CINXE.COM

Schrödinger–Newton equation - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Schrödinger–Newton equation - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"ed57b6d1-ed57-415a-a502-e9c7f3b4ee76","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Schrödinger–Newton_equation","wgTitle":"Schrödinger–Newton equation","wgCurRevisionId":1187087362,"wgRevisionId":1187087362,"wgArticleId":1905371,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description matches Wikidata","Gravity","Quantum gravity","Equations","Nonlinear partial differential equations","Schrödinger equation"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Schrödinger–Newton_equation","wgRelevantArticleId":1905371,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[], "wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":30000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q7432925","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false, "wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","ext.categoryTree.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","ext.categoryTree","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin", "ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.categoryTree.styles%7Cext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Schrödinger–Newton equation - Wikipedia"> <meta property="og:type" content="website"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Schr%C3%B6dinger%E2%80%93Newton_equation"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Schr%C3%B6dinger%E2%80%93Newton_equation&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Schr%C3%B6dinger%E2%80%93Newton_equation"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Schrödinger–Newton_equation rootpage-Schrödinger–Newton_equation skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Schr%C3%B6dinger%E2%80%93Newton+equation" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Schr%C3%B6dinger%E2%80%93Newton+equation" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Schr%C3%B6dinger%E2%80%93Newton+equation" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Schr%C3%B6dinger%E2%80%93Newton+equation" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Overview" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Overview"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Overview</span> </div> </a> <button aria-controls="toc-Overview-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Overview subsection</span> </button> <ul id="toc-Overview-sublist" class="vector-toc-list"> <li id="toc-Relation_to_semi-classical_and_quantum_gravity" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Relation_to_semi-classical_and_quantum_gravity"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Relation to semi-classical and quantum gravity</span> </div> </a> <ul id="toc-Relation_to_semi-classical_and_quantum_gravity-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Many-body_equation_and_centre-of-mass_motion" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Many-body_equation_and_centre-of-mass_motion"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Many-body equation and centre-of-mass motion</span> </div> </a> <ul id="toc-Many-body_equation_and_centre-of-mass_motion-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Significance_of_effects" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Significance_of_effects"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Significance of effects</span> </div> </a> <ul id="toc-Significance_of_effects-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Quantum_wave_function_collapse" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Quantum_wave_function_collapse"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Quantum wave function collapse</span> </div> </a> <button aria-controls="toc-Quantum_wave_function_collapse-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Quantum wave function collapse subsection</span> </button> <ul id="toc-Quantum_wave_function_collapse-sublist" class="vector-toc-list"> <li id="toc-Problems_and_open_matters" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Problems_and_open_matters"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Problems and open matters</span> </div> </a> <ul id="toc-Problems_and_open_matters-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Schrödinger–Newton equation</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 5 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-5" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">5 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%85%D8%B9%D8%A7%D8%AF%D9%84%D8%A9_%D8%B4%D8%B1%D9%88%D8%AF%D9%86%D8%BA%D8%B1-%D9%86%D9%8A%D9%88%D8%AA%D9%86" title="معادلة شرودنغر-نيوتن – Arabic" lang="ar" hreflang="ar" data-title="معادلة شرودنغر-نيوتن" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Schr%C3%B6dinger-Newton-Gleichung" title="Schrödinger-Newton-Gleichung – German" lang="de" hreflang="de" data-title="Schrödinger-Newton-Gleichung" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%8A%88%EB%A2%B0%EB%94%A9%EA%B1%B0-%EB%89%B4%ED%84%B4_%EB%B0%A9%EC%A0%95%EC%8B%9D" title="슈뢰딩거-뉴턴 방정식 – Korean" lang="ko" hreflang="ko" data-title="슈뢰딩거-뉴턴 방정식" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A0%D1%96%D0%B2%D0%BD%D1%8F%D0%BD%D0%BD%D1%8F_%D0%A8%D1%80%D0%B5%D0%B4%D1%96%D0%BD%D0%B3%D0%B5%D1%80%D0%B0_%E2%80%94_%D0%9D%D1%8C%D1%8E%D1%82%D0%BE%D0%BD%D0%B0" title="Рівняння Шредінгера — Ньютона – Ukrainian" lang="uk" hreflang="uk" data-title="Рівняння Шредінгера — Ньютона" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E8%96%9B%E5%AE%9A%E8%B0%94-%E7%89%9B%E9%A1%BF%E6%96%B9%E7%A8%8B" title="薛定谔-牛顿方程 – Chinese" lang="zh" hreflang="zh" data-title="薛定谔-牛顿方程" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q7432925#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Schr%C3%B6dinger%E2%80%93Newton_equation" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Schr%C3%B6dinger%E2%80%93Newton_equation" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Schr%C3%B6dinger%E2%80%93Newton_equation"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Schr%C3%B6dinger%E2%80%93Newton_equation&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Schr%C3%B6dinger%E2%80%93Newton_equation&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Schr%C3%B6dinger%E2%80%93Newton_equation"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Schr%C3%B6dinger%E2%80%93Newton_equation&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Schr%C3%B6dinger%E2%80%93Newton_equation&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Schr%C3%B6dinger%E2%80%93Newton_equation" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Schr%C3%B6dinger%E2%80%93Newton_equation" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Schr%C3%B6dinger%E2%80%93Newton_equation&amp;oldid=1187087362" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Schr%C3%B6dinger%E2%80%93Newton_equation&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Schr%C3%B6dinger%E2%80%93Newton_equation&amp;id=1187087362&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSchr%25C3%25B6dinger%25E2%2580%2593Newton_equation"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSchr%25C3%25B6dinger%25E2%2580%2593Newton_equation"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Schr%C3%B6dinger%E2%80%93Newton_equation&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Schr%C3%B6dinger%E2%80%93Newton_equation&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q7432925" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Nonlinear modification of the Schrödinger equation</div> <p>The <b>Schrödinger–Newton equation</b>, sometimes referred to as the <b>Newton–Schrödinger</b> or <b>Schrödinger–Poisson equation</b>, is a nonlinear modification of the <a href="/wiki/Schr%C3%B6dinger_equation" title="Schrödinger equation">Schrödinger equation</a> with a <a href="/wiki/Newtonian_gravity" class="mw-redirect" title="Newtonian gravity">Newtonian</a> gravitational potential, where the gravitational potential emerges from the treatment of the <a href="/wiki/Wave_function" title="Wave function">wave function</a> as a mass density, including a term that represents interaction of a particle with its own gravitational field. The inclusion of a self-interaction term represents a fundamental alteration of quantum mechanics.<sup id="cite_ref-vanMeter2011_1-0" class="reference"><a href="#cite_note-vanMeter2011-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> It can be written either as a single integro-differential equation or as a coupled system of a Schrödinger and a <a href="/wiki/Poisson%27s_equation" title="Poisson&#39;s equation">Poisson equation</a>. In the latter case it is also referred to in the plural form. </p><p>The Schrödinger–Newton equation was first considered by Ruffini and Bonazzola<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> in connection with self-gravitating <a href="/wiki/Boson_star" class="mw-redirect" title="Boson star">boson stars</a>. In this context of classical <a href="/wiki/General_relativity" title="General relativity">general relativity</a> it appears as the non-relativistic limit of either the <a href="/wiki/Klein%E2%80%93Gordon_equation" title="Klein–Gordon equation">Klein–Gordon equation</a> or the <a href="/wiki/Dirac_equation" title="Dirac equation">Dirac equation</a> in a curved space-time together with the <a href="/wiki/Einstein_field_equations" title="Einstein field equations">Einstein field equations</a>.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> The equation also describes <a href="/wiki/Fuzzy_cold_dark_matter" title="Fuzzy cold dark matter">fuzzy dark matter</a> and approximates classical <a href="/wiki/Cold_dark_matter" title="Cold dark matter">cold dark matter</a> described by the <a href="/wiki/Vlasov_equation#The_Vlasov–Poisson_equation" title="Vlasov equation">Vlasov–Poisson equation</a> in the limit that the particle mass is large.<sup id="cite_ref-MoczLancaster2018_4-0" class="reference"><a href="#cite_note-MoczLancaster2018-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p><p>Later on it was proposed as a model to explain the <a href="/wiki/Wave_function_collapse" title="Wave function collapse">quantum wave function collapse</a> by <a href="/w/index.php?title=Lajos_Di%C3%B3si&amp;action=edit&amp;redlink=1" class="new" title="Lajos Diósi (page does not exist)">Lajos Diósi</a><sup id="cite_ref-Diosi1984_5-0" class="reference"><a href="#cite_note-Diosi1984-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> and <a href="/wiki/Roger_Penrose" title="Roger Penrose">Roger Penrose</a>,<sup id="cite_ref-Penrose1996_6-0" class="reference"><a href="#cite_note-Penrose1996-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Penrose1998_7-0" class="reference"><a href="#cite_note-Penrose1998-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Penrose2014_8-0" class="reference"><a href="#cite_note-Penrose2014-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> from whom the name "Schrödinger–Newton equation" originates. In this context, matter has quantum properties, while gravity remains classical even at the fundamental level. The Schrödinger–Newton equation was therefore also suggested as a way to test the necessity of <a href="/wiki/Quantum_gravity" title="Quantum gravity">quantum gravity</a>.<sup id="cite_ref-Carlip2008_9-0" class="reference"><a href="#cite_note-Carlip2008-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> </p><p>In a third context, the Schrödinger–Newton equation appears as a <a href="/w/index.php?title=Hartree_approximation&amp;action=edit&amp;redlink=1" class="new" title="Hartree approximation (page does not exist)">Hartree approximation</a> for the mutual gravitational interaction in a system of a large number of particles. In this context, a corresponding equation for the electromagnetic <a href="/wiki/Coulomb%27s_law" title="Coulomb&#39;s law">Coulomb</a> interaction was suggested by Philippe Choquard at the 1976 Symposium on Coulomb Systems in Lausanne to describe one-component plasmas. <a href="/wiki/Elliott_H._Lieb" title="Elliott H. Lieb">Elliott H.&#160;Lieb</a> provided the proof for the existence and uniqueness of a stationary ground state and referred to the equation as the <b>Choquard equation</b>.