CINXE.COM

Search results for: fused deposition modeling

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: fused deposition modeling</title> <meta name="description" content="Search results for: fused deposition modeling"> <meta name="keywords" content="fused deposition modeling"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="fused deposition modeling" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="fused deposition modeling"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4907</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: fused deposition modeling</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4907</span> A Rapid and Cost-Effective Approach to Manufacturing Modeling Platform for Fused Deposition Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chil-Chyuan%20Kuo">Chil-Chyuan Kuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen-Hsuan%20Tsai"> Chen-Hsuan Tsai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents a cost-effective approach for rapid fabricating modeling platforms utilized in fused deposition modeling system. A small-batch production of modeling platforms about 20 pieces can be obtained economically through silicone rubber mold using vacuum casting without applying the plastic injection molding. The air venting systems is crucial for fabricating modeling platform using vacuum casting. Modeling platforms fabricated can be used for building rapid prototyping model after sandblasting. This study offers industrial value because it has both time-effectiveness and cost-effectiveness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vacuum%20casting" title="vacuum casting">vacuum casting</a>, <a href="https://publications.waset.org/abstracts/search?q=fused%20deposition%20modeling" title=" fused deposition modeling"> fused deposition modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling%20platform" title=" modeling platform"> modeling platform</a>, <a href="https://publications.waset.org/abstracts/search?q=sandblasting" title=" sandblasting"> sandblasting</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a> </p> <a href="https://publications.waset.org/abstracts/8812/a-rapid-and-cost-effective-approach-to-manufacturing-modeling-platform-for-fused-deposition-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4906</span> Improving Fused Deposition Modeling Efficiency: A Parameter Optimization Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wadea%20Ameen">Wadea Ameen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rapid prototyping (RP) technology, such as fused deposition modeling (FDM), is gaining popularity because it can produce functioning components with intricate geometric patterns in a reasonable amount of time. A multitude of process variables influences the quality of manufactured parts. In this study, four important process parameters such as layer thickness, model interior fill style, support fill style and orientation are considered. Their influence on three responses, such as build time, model material, and support material, is studied. Experiments are conducted based on factorial design, and the results are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fused%20deposition%20modeling" title="fused deposition modeling">fused deposition modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=factorial%20design" title=" factorial design"> factorial design</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title=" 3D printing"> 3D printing</a> </p> <a href="https://publications.waset.org/abstracts/191939/improving-fused-deposition-modeling-efficiency-a-parameter-optimization-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191939.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">21</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4905</span> Impact of Process Parameters on Tensile Strength of Fused Deposition Modeling Printed Crisscross Poylactic Acid </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shilpesh%20R.%20Rajpurohit">Shilpesh R. Rajpurohit</a>, <a href="https://publications.waset.org/abstracts/search?q=Harshit%20K.%20Dave"> Harshit K. Dave</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Additive manufacturing gains the popularity in recent times, due to its capability to create prototype as well functional as end use product directly from CAD data without any specific requirement of tooling. Fused deposition modeling (FDM) is one of the widely used additive manufacturing techniques that are used to create functional end use part of polymer that is comparable with the injection-molded parts. FDM printed part has an application in various fields such as automobile, aerospace, medical, electronic, etc. However, application of FDM part is greatly affected by poor mechanical properties. Proper selection of the process parameter could enhance the mechanical performance of the printed part. In the present study, experimental investigation has been carried out to study the behavior of the mechanical performance of the printed part with respect to process variables. Three process variables viz. raster angle, raster width and layer height have been varied to understand its effect on tensile strength. Further, effect of process variables on fractured surface has been also investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20Printing" title="3D Printing">3D Printing</a>, <a href="https://publications.waset.org/abstracts/search?q=fused%20deposition%20modeling" title=" fused deposition modeling"> fused deposition modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=layer%20height" title=" layer height"> layer height</a>, <a href="https://publications.waset.org/abstracts/search?q=raster%20angle" title=" raster angle"> raster angle</a>, <a href="https://publications.waset.org/abstracts/search?q=raster%20width" title=" raster width"> raster width</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength"> tensile strength</a> </p> <a href="https://publications.waset.org/abstracts/86207/impact-of-process-parameters-on-tensile-strength-of-fused-deposition-modeling-printed-crisscross-poylactic-acid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86207.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4904</span> Hardness Properties of 3D Printed PLA Parts by Fused Deposition Modeling Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anis%20A.%20Ansari">Anis A. Ansari</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kamil"> M. Kamil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of 3D printing technology has allowed the manufacturing industry to create parts with a high degree of automation, increased design freedom, and improved mechanical performance. Fused deposition modelling (FDM) is a 3D printing technique in which successive layers of thermoplastic polymer are deposited and controlled to create a three-dimensional product. In this study, process parameters such as nozzle temperature and printing speed were chosen to investigate their effects on hardness properties. 3D printed specimens were fabricated by an FDM 3D printer from Polylactic acid (PLA) polymer. After analysis, it was observed that the hardness property is much influenced by print speed and nozzle temperature parameters. Maximum hardness was achieved at higher print speed which indicates that the Shore D hardness is directly proportional to the print speed. Moreover, at higher print speed, it has no significant dependence on the nozzle temperature. Hardness is also influenced by nozzle temperature, though to a lesser extent. The hardness slightly lowers when the nozzle temperature is raised from 190 to 210 oC, but due to improved bonding between each raster, a further rise in temperature increases the hardness property. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title="3D printing">3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=fused%20deposition%20modeling%20%28FDM%29" title=" fused deposition modeling (FDM)"> fused deposition modeling (FDM)</a>, <a href="https://publications.waset.org/abstracts/search?q=polylactic%20acid%20%28PLA%29" title=" polylactic acid (PLA)"> polylactic acid (PLA)</a>, <a href="https://publications.waset.org/abstracts/search?q=print%20speed" title=" print speed"> print speed</a>, <a href="https://publications.waset.org/abstracts/search?q=nozzle%20temperature" title=" nozzle temperature"> nozzle temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness%20property" title=" hardness property"> hardness property</a> </p> <a href="https://publications.waset.org/abstracts/163369/hardness-properties-of-3d-printed-pla-parts-by-fused-deposition-modeling-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163369.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4903</span> Sustainable Manufacturing of Solenoid Valve Housing in Fiji: Fused Deposition Modeling (FDM) and Emergy Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Hisham">M. Hisham</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Cabemaiwai"> S. Cabemaiwai</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Prasad"> S. Prasad</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Dauvakatini"> T. Dauvakatini</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Ananthanarayanan"> R. Ananthanarayanan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A solenoid valve is an important part of many fluid systems. Its purpose is to regulate fluid flow in a machine. Due to the crucial role of the solenoid valve and its design intricacy, it is quite expensive to obtain in Fiji and is not manufactured locally. A concern raised by the local health industry is that the housing of the solenoid valve gets damaged when machines are continuously being used and this part of the valve is very costly to replace due to the lack of availability in Fiji and many other South Pacific region countries. This study explores the agile manufacturing of a solenoid coil housing using the Fused Deposition Modeling (FDM) process. An emergy study was carried out to analyze the feasibility and sustainability of producing the part locally after estimating a Unit Emergy Value (or emergy transformity) of 1.27E+05 sej/j for the electricity in Fiji. The total emergy of the process was calculated to be 3.05E+12 sej, of which a majority was sourced from imported services and materials. Renewable emergy sources contributed to just 16.04% of the total emergy. Therefore, the part is suitable to be manufactured in Fiji with a reasonable quality and a cost of $FJ 2.85. However, the loading on the local environment is found to be significant and therefore, alternative raw materials for the filament like recycled PET should be explored or alternative manufacturing processes may be analyzed before committing to fabricating the part using FDM in its analyzed state. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emergy%20analysis" title="emergy analysis">emergy analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=fused%20deposition%20modeling" title=" fused deposition modeling"> fused deposition modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=solenoid%20valve%20housing" title=" solenoid valve housing"> solenoid valve housing</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20production" title=" sustainable production"> sustainable production</a> </p> <a href="https://publications.waset.org/abstracts/190891/sustainable-manufacturing-of-solenoid-valve-housing-in-fiji-fused-deposition-modeling-fdm-and-emergy-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190891.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">29</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4902</span> Review on PETG Material Parts Made Using Fused Deposition Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dhval%20Chauhan">Dhval Chauhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahesh%20Chudasama"> Mahesh Chudasama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study has been undertaken to give a review of Polyethylene Terephthalate Glycol (PETG) material used in Fused Deposition Modelling (FDM). This paper offers a review of the existing literature on polyethylene terephthalate glycol (PETG) material, the objective of the paper is to providing guidance on different process parameters that can be used to improve the strength of the part by performing various testing like tensile, compressive, flexural, etc. This work is target to find new paths that can be used for further development of the use of fiber reinforcement in PETG material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PETG" title="PETG">PETG</a>, <a href="https://publications.waset.org/abstracts/search?q=FDM" title=" FDM"> FDM</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength"> tensile strength</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20strength" title=" flexural strength"> flexural strength</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20reinforcement" title=" fiber reinforcement"> fiber reinforcement</a> </p> <a href="https://publications.waset.org/abstracts/147357/review-on-petg-material-parts-made-using-fused-deposition-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147357.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4901</span> Surface Roughness Analysis, Modelling and Prediction in Fused Deposition Modelling Additive Manufacturing Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yusuf%20S.%20Dambatta">Yusuf S. Dambatta</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20D.%20Sarhan"> Ahmed A. D. Sarhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fused deposition modelling (FDM) is one of the most prominent rapid prototyping (RP) technologies which is being used to efficiently fabricate CAD 3D geometric models. However, the process is coupled with many drawbacks, of which the surface quality of the manufactured RP parts is among. Hence, studies relating to improving the surface roughness have been a key issue in the field of RP research. In this work, a technique of modelling the surface roughness in FDM is presented. Using experimentally measured surface roughness response of the FDM parts, an ANFIS prediction model was developed to obtain the surface roughness in the FDM parts using the main critical process parameters that affects the surface quality. The ANFIS model was validated and compared with experimental test results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title="surface roughness">surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=fused%20deposition%20modelling%20%28FDM%29" title=" fused deposition modelling (FDM)"> fused deposition modelling (FDM)</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20neuro%20fuzzy%20inference%20system%20%28ANFIS%29" title=" adaptive neuro fuzzy inference system (ANFIS)"> adaptive neuro fuzzy inference system (ANFIS)</a>, <a href="https://publications.waset.org/abstracts/search?q=orientation" title=" orientation"> orientation</a> </p> <a href="https://publications.waset.org/abstracts/55529/surface-roughness-analysis-modelling-and-prediction-in-fused-deposition-modelling-additive-manufacturing-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4900</span> Evaluation of Environmental, Technical, and Economic Indicators of a Fused Deposition Modeling Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Yosofi">M. Yosofi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ezeddini"> S. Ezeddini</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ollivier"> A. Ollivier</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Lavaste"> V. Lavaste</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Mayousse"> C. Mayousse</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Additive manufacturing processes have changed significantly in a wide range of industries and their application progressed from rapid prototyping to production of end-use products. However, their environmental impact is still a rather open question. In order to support the growth of this technology in the industrial sector, environmental aspects should be considered and predictive models may help monitor and reduce the environmental footprint of the processes. This work presents predictive models based on a previously developed methodology for the environmental impact evaluation combined with a technical and economical assessment. Here we applied the methodology to the Fused Deposition Modeling process. First, we present the predictive models relative to different types of machines. Then, we present a decision-making tool designed to identify the optimum manufacturing strategy regarding technical, economic, and environmental criteria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=decision-makings" title=" decision-makings"> decision-makings</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impact" title=" environmental impact"> environmental impact</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20models" title=" predictive models"> predictive models</a> </p> <a href="https://publications.waset.org/abstracts/130193/evaluation-of-environmental-technical-and-economic-indicators-of-a-fused-deposition-modeling-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130193.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4899</span> Development and Characterization of Ceramic-Filled Composite Filaments and Functional Structures for Fused Deposition Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Khatri">B. Khatri</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Lappe"> K. Lappe</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Habedank"> M. Habedank</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20M%C3%BCller"> T. Müller</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Megnin"> C. Megnin</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Hanemann"> T. Hanemann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present a process flow for the development of ceramic-filled polymer composite filaments compatible with the fused deposition modeling (FDM) 3D printing process. Thermoplastic-ceramic composites were developed using acrylonitrile butadiene styrene (ABS) and 10- and 20 vol.% barium titanate (BaTiO3) powder (corresponding to 39.47- and 58.23 wt.% respectively) and characterized for their flow properties. To make them compatible with the existing FDM process, the composites were extruded into filaments. These composite filaments were subsequently structured into tensile stress specimens using a commercially available FDM 3D printer and characterized for their mechanical properties. Rheometric characterization of the material composites revealed non-Newtonian behavior with the viscosity logarithmically decreasing over increasing shear rates, as well as higher viscosities for samples with higher BaTiO3 filler content for a given shear rate (with the ABS+20vol.% BaTiO3 composite being over 50% more viscous compared to pure ABS at a shear rate of 1x〖10〗^3 s^(-1)). Mechanical characterization of the tensile stress specimens exhibited increasingly brittle behavior as well as a linearly decreasing ultimate tensile strength of the material composites with increasing volumetric ratio of BaTiO3 (from σ_max=32.4MPa for pure ABS to σ_max=21.3MPa for ABS+20vol.% BaTiO3). Further studies being undertaken include the development of composites with higher filler concentrations, sintering of the printed composites to yield pure dielectric structures and the determination of the dielectric characteristics of the composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic%20composites" title="ceramic composites">ceramic composites</a>, <a href="https://publications.waset.org/abstracts/search?q=fused%20deposition%20modeling" title=" fused deposition modeling"> fused deposition modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20characterization" title=" material characterization"> material characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20prototyping" title=" rapid prototyping"> rapid prototyping</a> </p> <a href="https://publications.waset.org/abstracts/41082/development-and-characterization-of-ceramic-filled-composite-filaments-and-functional-structures-for-fused-deposition-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41082.