CINXE.COM

A critical appraisal and evaluation of modern PDFs | The European Physical Journal C

<!DOCTYPE html> <html lang="en" class="no-js"> <head> <meta charset="UTF-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="applicable-device" content="pc,mobile"> <meta name="viewport" content="width=device-width, initial-scale=1"> <meta name="robots" content="max-image-preview:large"> <meta name="access" content="Yes"> <meta name="360-site-verification" content="1268d79b5e96aecf3ff2a7dac04ad990" /> <title>A critical appraisal and evaluation of modern PDFs | The European Physical Journal C </title> <meta name="twitter:site" content="@SpringerLink"/> <meta name="twitter:card" content="summary_large_image"/> <meta name="twitter:image:alt" content="Content cover image"/> <meta name="twitter:title" content="A critical appraisal and evaluation of modern PDFs"/> <meta name="twitter:description" content="The European Physical Journal C - We review the present status of the determination of parton distribution functions (PDFs) in the light of the precision requirements for the LHC in Run 2 and other..."/> <meta name="twitter:image" content="https://static-content.springer.com/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig1_HTML.gif"/> <meta name="journal_id" content="10052"/> <meta name="dc.title" content="A critical appraisal and evaluation of modern PDFs"/> <meta name="dc.source" content="The European Physical Journal C 2016 76:8"/> <meta name="dc.format" content="text/html"/> <meta name="dc.publisher" content="Springer"/> <meta name="dc.date" content="2016-08-23"/> <meta name="dc.type" content="OriginalPaper"/> <meta name="dc.language" content="En"/> <meta name="dc.copyright" content="2016 The Author(s)"/> <meta name="dc.rights" content="2016 The Author(s)"/> <meta name="dc.rightsAgent" content="journalpermissions@springernature.com"/> <meta name="dc.description" content="We review the present status of the determination of parton distribution functions (PDFs) in the light of the precision requirements for the LHC in Run 2 and other future hadron colliders. We provide brief reviews of all currently available PDF sets and use them to compute cross sections for a number of benchmark processes, including Higgs boson production in gluon&#8211;gluon fusion at the LHC. We show that the differences in the predictions obtained with the various PDFs are due to particular theory assumptions made in the fits of those PDFs. We discuss PDF uncertainties in the kinematic region covered by the LHC and on averaging procedures for PDFs, such as advocated by the PDF4LHC15 sets, and provide recommendations for the usage of PDF sets for theory predictions at the LHC."/> <meta name="prism.issn" content="1434-6052"/> <meta name="prism.publicationName" content="The European Physical Journal C"/> <meta name="prism.publicationDate" content="2016-08-23"/> <meta name="prism.volume" content="76"/> <meta name="prism.number" content="8"/> <meta name="prism.section" content="OriginalPaper"/> <meta name="prism.startingPage" content="1"/> <meta name="prism.endingPage" content="46"/> <meta name="prism.copyright" content="2016 The Author(s)"/> <meta name="prism.rightsAgent" content="journalpermissions@springernature.com"/> <meta name="prism.url" content="https://link.springer.com/article/10.1140/epjc/s10052-016-4285-4"/> <meta name="prism.doi" content="doi:10.1140/epjc/s10052-016-4285-4"/> <meta name="citation_pdf_url" content="https://link.springer.com/content/pdf/10.1140/epjc/s10052-016-4285-4.pdf"/> <meta name="citation_fulltext_html_url" content="https://link.springer.com/article/10.1140/epjc/s10052-016-4285-4"/> <meta name="citation_journal_title" content="The European Physical Journal C"/> <meta name="citation_journal_abbrev" content="Eur. Phys. J. C"/> <meta name="citation_publisher" content="Springer Berlin Heidelberg"/> <meta name="citation_issn" content="1434-6052"/> <meta name="citation_title" content="A critical appraisal and evaluation of modern PDFs"/> <meta name="citation_volume" content="76"/> <meta name="citation_issue" content="8"/> <meta name="citation_publication_date" content="2016/08"/> <meta name="citation_online_date" content="2016/08/23"/> <meta name="citation_firstpage" content="1"/> <meta name="citation_lastpage" content="46"/> <meta name="citation_article_type" content="Regular Article - Experimental Physics"/> <meta name="citation_fulltext_world_readable" content=""/> <meta name="citation_language" content="en"/> <meta name="dc.identifier" content="doi:10.1140/epjc/s10052-016-4285-4"/> <meta name="DOI" content="10.1140/epjc/s10052-016-4285-4"/> <meta name="size" content="2073460"/> <meta name="citation_doi" content="10.1140/epjc/s10052-016-4285-4"/> <meta name="citation_springer_api_url" content="http://api.springer.com/xmldata/jats?q=doi:10.1140/epjc/s10052-016-4285-4&amp;api_key="/> <meta name="description" content="We review the present status of the determination of parton distribution functions (PDFs) in the light of the precision requirements for the LHC in Run 2 a"/> <meta name="dc.creator" content="Accardi, A."/> <meta name="dc.creator" content="Alekhin, S."/> <meta name="dc.creator" content="Bl&#252;mlein, J."/> <meta name="dc.creator" content="Garzelli, M. V."/> <meta name="dc.creator" content="Lipka, K."/> <meta name="dc.creator" content="Melnitchouk, W."/> <meta name="dc.creator" content="Moch, S."/> <meta name="dc.creator" content="Owens, J. F."/> <meta name="dc.creator" content="Pla&#269;akyt&#279;, R."/> <meta name="dc.creator" content="Reya, E."/> <meta name="dc.creator" content="Sato, N."/> <meta name="dc.creator" content="Vogt, A."/> <meta name="dc.creator" content="Zenaiev, O."/> <meta name="dc.subject" content="Elementary Particles, Quantum Field Theory"/> <meta name="dc.subject" content="Nuclear Physics, Heavy Ions, Hadrons"/> <meta name="dc.subject" content="Quantum Field Theories, String Theory"/> <meta name="dc.subject" content="Measurement Science and Instrumentation"/> <meta name="dc.subject" content="Astronomy, Astrophysics and Cosmology"/> <meta name="dc.subject" content="Nuclear Energy"/> <meta name="citation_reference" content="A.&#160;Accardi, L.T. Brady, W.&#160;Melnitchouk, J.F. Owens, N.&#160;Sato, Constraints on large- $$x$$ parton distributions from new weak boson production and deep-inelastic scattering data. arXiv:1602.03154 "/> <meta name="citation_reference" content="S. Alekhin, J. Bl&#252;mlein, S. Moch, The ABM parton distributions tuned to LHC data. Phys. Rev. D 89, 054028 (2014). arXiv:1310.3059 "/> <meta name="citation_reference" content="S.&#160;Dulat, T.J. Hou, J.&#160;Gao, M.&#160;Guzzi, J.&#160;Huston, P.&#160;Nadolsky, J.&#160;Pumplin, C.&#160;Schmidt, D.&#160;Stump, C.P. Yuan, The CT14 global analysis of quantum chromodynamics. arXiv:1506.07443 "/> <meta name="citation_reference" content="ZEUS, H1 Collaboration, H.&#160;Abramowicz et&#160;al., Combination of measurements of inclusive deep-inelastic $$e^{\pm }p$$ scattering cross sections and QCD analysis of HERA data. arXiv:1506.06042 "/> <meta name="citation_reference" content="P. Jimenez-Delgado, E. Reya, Delineating parton distributions and the strong coupling. Phys. Rev. D 89, 074049 (2014). arXiv:1403.1852 "/> <meta name="citation_reference" content="L.A. Harland-Lang, A.D. Martin, P. Motylinski, R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs. Eur. Phys. J. C 75, 204 (2015). arXiv:1412.3989 "/> <meta name="citation_reference" content="NNPDF Collaboration, R.D. Ball et&#160;al., Parton distributions for the LHC Run II. JHEP 04, 040 (2015). arXiv:1410.8849 "/> <meta name="citation_reference" content="J. Butterworth et&#160;al., PDF4LHC recommendations for LHC Run II. J. Phys. G43, 023001 (2016). arXiv:1510.03865 "/> <meta name="citation_reference" content="A.&#160;Gehrmann-De Ridder, T.&#160;Gehrmann, E.W.N.&#160;Glover, A.&#160;Huss, T.A.&#160;Morgan, The NNLO QCD corrections to Z boson production at large transverse momentum. arXiv:1605.04295 "/> <meta name="citation_reference" content="S.&#160;Forte, private communication, May 18, 2016"/> <meta name="citation_reference" content="H. Paukkunen, C.A. Salgado, Agreement of neutrino deep-inelastic scattering data with global fits of parton distributions. Phys. Rev. Lett. 110, 212301 (2013). arXiv:1302.2001 "/> <meta name="citation_reference" content="G.&#160;Altarelli, in QCD and experiment: status of $$\alpha _s$$ . eds. by: P.M. Zerwas, H.A. Kastrup, Workshop on QCD: 20 Years Later Aachen, Germany, June 9&#8211;13, pp. 172&#8211;204 (1992)"/> <meta name="citation_reference" content="citation_journal_title=Z. Phys. C; citation_title=Testing QCD scaling violations in the HERA energy range; citation_author=J Bl&#252;mlein, M Klein, G Ingelman, R R&#252;ckl; citation_volume=45; citation_publication_date=1990; citation_pages=501; citation_doi=10.1007/BF01549682; citation_id=CR13"/> <meta name="citation_reference" content="citation_journal_title=Z. Phys. C; citation_title=A measurement of differential cross sections and nucleon structure functions in charged current neutrino interactions on iron; citation_author=JP Berge; citation_volume=49; citation_publication_date=1991; citation_pages=187; citation_doi=10.1007/BF01555493; citation_id=CR14"/> <meta name="citation_reference" content="A.&#160;Gehrmann-De&#160;Ridder, T.&#160;Gehrmann, E.W.N. Glover, J.&#160;Pires, Second order QCD corrections to jet production at hadron colliders: the all-gluon contribution. Phys. Rev. Lett. 110, 162003 (2013). arXiv:1301.7310 "/> <meta name="citation_reference" content="H1 Collaboration, F.D. Aaron et&#160;al., Inclusive deep-inelastic scattering at high $$Q^2$$ with longitudinally polarised lepton beams at HERA. JHEP 09, 061 (2012). arXiv:1206.7007 "/> <meta name="citation_reference" content="H1 Collaboration, C.&#160;Adloff et&#160;al., Measurement and QCD analysis of neutral and charged current cross-sections at HERA. Eur. Phys. J. C 30, 1 (2003). arXiv:hep-ex/0304003 "/> <meta name="citation_reference" content="ZEUS Collaboration, S.&#160;Chekanov et&#160;al., A ZEUS next-to-leading-order QCD analysis of data on deep inelastic scattering, Phys. Rev. D 67, 012007 (2003). arXiv:hep-ex/0208023 "/> <meta name="citation_reference" content="ATLAS Collaboration, G.&#160;Aad et&#160;al., Measurement of the inclusive $$W^\pm $$ and Z/ $$\gamma $$ cross sections in the electron and muon decay channels in $$pp$$ collisions at $$\sqrt{s}=7$$ TeV with the ATLAS detector. Phys. Rev. D 85, 072004 (2012). arXiv:1109.5141 "/> <meta name="citation_reference" content="ATLAS Collaboration, G.&#160;Aad et&#160;al., Measurement of the high-mass Drell&#8211;Yan differential cross-section in pp collisions at $$\sqrt{s}=7$$ TeV with the ATLAS detector. Phys. Lett. B 725, 223&#8211;242 (2013). arXiv:1305.4192 "/> <meta name="citation_reference" content="CMS Collaboration, S.&#160;Chatrchyan et&#160;al., Measurement of the muon charge asymmetry in inclusive $$pp \rightarrow W+X$$ production at $$\sqrt{s} =$$ 7 TeV and an improved determination of light parton distribution functions. Phys. Rev. D 90(3), 032004 (2014). arXiv:1312.6283 "/> <meta name="citation_reference" content="CMS Collaboration, S. Chatrchyan et al., Measurement of the differential and double-differential Drell&#8211;Yan cross sections in proton-proton collisions at $$\sqrt{s} =$$ 7 TeV. JHEP 12, 030 (2013). arXiv:1310.7291 "/> <meta name="citation_reference" content="CMS Collaboration, V.&#160;Khachatryan et&#160;al., Measurement of the differential cross section and charge asymmetry for inclusive pp to W + X production at $$\sqrt{s} = 8$$ TeV. arXiv:1603.01803 "/> <meta name="citation_reference" content="CMS Collaboration, V.&#160;Khachatryan et&#160;al., Measurements of differential and double-differential Drell&#8211;Yan cross sections in proton-proton collisions at 8 TeV. Eur. Phys. J. C 75(4), 147 (2015). arXiv:1412.1115 "/> <meta name="citation_reference" content="D&#216; Collaboration, V.M. Abazov et al., Measurement of the muon charge asymmetry in $$p\bar{p}$$ $$\rightarrow $$ W+X $$\rightarrow $$ $$\mu $$ $$\nu $$ + X events at $$\sqrt{s}=1.96$$ TeV. Phys. Rev. D 88, 091102 (2013). arXiv:1309.2591 "/> <meta name="citation_reference" content="D&#216; Collaboration, V.M. Abazov et&#160;al., Measurement of the electron charge asymmetry in $${p\bar{p}\rightarrow W+X \rightarrow e\nu +X}$$ decays in $${p\bar{p}}$$ collisions at $${\sqrt{s}=1.96}$$ TeV. Phys. Rev. D 91(3), 032007 (2015). arXiv:1412.2862 . [Erratum: Phys. Rev. D 91(7), 079901 (2015)]"/> <meta name="citation_reference" content="LHCb Collaboration, R.&#160;Aaij et&#160;al., Measurement of the forward $$Z$$ boson production cross-section in $$pp$$ collisions at $$\sqrt{s}=7$$ TeV. JHEP 08, 039 (2015). arXiv:1505.07024 "/> <meta name="citation_reference" content="LHCb Collaboration, R.&#160;Aaij et&#160;al., Measurement of forward $$ Z\rightarrow e^+e^-$$ production at $$\sqrt{s}=8$$ TeV. JHEP 05, 109 (2015). arXiv:1503.00963 "/> <meta name="citation_reference" content="LHCb Collaboration, R.&#160;Aaij et&#160;al., Measurement of forward W and Z boson production in $$pp$$ collisions at $$ \sqrt{s}=8 $$ TeV. JHEP 01, 155 (2016). arXiv:1511.08039 "/> <meta name="citation_reference" content="S.&#160;Alekhin, J.&#160;Bl&#252;mlein, S.&#160;Moch, R.&#160;Placakyte, Iso-spin asymmetry of quark distributions and implications for single top-quark production at the LHC. arXiv:1508.07923 "/> <meta name="citation_reference" content="HERAFitter developers&#8217; Team Collaboration, S.&#160;Camarda et&#160;al., QCD analysis of $$W$$ - and $$Z$$ -boson production at the Tevatron. arXiv:1503.05221 "/> <meta name="citation_reference" content="CDF Collaboration, F.&#160;Abe et&#160;al., Measurement of the lepton charge asymmetry in $$W$$ boson decays produced in $$p \bar{p}$$ collisions. Phys. Rev. Lett. 81, 5754&#8211;5759 (1998). arXiv:hep-ex/9809001 "/> <meta name="citation_reference" content="CDF Collaboration, D. Acosta et al., Measurement of the forward&#8211;backward charge asymmetry from $$W \rightarrow e \nu $$ production in $$p\bar{p}$$ collisions at $$\sqrt{s} = 1.96$$ TeV. Phys. Rev. D 71, 051104 (2005). arXiv:hep-ex/0501023 "/> <meta name="citation_reference" content="CDF Collaboration, T.A. Aaltonen et al., Measurement of $$d\sigma /dy$$ of Drell&#8211;Yan $$e^+e^-$$ pairs in the $$Z$$ Mass Region from $$p\bar{p}$$ Collisions at $$\sqrt{s}=1.96$$ TeV. Phys. Lett. B692, 232&#8211;239 (2010). arXiv:0908.3914 "/> <meta name="citation_reference" content="CDF Collaboration, T. Aaltonen et al., Direct measurement of the $$W$$ production charge asymmetry in $$p\bar{p}$$ collisions at $$\sqrt{s} = 1.96$$ TeV. Phys. Rev. Lett. 102, 181801 (2009). arXiv:0901.2169 "/> <meta name="citation_reference" content="CMS Collaboration, S. Chatrchyan et al., Measurement of the lepton charge asymmetry in inclusive $$W$$ production in pp collisions at $$\sqrt{s} = 7$$ TeV. JHEP 04, 050 (2011). arXiv:1103.3470 "/> <meta name="citation_reference" content="CMS Collaboration, S. Chatrchyan et al., Measurement of the rapidity and transverse momentum distributions of $$Z$$ bosons in $$pp$$ collisions at $$\sqrt{s}=7$$ TeV. Phys. Rev. D 85, 032002 (2012). arXiv:1110.4973 "/> <meta name="citation_reference" content="CMS Collaboration, S. Chatrchyan et al., Measurement of the electron charge asymmetry in inclusive $$W$$ production in $$pp$$ collisions at $$\sqrt{s}=7$$ TeV. Phys. Rev. Lett. 109, 111806 (2012). arXiv:1206.2598 "/> <meta name="citation_reference" content="D&#216; Collaboration, V.M. Abazov et al., Measurement of the muon charge asymmetry from $$W$$ boson decays. Phys. Rev. D 77, 011106 (2008). arXiv:0709.4254 "/> <meta name="citation_reference" content="D&#216; Collaboration, V.M. Abazov et&#160;al., Measurement of the shape of the boson rapidity distribution for $$p \bar{p} \rightarrow Z/\gamma ^* \rightarrow e^{+} e^{-}$$ + $$X$$ events produced at $$\sqrt{s}$$ of 1.96-TeV. Phys. Rev. D 76, 012003 (2007). arXiv:hep-ex/0702025 "/> <meta name="citation_reference" content="D&#216; Collaboration, V.M. Abazov et al., Measurement of the electron charge asymmetry in $$p \bar{p} \rightarrow W + X \rightarrow e \nu + X$$ events at $$\sqrt{s}$$ = 1.96-TeV. Phys. Rev. Lett. 101, 211801 (2008). arXiv:0807.3367 "/> <meta name="citation_reference" content="D&#216; Collaboration, V.M. Abazov et&#160;al., Measurement of the W boson production charge asymmetry in $$p\bar{p}\rightarrow W+X \rightarrow e\nu +X$$ events at $$\sqrt{s}=1.96$$ TeV"/> <meta name="citation_reference" content="LHCb Collaboration, R.&#160;Aaij et&#160;al., Inclusive $$W$$ and $$Z$$ production in the forward region at $$\sqrt{s} = 7$$ TeV, JHEP 06, 058 (2012). arXiv:1204.1620 "/> <meta name="citation_reference" content="LHCb Collaboration, R.&#160;Aaij et&#160;al., Measurement of the cross-section for $$Z \rightarrow e^+e^-$$ production in $$pp$$ collisions at $$\sqrt{s}=7$$ TeV. JHEP 02, 106 (2013). arXiv:1212.4620 "/> <meta name="citation_reference" content="citation_journal_title=Comput. Phys. Commun.; citation_title=Heracles: an event generator for interactions at HERA energies including radiative processes: version 1.0; citation_author=A Kwiatkowski, H Spiesberger, HJ M&#246;hring; citation_volume=69; citation_publication_date=1992; citation_pages=155; citation_doi=10.1016/0010-4655(92)90136-M; citation_id=CR45"/> <meta name="citation_reference" content="A. Arbuzov, D.Yu. Bardin, J. Bl&#252;mlein, L. Kalinovskaya, T. Riemann, Hector 1.00: a program for the calculation of QED, QCD and electroweak corrections to $$ep$$ and $$l^\pm N$$ deep-inelastic neutral and charged current scattering. Comput. Phys. Commun. 94, 128 (1996). arXiv:hep-ph/9511434 "/> <meta name="citation_reference" content="citation_journal_title=Phys. Lett. B; citation_title=Leading log radiative corrections to scattering including jet measurement; citation_author=J Bl&#252;mlein; citation_volume=271; citation_publication_date=1991; citation_pages=267; citation_doi=10.1016/0370-2693(91)91311-I; citation_id=CR47"/> <meta name="citation_reference" content="J. Bl&#252;mlein, $${\cal {O}}(\alpha ^{2} L^{2})$$ radiative corrections to deep-inelastic $$e p$$ scattering for different kinematical variables. Z. Phys. C 65, 293 (1995). arXiv:hep-ph/9403342 "/> <meta name="citation_reference" content="J. Bl&#252;mlein, H. Kawamura, $${\cal {O}}(\alpha ^2 L)$$ radiative corrections to deep-inelastic $$ep$$ scattering. Phys. Lett. B 553, 242 (2003). arXiv:hep-ph/0211191 "/> <meta name="citation_reference" content="citation_journal_title=Z. Phys. C; citation_title=Electroweak radiative corrections and quark mass singularities; citation_author=J Kripfganz, H Perlt; citation_volume=41; citation_publication_date=1988; citation_pages=319; citation_doi=10.1007/BF01566932; citation_id=CR50"/> <meta name="citation_reference" content="citation_journal_title=Z. Phys. C; citation_title=Leading log radiative corrections to deep-inelastic neutral and charged current scattering at HERA; citation_author=J Bl&#252;mlein; citation_volume=47; citation_publication_date=1990; citation_pages=89; citation_doi=10.1007/BF01551917; citation_id=CR51"/> <meta name="citation_reference" content="H. Spiesberger, QED radiative corrections for parton distributions. Phys. Rev. D 52, 4936 (1995). arXiv:hep-ph/9412286 "/> <meta name="citation_reference" content="M. Roth, S. Weinzierl, QED corrections to the evolution of parton distributions. Phys. Lett. B 590, 190 (2004). arXiv:hep-ph/0403200 "/> <meta name="citation_reference" content="J. Bl&#252;mlein, The theory of deeply inelastic scattering. Prog. Part. Nucl. Phys. 69, 28 (2013). arXiv:1208.6087 "/> <meta name="citation_reference" content="citation_journal_title=Chin. Phys. C; citation_title=Review of particle physics; citation_author=KA Olive; citation_volume=38; citation_publication_date=2014; citation_pages=090001; citation_doi=10.1088/1674-1137/38/9/090001; citation_id=CR55"/> <meta name="citation_reference" content="citation_journal_title=Phys. Lett. B; citation_title=The longitudinal structure function at the third order; citation_author=S Moch, JAM Vermaseren, A Vogt; citation_volume=606; citation_publication_date=2005; citation_pages=123; citation_doi=10.1016/j.physletb.2004.11.063; citation_id=CR56"/> <meta name="citation_reference" content="citation_journal_title=Nucl. Phys. B; citation_title=The third-order QCD corrections to deep-inelastic scattering by photon exchange; citation_author=JAM Vermaseren, A Vogt, S Moch; citation_volume=724; citation_publication_date=2005; citation_pages=3; citation_doi=10.1016/j.nuclphysb.2005.06.020; citation_id=CR57"/> <meta name="citation_reference" content="citation_journal_title=Nucl. Phys. B; citation_title=Non-singlet QCD analysis of deep-inelastic world data at ; citation_author=J Bl&#252;mlein, H B&#246;ttcher, A Guffanti; citation_volume=774; citation_publication_date=2007; citation_pages=182; citation_doi=10.1016/j.nuclphysb.2007.03.035; citation_id=CR58"/> <meta name="citation_reference" content="citation_journal_title=Eur. Phys. J. C; citation_title=Higher order constraints on the Higgs production rate from fixed-target DIS data; citation_author=S Alekhin, J Bl&#252;mlein, S Moch; citation_volume=71; citation_publication_date=2011; citation_pages=1723; citation_doi=10.1140/epjc/s10052-011-1723-1; citation_id=CR59"/> <meta name="citation_reference" content="citation_journal_title=Phys. Rev. D; citation_title=Freedom at moderate energies: masses in color dynamics; citation_author=H Georgi, HD Politzer; citation_volume=14; citation_publication_date=1976; citation_pages=1829; citation_doi=10.1103/PhysRevD.14.1829; citation_id=CR60"/> <meta name="citation_reference" content="citation_journal_title=Phys. Rev. C; citation_title=Parton distributions in the presence of target mass corrections; citation_author=FM Steffens, MD Brown, W Melnitchouk, S Sanches; citation_volume=86; citation_publication_date=2012; citation_pages=065208; citation_doi=10.1103/PhysRevC.86.065208; citation_id=CR61"/> <meta name="citation_reference" content="citation_journal_title=Phys. Lett. B; citation_title=Higher twist contributions to the structure functions and at large and higher orders; citation_author=J Bl&#252;mlein, H B&#246;ttcher; citation_volume=662; citation_publication_date=2008; citation_pages=336; citation_doi=10.1016/j.physletb.2008.03.026; citation_id=CR62"/> <meta name="citation_reference" content="citation_journal_title=Phys. Rev. D; citation_title=Global fit to the charged leptons DIS data: parton distributions, and high twists; citation_author=SI Alekhin; citation_volume=63; citation_publication_date=2001; citation_pages=094022; citation_doi=10.1103/PhysRevD.63.094022; citation_id=CR63"/> <meta name="citation_reference" content="citation_journal_title=Phys. Rev. D; citation_title=Parton distribution functions and benchmark cross sections at NNLO; citation_author=S Alekhin, J Bl&#252;mlein, S Moch; citation_volume=86; citation_publication_date=2012; citation_pages=054009; citation_doi=10.1103/PhysRevD.86.054009; citation_id=CR64"/> <meta name="citation_reference" content="L.A. Harland-Lang, A.D. Martin, P.