Chu"> Yongsik Chu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jongkyu%20Lee"> Jongkyu Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Dongcheon%20Park"> Dongcheon Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although much current research has been devoted to reusing concrete in the form of recycled aggregate, insufficient attention has been given to researching the utilization of waste concrete powder, which constitutes 20 % or more of waste concrete and therefore the majority of waste cementitious powder is currently being discarded or buried in landfills. This study consists of foundational research for the purpose of reusing waste cementitious powder in the form of recycled cement that can answer the need for low carbon green growth. Progressing beyond the conventional practice of using the waste cementitious powder as inert filler material, this study contributes to the aim of manufacturing high value added materials that exploits the chemical properties of the waste cementitious powder, by presenting a pre-treatment method for the material and an optimal method of proportioning the mix of materials to develop a low carbon type of recycled cement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Low%20carbon%20type%20cement" title="Low carbon type cement">Low carbon type cement</a>, <a href="https://publications.waset.org/abstracts/search?q=Waste%20cementitious%20%20powder" title=" Waste cementitious powder"> Waste cementitious powder</a>, <a href="https://publications.waset.org/abstracts/search?q=Waste%20recycling" title=" Waste recycling"> Waste recycling</a> </p> <a href="https://publications.waset.org/abstracts/17681/xrd-and-image-analysis-of-low-carbon-type-recycled-cement-using-waste-cementitious-powder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17681.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3537</span> Feasibility of Ground Alkali-Active Sandstone Powder for Use in Concrete as Mineral Admixture </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xia%20Chen">Xia Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Hua-Quan%20Yang"> Hua-Quan Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shi-Hua%20Zhou"> Shi-Hua Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alkali-active sandstone aggregate was ground by vertical and ball mill into particles with residue over 45 &mu;m less than 12%, and investigations have been launched on particles distribution and characterization of ground sandstone powder, fluidity, heat of hydration, strength as well as hydration products morphology of pastes with incorporation of ground sandstone powder. Results indicated that ground alkali-active sandstone powder with residue over 45 &mu;m less than 8% was easily obtainable, and specific surface area was more sensitive to characterize its fineness with extension of grinding length. Incorporation of sandstone powder resulted in higher water demand and lower strength, advanced hydration of C<sub>3</sub>A and C<sub>2</sub>S within 3days and refined pore structure. Based on its manufacturing, characteristics and influence on properties of pastes, it was concluded that sandstone powder was a good selection for use in concrete as mineral admixture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20admixture" title=" mineral admixture"> mineral admixture</a>, <a href="https://publications.waset.org/abstracts/search?q=hydration" title=" hydration"> hydration</a>, <a href="https://publications.waset.org/abstracts/search?q=structure" title=" structure"> structure</a> </p> <a href="https://publications.waset.org/abstracts/89811/feasibility-of-ground-alkali-active-sandstone-powder-for-use-in-concrete-as-mineral-admixture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89811.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3536</span> Experimental Study of Mechanical and Durability Properties of HPC Made with Binary Blends of Cement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vatsal%20Patel">Vatsal Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Niraj%20Shah"> Niraj Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the research reported in this paper is to assess the Strength and durability performance of High Performance Concrete containing different percentages of waste marble powder produced from marble industry. Concrete mixes possessing a target mean compressive strength of 70MPa were prepared with 0%,5%,10%,15% and 20% cement replacement by waste marble powder with W/B =0.33. More specifically, the compressive strength, flexural strength, chloride penetration, sorptivity and accelerated corrosion were determined. Concrete containing 10% waste marble powder proved to have best Mechanical and durability properties than other mixtures made with binary blends. However, poorer performance was noticeable when replacement percentage was higher. The replacement of Waste Marble Powder will have major environmental benefits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=durability" title="durability">durability</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20performance%20concrete" title=" high performance concrete"> high performance concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=marble%20waste%20powder" title=" marble waste powder"> marble waste powder</a>, <a href="https://publications.waset.org/abstracts/search?q=sorptivity" title=" sorptivity"> sorptivity</a>, <a href="https://publications.waset.org/abstracts/search?q=accelerated%20corrosion" title=" accelerated corrosion"> accelerated corrosion</a> </p> <a href="https://publications.waset.org/abstracts/33418/experimental-study-of-mechanical-and-durability-properties-of-hpc-made-with-binary-blends-of-cement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33418.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3535</span> Strength Properties of Concrete Paving Blocks with Fly Ash and Glass Powder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joel%20Santhosh">Joel Santhosh</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Bhavani%20Shankar%20Rao"> N. Bhavani Shankar Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Problems associated with construction site have been known for many years. Construction industry has to support a world of continuing population growth and economic development. The rising costs of construction materials and the need to adhere to sustainability, alternative construction techniques and materials are being sought. To increase the applications of concrete paving blocks, greater understanding of products produced with locally available materials and indigenously produced mineral admixtures is essential. In the present investigation, concrete paving blocks may be produced with locally available aggregates, cement, fly ash and waste glass powder as the mineral admixture. The ultimate aim of this work is to ascertain the performance of concrete paving blocks containing fly ash and glass powder and compare it with the performance of conventional concrete paving blocks. Mix design is carried out to form M40 grade of concrete by using IS: 10262: 2009 and specification given by IRC: SP: 63: 2004. The paving blocks are tested in accordance to IS: 15658: 2006. It showed that the partial replacement of cement by fly ash and waste glass powder satisfies the minimum requirement as specified by the Indian standard IS: 15658: 2006 for concrete paving blocks to be used in non traffic, light traffic and medium-heavy traffic areas. The study indicated that fly ash and waste glass powder can effectively be used as cement replacement without substantial change in strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=paving%20block" title="paving block">paving block</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20powder" title=" glass powder"> glass powder</a>, <a href="https://publications.waset.org/abstracts/search?q=strength" title=" strength"> strength</a>, <a href="https://publications.waset.org/abstracts/search?q=abrasion%20resistance" title=" abrasion resistance"> abrasion resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a> </p> <a href="https://publications.waset.org/abstracts/17008/strength-properties-of-concrete-paving-blocks-with-fly-ash-and-glass-powder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17008.