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4898</span> A Review of Fused Deposition Modeling Process: Parameter Optimization, Materials and Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elisaveta%20Doncheva">Elisaveta Doncheva</a>, <a href="https://publications.waset.org/abstracts/search?q=Jelena%20Djokikj"> Jelena Djokikj</a>, <a href="https://publications.waset.org/abstracts/search?q=Ognen%20Tuteski"> Ognen Tuteski</a>, <a href="https://publications.waset.org/abstracts/search?q=Bojana%20Hadjieva"> Bojana Hadjieva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the past decade, additive manufacturing technology or 3D printing has been promoted as an efficient method for fabricating hybrid composite materials and structures with superior mechanical properties and complex shape and geometry. Fused deposition modeling (FDM) process is commonly used additive manufacturing technique for production of polymer products. Therefore, many studies and experiments are focused on investigating the possibilities for improving the obtained results on product properties as a key factor for expanding the spectrum of their application. This article provides an extensive review on recent research advances in FDM and reports on studies that cover the effects of process parameters, material, and design of the product properties. The paper conclusions provide a clear up-to date information for optimum efficiency and enhancement of the mechanical properties of 3D printed samples and recommends further research work and investigations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20parameters" title=" critical parameters"> critical parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=filament" title=" filament"> filament</a>, <a href="https://publications.waset.org/abstracts/search?q=print%20orientation" title=" print orientation"> print orientation</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title=" 3D printing"> 3D printing</a> </p> <a href="https://publications.waset.org/abstracts/147119/a-review-of-fused-deposition-modeling-process-parameter-optimization-materials-and-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4897</span> PLA Plastic as Biodegradable Material for 3D Printers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juraj%20Beniak">Juraj Beniak</a>, <a href="https://publications.waset.org/abstracts/search?q=%C4%BDubom%C3%ADr%20%C5%A0oo%C5%A1"> Ľubomír Šooš</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Kri%C5%BEan"> Peter Križan</a>, <a href="https://publications.waset.org/abstracts/search?q=Milo%C5%A1%20Mat%C3%BA%C5%A1"> Miloš Matúš</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Within Rapid Prototyping technologies are used many types of materials. Many of them are recyclable but there are still as plastic like, so practically they do not degrade in the landfill. Polylactic acid (PLA) is one of the special plastic materials which are biodegradable and also available for 3D printing within Fused Deposition Modelling (FDM) technology. The question is, if the mechanical properties of produced models are comparable to similar technical plastic materials which are usual for prototype production. Presented paper shows the experiments results for tensile strength measurements for specimens prepared with different 3D printer settings and model orientation. Paper contains also the comparison of tensile strength values with values measured on specimens produced by conventional technologies as injection moulding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title="3D printing">3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradable%20plastic" title=" biodegradable plastic"> biodegradable plastic</a>, <a href="https://publications.waset.org/abstracts/search?q=fused%20deposition%20modeling" title=" fused deposition modeling"> fused deposition modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=PLA%20plastic" title=" PLA plastic"> PLA plastic</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20prototyping" title=" rapid prototyping"> rapid prototyping</a> </p> <a href="https://publications.waset.org/abstracts/37301/pla-plastic-as-biodegradable-material-for-3d-printers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37301.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4896</span> Tensile Properties of 3D Printed PLA under Unidirectional and Bidirectional Raster Angle: A Comparative Study </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shilpesh%20R.%20Rajpurohit">Shilpesh R. Rajpurohit</a>, <a href="https://publications.waset.org/abstracts/search?q=Harshit%20K.%20Dave"> Harshit K. Dave</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fused deposition modeling (FDM) gains popularity in recent times, due to its capability to create prototype as well as functional end use product directly from CAD file. Parts fabricated using FDM process have mechanical properties comparable with those of injection-molded parts. However, performance of the FDM part is severally affected by the poor mechanical properties of the part due to nature of layered structure of printed part. Mechanical properties of the part can be improved by proper selection of process variables. In the present study, a comparative study between unidirectional and bidirectional raster angle has been carried out at a combination of different layer height and raster width. Unidirectional raster angle varied at five different levels, and bidirectional raster angle has been varied at three different levels. Fabrication of tensile specimen and tensile testing of specimen has been conducted according to ASTM D638 standard. From the results, it can be observed that higher tensile strength has been obtained at 0° raster angle followed by 45°/45° raster angle, while lower tensile strength has been obtained at 90° raster angle. Analysis of fractured surface revealed that failure takes place along with raster deposition direction for unidirectional and zigzag failure can be observed for bidirectional raster angle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=fused%20deposition%20modeling" title=" fused deposition modeling"> fused deposition modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=unidirectional" title=" unidirectional"> unidirectional</a>, <a href="https://publications.waset.org/abstracts/search?q=bidirectional" title=" bidirectional"> bidirectional</a>, <a href="https://publications.waset.org/abstracts/search?q=raster%20angle" title=" raster angle"> raster angle</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength"> tensile strength</a> </p> <a href="https://publications.waset.org/abstracts/86885/tensile-properties-of-3d-printed-pla-under-unidirectional-and-bidirectional-raster-angle-a-comparative-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86885.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4895</span> Surgical Planning for the Removal of Cranial Spheno-orbital Meningioma by Using Personalized Polymeric Prototypes Obtained with Additive Manufacturing Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Freddy%20Patricio%20Moncayo-Matute">Freddy Patricio Moncayo-Matute</a>, <a href="https://publications.waset.org/abstracts/search?q=Pablo%20Gerardo%20Pe%C3%B1a-Tapia"> Pablo Gerardo Peña-Tapia</a>, <a href="https://publications.waset.org/abstracts/search?q=V%C3%A1zquez-Silva%20Efr%C3%A9n"> Vázquez-Silva Efrén</a>, <a href="https://publications.waset.org/abstracts/search?q=Pa%C3%BAl%20Bol%C3%ADvar%20Torres-Jara"> Paúl Bolívar Torres-Jara</a>, <a href="https://publications.waset.org/abstracts/search?q=Diana%20Patricia%20Moya-Loaiza"> Diana Patricia Moya-Loaiza</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriela%20Abad-Farf%C3%A1n"> Gabriela Abad-Farfán</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study describes a clinical case and the results on the application of additive manufacturing for the surgical planning in the removal of a cranial spheno-orbital meningioma. It is verified that the use of personalized anatomical models and cutting guides helps to manage the cranial anomalies approach. The application of additive manufacturing technology: Fused Deposition Modeling (FDM), as a low-cost alternative, enables the printing of the test anatomical model, which in turn favors the reduction of surgery time, as well the morbidity rate reduction too. And the printing of the personalized cutting guide, which constitutes a valuable aid to the surgeon in terms of improving the intervention precision and reducing the invasive effect during the craniotomy. As part of the results, post-surgical follow-up is included as an instrument to verify the patient's recovery and the validity of the procedure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surgical%20planning" title="surgical planning">surgical planning</a>, <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title=" additive manufacturing"> additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20prototyping" title=" rapid prototyping"> rapid prototyping</a>, <a href="https://publications.waset.org/abstracts/search?q=fused%20deposition%20modeling" title=" fused deposition modeling"> fused deposition modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=custom%20anatomical%20model" title=" custom anatomical model"> custom anatomical model</a> </p> <a href="https://publications.waset.org/abstracts/163905/surgical-planning-for-the-removal-of-cranial-spheno-orbital-meningioma-by-using-personalized-polymeric-prototypes-obtained-with-additive-manufacturing-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4894</span> Optimization of Surface Roughness in Additive Manufacturing Processes via Taguchi Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anjian%20Chen">Anjian Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20C.