&#160;Motylinski, R.S. Thorne, The impact of the final HERA combined data on PDFs obtained from a global fit. arXiv:1601.03413 "/> <meta name="citation_reference" content="citation_journal_title=Phys. Rev. D; citation_title=CT10 next-to-next-to-leading order global analysis of QCD; citation_author=J Gao, M Guzzi, J Huston, H-L Lai, Z Li, P Nadolsky, J Pumplin, D Stump, CP Yuan; citation_volume=89; citation_publication_date=2014; citation_pages=033009; citation_doi=10.1103/PhysRevD.89.033009; citation_id=CR66"/> <meta name="citation_reference" content="citation_journal_title=JHEP; citation_title=PDF dependence of Higgs cross sections at the tevatron and LHC: response to recent criticism; citation_author=RS Thorne, G Watt; citation_volume=08; citation_publication_date=2011; citation_pages=100; citation_doi=10.1007/JHEP08(2011)100; citation_id=CR67"/> <meta name="citation_reference" content="citation_journal_title=Phys. Rev. D; citation_title=Comparison between variable flavor number schemes for charm quark electroproduction; citation_author=A Chuvakin, J Smith, WL Neerven; citation_volume=61; citation_publication_date=2000; citation_pages=096004; citation_doi=10.1103/PhysRevD.61.096004; citation_id=CR68"/> <meta name="citation_reference" content="citation_journal_title=Phys. Rev.; citation_title=Nonlagrangian models of current algebra; citation_author=KG Wilson; citation_volume=179; citation_publication_date=1969; citation_pages=1499; citation_doi=10.1103/PhysRev.179.1499; citation_id=CR69"/> <meta name="citation_reference" content="W.&#160;Zimmermann, Lectures on elementary particle physics and quantum field theory. in Brandeis Summer Institute, vol. 1,&#160;p.&#160;395 (MIT Press, Cambridge, 1970)"/> <meta name="citation_reference" content="citation_journal_title=Nucl. Phys. B; citation_title=Operator product expansions near the light cone; citation_author=RA Brandt, G Preparata; citation_volume=27; citation_publication_date=1972; citation_pages=541; citation_doi=10.1016/0550-3213(71)90265-3; citation_id=CR71"/> <meta name="citation_reference" content="citation_journal_title=Ann. Phys.; citation_title=Operator products at almost light like distances; citation_author=Y Frishman; citation_volume=66; citation_publication_date=1971; citation_pages=373; citation_doi=10.1016/0003-4916(71)90195-3; citation_id=CR72"/> <meta name="citation_reference" content="citation_journal_title=Z. Phys. C; citation_title=Lepton&#8211;hadron processes beyond leading order in quantum chromodynamics; citation_author=W Furmanski, R Petronzio; citation_volume=11; citation_publication_date=1982; citation_pages=293; citation_doi=10.1007/BF01578280; citation_id=CR73"/> <meta name="citation_reference" content="citation_journal_title=Phys. Lett. B; citation_title=Contribution of the second order gluonic Wilson coefficient to the deep-inelastic structure function; citation_author=EB Zijlstra, WL Neerven; citation_volume=273; citation_publication_date=1991; citation_pages=476; citation_doi=10.1016/0370-2693(91)90301-6; citation_id=CR74"/> <meta name="citation_reference" content="citation_journal_title=Phys. Lett. B; citation_title=Order contributions to the deep-inelastic Wilson coefficient; citation_author=WL Neerven, EB Zijlstra; citation_volume=272; citation_publication_date=1991; citation_pages=127; citation_doi=10.1016/0370-2693(91)91024-P; citation_id=CR75"/> <meta name="citation_reference" content="citation_journal_title=Nucl. Phys. B; citation_title=Order QCD corrections to the deep-inelastic proton structure functions and ; citation_author=EB Zijlstra, WL Neerven; citation_volume=383; citation_publication_date=1992; citation_pages=525; citation_doi=10.1016/0550-3213(92)90087-R; citation_id=CR76"/> <meta name="citation_reference" content="D.I. Kazakov, A.V. Kotikov, Total $$\alpha _s$$ correction to deep-inelastic scattering cross section ratio, R = $$\sigma _L$$ / $$\sigma _T$$ in QCD. Calculation of longitudinal structure function. Nucl. Phys. B 307, 721 (1988). [Erratum: Nucl. Phys. B 345, 299 (1990)]"/> <meta name="citation_reference" content="D.I. Kazakov, A.V. Kotikov, G.&#160;Parente, O.A. Sampayo, J.&#160;Sanchez&#160;Guillen, Complete quartic $$(\alpha _s^2)$$ correction to the deep-inelastic longitudinal structure function $$F_L$$ in QCD. Phys. Rev. Lett. 65, 1535 (1990). [Erratum: Phys. Rev. Lett. 65, 2921 (1990)]"/> <meta name="citation_reference" content="J.&#160;Sanchez&#160;Guillen, J.&#160;Miramontes, M.&#160;Miramontes, G.&#160;Parente, O.A. Sampayo, Next-to-leading order analysis of the deep-inelastic $$R = \sigma _L/\sigma _{\rm total}$$ . Nucl. Phys. B 353, 337 (1991)"/> <meta name="citation_reference" content="citation_journal_title=Phys. Lett. B; citation_title=Order correction to the structure function in deep-inelastic neutrino-hadron scattering; citation_author=EB Zijlstra, WL Neerven; citation_volume=297; citation_publication_date=1992; citation_pages=377; citation_doi=10.1016/0370-2693(92)91277-G; citation_id=CR80"/> <meta name="citation_reference" content="citation_journal_title=Nucl. Phys. B; citation_title=Deep-inelastic structure functions at two loops; citation_author=S Moch, JAM Vermaseren; citation_volume=573; citation_publication_date=2000; citation_pages=853; citation_doi=10.1016/S0550-3213(00)00045-6; citation_id=CR81"/> <meta name="citation_reference" content="citation_journal_title=Nucl. Phys. B; citation_title=Charged current deep-inelastic scattering at three loops; citation_author=S Moch, M Rogal; citation_volume=782; citation_publication_date=2007; citation_pages=51; citation_doi=10.1016/j.nuclphysb.2007.05.008; citation_id=CR82"/> <meta name="citation_reference" content="citation_journal_title=Nucl. Phys. B; citation_title=Differences between charged-current coefficient functions; citation_author=S Moch, M Rogal, A Vogt; citation_volume=790; citation_publication_date=2008; citation_pages=317; citation_doi=10.1016/j.nuclphysb.2007.09.022; citation_id=CR83"/> <meta name="citation_reference" content="S. Moch, J.A.M. Vermaseren, A. Vogt, Third-order QCD corrections to the charged-current structure function $$F_3$$ . Nucl. Phys. B 813, 220 (2009). arXiv:0812.4168 "/> <meta name="citation_reference" content="citation_journal_title=Phys. Rev. D; citation_title=Asymptotically free gauge theories. 1; citation_author=DJ Gross, F Wilczek; citation_volume=8; citation_publication_date=1973; citation_pages=3633; citation_doi=10.1103/PhysRevD.8.3633; citation_id=CR85"/> <meta name="citation_reference" content="citation_journal_title=Phys. Rev. D; citation_title=Asymptotically free gauge theories. 2; citation_author=DJ Gross, F Wilczek; citation_volume=9; citation_publication_date=1974; citation_pages=980; citation_doi=10.1103/PhysRevD.9.980; citation_id=CR86"/> <meta name="citation_reference" content="citation_journal_title=Phys. Rev. D; citation_title=Electroproduction scaling in an asymptotically free theory of strong interactions; citation_author=H Georgi, HD Politzer; citation_volume=9; citation_publication_date=1974; citation_pages=416; citation_doi=10.1103/PhysRevD.9.416; citation_id=CR87"/> <meta name="citation_reference" content="G.&#160;Parisi, An introduction to scaling violations. in Weak Interactions and Neutrino Physics. Proceedings: 11th Rencontre de Moriond, Flaine 1976, Feb 28&#8211;Mar 12, 1976. 2., pp.&#160;83&#8211;114 (1976)"/> <meta name="citation_reference" content="citation_journal_title=Phys. Rev. D; citation_title=Scaling violation in the infinite momentum frame; citation_author=KJ Kim, K Schilcher; citation_volume=17; citation_publication_date=1978; citation_pages=2800; citation_doi=10.1103/PhysRevD.17.2800; citation_id=CR89"/> <meta name="citation_reference" content="citation_journal_title=Nucl. Phys. B; citation_title=Asymptotic freedom in parton language; citation_author=G Altarelli, G Parisi; citation_volume=126; citation_publication_date=1977; citation_pages=298; citation_doi=10.1016/0550-3213(77)90384-4; citation_id=CR90"/> <meta name="citation_reference" content="E.G. Floratos, D.A. Ross, C.T. Sachrajda, Higher order effects in asymptotically free gauge theories: The anomalous dimensions of Wilson operators. Nucl. Phys. B 129, 66 (1977). [Erratum: Nucl. Phys. B 139, 545 (1978)]"/> <meta name="citation_reference" content="citation_journal_title=Nucl. Phys.; citation_title=Higher order fffects in asymptotically free gauge theories. 2. Flavor singlet Wilson operators and coefficient functions; citation_author=EG Floratos, DA Ross, CT Sachrajda; citation_volume=B152; citation_publication_date=1979; citation_pages=493; citation_doi=10.1016/0550-3213(79)90094-4; citation_id=CR92"/> <meta name="citation_reference" content="citation_journal_title=Nucl. Phys.; citation_title=Second order contributions to the structure functions in deep-inelastic scattering. 1. Theoretical calculations; citation_author=A Gonzalez-Arroyo, C Lopez, FJ Yndurain; citation_volume=B153; citation_publication_date=1979; citation_pages=161; citation_doi=10.1016/0550-3213(79)90596-0; citation_id=CR93"/> <meta name="citation_reference" content="citation_journal_title=Nucl. Phys.; citation_title=Second order contributions to the structure functions in deep-inelastic scattering. 2. Comparison with experiment for the nonsinglet contributions to , nucleon scattering; citation_author=A Gonzalez-Arroyo, C Lopez, FJ Yndurain; citation_volume=B159; citation_publication_date=1979; citation_pages=512; citation_doi=10.1016/0550-3213(79)90348-1; citation_id=CR94"/> <meta name="citation_reference" content="citation_journal_title=Nucl. Phys. B; citation_title=Evolution of parton densities beyond leading order: the nonsinglet case; citation_author=G Curci, W Furmanski, R Petronzio; citation_volume=175; citation_publication_date=1980; citation_pages=27; citation_doi=10.1016/0550-3213(80)90003-6; citation_id=CR95"/> <meta name="citation_reference" content="citation_journal_title=Phys. Lett. B; citation_title=Singlet parton densities beyond leading order; citation_author=W Furmanski, R Petronzio; citation_volume=97; citation_publication_date=1980; citation_pages=437; citation_doi=10.1016/0370-2693(80)90636-X; citation_id=CR96"/> <meta name="citation_reference" content="citation_journal_title=Phys. Lett.; citation_title=Space and timelike cut vertices in QCD beyond the leading order. 1. Nonsinglet sector; citation_author=EG Floratos, R Lacaze, C Kounnas; citation_volume=B98; citation_publication_date=1981; citation_pages=89; citation_doi=10.1016/0370-2693(81)90374-9; citation_id=CR97"/> <meta name="citation_reference" content="citation_journal_title=Nucl. Phys. B; citation_title=Higher order QCD effects in inclusive annihilation and deep-inelastic scattering; citation_author=EG Floratos, C Kounnas, R Lacaze; citation_volume=192; citation_publication_date=1981; citation_pages=417; citation_doi=10.1016/0550-3213(81)90434-X; citation_id=CR98"/> <meta name="citation_reference" content="citation_journal_title=Nucl. Phys.; citation_title=Second order contributions to the structure functions in deep-inelastic scattering. 3. The singlet case; citation_author=A Gonzalez-Arroyo, C Lopez; citation_volume=B166; citation_publication_date=1980; citation_pages=429; citation_doi=10.1016/0550-3213(80)90207-2; citation_id=CR99"/> <meta name="citation_reference" content="citation_journal_title=Phys. Lett.; citation_title=Space and timelike cut vertices in QCD beyond the leading order. 2. The singlet sector; citation_author=EG Floratos, R Lacaze, C Kounnas; citation_volume=B98; citation_publication_date=1981; citation_pages=285; citation_doi=10.1016/0370-2693(81)90016-2; citation_id=CR100"/> <meta name="citation_reference" content="citation_journal_title=Nucl. Phys. B; citation_title=The correct renormalization of the gluon operator in a covariant gauge; citation_author=R Hamberg, WL Neerven; citation_volume=379; citation_publication_date=1992; citation_pages=143; citation_doi=10.1016/0550-3213(92)90593-Z; citation_id=CR101"/> <meta name="citation_reference" content="R.K. Ellis, W.&#160;Vogelsang, The evolution of parton distributions beyond leading order: The singlet case. arXiv:hep-ph/9602356 "/> <meta name="citation_reference" content="S. Moch, J.A.M. Vermaseren, A. Vogt, The three-loop splitting functions in QCD: The nonsinglet case. Nucl. Phys. B 688, 101&#8211;134 (2004). arXiv:hep-ph/0403192 "/> <meta name="citation_reference" content="A. Vogt, S. Moch, J.A.M. Vermaseren, The three-loop splitting functions in QCD: The singlet case. Nucl. Phys. B 691, 129&#8211;181 (2004). arXiv:hep-ph/0404111 "/> <meta name="citation_reference" content="J. Ablinger, A. Behring, J. Bl&#252;mlein, A. De Freitas, A. von Manteuffel, C. Schneider, The 3-loop pure singlet heavy flavor contributions to the structure function $$F_2(x, Q^2)$$ and the anomalous dimension. Nucl. Phys. B 890, 48 (2014). arXiv:1409.1135 "/> <meta name="citation_reference" content="C.&#160;Anastasiou, C.&#160;Duhr, F.&#160;Dulat, E.&#160;Furlan, T.&#160;Gehrmann, F.&#160;Herzog, A.&#160;Lazopoulos, B.&#160;Mistlberger, High precision determination of the gluon fusion Higgs boson cross section at the LHC. arXiv:1602.00695 "/> <meta name="citation_reference" content="I.B. Khriplovich, Green&#8217;s functions in theories with non-abelian gauge group, Sov. J. Nucl. Phys. 10 (1969) 235. [Yad. Fiz.10,409(1969)]"/> <meta name="citation_reference" content="G.&#160;&#8217;t&#160;Hooft, unpublished "/> <meta name="citation_reference" content="citation_journal_title=Phys. Rev. Lett.; citation_title=Reliable perturbative results for strong interactions?; citation_author=HD Politzer; citation_volume=30; citation_publication_date=1973; citation_pages=1346; citation_doi=10.1103/PhysRevLett.30.1346; citation_id=CR109"/> <meta name="citation_reference" content="citation_journal_title=Phys. Rev. Lett.; citation_title=Ultraviolet behavior of nonabelian gauge theories; citation_author=DJ Gross, F Wilczek; citation_volume=30; citation_publication_date=1973; citation_pages=1343; citation_doi=10.1103/PhysRevLett.30.1343; citation_id=CR110"/> <meta name="citation_reference" content="citation_journal_title=Phys. Rev. Lett.; citation_title=Asymptotic behavior of nonabelian gauge theories to two loop order; citation_author=WE Caswell; citation_volume=33; citation_publication_date=1974; citation_pages=244; citation_doi=10.1103/PhysRevLett.33.244; citation_id=CR111"/> <meta name="citation_reference" content="citation_journal_title=Nucl. Phys. B; citation_title=Two loop diagrams in Yang&#8211;Mills theory; citation_author=DRT Jones; citation_volume=75; citation_publication_date=1974; citation_pages=531; citation_doi=10.1016/0550-3213(74)90093-5; citation_id=CR112"/> <meta name="citation_reference" content="O.V. Tarasov, A.A. Vladimirov, A. Y. Zharkov, The Gell-Mann&#8211;Low function of QCD in the three-loop approximation. Phys. Lett. B 93, 429 (1980)"/> <meta name="citation_reference" content="S.A. Larin, J.A.M. Vermaseren, The three loop QCD beta function and anomalous dimensions. Phys. Lett. B 303, 334 (1993). arXiv:hep-ph/9302208 "/> <meta name="citation_reference" content="T. van Ritbergen, J.A.M. Vermaseren, S.A. Larin, The four loop beta function in Quantum Chromodynamics. Phys. Lett. B 400, 379 (1997). arXiv:hep-ph/9701390 "/> <meta name="citation_reference" content="M. Czakon, The four-loop QCD beta-function and anomalous dimensions. Nucl. Phys. B 710, 485 (2005). arXiv:hep-ph/0411261 "/> <meta name="citation_reference" content="citation_journal_title=Z. Phys. C; citation_title=Parton densities from deep-inelastic scattering to hadronic processes at super collider energies; citation_author=M Diemoz, F Ferroni, E Longo, G Martinelli; citation_volume=39; citation_publication_date=1988; citation_pages=21; citation_doi=10.1007/BF01560387; citation_id=CR117"/> <meta name="citation_reference" content="citation_journal_title=Phys. Rev. D; citation_title=Parton structure of the photon beyond the leading order; citation_author=M Gl&#252;ck, E Reya, A Vogt; citation_volume=45; citation_publication_date=1992; citation_pages=3986; citation_doi=10.1103/PhysRevD.45.3986; citation_id=CR118"/> <meta name="citation_reference" content="R.K. Ellis, Z.&#160;Kunszt, E.M. Levin, The evolution of parton distributions at small x, Nucl. Phys. B420 (1994) 517. [Erratum: Nucl. Phys.B433,498(1995)]"/> <meta name="citation_reference" content="J. Bl&#252;mlein, A. Vogt, The volution of unpolarized singlet structure functions at small x. Phys. Rev. D 58, 014020 (1998). arXiv:hep-ph/9712546 "/> <meta name="citation_reference" content="J. Bl&#252;mlein, S. Riemersma, W.L. van Neerven, A. Vogt, Theoretical uncertainties in the QCD evolution of structure functions and their impact on $$\alpha _s(M_Z^2)$$ . Nucl. Phys. Proc. Suppl. 51C, 97 (1996). arXiv:hep-ph/9609217 "/> <meta name="citation_reference" content="citation_journal_title=Phys. Rev. D; citation_title=x Space analysis for the photon structure functions in QCD; citation_author=G Rossi; citation_volume=29; citation_publication_date=1984; citation_pages=852; citation_doi=10.1103/PhysRevD.29.852; citation_id=CR122"/> <meta name="citation_reference" content="A. Vogt, Efficient evolution of unpolarized and polarized parton distributions with QCD-PEGASUS. Comput. Phys. Commun. 170, 65 (2005). arXiv:hep-ph/0408244 "/> <meta name="citation_reference" content="citation_journal_title=Phys. Lett. B; citation_title=The intrinsic charm of the proton; citation_author=SJ Brodsky, P Hoyer, C Peterson, N Sakai; citation_volume=93; citation_publication_date=1980; citation_pages=451; citation_doi=10.1016/0370-2693(80)90364-0; citation_id=CR124"/> <meta name="citation_reference" content="P. Jimenez-Delgado, T.J. Hobbs, J.T. Londergan, W. Melnitchouk, New limits on intrinsic charm in the nucleon from global analysis of parton distributions. Phys. Rev. Lett. 114, 082002 (2015). arXiv:1408.1708 "/> <meta name="citation_reference" content="J. Bl&#252;mlein, A kinematic condition on intrinsic charm. Phys. Lett. B 753, 619 (2016). arXiv:1511.00229 "/> <meta name="citation_reference" content="citation_journal_title=Nucl. Phys. B; citation_title=Heavy quark contributions to deep-inelastic scattering; citation_author=E Witten; citation_volume=104; citation_publication_date=1976; citation_pages=445; citation_doi=10.1016/0550-3213(76)90111-5; citation_id=CR127"/> <meta name="citation_reference" content="citation_journal_title=Phys. Rev. D; citation_title=QCD estimates for heavy particle production; citation_author=J Babcock, DW Sivers, S Wolfram; citation_volume=18; citation_publication_date=1978; citation_pages=162; citation_doi=10.1103/PhysRevD.18.162; citation_id=CR128"/> <meta name="citation_reference" content="V.A. Novikov, M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Charm photoproduction and quantum chromodynamics, Nucl. Phys. B136, 125 (1978). [Yad. Fiz.27,771(1978)]"/> <meta name="citation_reference" content="citation_journal_title=Nucl. Phys. B; citation_title=Characteristics of heavy quark leptoproduction in QCD; citation_author=JP Leveille, TJ Weiler; citation_volume=147; citation_publication_date=1979; citation_pages=147; citation_doi=10.1016/0550-3213(79)90420-6; citation_id=CR130"/> <meta name="citation_reference" content="citation_journal_title=Z. Phys. C; citation_title=Scaling violations and the gluon distribution of the nucleon; citation_author=M Gl&#252;ck, E Hoffmann, E Reya; citation_volume=13; citation_publication_date=1982; citation_pages=119; citation_doi=10.1007/BF01547675; citation_id=CR131"/> <meta name="citation_reference" content="citation_journal_title=Phys. Rev. D; citation_title=Chromodynamic corrections to neutrino production of heavy quarks; citation_author=T Gottschalk; citation_volume=23; citation_publication_date=1981; citation_pages=56; citation_doi=10.1103/PhysRevD.23.56; citation_id=CR132"/> <meta name="citation_reference" content="M.&#160;Gl&#252;ck, S.&#160;Kretzer, E.