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3534</span> Evaluation of the Mechanical and Microstructural Properties of Sustainable Concrete Exposed to Acid Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adil%20Tamimi">Adil Tamimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Limestone powder is a natural material that is available in many parts of the world. In this research self-compacting concrete was designed and prepared using limestone powder. The resulted concrete was exposed to the hydrochloric acid solution and compared with reference concrete. Mechanical properties of both fresh and hardened concrete have been evaluated. Scanning Electron Microscopy “SEM” has been unitized to analyse the morphological development of the hydration products. In sulphuric acid solution, a large formation of gypsum was detected in both samples of self-compacting concrete and conventional concrete. The Higher amount of thaumasite and ettringite was also detected in the SCC sample. In hydrochloric acid solution, monochloroaluminate was detected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=self-compacting%20concrete" title="self-compacting concrete">self-compacting concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=Scanning%20Electron%20Microscopy" title=" Scanning Electron Microscopy"> Scanning Electron Microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=acid%20solution" title=" acid solution"> acid solution</a> </p> <a href="https://publications.waset.org/abstracts/35930/evaluation-of-the-mechanical-and-microstructural-properties-of-sustainable-concrete-exposed-to-acid-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">511</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3533</span> Experimental Studies on Reactive Powder Concrete Containing Fly Ash and Steel Fibre</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20J.%20Shah">A. J. Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Neeraj%20Kumar%20Sahu"> Neeraj Kumar Sahu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reactive powder concrete (RPC) is high performance and high strength concrete which composes of very fine powdered materials like cement, sand, silica fume and quartz powder. It also constitutes steel fibre (optional) and super-plasticizer. The present study investigates the performance of reactive powder concrete with fly ash as a replacement of cement under hot water and normal water curing conditions. The replacement of cement with fly ash is done at 10%, 20%, 30% and 40%. To compare the results of cement replaced RPC and traditional RPC, the performance of various mixes is evaluated by compressive strength, flexural strength, split tensile strength and durability. The results show that with increasing percentage of fly ash, improvement in durability is observed and a slight decrease in compressive strength and flexural strength is also observed. It is observed that specimen under hot water curing showed 15 to 20 % more strength than specimens under normal water curing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20strength%20concrete" title="high strength concrete">high strength concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20flexural%20strength%20of%20RPC" title=" the flexural strength of RPC"> the flexural strength of RPC</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength%20of%20RPC" title=" compressive strength of RPC"> compressive strength of RPC</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a> </p> <a href="https://publications.waset.org/abstracts/96189/experimental-studies-on-reactive-powder-concrete-containing-fly-ash-and-steel-fibre" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3532</span> Re-Use of Waste Marble in Producing Green Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasan%20%C5%9Eahan%20Arel">Hasan Şahan Arel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, literature related to the replacement of cement with waste marble and the use of waste marble as an aggregate in concrete production was examined. Workability of the concrete decreased when marble powder was used as a substitute for fine aggregate. Marble powder contributed to the compressive strength of concrete because of the CaCO<sub>3</sub> and SiO<sub>2</sub> present in the chemical structure of the marble. Additionally, the use of marble pieces in place of coarse aggregate revealed that this contributed to the workability and mechanical properties of the concrete. When natural standard sand was replaced with marble dust at a ratio of 15% and 75%, the compressive strength and splitting tensile strength of the concrete increased by 20%-26% and 10%-15%, respectively. However, coarse marble aggregates exhibited the best performance at a 100% replacement ratio. Additionally, there was a greater improvement in the mechanical properties of concrete when waste marble was used in a coarse aggregate form when compared to that of when marble was used in a dust form. If the cement was replaced with marble powder in proportions of 20% or more, then adverse effects were observed on the compressive strength and workability of the concrete. This study indicated that marble dust at a cement-replacement ratio of 5%-10% affected the mechanical properties of concrete by decreasing the global annual CO<sub>2</sub> emissions by 12% and also lowering the costs from US$40/m<sup>3</sup> to US$33/m<sup>3</sup>. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cement%20production" title="cement production">cement production</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2%20emission" title=" CO2 emission"> CO2 emission</a>, <a href="https://publications.waset.org/abstracts/search?q=marble" title=" marble"> marble</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/54230/re-use-of-waste-marble-in-producing-green-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54230.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3531</span> Microstructural Properties of the Interfacial Transition Zone and Strength Development of Concrete Incorporating Recycled Concrete Aggregate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Boudali">S. Boudali</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Soliman"> A. M. Soliman</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Abdulsalam"> B. Abdulsalam</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Ayed"> K. Ayed</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20E.