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Overview">Overview</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Schr%C3%B6dinger%E2%80%93Newton_equation&amp;action=edit&amp;section=1" title="Edit section: Overview"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>As a coupled system, the Schrödinger–Newton equations are the usual Schrödinger equation with a self-interaction <a href="/wiki/Gravitational_potential" title="Gravitational potential">gravitational potential</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i\hbar \ {\frac {\partial \Psi }{\ \partial t\ }}=-{\frac {\ \hbar ^{2}}{\ 2\ m\ }}\ \nabla ^{2}\Psi \;+\;V\ \Psi \;+\;m\ \Phi \ \Psi \ ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi mathvariant="normal">&#x03A8;<!-- Ψ --></mi> </mrow> <mrow> <mtext>&#xA0;</mtext> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>t</mi> <mtext>&#xA0;</mtext> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mtext>&#xA0;</mtext> <msup> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mtext>&#xA0;</mtext> <mn>2</mn> <mtext>&#xA0;</mtext> <mi>m</mi> <mtext>&#xA0;</mtext> </mrow> </mfrac> </mrow> <mtext>&#xA0;</mtext> <msup> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi mathvariant="normal">&#x03A8;<!-- Ψ --></mi> <mspace width="thickmathspace" /> <mo>+</mo> <mspace width="thickmathspace" /> <mi>V</mi> <mtext>&#xA0;</mtext> <mi mathvariant="normal">&#x03A8;<!-- Ψ --></mi> <mspace width="thickmathspace" /> <mo>+</mo> <mspace width="thickmathspace" /> <mi>m</mi> <mtext>&#xA0;</mtext> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> <mtext>&#xA0;</mtext> <mi mathvariant="normal">&#x03A8;<!-- Ψ --></mi> <mtext>&#xA0;</mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i\hbar \ {\frac {\partial \Psi }{\ \partial t\ }}=-{\frac {\ \hbar ^{2}}{\ 2\ m\ }}\ \nabla ^{2}\Psi \;+\;V\ \Psi \;+\;m\ \Phi \ \Psi \ ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52387db82e9a54475df32287b5c7919db4dfc665" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:43.264ex; height:5.843ex;" alt="{\displaystyle i\hbar \ {\frac {\partial \Psi }{\ \partial t\ }}=-{\frac {\ \hbar ^{2}}{\ 2\ m\ }}\ \nabla ^{2}\Psi \;+\;V\ \Psi \;+\;m\ \Phi \ \Psi \ ,}"></span> where <span class="texhtml mvar" style="font-style:italic;"> V </span> is an ordinary potential, and the gravitational potential <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \Phi \ ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> <mtext>&#xA0;</mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \Phi \ ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a26804aef302555ab796e77dade502f3796a6d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.486ex; height:2.509ex;" alt="{\displaystyle \ \Phi \ ,}"></span> representing the interaction of the particle with its own gravitational field, satisfies the Poisson equation <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \nabla ^{2}\Phi =4\pi \ G\ m\ |\Psi |^{2}~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <msup> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> <mo>=</mo> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <mtext>&#xA0;</mtext> <mi>G</mi> <mtext>&#xA0;</mtext> <mi>m</mi> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi mathvariant="normal">&#x03A8;<!-- Ψ --></mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \nabla ^{2}\Phi =4\pi \ G\ m\ |\Psi |^{2}~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3229aeac17ba5f8fff5171a8532922c5d6c9507" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.834ex; height:3.343ex;" alt="{\displaystyle \ \nabla ^{2}\Phi =4\pi \ G\ m\ |\Psi |^{2}~.}"></span> Because of the back coupling of the wave-function into the potential, it is a <a href="/wiki/Nonlinear_system" title="Nonlinear system">nonlinear system</a>. </p><p>Replacing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \Phi \ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \Phi \ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7cceb6296aeb0b11e9529b1efa8aab6e651147a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.839ex; height:2.176ex;" alt="{\displaystyle \ \Phi \ }"></span> with the solution to the Poisson equation produces the integro-differential form of the Schrödinger–Newton equation: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i\hbar \ {\frac {\ \partial \Psi \ }{\partial t}}=\left[\ -{\frac {\ \hbar ^{2}}{\ 2\ m\ }}\ \nabla ^{2}\;+\;V\;-\;G\ m^{2}\int {\frac {\ |\Psi (t,\mathbf {y} )|^{2}}{\ |\mathbf {x} -\mathbf {y} |\ }}\;\mathrm {d} ^{3}\mathbf {y} \ \right]\Psi ~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mtext>&#xA0;</mtext> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi mathvariant="normal">&#x03A8;<!-- Ψ --></mi> <mtext>&#xA0;</mtext> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow> <mo>[</mo> <mrow> <mtext>&#xA0;</mtext> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mtext>&#xA0;</mtext> <msup> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mtext>&#xA0;</mtext> <mn>2</mn> <mtext>&#xA0;</mtext> <mi>m</mi> <mtext>&#xA0;</mtext> </mrow> </mfrac> </mrow> <mtext>&#xA0;</mtext> <msup> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thickmathspace" /> <mo>+</mo> <mspace width="thickmathspace" /> <mi>V</mi> <mspace width="thickmathspace" /> <mo>&#x2212;<!-- − --></mo> <mspace width="thickmathspace" /> <mi>G</mi> <mtext>&#xA0;</mtext> <msup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi mathvariant="normal">&#x03A8;<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mo stretchy="false">)</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mtext>&#xA0;</mtext> </mrow> </mfrac> </mrow> <mspace width="thickmathspace" /> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mtext>&#xA0;</mtext> </mrow> <mo>]</mo> </mrow> <mi mathvariant="normal">&#x03A8;<!-- Ψ --></mi> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i\hbar \ {\frac {\ \partial \Psi \ }{\partial t}}=\left[\ -{\frac {\ \hbar ^{2}}{\ 2\ m\ }}\ \nabla ^{2}\;+\;V\;-\;G\ m^{2}\int {\frac {\ |\Psi (t,\mathbf {y} )|^{2}}{\ |\mathbf {x} -\mathbf {y} |\ }}\;\mathrm {d} ^{3}\mathbf {y} \ \right]\Psi ~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fd66d8b8dcefaa4421747280ee434a9f91329645" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:63.986ex; height:7.509ex;" alt="{\displaystyle i\hbar \ {\frac {\ \partial \Psi \ }{\partial t}}=\left[\ -{\frac {\ \hbar ^{2}}{\ 2\ m\ }}\ \nabla ^{2}\;+\;V\;-\;G\ m^{2}\int {\frac {\ |\Psi (t,\mathbf {y} )|^{2}}{\ |\mathbf {x} -\mathbf {y} |\ }}\;\mathrm {d} ^{3}\mathbf {y} \ \right]\Psi ~.}"></span> It is obtained from the above system of equations by integration of the Poisson equation under the assumption that the potential must vanish at infinity. </p><p>Mathematically, the Schrödinger–Newton equation is a special case of the <a href="/wiki/Hartree_equation" title="Hartree equation">Hartree equation</a> for <span class="texhtml"><i>n</i> = 2</span>&#160;. The equation retains most of the properties of the linear Schrödinger equation. In particular, it is invariant under constant phase shifts, leading to conservation of probability and exhibits full <a href="/wiki/Galilei_invariance" class="mw-redirect" title="Galilei invariance">Galilei invariance</a>. In addition to these symmetries, a simultaneous transformation <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m\to \mu \ m\ ,\qquad t\to \mu ^{-5}t\ ,\qquad \mathbf {x} \to \mu ^{-3}\mathbf {x} \ ,\qquad \psi (t,\mathbf {x} )\to \mu ^{9/2}\psi (\mu ^{5}t,\mu ^{3}\mathbf {x} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>&#x03BC;<!-- μ --></mi> <mtext>&#xA0;</mtext> <mi>m</mi> <mtext>&#xA0;</mtext> <mo>,</mo> <mspace width="2em" /> <mi>t</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>5</mn> </mrow> </msup> <mi>t</mi> <mtext>&#xA0;</mtext> <mo>,</mo> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mtext>&#xA0;</mtext> <mo>,</mo> <mspace width="2em" /> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>9</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">(</mo> <msup> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mi>t</mi> <mo>,</mo> <msup> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m\to \mu \ m\ ,\qquad t\to \mu ^{-5}t\ ,\qquad \mathbf {x} \to \mu ^{-3}\mathbf {x} \ ,\qquad \psi (t,\mathbf {x} )\to \mu ^{9/2}\psi (\mu ^{5}t,\mu ^{3}\mathbf {x} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c65f1954104e43921fd3bcb3f3eb7214e24ee75e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:73.495ex; height:3.343ex;" alt="{\displaystyle m\to \mu \ m\ ,\qquad t\to \mu ^{-5}t\ ,\qquad \mathbf {x} \to \mu ^{-3}\mathbf {x} \ ,\qquad \psi (t,\mathbf {x} )\to \mu ^{9/2}\psi (\mu ^{5}t,\mu ^{3}\mathbf {x} )}"></span> maps solutions of the Schrödinger–Newton equation to solutions.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Giulini2011_12-0" class="reference"><a href="#cite_note-Giulini2011-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> The stationary equation, which can be obtained in the usual manner via a separation of variables, possesses an infinite family of normalisable solutions of which only the stationary ground state is stable.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Harrison2003_15-0" class="reference"><a href="#cite_note-Harrison2003-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Relation_to_semi-classical_and_quantum_gravity">Relation to semi-classical and quantum gravity</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Schr%C3%B6dinger%E2%80%93Newton_equation&amp;action=edit&amp;section=2" title="Edit section: Relation to semi-classical and quantum gravity"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Schrödinger–Newton equation can be derived under the assumption that gravity remains classical, even at the fundamental level, and that the right way to couple quantum matter to gravity is by means of the <a href="/wiki/Semiclassical_gravity" title="Semiclassical gravity">semiclassical Einstein equations</a>. In this case, a Newtonian gravitational potential term is added to the Schrödinger equation, where the source of this gravitational potential is the expectation value of the mass density operator or mass flux-current.<sup id="cite_ref-jones1995_16-0" class="reference"><a href="#cite_note-jones1995-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> In this regard, <i>if</i> gravity is fundamentally classical, the Schrödinger–Newton equation is a fundamental one-particle equation, which can be generalised to the case of many particles (see below). </p><p>If, on the other hand, the gravitational field is quantised, the fundamental Schrödinger equation remains linear. The Schrödinger–Newton equation is then only valid as an approximation for the gravitational interaction in systems of a large number of particles and has no effect on the centre of mass.<sup id="cite_ref-Bahrami2014_17-0" class="reference"><a href="#cite_note-Bahrami2014-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Many-body_equation_and_centre-of-mass_motion">Many-body equation and centre-of-mass motion</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Schr%C3%B6dinger%E2%80%93Newton_equation&amp;action=edit&amp;section=3" title="Edit section: Many-body equation and centre-of-mass motion"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If the Schrödinger–Newton equation is considered as a fundamental equation, there is a corresponding <i>N</i>-body equation that was already given by Diósi<sup id="cite_ref-Diosi1984_5-1" class="reference"><a href="#cite_note-Diosi1984-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> and can be derived from semiclassical gravity in the same way as the one-particle equation: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}i\hbar {\frac {\partial }{\partial t}}\Psi (t,\mathbf {x} _{1},\dots ,\mathbf {x} _{N})={\bigg (}&amp;-\sum _{j=1}^{N}{\frac {\hbar ^{2}}{2m_{j}}}\nabla _{j}^{2}+\sum _{j\neq k}V_{jk}{\big (}|\mathbf {x} _{j}-\mathbf {x} _{k}|{\big )}\\&amp;-G\sum _{j,k=1}^{N}m_{j}m_{k}\int \mathrm {d} ^{3}\mathbf {y} _{1}\cdots \mathrm {d} ^{3}\mathbf {y} _{N}\,{\frac {|\Psi (t,\mathbf {y} _{1},\dots ,\mathbf {y} _{N})|^{2}}{|\mathbf {x} _{j}-\mathbf {y} _{k}|}}{\bigg )}\Psi (t,\mathbf {x} _{1},\dots ,\mathbf {x} _{N}).\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>i</mi> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mi mathvariant="normal">&#x03A8;<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> </mrow> </mtd> <mtd> <mi></mi> <mo>&#x2212;<!