&#160;Reya, The strange sea density and charm production in deep-inelastic charged current processes, Phys. Lett. B380, 171 (1996). arXiv:hep-ph/9603304 . [Erratum: Phys. Lett.B405,391(1997)]"/> <meta name="citation_reference" content="J. Bl&#252;mlein, A. Hasselhuhn, P. Kovacikova, S. Moch, $${\cal O}(\alpha _s)$$ heavy flavor corrections to charged current deep-inelastic scattering in Mellin space. Phys. Lett. B 700, 294 (2011). arXiv:1104.3449 "/> <meta name="citation_reference" content="E. Laenen, S. Riemersma, J. Smith, W.L. van Neerven, Complete $${\cal {O}}(\alpha _s)$$ corrections to heavy flavor structure functions in electroproduction. Nucl. Phys. B 392, 162 (1993)"/> <meta name="citation_reference" content="E. Laenen, S. Riemersma, J. Smith, W.L. van Neerven, $${\cal {O}}(\alpha _s)$$ corrections to heavy flavor inclusive distributions in electroproduction. Nucl. Phys. B 392, 229 (1993)"/> <meta name="citation_reference" content="S. Riemersma, J. Smith, W.L. van Neerven, Rates for inclusive deep-inelastic electroproduction of charm quarks at HERA. Phys. Lett. B 347, 143 (1995). arXiv:hep-ph/9411431 "/> <meta name="citation_reference" content="I. Bierenbaum, J. Bl&#252;mlein, S. Klein, The gluonic operator matrix elements at $${\cal {O}}(\alpha _s^2)$$ for DIS heavy flavor production. Phys. Lett. B 672, 401 (2009). arXiv:0901.0669 "/> <meta name="citation_reference" content="A. Behring, I. Bierenbaum, J. Bl&#252;mlein, A. De Freitas, S. Klein, F. Wi&#223;brock, The logarithmic contributions to the $${\cal O}(\alpha ^3_s)$$ asymptotic massive Wilson coefficients and operator matrix elements in deeply inelastic scattering. Eur. Phys. J. C 74, 3033 (2014). arXiv:1403.6356 "/> <meta name="citation_reference" content="I. Bierenbaum, J. Bl&#252;mlein, S. Klein, Mellin moments of the $${\cal O}(\alpha ^3_s)$$ heavy flavor contributions to unpolarized deep-inelastic scattering at $$Q^2 \gg m^2$$ and anomalous dimensions. Nucl. Phys. B 820, 417 (2009). arXiv:0904.3563 "/> <meta name="citation_reference" content="S. Alekhin, S. Moch, Heavy-quark deep-inelastic scattering with a running mass. Phys. Lett. B 699, 345 (2011). arXiv:1011.5790 "/> <meta name="citation_reference" content="P. Marquard, A.V. Smirnov, V.A. Smirnov, M. Steinhauser, Quark mass relations to four-loop order in perturbative QCD. Phys. Rev. Lett. 114, 142002 (2015). arXiv:1502.01030 "/> <meta name="citation_reference" content="J. Bl&#252;mlein, A. De Freitas, W.L. van Neerven, S. Klein, The longitudinal heavy quark structure function $$F^{Q\bar{Q}}_L$$ in the region $$Q^2 \gg m^2$$ at $${\cal {O}}(\alpha _s^3)$$ . Nucl. Phys. B 755, 272 (2006). arXiv:hep-ph/0608024 "/> <meta name="citation_reference" content="J. Ablinger, J. Bl&#252;mlein, S. Klein, C. Schneider, F. Wissbrock, The $${\cal {O}}(\alpha _s^3)$$ massive operator matrix elements of $${\cal {O}}(n_f)$$ for the structure function $$F_2(x, Q^2)$$ and transversity. Nucl. Phys. B 844, 26 (2011). arXiv:1008.3347 "/> <meta name="citation_reference" content="J. Bl&#252;mlein, A. Hasselhuhn, S. Klein, C. Schneider, The $${\cal {O}}(\alpha _s^3 n_f T_F^2 C_{A, F})$$ contributions to the gluonic massive operator matrix elements. Nucl. Phys. B 866, 196 (2013). arXiv:1205.4184 "/> <meta name="citation_reference" content="J. Ablinger, A. Behring, J. Bl&#252;mlein, A. De Freitas, A. Hasselhuhn, A. von Manteuffel, M. Round, C. Schneider, F. Wi&#223;brock, The 3-loop non-singlet heavy flavor contributions and anomalous dimensions for the structure function $$F_2(x, Q^2)$$ and transversity. Nucl. Phys. B 886, 733 (2014). arXiv:1406.4654 "/> <meta name="citation_reference" content="H. Kawamura, N.A. Lo, Presti, S. Moch, A. Vogt, On the next-to-next-to-leading order QCD corrections to heavy-quark production in deep-inelastic scattering. Nucl. Phys. B864, 399 (2012). arXiv:1205.5727 "/> <meta name="citation_reference" content="citation_journal_title=Nucl. Phys. B; citation_title=High-energy factorization and small x heavy flavor production; citation_author=S Catani, M Ciafaloni, F Hautmann; citation_volume=366; citation_publication_date=1991; citation_pages=135; citation_doi=10.1016/0550-3213(91)90055-3; citation_id=CR148"/> <meta name="citation_reference" content="I. Bierenbaum, J. Bl&#252;mlein, S. Klein, Two-loop massive operator matrix elements and unpolarized heavy flavor production at asymptotic values $$Q^2 \gg m^2$$ . Nucl. Phys. B 780, 40 (2007). arXiv:hep-ph/0703285 "/> <meta name="citation_reference" content="I. Bierenbaum, J. Bl&#252;mlein, S. Klein, C. Schneider, Two-loop massive operator matrix elements for unpolarized heavy flavor production to $${\cal {O}}(\epsilon )$$ . Nucl. Phys. B 803, 1 (2008). arXiv:0803.0273 "/> <meta name="citation_reference" content="citation_journal_title=Phys. Rev. D; citation_title=Infrared singularities and massive fields; citation_author=T Appelquist, J Carazzone; citation_volume=11; citation_publication_date=1975; citation_pages=2856; citation_doi=10.1103/PhysRevD.11.2856; citation_id=CR151"/> <meta name="citation_reference" content="K.G. Chetyrkin, J.H. K&#252;hn, M. Steinhauser, RunDec: a mathematica package for running and decoupling of the strong coupling and quark masses. Comput. Phys. Commun. 133, 43 (2000). arXiv:hep-ph/0004189 "/> <meta name="citation_reference" content="M. Buza, Y. Matiounine, J. Smith, W.L. van Neerven, Charm electroproduction viewed in the variable flavor number scheme versus fixed order perturbation theory. Eur. Phys. J. C 1, 301&#8211;320 (1998). arXiv:hep-ph/9612398 "/> <meta name="citation_reference" content="M. Buza, Y. Matiounine, J. Smith, R. Migneron, W.L. van Neerven, Heavy quark coefficient functions at asymptotic values $$Q^2 \gg m^2$$ . Nucl. Phys. B 472, 611 (1996). arXiv:hep-ph/9601302 "/> <meta name="citation_reference" content="J. Ablinger, J. Bl&#252;mlein, A. De Freitas, A. Hasselhuhn, A. von Manteuffel, M. Round, C. Schneider, F. Wissbrock, The transition matrix element $$A_{gq}(N)$$ of the variable flavor number scheme at $${\cal {O}}(\alpha _s^3)$$ . Nucl. Phys. B 882, 263 (2014). arXiv:1402.0359 "/> <meta name="citation_reference" content="A.G. Grozin, M. H&#246;schele, J. Hoff, M. Steinhauser, Simultaneous decoupling of bottom and charm quarks. JHEP 09, 066 (2011). arXiv:1107.5970 "/> <meta name="citation_reference" content="F. Maltoni, G. Ridolfi, M. Ubiali, b-Initiated processes at the LHC: a reappraisal. JHEP 07, 022 (2012). arXiv:1203.6393 . [Erratum: JHEP04,095(2013)]"/> <meta name="citation_reference" content="R.&#160;Harlander, M.&#160;Kr&#228;mer, M.&#160;Schumacher, Bottom-quark associated Higgs-boson production: reconciling the four- and five-flavour scheme approach. arXiv:1112.3478 "/> <meta name="citation_reference" content="M.A.G. Aivazis, J.C. Collins, F.I. Olness, W.-K. Tung, Leptoproduction of heavy quarks. 2. A Unified QCD formulation of charged and neutral current processes from fixed target to collider energies. Phys. Rev. D 50, 3102 (1994). arXiv:hep-ph/9312319 "/> <meta name="citation_reference" content="M. Kr&#228;mer, F.I. Olness, D.E. Soper, Treatment of heavy quarks in deeply inelastic scattering. Phys. Rev. D 62, 096007 (2000). arXiv:hep-ph/0003035 "/> <meta name="citation_reference" content="W.-K. Tung, S. Kretzer, C. Schmidt, Open heavy flavor production in QCD: Conceptual framework and implementation issues. J. Phys. G28, 983 (2002). arXiv:hep-ph/0110247 "/> <meta name="citation_reference" content="S. Forte, E. Laenen, P. Nason, J. Rojo, Heavy quarks in deep-inelastic scattering. Nucl. Phys. B 834, 116 (2010). arXiv:1001.2312 "/> <meta name="citation_reference" content="R.S. Thorne, Effect of changes of variable flavor number scheme on parton distribution functions and predicted cross sections. Phys. Rev. D 86, 074017 (2012). arXiv:1201.6180 "/> <meta name="citation_reference" content="S.&#160;Alekhin, J.&#160;Bl&#252;mlein, S.&#160;Moch, Heavy-quark production in deep-inelastic scattering, PoS DIS2013 297 (2013). arXiv:1307.7258 "/> <meta name="citation_reference" content="ZEUS, H1 Collaboration, H.&#160;Abramowicz et&#160;al., Combination and QCD analysis of charm production cross section measurements in deep-inelastic ep scattering at HERA, Eur. Phys. J. C73, 2311 (2013). arXiv:1211.1182 "/> <meta name="citation_reference" content="S.&#160;Alekhin, O.&#160;Behnke, P.&#160;Belov, S.&#160;Borroni, M.&#160;Botje, et&#160;al., HERAFitter, Open source QCD fit project. arXiv:1410.4412 "/> <meta name="citation_reference" content="xFitter, An open source QCD fit framework. http://xFitter.org [xFitter.org]"/> <meta name="citation_reference" content="E. Laenen, S. Moch, Soft gluon resummation for heavy quark electroproduction. Phys. Rev. D 59, 034027 (1999). arXiv:hep-ph/9809550 "/> <meta name="citation_reference" content="S. Alekhin, J. Bl&#252;mlein, K. Daum, K. Lipka, S. Moch, Precise charm-quark mass from deep-inelastic scattering. Phys. Lett. B 720, 172 (2013). arXiv:1212.2355 "/> <meta name="citation_reference" content="R.D. Ball, V. Bertone, F. Cerutti, L. Del Debbio, S. Forte, A. Guffanti, J.I. Latorre, J. Rojo, M. Ubiali, Impact of heavy quark masses on parton distributions and LHC phenomenology. Nucl. Phys. B 849, 296 (2011). arXiv:1101.1300 "/> <meta name="citation_reference" content="A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Heavy-quark mass dependence in global PDF analyses and 3- and 4-flavour parton distributions. Eur. Phys. J. C 70, 51 (2010). arXiv:1007.2624 "/> <meta name="citation_reference" content="L.A. Harland-Lang, A.D. Martin, P.&#160;Motylinski, R.S. Thorne, Charm and beauty quark masses in the MMHT2014 global PDF analysis. arXiv:1510.02332 "/> <meta name="citation_reference" content="H.L. Lai, M. Guzzi, J. Huston, Z. Li, P.M. Nadolsky, J. Pumplin, C.-P. Yuan, New parton distributions for collider physics. Phys. Rev. D 82, 074024 (2010). arXiv:1007.2241 "/> <meta name="citation_reference" content="J. Gao, M. Guzzi, P.M. Nadolsky, Charm quark mass dependence in a global QCD analysis. Eur. Phys. J. C 73, 2541 (2013). arXiv:1304.3494 "/> <meta name="citation_reference" content="K.G. Chetyrkin, J.H. K&#252;hn, A. Maier, P. Maierh&#246;fer, P. Marquard, M. Steinhauser, C. Sturm, Charm and bottom quark masses: an update. Phys. Rev. D 80, 074010 (2009). arXiv:0907.2110 "/> <meta name="citation_reference" content="B. Dehnadi, A.H. Hoang, V. Mateu, Bottom and charm mass determinations with a convergence test. JHEP 08, 155 (2015). arXiv:1504.07638 "/> <meta name="citation_reference" content="Y.&#160;Kiyo, G.&#160;Mishima, Y.&#160;Sumino, Determination of $$m_c$$ and $$m_b$$ from quarkonium 1S energy levels in perturbative QCD. arXiv:1510.07072 "/> <meta name="citation_reference" content="Y. Li, F. Petriello, Combining QCD and electroweak corrections to dilepton production in FEWZ. Phys. Rev. D 86, 094034 (2012). arXiv:1208.5967 "/> <meta name="citation_reference" content="S. Catani, G. Ferrera, M. Grazzini, W Boson production at hadron colliders: the lepton charge asymmetry in NNLO QCD. JHEP 05, 006 (2010). arXiv:1002.3115 "/> <meta name="citation_reference" content="citation_journal_title=Phys. Lett. B; citation_title=Effects of QCD resummation on distributions of leptons from the decay of electroweak vector bosons; citation_author=C Balazs, J-W Qiu, CP Yuan; citation_volume=355; citation_publication_date=1995; citation_pages=548; citation_doi=10.1016/0370-2693(95)00726-2; citation_id=CR180"/> <meta name="citation_reference" content="T. Carli, D. Clements, A. Cooper-Sarkar, C. Gwenlan, G.P. Salam, F. Siegert, P. Starovoitov, M. Sutton, A posteriori inclusion of parton density functions in NLO QCD final-state calculations at hadron colliders: the APPLGRID Project. Eur. Phys. J. C 66, 503 (2010). arXiv:0911.2985 "/> <meta name="citation_reference" content="L.&#160;Harland-Lang, R.&#160;Thorne, Private communication, Apr 12 and June 6 (2016)"/> <meta name="citation_reference" content="NNPDF Collaboration, R.D. Ball, V.&#160;Bertone, F.&#160;Cerutti, L.&#160;Del&#160;Debbio, S.&#160;Forte, A.&#160;Guffanti, J.I. Latorre, J.&#160;Rojo, M.&#160;Ubiali, Unbiased global determination of parton distributions and their uncertainties at NNLO and at LO, Nucl. Phys. B855 (2012) 153. arXiv:1107.2652 "/> <meta name="citation_reference" content="S. Alekhin, J. Bl&#252;mlein, L. Caminadac, K. Lipka, K. Lohwasser, S. Moch, R. Petti, R. Placakyte, Determination of strange sea quark distributions from fixed-target and collider data. Phys. Rev. D 91, 094002 (2015). arXiv:1404.6469 "/> <meta name="citation_reference" content="NuTeV Collaboration, M.&#160;Goncharov et&#160;al., Precise measurement of dimuon production cross sections in muon neutrino Fe and muon anti-neutrino Fe deep-inelastic scattering at the Tevatron. Phys. Rev. D64, 112006 (2001). arXiv:hep-ex/0102049 "/> <meta name="citation_reference" content="A. Kayis-Topaksu et al., Measurement of charm production in neutrino charged-current interactions. New J. Phys. 13, 093002 (2011). arXiv:1107.0613 "/> <meta name="citation_reference" content="NOMAD Collaboration, O.&#160;Samoylov et&#160;al., A precision measurement of charm dimuon production in neutrino interactions from the NOMAD experiment, Nucl. Phys. B876, 339 (2013). arXiv:1308.4750 "/> <meta name="citation_reference" content="CMS Collaboration, S. Chatrchyan et al., Measurement of associated $$W$$ +charm production in $$pp$$ collisions at $$\sqrt{s}$$ = 7 TeV. JHEP 02, 013 (2014). arXiv:1310.1138 "/> <meta name="citation_reference" content="ATLAS Collaboration, G.&#160;Aad et&#160;al., Measurement of the production of a $$W$$ boson in association with a charm quark in $$pp$$ collisions at $$\sqrt{s} =$$ 7 TeV with the ATLAS detector. JHEP 05, 068 (2014). arXiv:1402.6263 "/> <meta name="citation_reference" content="ATLAS Collaboration, G.&#160;Aad et&#160;al., Determination of the strange quark density of the proton from ATLAS measurements of the $$W \rightarrow \ell \nu $$ and $$Z \rightarrow \ell \ell $$ cross sections. Phys. Rev. Lett. 109, 012001 (2012). arXiv:1203.4051 "/> <meta name="citation_reference" content="J.F. Owens, A. Accardi, W. Melnitchouk, Global parton distributions with nuclear and finite- $$Q^2$$ corrections. Phys. Rev. D 87, 094012 (2013). arXiv:1212.1702 "/> <meta name="citation_reference" content="A.&#160;Accardi, PDFs from nucleons to nuclei. PoS DIS2015, 001 (2015). arXiv:1602.02035 "/> <meta name="citation_reference" content="NuSea Collaboration, R.S. Towell et&#160;al., Improved measurement of the $${\bar{d}}/{\bar{u}}$$ asymmetry in the nucleon sea. Phys. Rev. D64, 052002 (2001). arXiv:hep-ex/0103030 "/> <meta name="citation_reference" content="S.A. Kulagin, R. Petti, Neutrino inelastic scattering off nuclei. Phys. Rev. D 76, 094023 (2007). arXiv:hep-ph/0703033 "/> <meta name="citation_reference" content="K. Kovarik, I. Schienbein, F.I. Olness, J.Y. Yu, C. Keppel, J.G. Morfin, J.F. Owens, T. Stavreva, Nuclear corrections in neutrino-nucleus DIS and their compatibility with global NPDF analyses. Phys. Rev. Lett. 106, 122301 (2011). arXiv:1012.0286 "/> <meta name="citation_reference" content="H.L. Lai, P.M. Nadolsky, J. Pumplin, D. Stump, W.K. Tung, C.P. Yuan, The strange parton distribution of the nucleon: global analysis and applications. JHEP 04, 089 (2007). arXiv:hep-ph/0702268 "/> <meta name="citation_reference" content="A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Parton distributions for the LHC. Eur. Phys. J. C 63, 189 (2009). arXiv:0901.0002 "/> <meta name="citation_reference" content="S. Alekhin, J. Bl&#252;mlein, S. Klein, S. Moch, The 3, 4, and 5-flavor NNLO parton from deep-inelastic scattering data and at hadron colliders. Phys. Rev. D 81, 014032 (2010). arXiv:0908.2766 "/> <meta name="citation_reference" content="A. Accardi, M.E. Christy, C.E. Keppel, P. Monaghan, W. Melnitchouk, J.G. Morfin, J.F. Owens, New parton distributions from large- $$x$$ and low- $$Q^2$$ data. Phys. Rev. D 81, 034016 (2010). arXiv:0911.2254 "/> <meta name="citation_reference" content="A. Accardi, W. Melnitchouk, J.F. Owens, M.E. Christy, C.E. Keppel, L. Zhu, J.G. Morfin, Uncertainties in determining parton distributions at large $$x$$ . Phys. Rev. D 84, 014008 (2011). arXiv:1102.3686 "/> <meta name="citation_reference" content="J. Arrington, J.G. Rubin, W. Melnitchouk, How well do we know the neutron structure function? Phys. Rev. Lett. 108, 252001 (2012). arXiv:1110.3362 "/> <meta name="citation_reference" content="W.&#160;Melnitchouk, A.W. Schreiber, A.W. Thomas, Deep-inelastic scattering from off-shell nucleons. Phys. Rev. D49, 1183 (1994). arXiv:nucl-th/9311008 "/> <meta name="citation_reference" content="W.&#160;Melnitchouk, A.W. Schreiber, A.W. Thomas, Relativistic deuteron structure function. Phys. Lett. B335, 11 (1994). arXiv:nucl-th/9407007 "/> <meta name="citation_reference" content="S.A. Kulagin, G.&#160;Piller, W.&#160;Weise, Shadowing, binding and off-shell effects in nuclear deep-inelastic scattering. Phys. Rev. C50 (1994) 1154. arXiv:nucl-th/9402015 "/> <meta name="citation_reference" content="S.A. Kulagin, R. Petti, Global study of nuclear structure functions. Nucl. Phys. A 765, 126 (2006). arXiv:hep-ph/0412425 "/> <meta name="citation_reference" content="P.J. Ehlers, A. Accardi, L.T. Brady, W. Melnitchouk, Nuclear effects in the proton-deuteron Drell&#8211;Yan process. Phys. Rev. D 90, 014010 (2014). arXiv:1405.2039 "/> <meta name="citation_reference" content="A.D. Martin, A.J.T.M. Mathijssen, W.J. Stirling, R.S. Thorne, B.J.A. Watt, G. Watt, Extended parameterisations for MSTW PDFs and their effect on lepton charge asymmetry from W decays. Eur. Phys. J. C 73, 2318 (2013). arXiv:1211.1215 "/> <meta name="citation_reference" content="S. Dasu, P. de Barbaro, A. Bodek, H. Harada, M. Krasny, et al., Measurement of kinematic and nuclear dependence of $$R = \sigma _L/\sigma _T$$ in deep-inelastic electron scattering. Phys. Rev. D 49, 5641 (1994)"/> <meta name="citation_reference" content="W.&#160;Giele et&#160;al., The QCD / SM Working Group: Summary Report. arXiv:hep-ph/0204316 "/> <meta name="citation_reference" content="M. Botje, QCDNUM: fast QCD evolution and convolution. Comput. Phys. Commun. 182, 490 (2011). arXiv:1005.1481 "/> <meta name="citation_reference" content="M.&#160;Botje, Erratum for the time-like evolution in QCDNUM. arXiv:1602.08383 "/> <meta name="citation_reference" content="G.P. Salam, J. Rojo, A higher order perturbative parton evolution toolkit (HOPPET). Comput. Phys. Commun. 180, 120 (2009). arXiv:0804.3755 "/> <meta name="citation_reference" content="T.&#160;Kluge, K.&#160;Rabbertz, M.&#160;Wobisch, FastNLO: Fast pQCD calculations for PDF fits. arXiv:hep-ph/0609285 "/> <meta name="citation_reference" content="D.&#160;Britzger, K.&#160;Rabbertz, F.&#160;Stober, M.&#160;Wobisch, New features in version 2 of the fastNLO project. arXiv:1208.3641 "/> <meta name="citation_reference" content="OPENQCDRAD. http://www-zeuthen.desy.de/~alekhin/OPENQCDRAD "/> <meta name="citation_reference" content="D.A. Kosower, Extracting parton densities from collider data. Nucl. Phys. B 520, 263 (1998). arXiv:hep-ph/9708392 "/> <meta name="citation_reference" content="M. Stratmann, W. Vogelsang, Towards a global analysis of polarized parton distributions. Phys. Rev. D 64, 114007 (2001). arXiv:hep-ph/0107064 "/> <meta name="citation_reference" content="D. Graudenz, M. Hampel, A. Vogt, C. Berger, The Mellin transform technique for the extraction of the gluon density. Z. Phys. C 70, 77 (1996). arXiv:hep-ph/9506333 "/> <meta name="citation_reference" content="S.&#160;Bethke et&#160;al., Workshop On Precision Measurements of $$\alpha _s$$ . arXiv:1110.0016 "/> <meta name="citation_reference" content="S.&#160;Moch et&#160;al., High precision fundamental constants at the TeV scale. arXiv:1405.4781 "/> <meta name="citation_reference" content="D.&#160;d&#8217;Enterria et&#160;al., High-precision $$\alpha _s$$ measurements from LHC to FCC-ee. arXiv:1512.05194 "/> <meta name="citation_reference" content="Particle Data Group Collaboration. http://pdg.lbl.gov/2015/reviews/rpp2015-rev-qcd "/> <meta name="citation_reference" content="J. Santiago, F.J. Yndurain, Improved calculation of $$F_2$$ in electroproduction and $$xF_3$$ in neutrino scattering to NNLO and determination of $$\alpha _s$$ . Nucl. Phys. B 611, 447 (2001). arXiv:hep-ph/0102247 "/> <meta name="citation_reference" content="S.I. Alekhin, Value of $$\alpha _s$$ from deep-inelastic scattering data. JHEP 02, 015 (2003). arXiv:hep-ph/0211294 "/> <meta name="citation_reference" content="A.D. Martin, R.G. Roberts, W.J. Stirling, R.S. Thorne, Uncertainties of predictions from parton distributions. 2. Theoretical errors, Eur. Phys. J. C35, 325 (2004). arXiv:hep-ph/0308087 "/> <meta name="citation_reference" content="J. Bl&#252;mlein, H. B&#246;ttcher, A. Guffanti, Non-singlet QCD analysis of the structure function $$F_2$$ in 3-loops. Nucl. Phys. Proc. Suppl. 135, 152 (2004). arXiv:hep-ph/0407089 "/> <meta name="citation_reference" content="J.&#160;Bl&#252;mlein, H.&#160;B&#246;ttcher, Higher twist contributions to the structure functions $$F_2(x,Q^2)$$ and $$g_2(x,Q^2)$$ . arXiv:1207.3170 "/> <meta name="citation_reference" content="M. Gl&#252;ck, E. Reya, C. Schuck, Non-singlet QCD analysis of $$F_2(x, Q^2)$$ up to NNLO. Nucl. Phys. B 754, 178 (2006). arXiv:hep-ph/0604116 "/> <meta name="citation_reference" content="S. Alekhin, K. Melnikov, F. Petriello, Fixed target Drell&#8211;Yan data and NNLO QCD fits of parton distribution functions. Phys. Rev. D 74, 054033 (2006). arXiv:hep-ph/0606237 "/> <meta name="citation_reference" content="P. Jimenez-Delgado, E. Reya, Dynamical NNLO parton distributions. Phys. Rev. D 79, 074023 (2009). arXiv:0810.4274 "/> <meta name="citation_reference" content="A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Uncertainties on $$\alpha _s$$ in global PDF analyses and implications for predicted hadronic cross sections. Eur. Phys. J. C 64, 653 (2009). arXiv:0905.3531 "/> <meta name="citation_reference" content="R.S. Thorne, The effect on PDFs and $$\alpha _S(M_Z^2)$$ due to changes in flavour scheme and higher twist contributions. Eur. Phys. J. C 74, 2958 (2014). arXiv:1402.3536 "/> <meta name="citation_reference" content="S.&#160;Alekhin, J.&#160;Bl&#252;mlein, S.