%20Kerdal"> D. E. Kerdal</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Poncet"> S. Poncet </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the potential of using crushed concrete as aggregates to produce green and sustainable concrete. Crushed concrete was sieved to powder fine recycled aggregate (PFRA) less than 80 &micro;m and coarse recycled aggregates (CRA). Physical, mechanical, and microstructural properties for PFRA and CRA were evaluated. The effect of the additional rates of PFRA and CRA on strength development of recycled aggregate concrete (RAC) was investigated. Additionally, the characteristics of interfacial transition zone (ITZ) between cement paste and recycled aggregate were also examined. Results show that concrete mixtures made with 100% of CRA and 40% PFRA exhibited similar performance to that of the control mixture prepared with 100% natural aggregate (NA) and 40% natural pozzolan (NP). Moreover, concrete mixture incorporating recycled aggregate exhibited a slightly higher later compressive strength than that of the concrete with NA. This was confirmed by the very dense microstructure for concrete mixture incorporating recycled concrete aggregates compared to that of conventional concrete mixture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20concrete%20aggregates" title=" recycled concrete aggregates"> recycled concrete aggregates</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=interfacial%20transition%20zone" title=" interfacial transition zone"> interfacial transition zone</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20fine%20recycled%20aggregate" title=" powder fine recycled aggregate"> powder fine recycled aggregate</a> </p> <a href="https://publications.waset.org/abstracts/75148/microstructural-properties-of-the-interfacial-transition-zone-and-strength-development-of-concrete-incorporating-recycled-concrete-aggregate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75148.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3530</span> Reactivation of Hydrated Cement and Recycled Concrete Powder by Thermal Treatment for Partial Replacement of Virgin Cement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gustave%20Semugaza">Gustave Semugaza</a>, <a href="https://publications.waset.org/abstracts/search?q=Anne%20Zora%20Gierth"> Anne Zora Gierth</a>, <a href="https://publications.waset.org/abstracts/search?q=Tommy%20Mielke"> Tommy Mielke</a>, <a href="https://publications.waset.org/abstracts/search?q=Marianela%20Escobar%20Castillo"> Marianela Escobar Castillo</a>, <a href="https://publications.waset.org/abstracts/search?q=Nat%20Doru%20C.%20Lupascu"> Nat Doru C. Lupascu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The generation of Construction and Demolition Waste (CDW) has globally increased enormously due to the enhanced need in construction, renovation, and demolition of construction structures. Several studies investigated the use of CDW materials in the production of new concrete and indicated the lower mechanical properties of the resulting concrete. Many other researchers considered the possibility of using the Hydrated Cement Powder (HCP) to replace a part of Ordinary Portland Cement (OPC), but only very few investigated the use of Recycled Concrete Powder (RCP) from CDW. The partial replacement of OPC for making new concrete intends to decrease the CO₂ emissions associated with OPC production. However, the RCP and HCP need treatment to produce the new concrete of required mechanical properties. The thermal treatment method has proven to improve HCP properties before their use. Previous research has stated that for using HCP in concrete, the optimum results are achievable by heating HCP between 400°C and 800°C. The optimum heating temperature depends on the type of cement used to make the Hydrated Cement Specimens (HCS), the crushing and heating method of HCP, and the curing method of the Rehydrated Cement Specimens (RCS). This research assessed the quality of recycled materials by using different techniques such as X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC) and thermogravimetry (TG), Scanning electron Microscopy (SEM), and X-ray Fluorescence (XRF). These recycled materials were thermally pretreated at different temperatures from 200°C to 1000°C. Additionally, the research investigated to what extent the thermally treated recycled cement could partially replace the OPC and if the new concrete produced would achieve the required mechanical properties. The mechanical properties were evaluated on the RCS, obtained by mixing the Dehydrated Cement Powder and Recycled Powder (DCP and DRP) with water (w/c = 0.6 and w/c = 0.45). The research used the compressive testing machine for compressive strength testing, and the three-point bending test was used to assess the flexural strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrated%20cement%20powder" title="hydrated cement powder">hydrated cement powder</a>, <a href="https://publications.waset.org/abstracts/search?q=dehydrated%20cement%20powder" title=" dehydrated cement powder"> dehydrated cement powder</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20concrete%20powder" title=" recycled concrete powder"> recycled concrete powder</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20treatment" title=" thermal treatment"> thermal treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=reactivation" title=" reactivation"> reactivation</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20performance" title=" mechanical performance"> mechanical performance</a> </p> <a href="https://publications.waset.org/abstracts/148142/reactivation-of-hydrated-cement-and-recycled-concrete-powder-by-thermal-treatment-for-partial-replacement-of-virgin-cement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148142.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3529</span> Eco-Efficient Self-Compacting Concrete for Sustainable Building</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Valeria%20Corinaldesi">Valeria Corinaldesi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In general, for self-compacting concrete production, a high volume of very fine materials is necessary in order to make the concrete more fluid and cohesive. For this purpose, either rubble powder (which is a powder obtained from suitable treatment of rubble from building demolition) or ash from municipal solid waste incineration was used as mineral addition in order to ensure adequate rheological properties of the self-compacting concrete in the absence of any viscosity modifying admixture. Recycled instead of natural aggregates were used by completely substituting the coarse aggregate fraction. The fresh concrete properties were evaluated through the slump flow, the V-funnel and the L-box test. Compressive strength and segregation resistance were also determined. The results obtained showed that self-compacting concrete could be successfully developed by incorporating both recycled aggregates and waste powders with an improved quality of the concrete surface finishing. This encouraging goal, beyond technical performance, matches with the more and more widely accepted sustainable development issues. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable%20concrete" title="sustainable concrete">sustainable concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=self%20compacting%20concrete" title=" self compacting concrete"> self compacting concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=municipal%20solid%20waste" title=" municipal solid waste"> municipal solid waste</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20aggregate" title=" recycled aggregate"> recycled aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20building" title=" sustainable building"> sustainable building</a> </p> <a href="https://publications.waset.org/abstracts/165417/eco-efficient-self-compacting-concrete-for-sustainable-building" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165417.