-- − --></mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>2</mn> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <msubsup> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>&#x2260;<!-- ≠ --></mo> <mi>k</mi> </mrow> </munder> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mi>k</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>&#x2212;<!-- − --></mo> <mi>G</mi> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>,</mo> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>&#x222B;<!-- ∫ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi mathvariant="normal">&#x03A8;<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> <mo stretchy="false">)</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> <mi mathvariant="normal">&#x03A8;<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}i\hbar {\frac {\partial }{\partial t}}\Psi (t,\mathbf {x} _{1},\dots ,\mathbf {x} _{N})={\bigg (}&amp;-\sum _{j=1}^{N}{\frac {\hbar ^{2}}{2m_{j}}}\nabla _{j}^{2}+\sum _{j\neq k}V_{jk}{\big (}|\mathbf {x} _{j}-\mathbf {x} _{k}|{\big )}\\&amp;-G\sum _{j,k=1}^{N}m_{j}m_{k}\int \mathrm {d} ^{3}\mathbf {y} _{1}\cdots \mathrm {d} ^{3}\mathbf {y} _{N}\,{\frac {|\Psi (t,\mathbf {y} _{1},\dots ,\mathbf {y} _{N})|^{2}}{|\mathbf {x} _{j}-\mathbf {y} _{k}|}}{\bigg )}\Psi (t,\mathbf {x} _{1},\dots ,\mathbf {x} _{N}).\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18bf2fbdd41bb4ad5eb53ef6c549fbec3b9da48f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.171ex; width:97.641ex; height:15.509ex;" alt="{\displaystyle {\begin{aligned}i\hbar {\frac {\partial }{\partial t}}\Psi (t,\mathbf {x} _{1},\dots ,\mathbf {x} _{N})={\bigg (}&amp;-\sum _{j=1}^{N}{\frac {\hbar ^{2}}{2m_{j}}}\nabla _{j}^{2}+\sum _{j\neq k}V_{jk}{\big (}|\mathbf {x} _{j}-\mathbf {x} _{k}|{\big )}\\&amp;-G\sum _{j,k=1}^{N}m_{j}m_{k}\int \mathrm {d} ^{3}\mathbf {y} _{1}\cdots \mathrm {d} ^{3}\mathbf {y} _{N}\,{\frac {|\Psi (t,\mathbf {y} _{1},\dots ,\mathbf {y} _{N})|^{2}}{|\mathbf {x} _{j}-\mathbf {y} _{k}|}}{\bigg )}\Psi (t,\mathbf {x} _{1},\dots ,\mathbf {x} _{N}).\end{aligned}}}"></span> The potential <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V_{jk}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V_{jk}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/282ea1ccacbd67b453b5193572b1949dc87e3a10" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.121ex; height:2.843ex;" alt="{\displaystyle V_{jk}}"></span> contains all the mutual linear interactions, e.g. electrodynamical Coulomb interactions, while the gravitational-potential term is based on the assumption that all particles perceive the same gravitational potential generated by all the <a href="/wiki/Marginal_distribution" title="Marginal distribution">marginal distributions</a> for all the particles together. </p><p>In a <a href="/wiki/Born%E2%80%93Oppenheimer_approximation" title="Born–Oppenheimer approximation">Born–Oppenheimer</a>-like approximation, this <i>N</i>-particle equation can be separated into two equations, one describing the relative motion, the other providing the dynamics of the centre-of-mass wave-function. For the relative motion, the gravitational interaction does not play a role, since it is usually weak compared to the other interactions represented by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V_{jk}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V_{jk}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/282ea1ccacbd67b453b5193572b1949dc87e3a10" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.121ex; height:2.843ex;" alt="{\displaystyle V_{jk}}"></span>. But it has a significant influence on the centre-of-mass motion. While <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V_{jk}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V_{jk}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/282ea1ccacbd67b453b5193572b1949dc87e3a10" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.121ex; height:2.843ex;" alt="{\displaystyle V_{jk}}"></span> only depends on relative coordinates and therefore does not contribute to the centre-of-mass dynamics at all, the nonlinear Schrödinger–Newton interaction does contribute. In the aforementioned approximation, the centre-of-mass wave-function satisfies the following nonlinear Schrödinger equation: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i\hbar {\frac {\partial \psi _{c}(t,\mathbf {R} )}{\partial t}}=\left({\frac {\hbar ^{2}}{2M}}\nabla ^{2}-G\int \mathrm {d} ^{3}\mathbf {R'} \,\int \mathrm {d} ^{3}\mathbf {y} \,\int \mathrm {d} ^{3}\mathbf {z} \,{\frac {|\psi _{c}(t,\mathbf {R'} )|^{2}\,\rho _{c}(\mathbf {y} )\rho _{c}(\mathbf {z} )}{\left|\mathbf {R} -\mathbf {R'} -\mathbf {y} +\mathbf {z} \right|}}\right)\psi _{c}(t,\mathbf {R} ),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">R</mi> </mrow> <mo stretchy="false">)</mo> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>2</mn> <mi>M</mi> </mrow> </mfrac> </mrow> <msup> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mi>G</mi> <mo>&#x222B;<!-- ∫ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi mathvariant="bold">R</mi> <mo>&#x2032;</mo> </msup> </mrow> <mspace width="thinmathspace" /> <mo>&#x222B;<!-- ∫ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mspace width="thinmathspace" /> <mo>&#x222B;<!-- ∫ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">z</mi> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi mathvariant="bold">R</mi> <mo>&#x2032;</mo> </msup> </mrow> <mo stretchy="false">)</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> <msub> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mo stretchy="false">)</mo> <msub> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">z</mi> </mrow> <mo stretchy="false">)</mo> </mrow> <mrow> <mo>|</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">R</mi> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi mathvariant="bold">R</mi> <mo>&#x2032;</mo> </msup> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">z</mi> </mrow> </mrow> <mo>|</mo> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">R</mi> </mrow> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i\hbar {\frac {\partial \psi _{c}(t,\mathbf {R} )}{\partial t}}=\left({\frac {\hbar ^{2}}{2M}}\nabla ^{2}-G\int \mathrm {d} ^{3}\mathbf {R'} \,\int \mathrm {d} ^{3}\mathbf {y} \,\int \mathrm {d} ^{3}\mathbf {z} \,{\frac {|\psi _{c}(t,\mathbf {R'} )|^{2}\,\rho _{c}(\mathbf {y} )\rho _{c}(\mathbf {z} )}{\left|\mathbf {R} -\mathbf {R'} -\mathbf {y} +\mathbf {z} \right|}}\right)\psi _{c}(t,\mathbf {R} ),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0263a0c87d83ae96ad25edf8c21da9d6c080337" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:85.763ex; height:7.509ex;" alt="{\displaystyle i\hbar {\frac {\partial \psi _{c}(t,\mathbf {R} )}{\partial t}}=\left({\frac {\hbar ^{2}}{2M}}\nabla ^{2}-G\int \mathrm {d} ^{3}\mathbf {R&#039;} \,\int \mathrm {d} ^{3}\mathbf {y} \,\int \mathrm {d} ^{3}\mathbf {z} \,{\frac {|\psi _{c}(t,\mathbf {R&#039;} )|^{2}\,\rho _{c}(\mathbf {y} )\rho _{c}(\mathbf {z} )}{\left|\mathbf {R} -\mathbf {R&#039;} -\mathbf {y} +\mathbf {z} \right|}}\right)\psi _{c}(t,\mathbf {R} ),}"></span> where <span class="texhtml mvar" style="font-style:italic;">M</span> is the total mass, <span class="texhtml"><b>R</b></span> is the relative coordinate, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi _{c}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi _{c}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/999407536cc7a4b1cf5e29bf39ad6b702e8f7426" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.457ex; height:2.509ex;" alt="{\displaystyle \psi _{c}}"></span> the centre-of-mass wave-function, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho _{c}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho _{c}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/523e8c709cfeaef7ed497ce5be80144fdf2e9b70" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.146ex; height:2.176ex;" alt="{\displaystyle \rho _{c}}"></span> is the mass density of the many-body system (e.g. a molecule or a rock) relative to its centre of mass.<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> </p><p>In the limiting case of a wide wave-function, i.e. where the width of the centre-of-mass distribution is large compared to the size of the considered object, the centre-of-mass motion is approximated well by the Schrödinger–Newton equation for a single particle. The opposite case of a narrow wave-function can be approximated by a harmonic-oscillator potential, where the Schrödinger–Newton dynamics leads to a rotation in phase space.<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> </p><p>In the context where the Schrödinger–Newton equation appears as a Hartree approximation, the situation is different. In this case the full <i>N</i>-particle wave-function is considered a product state of <i>N</i> single-particle wave-functions, where each of those factors obeys the Schrödinger–Newton equation. The dynamics of the centre-of-mass, however, remain strictly linear in this picture. This is true in general: nonlinear Hartree equations never have an influence on the centre of mass. </p> <div class="mw-heading mw-heading2"><h2 id="Significance_of_effects">Significance of effects</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Schr%C3%B6dinger%E2%80%93Newton_equation&amp;action=edit&amp;section=4" title="Edit section: Significance of effects"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A rough order-of-magnitude estimate of the regime where effects of the Schrödinger–Newton equation become relevant can be obtained by a rather simple reasoning.<sup id="cite_ref-Carlip2008_9-1" class="reference"><a href="#cite_note-Carlip2008-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> For a spherically symmetric <a href="/wiki/Normal_distribution" title="Normal distribution">Gaussian</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Psi (t=0,r)=(\pi \sigma ^{2})^{-3/4}\exp \left(-{\frac {r^{2}}{2\sigma ^{2}}}\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A8;<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mi>r</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>&#x03C0;<!-- π --></mi> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>4</mn> </mrow> </msup> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>2</mn> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Psi (t=0,r)=(\pi \sigma ^{2})^{-3/4}\exp \left(-{\frac {r^{2}}{2\sigma ^{2}}}\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3205526bed36c3a802c1f8715cffdfd5c1b7dc39" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:37.601ex; height:6.343ex;" alt="{\displaystyle \Psi (t=0,r)=(\pi \sigma ^{2})^{-3/4}\exp \left(-{\frac {r^{2}}{2\sigma ^{2}}}\right),}"></span> the free linear Schrödinger equation has the solution <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Psi (t,r)=(\pi \sigma ^{2})^{-3/4}\left(1+{\frac {i\hbar t}{m\sigma ^{2}}}\right)^{-3/2}\exp \left(-{\frac {r^{2}}{2\sigma ^{2}\left(1+{\frac {i\hbar t}{m\sigma ^{2}}}\right)}}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A8;<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>r</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>&#x03C0;<!-- π --></mi> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>4</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>i</mi> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <mi>t</mi> </mrow> <mrow> <mi>m</mi> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>2</mn> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>i</mi> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <mi>t</mi> </mrow> <mrow> <mi>m</mi> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Psi (t,r)=(\pi \sigma ^{2})^{-3/4}\left(1+{\frac {i\hbar t}{m\sigma ^{2}}}\right)^{-3/2}\exp \left(-{\frac {r^{2}}{2\sigma ^{2}\left(1+{\frac {i\hbar t}{m\sigma ^{2}}}\right)}}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c924f8748507686b2295b3c3c99b5203368d188" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.505ex; width:61.864ex; height:10.176ex;" alt="{\displaystyle \Psi (t,r)=(\pi \sigma ^{2})^{-3/4}\left(1+{\frac {i\hbar t}{m\sigma ^{2}}}\right)^{-3/2}\exp \left(-{\frac {r^{2}}{2\sigma ^{2}\left(1+{\frac {i\hbar t}{m\sigma ^{2}}}\right)}}\right).