%20Chen"> Joseph C. Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper studies a case where the targeted surface roughness of fused deposition modeling (FDM) additive manufacturing process is improved. The process is designing to reduce or eliminate the defects and improve the process capability index Cp and Cpk for an FDM additive manufacturing process. The baseline Cp is 0.274 and Cpk is 0.654. This research utilizes the Taguchi methodology, to eliminate defects and improve the process. The Taguchi method is used to optimize the additive manufacturing process and printing parameters that affect the targeted surface roughness of FDM additive manufacturing. The Taguchi L9 orthogonal array is used to organize the parameters&#39; (four controllable parameters and one non-controllable parameter) effectiveness on the FDM additive manufacturing process. The four controllable parameters are nozzle temperature [&deg;C], layer thickness [mm], nozzle speed [mm/s], and extruder speed [%]. The non-controllable parameter is the environmental temperature [&deg;C]. After the optimization of the parameters, a confirmation print was printed to prove that the results can reduce the amount of defects and improve the process capability index Cp from 0.274 to 1.605 and the Cpk from 0.654 to 1.233 for the FDM additive manufacturing process. The final results confirmed that the Taguchi methodology is sufficient to improve the surface roughness of FDM additive manufacturing process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=fused%20deposition%20modeling" title=" fused deposition modeling"> fused deposition modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=six-sigma" title=" six-sigma"> six-sigma</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title=" 3D printing"> 3D printing</a> </p> <a href="https://publications.waset.org/abstracts/89931/optimization-of-surface-roughness-in-additive-manufacturing-processes-via-taguchi-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89931.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4893</span> Comparative Analysis of Fused Deposition Modeling and Binding-Jet 3D Printing Technologies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Javaid">Mohd Javaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahbaz%20%20Khan"> Shahbaz Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Abid%20Haleem"> Abid Haleem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: Large numbers of 3D printing technologies are now available for sophisticated applications in different fields. Additive manufacturing has established its dominance in design, development, and customisation of the product. In the era of developing technologies, there is a need to identify the appropriate technology for different application. In order to fulfil this need, two widely used printing technologies such as Fused Deposition Modeling (FDM), and Binding-Jet 3D Printing are compared for effective utilisation in the current scenario for different applications. Methodology: Systematic literature review conducted for both technologies with applications and associated factors enabling for the same. Appropriate MCDM tool is used to compare critical factors for both the technologies. Findings: Both technologies have their potential and capabilities to provide better direction to the industry. Additionally, this paper is helpful to develop a decision support system for the proper selection of technologies according to their continuum of applications and associated research and development capability. The vital issue is raw materials, and research-based material development is key to the sustainability of the developed technologies. FDM is a low-cost technology which provides high strength product as compared to binding jet technology. Researcher and companies can take benefits of this study to achieve the required applications in lesser resources. Limitations: Study has undertaken the comparison with the opinion of experts, which may not always be free from bias, and some own limitations of each technology. Originality: Comparison between these technologies will help to identify best-suited technology as per the customer requirements. It also provides development in this different field as per their extensive capability where these technologies can be successfully adopted. Conclusion: FDM and binding jet technology play an active role in industrial development. These help to assist the customisation and production of personalised parts cost-effectively. So, there is a need to understand how these technologies can provide these developments rapidly. These technologies help in easy changes or in making revised versions of the product, which is not easily possible in the conventional manufacturing system. High machine cost, the requirement of skilled human resources, low surface finish, and mechanical strength of product and material changing option is the main limitation of this technology. However, these limitations vary from technology to technology. In the future, these technologies are to be commercially viable for efficient usage in direct manufacturing of varied parts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title="3D printing">3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=comparison" title=" comparison"> comparison</a>, <a href="https://publications.waset.org/abstracts/search?q=fused%20deposition%20modeling" title=" fused deposition modeling"> fused deposition modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=FDM" title=" FDM"> FDM</a>, <a href="https://publications.waset.org/abstracts/search?q=binding%20jet%20technology" title=" binding jet technology"> binding jet technology</a> </p> <a href="https://publications.waset.org/abstracts/111351/comparative-analysis-of-fused-deposition-modeling-and-binding-jet-3d-printing-technologies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111351.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4892</span> Simulation on Influence of Environmental Conditions on Part Distortion in Fused Deposition Modelling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anto%20Antony%20Samy">Anto Antony Samy</a>, <a href="https://publications.waset.org/abstracts/search?q=Atefeh%20Golbang"> Atefeh Golbang</a>, <a href="https://publications.waset.org/abstracts/search?q=Edward%20Archer"> Edward Archer</a>, <a href="https://publications.waset.org/abstracts/search?q=Alistair%20McIlhagger"> Alistair McIlhagger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fused deposition modelling (FDM) is one of the additive manufacturing techniques that has become highly attractive in the industrial and academic sectors. However, parts fabricated through FDM are highly susceptible to geometrical defects such as warpage, shrinkage, and delamination that can severely affect their function. Among the thermoplastic polymer feedstock for FDM, semi-crystalline polymers are highly prone to part distortion due to polymer crystallization. In this study, the influence of FDM processing conditions such as chamber temperature and print bed temperature on the induced thermal residual stress and resulting warpage are investigated using the 3D transient thermal model for a semi-crystalline polymer. The thermo-mechanical properties and the viscoelasticity of the polymer, as well as the crystallization physics, which considers the crystallinity of the polymer, are coupled with the evolving temperature gradient of the print model. From the results, it was observed that increasing the chamber temperature from 25°C to 75°C lead to a decrease of 1.5% residual stress, while decreasing bed temperature from 100°C to 60°C, resulted in a 33% increase in residual stress and a significant rise of 138% in warpage. The simulated warpage data is validated by comparing it with the measured warpage values of the samples using 3D scanning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title="finite element analysis">finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=fused%20deposition%20modelling" title=" fused deposition modelling"> fused deposition modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20stress" title=" residual stress"> residual stress</a>, <a href="https://publications.waset.org/abstracts/search?q=warpage" title=" warpage"> warpage</a> </p> <a href="https://publications.waset.org/abstracts/135610/simulation-on-influence-of-environmental-conditions-on-part-distortion-in-fused-deposition-modelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135610.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4891</span> Heat Treatment of Additively Manufactured Hybrid Rocket Fuel Grains</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jim%20J.%20Catina">Jim J. Catina</a>, <a href="https://publications.waset.org/abstracts/search?q=Jackee%20M.%20Gwynn"> Jackee M. Gwynn</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20S.%20Kang"> Jin S. Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Additive manufacturing (AM) for hybrid rocket engines is becoming increasingly attractive due to its ability to create complex grain configurations with improved regression rates when compared to cast grains. However, the presence of microvoids in parts produced through the additive manufacturing method of Fused Deposition Modeling (FDM) results in a lower fuel density and is believed to cause a decrease in regression rate compared to ideal performance. In this experiment, FDM was used to create hybrid rocket fuel grains with a star configuration composed of acrylonitrile butadiene styrene (ABS). Testing was completed to determine the effect of heat treatment as a post-processing method to improve the combustion performance of hybrid rocket fuel grains manufactured by FDM. For control, three ABS star configuration grains were printed using FDM and hot fired using gaseous oxygen (GOX) as the oxidizer. Parameters such as thrust and mass flow rate were measured. Three identical grains were then heat treated to varying degrees and hot fired under the same conditions as the control grains. This paper will quantitatively describe the amount of improvement in engine performance as a result of heat treatment of the AM hybrid fuel grain. Engine performance is measured in this paper by specific impulse, which is determined from the thrust measurements collected in testing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acrylonitrile%20butadiene%20styrene" title="acrylonitrile butadiene styrene">acrylonitrile butadiene styrene</a>, <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title=" additive manufacturing"> additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=fused%20deposition%20modeling" title=" fused deposition modeling"> fused deposition modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title=" heat treatment"> heat treatment</a> </p> <a href="https://publications.waset.org/abstracts/157623/heat-treatment-of-additively-manufactured-hybrid-rocket-fuel-grains" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157623.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4890</span> Optimization of Fused Deposition Modeling 3D Printing Process via Preprocess Calibration Routine Using Low-Cost Thermal Sensing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raz%20Flieshman">Raz Flieshman</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20Michael%20Altenbuchner"> Adam Michael Altenbuchner</a>, <a href="https://publications.waset.org/abstracts/search?q=J%C3%B6rg%20Kr%C3%BCger"> Jörg Krüger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an approach to optimizing the Fused Deposition Modeling (FDM) 3D printing process through a preprocess calibration routine of printing parameters. The core of this method involves the use of a low-cost thermal sensor capable of measuring tempera-tures within the range of -20 to 500 degrees Celsius for detailed process observation. The calibration process is conducted by printing a predetermined path while varying the process parameters through machine instructions (g-code). This enables the extraction of critical thermal, dimensional, and surface properties along the printed path. The calibration routine utilizes computer vision models to extract features and metrics from the thermal images, in-cluding temperature distribution, layer adhesion quality, surface roughness, and dimension-al accuracy and consistency. These extracted properties are then analyzed to optimize the process parameters to achieve the desired qualities of the printed material. A significant benefit of this calibration method is its potential to create printing parameter profiles for new polymer and composite materials, thereby enhancing the versatility and application range of FDM 3D printing. The proposed method demonstrates significant potential in enhancing the precision and reliability of FDM 3D printing, making it a valuable contribution to the field of additive manufacturing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FDM%203D%20printing" title="FDM 3D printing">FDM 3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=preprocess%20calibration" title=" preprocess calibration"> preprocess calibration</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20sensor" title=" thermal sensor"> thermal sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20optimization" title=" process optimization"> process optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title=" additive manufacturing"> additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title=" computer vision"> computer vision</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20profiles" title=" material profiles"> material profiles</a> </p> <a href="https://publications.waset.org/abstracts/187569/optimization-of-fused-deposition-modeling-3d-printing-process-via-preprocess-calibration-routine-using-low-cost-thermal-sensing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187569.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">40</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4889</span> Novel Fluorescent High Density Polyethylene Composites for Fused Deposition Modeling 3D Printing in Packaging Security Features</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Youssef%20R.%20Hassan">Youssef R. Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20S.%20Hasanin"> Mohamed S. Hasanin</a>, <a href="https://publications.waset.org/abstracts/search?q=Reda%20M.%20Abdelhameed"> Reda M. Abdelhameed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, innovations in packaging security features become more important to see the originality of packaging in industrial application. Luminescent 3d printing materials have been a promising property which can provides a unique opportunity for the design and application of 3D printing. Lack emission of terbium ions, as a source of green emission, in salt form prevent its uses in industrial applications, so searching about stable and highly emitter material become essential. Nowadays, metal organic frameworks (MOFs) play an important role in designing light emitter material. In this work, fluorescent high density polyethylene (FHDPE) composite filament with Tb-benzene 1,3,5-tricarboxylate (Tb-BTC) MOFs for 3D printing have been successfully developed.HDPE pellets were mixed with Tb-BTC and melting extrustion with single screw extruders. It was found that Tb-BTCuniformly dispersed in the HDPE matrix and significantly increased the crystallinity of PE, which not only maintained the good thermal property but also improved the mechanical properties of Tb-BTC@HDPE composites. Notably, the composite filaments emitted ultra-bright green light under UV lamp, and the fluorescence intensity increased as the content of Tb-BTC increased. Finally, several brightly luminescent exquisite articles could be manufactured by fused deposition modeling (FDM) 3D printer with these new fluorescent filaments. In this context, the development of novel fluorescent Tb-BTC@HDPE composites was combined with 3D printing technology to amplified the packaging Security Features. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title="3D printing">3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescent" title=" fluorescent"> fluorescent</a>, <a href="https://publications.waset.org/abstracts/search?q=packaging" title=" packaging"> packaging</a>, <a href="https://publications.waset.org/abstracts/search?q=security" title=" security"> security</a> </p> <a href="https://publications.waset.org/abstracts/158294/novel-fluorescent-high-density-polyethylene-composites-for-fused-deposition-modeling-3d-printing-in-packaging-security-features" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4888</span> Influence of Surface Area on Dissolution of Additively Manufactured Polyvinyl Alcohol Tablets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyedebrahim%20Afkhami">Seyedebrahim Afkhami</a>, <a href="https://publications.waset.org/abstracts/search?q=Meisam%20Abdi"> Meisam Abdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Baserinia"> Reza Baserinia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Additive manufacturing is revolutionising production in different industries, including pharmaceuticals. This case study explores the influence of surface area on the dissolution of additively manufactured polyvinyl alcohol parts as a polymer candidate. Specimens of different geometries and constant mass were fabricated using a Fused Deposition Modelling 3D printer. The dissolution behaviour of these samples was compared with respect to their surface area. Improved and accelerated dissolution was observed for samples with a larger surface area. This study highlights the capabilities of additive manufacturing to produce samples of complex geometries that cannot be manufactured otherwise to control the dissolution behaviour for pharmaceutical and biopharmaceutical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20dissolution" title=" polymer dissolution"> polymer dissolution</a>, <a href="https://publications.waset.org/abstracts/search?q=fused%20deposition%20modelling" title=" fused deposition modelling"> fused deposition modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=geometry%20optimization" title=" geometry optimization"> geometry optimization</a> </p> <a href="https://publications.waset.org/abstracts/168846/influence-of-surface-area-on-dissolution-of-additively-manufactured-polyvinyl-alcohol-tablets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168846.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4887</span> Comparison of Tensile Strength and Folding Endurance of (FDM Process) 3D Printed ABS and PLA Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Devicharan">R. Devicharan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a short span 3D Printing is expected to play a vital role in our life. The possibility of creativity and speed in manufacturing through various 3D printing processes is infinite. This study is performed on the FDM (Fused Deposition Modelling) method of 3D printing, which is one of the pre-dominant methods of 3D printing technologies. This study focuses on physical properties of the objects produced by 3D printing which determine the applications of the 3D printed objects. This paper specifically aims at the study of the tensile strength and the folding endurance of the 3D printed objects through the FDM (Fused Deposition Modelling) method using the ABS (Acronitirile Butadiene Styrene) and PLA (Poly Lactic Acid) plastic materials. The study is performed on a controlled environment and the specific machine settings. Appropriate tables, graphs are plotted and research analysis techniques will be utilized to analyse, verify and validate the experiment results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FDM%20process" title="FDM process">FDM process</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title=" 3D printing"> 3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=ABS%20for%203D%20printing" title=" ABS for 3D printing"> ABS for 3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=PLA%20for%203D%20printing" title=" PLA for 3D printing"> PLA for 3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20prototyping" title=" rapid prototyping"> rapid prototyping</a> </p> <a href="https://publications.waset.org/abstracts/29802/comparison-of-tensile-strength-and-folding-endurance-of-fdm-process-3d-printed-abs-and-pla-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29802.