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3528</span> Effect of Glass Powder and GGBS on Strength of Fly Ash Based Geopolymer Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Ramesha%20Mithanthaya">I. Ramesha Mithanthaya</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Bhavanishankar%20Rao"> N. Bhavanishankar Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the effect of glass powder (GP) and ground granulated blast furnace slag (GGBS) on the compressive strength of Fly ash based geopolymer concrete has been investigated. The mass ratio of fine aggregate (fA) to coarse aggregate (CA) was maintained constant. NAOH flakes dissolved in water was used as activating liquid and mixed with fly ash (FA) to produce geopolymer paste or cementing material. This paste was added to mixture of CA and fA to obtain geopolymer concrete. Cube samples were prepared from this concrete. The ranges of investigation parameters include GP/FA from 0% to 20%, and GGBS/ FA from 0% to 20% with constant amount of GP. All the samples were air cured inside laboratory under room temperature. Compressive strength of cube samples after 7 days and 28 days curing were determined. The test results are presented and discussed. Based on the results of limited tests a suitable composition of FA, GP and GGBS for constant quantity of CA and fA has been obtained to produce geopolymer concrete of M32. It is found that geopolymer concrete is 14% cheaper than concrete of same strength using OPC. The strength gain in the case of geo-polymer concrete is rather slow compared to that of Portland cement concrete. Tensile strength of this concrete was also determined by conducting flexure test on beam prepared using this concrete. During curing, up to 7days, greyish-white powder used to come out from all the surfaces of sample and it was found to be a mixture of Carbonates and Sulphides of Na, Mg and Fe. Detailed investigation is necessary to arrive at an optimum mixture composition for producing Geo-polymer concrete of required strength. Effect of greyish-white powder on the strength and durability of the concrete is to be studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geopolymer" title="geopolymer">geopolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20waste" title=" industrial waste"> industrial waste</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20material" title=" green material"> green material</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20effective%20material" title=" cost effective material"> cost effective material</a>, <a href="https://publications.waset.org/abstracts/search?q=eco-friendly%20material" title=" eco-friendly material"> eco-friendly material</a> </p> <a href="https://publications.waset.org/abstracts/20943/effect-of-glass-powder-and-ggbs-on-strength-of-fly-ash-based-geopolymer-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20943.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">545</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3527</span> Thermodynamic Performance Tests for 3D Printed Steel Slag Powder Concrete Walls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li%20Guoyou">Li Guoyou</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Tao"> Zhang Tao</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji%20Wenzhan"> Ji Wenzhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Huo%20Liang"> Huo Liang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lin%20Xiqiang"> Lin Xiqiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Nan"> Zhang Nan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The three dimensional (3D) printing technology has undergone rapid development in the last few years and it is possible to print engineering structures. 3D printing buildings use wastes from constructions, industries and mine tailings as “ink”, and mix it with property improved materials, such as cement, fiber etc. This paper presents a study of the Thermodynamic performance of 3D printed walls using cement and steel slag powder. Analyses the thermal simulation regarding 3D printed walls and solid brick wall by the way of the hot-box methods and the infrared technology, and the results were contrasted with theoretical calculation. The results show that the excellent thermodynamic performance of 3D printed concrete wall made it suitable as the partial materials for self-thermal insulation walls in residential buildings. The thermodynamic performance of 3D printed concrete walls depended on the density of materials, distribution of holes, and the filling materials. Decreasing the density of materials, increasing the number of holes or replacing the filling materials with foamed concrete could improve its thermodynamic performance significantly. The average of heat transfer coefficient and thermal inertia index of 3D printed steel slag powder concrete wall all better than the traditional solid brick wall with a thickness of 240mm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printed%20walls" title=" 3D printed walls"> 3D printed walls</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamic%20performance" title=" thermodynamic performance"> thermodynamic performance</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20slag%20powder" title=" steel slag powder"> steel slag powder</a> </p> <a href="https://publications.waset.org/abstracts/92165/thermodynamic-performance-tests-for-3d-printed-steel-slag-powder-concrete-walls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92165.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3526</span> Investigation Into the Effects of Egg Shells Powder and Groundnut Husk Ash on the Properties of Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Usman%20B.M.">Usman B.M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Basheer%20O.%20B."> Basheer O. B.</a>, <a href="https://publications.waset.org/abstracts/search?q=.%20Ahmed%20A."> . Ahmed A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Amali%20N.%20U."> Amali N. U.</a>, <a href="https://publications.waset.org/abstracts/search?q=Taufeeq%20O.">Taufeeq O.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents an investigation into the improvement of strength properties of concrete using egg shell powder (ESP) and groundnut husk ash (GHA) as additives so as to reduce its high cost and find alternative disposal method for agricultural waste. A standard consistency test was carried out on the egg shell powder and groundnut husk ash. A prescribed concrete mix ratio of 1:2:4 concrete cubes (150mm by 150mm) and water-cement ratio of 0.6 were casted. A total of One hundred and forty four (144) cubes were cast and cured for 3, 7 and 28 days and compressive strength subsequently determined in comparison with the relevant specifications. Consistency test on the cement paste at the various concentrations exhibited an increase in the setting time as the concentration increases with the highest value recorded at 5% egg shell powder and groundnut husk ash concentration as 219 minutes for the initial setting time and 275 minutes for the final setting time as against the control specimen of 159 minutes and 234 minutes for both initial and final setting times respectively. The results of the investigations showed that GHA was predominantly of Silicon oxide (56.73%) and a combined SiO₂, Al₂O₃ and Fe₂O₃ content of 66.75%; and the result of the investigations showed that ESP was predominantly of Calcium oxide (52.75%) and a combined SiO₂, Al₂O₃ and Fe₂O₃ content of 3.86%. The addition of GHA and ESP in concrete showed slight different in compressive strength with increase in GHA and ESP additive up to 5% and high decrease in compressive strength with further increase in GHA and ESP content. The 28 days compressive strength of the concrete cubes; compared with that of the control; showed a slight increase. Thus the use of GHA and ESP as partial replacement of cement will provide an economic use of by-product and consequently produce a cheaper concrete construction without comprising its strength <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive" title="additive">additive</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=eggshell%20powder" title=" eggshell powder"> eggshell powder</a>, <a href="https://publications.waset.org/abstracts/search?q=groundnut%20husk%20ash%20compressive%20strength" title=" groundnut husk ash compressive strength"> groundnut husk ash compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/164917/investigation-into-the-effects-of-egg-shells-powder-and-groundnut-husk-ash-on-the-properties-of-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3525</span> Using Recycled Wastes (Glass Powder) as Partially Replacement for Cement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Passant%20Youssef">Passant Youssef</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20El-Tair"> Ahmed El-Tair</a>, <a href="https://publications.waset.org/abstracts/search?q=Amr%20El-Nemr"> Amr El-Nemr </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lately, with the environmental changes, enthusiasts trigger to stop the contamination of environment. Thus, various efforts were exerted for innovating environmental friendly concrete to sustain as a ‘Green Building’ material. Green building materials consider the cement industry as one of the most sources of air pollutant with high rate of carbon dioxide (CO₂) emissions. Several methods were developed to extensively reduce the influence of cement industry on environment. These methods such as using supplementary cementitious material or improving the cement manufacturing process are still under investigation. However, with the presence of recycled wastes from construction and finishing materials, the use of supplementary cementitious materials seems to provide an economic solution. Furthermore, it improves the mechanical properties of cement paste, in addition to; it modulates the workability and durability of concrete. In this paper, the glass powder was considered to be used as partial replacement of cement. This study provided the mechanical influence for using the glass powder as partial replacement of cement. In addition, it examines the microstructure of cement mortar using scanning electron microscope and X-ray diffraction. The cement in concrete is replaced by waste glass powder in steps of 5%, 10%, 15%, 20% and 25% by weight of cement and its effects on compressive and flexure strength were determined after 7 and 28 days. It was found that the 5% glass powder replacement increased the 7 days compressive strength by 20.5%, however, there was no increase in compressive strength after 28 days; which means that the glass powder did not react in the cement mortar due to its amorphous nature on the long run, and it can act as fine aggregate better that cement replacement. As well as, the 5% and 10% glass powder replacement increased the 28 days flexural strength by 46.9%. SEM micrographs showed very dense matrix for the optimum specimen compared to control specimen as well; some glass particles were clearly observed. High counts of silica were optimized from XRD while amorphous materials such as calcium silicate cannot be directly detected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supplementary%20materials" title="supplementary materials">supplementary materials</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20powder" title=" glass powder"> glass powder</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=cementitious%20materials" title=" cementitious materials"> cementitious materials</a> </p> <a href="https://publications.waset.org/abstracts/76780/using-recycled-wastes-glass-powder-as-partially-replacement-for-cement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76780.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3524</span> Production Cement Mortar and Concrete by Using Nano Clay</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Ashraf">Mohammad Ashraf</a>, <a href="https://publications.waset.org/abstracts/search?q=Kawther%20Mohamed"> Kawther Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research tackles a new kind of additions (Nano Clay) and its effect on the features of concrete and both fresh and hardened cement mortar, as well as setting an optimal percentage of adding it to achieve the desired results and obtain on a strong concrete and mortar can be used for skyscrapers. The cementations additions are mineral materials in the form of a fine powder, added to concrete or cement mortar as partly cement substitutes, which means to be added instead of an equivalent amount of cement in order to improve and enhance some features of concrete or both the newly made and hardened cementations materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano%20clay%20in%20structure%20engineering" title="nano clay in structure engineering">nano clay in structure engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotechnology%20in%20construction%20industry" title=" nanotechnology in construction industry"> nanotechnology in construction industry</a>, <a href="https://publications.waset.org/abstracts/search?q=advanced%20additions%20in%20concrete" title=" advanced additions in concrete"> advanced additions in concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=special%20concrete%20for%20skyscrapers" title=" special concrete for skyscrapers"> special concrete for skyscrapers</a> </p> <a href="https://publications.waset.org/abstracts/71065/production-cement-mortar-and-concrete-by-using-nano-clay" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71065.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3523</span> Fiber-Based 3D Cellular Reinforcing Structures for Mineral-Bonded Composites with Enhanced Structural Impact Tolerance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Duy%20M.%20P.%20Vo">Duy M. P. Vo</a>, <a href="https://publications.waset.org/abstracts/search?q=Cornelia%20Sennewald"> Cornelia Sennewald</a>, <a href="https://publications.waset.org/abstracts/search?q=Gerald%20Hoffmann"> Gerald Hoffmann</a>, <a href="https://publications.waset.org/abstracts/search?q=Chokri%20Cherif"> Chokri Cherif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of solutions to improve the resistance of buildings to short-term dynamic loads, particularly impact load, is driven by the urgent demand worldwide on securing human life and critical infrastructures. The research training group GRK 2250/1 aims to develop mineral-bonded composites that allow the fabrication of thin-layered strengthening layers providing available concrete members with enhanced impact resistance. This paper presents the development of 3D woven wire cellular structures that can be used as innovative reinforcement for targeted composites. 3D woven wire cellular structures are truss-like architectures that can be fabricated in an automatized process with a great customization possibility. The specific architecture allows this kind of structures to have good load bearing capability and forming behavior, which is of great potential to give strength against impact loading. An appropriate combination of topology and material enables an optimal use of thin-layered reinforcement in concrete constructions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20woven%20cellular%20structures" title="3D woven cellular structures">3D woven cellular structures</a>, <a href="https://publications.waset.org/abstracts/search?q=ductile%20behavior" title=" ductile behavior"> ductile behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20absorption" title=" energy absorption"> energy absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber-based%20reinforced%20concrete" title=" fiber-based reinforced concrete"> fiber-based reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20resistant" title=" impact resistant"> impact resistant</a> </p> <a href="https://publications.waset.org/abstracts/92338/fiber-based-3d-cellular-reinforcing-structures-for-mineral-bonded-composites-with-enhanced-structural-impact-tolerance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3522</span> Heating and Cooling Scenario of Blended Concrete Subjected to 780 Degrees Celsius</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20E.