&#160;Moch, Update of the NNLO PDFs in the 3-, 4-, and 5-flavour scheme. PoS DIS2010, 021 (2010). arXiv:1007.3657 "/> <meta name="citation_reference" content="S. Lionetti, R.D. Ball, V. Bertone, F. Cerutti, L. Del Debbio, S. Forte, A. Guffanti, J.I. Latorre, J. Rojo, M. Ubiali, Precision determination of $$\alpha _s$$ using an unbiased global NLO parton set. Phys. Lett. B 701, 346 (2011). arXiv:1103.2369 "/> <meta name="citation_reference" content="R.D. Ball, V. Bertone, L. Del Debbio, S. Forte, A. Guffanti, J.I. Latorre, S. Lionetti, J. Rojo, M. Ubiali, Precision NNLO determination of $$\alpha _s(M_Z)$$ using an unbiased global parton set. Phys. Lett. B 707, 66 (2012). arXiv:1110.2483 "/> <meta name="citation_reference" content="L.A. Harland-Lang, A.D. Martin, P. Motylinski, R.S. Thorne, Uncertainties on $$\alpha _S$$ in the MMHT2014 global PDF analysis and implications for SM predictions. Eur. Phys. J. C 75, 435 (2015). arXiv:1506.05682 "/> <meta name="citation_reference" content="N. Kidonakis, J.F. Owens, Effects of higher order threshold corrections in high $$E_T$$ jet production. Phys. Rev. D 63, 054019 (2001). arXiv:hep-ph/0007268 "/> <meta name="citation_reference" content="S. Carrazza, J. Pires, Perturbative QCD description of jet data from LHC Run-I and Tevatron Run-II. JHEP 10, 145 (2014). arXiv:1407.7031 "/> <meta name="citation_reference" content="M.C. Kumar, S. Moch, Phenomenology of threshold corrections for inclusive jet production at hadron colliders. Phys. Lett. B 730, 122&#8211;129 (2014). arXiv:1309.5311 "/> <meta name="citation_reference" content="D. de Florian, P. Hinderer, A. Mukherjee, F. Ringer, W. Vogelsang, Approximate next-to-next-to-leading order corrections to hadronic jet production. Phys. Rev. Lett. 112, 082001 (2014). arXiv:1310.7192 "/> <meta name="citation_reference" content="A. Vogt, Structure function evolution at next-to-leading order and beyond. Nucl. Phys. Proc. Suppl. 79, 102 (1999). arXiv:hep-ph/9906337 "/> <meta name="citation_reference" content="New Muon Collaboration, M. Arneodo et al., Measurement of the proton and deuteron structure functions, $$F_2^p$$ and $$F_2^d$$ , and of the ratio $$\sigma _L/\sigma _T$$ . Nucl. Phys. B483, 3 (1997). arXiv:hep-ph/9610231 "/> <meta name="citation_reference" content="NNPDF Collaboration, R.D. Ball et&#160;al., Theoretical issues in PDF determination and associated uncertainties. Phys. Lett. B723 (2013) 330. arXiv:1303.1189 "/> <meta name="citation_reference" content="M. Spira, A. Djouadi, D. Graudenz, P.M. Zerwas, Higgs boson production at the LHC. Nucl. Phys. B 453, 17 (1995). arXiv:hep-ph/9504378 "/> <meta name="citation_reference" content="R.V. Harlander, W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders. Phys. Rev. Lett. 88, 201801 (2002). arXiv:hep-ph/0201206 "/> <meta name="citation_reference" content="C. Anastasiou, K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD. Nucl. Phys. B 646, 220 (2002). arXiv:hep-ph/0207004 "/> <meta name="citation_reference" content="V. Ravindran, J. Smith, W.L. van Neerven, NNLO corrections to the total cross section for Higgs boson production in hadron hadron collisions. Nucl. Phys. B 665, 325 (2003). arXiv:hep-ph/0302135 "/> <meta name="citation_reference" content="C. Anastasiou, C. Duhr, F. Dulat, F. Herzog, B. Mistlberger, Higgs boson gluon fusion production in QCD at three loops. Phys. Rev. Lett. 114, 212001 (2015). arXiv:1503.06056 "/> <meta name="citation_reference" content="D. de Florian, J. Mazzitelli, S. Moch, A. Vogt, Approximate N $$^{3}$$ LO Higgs-boson production cross section using physical-kernel constraints. JHEP 10, 176 (2014). arXiv:1408.6277 "/> <meta name="citation_reference" content="R.D. Ball et al., Parton distributions with LHC data. Nucl. Phys. B 867, 244 (2013). arXiv:1207.1303 "/> <meta name="citation_reference" content="P. B&#228;rnreuther, M. Czakon, A. Mitov, Percent Level Precision Physics at the Tevatron: First Genuine NNLO QCD Corrections to $$q \bar{q} \rightarrow t \bar{t} + X$$ . Phys. Rev. Lett. 109, 132001 (2012). arXiv:1204.5201 "/> <meta name="citation_reference" content="M. Czakon, A. Mitov, NNLO corrections to top-pair production at hadron colliders: the all-fermionic scattering channels. JHEP 12, 054 (2012). arXiv:1207.0236 "/> <meta name="citation_reference" content="M. Czakon, A. Mitov, NNLO corrections to top pair production at hadron colliders: the quark-gluon reaction. JHEP 01, 080 (2013). arXiv:1210.6832 "/> <meta name="citation_reference" content="M. Czakon, P. Fiedler, A. Mitov, Total top-quark pair-production cross section at hadron colliders through $$O(\alpha _s^4)$$ . Phys. Rev. Lett. 110, 252004 (2013). arXiv:1303.6254 "/> <meta name="citation_reference" content="U. Langenfeld, S. Moch, P. Uwer, Measuring the running top-quark mass. Phys. Rev. D 80, 054009 (2009). arXiv:0906.5273 "/> <meta name="citation_reference" content="M. Aliev, H. Lacker, U. Langenfeld, S. Moch, P. Uwer, M. Wiedermann, HATHOR: HAdronic Top and Heavy quarks crOss section calculatoR. Comput. Phys. Commun. 182, 1034 (2011). arXiv:1007.1327 "/> <meta name="citation_reference" content="M. Dowling, S. Moch, Differential distributions for top-quark hadro-production with a running mass. Eur. Phys. J. C 74, 3167 (2014). arXiv:1305.6422 "/> <meta name="citation_reference" content="CMS Collaboration, S. Chatrchyan et&#160;al., Determination of the top-quark pole mass and strong coupling constant from the $$t \bar{t}$$ production cross section in $$pp$$ collisions at $$\sqrt{s}$$ = 7 TeV. Phys. Lett. B 728, 496 (2014). arXiv:1307.1907 . [Erratum: Phys. Lett. B728,526(2014)]"/> <meta name="citation_reference" content="M. Czakon, M.L. Mangano, A. Mitov, J. Rojo, Constraints on the gluon PDF from top quark pair production at hadron colliders. JHEP 07, 167 (2013). arXiv:1303.7215 "/> <meta name="citation_reference" content="J.&#160;Kieseler, K.&#160;Lipka, S.&#160;Moch, Calibration of the top-quark Monte Carlo mass. arXiv:1511.00841 "/> <meta name="citation_reference" content="M.&#160;Czakon, D.&#160;Heymes, A.&#160;Mitov, High-precision differential predictions for top-quark pairs at the LHC. arXiv:1511.00549 "/> <meta name="citation_reference" content="M. Guzzi, K. Lipka, S. Moch, Top-quark pair production at hadron colliders: differential cross section and phenomenological applications with DiffTop. JHEP 01, 082 (2015). arXiv:1406.0386 "/> <meta name="citation_reference" content="LHCb Collaboration, R.&#160;Aaij et&#160;al., Measurement of B meson production cross sections in proton&#8211;proton collisions at $$\sqrt{s} =$$ 7 TeV. JHEP 08 (2013) 117, arXiv:1306.3663 "/> <meta name="citation_reference" content="O.&#160;Zenaiev, A.&#160;Geiser, K.&#160;Lipka, J.&#160;Bl&#252;mlein, A.&#160;Cooper-Sarkar, et&#160;al., Impact of heavy-flavour production cross sections measured by the LHCb experiment on parton distribution functions at low x. arXiv:1503.04581 "/> <meta name="citation_reference" content="O.&#160;Zenaiev, Charm production and QCD analysis at HERA and LHC. PhD thesis, U. Hamburg, Dept. Phys., DESY-THESIS-2015-012 (2015)"/> <meta name="citation_reference" content="P. Nason, S. Dawson, R.K. Ellis, The total cross section for the production of heavy quarks in hadronic collisions. Nucl. Phys. B 303, 607 (1988)"/> <meta name="citation_reference" content="W. Beenakker, H. Kuijf, W.L. van Neerven, J. Smith, QCD corrections to heavy quark production in $$p \bar{p}$$ collisions. Phys. Rev. D 40, 54 (1989)"/> <meta name="citation_reference" content="P.&#160;Nason, S.&#160;Dawson, R.K. Ellis, The one particle inclusive differential cross section for heavy quark production in hadronic collisions. Nucl. Phys. B327, 49 (1989). [Erratum: Nucl. Phys.B 335, 260 (1990)]"/> <meta name="citation_reference" content="M.V. Garzelli, S. Moch, G. Sigl, Lepton fluxes from atmospheric charm revisited. JHEP 10, 115 (2015). arXiv:1507.01570 "/> <meta name="citation_reference" content="R. Gauld, J. Rojo, L. Rottoli, J. Talbert, Charm production in the forward region: constraints on the small-x gluon and backgrounds for neutrino astronomy. JHEP 11, 009 (2015). arXiv:1506.08025 "/> <meta name="citation_reference" content="C. Lourenco, H. W&#246;hri, Heavy flavour hadro-production from fixed-target to collider energies. Phys. Rept. 433, 127 (2006). arXiv:hep-ph/0609101 "/> <meta name="citation_reference" content="HERA-B Collaboration, I.&#160;Abt et&#160;al., Measurement of $$D^0$$ , $$D^+$$ , $$D^+_s$$ and $$D^{*+}$$ production in fixed target 920-GeV proton-nucleus collisions. Eur. Phys. J. C52, 531 (2007). arXiv:0708.1443 "/> <meta name="citation_reference" content="PHENIX Collaboration, A.&#160;Adare et&#160;al., Measurement of high- $$p_T$$ single electrons from heavy-flavor decays in p+p collisions at $$s^{1/2} = 200$$ GeV. Phys. Rev. Lett. 97, 252002 (2006). arXiv:hep-ex/0609010 "/> <meta name="citation_reference" content="STAR Collaboration, L. Adamczyk et al., Measurements of $$D^{0}$$ and $$D^{*}$$ production in $$p+p$$ collisions at $$\sqrt{s} = 200$$ GeV. Phys. Rev. D 86, 072013 (2012). arXiv:1204.4244 "/> <meta name="citation_reference" content="ALICE Collaboration, B.&#160;Abelev et&#160;al., Measurement of charm production at central rapidity in proton&#8211;proton collisions at $$\sqrt{s}=2.76$$ TeV. JHEP 1207, 191 (2012). arXiv:1205.4007 "/> <meta name="citation_reference" content="ATLAS Collaboration, Measurement of $$D^{(*)}$$ meson production cross sections in pp collisions at $$\sqrt{s}=7$$ TeV with the ATLAS detector, ATLAS-CONF-2011-017, ATLAS-COM-CONF-2011-030"/> <meta name="citation_reference" content="LHCb Collaboration, R.&#160;Aaij et&#160;al., Prompt charm production in pp collisions at $$\sqrt{s}=7$$ TeV. Nucl. Phys. B871, 1 (2013). arXiv:1302.2864 "/> <meta name="citation_reference" content="LHCb Collaboration, R.&#160;Aaij et&#160;al., Measurements of prompt charm production cross sections in $$pp$$ collisions at $$\sqrt{s}$$ = 13 TeV. arXiv:1510.01707 "/> <meta name="citation_reference" content="L.T. Brady, A. Accardi, W. Melnitchouk, J.F. Owens, Impact of PDF uncertainties at large $$x$$ on heavy boson production. JHEP 06, 019 (2012). arXiv:1110.5398 "/> <meta name="citation_reference" content="M.&#160;Botje et&#160;al., The PDF4LHC working group interim recommendations. arXiv:1101.0538 "/> <meta name="citation_reference" content="A.&#160;Buckley, J.&#160;Rojo, Private communication"/> <meta name="citation_reference" content="J.&#160;R.&#160;Andersen et&#160;al. Les Houches 2015: Physics at TeV Colliders Standard Model Working Group Report. arXiv:1605.04692 "/> <meta name="citation_reference" content="A. Buckley, J. Ferrando, S. Lloyd, K. Nordstr&#246;m, B. Page, M. R&#252;fenacht, M. Sch&#246;nherr, G. Watt, LHAPDF6: parton density access in the LHC precision era. Eur. Phys. J. C 75, 132 (2015). arXiv:1412.7420 "/> <meta name="citation_reference" content="M. R. Whalley, D. Bourilkov, R. C. Group, The Les Houches accord PDFs (LHAPDF) and LHAGLUE, in HERA and the LHC: A workshop on the implications of HERA for LHC physics. in Proceedings, Part B (2005). arXiv:hep-ph/0508110 "/> <meta name="citation_reference" content="citation_journal_title=Phys. Lett. B; citation_title=Pocket partonometer; citation_author=JP Ralston; citation_volume=172; citation_publication_date=1986; citation_pages=430; citation_doi=10.1016/0370-2693(86)90283-2; citation_id=CR285"/> <meta name="citation_reference" content="J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.S. Shao, T. Stelzer, P. Torrielli, M. Zaro, The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. JHEP 07, 079 (2014). arXiv:1405.0301 "/> <meta name="citation_reference" content="POWHEG-BOX (v2). http://powhegbox.mib.infn.it/ "/> <meta name="citation_reference" content="S. Alioli, P. Nason, C. Oleari, E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX. JHEP 06, 043 (2010). arXiv:1002.2581 "/> <meta name="citation_reference" content="SHERPA (v2). https://sherpa.hepforge.org/doc/SHERPA-MC-2.2.0.html "/> <meta name="citation_reference" content="T.&#160;Gleisberg, S.&#160;H&#246;che, F.&#160;Krauss, M.&#160;Sch&#246;nherr, S.&#160;Schumann, F.&#160;Siegert, J.&#160;Winter, Event generation with SHERPA 1.1. JHEP 02 (2009) 007. arXiv:0811.4622 "/> <meta name="citation_reference" content="S. Alioli, C.W. Bauer, C. Berggren, F.J. Tackmann, J.R. Walsh, Drell&#8211;Yan production at NNLL&#8217;+NNLO matched to parton showers. Phys. Rev. D 92, 094020 (2015). arXiv:1508.01475 "/> <meta name="citation_author" content="Accardi, A."/> <meta name="citation_author_institution" content="Hampton University, Hampton, USA"/> <meta name="citation_author_institution" content="Jefferson Lab, Newport News, USA"/> <meta name="citation_author" content="Alekhin, S."/> <meta name="citation_author_institution" content="II. Institut f&#252;r Theoretische Physik, Universit&#228;t Hamburg, Hamburg, Germany"/> <meta name="citation_author_institution" content="Institute for High Energy Physics, Protvino, Russia"/> <meta name="citation_author" content="Bl&#252;mlein, J."/> <meta name="citation_author_institution" content="Deutsches Elektronensynchrotron DESY, Zeuthen, Germany"/> <meta name="citation_author" content="Garzelli, M. V."/> <meta name="citation_author_institution" content="II. Institut f&#252;r Theoretische Physik, Universit&#228;t Hamburg, Hamburg, Germany"/> <meta name="citation_author" content="Lipka, K."/> <meta name="citation_author_institution" content="Deutsches Elektronensynchrotron DESY, Hamburg, Germany"/> <meta name="citation_author" content="Melnitchouk, W."/> <meta name="citation_author_institution" content="Jefferson Lab, Newport News, USA"/> <meta name="citation_author" content="Moch, S."/> <meta name="citation_author_email" content="sven-olaf.moch@desy.de"/> <meta name="citation_author_institution" content="II. Institut f&#252;r Theoretische Physik, Universit&#228;t Hamburg, Hamburg, Germany"/> <meta name="citation_author" content="Owens, J. F."/> <meta name="citation_author_institution" content="Florida State University, Tallahassee, USA"/> <meta name="citation_author" content="Pla&#269;akyt&#279;, R."/> <meta name="citation_author_institution" content="Deutsches Elektronensynchrotron DESY, Hamburg, Germany"/> <meta name="citation_author" content="Reya, E."/> <meta name="citation_author_institution" content="Institut f&#252;r Physik, Technische Universit&#228;t Dortmund, Dortmund, Germany"/> <meta name="citation_author" content="Sato, N."/> <meta name="citation_author_institution" content="Jefferson Lab, Newport News, USA"/> <meta name="citation_author" content="Vogt, A."/> <meta name="citation_author_institution" content="Department of Mathematical Sciences, University of Liverpool, Liverpool, UK"/> <meta name="citation_author" content="Zenaiev, O."/> <meta name="citation_author_institution" content="Deutsches Elektronensynchrotron DESY, Hamburg, Germany"/> <meta name="format-detection" content="telephone=no"/> <meta name="citation_cover_date" content="2016/08/01"/> <meta property="og:url" content="https://link.springer.com/article/10.1140/epjc/s10052-016-4285-4"/> <meta property="og:type" content="article"/> <meta property="og:site_name" content="SpringerLink"/> <meta property="og:title" content="A critical appraisal and evaluation of modern PDFs - The European Physical Journal C"/> <meta property="og:description" content="We review the present status of the determination of parton distribution functions (PDFs) in the light of the precision requirements for the LHC in Run 2 and other future hadron colliders. We provide brief reviews of all currently available PDF sets and use them to compute cross sections for a number of benchmark processes, including Higgs boson production in gluon&#8211;gluon fusion at the LHC. We show that the differences in the predictions obtained with the various PDFs are due to particular theory assumptions made in the fits of those PDFs. We discuss PDF uncertainties in the kinematic region covered by the LHC and on averaging procedures for PDFs, such as advocated by the PDF4LHC15 sets, and provide recommendations for the usage of PDF sets for theory predictions at the LHC."/> <meta property="og:image" content="https://static-content.springer.com/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig1_HTML.gif"/> <meta name="format-detection" content="telephone=no"> <link rel="apple-touch-icon" sizes="180x180" href=/oscar-static/img/favicons/darwin/apple-touch-icon-92e819bf8a.png> <link rel="icon" type="image/png" sizes="192x192" href=/oscar-static/img/favicons/darwin/android-chrome-192x192-6f081ca7e5.png> <link rel="icon" type="image/png" sizes="32x32" href=/oscar-static/img/favicons/darwin/favicon-32x32-1435da3e82.png> <link rel="icon" type="image/png" sizes="16x16" href=/oscar-static/img/favicons/darwin/favicon-16x16-ed57f42bd2.png> <link rel="shortcut icon" data-test="shortcut-icon" href=/oscar-static/img/favicons/darwin/favicon-c6d59aafac.ico> <meta name="theme-color" content="#e6e6e6"> <!-- Please see discussion: https://github.com/springernature/frontend-open-space/issues/316--> <!--TODO: Implement alternative to CTM in here if the discussion concludes we do not continue with CTM as a practice--> <link rel="stylesheet" media="print" href=/oscar-static/app-springerlink/css/print-b8af42253b.css> <style> html{text-size-adjust:100%;line-height:1.15}body{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;line-height:1.8;margin:0}details,main{display:block}h1{font-size:2em;margin:.67em 0}a{background-color:transparent;color:#025e8d}sub{bottom:-.25em;font-size:75%;line-height:0;position:relative;vertical-align:baseline}img{border:0;height:auto;max-width:100%;vertical-align:middle}button,input{font-family:inherit;font-size:100%;line-height:1.15;margin:0;overflow:visible}button{text-transform:none}[type=button],[type=submit],button{-webkit-appearance:button}[type=search]{-webkit-appearance:textfield;outline-offset:-2px}summary{display:list-item}[hidden]{display:none}button{cursor:pointer}svg{height:1rem;width:1rem} </style> <style>@media only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark) { body{background:#fff;color:#222;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;line-height:1.8;min-height:100%}a{color:#025e8d;text-decoration:underline;text-decoration-skip-ink:auto}button{cursor:pointer}img{border:0;height:auto;max-width:100%;vertical-align:middle}html{box-sizing:border-box;font-size:100%;height:100%;overflow-y:scroll}h1{font-size:2.25rem}h2{font-size:1.75rem}h1,h2,h4{font-weight:700;line-height:1.2}h4{font-size:1.25rem}body{font-size:1.125rem}*{box-sizing:inherit}p{margin-bottom:2rem;margin-top:0}p:last-of-type{margin-bottom:0}.c-ad{text-align:center}@media only screen and (min-width:480px){.c-ad{padding:8px}}.c-ad--728x90{display:none}.c-ad--728x90 .c-ad__inner{min-height:calc(1.5em + 94px)}@media only screen and (min-width:876px){.js .c-ad--728x90{display:none}}.c-ad__label{color:#333;font-size:.875rem;font-weight:400;line-height:1.5;margin-bottom:4px}.c-ad__label,.c-status-message{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-status-message{align-items:center;box-sizing:border-box;display:flex;position:relative;width:100%}.c-status-message :last-child{margin-bottom:0}.c-status-message--boxed{background-color:#fff;border:1px solid #ccc;line-height:1.4;padding:16px}.c-status-message__heading{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;font-weight:700}.c-status-message__icon{fill:currentcolor;display:inline-block;flex:0 0 auto;height:1.5em;margin-right:8px;transform:translate(0);vertical-align:text-top;width:1.5em}.c-status-message__icon--top{align-self:flex-start}.c-status-message--info .c-status-message__icon{color:#003f8d}.c-status-message--boxed.c-status-message--info{border-bottom:4px solid #003f8d}.c-status-message--error .c-status-message__icon{color:#c40606}.c-status-message--boxed.c-status-message--error{border-bottom:4px solid #c40606}.c-status-message--success .c-status-message__icon{color:#00b8b0}.c-status-message--boxed.c-status-message--success{border-bottom:4px solid #00b8b0}.c-status-message--warning .c-status-message__icon{color:#edbc53}.c-status-message--boxed.c-status-message--warning{border-bottom:4px solid #edbc53}.eds-c-header{background-color:#fff;border-bottom:2px solid #01324b;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;line-height:1.5;padding:8px 0 0}.eds-c-header__container{align-items:center;display:flex;flex-wrap:nowrap;gap:8px 16px;justify-content:space-between;margin:0 auto 8px;max-width:1280px;padding:0 8px;position:relative}.eds-c-header__nav{border-top:2px solid #c5e0f4;padding-top:4px;position:relative}.eds-c-header__nav-container{align-items:center;display:flex;flex-wrap:wrap;margin:0 auto 4px;max-width:1280px;padding:0 8px;position:relative}.eds-c-header__nav-container>:not(:last-child){margin-right:32px}.eds-c-header__link-container{align-items:center;display:flex;flex:1 0 auto;gap:8px 16px;justify-content:space-between}.eds-c-header__list{list-style:none;margin:0;padding:0}.eds-c-header__list-item{font-weight:700;margin:0 auto;max-width:1280px;padding:8px}.eds-c-header__list-item:not(:last-child){border-bottom:2px solid #c5e0f4}.eds-c-header__item{color:inherit}@media only screen and (min-width:768px){.eds-c-header__item--menu{display:none;visibility:hidden}.eds-c-header__item--menu:first-child+*{margin-block-start:0}}.eds-c-header__item--inline-links{display:none;visibility:hidden}@media only screen and (min-width:768px){.eds-c-header__item--inline-links{display:flex;gap:16px 16px;visibility:visible}}.eds-c-header__item--divider:before{border-left:2px solid #c5e0f4;content:"";height:calc(100% - 16px);margin-left:-15px;position:absolute;top:8px}.eds-c-header__brand{padding:16px 8px}.eds-c-header__brand a{display:block;line-height:1;text-decoration:none}.eds-c-header__brand img{height:1.5rem;width:auto}.eds-c-header__link{color:inherit;display:inline-block;font-weight:700;padding:16px 8px;position:relative;text-decoration-color:transparent;white-space:nowrap;word-break:normal}.eds-c-header__icon{fill:currentcolor;display:inline-block;font-size:1.5rem;height:1em;transform:translate(0);vertical-align:bottom;width:1em}.eds-c-header__icon+*{margin-left:8px}.eds-c-header__expander{background-color:#f0f7fc}.eds-c-header__search{display:block;padding:24px 0}@media only screen and (min-width:768px){.eds-c-header__search{max-width:70%}}.eds-c-header__search-container{position:relative}.eds-c-header__search-label{color:inherit;display:inline-block;font-weight:700;margin-bottom:8px}.eds-c-header__search-input{background-color:#fff;border:1px solid #000;padding:8px 48px 8px 8px;width:100%}.eds-c-header__search-button{background-color:transparent;border:0;color:inherit;height:100%;padding:0 8px;position:absolute;right:0}.has-tethered.eds-c-header__expander{border-bottom:2px