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">599</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4886</span> Crystal Nucleation in 3D Printed Polymer Scaffolds in Tissue Engineering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amani%20Alotaibi">Amani Alotaibi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 3D printing has emerged as a pivotal technique for scaffold development, particularly in the field of bone tissue regeneration, due to its ability to customize scaffolds to fit complex geometries of bone defects. Among the various methods available, fused deposition modeling (FDM) is particularly promising as it avoids the use of solvents or toxic chemicals during fabrication. This study investigates the effects of three key parameters, extrusion temperature, screw rotational speed, and deposition speed, on the crystallization and mechanical properties of polycaprolactone (PCL) scaffolds. Three extrusion temperatures (70°C, 80°C, and 90°C), three screw speeds (10 RPM, 15 RPM, and 20 RPM), and three deposition speeds (8 mm/s, 10 mm/s, and 12 mm/s) were evaluated. The scaffolds were characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC), and tensile testing to assess changes in crystallinity and mechanical properties. Additionally, the scaffolds were analyzed for crystal size and biocompatibility. The results demonstrated that increasing the extrusion temperature to 80°C, combined with a screw speed of 15 RPM and a deposition speed of 10 mm/s, significantly improved the crystallinity, compressive modulus, and thermal resistance of the PCL scaffolds. These findings suggest that by fine-tuning basic 3D printing parameters, it is possible to modulate the structural and mechanical properties of the scaffold, thereby enhancing its suitability for bone tissue regeneration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title="3D printing">3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer" title=" polymer"> polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=scaffolds" title=" scaffolds"> scaffolds</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20engineering" title=" tissue engineering"> tissue engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=crystallization" title=" crystallization"> crystallization</a> </p> <a href="https://publications.waset.org/abstracts/194998/crystal-nucleation-in-3d-printed-polymer-scaffolds-in-tissue-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4885</span> Effect of Infill Density and Pattern on the Compressive Strength of Parts Produced by Polylactic Acid Filament Using Fused Deposition Modelling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20K.%20Awari">G. K. Awari</a>, <a href="https://publications.waset.org/abstracts/search?q=Vishwajeet%20V.%20Ambade"> Vishwajeet V. Ambade</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20W.%20Rajurkar"> S. W. Rajurkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The field of additive manufacturing is growing, and discoveries are being made. 3D printing machines are also being developed to accommodate a wider range of 3D printing materials, including plastics, metals (metal AM powders), composites, filaments, and other materials. There are numerous printing materials available for industrial additive manufacturing. Such materials have their unique characteristics, advantages, and disadvantages. In order to avoid errors in additive manufacturing, key elements such as 3D printing material type, texture, cost, printing technique and procedure, and so on must be examined. It can be complex to select the best material for a particular job. Polylactic acid (PLA) is made from sugar cane or cornstarch, both of which are renewable resources. "Black plastic" is another name for it. Because it is safe to use and print, it is frequently used in primary and secondary schools. This is also how FDM screen printing is done. PLA is simple to print because of its low warping impact. It's also possible to print it on a cold surface. When opposed to ABS, it allows for sharper edges and features to be printed. This material comes in a wide range of colours. Polylactic acid (PLA) is the most common material used in fused deposition modelling (FDM). PLA can be used to print a wide range of components, including medical implants, household items, and mechanical parts. The mechanical behaviour of the printed item is affected by variations in infill patterns that are subjected to compressive tests in the current investigation to examine their behaviour under compressive stresses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fused%20deposition%20modelling" title="fused deposition modelling">fused deposition modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=polylactic%20acid" title=" polylactic acid"> polylactic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=infill%20density" title=" infill density"> infill density</a>, <a href="https://publications.waset.org/abstracts/search?q=infill%20pattern" title=" infill pattern"> infill pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/159760/effect-of-infill-density-and-pattern-on-the-compressive-strength-of-parts-produced-by-polylactic-acid-filament-using-fused-deposition-modelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159760.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4884</span> Fused Deposition Modeling Printing of Bioinspired Triply Periodic Minimal Surfaces Based Polyvinylidene Fluoride Materials for Scaffold Development in Biomedical Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farusil%20Najeeb%20Mullaveettil">Farusil Najeeb Mullaveettil</a>, <a href="https://publications.waset.org/abstracts/search?q=Rolanas%20Dauksevicius"> Rolanas Dauksevicius</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cellular structures produced by additive manufacturing have earned wide research attention due to their unique specific strength and energy absorption potentiality. The literature review concludes that pattern type and density are vital parameters that affect the mechanical properties of parts formed by additive manufacturing techniques and have an influence on printing time and material consumption. Fused deposition modeling technique (FDM) is used here to produce Polyvinylidene fluoride (PVDF) parts. In this work, patterns are based on triply periodic minimal surfaces (TPMS) produced by PVDF-based filaments using the FDM technique. PVDF homopolymer filament Fluorinar-H™ and PVDF copolymer filament Fluorinar-C™ are printed with three types of TPMS patterns. The patterns printed are Gyroid, Schwartz diamond, and Schwartz primitive. Tensile, flexural, and compression tests under quasi-static loading conditions are performed in compliance with ISO standards. The investigation elucidates the deformation mechanisms and a study that establishes a relationship between the printed and nominal specimens' dimensional accuracy. In comparison to the examined TPMS pattern, Schwartz diamond showed a higher relative elastic modulus and strength than the other patterns in tensile loading, and the Gyroid pattern showed the highest mechanical characteristics in flexural loading. The concluded results could be utilized to produce informed cellular designs for biomedical and mechanical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=FDM" title=" FDM"> FDM</a>, <a href="https://publications.waset.org/abstracts/search?q=PVDF" title=" PVDF"> PVDF</a>, <a href="https://publications.waset.org/abstracts/search?q=gyroid" title=" gyroid"> gyroid</a>, <a href="https://publications.waset.org/abstracts/search?q=schwartz%20primitive" title=" schwartz primitive"> schwartz primitive</a>, <a href="https://publications.waset.org/abstracts/search?q=schwartz%20diamond" title=" schwartz diamond"> schwartz diamond</a>, <a href="https://publications.waset.org/abstracts/search?q=TPMS" title=" TPMS"> TPMS</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile" title=" tensile"> tensile</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural" title=" flexural"> flexural</a> </p> <a href="https://publications.waset.org/abstracts/128616/fused-deposition-modeling-printing-of-bioinspired-triply-periodic-minimal-surfaces-based-polyvinylidene-fluoride-materials-for-scaffold-development-in-biomedical-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128616.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4883</span> Fused Deposition Modelling as the Manufacturing Method of Fully Bio-Based Water Purification Filters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Natalia%20Fijol">Natalia Fijol</a>, <a href="https://publications.waset.org/abstracts/search?q=Aji%20P.