}"></span> The peak of the radial probability density <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 4\pi r^{2}|\Psi |^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi mathvariant="normal">&#x03A8;<!-- Ψ --></mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 4\pi r^{2}|\Psi |^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54b3251ace39efc73d4bd1044cb6bafb68e185d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.753ex; height:3.343ex;" alt="{\displaystyle 4\pi r^{2}|\Psi |^{2}}"></span> can be found at <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{p}=\sigma {\sqrt {1+{\frac {\hbar ^{2}t^{2}}{m^{2}\sigma ^{4}}}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>=</mo> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <msup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </msqrt> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{p}=\sigma {\sqrt {1+{\frac {\hbar ^{2}t^{2}}{m^{2}\sigma ^{4}}}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a80d8c4e4668db24f5f87941727e8cdaf463a062" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:19.825ex; height:7.509ex;" alt="{\displaystyle r_{p}=\sigma {\sqrt {1+{\frac {\hbar ^{2}t^{2}}{m^{2}\sigma ^{4}}}}}.}"></span> Now we set the acceleration <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\ddot {r}}_{p}={\frac {\hbar ^{2}}{m^{2}r_{p}^{3}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <msup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msubsup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msubsup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\ddot {r}}_{p}={\frac {\hbar ^{2}}{m^{2}r_{p}^{3}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/63cc35f44948c3bf74cdb92050053db23716b3d1" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:11.488ex; height:6.676ex;" alt="{\displaystyle {\ddot {r}}_{p}={\frac {\hbar ^{2}}{m^{2}r_{p}^{3}}}}"></span> of this peak probability equal to the acceleration due to Newtonian gravity: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\ddot {r}}=-{\frac {Gm}{r^{2}}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>G</mi> <mi>m</mi> </mrow> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\ddot {r}}=-{\frac {Gm}{r^{2}}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2fdb604f138313305826c9c8a7304ab28ca6ac4a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:11.548ex; height:5.676ex;" alt="{\displaystyle {\ddot {r}}=-{\frac {Gm}{r^{2}}},}"></span> using that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{p}=\sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>=</mo> <mi>&#x03C3;<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{p}=\sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4cdcc84ee0f9320e2e6b3d7525b2bb9fe9c995e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.536ex; height:2.343ex;" alt="{\displaystyle r_{p}=\sigma }"></span> at time <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43469ec032d858feae5aa87029e22eaaf0109e9c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.101ex; height:2.176ex;" alt="{\displaystyle t=0}"></span>. This yields the relation <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m^{3}\sigma ={\frac {\hbar ^{2}}{G}}\approx 1.7\times 10^{-58}~{\text{m}}\,{\text{kg}}^{3},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mi>&#x03C3;<!-- σ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>G</mi> </mfrac> </mrow> <mo>&#x2248;<!-- ≈ --></mo> <mn>1.7</mn> <mo>&#x00D7;<!-- × --></mo> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>58</mn> </mrow> </msup> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mtext>m</mtext> </mrow> <mspace width="thinmathspace" /> <msup> <mrow class="MJX-TeXAtom-ORD"> <mtext>kg</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m^{3}\sigma ={\frac {\hbar ^{2}}{G}}\approx 1.7\times 10^{-58}~{\text{m}}\,{\text{kg}}^{3},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2054857f5f7ba3d153e58e0fb93b6d1db84cef2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:32.12ex; height:5.843ex;" alt="{\displaystyle m^{3}\sigma ={\frac {\hbar ^{2}}{G}}\approx 1.7\times 10^{-58}~{\text{m}}\,{\text{kg}}^{3},}"></span> which allows us to determine a critical width for a given mass value and conversely. We also recognise the scaling law mentioned above. Numerical simulations<sup id="cite_ref-Giulini2011_12-1" class="reference"><a href="#cite_note-Giulini2011-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-vanMeter2011_1-1" class="reference"><a href="#cite_note-vanMeter2011-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> show that this equation gives a rather good estimate of the mass regime above which effects of the Schrödinger–Newton equation become significant. </p><p>For an atom the critical width is around 10<sup>22</sup> metres, while it is already down to 10<sup>−31</sup> metres for a mass of one microgram. The regime where the mass is around 10<sup>10</sup> <a href="/wiki/Atomic_mass_unit" class="mw-redirect" title="Atomic mass unit">atomic mass units</a> while the width is of the order of micrometers is expected to allow an experimental test of the Schrödinger–Newton equation in the future. A possible candidate are <a href="/wiki/Interferometry" title="Interferometry">interferometry</a> experiments with heavy molecules, which currently reach masses up to <span class="nowrap"><span data-sort-value="7004100000000000000♠"></span>10<span style="margin-left:.25em;">000</span></span> atomic mass units. </p> <div class="mw-heading mw-heading2"><h2 id="Quantum_wave_function_collapse">Quantum wave function collapse</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Schr%C3%B6dinger%E2%80%93Newton_equation&amp;action=edit&amp;section=5" title="Edit section: Quantum wave function collapse"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The idea that gravity causes (or somehow influences) the <a href="/wiki/Wavefunction_collapse" class="mw-redirect" title="Wavefunction collapse">wavefunction collapse</a> dates back to the 1960s and was originally proposed by <a href="/wiki/Frigyes_K%C3%A1rolyh%C3%A1zy" title="Frigyes Károlyházy">Károlyházy</a>.<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> The Schrödinger–Newton equation was proposed in this context by Diósi.<sup id="cite_ref-Diosi1984_5-2" class="reference"><a href="#cite_note-Diosi1984-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> There the equation provides an estimation for the "line of demarcation" between microscopic (quantum) and macroscopic (classical) objects. The stationary ground state has a width of <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{0}\approx {\frac {\hbar ^{2}}{Gm^{3}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x2248;<!-- ≈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mi>G</mi> <msup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{0}\approx {\frac {\hbar ^{2}}{Gm^{3}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0cfe067f397c0366610156836a1430df898f740" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:11.787ex; height:6.009ex;" alt="{\displaystyle a_{0}\approx {\frac {\hbar ^{2}}{Gm^{3}}}.}"></span> For a well-localised homogeneous sphere, i.e. a sphere with a centre-of-mass wave-function that is narrow compared to the radius of the sphere, Diósi finds as an estimate for the width of the ground-state centre-of-mass wave-function <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{0}^{(R)}\approx a_{0}^{1/4}R^{3/4}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> <mo>&#x2248;<!-- ≈ --></mo> <msubsup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>4</mn> </mrow> </msubsup> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>4</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{0}^{(R)}\approx a_{0}^{1/4}R^{3/4}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c5f708225a77227f3502be692b7a5dd8cb8ffd5" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.124ex; height:3.676ex;" alt="{\displaystyle a_{0}^{(R)}\approx a_{0}^{1/4}R^{3/4}.}"></span> Assuming a usual density around 1000&#160;kg/m<sup>3</sup>, a critical radius can be calculated for which <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{0}^{(R)}\approx R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> <mo>&#x2248;<!-- ≈ --></mo> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{0}^{(R)}\approx R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38e05e89b6861fe98e6acb1f95f8c72c3f27728f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.851ex; height:3.676ex;" alt="{\displaystyle a_{0}^{(R)}\approx R}"></span>. This critical radius is around a tenth of a micrometer. </p><p><a href="/wiki/Roger_Penrose" title="Roger Penrose">Roger Penrose</a> proposed that the Schrödinger–Newton equation mathematically describes the basis states involved in a gravitationally induced <a href="/wiki/Wavefunction_collapse" class="mw-redirect" title="Wavefunction collapse">wavefunction collapse</a> scheme.<sup id="cite_ref-Penrose1996_6-1" class="reference"><a href="#cite_note-Penrose1996-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Penrose1998_7-1" class="reference"><a href="#cite_note-Penrose1998-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Penrose2014_8-1" class="reference"><a href="#cite_note-Penrose2014-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> Penrose suggests that a superposition of two or more quantum states having a significant amount of mass displacement ought to be unstable and reduce to one of the states within a finite time. He hypothesises that there exists a "preferred" set of states that could collapse no further, specifically, the stationary states of the Schrödinger–Newton equation. A macroscopic system can therefore never be in a spatial superposition, since the nonlinear gravitational self-interaction immediately leads to a collapse to a stationary state of the Schrödinger–Newton equation. According to Penrose's idea, when a quantum particle is measured, there is an interplay of this nonlinear collapse and environmental <a href="/wiki/Quantum_decoherence" title="Quantum decoherence">decoherence</a>. The gravitational interaction leads to the reduction of the environment to one distinct state, and decoherence leads to the localisation of the particle, e.g. as a dot on a screen. </p> <div class="mw-heading mw-heading3"><h3 id="Problems_and_open_matters">Problems and open matters</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Schr%C3%B6dinger%E2%80%93Newton_equation&amp;action=edit&amp;section=6" title="Edit section: Problems and open matters"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Three major problems occur with this interpretation of the Schrödinger–Newton equation as the cause of the wave-function collapse: </p> <ol><li>Excessive residual probability far from the collapse point</li> <li>Lack of any apparent reason for the <a href="/wiki/Born_rule" title="Born rule">Born rule</a></li> <li>Promotion of the previously strictly hypothetical <a href="/wiki/Wave_function" title="Wave function">wave function</a> to an observable (real) quantity.