solid #01324b;left:0;margin-top:-2px;top:100%;width:100%;z-index:10}@media only screen and (min-width:768px){.has-tethered.eds-c-header__expander--menu{display:none;visibility:hidden}}.has-tethered .eds-c-header__heading{display:none;visibility:hidden}.has-tethered .eds-c-header__heading:first-child+*{margin-block-start:0}.has-tethered .eds-c-header__search{margin:auto}.eds-c-header__heading{margin:0 auto;max-width:1280px;padding:16px 16px 0}.eds-c-pagination{align-items:center;display:flex;flex-wrap:wrap;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;gap:16px 0;justify-content:center;line-height:1.4;list-style:none;margin:0;padding:32px 0}@media only screen and (min-width:480px){.eds-c-pagination{padding:32px 16px}}.eds-c-pagination__item{margin-right:8px}.eds-c-pagination__item--prev{margin-right:16px}.eds-c-pagination__item--next .eds-c-pagination__link,.eds-c-pagination__item--prev .eds-c-pagination__link{padding:16px 8px}.eds-c-pagination__item--next{margin-left:8px}.eds-c-pagination__item:last-child{margin-right:0}.eds-c-pagination__link{align-items:center;color:#222;cursor:pointer;display:inline-block;font-size:1rem;margin:0;padding:16px 24px;position:relative;text-align:center;transition:all .2s ease 0s}.eds-c-pagination__link:visited{color:#222}.eds-c-pagination__link--disabled{border-color:#555;color:#555;cursor:default}.eds-c-pagination__link--active{background-color:#01324b;background-image:none;border-radius:8px;color:#fff}.eds-c-pagination__link--active:focus,.eds-c-pagination__link--active:hover,.eds-c-pagination__link--active:visited{color:#fff}.eds-c-pagination__link-container{align-items:center;display:flex}.eds-c-pagination__icon{fill:#222;height:1.5rem;width:1.5rem}.eds-c-pagination__icon--disabled{fill:#555}.eds-c-pagination__visually-hidden{clip:rect(0,0,0,0);border:0;clip-path:inset(50%);height:1px;overflow:hidden;padding:0;position:absolute!important;white-space:nowrap;width:1px}.c-breadcrumbs{color:#333;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;list-style:none;margin:0;padding:0}.c-breadcrumbs>li{display:inline}svg.c-breadcrumbs__chevron{fill:#333;height:10px;margin:0 .25rem;width:10px}.c-breadcrumbs--contrast,.c-breadcrumbs--contrast .c-breadcrumbs__link{color:#fff}.c-breadcrumbs--contrast svg.c-breadcrumbs__chevron{fill:#fff}@media only screen and (max-width:479px){.c-breadcrumbs .c-breadcrumbs__item{display:none}.c-breadcrumbs .c-breadcrumbs__item:last-child,.c-breadcrumbs .c-breadcrumbs__item:nth-last-child(2){display:inline}}.c-skip-link{background:#01324b;bottom:auto;color:#fff;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;padding:8px;position:absolute;text-align:center;transform:translateY(-100%);width:100%;z-index:9999}@media (prefers-reduced-motion:reduce){.c-skip-link{transition:top .3s ease-in-out 0s}}@media print{.c-skip-link{display:none}}.c-skip-link:active,.c-skip-link:hover,.c-skip-link:link,.c-skip-link:visited{color:#fff}.c-skip-link:focus{transform:translateY(0)}.l-with-sidebar{display:flex;flex-wrap:wrap}.l-with-sidebar>*{margin:0}.l-with-sidebar__sidebar{flex-basis:var(--with-sidebar--basis,400px);flex-grow:1}.l-with-sidebar>:not(.l-with-sidebar__sidebar){flex-basis:0px;flex-grow:999;min-width:var(--with-sidebar--min,53%)}.l-with-sidebar>:first-child{padding-right:4rem}@supports (gap:1em){.l-with-sidebar>:first-child{padding-right:0}.l-with-sidebar{gap:var(--with-sidebar--gap,4rem)}}.c-header__link{color:inherit;display:inline-block;font-weight:700;padding:16px 8px;position:relative;text-decoration-color:transparent;white-space:nowrap;word-break:normal}.app-masthead__colour-4{--background-color:#ff9500;--gradient-light:rgba(0,0,0,.5);--gradient-dark:rgba(0,0,0,.8)}.app-masthead{background:var(--background-color,#0070a8);position:relative}.app-masthead:after{background:radial-gradient(circle at top right,var(--gradient-light,rgba(0,0,0,.4)),var(--gradient-dark,rgba(0,0,0,.7)));bottom:0;content:"";left:0;position:absolute;right:0;top:0}@media only screen and (max-width:479px){.app-masthead:after{background:linear-gradient(225deg,var(--gradient-light,rgba(0,0,0,.4)),var(--gradient-dark,rgba(0,0,0,.7)))}}.app-masthead__container{color:var(--masthead-color,#fff);margin:0 auto;max-width:1280px;padding:0 16px;position:relative;z-index:1}.u-button{align-items:center;background-color:#01324b;background-image:none;border:4px solid transparent;border-radius:32px;cursor:pointer;display:inline-flex;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;font-weight:700;justify-content:center;line-height:1.3;margin:0;padding:16px 32px;position:relative;transition:all .2s ease 0s;width:auto}.u-button svg,.u-button--contrast svg,.u-button--primary svg,.u-button--secondary svg,.u-button--tertiary svg{fill:currentcolor}.u-button,.u-button:visited{color:#fff}.u-button,.u-button:hover{box-shadow:0 0 0 1px #01324b;text-decoration:none}.u-button:hover{border:4px solid #fff}.u-button:focus{border:4px solid #fc0;box-shadow:none;outline:0;text-decoration:none}.u-button:focus,.u-button:hover{background-color:#fff;background-image:none;color:#01324b}.app-masthead--pastel .c-pdf-download .u-button--primary:focus svg path,.app-masthead--pastel .c-pdf-download .u-button--primary:hover svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:focus svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover svg path,.u-button--primary:focus svg path,.u-button--primary:hover svg path,.u-button:focus svg path,.u-button:hover svg path{fill:#01324b}.u-button--primary{background-color:#01324b;background-image:none;border:4px solid transparent;box-shadow:0 0 0 1px #01324b;color:#fff;font-weight:700}.u-button--primary:visited{color:#fff}.u-button--primary:hover{border:4px solid #fff;box-shadow:0 0 0 1px #01324b;text-decoration:none}.u-button--primary:focus{border:4px solid #fc0;box-shadow:none;outline:0;text-decoration:none}.u-button--primary:focus,.u-button--primary:hover{background-color:#fff;background-image:none;color:#01324b}.u-button--secondary{background-color:#fff;border:4px solid #fff;color:#01324b;font-weight:700}.u-button--secondary:visited{color:#01324b}.u-button--secondary:hover{border:4px solid #01324b;box-shadow:none}.u-button--secondary:focus,.u-button--secondary:hover{background-color:#01324b;color:#fff}.app-masthead--pastel .c-pdf-download .u-button--secondary:focus svg path,.app-masthead--pastel .c-pdf-download .u-button--secondary:hover svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:focus svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:hover svg path,.u-button--secondary:focus svg path,.u-button--secondary:hover svg path,.u-button--tertiary:focus svg path,.u-button--tertiary:hover svg path{fill:#fff}.u-button--tertiary{background-color:#ebf1f5;border:4px solid transparent;box-shadow:none;color:#666;font-weight:700}.u-button--tertiary:visited{color:#666}.u-button--tertiary:hover{border:4px solid #01324b;box-shadow:none}.u-button--tertiary:focus,.u-button--tertiary:hover{background-color:#01324b;color:#fff}.u-button--contrast{background-color:transparent;background-image:none;color:#fff;font-weight:400}.u-button--contrast:visited{color:#fff}.u-button--contrast,.u-button--contrast:focus,.u-button--contrast:hover{border:4px solid #fff}.u-button--contrast:focus,.u-button--contrast:hover{background-color:#fff;background-image:none;color:#000}.u-button--contrast:focus svg path,.u-button--contrast:hover svg path{fill:#000}.u-button--disabled,.u-button:disabled{background-color:transparent;background-image:none;border:4px solid #ccc;color:#000;cursor:default;font-weight:400;opacity:.7}.u-button--disabled svg,.u-button:disabled svg{fill:currentcolor}.u-button--disabled:visited,.u-button:disabled:visited{color:#000}.u-button--disabled:focus,.u-button--disabled:hover,.u-button:disabled:focus,.u-button:disabled:hover{border:4px solid #ccc;text-decoration:none}.u-button--disabled:focus,.u-button--disabled:hover,.u-button:disabled:focus,.u-button:disabled:hover{background-color:transparent;background-image:none;color:#000}.u-button--disabled:focus svg path,.u-button--disabled:hover svg path,.u-button:disabled:focus svg path,.u-button:disabled:hover svg path{fill:#000}.u-button--small,.u-button--xsmall{font-size:.875rem;padding:2px 8px}.u-button--small{padding:8px 16px}.u-button--large{font-size:1.125rem;padding:10px 35px}.u-button--full-width{display:flex;width:100%}.u-button--icon-left svg{margin-right:8px}.u-button--icon-right svg{margin-left:8px}.u-clear-both{clear:both}.u-container{margin:0 auto;max-width:1280px;padding:0 16px}.u-justify-content-space-between{justify-content:space-between}.u-display-none{display:none}.js .u-js-hide,.u-hide{display:none;visibility:hidden}.u-visually-hidden{clip:rect(0,0,0,0);border:0;clip-path:inset(50%);height:1px;overflow:hidden;padding:0;position:absolute!important;white-space:nowrap;width:1px}.u-icon{fill:currentcolor;display:inline-block;height:1em;transform:translate(0);vertical-align:text-top;width:1em}.u-list-reset{list-style:none;margin:0;padding:0}.u-ma-16{margin:16px}.u-mt-0{margin-top:0}.u-mt-24{margin-top:24px}.u-mt-32{margin-top:32px}.u-mb-8{margin-bottom:8px}.u-mb-32{margin-bottom:32px}.u-button-reset{background-color:transparent;border:0;padding:0}.u-sans-serif{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.u-serif{font-family:Merriweather,serif}h1,h2,h4{-webkit-font-smoothing:antialiased}p{overflow-wrap:break-word;word-break:break-word}.u-h4{font-size:1.25rem;font-weight:700;line-height:1.2}.u-mbs-0{margin-block-start:0!important}.c-article-header{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-article-identifiers{color:#6f6f6f;display:flex;flex-wrap:wrap;font-size:1rem;line-height:1.3;list-style:none;margin:0 0 8px;padding:0}.c-article-identifiers__item{border-right:1px solid #6f6f6f;list-style:none;margin-right:8px;padding-right:8px}.c-article-identifiers__item:last-child{border-right:0;margin-right:0;padding-right:0}@media only screen and (min-width:876px){.c-article-title{font-size:1.875rem;line-height:1.2}}.c-article-author-list{display:inline;font-size:1rem;list-style:none;margin:0 8px 0 0;padding:0;width:100%}.c-article-author-list__item{display:inline;padding-right:0}.c-article-author-list__show-more{display:none;margin-right:4px}.c-article-author-list__button,.js .c-article-author-list__item--hide,.js .c-article-author-list__show-more{display:none}.js .c-article-author-list--long .c-article-author-list__show-more,.js .c-article-author-list--long+.c-article-author-list__button{display:inline}@media only screen and (max-width:767px){.js .c-article-author-list__item--hide-small-screen{display:none}.js .c-article-author-list--short .c-article-author-list__show-more,.js .c-article-author-list--short+.c-article-author-list__button{display:inline}}#uptodate-client,.js .c-article-author-list--expanded .c-article-author-list__show-more{display:none!important}.js .c-article-author-list--expanded .c-article-author-list__item--hide-small-screen{display:inline!important}.c-article-author-list__button,.c-button-author-list{background:#ebf1f5;border:4px solid #ebf1f5;border-radius:20px;color:#666;font-size:.875rem;line-height:1.4;padding:2px 11px 2px 8px;text-decoration:none}.c-article-author-list__button svg,.c-button-author-list svg{margin:1px 4px 0 0}.c-article-author-list__button:hover,.c-button-author-list:hover{background:#025e8d;border-color:transparent;color:#fff}.c-article-body .c-article-access-provider{padding:8px 16px}.c-article-body .c-article-access-provider,.c-notes{border:1px solid #d5d5d5;border-image:initial;border-left:none;border-right:none;margin:24px 0}.c-article-body .c-article-access-provider__text{color:#555}.c-article-body .c-article-access-provider__text,.c-notes__text{font-size:1rem;margin-bottom:0;padding-bottom:2px;padding-top:2px;text-align:center}.c-article-body .c-article-author-affiliation__address{color:inherit;font-weight:700;margin:0}.c-article-body .c-article-author-affiliation__authors-list{list-style:none;margin:0;padding:0}.c-article-body .c-article-author-affiliation__authors-item{display:inline;margin-left:0}.c-article-authors-search{margin-bottom:24px;margin-top:0}.c-article-authors-search__item,.c-article-authors-search__title{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-article-authors-search__title{color:#626262;font-size:1.05rem;font-weight:700;margin:0;padding:0}.c-article-authors-search__item{font-size:1rem}.c-article-authors-search__text{margin:0}.c-code-block{border:1px solid #fff;font-family:monospace;margin:0 0 24px;padding:20px}.c-code-block__heading{font-weight:400;margin-bottom:16px}.c-code-block__line{display:block;overflow-wrap:break-word;white-space:pre-wrap}.c-article-share-box{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;margin-bottom:24px}.c-article-share-box__description{font-size:1rem;margin-bottom:8px}.c-article-share-box__no-sharelink-info{font-size:.813rem;font-weight:700;margin-bottom:24px;padding-top:4px}.c-article-share-box__only-read-input{border:1px solid #d5d5d5;box-sizing:content-box;display:inline-block;font-size:.875rem;font-weight:700;height:24px;margin-bottom:8px;padding:8px 10px}.c-article-share-box__additional-info{color:#626262;font-size:.813rem}.c-article-share-box__button{background:#fff;box-sizing:content-box;text-align:center}.c-article-share-box__button--link-like{background-color:transparent;border:0;color:#025e8d;cursor:pointer;font-size:.875rem;margin-bottom:8px;margin-left:10px}.c-article-associated-content__container .c-article-associated-content__collection-label{font-size:.875rem;line-height:1.4}.c-article-associated-content__container .c-article-associated-content__collection-title{line-height:1.3}.c-reading-companion{clear:both;min-height:389px}.c-reading-companion__figures-list,.c-reading-companion__references-list{list-style:none;min-height:389px;padding:0}.c-reading-companion__references-list--numeric{list-style:decimal inside}.c-reading-companion__figure-item{border-top:1px solid #d5d5d5;font-size:1rem;padding:16px 8px 16px 0}.c-reading-companion__figure-item:first-child{border-top:none;padding-top:8px}.c-reading-companion__reference-item{font-size:1rem}.c-reading-companion__reference-item:first-child{border-top:none}.c-reading-companion__reference-item a{word-break:break-word}.c-reading-companion__reference-citation{display:inline}.c-reading-companion__reference-links{font-size:.813rem;font-weight:700;list-style:none;margin:8px 0 0;padding:0;text-align:right}.c-reading-companion__reference-links>a{display:inline-block;padding-left:8px}.c-reading-companion__reference-links>a:first-child{display:inline-block;padding-left:0}.c-reading-companion__figure-title{display:block;font-size:1.25rem;font-weight:700;line-height:1.2;margin:0 0 8px}.c-reading-companion__figure-links{display:flex;justify-content:space-between;margin:8px 0 0}.c-reading-companion__figure-links>a{align-items:center;display:flex}.c-article-section__figure-caption{display:block;margin-bottom:8px;word-break:break-word}.c-article-section__figure .video,p.app-article-masthead__access--above-download{margin:0 0 16px}.c-article-section__figure-description{font-size:1rem}.c-article-section__figure-description>*{margin-bottom:0}.c-cod{display:block;font-size:1rem;width:100%}.c-cod__form{background:#ebf0f3}.c-cod__prompt{font-size:1.125rem;line-height:1.3;margin:0 0 24px}.c-cod__label{display:block;margin:0 0 4px}.c-cod__row{display:flex;margin:0 0 16px}.c-cod__row:last-child{margin:0}.c-cod__input{border:1px solid #d5d5d5;border-radius:2px;flex-shrink:0;margin:0;padding:13px}.c-cod__input--submit{background-color:#025e8d;border:1px solid #025e8d;color:#fff;flex-shrink:1;margin-left:8px;transition:background-color .2s ease-out 0s,color .2s ease-out 0s}.c-cod__input--submit-single{flex-basis:100%;flex-shrink:0;margin:0}.c-cod__input--submit:focus,.c-cod__input--submit:hover{background-color:#fff;color:#025e8d}.save-data .c-article-author-institutional-author__sub-division,.save-data .c-article-equation__number,.save-data .c-article-figure-description,.save-data .c-article-fullwidth-content,.save-data .c-article-main-column,.save-data .c-article-satellite-article-link,.save-data .c-article-satellite-subtitle,.save-data .c-article-table-container,.save-data .c-blockquote__body,.save-data .c-code-block__heading,.save-data .c-reading-companion__figure-title,.save-data .c-reading-companion__reference-citation,.save-data .c-site-messages--nature-briefing-email-variant .serif,.save-data .c-site-messages--nature-briefing-email-variant.serif,.save-data .serif,.save-data .u-serif,.save-data h1,.save-data h2,.save-data h3{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-pdf-download__link{display:flex;flex:1 1 0%;padding:13px 24px}.c-pdf-download__link:hover{text-decoration:none}@media only screen and (min-width:768px){.c-context-bar--sticky .c-pdf-download__link{align-items:center;flex:1 1 183px}}@media only screen and (max-width:320px){.c-context-bar--sticky .c-pdf-download__link{padding:16px}}.c-article-body .c-article-recommendations-list,.c-book-body .c-article-recommendations-list{display:flex;flex-direction:row;gap:16px 16px;margin:0;max-width:100%;padding:16px 0 0}.c-article-body .c-article-recommendations-list__item,.c-book-body .c-article-recommendations-list__item{flex:1 1 0%}@media only screen and (max-width:767px){.c-article-body .c-article-recommendations-list,.c-book-body .c-article-recommendations-list{flex-direction:column}}.c-article-body .c-article-recommendations-card__authors{display:none;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;line-height:1.5;margin:0 0 8px}@media only screen and (max-width:767px){.c-article-body .c-article-recommendations-card__authors{display:block;margin:0}}.c-article-body .c-article-history{margin-top:24px}.app-article-metrics-bar p{margin:0}.app-article-masthead{display:flex;flex-direction:column;gap:16px 16px;padding:16px 0 24px}.app-article-masthead__info{display:flex;flex-direction:column;flex-grow:1}.app-article-masthead__brand{border-top:1px solid hsla(0,0%,100%,.8);display:flex;flex-direction:column;flex-shrink:0;gap:8px 8px;min-height:96px;padding:16px 0 0}.app-article-masthead__brand img{border:1px solid #fff;border-radius:8px;box-shadow:0 4px 15px 0 hsla(0,0%,50%,.25);height:auto;left:0;position:absolute;width:72px}.app-article-masthead__journal-link{display:block;font-size:1.125rem;font-weight:700;margin:0 0 8px;max-width:400px;padding:0 0 0 88px;position:relative}.app-article-masthead__journal-title{-webkit-box-orient:vertical;-webkit-line-clamp:3;display:-webkit-box;overflow:hidden}.app-article-masthead__submission-link{align-items:center;display:flex;font-size:1rem;gap:4px 4px;margin:0 0 0 88px}.app-article-masthead__access{align-items:center;display:flex;flex-wrap:wrap;font-size:.875rem;font-weight:300;gap:4px 4px;margin:0}.app-article-masthead__buttons{display:flex;flex-flow:column wrap;gap:16px 16px}.app-article-masthead__access svg,.app-masthead--pastel .c-pdf-download .u-button--primary svg,.app-masthead--pastel .c-pdf-download .u-button--secondary svg,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary svg,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary svg{fill:currentcolor}.app-article-masthead a{color:#fff}.app-masthead--pastel .c-pdf-download .u-button--primary,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary{background-color:#025e8d;background-image:none;border:2px solid transparent;box-shadow:none;color:#fff;font-weight:700}.app-masthead--pastel .c-pdf-download .u-button--primary:visited,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:visited{color:#fff}.app-masthead--pastel .c-pdf-download .u-button--primary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover{text-decoration:none}.app-masthead--pastel .c-pdf-download .u-button--primary:focus,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:focus{border:4px solid #fc0;box-shadow:none;outline:0;text-decoration:none}.app-masthead--pastel .c-pdf-download .u-button--primary:focus,.app-masthead--pastel .c-pdf-download .u-button--primary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:focus,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover{background-color:#fff;background-image:none;color:#01324b}.app-masthead--pastel .c-pdf-download .u-button--primary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover{background:0 0;border:2px solid #025e8d;box-shadow:none;color:#025e8d}.app-masthead--pastel .c-pdf-download .u-button--secondary,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary{background:0 0;border:2px solid #025e8d;color:#025e8d;font-weight:700}.app-masthead--pastel .c-pdf-download .u-button--secondary:visited,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:visited{color:#01324b}.app-masthead--pastel .c-pdf-download .u-button--secondary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:hover{background-color:#01324b;background-color:#025e8d;border:2px solid transparent;box-shadow:none;color:#fff}.app-masthead--pastel .c-pdf-download .u-button--secondary:focus,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:focus{background-color:#fff;background-image:none;border:4px solid #fc0;color:#01324b}@media only screen and (min-width:768px){.app-article-masthead{flex-direction:row;gap:64px 64px;padding:24px 0}.app-article-masthead__brand{border:0;padding:0}.app-article-masthead__brand img{height:auto;position:static;width:auto}.app-article-masthead__buttons{align-items:center;flex-direction:row;margin-top:auto}.app-article-masthead__journal-link{display:flex;flex-direction:column;gap:24px 24px;margin:0 0 8px;padding:0}.app-article-masthead__submission-link{margin:0}}@media only screen and (min-width:1024px){.app-article-masthead__brand{flex-basis:400px}}.app-article-masthead .c-article-identifiers{font-size:.875rem;font-weight:300;line-height:1;margin:0 0 8px;overflow:hidden;padding:0}.app-article-masthead .c-article-identifiers--cite-list{margin:0 0 16px}.app-article-masthead .c-article-identifiers *{color:#fff}.app-article-masthead .c-cod{display:none}.app-article-masthead .c-article-identifiers__item{border-left:1px