%20Mathew"> Aji P. Mathew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present the processing and characterisation of three-dimensional (3D) monolith filters based on polylactic acid (PLA) reinforced with various nature-derived nanospecies such as hydroxyapatite, modified cellulose fibers and chitin fibers. The nanospecies of choice were dispersed in PLA through Thermally Induced Phase Separation (TIPS) method. The biocomposites were developed via solvent-assisted blending and the obtained pellets were further single-screw extruded into 3D-printing filaments and processed into various geometries using Fused Deposition Modelling (FDM) technique. The printed prototypes included cubic, cylindrical and hour-glass shapes with diverse patterns of printing infill as well as varying pore structure including uniform and multiple level gradual pore structure. The pores and channel structure as well as overall shape of the prototypes were designed in attempt to optimize the flux and maximize the adsorption-active time. FDM is a cost and energy-efficient method, which does not require expensive tools and elaborated post-processing maintenance. Therefore, FDM offers the possibility to produce customized, highly functional water purification filters with tuned porous structures suitable for removal of wide range of common water pollutants. Moreover, as 3D printing becomes more and more available worldwide, it allows producing portable filters at the place and time where they are most needed. The study demonstrates preparation route for the PLA-based, fully biobased composite and their processing via FDM technique into water purification filters, addressing water treatment challenges on an industrial scale. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fused%20deposition%20modelling" title="fused deposition modelling">fused deposition modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment"> water treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=biomaterials" title=" biomaterials"> biomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title=" 3D printing"> 3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocellulose" title=" nanocellulose"> nanocellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=nanochitin" title=" nanochitin"> nanochitin</a>, <a href="https://publications.waset.org/abstracts/search?q=polylactic%20acid" title=" polylactic acid"> polylactic acid</a> </p> <a href="https://publications.waset.org/abstracts/151886/fused-deposition-modelling-as-the-manufacturing-method-of-fully-bio-based-water-purification-filters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151886.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4882</span> Design, Fabrication and Analysis of Molded and Direct 3D-Printed Soft Pneumatic Actuators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Naz">N. Naz</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20D.%20Domenico"> A. D. Domenico</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Huda"> M. N. Huda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soft Robotics is a rapidly growing multidisciplinary field where robots are fabricated using highly deformable materials motivated by bioinspired designs. The high dexterity and adaptability to the external environments during contact make soft robots ideal for applications such as gripping delicate objects, locomotion, and biomedical devices. The actuation system of soft robots mainly includes fluidic, tendon-driven, and smart material actuation. Among them, Soft Pneumatic Actuator, also known as SPA, remains the most popular choice due to its flexibility, safety, easy implementation, and cost-effectiveness. However, at present, most of the fabrication of SPA is still based on traditional molding and casting techniques where the mold is 3d printed into which silicone rubber is cast and consolidated. This conventional method is time-consuming and involves intensive manual labour with the limitation of repeatability and accuracy in design. Recent advancements in direct 3d printing of different soft materials can significantly reduce the repetitive manual task with an ability to fabricate complex geometries and multicomponent designs in a single manufacturing step. The aim of this research work is to design and analyse the Soft Pneumatic Actuator (SPA) utilizing both conventional casting and modern direct 3d printing technologies. The mold of the SPA for traditional casting is 3d printed using fused deposition modeling (FDM) with the polylactic acid (PLA) thermoplastic wire. Hyperelastic soft materials such as Ecoflex-0030/0050 are cast into the mold and consolidated using a lab oven. The bending behaviour is observed experimentally with different pressures of air compressor to ensure uniform bending without any failure. For direct 3D-printing of SPA fused deposition modeling (FDM) with thermoplastic polyurethane (TPU) and stereolithography (SLA) with an elastic resin are used. The actuator is modeled using the finite element method (FEM) to analyse the nonlinear bending behaviour, stress concentration and strain distribution of different hyperelastic materials after pressurization. FEM analysis is carried out using Ansys Workbench software with a Yeon-2nd order hyperelastic material model. FEM includes long-shape deformation, contact between surfaces, and gravity influences. For mesh generation, quadratic tetrahedron, hybrid, and constant pressure mesh are used. SPA is connected to a baseplate that is in connection with the air compressor. A fixed boundary is applied on the baseplate, and static pressure is applied orthogonally to all surfaces of the internal chambers and channels with a closed continuum model. The simulated results from FEM are compared with the experimental results. The experiments are performed in a laboratory set-up where the developed SPA is connected to a compressed air source with a pressure gauge. A comparison study based on performance analysis is done between FDM and SLA printed SPA with the molded counterparts. Furthermore, the molded and 3d printed SPA has been used to develop a three-finger soft pneumatic gripper and has been tested for handling delicate objects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title="finite element method">finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=fused%20deposition%20modeling" title=" fused deposition modeling"> fused deposition modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperelastic" title=" hyperelastic"> hyperelastic</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20pneumatic%20actuator" title=" soft pneumatic actuator"> soft pneumatic actuator</a> </p> <a href="https://publications.waset.org/abstracts/167546/design-fabrication-and-analysis-of-molded-and-direct-3d-printed-soft-pneumatic-actuators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4881</span> Electroforming of 3D Digital Light Processing Printed Sculptures Used as a Low Cost Option for Microcasting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cecile%20Meier">Cecile Meier</a>, <a href="https://publications.waset.org/abstracts/search?q=Drago%20Diaz%20Aleman"> Drago Diaz Aleman</a>, <a href="https://publications.waset.org/abstracts/search?q=Itahisa%20Perez%20Conesa"> Itahisa Perez Conesa</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20Luis%20Saorin%20Perez"> Jose Luis Saorin Perez</a>, <a href="https://publications.waset.org/abstracts/search?q=Jorge%20De%20La%20Torre%20Cantero"> Jorge De La Torre Cantero</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, two ways of creating small-sized metal sculptures are proposed: the first by means of microcasting and the second by electroforming from models printed in 3D using an FDM (Fused Deposition Modeling‎) printer or using a DLP (Digital Light Processing) printer. It is viable to replace the wax in the processes of the artistic foundry with 3D printed objects. In this technique, the digital models are manufactured with resin using a low-cost 3D FDM printer in polylactic acid (PLA). This material is used, because its properties make it a viable substitute to wax, within the processes of artistic casting with the technique of lost wax through Ceramic Shell casting. This technique consists of covering a sculpture of wax or in this case PLA with several layers of thermoresistant material. This material is heated to melt the PLA, obtaining an empty mold that is later filled with the molten metal. It is verified that the PLA models reduce the cost and time compared with the hand modeling of the wax. In addition, one can manufacture parts with 3D printing that are not possible to create with manual techniques. However, the sculptures created with this technique have a size limit. The problem is that when printed pieces with PLA are very small, they lose detail, and the laminar texture hides the shape of the piece. DLP type printer allows obtaining more detailed and smaller pieces than the FDM. Such small models are quite difficult and complex to melt using the lost wax technique of Ceramic Shell casting. But, as an alternative, there are microcasting and electroforming, which are specialized in creating small metal pieces such as jewelry ones. The microcasting is a variant of the lost wax that consists of introducing the model in a cylinder in which the refractory material is also poured. The molds are heated in an oven to melt the model and cook them. Finally, the metal is poured into the still hot cylinders that rotate in a machine at high speed to properly distribute all the metal. Because microcasting requires expensive material and machinery to melt a piece of metal, electroforming is an alternative for this process. The electroforming uses models in different materials; for this study, micro-sculptures printed in 3D are used. These are subjected to an electroforming bath that covers the pieces with a very thin layer of metal. This work will investigate the recommended size to use 3D printers, both with PLA and resin and first tests are being done to validate use the electroforming process of microsculptures, which are printed in resin using a DLP printer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sculptures" title="sculptures">sculptures</a>, <a