%20Oti">J. E. Oti</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Kinuthia"> J. M. Kinuthia</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Robinson"> R. Robinson</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Davies"> P. Davies</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, The Compressive strength of concretes made with Ground Granulated Blast furnace Slag (GGBS), pulverised Fuel Ash (PFA), rice Husk Ash (RHA) and Waste Glass Powder (WGP) after they were exposed 7800C (exposure duration of around 60 minutes) and then allowed to cool down gradually in the furnace for about 280 minutes at water binder ratio of 0.50 was investigated. GGBS, PFA, RHA and WGP were used to replace up to 20% Portland cement in the control concrete. Test for the determination of workability, compressive strength and tensile splitting strength of the concretes were carried out and the results were compared with control concrete. The test results showed that the compressive strength decreased by an average of around 30% after the concretes were exposed to the heating and cooling scenario. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=heating" title=" heating"> heating</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling" title=" cooling"> cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=pulverised%20fuel%20ash" title=" pulverised fuel ash"> pulverised fuel ash</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20husk%20ash" title=" rice husk ash"> rice husk ash</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20glass%20powder" title=" waste glass powder"> waste glass powder</a>, <a href="https://publications.waset.org/abstracts/search?q=GGBS" title=" GGBS"> GGBS</a>, <a href="https://publications.waset.org/abstracts/search?q=workability" title=" workability "> workability </a> </p> <a href="https://publications.waset.org/abstracts/26303/heating-and-cooling-scenario-of-blended-concrete-subjected-to-780-degrees-celsius" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26303.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3521</span> Development of Combined Cure Type for Rigid Pavement with Reactive Powder Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatih%20Hattatoglu">Fatih Hattatoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulrezzak%20Baki%C5%9F"> Abdulrezzak Bakiş</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, fiberless reactive powder concrete (RPC) was produced with high pressure and flexural strength. C30/37 concrete was chosen as the control sample. In this study, 9 different cure types were applied to fiberless RPC. the most suitable combined cure type was selected according to the pressure and flexure strength. Pressure and flexural strength tests were applied to these samples after curing. As a result of the study, the combined cure type with the highest pressure resistance was obtained. The highest pressure resistance was achieved with consecutive standard water cure at 20 &deg;C for 7 days &ndash; hot water cure at 90 &deg;C for 2 days - drying oven cure at 180 &deg;C for 2 days. As a result of the study, the highest pressure resistance of fiberless RPC was found as 123 MPa with water cure at 20 &deg;C for 7 days - hot water cure at 90 &deg;C for 2 days - drying oven cure at 180 &deg;C for 2 days; and the highest flexural resistance was found as 8.37 MPa for the same combined cure type. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combined%20cure" title="combined cure">combined cure</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20test" title=" flexural test"> flexural test</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20powder%20concrete%20%28RPC%29" title=" reactive powder concrete (RPC)"> reactive powder concrete (RPC)</a>, <a href="https://publications.waset.org/abstracts/search?q=rigid%20pavement" title=" rigid pavement"> rigid pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20test" title=" pressure test"> pressure test</a> </p> <a href="https://publications.waset.org/abstracts/44544/development-of-combined-cure-type-for-rigid-pavement-with-reactive-powder-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44544.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3520</span> Distribution of Micro Silica Powder at a Ready Mixed Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyong-Ku%20Yun">Kyong-Ku Yun</a>, <a href="https://publications.waset.org/abstracts/search?q=Dae-Ae%20Kim"> Dae-Ae Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyeo-Re%20Lee"> Kyeo-Re Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyong%20Namkung"> Kyong Namkung</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung-Yeon%20Han"> Seung-Yeon Han </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Micro silica is collected as a by-product of the silicon and ferrosilicon alloy production in electric arc furnace using highly pure quartz, wood chips, coke and the like. It consists of about 85% of silicon which has spherical particles with an average particle size of 150 μm. The bulk density of micro silica varies from 150 to 700kg/m^3 and the fineness ranges from 150,000 to 300,000cm^2/g. An amorphous structure with a high silicon oxide content of micro silica induces an active reaction with calcium hydroxide (Ca(OH)₂) generated by the cement hydrate of a large surface area (about 20 m^² / g), and they are also known to form calcium, silicate, hydrate conjugate (C-S-H). Micro silica tends to act as a filler because of the fine particles and the spherical shape. These particles do not get covered by water and they fit well in the space between the relatively rough cement grains which does not freely fluidize concrete. On the contrary, water demand increases since micro silica particles have a tendency to absorb water because of the large surface area. The overall effect of micro silica depends on the amount of micro silica added with other parameters in the water-(cement + micro silica) ratio, and the availability of superplasticizer. In this research, it was studied on cellular sprayed concrete. This method involves a direct re-production of ready mixed concrete into a high performance at a job site. It could reduce the cost of construction by an adding a cellular and a micro silica into a ready mixed concrete truck in a field. Also, micro silica which is difficult with mixing due to high fineness in the field can be added and dispersed in concrete by increasing the fluidity of ready mixed concrete through the surface activity of cellular. Increased air content is converged to a certain level of air content by spraying and it also produces high-performance concrete by remixing of powders in the process of spraying. As it does not use a field mixing equipment the cost of construction decrease and it can be constructed after installing special spray machine in a commercial pump car. Therefore, use of special equipment is minimized, providing economic feasibility through the utilization of existing equipment. This study was carried out to evaluate a highly reliable method of confirming dispersion through a high performance cellular sprayed concrete. A mixture of 25mm coarse aggregate and river sand was applied to the concrete. In addition, by applying silica fume and foam, silica fume dispersion is confirmed in accordance with foam mixing, and the mean and standard deviation is obtained. Then variation coefficient is calculated to finally evaluate the dispersion. Comparison and analysis of before and after spraying were conducted on the experiment variables of 21L, 35L foam for each 7%, 14% silica fume respectively. Taking foam and silica fume as variables, the experiment proceed. Casting a specimen for each variable, a five-day sample is taken from each specimen for EDS test. In this study, it was examined by an experiment materials, plan and mix design, test methods, and equipment, for the evaluation of dispersion in accordance with micro silica and foam. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micro%20silica" title="micro silica">micro silica</a>, <a href="https://publications.waset.org/abstracts/search?q=distribution" title=" distribution"> distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=ready%20mixed%20concrete" title=" ready mixed concrete"> ready mixed concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=foam" title=" foam"> foam</a> </p> <a href="https://publications.waset.org/abstracts/46864/distribution-of-micro-silica-powder-at-a-ready-mixed-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46864.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3519</span> Microstructural Evolution of Maraging Steels from Powder Particles to Additively Manufactured Samples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyedamirreza%20Shamsdini">Seyedamirreza Shamsdini</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Mohammadi"> Mohsen Mohammadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, 18Ni-300 maraging steel powder particles are investigated by studying particle size distribution along with their morphology and grain structure. The powder analysis shows mostly spherical morphologies with cellular structures. A laser-based additive manufacturing process, selective laser melting (SLM) is used to produce samples for further investigation of mechanical properties and microstructure. Several uniaxial tensile tests are performed on the as-built parts to evaluate the mechanical properties. The macroscopic properties, as well as microscopic studies, are then investigated on the printed parts. Hardness measurements, as well as porosity levels, are measured for each sample and are correlated with microstructures through electron microscopy techniques such as Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The grain structure is studied for the as-printed specimens and compared to the powder particle microstructure. The cellular structure of the printed samples is observed to have dendritic forms with dendrite width dimensions similar to the powder particle cells. The process parameter is changed, and the study is performed for different powder layer thickness, and the resultant mechanical properties and grain structure are shown to be similar. A phase study is conducted both on the powder and the printed samples using X-Ray Diffraction (XRD) techniques, and the austenite phase is observed to at first decrease due to the manufacturing process and again during the uniaxial tensile deformation. The martensitic structure is formed in the first stage based on the heating cycles of the manufacturing process and the remaining austenite is shown to be transformed to martensite due to different deformation mechanisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=maraging%20steel" title=" maraging steel"> maraging steel</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/123896/microstructural-evolution-of-maraging-steels-from-powder-particles-to-additively-manufactured-samples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3518</span> Flexural Toughness of Fiber Reinforced Reactive Powder Concrete (RPC)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Yousefi%20Oderji">S. Yousefi Oderji</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Chen"> B. Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> According to the ASTM C1018 toughness index method, the single and combined toughness effects of copper coated steel fiber and polypropylene (pp) fiber on reactive powder concrete (RPC) were investigated. Through flexural toughness test of RPC with different fiber volume dosages, the corresponding load-deflection curves were also drawn. Test results indicate that the binary combination of fibers provide the best flexural toughness, and improve the post-peak load-deflection characteristics of RPC. However, the single effect of pp fibers was not pronounced on improving the flexural toughness of RPC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RPC" title="RPC">RPC</a>, <a href="https://publications.waset.org/abstracts/search?q=PP" title=" PP"> PP</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20toughness" title=" flexural toughness"> flexural toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=toughness%20index" title=" toughness index"> toughness index</a> </p> <a href="https://publications.waset.org/abstracts/41865/flexural-toughness-of-fiber-reinforced-reactive-powder-concrete-rpc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41865.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3517</span> Impact of the Quality of Aggregate on the Elasticity Modulus of Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Krizova">K. Krizova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This objective of this article is to present concrete that differs by the size of the aggregate used. The set of concrete contained six concrete recipes manufactured as traditional vibrated concrete containing identical basic components of concrete. The experiment focused on monitoring the resulting properties of hardened concrete, specifically the primary strength and modulus of the concrete elasticity and the developing parameters from 7 to 180 days were assessed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aggregate" title="aggregate">aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=cement" title=" cement"> cement</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=elasticity%20modulus" title=" elasticity modulus"> elasticity modulus</a> </p> <a href="https://publications.waset.org/abstracts/38600/impact-of-the-quality-of-aggregate-on-the-elasticity-modulus-of-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38600.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3516</span> Marble Powder’s Effect on Permeability and Mechanical Properties of Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shams%20Ul%20Khaliq">Shams Ul Khaliq</a>, <a href="https://publications.waset.org/abstracts/search?q=Khan%20Shahzada"> Khan Shahzada</a>, <a href="https://publications.waset.org/abstracts/search?q=Bashir%20Alam"> Bashir Alam</a>, <a href="https://publications.waset.org/abstracts/search?q=Fawad%20Bilal"> Fawad Bilal</a>, <a href="https://publications.waset.org/abstracts/search?q=Mushtaq%20Zeb"> Mushtaq Zeb</a>, <a href="https://publications.waset.org/abstracts/search?q=Faizan%20Akbar"> Faizan Akbar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Marble industry contributes its fair share in environmental deterioration, producing voluminous amounts of mud and other excess residues obtained from marble and granite processing, polluting soil, water and air. Reusing these products in other products will not just prevent our environment from polluting but also help with economy. In this research, an attempt has been made to study the expediency of waste Marble Powder (MP) in concrete production. Various laboratory tests were performed to investigate permeability, physical and mechanical properties, such as slump, compressive strength, split tensile test, etc. Concrete test samples were fabricated with varying MP content (replacing 5-30% cement), furnished from two different sources. 