solid #fff;border-right:0;margin:0 17px 8px -9px;padding:0 0 0 8px}.app-article-masthead .c-article-identifiers__item--cite{border-left:0}.app-article-metrics-bar{display:flex;flex-wrap:wrap;font-size:1rem;padding:16px 0 0;row-gap:24px}.app-article-metrics-bar__item{padding:0 16px 0 0}.app-article-metrics-bar__count{font-weight:700}.app-article-metrics-bar__label{font-weight:400;padding-left:4px}.app-article-metrics-bar__icon{height:auto;margin-right:4px;margin-top:-4px;width:auto}.app-article-metrics-bar__arrow-icon{margin:4px 0 0 4px}.app-article-metrics-bar a{color:#000}.app-article-metrics-bar .app-article-metrics-bar__item--metrics{padding-right:0}.app-overview-section .c-article-author-list,.app-overview-section__authors{line-height:2}.app-article-metrics-bar{margin-top:8px}.c-book-toc-pagination+.c-book-section__back-to-top{margin-top:0}.c-article-body .c-article-access-provider__text--chapter{color:#222;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;padding:20px 0}.c-article-body .c-article-access-provider__text--chapter svg.c-status-message__icon{fill:#003f8d;vertical-align:middle}.c-article-body-section__content--separator{padding-top:40px}.c-pdf-download__link{max-height:44px}.app-article-access .u-button--primary,.app-article-access .u-button--primary:visited{color:#fff}.c-article-sidebar{display:none}@media only screen and (min-width:1024px){.c-article-sidebar{display:block}}.c-cod__form{border-radius:12px}.c-cod__label{font-size:.875rem}.c-cod .c-status-message{align-items:center;justify-content:center;margin-bottom:16px;padding-bottom:16px}@media only screen and (min-width:1024px){.c-cod .c-status-message{align-items:inherit}}.c-cod .c-status-message__icon{margin-top:4px}.c-cod .c-cod__prompt{font-size:1rem;margin-bottom:16px}.c-article-body .app-article-access,.c-book-body .app-article-access{display:block}@media only screen and (min-width:1024px){.c-article-body .app-article-access,.c-book-body .app-article-access{display:none}}.c-article-body .app-card-service{margin-bottom:32px}@media only screen and (min-width:1024px){.c-article-body .app-card-service{display:none}}.app-article-access .buybox__buy .u-button--secondary,.app-article-access .u-button--primary,.c-cod__row .u-button--primary{background-color:#025e8d;border:2px solid #025e8d;box-shadow:none;font-size:1rem;font-weight:700;gap:8px 8px;justify-content:center;line-height:1.5;padding:8px 24px}.app-article-access .buybox__buy .u-button--secondary,.app-article-access .u-button--primary:hover,.c-cod__row .u-button--primary:hover{background-color:#fff;color:#025e8d}.app-article-access .buybox__buy .u-button--secondary:hover{background-color:#025e8d;color:#fff}.buybox__buy .c-notes__text{color:#666;font-size:.875rem;padding:0 16px 8px}.c-cod__input{flex-basis:auto;width:100%}.c-article-title{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:2.25rem;font-weight:700;line-height:1.2;margin:12px 0}.c-reading-companion__figure-item figure{margin:0}@media only screen and (min-width:768px){.c-article-title{margin:16px 0}}.app-article-access{border:1px solid #c5e0f4;border-radius:12px}.app-article-access__heading{border-bottom:1px solid #c5e0f4;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1.125rem;font-weight:700;margin:0;padding:16px;text-align:center}.app-article-access .buybox__info svg{vertical-align:middle}.c-article-body .app-article-access p{margin-bottom:0}.app-article-access .buybox__info{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;margin:0}.app-article-access{margin:0 0 32px}@media only screen and (min-width:1024px){.app-article-access{margin:0 0 24px}}.c-status-message{font-size:1rem}.c-article-body{font-size:1.125rem}.c-article-body dl,.c-article-body ol,.c-article-body p,.c-article-body ul{margin-bottom:32px;margin-top:0}.c-article-access-provider__text:last-of-type,.c-article-body .c-notes__text:last-of-type{margin-bottom:0}.c-article-body ol p,.c-article-body ul p{margin-bottom:16px}.c-article-section__figure-caption{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-reading-companion__figure-item{border-top-color:#c5e0f4}.c-reading-companion__sticky{max-width:400px}.c-article-section .c-article-section__figure-description>*{font-size:1rem;margin-bottom:16px}.c-reading-companion__reference-item{border-top:1px solid #d5d5d5;padding:16px 0}.c-reading-companion__reference-item:first-child{padding-top:0}.c-article-share-box__button,.js .c-article-authors-search__item .c-article-button{background:0 0;border:2px solid #025e8d;border-radius:32px;box-shadow:none;color:#025e8d;font-size:1rem;font-weight:700;line-height:1.5;margin:0;padding:8px 24px;transition:all .2s ease 0s}.c-article-authors-search__item .c-article-button{width:100%}.c-pdf-download .u-button{background-color:#fff;border:2px solid #fff;color:#01324b;justify-content:center}.c-context-bar__container .c-pdf-download .u-button svg,.c-pdf-download .u-button svg{fill:currentcolor}.c-pdf-download .u-button:visited{color:#01324b}.c-pdf-download .u-button:hover{border:4px solid #01324b;box-shadow:none}.c-pdf-download .u-button:focus,.c-pdf-download .u-button:hover{background-color:#01324b}.c-pdf-download .u-button:focus svg path,.c-pdf-download .u-button:hover svg path{fill:#fff}.c-context-bar__container .c-pdf-download .u-button{background-image:none;border:2px solid;color:#fff}.c-context-bar__container .c-pdf-download .u-button:visited{color:#fff}.c-context-bar__container .c-pdf-download .u-button:hover{text-decoration:none}.c-context-bar__container .c-pdf-download .u-button:focus{box-shadow:none;outline:0;text-decoration:none}.c-context-bar__container .c-pdf-download .u-button:focus,.c-context-bar__container .c-pdf-download .u-button:hover{background-color:#fff;background-image:none;color:#01324b}.c-context-bar__container .c-pdf-download .u-button:focus svg path,.c-context-bar__container .c-pdf-download .u-button:hover svg path{fill:#01324b}.c-context-bar__container .c-pdf-download .u-button,.c-pdf-download .u-button{box-shadow:none;font-size:1rem;font-weight:700;line-height:1.5;padding:8px 24px}.c-context-bar__container .c-pdf-download .u-button{background-color:#025e8d}.c-pdf-download .u-button:hover{border:2px solid #fff}.c-pdf-download .u-button:focus,.c-pdf-download .u-button:hover{background:0 0;box-shadow:none;color:#fff}.c-context-bar__container .c-pdf-download .u-button:hover{border:2px solid #025e8d;box-shadow:none;color:#025e8d}.c-context-bar__container .c-pdf-download .u-button:focus,.c-pdf-download .u-button:focus{border:2px solid #025e8d}.c-article-share-box__button:focus:focus,.c-article__pill-button:focus:focus,.c-context-bar__container .c-pdf-download .u-button:focus:focus,.c-pdf-download .u-button:focus:focus{outline:3px solid #08c;will-change:transform}.c-pdf-download__link .u-icon{padding-top:0}.c-bibliographic-information__column button{margin-bottom:16px}.c-article-body .c-article-author-affiliation__list p,.c-article-body .c-article-author-information__list p,figure{margin:0}.c-article-share-box__button{margin-right:16px}.c-status-message--boxed{border-radius:12px}.c-article-associated-content__collection-title{font-size:1rem}.app-card-service__description,.c-article-body .app-card-service__description{color:#222;margin-bottom:0;margin-top:8px}.app-article-access__subscriptions a,.app-article-access__subscriptions a:visited,.app-book-series-listing__item a,.app-book-series-listing__item a:hover,.app-book-series-listing__item a:visited,.c-article-author-list a,.c-article-author-list a:visited,.c-article-buy-box a,.c-article-buy-box a:visited,.c-article-peer-review a,.c-article-peer-review a:visited,.c-article-satellite-subtitle a,.c-article-satellite-subtitle a:visited,.c-breadcrumbs__link,.c-breadcrumbs__link:hover,.c-breadcrumbs__link:visited{color:#000}.c-article-author-list svg{height:24px;margin:0 0 0 6px;width:24px}.c-article-header{margin-bottom:32px}@media only screen and (min-width:876px){.js .c-ad--conditional{display:block}}.u-lazy-ad-wrapper{background-color:#fff;display:none;min-height:149px}@media only screen and (min-width:876px){.u-lazy-ad-wrapper{display:block}}p.c-ad__label{margin-bottom:4px}.c-ad--728x90{background-color:#fff;border-bottom:2px solid #cedbe0} } </style> <style>@media only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark) { .eds-c-header__brand img{height:24px;width:203px}.app-article-masthead__journal-link img{height:93px;width:72px}@media only screen and (min-width:769px){.app-article-masthead__journal-link img{height:161px;width:122px}} } </style> <link rel="stylesheet" data-test="critical-css-handler" data-inline-css-source="critical-css" href=/oscar-static/app-springerlink/css/core-darwin-9fe647df8f.css media="print" onload="this.media='all';this.onload=null"> <link rel="stylesheet" data-test="critical-css-handler" data-inline-css-source="critical-css" href="/oscar-static/app-springerlink/css/enhanced-darwin-article-8aaaca8a1c.css" media="print" onload="this.media='only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)';this.onload=null"> <script type="text/javascript"> config = { env: 'live', site: '10052.springer.com', siteWithPath: '10052.springer.com' + window.location.pathname, twitterHashtag: '10052', cmsPrefix: 'https://studio-cms.springernature.com/studio/', figshareScriptUrl: 'https://widgets.figshare.com/static/figshare.js', hasFigshareInvoked: false, publisherBrand: 'Springer', mustardcut: false }; </script> <script> window.dataLayer = [{"GA Key":"UA-26408784-1","DOI":"10.1140/epjc/s10052-016-4285-4","Page":"article","springerJournal":true,"Publishing Model":"Open Access","Country":"SG","japan":false,"doi":"10.1140-epjc-s10052-016-4285-4","Journal Id":10052,"Journal Title":"The European Physical Journal C","imprint":"Springer","Keywords":"","kwrd":[],"Labs":"Y","ksg":"Krux.segments","kuid":"Krux.uid","Has Body":"Y","Features":[],"Open Access":"Y","hasAccess":"Y","bypassPaywall":"N","user":{"license":{"businessPartnerID":[],"businessPartnerIDString":""}},"Access Type":"open","Bpids":"","Bpnames":"","BPID":["1"],"VG Wort Identifier":"vgzm.415900-10.1140-epjc-s10052-016-4285-4","Full HTML":"Y","Subject Codes":["SCP","SCP23029","SCP23010","SCP19048","SCP31040","SCP22006","SC113000"],"pmc":["P","P23029","P23010","P19048","P31040","P22006","113000"],"session":{"authentication":{"loginStatus":"N"},"attributes":{"edition":"academic"}},"content":{"serial":{"eissn":"1434-6052","pissn":"1434-6044"},"type":"Article","category":{"pmc":{"primarySubject":"Physics","primarySubjectCode":"P","secondarySubjects":{"1":"Elementary Particles, Quantum Field Theory","2":"Nuclear Physics, Heavy Ions, Hadrons","3":"Quantum Field Theories, String Theory","4":"Measurement Science and Instrumentation","5":"Astronomy, Astrophysics and Cosmology","6":"Nuclear Energy"},"secondarySubjectCodes":{"1":"P23029","2":"P23010","3":"P19048","4":"P31040","5":"P22006","6":"113000"}},"sucode":"SC12","articleType":"Regular Article - Experimental Physics"},"attributes":{"deliveryPlatform":"oscar"}},"page":{"attributes":{"environment":"live"},"category":{"pageType":"article"}},"Event Category":"Article"}]; </script> <script data-test="springer-link-article-datalayer"> window.dataLayer = window.dataLayer || []; window.dataLayer.push({ ga4MeasurementId: 'G-B3E4QL2TPR', ga360TrackingId: 'UA-26408784-1', twitterId: 'o47a7', baiduId: 'aef3043f025ccf2305af8a194652d70b', ga4ServerUrl: 'https://collect.springer.com', imprint: 'springerlink', page: { attributes:{ featureFlags: [{ name: 'darwin-orion', active: true }, { name: 'chapter-books-recs', active: true } ], darwinAvailable: true } } }); </script> <script> (function(w, d) { w.config = w.config || {}; w.config.mustardcut = false; if (w.matchMedia && w.matchMedia('only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)').matches) { w.config.mustardcut = true; d.classList.add('js'); d.classList.remove('grade-c'); d.classList.remove('no-js'); } })(window, document.documentElement); </script> <script class="js-entry"> if (window.config.mustardcut) { (function(w, d) { window.Component = {}; window.suppressShareButton = true; window.onArticlePage = true; var currentScript = d.currentScript || d.head.querySelector('script.js-entry'); function catchNoModuleSupport() { var scriptEl = d.createElement('script'); return (!('noModule' in scriptEl) && 'onbeforeload' in scriptEl) } var headScripts = [ {'src': '/oscar-static/js/polyfill-es5-bundle-572d4fec60.js', 'async': false} ]; var bodyScripts = [ {'src': '/oscar-static/js/global-article-es5-bundle-dad1690b0d.js', 'async': false, 'module': false}, {'src': '/oscar-static/js/global-article-es6-bundle-e7d03c4cb3.js', 'async': false, 'module': true} ]; function createScript(script) { var scriptEl = d.createElement('script'); scriptEl.src = script.src; scriptEl.async = script.async; if (script.module === true) { scriptEl.type = "module"; if (catchNoModuleSupport()) { scriptEl.src = ''; } } else if (script.module === false) { scriptEl.setAttribute('nomodule', true) } if (script.charset) { scriptEl.setAttribute('charset', script.charset); } return scriptEl; } for (var i = 0; i < headScripts.length; ++i) { var scriptEl = createScript(headScripts[i]); currentScript.parentNode.insertBefore(scriptEl, currentScript.nextSibling); } d.addEventListener('DOMContentLoaded', function() { for (var i = 0; i < bodyScripts.length; ++i) { var scriptEl = createScript(bodyScripts[i]); d.body.appendChild(scriptEl); } }); // Webfont repeat view var config = w.config; if (config && config.publisherBrand && sessionStorage.fontsLoaded === 'true') { d.documentElement.className += ' webfonts-loaded'; } })(window, document); } </script> <script data-src="https://cdn.optimizely.com/js/27195530232.js" data-cc-script="C03"></script> <script data-test="gtm-head"> window.initGTM = function() { if (window.config.mustardcut) { (function (w, d, s, l, i) { w[l] = w[l] || []; w[l].push({'gtm.start': new Date().getTime(), event: 'gtm.js'}); var f = d.getElementsByTagName(s)[0], j = d.createElement(s), dl = l != 'dataLayer' ? '&l=' + l : ''; j.async = true; j.src = 'https://www.googletagmanager.com/gtm.js?id=' + i + dl; f.parentNode.insertBefore(j, f); })(window, document, 'script', 'dataLayer', 'GTM-MRVXSHQ'); } } </script> <script> (function (w, d, t) { function cc() { var h = w.location.hostname; var e = d.createElement(t), s = d.getElementsByTagName(t)[0]; if (h.indexOf('springer.com') > -1 && h.indexOf('biomedcentral.com') === -1 && h.indexOf('springeropen.com') === -1) { if (h.indexOf('link-qa.springer.com') > -1 || h.indexOf('test-www.springer.com') > -1) { e.src = 'https://cmp.springer.com/production_live/en/consent-bundle-17-52.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.springer.com/production_live/en/consent-bundle-17-52.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else if (h.indexOf('biomedcentral.com') > -1) { if (h.indexOf('biomedcentral.com.qa') > -1) { e.src = 'https://cmp.biomedcentral.com/production_live/en/consent-bundle-15-38.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.biomedcentral.com/production_live/en/consent-bundle-15-38.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else if (h.indexOf('springeropen.com') > -1) { if (h.indexOf('springeropen.com.qa') > -1) { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-16-35.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-16-35.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else if (h.indexOf('springernature.com') > -1) { if (h.indexOf('beta-qa.springernature.com') > -1) { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-49-43.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-NK22KLS')"); } else { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-49-43.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-NK22KLS')"); } } else { e.src = '/oscar-static/js/cookie-consent-es5-bundle-cb57c2c98a.js'; e.setAttribute('data-consent', h); } s.insertAdjacentElement('afterend', e); } cc(); })(window, document, 'script'); </script> <link rel="canonical" href="https://link.springer.com/article/10.1140/epjc/s10052-016-4285-4"/> <script type="application/ld+json">{"mainEntity":{"headline":"A critical appraisal and evaluation of modern PDFs","description":"We review the present status of the determination of parton distribution functions (PDFs) in the light of the precision requirements for the LHC in Run 2 and other future hadron colliders. We provide brief reviews of all currently available PDF sets and use them to compute cross sections for a number of benchmark processes, including Higgs boson production in gluon–gluon fusion at the LHC. We show that the differences in the predictions obtained with the various PDFs are due to particular theory assumptions made in the fits of those PDFs. We discuss PDF uncertainties in the kinematic region covered by the LHC and on averaging procedures for PDFs, such as advocated by the PDF4LHC15 sets, and provide recommendations for the usage of PDF sets for theory predictions at the LHC.","datePublished":"2016-08-23T00:00:00Z","dateModified":"2016-08-23T00:00:00Z","pageStart":"1","pageEnd":"46","license":"http://creativecommons.org/licenses/by/4.0","sameAs":"https://doi.org/10.1140/epjc/s10052-016-4285-4","keywords":["Elementary Particles","Quantum Field Theory","Nuclear Physics","Heavy Ions","Hadrons","Quantum Field Theories","String Theory","Measurement Science and Instrumentation","Astronomy","Astrophysics and Cosmology","Nuclear Energy"],"image":["https://media.springernature.com/lw1200/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig1_HTML.gif","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig2_HTML.gif","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig3_HTML.gif","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig4_HTML.gif","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig5_HTML.gif","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig6_HTML.gif","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig7_HTML.gif","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig8_HTML.gif","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig9_HTML.gif","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig10_HTML.gif","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig11_HTML.gif","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig12_HTML.gif","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig13_HTML.gif","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig14_HTML.gif","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig15_HTML.gif","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig16_HTML.gif","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig17_HTML.gif","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig18_HTML.gif","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig19_HTML.gif"],"isPartOf":{"name":"The European Physical Journal C","issn":["1434-6052","1434-6044"],"volumeNumber":"76","@type":["Periodical","PublicationVolume"]},"publisher":{"name":"Springer Berlin Heidelberg","logo":{"url":"https://www.springernature.com/app-sn/public/images/logo-springernature.png","@type":"ImageObject"},"@type":"Organization"},"author":[{"name":"A. Accardi","affiliation":[{"name":"Hampton University","address":{"name":"Hampton University, Hampton, USA","@type":"PostalAddress"},"@type":"Organization"},{"name":"Jefferson Lab","address":{"name":"Jefferson Lab, Newport News, USA","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"S. Alekhin","affiliation":[{"name":"Universität Hamburg","address":{"name":"II. Institut für Theoretische Physik, Universität Hamburg, Hamburg, Germany","@type":"PostalAddress"},"@type":"Organization"},{"name":"Institute for High Energy Physics","address":{"name":"Institute for High Energy Physics, Protvino, Russia","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"J. Blümlein","affiliation":[{"name":"Deutsches Elektronensynchrotron DESY","address":{"name":"Deutsches Elektronensynchrotron DESY, Zeuthen, Germany","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"M. V. Garzelli","affiliation":[{"name":"Universität Hamburg","address":{"name":"II. Institut für Theoretische Physik, Universität Hamburg, Hamburg, Germany","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"K. Lipka","affiliation":[{"name":"Deutsches Elektronensynchrotron DESY","address":{"name":"Deutsches Elektronensynchrotron DESY, Hamburg, Germany","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"W. Melnitchouk","affiliation":[{"name":"Jefferson Lab","address":{"name":"Jefferson Lab, Newport News, USA","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"S. Moch","affiliation":[{"name":"Universität Hamburg","address":{"name":"II. Institut für Theoretische Physik, Universität Hamburg, Hamburg, Germany","@type":"PostalAddress"},"@type":"Organization"}],"email":"sven-olaf.moch@desy.de","@type":"Person"},{"name":"J. F. Owens","affiliation":[{"name":"Florida State University","address":{"name":"Florida State University, Tallahassee, USA","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"R. Plačakytė","affiliation":[{"name":"Deutsches Elektronensynchrotron DESY","address":{"name":"Deutsches Elektronensynchrotron DESY, Hamburg, Germany","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"E. Reya","affiliation":[{"name":"Technische Universität Dortmund","address":{"name":"Institut für Physik, Technische Universität Dortmund, Dortmund, Germany","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"N. Sato","affiliation":[{"name":"Jefferson Lab","address":{"name":"Jefferson Lab, Newport News, USA","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"A. Vogt","affiliation":[{"name":"University of Liverpool","address":{"name":"Department of Mathematical Sciences, University of Liverpool, Liverpool, UK","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"O. Zenaiev","affiliation":[{"name":"Deutsches Elektronensynchrotron DESY","address":{"name":"Deutsches Elektronensynchrotron DESY, Hamburg, Germany","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"}],"isAccessibleForFree":true,"@type":"ScholarlyArticle"},"@context":"https://schema.org","@type":"WebPage"}</script> </head> <body class="" > <!