href="https://publications.waset.org/abstracts/search?q=DLP%203D%20printer" title=" DLP 3D printer"> DLP 3D printer</a>, <a href="https://publications.waset.org/abstracts/search?q=microcasting" title=" microcasting"> microcasting</a>, <a href="https://publications.waset.org/abstracts/search?q=electroforming" title=" electroforming"> electroforming</a>, <a href="https://publications.waset.org/abstracts/search?q=fused%20deposition%20modeling" title="fused deposition modeling">fused deposition modeling</a> </p> <a href="https://publications.waset.org/abstracts/102618/electroforming-of-3d-digital-light-processing-printed-sculptures-used-as-a-low-cost-option-for-microcasting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4880</span> On Elastic Anisotropy of Fused Filament Fabricated Acrylonitrile Butadiene Styrene Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Marae%20Djouda">Joseph Marae Djouda</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashraf%20Kasmi"> Ashraf Kasmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Fran%C3%A7ois%20Hild"> François Hild</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fused filament fabrication is one of the most widespread additive manufacturing techniques because of its low-cost implementation. Its initial development was based on part fabrication with thermoplastic materials. The influence of the manufacturing parameters such as the filament orientation through the nozzle, the deposited layer thickness, or the speed deposition on the mechanical properties of the parts has been widely experimentally investigated. It has been recorded the remarkable variations of the anisotropy in the function of the filament path during the fabrication process. However, there is a lack in the development of constitutive models describing the mechanical properties. In this study, integrated digital image correlation (I-DIC) is used for the identification of mechanical constitutive parameters of two configurations of ABS samples: +/-45° and so-called “oriented deposition.” In this last, the filament was deposited in order to follow the principal strain of the sample. The identification scheme based on the gap reduction between simulation and the experiment directly from images recorded from a single sample (single edge notched tension specimen) is developed. The macroscopic and mesoscopic analysis are conducted from images recorded in both sample surfaces during the tensile test. The elastic and elastoplastic models in isotropic and orthotropic frameworks have been established. It appears that independently of the sample configurations (filament orientation during the fabrication), the elastoplastic isotropic model gives the correct description of the behavior of samples. It is worth noting that in this model, the number of constitutive parameters is limited to the one considered in the elastoplastic orthotropic model. This leads to the fact that the anisotropy of the architectured 3D printed ABS parts can be neglected in the establishment of the macroscopic behavior description. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastic%20anisotropy" title="elastic anisotropy">elastic anisotropy</a>, <a href="https://publications.waset.org/abstracts/search?q=fused%20filament%20fabrication" title=" fused filament fabrication"> fused filament fabrication</a>, <a href="https://publications.waset.org/abstracts/search?q=Acrylonitrile%20butadiene%20styrene" title=" Acrylonitrile butadiene styrene"> Acrylonitrile butadiene styrene</a>, <a href="https://publications.waset.org/abstracts/search?q=I-DIC%20identification" title=" I-DIC identification"> I-DIC identification</a> </p> <a href="https://publications.waset.org/abstracts/147590/on-elastic-anisotropy-of-fused-filament-fabricated-acrylonitrile-butadiene-styrene-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147590.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4879</span> Fused Salt Electrolysis of Rare-Earth Materials from the Domestic Ore and Preparation of Rare-Earth Hydrogen Storage Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeong-Hyun%20Yoo">Jeong-Hyun Yoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanjung%20Kwon"> Hanjung Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung-Wook%20Cho"> Sung-Wook Cho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fused salt electrolysis was studied to make the high purity rare-earth metals using domestic rare-earth ore. The target metals of the fused salt electrolysis were Mm (Misch metal), La, Ce, Nd, etc. Fused salt electrolysis was performed with the supporting salt such as chloride and fluoride at the various temperatures and ampere. The metals made by fused salt electrolysis were analyzed to identify the phase and composition using the methods of XRD and ICP. As a result, the acquired rare-earth metals were the high purity ones which had more than 99% purity. Also, VIM (vacuum induction melting) was studied to make the kg level rare-earth alloy for the use of secondary battery and hydrogen storage. In order to indentify the physicochemical properties such as phase, impurity gas, alloy composition and hydrogen storage, the alloys were investigated. The battery characteristics were also analyzed through the various tests in the real production line of a battery company. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=domestic%20rare-earth%20ore" title="domestic rare-earth ore">domestic rare-earth ore</a>, <a href="https://publications.waset.org/abstracts/search?q=fused%20salt%20electrolysis" title=" fused salt electrolysis"> fused salt electrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=rare-earth%20materials" title=" rare-earth materials"> rare-earth materials</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20storage%20alloy" title=" hydrogen storage alloy"> hydrogen storage alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20battery" title=" secondary battery"> secondary battery</a> </p> <a href="https://publications.waset.org/abstracts/17072/fused-salt-electrolysis-of-rare-earth-materials-from-the-domestic-ore-and-preparation-of-rare-earth-hydrogen-storage-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17072.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">533</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4878</span> Simulation of the Asphaltene Deposition Rate in a Wellbore Blockage via Computational Fluid Dynamic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaodong%20Gao">Xiaodong Gao</a>, <a href="https://publications.waset.org/abstracts/search?q=Pingchuan%20Dong"> Pingchuan Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=Qichao%20Gao"> Qichao Gao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There has been lots of published work focused on asphaltene deposited on the smooth pipe under steady conditions, while particle deposition on the blockage wellbores under transient conditions has not been well elucidated. This work attempts to predict the deposition rate of asphaltene particles in blockage tube through CFD simulation. The Euler-Lagrange equation has been applied during the flow of crude oil and asphaltene particles. The net gravitational force, virtual mass, pressure gradient, saffman lift, and drag forces are incorporated in the simulations process. Validation of CFD simulation results is compared to the benchmark experiments from the previous literature. Furthermore, the effect of blockage location, blockage length, and blockage thickness on deposition rate are also analyzed. The simulation results indicate that the maximum deposition rate of asphaltene occurs in the blocked tube section, and the greater the deposition thickness, the greater the deposition rate. Moreover, the deposition amount and maximum deposition rate along the length of the tube have the same trend. Results of this study are in the ability to better understand the deposition of asphaltene particles in production and help achieve to deal with the asphaltene challenges. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphaltene%20deposition%20rate" title="asphaltene deposition rate">asphaltene deposition rate</a>, <a href="https://publications.waset.org/abstracts/search?q=blockage%20length" title=" blockage length"> blockage length</a>, <a href="https://publications.waset.org/abstracts/search?q=blockage%20thickness" title=" blockage thickness"> blockage thickness</a>, <a href="https://publications.waset.org/abstracts/search?q=blockage%20diameter" title=" blockage diameter"> blockage diameter</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20condition" title=" transient condition"> transient condition</a> </p> <a href="https://publications.waset.org/abstracts/149723/simulation-of-the-asphaltene-deposition-rate-in-a-wellbore-blockage-via-computational-fluid-dynamic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fused%20deposition%20modeling&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fused%20deposition%20modeling&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fused%20deposition%20modeling&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fused%20deposition%20modeling&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fused%20deposition%20modeling&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fused%20deposition%20modeling&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fused%20deposition%20modeling&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fused%20deposition%20modeling&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fused%20deposition%20modeling&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fused%20deposition%20modeling&amp;page=163">163</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fused%20deposition%20modeling&amp;page=164">164</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fused%20deposition%20modeling&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10