</li></ol> <p>First, numerical studies<sup id="cite_ref-Giulini2011_12-2" class="reference"><a href="#cite_note-Giulini2011-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Harrison2003_15-1" class="reference"><a href="#cite_note-Harrison2003-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-vanMeter2011_1-2" class="reference"><a href="#cite_note-vanMeter2011-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> agreeingly find that when a wave packet "collapses" to a stationary solution, a small portion of it seems to run away to infinity. This would mean that even a completely collapsed quantum system still can be found at a distant location. Since the solutions of the linear Schrödinger equation tend towards infinity even faster, this only indicates that the Schrödinger–Newton equation alone is not sufficient to explain the wave-function collapse. If the environment is taken into account, this effect might disappear and therefore not be present in the scenario described by Penrose. </p><p>A second problem, also arising in Penrose's proposal, is the origin of the <a href="/wiki/Born_rule" title="Born rule">Born rule</a>: To solve the <a href="/wiki/Quantum_measurement_problem" class="mw-redirect" title="Quantum measurement problem">measurement problem</a>, a mere explanation of why a wave-function collapses – e.g., to a dot on a screen – is not enough. A good model for the collapse process <i>also</i> has to explain why the dot appears on different positions of the screen, with probabilities that are determined by the squared absolute-value of the wave-function. It might be possible that a model based on Penrose's idea could provide such an explanation, but there is as yet no known reason that Born's rule would naturally arise from it. </p><p>Thirdly, since the gravitational potential is linked to the wave-function in the picture of the Schrödinger–Newton equation, the wave-function must be interpreted as a real object. Therefore, at least in principle, it becomes a measurable quantity. Making use of the nonlocal nature of entangled quantum systems, this could be used to send signals faster than light, which is generally thought to be in contradiction with causality. It is, however, not clear whether this problem can be resolved by applying the right collapse prescription, yet to be found, consistently to the full quantum system. Also, since gravity is such a weak interaction, it is not clear that such an experiment can be actually performed within the parameters given in our universe (see the referenced discussion<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> about a similar thought experiment proposed by Eppley &amp; Hannah<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup>). </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Schr%C3%B6dinger%E2%80%93Newton_equation&amp;action=edit&amp;section=7" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Nonlinear_Schr%C3%B6dinger_equation" title="Nonlinear Schrödinger equation">Nonlinear Schrödinger equation</a></li> <li><a href="/wiki/Semiclassical_gravity" title="Semiclassical gravity">Semiclassical gravity</a></li> <li><a href="/wiki/Penrose_interpretation" title="Penrose interpretation">Penrose interpretation</a></li> <li><a href="/wiki/Poisson%27s_equation" title="Poisson&#39;s equation">Poisson's equation</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Schr%C3%B6dinger%E2%80%93Newton_equation&amp;action=edit&amp;section=8" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-vanMeter2011-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-vanMeter2011_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-vanMeter2011_1-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-vanMeter2011_1-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFvan_Meter2011" class="citation cs2">van Meter, J. R. (2011), "Schrödinger–Newton 'collapse' of the wave function", <i>Classical and Quantum Gravity</i>, <b>28</b> (21): 215013, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1105.1579">1105.1579</a></span>, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011CQGra..28u5013V">2011CQGra..28u5013V</a>, <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.768.3363">10.1.1.768.3363</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0264-9381%2F28%2F21%2F215013">10.1088/0264-9381/28/21/215013</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119294473">119294473</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Classical+and+Quantum+Gravity&amp;rft.atitle=Schr%C3%B6dinger%E2%80%93Newton+%27collapse%27+of+the+wave+function&amp;rft.volume=28&amp;rft.issue=21&amp;rft.pages=215013&amp;rft.date=2011&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119294473%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2011CQGra..28u5013V&amp;rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.768.3363%23id-name%3DCiteSeerX&amp;rft_id=info%3Adoi%2F10.1088%2F0264-9381%2F28%2F21%2F215013&amp;rft_id=info%3Aarxiv%2F1105.1579&amp;rft.aulast=van+Meter&amp;rft.aufirst=J.+R.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger%E2%80%93Newton+equation" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRuffiniBonazzola1969" class="citation cs2">Ruffini, Remo; Bonazzola, Silvano (1969), "Systems of Self-Gravitating Particles in General Relativity and the Concept of an Equation of State", <i>Physical Review</i>, <b>187</b> (5): 1767–1783, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1969PhRv..187.1767R">1969PhRv..187.1767R</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRev.187.1767">10.1103/PhysRev.187.1767</a>, <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/2060%2F19690028071">2060/19690028071</a></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review&amp;rft.atitle=Systems+of+Self-Gravitating+Particles+in+General+Relativity+and+the+Concept+of+an+Equation+of+State&amp;rft.volume=187&amp;rft.issue=5&amp;rft.pages=1767-1783&amp;rft.date=1969&amp;rft_id=info%3Ahdl%2F2060%2F19690028071&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRev.187.1767&amp;rft_id=info%3Abibcode%2F1969PhRv..187.1767R&amp;rft.aulast=Ruffini&amp;rft.aufirst=Remo&amp;rft.au=Bonazzola%2C+Silvano&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger%E2%80%93Newton+equation" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGiuliniGroßardt2012" class="citation cs2">Giulini, Domenico; Großardt, André (2012), "The Schrödinger–Newton equation as a non-relativistic limit of self-gravitating Klein–Gordon and Dirac fields", <i>Classical and Quantum Gravity</i>, <b>29</b> (21): 215010, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1206.4250">1206.4250</a></span>, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012CQGra..29u5010G">2012CQGra..29u5010G</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0264-9381%2F29%2F21%2F215010">10.1088/0264-9381/29/21/215010</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:118837903">118837903</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Classical+and+Quantum+Gravity&amp;rft.atitle=The+Schr%C3%B6dinger%E2%80%93Newton+equation+as+a+non-relativistic+limit+of+self-gravitating+Klein%E2%80%93Gordon+and+Dirac+fields&amp;rft.volume=29&amp;rft.issue=21&amp;rft.pages=215010&amp;rft.date=2012&amp;rft_id=info%3Aarxiv%2F1206.4250&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A118837903%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1088%2F0264-9381%2F29%2F21%2F215010&amp;rft_id=info%3Abibcode%2F2012CQGra..29u5010G&amp;rft.aulast=Giulini&amp;rft.aufirst=Domenico&amp;rft.au=Gro%C3%9Fardt%2C+Andr%C3%A9&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger%E2%80%93Newton+equation" class="Z3988"></span></span> </li> <li id="cite_note-MoczLancaster2018-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-MoczLancaster2018_4-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMoczLancasterFialkovBecerra2018" class="citation journal cs1">Mocz, Philip; Lancaster, Lachlan; Fialkov, Anastasia; Becerra, Fernando; Chavanis, Pierre-Henri (2018). "Schrödinger-Poisson–Vlasov-Poisson correspondence". <i>Physical Review D</i>. <b>97</b> (8): 083519. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1801.03507">1801.03507</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018PhRvD..97h3519M">2018PhRvD..97h3519M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevD.97.083519">10.1103/PhysRevD.97.083519</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2470-0010">2470-0010</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:53956984">53956984</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+D&amp;rft.atitle=Schr%C3%B6dinger-Poisson%E2%80%93Vlasov-Poisson+correspondence&amp;rft.volume=97&amp;rft.issue=8&amp;rft.pages=083519&amp;rft.date=2018&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A53956984%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2018PhRvD..97h3519M&amp;rft_id=info%3Aarxiv%2F1801.03507&amp;rft.issn=2470-0010&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevD.97.083519&amp;rft.aulast=Mocz&amp;rft.aufirst=Philip&amp;rft.au=Lancaster%2C+Lachlan&amp;rft.au=Fialkov%2C+Anastasia&amp;rft.au=Becerra%2C+Fernando&amp;rft.au=Chavanis%2C+Pierre-Henri&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger%E2%80%93Newton+equation" class="Z3988"></span></span> </li> <li id="cite_note-Diosi1984-5"><span class="mw-cite-backlink">^ <a href="#cite_ref-Diosi1984_5-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Diosi1984_5-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Diosi1984_5-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDiósi1984" class="citation cs2">Diósi, Lajos (1984), "Gravitation and quantum-mechanical localization of macro-objects", <i><a href="/wiki/Physics_Letters_A" class="mw-redirect" title="Physics Letters A">Physics Letters A</a></i>, <b>105</b> (4–5): 199–202, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1412.0201">1412.0201</a></span>, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1984PhLA..105..199D">1984PhLA..105..199D</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0375-9601%2884%2990397-9">10.1016/0375-9601(84)90397-9</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:117957630">117957630</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physics+Letters+A&amp;rft.atitle=Gravitation+and+quantum-mechanical+localization+of+macro-objects&amp;rft.volume=105&amp;rft.issue=4%E2%80%935&amp;rft.pages=199-202&amp;rft.date=1984&amp;rft_id=info%3Aarxiv%2F1412.0201&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A117957630%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2F0375-9601%2884%2990397-9&amp;rft_id=info%3Abibcode%2F1984PhLA..105..199D&amp;rft.aulast=Di%C3%B3si&amp;rft.aufirst=Lajos&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger%E2%80%93Newton+equation" class="Z3988"></span></span> </li> <li id="cite_note-Penrose1996-6"><span class="mw-cite-backlink">^ <a href="#cite_ref-Penrose1996_6-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Penrose1996_6-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPenrose1996" class="citation cs2"><a href="/wiki/Roger_Penrose" title="Roger Penrose">Penrose, Roger</a> (1996), "On Gravity's Role in Quantum State Reduction", <i><a href="/wiki/General_Relativity_and_Gravitation" title="General Relativity and Gravitation">General Relativity and Gravitation</a></i>, <b>28</b> (5): 581–600, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1996GReGr..28..581P">1996GReGr..28..581P</a>, <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.468.2731">10.1.1.468.2731</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF02105068">10.1007/BF02105068</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:44038399">44038399</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=General+Relativity+and+Gravitation&amp;rft.atitle=On+Gravity%27s+Role+in+Quantum+State+Reduction&amp;rft.volume=28&amp;rft.issue=5&amp;rft.pages=581-600&amp;rft.date=1996&amp;rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.468.2731%23id-name%3DCiteSeerX&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A44038399%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2FBF02105068&amp;rft_id=info%3Abibcode%2F1996GReGr..28..581P&amp;rft.aulast=Penrose&amp;rft.aufirst=Roger&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger%E2%80%93Newton+equation" class="Z3988"></span></span> </li> <li id="cite_note-Penrose1998-7"><span class="mw-cite-backlink">^ <a href="#cite_ref-Penrose1998_7-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Penrose1998_7-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPenrose1998" class="citation cs2">Penrose, Roger (1998), "Quantum computation, entanglement and state reduction", <i>Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences</i>, <b>356</b> (1743): 1927–1939, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1998RSPTA.356.1927P">1998RSPTA.356.1927P</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frsta.1998.0256">10.1098/rsta.1998.0256</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:83378847">83378847</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Philosophical+Transactions+of+the+Royal+Society+of+London.