-- Google Tag Manager (noscript) --> <noscript> <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-MRVXSHQ" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <!-- End Google Tag Manager (noscript) --> <!-- Google Tag Manager (noscript) --> <noscript data-test="gtm-body"> <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-MRVXSHQ" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <!-- End Google Tag Manager (noscript) --> <div class="u-visually-hidden" aria-hidden="true" data-test="darwin-icons"> <?xml version="1.0" encoding="UTF-8"?><!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><symbol id="icon-eds-i-accesses-medium" viewBox="0 0 24 24"><path d="M15.59 1a1 1 0 0 1 .706.291l5.41 5.385a1 1 0 0 1 .294.709v13.077c0 .674-.269 1.32-.747 1.796a2.549 2.549 0 0 1-1.798.742H15a1 1 0 0 1 0-2h4.455a.549.549 0 0 0 .387-.16.535.535 0 0 0 .158-.378V7.8L15.178 3H5.545a.543.543 0 0 0-.538.451L5 3.538v8.607a1 1 0 0 1-2 0V3.538A2.542 2.542 0 0 1 5.545 1h10.046ZM8 13c2.052 0 4.66 1.61 6.36 3.4l.124.141c.333.41.516.925.516 1.459 0 .6-.232 1.178-.64 1.599C12.666 21.388 10.054 23 8 23c-2.052 0-4.66-1.61-6.353-3.393A2.31 2.31 0 0 1 1 18c0-.6.232-1.178.64-1.6C3.34 14.61 5.948 13 8 13Zm0 2c-1.369 0-3.552 1.348-4.917 2.785A.31.31 0 0 0 3 18c0 .083.031.161.09.222C4.447 19.652 6.631 21 8 21c1.37 0 3.556-1.35 4.917-2.785A.31.31 0 0 0 13 18a.32.32 0 0 0-.048-.17l-.042-.052C11.553 16.348 9.369 15 8 15Zm0 1a2 2 0 1 1 0 4 2 2 0 0 1 0-4Z"/></symbol><symbol id="icon-eds-i-altmetric-medium" viewBox="0 0 24 24"><path d="M12 1c5.978 0 10.843 4.77 10.996 10.712l.004.306-.002.022-.002.248C22.843 18.23 17.978 23 12 23 5.925 23 1 18.075 1 12S5.925 1 12 1Zm-1.726 9.246L8.848 12.53a1 1 0 0 1-.718.461L8.003 13l-4.947.014a9.001 9.001 0 0 0 17.887-.001L16.553 13l-2.205 3.53a1 1 0 0 1-1.735-.068l-.05-.11-2.289-6.106ZM12 3a9.001 9.001 0 0 0-8.947 8.013l4.391-.012L9.652 7.47a1 1 0 0 1 1.784.179l2.288 6.104 1.428-2.283a1 1 0 0 1 .722-.462l.129-.008 4.943.012A9.001 9.001 0 0 0 12 3Z"/></symbol><symbol id="icon-eds-i-arrow-bend-down-medium" viewBox="0 0 24 24"><path d="m11.852 20.989.058.007L12 21l.075-.003.126-.017.111-.03.111-.044.098-.052.104-.074.082-.073 6-6a1 1 0 0 0-1.414-1.414L13 17.585v-12.2C13 4.075 11.964 3 10.667 3H4a1 1 0 1 0 0 2h6.667c.175 0 .333.164.333.385v12.2l-4.293-4.292a1 1 0 0 0-1.32-.083l-.094.083a1 1 0 0 0 0 1.414l6 6c.035.036.073.068.112.097l.11.071.114.054.105.035.118.025Z"/></symbol><symbol id="icon-eds-i-arrow-bend-down-small" viewBox="0 0 16 16"><path d="M1 2a1 1 0 0 0 1 1h5v8.585L3.707 8.293a1 1 0 0 0-1.32-.083l-.094.083a1 1 0 0 0 0 1.414l5 5 .063.059.093.069.081.048.105.048.104.035.105.022.096.01h.136l.122-.018.113-.03.103-.04.1-.053.102-.07.052-.043 5.04-5.037a1 1 0 1 0-1.415-1.414L9 11.583V3a2 2 0 0 0-2-2H2a1 1 0 0 0-1 1Z"/></symbol><symbol id="icon-eds-i-arrow-bend-up-medium" viewBox="0 0 24 24"><path d="m11.852 3.011.058-.007L12 3l.075.003.126.017.111.03.111.044.098.052.104.074.082.073 6 6a1 1 0 1 1-1.414 1.414L13 6.415v12.2C13 19.925 11.964 21 10.667 21H4a1 1 0 0 1 0-2h6.667c.175 0 .333-.164.333-.385v-12.2l-4.293 4.292a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l6-6c.035-.036.073-.068.112-.097l.11-.071.114-.054.105-.035.118-.025Z"/></symbol><symbol id="icon-eds-i-arrow-bend-up-small" viewBox="0 0 16 16"><path d="M1 13.998a1 1 0 0 1 1-1h5V4.413L3.707 7.705a1 1 0 0 1-1.32.084l-.094-.084a1 1 0 0 1 0-1.414l5-5 .063-.059.093-.068.081-.05.105-.047.104-.035.105-.022L7.94 1l.136.001.122.017.113.03.103.04.1.053.102.07.052.043 5.04 5.037a1 1 0 1 1-1.415 1.414L9 4.415v8.583a2 2 0 0 1-2 2H2a1 1 0 0 1-1-1Z"/></symbol><symbol id="icon-eds-i-arrow-diagonal-medium" viewBox="0 0 24 24"><path d="M14 3h6l.075.003.126.017.111.03.111.044.098.052.096.067.09.08c.036.035.068.073.097.112l.071.11.054.114.035.105.03.148L21 4v6a1 1 0 0 1-2 0V6.414l-4.293 4.293a1 1 0 0 1-1.414-1.414L17.584 5H14a1 1 0 0 1-.993-.883L13 4a1 1 0 0 1 1-1ZM4 13a1 1 0 0 1 1 1v3.584l4.293-4.291a1 1 0 1 1 1.414 1.414L6.414 19H10a1 1 0 0 1 .993.883L11 20a1 1 0 0 1-1 1l-6.075-.003-.126-.017-.111-.03-.111-.044-.098-.052-.096-.067-.09-.08a1.01 1.01 0 0 1-.097-.112l-.071-.11-.054-.114-.035-.105-.025-.118-.007-.058L3 20v-6a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-arrow-diagonal-small" viewBox="0 0 16 16"><path d="m2 15-.082-.004-.119-.016-.111-.03-.111-.044-.098-.052-.096-.067-.09-.08a1.008 1.008 0 0 1-.097-.112l-.071-.11-.031-.062-.034-.081-.024-.076-.025-.118-.007-.058L1 14.02V9a1 1 0 1 1 2 0v2.584l2.793-2.791a1 1 0 1 1 1.414 1.414L4.414 13H7a1 1 0 0 1 .993.883L8 14a1 1 0 0 1-1 1H2ZM14 1l.081.003.12.017.111.03.111.044.098.052.096.067.09.08c.036.035.068.073.097.112l.071.11.031.062.034.081.024.076.03.148L15 2v5a1 1 0 0 1-2 0V4.414l-2.96 2.96A1 1 0 1 1 8.626 5.96L11.584 3H9a1 1 0 0 1-.993-.883L8 2a1 1 0 0 1 1-1h5Z"/></symbol><symbol id="icon-eds-i-arrow-down-medium" viewBox="0 0 24 24"><path d="m20.707 12.728-7.99 7.98a.996.996 0 0 1-.561.281l-.157.011a.998.998 0 0 1-.788-.384l-7.918-7.908a1 1 0 0 1 1.414-1.416L11 17.576V4a1 1 0 0 1 2 0v13.598l6.293-6.285a1 1 0 0 1 1.32-.082l.095.083a1 1 0 0 1-.001 1.414Z"/></symbol><symbol id="icon-eds-i-arrow-down-small" viewBox="0 0 16 16"><path d="m1.293 8.707 6 6 .063.059.093.069.081.048.105.049.104.034.056.013.118.017L8 15l.076-.003.122-.017.113-.03.085-.032.063-.03.098-.058.06-.043.05-.043 6.04-6.037a1 1 0 0 0-1.414-1.414L9 11.583V2a1 1 0 1 0-2 0v9.585L2.707 7.293a1 1 0 0 0-1.32-.083l-.094.083a1 1 0 0 0 0 1.414Z"/></symbol><symbol id="icon-eds-i-arrow-left-medium" viewBox="0 0 24 24"><path d="m11.272 3.293-7.98 7.99a.996.996 0 0 0-.281.561L3 12.001c0 .32.15.605.384.788l7.908 7.918a1 1 0 0 0 1.416-1.414L6.424 13H20a1 1 0 0 0 0-2H6.402l6.285-6.293a1 1 0 0 0 .082-1.32l-.083-.095a1 1 0 0 0-1.414.001Z"/></symbol><symbol id="icon-eds-i-arrow-left-small" viewBox="0 0 16 16"><path d="m7.293 1.293-6 6-.059.063-.069.093-.048.081-.049.105-.034.104-.013.056-.017.118L1 8l.003.076.017.122.03.113.032.085.03.063.058.098.043.06.043.05 6.037 6.04a1 1 0 0 0 1.414-1.414L4.417 9H14a1 1 0 0 0 0-2H4.415l4.292-4.293a1 1 0 0 0 .083-1.32l-.083-.094a1 1 0 0 0-1.414 0Z"/></symbol><symbol id="icon-eds-i-arrow-right-medium" viewBox="0 0 24 24"><path d="m12.728 3.293 7.98 7.99a.996.996 0 0 1 .281.561l.011.157c0 .32-.15.605-.384.788l-7.908 7.918a1 1 0 0 1-1.416-1.414L17.576 13H4a1 1 0 0 1 0-2h13.598l-6.285-6.293a1 1 0 0 1-.082-1.32l.083-.095a1 1 0 0 1 1.414.001Z"/></symbol><symbol id="icon-eds-i-arrow-right-small" viewBox="0 0 16 16"><path d="m8.707 1.293 6 6 .059.063.069.093.048.081.049.105.034.104.013.056.017.118L15 8l-.003.076-.017.122-.03.113-.032.085-.03.063-.058.098-.043.06-.043.05-6.037 6.04a1 1 0 0 1-1.414-1.414L11.583 9H2a1 1 0 1 1 0-2h9.585L7.293 2.707a1 1 0 0 1-.083-1.32l.083-.094a1 1 0 0 1 1.414 0Z"/></symbol><symbol id="icon-eds-i-arrow-up-medium" viewBox="0 0 24 24"><path d="m3.293 11.272 7.99-7.98a.996.996 0 0 1 .561-.281L12.001 3c.32 0 .605.15.788.384l7.918 7.908a1 1 0 0 1-1.414 1.416L13 6.424V20a1 1 0 0 1-2 0V6.402l-6.293 6.285a1 1 0 0 1-1.32.082l-.095-.083a1 1 0 0 1 .001-1.414Z"/></symbol><symbol id="icon-eds-i-arrow-up-small" viewBox="0 0 16 16"><path d="m1.293 7.293 6-6 .063-.059.093-.069.081-.048.105-.049.104-.034.056-.013.118-.017L8 1l.076.003.122.017.113.03.085.032.063.03.098.058.06.043.05.043 6.04 6.037a1 1 0 0 1-1.414 1.414L9 4.417V14a1 1 0 0 1-2 0V4.415L2.707 8.707a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414Z"/></symbol><symbol id="icon-eds-i-article-medium" viewBox="0 0 24 24"><path d="M8 7a1 1 0 0 0 0 2h4a1 1 0 1 0 0-2H8ZM8 11a1 1 0 1 0 0 2h8a1 1 0 1 0 0-2H8ZM7 16a1 1 0 0 1 1-1h8a1 1 0 1 1 0 2H8a1 1 0 0 1-1-1Z"/><path d="M5.545 1A2.542 2.542 0 0 0 3 3.538v16.924A2.542 2.542 0 0 0 5.545 23h12.91A2.542 2.542 0 0 0 21 20.462V3.5A2.5 2.5 0 0 0 18.5 1H5.545ZM5 3.538C5 3.245 5.24 3 5.545 3H18.5a.5.5 0 0 1 .5.5v16.962c0 .293-.24.538-.546.538H5.545A.542.542 0 0 1 5 20.462V3.538Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-book-medium" viewBox="0 0 24 24"><path d="M18.5 1A2.5 2.5 0 0 1 21 3.5v12c0 1.16-.79 2.135-1.86 2.418l-.14.031V21h1a1 1 0 0 1 .993.883L21 22a1 1 0 0 1-1 1H6.5A3.5 3.5 0 0 1 3 19.5v-15A3.5 3.5 0 0 1 6.5 1h12ZM17 18H6.5a1.5 1.5 0 0 0-1.493 1.356L5 19.5A1.5 1.5 0 0 0 6.5 21H17v-3Zm1.5-15h-12A1.5 1.5 0 0 0 5 4.5v11.837l.054-.025a3.481 3.481 0 0 1 1.254-.307L6.5 16h12a.5.5 0 0 0 .492-.41L19 15.5v-12a.5.5 0 0 0-.5-.5ZM15 6a1 1 0 0 1 0 2H9a1 1 0 1 1 0-2h6Z"/></symbol><symbol id="icon-eds-i-book-series-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M1 3.786C1 2.759 1.857 2 2.82 2H6.18c.964 0 1.82.759 1.82 1.786V4h3.168c.668 0 1.298.364 1.616.938.158-.109.333-.195.523-.252l3.216-.965c.923-.277 1.962.204 2.257 1.187l4.146 13.82c.296.984-.307 1.957-1.23 2.234l-3.217.965c-.923.277-1.962-.203-2.257-1.187L13 10.005v10.21c0 1.04-.878 1.785-1.834 1.785H7.833c-.291 0-.575-.07-.83-.195A1.849 1.849 0 0 1 6.18 22H2.821C1.857 22 1 21.241 1 20.214V3.786ZM3 4v11h3V4H3Zm0 16v-3h3v3H3Zm15.075-.04-.814-2.712 2.874-.862.813 2.712-2.873.862Zm1.485-5.49-2.874.862-2.634-8.782 2.873-.862 2.635 8.782ZM8 20V6h3v14H8Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-calendar-acceptance-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1Zm-.534 7.747a1 1 0 0 1 .094 1.412l-4.846 5.538a1 1 0 0 1-1.352.141l-2.77-2.076a1 1 0 0 1 1.2-1.6l2.027 1.519 4.236-4.84a1 1 0 0 1 1.411-.094ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-calendar-date-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1ZM8 15a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm4 0a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm-4-4a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm4 0a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm4 0a1 1 0 1 1 0 2 1 1 0 0 1 0-2ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-calendar-decision-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1Zm-2.935 8.246 2.686 2.645c.34.335.34.883 0 1.218l-2.686 2.645a.858.858 0 0 1-1.213-.009.854.854 0 0 1 .009-1.21l1.05-1.035H7.984a.992.992 0 0 1-.984-1c0-.552.44-1 .984-1h5.928l-1.051-1.036a.854.854 0 0 1-.085-1.121l.076-.088a.858.858 0 0 1 1.213-.009ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-calendar-impact-factor-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1Zm-3.2 6.924a.48.48 0 0 1 .125.544l-1.52 3.283h2.304c.27 0 .491.215.491.483a.477.477 0 0 1-.13.327l-4.18 4.484a.498.498 0 0 1-.69.031.48.48 0 0 1-.125-.544l1.52-3.284H9.291a.487.487 0 0 1-.491-.482c0-.121.047-.238.13-.327l4.18-4.484a.498.498 0 0 1 .69-.031ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-call-papers-medium" viewBox="0 0 24 24"><g><path d="m20.707 2.883-1.414 1.414a1 1 0 0 0 1.414 1.414l1.414-1.414a1 1 0 0 0-1.414-1.414Z"/><path d="M6 16.054c0 2.026 1.052 2.943 3 2.943a1 1 0 1 1 0 2c-2.996 0-5-1.746-5-4.943v-1.227a4.068 4.068 0 0 1-1.83-1.189 4.553 4.553 0 0 1-.87-1.455 4.868 4.868 0 0 1-.3-1.686c0-1.17.417-2.298 1.17-3.14.38-.426.834-.767 1.338-1 .51-.237 1.06-.36 1.617-.36L6.632 6H7l7.932-2.895A2.363 2.363 0 0 1 18 5.36v9.28a2.36 2.36 0 0 1-3.069 2.25l.084.03L7 14.997H6v1.057Zm9.637-11.057a.415.415 0 0 0-.083.008L8 7.638v5.536l7.424 1.786.104.02c.035.01.072.02.109.02.2 0 .363-.16.363-.36V5.36c0-.2-.163-.363-.363-.363Zm-9.638 3h-.874a1.82 1.82 0 0 0-.625.111l-.15.063a2.128 2.128 0 0 0-.689.517c-.42.47-.661 1.123-.661 1.81 0 .34.06.678.176.992.114.308.28.585.485.816.4.447.925.691 1.464.691h.874v-5Z" clip-rule="evenodd"/><path d="M20 8.997h2a1 1 0 1 1 0 2h-2a1 1 0 1 1 0-2ZM20.707 14.293l1.414 1.414a1 1 0 0 1-1.414 1.414l-1.414-1.414a1 1 0 0 1 1.414-1.414Z"/></g></symbol><symbol id="icon-eds-i-card-medium" viewBox="0 0 24 24"><path d="M19.615 2c.315 0 .716.067 1.14.279.76.38 1.245 1.107 1.245 2.106v15.23c0 .315-.067.716-.279 1.14-.38.76-1.107 1.245-2.106 1.245H4.385a2.56 2.56 0 0 1-1.14-.279C2.485 21.341 2 20.614 2 19.615V4.385c0-.315.067-.716.279-1.14C2.659 2.485 3.386 2 4.385 2h15.23Zm0 2H4.385c-.213 0-.265.034-.317.14A.71.71 0 0 0 4 4.385v15.23c0 .213.034.265.14.317a.71.71 0 0 0 .245.068h15.23c.213 0 .265-.034.317-.14a.71.71 0 0 0 .068-.245V4.385c0-.213-.034-.265-.14-.317A.71.71 0 0 0 19.615 4ZM17 16a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h10Zm0-3a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h10Zm-.5-7A1.5 1.5 0 0 1 18 7.5v3a1.5 1.5 0 0 1-1.5 1.5h-9A1.5 1.5 0 0 1 6 10.5v-3A1.5 1.5 0 0 1 7.5 6h9ZM16 8H8v2h8V8Z"/></symbol><symbol id="icon-eds-i-cart-medium" viewBox="0 0 24 24"><path d="M5.76 1a1 1 0 0 1 .994.902L7.155 6h13.34c.18 0 .358.02.532.057l.174.045a2.5 2.5 0 0 1 1.693 3.103l-2.069 7.03c-.36 1.099-1.398 1.823-2.49 1.763H8.65c-1.272.015-2.352-.927-2.546-2.244L4.852 3H2a1 1 0 0 1-.993-.883L1 2a1 1 0 0 1 1-1h3.76Zm2.328 14.51a.555.555 0 0 0 .55.488l9.751.001a.533.533 0 0 0 .527-.357l2.059-7a.5.5 0 0 0-.48-.642H7.351l.737 7.51ZM18 19a2 2 0 1 1 0 4 2 2 0 0 1 0-4ZM8 19a2 2 0 1 1 0 4 2 2 0 0 1 0-4Z"/></symbol><symbol id="icon-eds-i-check-circle-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18Zm5.125 4.72a1 1 0 0 1 .156 1.405l-6 7.5a1 1 0 0 1-1.421.143l-3-2.5a1 1 0 0 1 1.28-1.536l2.217 1.846 5.362-6.703a1 1 0 0 1 1.406-.156Z"/></symbol><symbol id="icon-eds-i-check-filled-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm5.125 6.72a1 1 0 0 0-1.406.155l-5.362 6.703-2.217-1.846a1 1 0 1 0-1.28 1.536l3 2.5a1 1 0 0 0 1.42-.143l6-7.5a1 1 0 0 0-.155-1.406Z"/></symbol><symbol id="icon-eds-i-chevron-down-medium" viewBox="0 0 24 24"><path d="M3.305 8.28a1 1 0 0 0-.024 1.415l7.495 7.762c.314.345.757.543 1.224.543.467 0 .91-.198 1.204-.522l7.515-7.783a1 1 0 1 0-1.438-1.39L12 15.845l-7.28-7.54A1 1 0 0 0 3.4 8.2l-.096.082Z"/></symbol><symbol id="icon-eds-i-chevron-down-small" viewBox="0 0 16 16"><path d="M13.692 5.278a1 1 0 0 1 .03 1.414L9.103 11.51a1.491 1.491 0 0 1-2.188.019L2.278 6.692a1 1 0 0 1 1.444-1.384L8 9.771l4.278-4.463a1 1 0 0 1 1.318-.111l.096.081Z"/></symbol><symbol id="icon-eds-i-chevron-left-medium" viewBox="0 0 24 24"><path d="M15.72 3.305a1 1 0 0 0-1.415-.024l-7.762 7.495A1.655 1.655 0 0 0 6 12c0 .467.198.91.522 1.204l7.783 7.515a1 1 0 1 0 1.39-1.438L8.155 12l7.54-7.28A1 1 0 0 0 15.8 3.4l-.082-.096Z"/></symbol><symbol id="icon-eds-i-chevron-left-small" viewBox="0 0 16 16"><path d="M10.722 2.308a1 1 0 0 0-1.414-.03L4.49 6.897a1.491 1.491 0 0 0-.019 2.188l4.838 4.637a1 1 0 1 0 1.384-1.444L6.229 8l4.463-4.278a1 1 0 0 0 .111-1.318l-.081-.096Z"/></symbol><symbol id="icon-eds-i-chevron-right-medium" viewBox="0 0 24 24"><path d="M8.28 3.305a1 1 0 0 1 1.415-.024l7.762 7.495c.345.314.543.757.543 1.224 0 .467-.198.91-.522 1.204l-7.783 7.515a1 1 0 1 1-1.39-1.438L15.845 12l-7.54-7.28A1 1 0 0 1 8.2 3.4l.082-.096Z"/></symbol><symbol id="icon-eds-i-chevron-right-small" viewBox="0 0 16 16"><path d="M5.278 2.308a1 1 0 0 1 1.414-.03l4.819 4.619a1.491 1.491 0 0 1 .019 2.188l-4.838 4.637a1 1 0 1 1-1.384-1.444L9.771 8 5.308 3.722a1 1 0 0 1-.111-1.318l.081-.096Z"/></symbol><symbol id="icon-eds-i-chevron-up-medium" viewBox="0 0 24 24"><path d="M20.695 15.72a1 1 0 0 0 .024-1.415l-7.495-7.762A1.655 1.655 0 0 0 12 6c-.467 0-.91.198-1.204.522l-7.515 7.783a1 1 0 1 0 1.438 1.39L12 8.155l7.28 7.54a1 1 0 0 0 1.319.106l.096-.082Z"/></symbol><symbol id="icon-eds-i-chevron-up-small" viewBox="0 0 16 16"><path d="M13.692 10.722a1 1 0 0 0 .03-1.414L9.103 4.49a1.491 1.491 0 0 0-2.188-.019L2.278 9.308a1 1 0 0 0 1.444 1.384L8 6.229l4.278 4.463a1 1 0 0 0 1.318.111l.096-.081Z"/></symbol><symbol id="icon-eds-i-citations-medium" viewBox="0 0 24 24"><path d="M15.59 1a1 1 0 0 1 .706.291l5.41 5.385a1 1 0 0 1 .294.709v13.077c0 .674-.269 1.32-.747 1.796a2.549 2.549 0 0 1-1.798.742h-5.843a1 1 0 1 1 0-2h5.843a.549.549 0 0 0 .387-.16.535.535 0 0 0 .158-.378V7.8L15.178 3H5.545a.543.543 0 0 0-.538.451L5 3.538v8.607a1 1 0 0 1-2 0V3.538A2.542 2.542 0 0 1 5.545 1h10.046ZM5.483 14.35c.197.26.17.62-.049.848l-.095.083-.016.011c-.36.24-.628.45-.804.634-.393.409-.59.93-.59 1.562.077-.019.192-.028.345-.028.442 0 .84.158 1.195.474.355.316.532.716.532 1.2 0 .501-.173.9-.518 1.198-.345.298-.767.446-1.266.446-.672 0-1.209-.195-1.612-.585-.403-.39-.604-.976-.604-1.757 0-.744.11-1.39.33-1.938.222-.549.49-1.009.807-1.38a4.28 4.28 0 0 1 .992-.88c.07-.043.148-.087.232-.133a.881.881 0 0 1 1.121.245Zm5 0c.197.26.17.62-.049.848l-.095.083-.016.011c-.36.24-.628.45-.804.634-.393.409-.59.93-.59 1.562.077-.019.192-.028.345-.028.442 0 .84.158 1.195.474.355.316.532.716.532 1.2 0 .501-.173.9-.518 1.198-.345.298-.767.446-1.266.446-.672 0-1.209-.195-1.612-.585-.403-.39-.604-.976-.604-1.757 0-.744.11-1.39.33-1.938.222-.549.49-1.009.807-1.38a4.28 4.28 0 0 1 .992-.88c.07-.043.148-.087.232-.133a.881.881 0 0 1 1.121.245Z"/></symbol><symbol id="icon-eds-i-clipboard-check-medium" viewBox="0 0 24 24"><path d="M14.4 1c1.238 0 2.274.865 2.536 2.024L18.5 3C19.886 3 21 4.14 21 5.535v14.93C21 21.86 19.886 23 18.5 23h-13C4.114 23 3 21.86 3 20.465V5.535C3 4.14 4.114 3 5.5 3h1.57c.27-1.147 1.3-2 2.53-2h4.8Zm4.115 4-1.59.024A2.601 2.601 0 0 1 14.4 7H9.6c-1.23 0-2.26-.853-2.53-2H5.5c-.27 0-.5.234-.5.535v14.93c0 .3.23.535.5.535h13c.27 0 .5-.234.5-.535V5.535c0-.3-.23-.535-.485-.535Zm-1.909 4.205a1 1 0 0 1 .19 1.401l-5.334 7a1 1 0 0 1-1.344.23l-2.667-1.75a1 1 0 1 1 1.098-1.672l1.887 1.238 4.769-6.258a1 1 0 0 1 1.401-.19ZM14.4 3H9.6a.6.6 0 0 0-.6.6v.8a.6.6 0 0 0 .6.6h4.8a.6.6 0 0 0 .6-.6v-.8a.6.6 0 0 0-.6-.6Z"/></symbol><symbol id="icon-eds-i-clipboard-report-medium" viewBox="0 0 24 24"><path d="M14.4 1c1.238 0 2.274.865 2.536 2.024L18.5 3C19.886 3 21 4.14 21 5.535v14.93C21 21.86 19.886 23 18.5 23h-13C4.114 23 3 21.86 3 20.465V5.535C3 4.14 4.114 3 5.5 3h1.57c.27-1.147 1.3-2 2.53-2h4.8Zm4.115 4-1.59.024A2.601 2.601 0 0 1 14.4 7H9.6c-1.23 0-2.26-.853-2.53-2H5.5c-.27 0-.5.234-.5.535v14.93c0 .3.23.535.5.535h13c.27 0 .5-.234.5-.535V5.535c0-.3-.23-.535-.485-.535Zm-2.658 10.929a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h7.857Zm0-3.929a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h7.857ZM14.4 3H9.6a.6.6 0 0 0-.6.6v.8a.6.6 0 0 0 .6.6h4.8a.6.6 0 0 0 .6-.6v-.8a.6.6 0 0 0-.6-.6Z"/></symbol><symbol id="icon-eds-i-close-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18ZM8.707 7.293 12 10.585l3.293-3.292a1 1 0 0 1 1.414 1.414L13.415 12l3.292 3.293a1 1 0 0 1-1.414 1.414L12 13.415l-3.293 3.292a1 1 0 1 1-1.414-1.414L10.585 12 7.293 8.707a1 1 0 0 1 1.414-1.414Z"/></symbol><symbol id="icon-eds-i-cloud-upload-medium" viewBox="0 0 24 24"><path d="m12.852 10.011.028-.004L13 10l.075.003.126.017.086.022.136.052.098.052.104.074.082.073 3 3a1 1 0 0 1 0 1.414l-.094.083a1 1 0 0 1-1.32-.083L14 13.416V20a1 1 0 0 1-2 0v-6.586l-1.293 1.293a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l3-3 .112-.097.11-.071.114-.054.105-.035.118-.025Zm.587-7.962c3.065.362 5.497 2.662 5.992 5.562l.013.085.207.073c2.117.782 3.496 2.845 3.337 5.097l-.022.226c-.297 2.561-2.503 4.491-5.124 4.502a1 1 0 1 1-.009-2c1.619-.007 2.967-1.186 3.147-2.733.179-1.542-.86-2.979-2.487-3.353-.512-.149-.894-.579-.981-1.165-.21-2.237-2-4.035-4.308-4.308-2.31-.273-4.497 1.06-5.25 3.19l-.049.113c-.234.468-.718.756-1.176.743-1.418.057-2.689.857-3.32 2.084a3.668 3.668 0 0 0 .262 3.798c.796 1.136 2.169 1.764 3.583 1.635a1 1 0 1 1 .182 1.992c-2.125.194-4.193-.753-5.403-2.48a5.668 5.668 0 0 1-.403-5.86c.85-1.652 2.449-2.79 4.323-3.092l.287-.039.013-.028c1.207-2.741 4.125-4.404 7.186-4.042Z"/></symbol><symbol id="icon-eds-i-collection-medium" viewBox="0 0 24 24"><path d="M21 7a1 1 0 0 1 1 1v12.5a2.5 2.5 0 0 1-2.5 2.5H8a1 1 0 0 1 0-2h11.5a.5.5 0 0 0 .5-.5V8a1 1 0 0 1 1-1Zm-5.5-5A2.5 2.5 0 0 1 18 4.5v12a2.5 2.5 0 0 1-2.5 2.5h-11A2.5 2.5 0 0 1 2 16.5v-12A2.5 2.5 0 0 1 4.5 2h11Zm0 2h-11a.5.5 0 0 0-.5.5v12a.5.5 0 0 0 .5.5h11a.5.5 0 0 0 .5-.5v-12a.5.5 0 0 0-.5-.5ZM13 13a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h6Zm0-3.5a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h6ZM13 6a1 1 0 0 1 0 2H7a1 1 0 1 1 0-2h6Z"/></symbol><symbol id="icon-eds-i-conference-series-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M4.5 2A2.5 2.5 0 0 0 2 4.5v11A2.5 2.5 0 0 0 4.5 18h2.37l-2.534 2.253a1 1 0 0 0 1.328 1.494L9.88 18H11v3a1 1 0 1 0 2 0v-3h1.12l4.216 3.747a1 1 0 0 0 1.328-1.494L17.13 18h2.37a2.5 2.5 0 0 0 2.5-2.5v-11A2.5 2.5 0 0 0 19.5 2h-15ZM20 6V4.5a.5.5 0 0 0-.5-.5h-15a.5.5 0 0 0-.5.5V6h16ZM4 8v7.5a.5.5 0 0 0 .5.5h15a.5.5 0 0 0 .5-.5V8H4Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-delivery-medium" viewBox="0 0 24 24"><path d="M8.51 20.598a3.037 3.037 0 0 1-3.02 0A2.968 2.968 0 0 1 4.161 19L3.5 19A2.5 2.5 0 0 1 1 16.5v-11A2.5 2.5 0 0 1 3.5 3h10a2.5 2.5 0 0 1 2.45 2.004L16 5h2.527c.976 0 1.855.585 2.27 1.49l2.112 4.62a1 1 0 0 1 .091.416v4.856C23 17.814 21.889 19 20.484 19h-.523a1.01 1.01 0 0 1-.121-.007 2.96 2.96 0 0 1-1.33 1.605 3.037 3.037 0 0 1-3.02 0A2.968 2.968 0 0 1 14.161 19H9.838a2.968 2.968 0 0 1-1.327 1.597Zm-2.024-3.462a.955.955 0 0 0-.481.73L5.999 18l.001.022a.944.944 0 0 0 .388.777l.098.065c.316.181.712.181 1.028 0A.97.97 0 0 0 8 17.978a.95.95 0 0 0-.486-.842 1.037 1.037 0 0 0-1.028 0Zm10 0a.955.955 0 0 0-.481.73l-.005.156a.944.944 0 0 0 .388.777l.098.065c.316.181.712.181 1.028 0a.97.97 0 0 0 .486-.886.95.95 0 0 0-.486-.842 1.037 1.037 0 0 0-1.028 0ZM21 12h-5v3.17a3.038 3.038 0 0 1 2.51.232 2.993 2.993 0 0 1 1.277 1.45l.058.155.058-.005.581-.002c.27 0 .516-.263.516-.618V12Zm-7.5-7h-10a.5.5 0 0 0-.5.5v11a.5.5 0 0 0 .5.5h.662a2.964 2.964 0 0 1 1.155-1.491l.172-.107a3.037 3.037 0 0 1 3.022 0A2.987 2.987 0 0 1 9.843 17H13.5a.5.5 0 0 0 .5-.5v-11a.5.5 0 0 0-.5-.5Zm5.027 2H16v3h4.203l-1.224-2.677a.532.532 0 0 0-.375-.316L18.527 7Z"/></symbol><symbol id="icon-eds-i-download-medium" viewBox="0 0 24 24"><path d="M22 18.5a3.5 3.5 0 0 1-3.5 3.5h-13A3.5 3.5 0 0 1 2 18.5V18a1 1 0 0 1 2 0v.5A1.5 1.5 0 0 0 5.5 20h13a1.5 1.5 0 0 0 1.5-1.5V18a1 1 0 0 1 2 0v.5Zm-3.293-7.793-6 6-.063.059-.093.069-.081.048-.105.049-.104.034-.056.013-.118.017L12 17l-.076-.003-.122-.017-.113-.03-.085-.032-.063-.03-.098-.058-.06-.043-.05-.043-6.04-6.037a1 1 0 0 1 1.414-1.414l4.294 4.29L11 3a1 1 0 0 1 2 0l.001 10.585 4.292-4.292a1 1 0 0 1 1.32-.083l.094.083a1 1 0 0 1 0 1.414Z"/></symbol><symbol id="icon-eds-i-edit-medium" viewBox="0 0 24 24"><path d="M17.149 2a2.38 2.38 0 0 1 1.699.711l2.446 2.46a2.384 2.384 0 0 1 .005 3.38L10.01 19.906a1 1 0 0 1-.434.257l-6.3 1.8a1 1 0 0 1-1.237-1.237l1.8-6.3a1 