5% replacement of marble dust caused 6% and 12% decrease in compressive and tensile strength respectively. These parameters gradually decreased with increasing MP content up to 30%. Most optimum results were obtained with 10% replacement. Improvement in consistency and permeability were noticed. The permeability was improved with increasing MP proportion up to 10% without substantial decrease in compressive strength. Obtained results revealed that MP as an alternative to cement in concrete production is a viable option considering its economic and environment friendly implications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=marble%20powder" title="marble powder">marble powder</a>, <a href="https://publications.waset.org/abstracts/search?q=strength" title=" strength"> strength</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability" title=" permeability"> permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=consistency" title=" consistency"> consistency</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a> </p> <a href="https://publications.waset.org/abstracts/46746/marble-powders-effect-on-permeability-and-mechanical-properties-of-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3515</span> Necessity of Using Cellular Lightweights Concrete in Construction Sector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soner%20Guler">Soner Guler</a>, <a href="https://publications.waset.org/abstracts/search?q=Fuat%20Korkut"> Fuat Korkut</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, the using of lightweights concretes in construction sector is rapidly increasing all over the world. Faster construction, low density and thermal transmitting coefficient and high fire resistance are the remarkable characteristics of the lightweight concretes. Lightweight concrete can be described as a type of concrete which enhance the volume of the mixture while giving additional advantages such as to reduce the dead weight of the structures. It is lighter than the conventional concrete. The use of lightweight concrete has been widely spread across countries such as USA, United Kingdom, and Sweden. In this study, the necessity of the using of lightweights concretes in the construction sector is emphasized and evaluated briefly for the architectures and civil engineers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lightweights%20concretes" title="lightweights concretes">lightweights concretes</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20density" title=" low density"> low density</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20thermal%20coefficient" title=" low thermal coefficient"> low thermal coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20sector" title=" construction sector"> construction sector</a> </p> <a href="https://publications.waset.org/abstracts/53001/necessity-of-using-cellular-lightweights-concrete-in-construction-sector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53001.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">511</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3514</span> Experimental Study on Strength Development of Low Cement Concrete Using Mix Design for Both Binary and Ternary Mixes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mulubrhan%20Berihu">Mulubrhan Berihu</a>, <a href="https://publications.waset.org/abstracts/search?q=Supratic%20Gupta"> Supratic Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Zena%20Gebriel"> Zena Gebriel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the design versatility, availability, and cost efficiency, concrete is continuing to be the most used construction material on earth. However, the production of Portland cement, the primary component of concrete mix is causing to have a serious effect on environmental and economic impacts. This shows there is a need to study using of supplementary cementitious materials (SCMs). The most commonly used supplementary cementitious materials are wastes and the use of these industrial waste products has technical, economical and environmental benefits besides the reduction of CO2 emission from cement production. The study aims to document the effect on strength property of concrete due to use of low cement by maximizing supplementary cementitious materials like fly ash or marble powder. Based on the different mix proportion of pozzolana and marble powder a range of mix design was formulated. The first part of the project is to study the strength of low cement concrete using fly ash replacement experimentally. The test results showed that using up to 85 kg/m3 of cement is possible for plain concrete works like hollow block concrete to achieve 9.8 Mpa and the experimental results indicates that strength is a function of w/b. In the second part a new set of mix design has been carried out with fly ash and marble powder to study the strength of both binary and ternary mixes. In this experimental study, three groups of mix design (c+FA, c+FA+m and c+m), four sets of mixes for each group were taken up. Experimental results show that c+FA has maintained the best strength and impermeability whereas c+m obtained less compressive strength, poorer permeability and split tensile strength. c+FA shows a big difference in gaining of compressive strength from 7 days to 28 days compression strength compared to others and this obviously shows the slow rate of hydration of fly ash concrete. As the w/b ratio increases the strength decreases significantly. At the same time higher permeability has been seen in the specimens which were tested for three hours than one hour. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=efficiency%20factor" title="efficiency factor">efficiency factor</a>, <a href="https://publications.waset.org/abstracts/search?q=cement%20content" title=" cement content"> cement content</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=mix%20proportion" title=" mix proportion"> mix proportion</a>, <a href="https://publications.waset.org/abstracts/search?q=w%2Fc%20ratio" title=" w/c ratio"> w/c ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20permeability" title=" water permeability"> water permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=SCMs" title=" SCMs"> SCMs</a> </p> <a href="https://publications.waset.org/abstracts/138160/experimental-study-on-strength-development-of-low-cement-concrete-using-mix-design-for-both-binary-and-ternary-mixes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138160.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cellular%20concrete%20powder&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cellular%20concrete%20powder&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cellular%20concrete%20powder&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cellular%20concrete%20powder&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cellular%20concrete%20powder&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cellular%20concrete%20powder&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cellular%20concrete%20powder&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cellular%20concrete%20powder&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cellular%20concrete%20powder&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cellular%20concrete%20powder&amp;page=118">118</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cellular%20concrete%20powder&amp;page=119">119</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cellular%20concrete%20powder&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10