+Series+A%3A+Mathematical%2C+Physical+and+Engineering+Sciences&amp;rft.atitle=Quantum+computation%2C+entanglement+and+state+reduction&amp;rft.volume=356&amp;rft.issue=1743&amp;rft.pages=1927-1939&amp;rft.date=1998&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A83378847%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1098%2Frsta.1998.0256&amp;rft_id=info%3Abibcode%2F1998RSPTA.356.1927P&amp;rft.aulast=Penrose&amp;rft.aufirst=Roger&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger%E2%80%93Newton+equation" class="Z3988"></span></span> </li> <li id="cite_note-Penrose2014-8"><span class="mw-cite-backlink">^ <a href="#cite_ref-Penrose2014_8-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Penrose2014_8-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPenrose2014" class="citation cs2">Penrose, Roger (2014), "On the Gravitization of Quantum Mechanics 1: Quantum State Reduction", <i>Foundations of Physics</i>, <b>44</b> (5): 557–575, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014FoPh...44..557P">2014FoPh...44..557P</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10701-013-9770-0">10.1007/s10701-013-9770-0</a></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Foundations+of+Physics&amp;rft.atitle=On+the+Gravitization+of+Quantum+Mechanics+1%3A+Quantum+State+Reduction&amp;rft.volume=44&amp;rft.issue=5&amp;rft.pages=557-575&amp;rft.date=2014&amp;rft_id=info%3Adoi%2F10.1007%2Fs10701-013-9770-0&amp;rft_id=info%3Abibcode%2F2014FoPh...44..557P&amp;rft.aulast=Penrose&amp;rft.aufirst=Roger&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger%E2%80%93Newton+equation" class="Z3988"></span></span> </li> <li id="cite_note-Carlip2008-9"><span class="mw-cite-backlink">^ <a href="#cite_ref-Carlip2008_9-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Carlip2008_9-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCarlip2008" class="citation cs2"><a href="/wiki/Steve_Carlip" title="Steve Carlip">Carlip, S.</a> (2008), "Is quantum gravity necessary?", <i>Classical and Quantum Gravity</i>, <b>25</b> (15): 154010, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0803.3456">0803.3456</a></span>, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008CQGra..25o4010C">2008CQGra..25o4010C</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0264-9381%2F25%2F15%2F154010">10.1088/0264-9381/25/15/154010</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:15147227">15147227</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Classical+and+Quantum+Gravity&amp;rft.atitle=Is+quantum+gravity+necessary%3F&amp;rft.volume=25&amp;rft.issue=15&amp;rft.pages=154010&amp;rft.date=2008&amp;rft_id=info%3Aarxiv%2F0803.3456&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A15147227%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1088%2F0264-9381%2F25%2F15%2F154010&amp;rft_id=info%3Abibcode%2F2008CQGra..25o4010C&amp;rft.aulast=Carlip&amp;rft.aufirst=S.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger%E2%80%93Newton+equation" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLieb1977" class="citation cs2">Lieb, Elliott H. (1977), "Existence and uniqueness of the Minimizing Solution of Choquard's Nonlinear Equation", <i>Studies in Applied Mathematics</i>, <b>57</b> (2): 93–105, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1977StAM...57...93L">1977StAM...57...93L</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fsapm197757293">10.1002/sapm197757293</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Studies+in+Applied+Mathematics&amp;rft.atitle=Existence+and+uniqueness+of+the+Minimizing+Solution+of+Choquard%27s+Nonlinear+Equation&amp;rft.volume=57&amp;rft.issue=2&amp;rft.pages=93-105&amp;rft.date=1977&amp;rft_id=info%3Adoi%2F10.1002%2Fsapm197757293&amp;rft_id=info%3Abibcode%2F1977StAM...57...93L&amp;rft.aulast=Lieb&amp;rft.aufirst=Elliott+H.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger%E2%80%93Newton+equation" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRobertshawTod2006" class="citation journal cs1">Robertshaw, Oliver; Tod, Paul (2006). "Lie point symmetries and an approximate solution for the Schrödinger–Newton equations". <i>Nonlinearity</i>. <b>19</b> (7): 1507–1514. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math-ph/0509066">math-ph/0509066</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2006Nonli..19.1507R">2006Nonli..19.1507R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0951-7715%2F19%2F7%2F002">10.1088/0951-7715/19/7/002</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119698934">119698934</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nonlinearity&amp;rft.atitle=Lie+point+symmetries+and+an+approximate+solution+for+the+Schr%C3%B6dinger%E2%80%93Newton+equations&amp;rft.volume=19&amp;rft.issue=7&amp;rft.pages=1507-1514&amp;rft.date=2006&amp;rft_id=info%3Aarxiv%2Fmath-ph%2F0509066&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119698934%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1088%2F0951-7715%2F19%2F7%2F002&amp;rft_id=info%3Abibcode%2F2006Nonli..19.1507R&amp;rft.aulast=Robertshaw&amp;rft.aufirst=Oliver&amp;rft.au=Tod%2C+Paul&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger%E2%80%93Newton+equation" class="Z3988"></span></span> </li> <li id="cite_note-Giulini2011-12"><span class="mw-cite-backlink">^ <a href="#cite_ref-Giulini2011_12-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Giulini2011_12-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Giulini2011_12-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGiuliniGroßardt2011" class="citation journal cs1">Giulini, Domenico; Großardt, André (2011). "Gravitationally induced inhibitions of dispersion according to the Schrödinger–Newton Equation". <i>Classical and Quantum Gravity</i>. <b>28</b> (19): 195026. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1105.1921">1105.1921</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011CQGra..28s5026G">2011CQGra..28s5026G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0264-9381%2F28%2F19%2F195026">10.1088/0264-9381/28/19/195026</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:117102725">117102725</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Classical+and+Quantum+Gravity&amp;rft.atitle=Gravitationally+induced+inhibitions+of+dispersion+according+to+the+Schr%C3%B6dinger%E2%80%93Newton+Equation&amp;rft.volume=28&amp;rft.issue=19&amp;rft.pages=195026&amp;rft.date=2011&amp;rft_id=info%3Aarxiv%2F1105.1921&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A117102725%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1088%2F0264-9381%2F28%2F19%2F195026&amp;rft_id=info%3Abibcode%2F2011CQGra..28s5026G&amp;rft.aulast=Giulini&amp;rft.aufirst=Domenico&amp;rft.au=Gro%C3%9Fardt%2C+Andr%C3%A9&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger%E2%80%93Newton+equation" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMorozPenroseTod1998" class="citation journal cs1"><a href="/wiki/Irene_Moroz" title="Irene Moroz">Moroz, Irene M.</a>; <a href="/wiki/Roger_Penrose" title="Roger Penrose">Penrose, Roger</a>; <a href="/w/index.php?title=Kenneth_Paul_Tod&amp;action=edit&amp;redlink=1" class="new" title="Kenneth Paul Tod (page does not exist)">Tod, Paul</a> (1998). "Spherically-symmetric solutions of the Schrödinger–Newton equations". <i>Classical and Quantum Gravity</i>. <b>15</b> (9): 2733–2742. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1998CQGra..15.2733M">1998CQGra..15.2733M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0264-9381%2F15%2F9%2F019">10.1088/0264-9381/15/9/019</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:250885770">250885770</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Classical+and+Quantum+Gravity&amp;rft.atitle=Spherically-symmetric+solutions+of+the+Schr%C3%B6dinger%E2%80%93Newton+equations&amp;rft.volume=15&amp;rft.issue=9&amp;rft.pages=2733-2742&amp;rft.date=1998&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A250885770%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1088%2F0264-9381%2F15%2F9%2F019&amp;rft_id=info%3Abibcode%2F1998CQGra..15.2733M&amp;rft.aulast=Moroz&amp;rft.aufirst=Irene+M.&amp;rft.au=Penrose%2C+Roger&amp;rft.au=Tod%2C+Paul&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger%E2%80%93Newton+equation" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTodMoroz1999" class="citation journal cs1"><a href="/w/index.php?title=Kenneth_Paul_Tod&amp;action=edit&amp;redlink=1" class="new" title="Kenneth Paul Tod (page does not exist)">Tod, Paul</a>; <a href="/wiki/Irene_Moroz" title="Irene Moroz">Moroz, Irene M.</a> (1999). "An analytical approach to the Schrödinger–Newton equations". <i>Nonlinearity</i>. <b>12</b> (2): 201–216. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1999Nonli..12..201T">1999Nonli..12..201T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0951-7715%2F12%2F2%2F002">10.1088/0951-7715/12/2/002</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:250800585">250800585</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nonlinearity&amp;rft.atitle=An+analytical+approach+to+the+Schr%C3%B6dinger%E2%80%93Newton+equations&amp;rft.volume=12&amp;rft.issue=2&amp;rft.pages=201-216&amp;rft.date=1999&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A250800585%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1088%2F0951-7715%2F12%2F2%2F002&amp;rft_id=info%3Abibcode%2F1999Nonli..12..201T&amp;rft.aulast=Tod&amp;rft.aufirst=Paul&amp;rft.au=Moroz%2C+Irene+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger%E2%80%93Newton+equation" class="Z3988"></span></span> </li> <li id="cite_note-Harrison2003-15"><span class="mw-cite-backlink">^ <a href="#cite_ref-Harrison2003_15-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Harrison2003_15-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHarrisonMorozTod2003" class="citation journal cs1">Harrison, R.; <a href="/wiki/Irene_Moroz" title="Irene Moroz">Moroz, I.</a>; <a href="/w/index.php?title=Kenneth_Paul_Tod&amp;action=edit&amp;redlink=1" class="new" title="Kenneth Paul Tod (page does not exist)">Tod, K.P.</a> (2003). "A numerical study of the Schrödinger–Newton equations". <i>Nonlinearity</i>. <b>16</b> (1): 101–122. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math-ph/0208045">math-ph/0208045</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003Nonli..16..101H">2003Nonli..16..101H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0951-7715%2F16%2F1%2F307">10.1088/0951-7715/16/1/307</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:250804091">250804091</a>. (part 1) and (part 2).</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nonlinearity&amp;rft.atitle=A+numerical+study+of+the+Schr%C3%B6dinger%E2%80%93Newton+equations&amp;rft.volume=16&amp;rft.issue=1&amp;rft.pages=101-122&amp;rft.date=2003&amp;rft_id=info%3Aarxiv%2Fmath-ph%2F0208045&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A250804091%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1088%2F0951-7715%2F16%2F1%2F307&amp;rft_id=info%3Abibcode%2F2003Nonli..16..101H&amp;rft.aulast=Harrison&amp;rft.aufirst=R.&amp;rft.au=Moroz%2C+I.&amp;rft.au=Tod%2C+K.P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger%E2%80%93Newton+equation" class="Z3988"></span></span> </li> <li id="cite_note-jones1995-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-jones1995_16-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJones1995" class="citation journal cs1">Jones, K.R.W. (1995). "Newtonian quantum gravity". <i>Australian Journal of Physics</i>. <b>48</b> (6): 1055–1082. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/9507001">quant-ph/9507001</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1995AuJPh..48.1055J">1995AuJPh..48.1055J</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1071%2FPH951055">10.1071/PH951055</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119408867">119408867</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Australian+Journal+of+Physics&amp;rft.atitle=Newtonian+quantum+gravity&amp;rft.volume=48&amp;rft.issue=6&amp;rft.pages=1055-1082&amp;rft.date=1995&amp;rft_id=info%3Aarxiv%2Fquant-ph%2F9507001&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119408867%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1071%2FPH951055&amp;rft_id=info%3Abibcode%2F1995AuJPh..48.1055J&amp;rft.aulast=Jones&amp;rft.aufirst=K.R.W.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger%E2%80%93Newton+equation" class="Z3988"></span></span> </li> <li id="cite_note-Bahrami2014-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-Bahrami2014_17-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBahramiGroßardtDonadiBassi2014" class="citation journal cs1">Bahrami, Mohammad; Großardt, André; Donadi, Sandro; Bassi, Angelo (2014). "The Schrödinger–Newton equation and its foundations". <i>New Journal of Physics</i>. <b>16</b> (2014): 115007. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1407.4370">1407.4370</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014NJPh...16k5007B">2014NJPh...16k5007B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1367-2630%2F16%2F11%2F115007">10.1088/1367-2630/16/11/115007</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4860144">4860144</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=New+Journal+of+Physics&amp;rft.atitle=The+Schr%C3%B6dinger%E2%80%93Newton+equation+and+its+foundations&amp;rft.volume=16&amp;rft.issue=2014&amp;rft.pages=115007&amp;rft.date=2014&amp;rft_id=info%3Aarxiv%2F1407.4370&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4860144%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1088%2F1367-2630%2F16%2F11%2F115007&amp;rft_id=info%3Abibcode%2F2014NJPh...16k5007B&amp;rft.aulast=Bahrami&amp;rft.aufirst=Mohammad&amp;rft.au=Gro%C3%9Fardt%2C+Andr%C3%A9&amp;rft.au=Donadi%2C+Sandro&amp;rft.au=Bassi%2C+Angelo&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger%E2%80%93Newton+equation" class="Z3988"></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGiuliniGroßardt2014" class="citation cs2">Giulini, Domenico; Großardt, André (2014), "Centre-of-mass motion in multi-particle Schrödinger–Newton dynamics", <i>New Journal of Physics</i>, <b>16</b> (7): 075005, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1404.0624">1404.0624</a></span>, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014NJPh...16g5005G">2014NJPh...16g5005G</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1367-2630%2F16%2F7%2F075005">10.1088/1367-2630/16/7/075005</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119144766">119144766</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=New+Journal+of+Physics&amp;rft.atitle=Centre-of-mass+motion+in+multi-particle+Schr%C3%B6dinger%E2%80%93Newton+dynamics&amp;rft.volume=16&amp;rft.issue=7&amp;rft.pages=075005&amp;rft.date=2014&amp;rft_id=info%3Aarxiv%2F1404.0624&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119144766%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1088%2F1367-2630%2F16%2F7%2F075005&amp;rft_id=info%3Abibcode%2F2014NJPh...16g5005G&amp;rft.aulast=Giulini&amp;rft.aufirst=Domenico&amp;rft.au=Gro%C3%9Fardt%2C+Andr%C3%A9&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger%E2%80%93Newton+equation" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYangMiaoLeeHelou2013" class="citation cs2">Yang, Huan; Miao, Haixing; Lee, Da-Shin; Helou, Bassam; Chen, Yanbei (2013), "Macroscopic Quantum Mechanics in a Classical Spacetime", <i>Physical Review Letters</i>, <b>110</b> (17): 170401, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1210.0457">1210.0457</a></span>, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013PhRvL.110q0401Y">2013PhRvL.110q0401Y</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.110.170401">10.1103/PhysRevLett.110.170401</a>, <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/23679686">23679686</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:34063658">34063658</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+Letters&amp;rft.atitle=Macroscopic+Quantum+Mechanics+in+a+Classical+Spacetime&amp;rft.volume=110&amp;rft.issue=17&amp;rft.pages=170401&amp;rft.date=2013&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A34063658%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2013PhRvL.110q0401Y&amp;rft_id=info%3Aarxiv%2F1210.0457&amp;rft_id=info%3Apmid%2F23679686&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.110.170401&amp;rft.aulast=Yang&amp;rft.aufirst=Huan&amp;rft.au=Miao%2C+Haixing&amp;rft.au=Lee%2C+Da-Shin&amp;rft.au=Helou%2C+Bassam&amp;rft.au=Chen%2C+Yanbei&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger%E2%80%93Newton+equation" class="Z3988"></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKárolyházy1966" class="citation cs2">Károlyházy, F. (1966), "Gravitation and Quantum Mechanics of Macroscopic Objects", <i>Il Nuovo Cimento A</i>, <b>42</b> (2): 390–402, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1966NCimA..42..390K">1966NCimA..42..390K</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF02717926">10.1007/BF02717926</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:124429072">124429072</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Il+Nuovo+Cimento+A&amp;rft.atitle=Gravitation+and+Quantum+Mechanics+of+Macroscopic+Objects&amp;rft.volume=42&amp;rft.issue=2&amp;rft.pages=390-402&amp;rft.date=1966&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A124429072%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2FBF02717926&amp;rft_id=info%3Abibcode%2F1966NCimA..42..390K&amp;rft.aulast=K%C3%A1rolyh%C3%A1zy&amp;rft.aufirst=F.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger%E2%80%93Newton+equation" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMattingly2006" class="citation journal cs1">Mattingly, James (2006). "Why Eppley and Hannah's thought experiment fails". <i>Physical Review D</i>. <b>73</b> (6): 064025. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/gr-qc/0601127">gr-qc/0601127</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2006PhRvD..73f4025M">2006PhRvD..73f4025M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2Fphysrevd.73.064025">10.1103/physrevd.73.064025</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:12485472">12485472</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+D&amp;rft.atitle=Why+Eppley+and+Hannah%27s+thought+experiment+fails&amp;rft.volume=73&amp;rft.issue=6&amp;rft.pages=064025&amp;rft.date=2006&amp;rft_id=info%3Aarxiv%2Fgr-qc%2F0601127&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A12485472%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1103%2Fphysrevd.73.064025&amp;rft_id=info%3Abibcode%2F2006PhRvD..73f4025M&amp;rft.aulast=Mattingly&amp;rft.aufirst=James&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger%E2%80%93Newton+equation" class="Z3988"></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEppleyHannah1977" class="citation cs2">Eppley, Kenneth; Hannah, Eric (1977), "The necessity of quantizing the gravitational field", <i>Foundations of Physics</i>, <b>7</b> (1–2): 51–68, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1977FoPh....7...51E">1977FoPh....7...51E</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF00715241">10.1007/BF00715241</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:123251640">123251640</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Foundations+of+Physics&amp;rft.atitle=The+necessity+of+quantizing+the+gravitational+field&amp;rft.volume=7&amp;rft.issue=1%E2%80%932&amp;rft.pages=51-68&amp;rft.date=1977&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A123251640%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2FBF00715241&amp;rft_id=info%3Abibcode%2F1977FoPh....7...51E&amp;rft.aulast=Eppley&amp;rft.aufirst=Kenneth&amp;rft.au=Hannah%2C+Eric&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger%E2%80%93Newton+equation" class="Z3988"></span></span> </li> </ol></div></div> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style><style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style></div><div role="navigation" class="navbox" aria-labelledby="Sir_Isaac_Newton" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Isaac_Newton" title="Template:Isaac Newton"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Isaac_Newton" title="Template talk:Isaac Newton"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Isaac_Newton" title="Special:EditPage/Template:Isaac Newton"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Sir_Isaac_Newton" style="font-size:114%;margin:0 4em"><a href="/wiki/Isaac_Newton" title="Isaac Newton">Sir Isaac Newton</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%;vertical-align:top;">Publications</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><i><a href="/wiki/Method_of_Fluxions" title="Method of Fluxions">Fluxions</a></i>&#160;(1671)</li> <li><i><a href="/wiki/De_motu_corporum_in_gyrum" title="De motu corporum in gyrum">De Motu</a></i>&#160;(1684)</li> <li><i><a href="/wiki/Philosophi%C3%A6_Naturalis_Principia_Mathematica" title="Philosophiæ Naturalis Principia Mathematica">Principia</a></i>&#160;(1687)</li> <li><i><a href="/wiki/Opticks" title="Opticks">Opticks</a></i>&#160;(1704)</li> <li><i><a href="/wiki/The_Queries" class="mw-redirect" title="The Queries">Queries</a></i>&#160;(1704)</li> <li><i><a href="/wiki/Arithmetica_Universalis" title="Arithmetica Universalis">Arithmetica</a></i>&#160;(1707)</li> <li><i><a href="/wiki/De_analysi_per_aequationes_numero_terminorum_infinitas" title="De analysi per aequationes numero terminorum infinitas">De Analysi</a></i>&#160;(1711)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;vertical-align:top;">Other writings</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><i><a href="/wiki/Quaestiones_quaedam_philosophicae" title="Quaestiones quaedam philosophicae">Quaestiones</a></i>&#160;(1661–1665)</li> <li>"<a href="/wiki/Standing_on_the_shoulders_of_giants" title="Standing on the shoulders of giants">standing on the shoulders of giants</a>"&#160;(1675)</li> <li><i><a href="/wiki/Notes_on_the_Jewish_Temple" title="Notes on the Jewish Temple">Notes on the Jewish Temple</a></i>&#160;(c.&#160;1680)</li> <li>"<a href="/wiki/General_Scholium" title="General Scholium">General Scholium</a>"&#160;(1713; <i>"<a href="/wiki/Hypotheses_non_fingo" title="Hypotheses non fingo">hypotheses non fingo</a>"</i>&#8201;)</li> <li><i><a href="/wiki/The_Chronology_of_Ancient_Kingdoms_Amended" title="The Chronology of Ancient Kingdoms Amended">Ancient Kingdoms Amended</a></i>&#160;(1728)</li> <li><i><a href="/wiki/An_Historical_Account_of_Two_Notable_Corruptions_of_Scripture" title="An Historical Account of Two Notable Corruptions of Scripture">Corruptions of Scripture</a></i>&#160;(1754)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;vertical-align:top;">Contributions</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Calculus" title="Calculus">Calculus</a> <ul><li><a href="/wiki/Fluxion" title="Fluxion">fluxion</a></li></ul></li> <li><a href="/wiki/Impact_depth" title="Impact depth">Impact depth</a></li> <li><a href="/wiki/Inertia" title="Inertia">Inertia</a></li> <li><a href="/wiki/Newton_disc" title="Newton disc">Newton disc</a></li> <li><a href="/wiki/Newton_polygon" title="Newton polygon">Newton polygon</a> <ul><li><a href="/wiki/Newton%E2%80%93Okounkov_body" title="Newton–Okounkov body">Newton–Okounkov body</a></li></ul></li> <li><a href="/wiki/Newton%27s_reflector" title="Newton&#39;s reflector">Newton's reflector</a></li> <li><a href="/wiki/Newtonian_telescope" title="Newtonian telescope">Newtonian telescope</a></li> <li><a href="/wiki/Newton_scale" title="Newton scale">Newton scale</a></li> <li><a href="/wiki/Newton%27s_metal" title="Newton&#39;s metal">Newton's metal</a></li> <li><a href="/wiki/Spectrum" title="Spectrum">Spectrum</a></li> <li><a href="/wiki/Structural_coloration" title="Structural coloration">Structural coloration</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;vertical-align:top;"><a href="/wiki/Newtonianism" title="Newtonianism">Newtonianism</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bucket_argument" title="Bucket argument">Bucket argument</a></li> <li><a href="/wiki/Newton%27s_inequalities" title="Newton&#39;s inequalities">Newton's inequalities</a></li> <li><a href="/wiki/Newton%27s_law_of_cooling" title="Newton&#39;s law of cooling">Newton's law of cooling</a></li> <li><a href="/wiki/Newton%27s_law_of_universal_gravitation" title="Newton&#39;s law of universal gravitation">Newton's law of universal gravitation</a> <ul><li><a href="/wiki/Post-Newtonian_expansion" title="Post-Newtonian expansion">post-Newtonian expansion</a></li> <li><a href="/wiki/Parameterized_post-Newtonian_formalism" title="Parameterized post-Newtonian formalism">parameterized</a></li> <li><a href="/wiki/Gravitational_constant" title="Gravitational constant">gravitational constant</a></li></ul></li> <li><a href="/wiki/Newton%E2%80%93Cartan_theory" title="Newton–Cartan theory">Newton–Cartan theory</a></li> <li><a class="mw-selflink selflink">Schrödinger–Newton equation</a></li> <li><a href="/wiki/Newton%27s_laws_of_motion" title="Newton&#39;s laws of motion">Newton's laws of motion</a> <ul><li><a href="/wiki/Kepler%27s_laws_of_planetary_motion" title="Kepler&#39;s laws of planetary motion">Kepler's laws</a></li></ul></li> <li><a href="/wiki/Newtonian_dynamics" title="Newtonian dynamics">Newtonian dynamics</a></li> <li><a href="/wiki/Newton%27s_method_in_optimization" title="Newton&#39;s method in optimization">Newton's method in optimization</a> <ul><li><a href="/wiki/Problem_of_Apollonius" title="Problem of Apollonius">Apollonius's problem</a></li> <li><a href="/wiki/Truncated_Newton_method" title="Truncated Newton method">truncated Newton method</a></li></ul></li> <li><a href="/wiki/Gauss%E2%80%93Newton_algorithm" title="Gauss–Newton algorithm">Gauss–Newton algorithm</a></li> <li><a href="/wiki/Newton%27s_rings" title="Newton&#39;s rings">Newton's rings</a></li> <li><a href="/wiki/Newton%27s_theorem_about_ovals" title="Newton&#39;s theorem about ovals">Newton's theorem about ovals</a></li> <li><a href="/wiki/Newton%E2%80%93Pepys_problem" title="Newton–Pepys problem">Newton–Pepys problem</a></li> <li><a href="/wiki/Newtonian_potential" title="Newtonian potential">Newtonian potential</a></li> <li><a href="/wiki/Newtonian_fluid" title="Newtonian fluid">Newtonian fluid</a></li> <li><a href="/wiki/Classical_mechanics" title="Classical mechanics">Classical mechanics</a></li> <li><a href="/wiki/Corpuscular_theory_of_light" title="Corpuscular theory of light">Corpuscular theory of light</a></li> <li><a href="/wiki/Leibniz%E2%80%93Newton_calculus_controversy" title="Leibniz–Newton calculus controversy">Leibniz–Newton calculus controversy</a></li> <li><a href="/wiki/Newton%27s_notation" class="mw-redirect" title="Newton&#39;s notation">Newton's notation</a></li> <li><a href="/wiki/Rotating_spheres" title="Rotating spheres">Rotating spheres</a></li> <li><a href="/wiki/Newton%27s_cannonball" title="Newton&#39;s cannonball">Newton's cannonball</a></li> <li><a href="/wiki/Newton%E2%80%93Cotes_formulas" title="Newton–Cotes formulas">Newton–Cotes formulas</a></li> <li><a href="/wiki/Newton%27s_method" title="Newton&#39;s method">Newton's method</a> <ul><li><a href="/wiki/Generalized_Gauss%E2%80%93Newton_method" title="Generalized Gauss–Newton method">generalized Gauss–Newton method</a></li></ul></li> <li><a href="/wiki/Newton_fractal" title="Newton fractal">Newton fractal</a></li> <li><a href="/wiki/Newton%27s_identities" title="Newton&#39;s identities">Newton's identities</a></li> <li><a href="/wiki/Newton_polynomial" title="Newton polynomial">Newton polynomial</a></li> <li><a href="/wiki/Newton%27s_theorem_of_revolving_orbits" title="Newton&#39;s theorem of revolving orbits">Newton's theorem of revolving orbits</a></li> <li><a href="/wiki/Newton%E2%80%93Euler_equations" title="Newton–Euler equations">Newton–Euler equations</a></li> <li><a href="/wiki/Power_number" title="Power number">Newton number</a> <ul><li><a href="/wiki/Kissing_number" title="Kissing number">kissing number problem</a></li></ul></li> <li><a href="/wiki/Difference_quotient" title="Difference quotient">Newton's quotient</a></li> <li><a href="/wiki/Parallelogram_of_force" title="Parallelogram of force">Parallelogram of force</a></li> <li><a href="/wiki/Puiseux_series" title="Puiseux series">Newton–Puiseux theorem</a></li> <li><a href="/wiki/Absolute_space_and_time#Newton" title="Absolute space and time">Absolute space and time</a></li> <li><a href="/wiki/Luminiferous_aether" title="Luminiferous aether">Luminiferous aether</a></li> <li><a href="/wiki/Finite_difference" title="Finite difference">Newtonian series</a> <ul><li><a href="/wiki/Table_of_Newtonian_series" title="Table of Newtonian series">table</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;vertical-align:top;">Personal life</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Woolsthorpe_Manor" title="Woolsthorpe Manor">Woolsthorpe Manor</a>&#160;(birthplace)</li> <li><a href="/wiki/Cranbury_Park" title="Cranbury Park">Cranbury Park</a>&#160;(home)</li> <li><a href="/wiki/Early_life_of_Isaac_Newton" title="Early life of Isaac Newton">Early life</a></li> <li><a href="/wiki/Later_life_of_Isaac_Newton" title="Later life of Isaac Newton">Later life</a></li> <li><a href="/wiki/Isaac_Newton%27s_apple_tree" title="Isaac Newton&#39;s apple tree">Apple tree</a></li> <li><a href="/wiki/Religious_views_of_Isaac_Newton" title="Religious views of Isaac Newton">Religious views</a></li> <li><a href="/wiki/Isaac_Newton%27s_occult_studies" title="Isaac Newton&#39;s occult studies">Occult studies</a></li> <li><a href="/wiki/Scientific_Revolution" title="Scientific Revolution">Scientific Revolution</a></li> <li><a href="/wiki/Copernican_Revolution" title="Copernican Revolution">Copernican Revolution</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;vertical-align:top;">Relations</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Catherine_Barton" title="Catherine Barton">Catherine Barton</a>&#160;(niece)</li> <li><a href="/wiki/John_Conduitt" title="John Conduitt">John Conduitt</a>&#160;(nephew-in-law)</li> <li><a href="/wiki/Isaac_Barrow" title="Isaac Barrow">Isaac Barrow</a>&#160;(professor)</li> <li><a href="/wiki/William_Clarke_(apothecary)" title="William Clarke (apothecary)">William Clarke</a>&#160;(mentor)</li> <li><a href="/wiki/Benjamin_Pulleyn" title="Benjamin Pulleyn">Benjamin Pulleyn</a>&#160;(tutor)</li> <li><a href="/wiki/Roger_Cotes" title="Roger Cotes">Roger Cotes</a>&#160;(student)</li> <li><a href="/wiki/William_Whiston" title="William Whiston">William Whiston</a>&#160;(student)</li> <li><a href="/wiki/John_Keill" title="John Keill">John Keill</a>&#160;(disciple)</li> <li><a href="/wiki/William_Stukeley" title="William Stukeley">William Stukeley</a>&#160;(friend)</li> <li><a href="/wiki/William_Jones_(mathematician)" title="William Jones (mathematician)">William Jones</a>&#160;(friend)</li> <li><a href="/wiki/Abraham_de_Moivre" title="Abraham de Moivre">Abraham de Moivre</a>&#160;(friend)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;vertical-align:top;"><a href="/wiki/Isaac_Newton_in_popular_culture" title="Isaac Newton in popular culture">Depictions</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Newton_(Blake)" title="Newton (Blake)"><i>Newton</i> by Blake</a>&#160;(monotype)</li> <li><a href="/wiki/Newton_(Paolozzi)" title="Newton (Paolozzi)"><i>Newton</i> by Paolozzi</a>&#160;(sculpture)</li> <li><i><a href="/wiki/Isaac_Newton_Gargoyle" title="Isaac Newton Gargoyle">Isaac Newton Gargoyle</a></i></li> <li><i><a href="/wiki/Astronomers_Monument" title="Astronomers Monument">Astronomers Monument</a></i></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;vertical-align:top;"><a href="/wiki/List_of_things_named_after_Isaac_Newton" title="List of things named after Isaac Newton">Namesake</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Newton_(unit)" title="Newton (unit)">Newton (unit)</a></li> <li><a href="/wiki/Newton%27s_cradle" title="Newton&#39;s cradle">Newton's cradle</a></li> <li><a href="/wiki/Isaac_Newton_Institute" title="Isaac Newton Institute">Isaac Newton Institute</a></li> <li><a href="/wiki/Institute_of_Physics_Isaac_Newton_Medal" class="mw-redirect" title="Institute of Physics Isaac Newton Medal">Isaac Newton Medal</a></li> <li><a href="/wiki/Isaac_Newton_Telescope" title="Isaac Newton Telescope">Isaac Newton Telescope</a></li> <li><a href="/wiki/Isaac_Newton_Group_of_Telescopes" title="Isaac Newton Group of Telescopes">Isaac Newton Group of Telescopes</a></li> <li><a href="/wiki/XMM-Newton" title="XMM-Newton">XMM-Newton</a></li> <li><a href="/wiki/Sir_Isaac_Newton_Sixth_Form" title="Sir Isaac Newton Sixth Form">Sir Isaac Newton Sixth Form</a></li> <li><a href="/wiki/Statal_Institute_of_Higher_Education_Isaac_Newton" title="Statal Institute of Higher Education Isaac Newton">Statal Institute of Higher Education Isaac Newton</a></li> <li><a href="/wiki/Newton_International_Fellowship" title="Newton International Fellowship">Newton International Fellowship</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;vertical-align:top;">Categories</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"><div class="div-col"> <div class="CategoryTreeTag" data-ct-options="{&quot;mode&quot;:20,&quot;hideprefix&quot;:20,&quot;showcount&quot;:false,&quot;namespaces&quot;:false,&quot;notranslations&quot;:false}"><div class="CategoryTreeSection"><div class="CategoryTreeItem"><span class="CategoryTreeBullet"><a class="CategoryTreeToggle" data-ct-title="Isaac_Newton" aria-expanded="false"></a> </span> <bdi dir="ltr"><a href="/wiki/Category:Isaac_Newton" title="Category:Isaac Newton">Isaac Newton</a></bdi></div><div class="CategoryTreeChildren" style="display:none"></div></div></div> </div></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.canary‐84779d6bf6‐7hlq2 Cached time: 20241124072444 Cache expiry: 21600 Reduced expiry: true Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.456 seconds Real time usage: 0.645 seconds Preprocessor visited node count: 1947/1000000 Post‐expand include size: 83251/2097152 bytes Template argument size: 894/2097152 bytes Highest expansion depth: 11/100 Expensive parser function count: 1/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 103476/5000000 bytes Lua time usage: 0.279/10.000 seconds Lua memory usage: 7317089/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 476.118 1 -total 47.09% 224.225 1 Template:Reflist 30.00% 142.829 13 Template:Citation 21.88% 104.183 1 Template:Isaac_Newton 20.98% 99.867 1 Template:Navbox 17.88% 85.136 1 Template:Short_description 11.45% 54.516 2 Template:Pagetype 10.24% 48.740 9 Template:Cite_journal 7.77% 36.976 1 Template:Val 4.24% 20.191 6 Template:Main_other --> <!-- Saved in parser cache with key enwiki:pcache:idhash:1905371-0!canonical and timestamp 20241124072444 and revision id 1187087362. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Schrödinger–Newton_equation&amp;oldid=1187087362">https://en.wikipedia.org/w/index.php?title=Schrödinger–Newton_equation&amp;oldid=1187087362</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Gravity" title="Category:Gravity">Gravity</a></li><li><a href="/wiki/Category:Quantum_gravity" title="Category:Quantum gravity">Quantum gravity</a></li><li><a href="/wiki/Category:Equations" title="Category:Equations">Equations</a></li><li><a href="/wiki/Category:Nonlinear_partial_differential_equations" title="Category:Nonlinear partial differential equations">Nonlinear partial differential equations</a></li><li><a href="/wiki/Category:Schr%C3%B6dinger_equation" title="Category:Schrödinger equation">Schrödinger equation</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 27 November 2023, at 11:16<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Schr%C3%B6dinger%E2%80%93Newton_equation&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-4zjqf","wgBackendResponseTime":155,"wgPageParseReport":{"limitreport":{"cputime":"0.456","walltime":"0.645","ppvisitednodes":{"value":1947,"limit":1000000},"postexpandincludesize":{"value":83251,"limit":2097152},"templateargumentsize":{"value":894,"limit":2097152},"expansiondepth":{"value":11,"limit":100},"expensivefunctioncount":{"value":1,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":103476,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 476.118 1 -total"," 47.09% 224.225 1 Template:Reflist"," 30.00% 142.829 13 Template:Citation"," 21.88% 104.183 1 Template:Isaac_Newton"," 20.98% 99.867 1 Template:Navbox"," 17.88% 85.136 1 Template:Short_description"," 11.45% 54.516 2 Template:Pagetype"," 10.24% 48.740 9 Template:Cite_journal"," 7.77% 36.976 1 Template:Val"," 4.24% 20.191 6 Template:Main_other"]},"scribunto":{"limitreport-timeusage":{"value":"0.279","limit":"10.000"},"limitreport-memusage":{"value":7317089,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.canary-84779d6bf6-7hlq2","timestamp":"20241124072444","ttl":21600,"transientcontent":true}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Schr\u00f6dinger\u2013Newton equation","url":"https:\/\/en.wikipedia.org\/wiki\/Schr%C3%B6dinger%E2%80%93Newton_equation","sameAs":"http:\/\/www.wikidata.org\/entity\/Q7432925","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q7432925","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2005-05-18T17:17:17Z","dateModified":"2023-11-27T11:16:11Z","headline":"nonlinear modification of the Schr\u00f6dinger equation"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10