1 0 0 1 .257-.434L15.443 2.718A2.385 2.385 0 0 1 17.15 2Zm-3.874 5.689-7.586 7.536-1.234 4.319 4.318-1.234 7.54-7.582-3.038-3.039ZM17.149 4a.395.395 0 0 0-.286.126L14.695 6.28l3.029 3.029 2.162-2.173a.384.384 0 0 0 .106-.197L20 6.864c0-.103-.04-.2-.119-.278l-2.457-2.47A.385.385 0 0 0 17.149 4Z"/></symbol><symbol id="icon-eds-i-education-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M12.41 2.088a1 1 0 0 0-.82 0l-10 4.5a1 1 0 0 0 0 1.824L3 9.047v7.124A3.001 3.001 0 0 0 4 22a3 3 0 0 0 1-5.83V9.948l1 .45V14.5a1 1 0 0 0 .087.408L7 14.5c-.913.408-.912.41-.912.41l.001.003.003.006.007.015a1.988 1.988 0 0 0 .083.16c.054.097.131.225.236.373.21.297.53.68.993 1.057C8.351 17.292 9.824 18 12 18c2.176 0 3.65-.707 4.589-1.476.463-.378.783-.76.993-1.057a4.162 4.162 0 0 0 .319-.533l.007-.015.003-.006v-.003h.002s0-.002-.913-.41l.913.408A1 1 0 0 0 18 14.5v-4.103l4.41-1.985a1 1 0 0 0 0-1.824l-10-4.5ZM16 11.297l-3.59 1.615a1 1 0 0 1-.82 0L8 11.297v2.94a3.388 3.388 0 0 0 .677.739C9.267 15.457 10.294 16 12 16s2.734-.543 3.323-1.024a3.388 3.388 0 0 0 .677-.739v-2.94ZM4.437 7.5 12 4.097 19.563 7.5 12 10.903 4.437 7.5ZM3 19a1 1 0 1 1 2 0 1 1 0 0 1-2 0Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-error-diamond-medium" viewBox="0 0 24 24"><path d="M12.002 1c.702 0 1.375.279 1.871.775l8.35 8.353a2.646 2.646 0 0 1 .001 3.744l-8.353 8.353a2.646 2.646 0 0 1-3.742 0l-8.353-8.353a2.646 2.646 0 0 1 0-3.744l8.353-8.353.156-.142c.424-.362.952-.58 1.507-.625l.21-.008Zm0 2a.646.646 0 0 0-.38.123l-.093.08-8.34 8.34a.646.646 0 0 0-.18.355L3 12c0 .171.068.336.19.457l8.353 8.354a.646.646 0 0 0 .914 0l8.354-8.354a.646.646 0 0 0-.001-.914l-8.351-8.354A.646.646 0 0 0 12.002 3ZM12 14.5a1.5 1.5 0 0 1 .144 2.993L12 17.5a1.5 1.5 0 0 1 0-3ZM12 6a1 1 0 0 1 1 1v5a1 1 0 0 1-2 0V7a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-error-filled-medium" viewBox="0 0 24 24"><path d="M12.002 1c.702 0 1.375.279 1.871.775l8.35 8.353a2.646 2.646 0 0 1 .001 3.744l-8.353 8.353a2.646 2.646 0 0 1-3.742 0l-8.353-8.353a2.646 2.646 0 0 1 0-3.744l8.353-8.353.156-.142c.424-.362.952-.58 1.507-.625l.21-.008ZM12 14.5a1.5 1.5 0 0 0 0 3l.144-.007A1.5 1.5 0 0 0 12 14.5ZM12 6a1 1 0 0 0-1 1v5a1 1 0 0 0 2 0V7a1 1 0 0 0-1-1Z"/></symbol><symbol id="icon-eds-i-external-link-medium" viewBox="0 0 24 24"><path d="M9 2a1 1 0 1 1 0 2H4.6c-.371 0-.6.209-.6.5v15c0 .291.229.5.6.5h14.8c.371 0 .6-.209.6-.5V15a1 1 0 0 1 2 0v4.5c0 1.438-1.162 2.5-2.6 2.5H4.6C3.162 22 2 20.938 2 19.5v-15C2 3.062 3.162 2 4.6 2H9Zm6 0h6l.075.003.126.017.111.03.111.044.098.052.096.067.09.08c.036.035.068.073.097.112l.071.11.054.114.035.105.03.148L22 3v6a1 1 0 0 1-2 0V5.414l-6.693 6.693a1 1 0 0 1-1.414-1.414L18.584 4H15a1 1 0 0 1-.993-.883L14 3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-external-link-small" viewBox="0 0 16 16"><path d="M5 1a1 1 0 1 1 0 2l-2-.001V13L13 13v-2a1 1 0 0 1 2 0v2c0 1.15-.93 2-2.067 2H3.067C1.93 15 1 14.15 1 13V3c0-1.15.93-2 2.067-2H5Zm4 0h5l.075.003.126.017.111.03.111.044.098.052.096.067.09.08.044.047.073.093.051.083.054.113.035.105.03.148L15 2v5a1 1 0 0 1-2 0V4.414L9.107 8.307a1 1 0 0 1-1.414-1.414L11.584 3H9a1 1 0 0 1-.993-.883L8 2a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-file-download-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962A2.542 2.542 0 0 1 18.455 23H5.545A2.542 2.542 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .296.243.538.545.538h12.91a.542.542 0 0 0 .545-.538V7.915L14.085 3ZM12 7a1 1 0 0 1 1 1v6.585l2.293-2.292a1 1 0 0 1 1.32-.083l.094.083a1 1 0 0 1 0 1.414l-4 4a1.008 1.008 0 0 1-.112.097l-.11.071-.114.054-.105.035-.149.03L12 18l-.075-.003-.126-.017-.111-.03-.111-.044-.098-.052-.096-.067-.09-.08-4-4a1 1 0 0 1 1.414-1.414L11 14.585V8a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-file-report-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962c0 .674-.269 1.32-.747 1.796a2.549 2.549 0 0 1-1.798.742H5.545c-.674 0-1.32-.267-1.798-.742A2.535 2.535 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .142.057.278.158.379.102.102.242.159.387.159h12.91a.549.549 0 0 0 .387-.16.535.535 0 0 0 .158-.378V7.915L14.085 3ZM16 17a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm0-3a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm-4.793-6.207L13 9.585l1.793-1.792a1 1 0 0 1 1.32-.083l.094.083a1 1 0 0 1 0 1.414l-2.5 2.5a1 1 0 0 1-1.414 0L10.5 9.915l-1.793 1.792a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l2.5-2.5a1 1 0 0 1 1.414 0Z"/></symbol><symbol id="icon-eds-i-file-text-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962A2.542 2.542 0 0 1 18.455 23H5.545A2.542 2.542 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .296.243.538.545.538h12.91a.542.542 0 0 0 .545-.538V7.915L14.085 3ZM16 15a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm0-4a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm-5-4a1 1 0 0 1 0 2H8a1 1 0 1 1 0-2h3Z"/></symbol><symbol id="icon-eds-i-file-upload-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962A2.542 2.542 0 0 1 18.455 23H5.545A2.542 2.542 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .296.243.538.545.538h12.91a.542.542 0 0 0 .545-.538V7.915L14.085 3Zm-2.233 4.011.058-.007L12 7l.075.003.126.017.111.03.111.044.098.052.104.074.082.073 4 4a1 1 0 0 1 0 1.414l-.094.083a1 1 0 0 1-1.32-.083L13 10.415V17a1 1 0 0 1-2 0v-6.585l-2.293 2.292a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l4-4 .112-.097.11-.071.114-.054.105-.035.118-.025Z"/></symbol><symbol id="icon-eds-i-filter-medium" viewBox="0 0 24 24"><path d="M21 2a1 1 0 0 1 .82 1.573L15 13.314V18a1 1 0 0 1-.31.724l-.09.076-4 3A1 1 0 0 1 9 21v-7.684L2.18 3.573a1 1 0 0 1 .707-1.567L3 2h18Zm-1.921 2H4.92l5.9 8.427a1 1 0 0 1 .172.45L11 13v6l2-1.5V13a1 1 0 0 1 .117-.469l.064-.104L19.079 4Z"/></symbol><symbol id="icon-eds-i-funding-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M23 8A7 7 0 1 0 9 8a7 7 0 0 0 14 0ZM9.006 12.225A4.07 4.07 0 0 0 6.12 11.02H2a.979.979 0 1 0 0 1.958h4.12c.558 0 1.094.222 1.489.617l2.207 2.288c.27.27.27.687.012.944a.656.656 0 0 1-.928 0L7.744 15.67a.98.98 0 0 0-1.386 1.384l1.157 1.158c.535.536 1.244.791 1.946.765l.041.002h6.922c.874 0 1.597.748 1.597 1.688 0 .203-.146.354-.309.354H7.755c-.487 0-.96-.178-1.339-.504L2.64 17.259a.979.979 0 0 0-1.28 1.482L5.137 22c.733.631 1.66.979 2.618.979h9.957c1.26 0 2.267-1.043 2.267-2.312 0-2.006-1.584-3.646-3.555-3.646h-4.529a2.617 2.617 0 0 0-.681-2.509l-2.208-2.287ZM16 3a5 5 0 1 0 0 10 5 5 0 0 0 0-10Zm.979 3.5a.979.979 0 1 0-1.958 0v3a.979.979 0 1 0 1.958 0v-3Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-hashtag-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18ZM9.52 18.189a1 1 0 1 1-1.964-.378l.437-2.274H6a1 1 0 1 1 0-2h2.378l.592-3.076H6a1 1 0 0 1 0-2h3.354l.51-2.65a1 1 0 1 1 1.964.378l-.437 2.272h3.04l.51-2.65a1 1 0 1 1 1.964.378l-.438 2.272H18a1 1 0 0 1 0 2h-1.917l-.592 3.076H18a1 1 0 0 1 0 2h-2.893l-.51 2.652a1 1 0 1 1-1.964-.378l.437-2.274h-3.04l-.51 2.652Zm.895-4.652h3.04l.591-3.076h-3.04l-.591 3.076Z"/></symbol><symbol id="icon-eds-i-home-medium" viewBox="0 0 24 24"><path d="M5 22a1 1 0 0 1-1-1v-8.586l-1.293 1.293a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l10-10a1 1 0 0 1 1.414 0l10 10a1 1 0 0 1-1.414 1.414L20 12.415V21a1 1 0 0 1-1 1H5Zm7-17.585-6 5.999V20h5v-4a1 1 0 0 1 2 0v4h5v-9.585l-6-6Z"/></symbol><symbol id="icon-eds-i-image-medium" viewBox="0 0 24 24"><path d="M19.615 2A2.385 2.385 0 0 1 22 4.385v15.23A2.385 2.385 0 0 1 19.615 22H4.385A2.385 2.385 0 0 1 2 19.615V4.385A2.385 2.385 0 0 1 4.385 2h15.23Zm0 2H4.385A.385.385 0 0 0 4 4.385v15.23c0 .213.172.385.385.385h1.244l10.228-8.76a1 1 0 0 1 1.254-.037L20 13.392V4.385A.385.385 0 0 0 19.615 4Zm-3.07 9.283L8.703 20h10.912a.385.385 0 0 0 .385-.385v-3.713l-3.455-2.619ZM9.5 6a3.5 3.5 0 1 1 0 7 3.5 3.5 0 0 1 0-7Zm0 2a1.5 1.5 0 1 0 0 3 1.5 1.5 0 0 0 0-3Z"/></symbol><symbol id="icon-eds-i-impact-factor-medium" viewBox="0 0 24 24"><path d="M16.49 2.672c.74.694.986 1.765.632 2.712l-.04.1-1.549 3.54h1.477a2.496 2.496 0 0 1 2.485 2.34l.005.163c0 .618-.23 1.21-.642 1.675l-7.147 7.961a2.48 2.48 0 0 1-3.554.165 2.512 2.512 0 0 1-.633-2.712l.042-.103L9.108 15H7.46c-1.393 0-2.379-1.11-2.455-2.369L5 12.473c0-.593.142-1.145.628-1.692l7.307-7.944a2.48 2.48 0 0 1 3.555-.165ZM14.43 4.164l-7.33 7.97c-.083.093-.101.214-.101.34 0 .277.19.526.46.526h4.163l.097-.009c.015 0 .03.003.046.009.181.078.264.32.186.5l-2.554 5.817a.512.512 0 0 0 .127.552.48.48 0 0 0 .69-.033l7.155-7.97a.513.513 0 0 0 .13-.34.497.497 0 0 0-.49-.502h-3.988a.355.355 0 0 1-.328-.497l2.555-5.844a.512.512 0 0 0-.127-.552.48.48 0 0 0-.69.033Z"/></symbol><symbol id="icon-eds-i-info-circle-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18Zm0 7a1 1 0 0 1 1 1v5h1.5a1 1 0 0 1 0 2h-5a1 1 0 0 1 0-2H11v-4h-.5a1 1 0 0 1-.993-.883L9.5 11a1 1 0 0 1 1-1H12Zm0-4.5a1.5 1.5 0 0 1 .144 2.993L12 8.5a1.5 1.5 0 0 1 0-3Z"/></symbol><symbol id="icon-eds-i-info-filled-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 9h-1.5a1 1 0 0 0-1 1l.007.117A1 1 0 0 0 10.5 12h.5v4H9.5a1 1 0 0 0 0 2h5a1 1 0 0 0 0-2H13v-5a1 1 0 0 0-1-1Zm0-4.5a1.5 1.5 0 0 0 0 3l.144-.007A1.5 1.5 0 0 0 12 5.5Z"/></symbol><symbol id="icon-eds-i-journal-medium" viewBox="0 0 24 24"><path d="M18.5 1A2.5 2.5 0 0 1 21 3.5v14a2.5 2.5 0 0 1-2.5 2.5h-13a.5.5 0 1 0 0 1H20a1 1 0 0 1 0 2H5.5A2.5 2.5 0 0 1 3 20.5v-17A2.5 2.5 0 0 1 5.5 1h13ZM7 3H5.5a.5.5 0 0 0-.5.5v14.549l.016-.002c.104-.02.211-.035.32-.042L5.5 18H7V3Zm11.5 0H9v15h9.5a.5.5 0 0 0 .5-.5v-14a.5.5 0 0 0-.5-.5ZM16 5a1 1 0 0 1 1 1v4a1 1 0 0 1-1 1h-5a1 1 0 0 1-1-1V6a1 1 0 0 1 1-1h5Zm-1 2h-3v2h3V7Z"/></symbol><symbol id="icon-eds-i-mail-medium" viewBox="0 0 24 24"><path d="M20.462 3C21.875 3 23 4.184 23 5.619v12.762C23 19.816 21.875 21 20.462 21H3.538C2.125 21 1 19.816 1 18.381V5.619C1 4.184 2.125 3 3.538 3h16.924ZM21 8.158l-7.378 6.258a2.549 2.549 0 0 1-3.253-.008L3 8.16v10.222c0 .353.253.619.538.619h16.924c.285 0 .538-.266.538-.619V8.158ZM20.462 5H3.538c-.264 0-.5.228-.534.542l8.65 7.334c.2.165.492.165.684.007l8.656-7.342-.001-.025c-.044-.3-.274-.516-.531-.516Z"/></symbol><symbol id="icon-eds-i-mail-send-medium" viewBox="0 0 24 24"><path d="M20.444 5a2.562 2.562 0 0 1 2.548 2.37l.007.078.001.123v7.858A2.564 2.564 0 0 1 20.444 18H9.556A2.564 2.564 0 0 1 7 15.429l.001-7.977.007-.082A2.561 2.561 0 0 1 9.556 5h10.888ZM21 9.331l-5.46 3.51a1 1 0 0 1-1.08 0L9 9.332v6.097c0 .317.251.571.556.571h10.888a.564.564 0 0 0 .556-.571V9.33ZM20.444 7H9.556a.543.543 0 0 0-.32.105l5.763 3.706 5.766-3.706a.543.543 0 0 0-.32-.105ZM4.308 5a1 1 0 1 1 0 2H2a1 1 0 1 1 0-2h2.308Zm0 5.5a1 1 0 0 1 0 2H2a1 1 0 0 1 0-2h2.308Zm0 5.5a1 1 0 0 1 0 2H2a1 1 0 0 1 0-2h2.308Z"/></symbol><symbol id="icon-eds-i-mentions-medium" viewBox="0 0 24 24"><path d="m9.452 1.293 5.92 5.92 2.92-2.92a1 1 0 0 1 1.415 1.414l-2.92 2.92 5.92 5.92a1 1 0 0 1 0 1.415 10.371 10.371 0 0 1-10.378 2.584l.652 3.258A1 1 0 0 1 12 23H2a1 1 0 0 1-.874-1.486l4.789-8.62C4.194 9.074 4.9 4.43 8.038 1.292a1 1 0 0 1 1.414 0Zm-2.355 13.59L3.699 21h7.081l-.689-3.442a10.392 10.392 0 0 1-2.775-2.396l-.22-.28Zm1.69-11.427-.07.09a8.374 8.374 0 0 0 11.737 11.737l.089-.071L8.787 3.456Z"/></symbol><symbol id="icon-eds-i-menu-medium" viewBox="0 0 24 24"><path d="M21 4a1 1 0 0 1 0 2H3a1 1 0 1 1 0-2h18Zm-4 7a1 1 0 0 1 0 2H3a1 1 0 0 1 0-2h14Zm4 7a1 1 0 0 1 0 2H3a1 1 0 0 1 0-2h18Z"/></symbol><symbol id="icon-eds-i-metrics-medium" viewBox="0 0 24 24"><path d="M3 22a1 1 0 0 1-1-1V3a1 1 0 0 1 1-1h6a1 1 0 0 1 1 1v7h4V8a1 1 0 0 1 1-1h6a1 1 0 0 1 1 1v13a1 1 0 0 1-.883.993L21 22H3Zm17-2V9h-4v11h4Zm-6-8h-4v8h4v-8ZM8 4H4v16h4V4Z"/></symbol><symbol id="icon-eds-i-news-medium" viewBox="0 0 24 24"><path d="M17.384 3c.975 0 1.77.787 1.77 1.762v13.333c0 .462.354.846.815.899l.107.006.109-.006a.915.915 0 0 0 .809-.794l.006-.105V8.19a1 1 0 0 1 2 0v9.905A2.914 2.914 0 0 1 20.077 21H3.538a2.547 2.547 0 0 1-1.644-.601l-.147-.135A2.516 2.516 0 0 1 1 18.476V4.762C1 3.787 1.794 3 2.77 3h14.614Zm-.231 2H3v13.476c0 .11.035.216.1.304l.054.063c.101.1.24.157.384.157l13.761-.001-.026-.078a2.88 2.88 0 0 1-.115-.655l-.004-.17L17.153 5ZM14 15.021a.979.979 0 1 1 0 1.958H6a.979.979 0 1 1 0-1.958h8Zm0-8c.54 0 .979.438.979.979v4c0 .54-.438.979-.979.979H6A.979.979 0 0 1 5.021 12V8c0-.54.438-.979.979-.979h8Zm-.98 1.958H6.979v2.041h6.041V8.979Z"/></symbol><symbol id="icon-eds-i-newsletter-medium" viewBox="0 0 24 24"><path d="M21 10a1 1 0 0 1 1 1v9.5a2.5 2.5 0 0 1-2.5 2.5h-15A2.5 2.5 0 0 1 2 20.5V11a1 1 0 0 1 2 0v.439l8 4.888 8-4.889V11a1 1 0 0 1 1-1Zm-1 3.783-7.479 4.57a1 1 0 0 1-1.042 0l-7.48-4.57V20.5a.5.5 0 0 0 .501.5h15a.5.5 0 0 0 .5-.5v-6.717ZM15 9a1 1 0 0 1 0 2H9a1 1 0 0 1 0-2h6Zm2.5-8A2.5 2.5 0 0 1 20 3.5V9a1 1 0 0 1-2 0V3.5a.5.5 0 0 0-.5-.5h-11a.5.5 0 0 0-.5.5V9a1 1 0 1 1-2 0V3.5A2.5 2.5 0 0 1 6.5 1h11ZM15 5a1 1 0 0 1 0 2H9a1 1 0 1 1 0-2h6Z"/></symbol><symbol id="icon-eds-i-notifcation-medium" viewBox="0 0 24 24"><path d="M14 20a1 1 0 0 1 0 2h-4a1 1 0 0 1 0-2h4ZM3 18l-.133-.007c-1.156-.124-1.156-1.862 0-1.986l.3-.012C4.32 15.923 5 15.107 5 14V9.5C5 5.368 8.014 2 12 2s7 3.368 7 7.5V14c0 1.107.68 1.923 1.832 1.995l.301.012c1.156.124 1.156 1.862 0 1.986L21 18H3Zm9-14C9.17 4 7 6.426 7 9.5V14c0 .671-.146 1.303-.416 1.858L6.51 16h10.979l-.073-.142a4.192 4.192 0 0 1-.412-1.658L17 14V9.5C17 6.426 14.83 4 12 4Z"/></symbol><symbol id="icon-eds-i-publish-medium" viewBox="0 0 24 24"><g><path d="M16.296 1.291A1 1 0 0 0 15.591 1H5.545A2.542 2.542 0 0 0 3 3.538V13a1 1 0 1 0 2 0V3.538l.007-.087A.543.543 0 0 1 5.545 3h9.633L20 7.8v12.662a.534.534 0 0 1-.158.379.548.548 0 0 1-.387.159H11a1 1 0 1 0 0 2h8.455c.674 0 1.32-.267 1.798-.742A2.534 2.534 0 0 0 22 20.462V7.385a1 1 0 0 0-.294-.709l-5.41-5.385Z"/><path d="M10.762 16.647a1 1 0 0 0-1.525-1.294l-4.472 5.271-2.153-1.665a1 1 0 1 0-1.224 1.582l2.91 2.25a1 1 0 0 0 1.374-.144l5.09-6ZM16 10a1 1 0 1 1 0 2H8a1 1 0 1 1 0-2h8ZM12 7a1 1 0 0 0-1-1H8a1 1 0 1 0 0 2h3a1 1 0 0 0 1-1Z"/></g></symbol><symbol id="icon-eds-i-refresh-medium" viewBox="0 0 24 24"><g><path d="M7.831 5.636H6.032A8.76 8.76 0 0 1 9 3.631 8.549 8.549 0 0 1 12.232 3c.603 0 1.192.063 1.76.182C17.979 4.017 21 7.632 21 12a1 1 0 1 0 2 0c0-5.296-3.674-9.746-8.591-10.776A10.61 10.61 0 0 0 5 3.851V2.805a1 1 0 0 0-.987-1H4a1 1 0 0 0-1 1v3.831a1 1 0 0 0 1 1h3.831a1 1 0 0 0 .013-2h-.013ZM17.968 18.364c-1.59 1.632-3.784 2.636-6.2 2.636C6.948 21 3 16.993 3 12a1 1 0 1 0-2 0c0 6.053 4.799 11 10.768 11 2.788 0 5.324-1.082 7.232-2.85v1.045a1 1 0 1 0 2 0v-3.831a1 1 0 0 0-1-1h-3.831a1 1 0 0 0 0 2h1.799Z"/></g></symbol><symbol id="icon-eds-i-search-medium" viewBox="0 0 24 24"><path d="M11 1c5.523 0 10 4.477 10 10 0 2.4-.846 4.604-2.256 6.328l3.963 3.965a1 1 0 0 1-1.414 1.414l-3.965-3.963A9.959 9.959 0 0 1 11 21C5.477 21 1 16.523 1 11S5.477 1 11 1Zm0 2a8 8 0 1 0 0 16 8 8 0 0 0 0-16Z"/></symbol><symbol id="icon-eds-i-settings-medium" viewBox="0 0 24 24"><path d="M11.382 1h1.24a2.508 2.508 0 0 1 2.334 1.63l.523 1.378 1.59.933 1.444-.224c.954-.132 1.89.3 2.422 1.101l.095.155.598 1.066a2.56 2.56 0 0 1-.195 2.848l-.894 1.161v1.896l.92 1.163c.6.768.707 1.812.295 2.674l-.09.17-.606 1.08a2.504 2.504 0 0 1-2.531 1.25l-1.428-.223-1.589.932-.523 1.378a2.512 2.512 0 0 1-2.155 1.625L12.65 23h-1.27a2.508 2.508 0 0 1-2.334-1.63l-.524-1.379-1.59-.933-1.443.225c-.954.132-1.89-.3-2.422-1.101l-.095-.155-.598-1.066a2.56 2.56 0 0 1 .195-2.847l.891-1.161v-1.898l-.919-1.162a2.562 2.562 0 0 1-.295-2.674l.09-.17.606-1.08a2.504 2.504 0 0 1 2.531-1.25l1.43.223 1.618-.938.524-1.375.07-.167A2.507 2.507 0 0 1 11.382 1Zm.003 2a.509.509 0 0 0-.47.338l-.65 1.71a1 1 0 0 1-.434.51L7.6 6.85a1 1 0 0 1-.655.123l-1.762-.275a.497.497 0 0 0-.498.252l-.61 1.088a.562.562 0 0 0 .04.619l1.13 1.43a1 1 0 0 1 .216.62v2.585a1 1 0 0 1-.207.61L4.15 15.339a.568.568 0 0 0-.036.634l.601 1.072a.494.494 0 0 0 .484.26l1.78-.278a1 1 0 0 1 .66.126l2.2 1.292a1 1 0 0 1 .43.507l.648 1.71a.508.508 0 0 0 .467.338h1.263a.51.51 0 0 0 .47-.34l.65-1.708a1 1 0 0 1 .428-.507l2.201-1.292a1 1 0 0 1 .66-.126l1.763.275a.497.497 0 0 0 .498-.252l.61-1.088a.562.562 0 0 0-.04-.619l-1.13-1.43a1 1 0 0 1-.216-.62v-2.585a1 1 0 0 1 .207-.61l1.105-1.437a.568.568 0 0 0 .037-.634l-.601-1.072a.494.494 0 0 0-.484-.26l-1.78.278a1 1 0 0 1-.66-.126l-2.2-1.292a1 1 0 0 1-.43-.507l-.649-1.71A.508.508 0 0 0 12.62 3h-1.234ZM12 8a4 4 0 1 1 0 8 4 4 0 0 1 0-8Zm0 2a2 2 0 1 0 0 4 2 2 0 0 0 0-4Z"/></symbol><symbol id="icon-eds-i-shipping-medium" viewBox="0 0 24 24"><path d="M16.515 2c1.406 0 2.706.728 3.352 1.902l2.02 3.635.02.042.036.089.031.105.012.058.01.073.004.075v11.577c0 .64-.244 1.255-.683 1.713a2.356 2.356 0 0 1-1.701.731H4.386a2.356 2.356 0 0 1-1.702-.731 2.476 2.476 0 0 1-.683-1.713V7.948c.01-.217.083-.43.22-.6L4.2 3.905C4.833 2.755 6.089 2.032 7.486 2h9.029ZM20 9H4v10.556a.49.49 0 0 0 .075.26l.053.07a.356.356 0 0 0 .257.114h15.23c.094 0 .186-.04.258-.115a.477.477 0 0 0 .127-.33V9Zm-2 7.5a1 1 0 0 1 0 2h-4a1 1 0 0 1 0-2h4ZM16.514 4H13v3h6.3l-1.183-2.13c-.288-.522-.908-.87-1.603-.87ZM11 3.999H7.51c-.679.017-1.277.36-1.566.887L4.728 7H11V3.999Z"/></symbol><symbol id="icon-eds-i-step-guide-medium" viewBox="0 0 24 24"><path d="M11.394 9.447a1 1 0 1 0-1.788-.894l-.88 1.759-.019-.02a1 1 0 1 0-1.414 1.415l1 1a1 1 0 0 0 1.601-.26l1.5-3ZM12 11a1 1 0 0 1 1-1h3a1 1 0 1 1 0 2h-3a1 1 0 0 1-1-1ZM12 17a1 1 0 0 1 1-1h3a1 1 0 1 1 0 2h-3a1 1 0 0 1-1-1ZM10.947 14.105a1 1 0 0 1 .447 1.342l-1.5 3a1 1 0 0 1-1.601.26l-1-1a1 1 0 1 1 1.414-1.414l.02.019.879-1.76a1 1 0 0 1 1.341-.447Z"/><path d="M5.545 1A2.542 2.542 0 0 0 3 3.538v16.924A2.542 2.542 0 0 0 5.545 23h12.91A2.542 2.542 0 0 0 21 20.462V7.5a1 1 0 0 0-.293-.707l-5.5-5.5A1 1 0 0 0 14.5 1H5.545ZM5 3.538C5 3.245 5.24 3 5.545 3h8.54L19 7.914v12.547c0 .294-.24.539-.546.539H5.545A.542.542 0 0 1 5 20.462V3.538Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-submission-medium" viewBox="0 0 24 24"><g><path d="M5 3.538C5 3.245 5.24 3 5.545 3h9.633L20 7.8v12.662a.535.535 0 0 1-.158.379.549.549 0 0 1-.387.159H6a1 1 0 0 1-1-1v-2.5a1 1 0 1 0-2 0V20a3 3 0 0 0 3 3h13.455c.673 0 1.32-.266 1.798-.742A2.535 2.535 0 0 0 22 20.462V7.385a1 1 0 0 0-.294-.709l-5.41-5.385A1 1 0 0 0 15.591 1H5.545A2.542 2.542 0 0 0 3 3.538V7a1 1 0 0 0 2 0V3.538Z"/><path d="m13.707 13.707-4 4a1 1 0 0 1-1.414 0l-.083-.094a1 1 0 0 1 .083-1.32L10.585 14 2 14a1 1 0 1 1 0-2l8.583.001-2.29-2.294a1 1 0 0 1 1.414-1.414l4.037 4.04.043.05.043.06.059.098.03.063.031.085.03.113.017.122L14 13l-.004.087-.017.118-.013.056-.034.104-.049.105-.048.081-.07.093-.058.063Z"/></g></symbol><symbol id="icon-eds-i-table-1-medium" viewBox="0 0 24 24"><path d="M4.385 22a2.56 2.56 0 0 1-1.14-.279C2.485 21.341 2 20.614 2 19.615V4.385c0-.315.067-.716.279-1.14C2.659 2.485 3.386 2 4.385 2h15.23c.315 0 .716.067 1.14.279.76.38 1.245 1.107 1.245 2.106v15.23c0 .315-.067.716-.279 1.14-.38.76-1.107 1.245-2.106 1.245H4.385ZM4 19.615c0 .213.034.265.14.317a.71.71 0 0 0 .245.068H8v-4H4v3.615ZM20 16H10v4h9.615c.213 0 .265-.034.317-.14a.71.71 0 0 0 .068-.245V16Zm0-2v-4H10v4h10ZM4 14h4v-4H4v4ZM19.615 4H10v4h10V4.385c0-.213-.034-.265-.14-.317A.71.71 0 0 0 19.615 4ZM8 4H4.385l-.082.002c-.146.01-.19.047-.235.138A.71.71 0 0 0 4 4.385V8h4V4Z"/></symbol><symbol id="icon-eds-i-table-2-medium" viewBox="0 0 24 24"><path d="M4.384 22A2.384 2.384 0 0 1 2 19.616V4.384A2.384 2.384 0 0 1 4.384 2h15.232A2.384 2.384 0 0 1 22 4.384v15.232A2.384 2.384 0 0 1 19.616 22H4.384ZM10 15H4v4.616c0 .212.172.384.384.384H10v-5Zm5 0h-3v5h3v-5Zm5 0h-3v5h2.616a.384.384 0 0 0 .384-.384V15ZM10 9H4v4h6V9Zm5 0h-3v4h3V9Zm5 0h-3v4h3V9Zm-.384-5H4.384A.384.384 0 0 0 4 4.384V7h16V4.384A.384.384 0 0 0 19.616 4Z"/></symbol><symbol id="icon-eds-i-tag-medium" viewBox="0 0 24 24"><path d="m12.621 1.998.127.004L20.496 2a1.5 1.5 0 0 1 1.497 1.355L22 3.5l-.005 7.669c.038.456-.133.905-.447 1.206l-9.02 9.018a2.075 2.075 0 0 1-2.932 0l-6.99-6.99a2.075 2.075 0 0 1 .001-2.933L11.61 2.47c.246-.258.573-.418.881-.46l.131-.011Zm.286 2-8.885 8.886a.075.075 0 0 0 0 .106l6.987 6.988c.03.03.077.03.106 0l8.883-8.883L19.999 4l-7.092-.002ZM16 6.5a1.5 1.5 0 0 1 .144 2.993L16 9.5a1.5 1.5 0 0 1 0-3Z"/></symbol><symbol id="icon-eds-i-trash-medium" viewBox="0 0 24 24"><path d="M12 1c2.717 0 4.913 2.232 4.997 5H21a1 1 0 0 1 0 2h-1v12.5c0 1.389-1.152 2.5-2.556 2.5H6.556C5.152 23 4 21.889 4 20.5V8H3a1 1 0 1 1 0-2h4.003l.001-.051C7.114 3.205 9.3 1 12 1Zm6 7H6v12.5c0 .238.19.448.454.492l.102.008h10.888c.315 0 .556-.232.556-.5V8Zm-4 3a1 1 0 0 1 1 1v6.005a1 1 0 0 1-2 0V12a1 1 0 0 1 1-1Zm-4 0a1 1 0 0 1 1 1v6a1 1 0 0 1-2 0v-6a1 1 0 0 1 1-1Zm2-8c-1.595 0-2.914 1.32-2.996 3h5.991v-.02C14.903 4.31 13.589 3 12 3Z"/></symbol><symbol id="icon-eds-i-user-account-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 16c-1.806 0-3.52.994-4.664 2.698A8.947 8.947 0 0 0 12 21a8.958 8.958 0 0 0 4.664-1.301C15.52 17.994 13.806 17 12 17Zm0-14a9 9 0 0 0-6.25 15.476C7.253 16.304 9.54 15 12 15s4.747 1.304 6.25 3.475A9 9 0 0 0 12 3Zm0 3a4 4 0 1 1 0 8 4 4 0 0 1 0-8Zm0 2a2 2 0 1 0 0 4 2 2 0 0 0 0-4Z"/></symbol><symbol id="icon-eds-i-user-add-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm9 10a1 1 0 0 1 1 1v3h3a1 1 0 0 1 0 2h-3v3a1 1 0 0 1-2 0v-3h-3a1 1 0 0 1 0-2h3v-3a1 1 0 0 1 1-1Zm-5.545-.15a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378Z"/></symbol><symbol id="icon-eds-i-user-assign-medium" viewBox="0 0 24 24"><path d="M16.226 13.298a1 1 0 0 1 1.414-.01l.084.093a1 1 0 0 1-.073 1.32L15.39 17H22a1 1 0 0 1 0 2h-6.611l2.262 2.298a1 1 0 0 1-1.425 1.404l-3.939-4a1 1 0 0 1 0-1.404l3.94-4Zm-3.771-.449a1 1 0 1 1-.91 1.781 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 10.5 20a1 1 0 0 1 .993.883L11.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Z"/></symbol><symbol id="icon-eds-i-user-block-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm9 10a5 5 0 1 1 0 10 5 5 0 0 1 0-10Zm-5.545-.15a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM15 18a3 3 0 0 0 4.294 2.707l-4.001-4c-.188.391-.293.83-.293 1.293Zm3-3c-.463 0-.902.105-1.294.293l4.001 4A3 3 0 0 0 18 15Z"/></symbol><symbol id="icon-eds-i-user-check-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm13.647 12.237a1 1 0 0 1 .116 1.41l-5.091 6a1 1 0 0 1-1.375.144l-2.909-2.25a1 1 0 1 1 1.224-1.582l2.153 1.665 4.472-5.271a1 1 0 0 1 1.41-.116Zm-8.139-.977c.22.214.428.44.622.678a1 1 0 1 1-1.548 1.266 6.025 6.025 0 0 0-1.795-1.49.86.86 0 0 1-.163-.048l-.079-.036a5.721 5.721 0 0 0-2.62-.63l-.194.006c-2.76.134-5.022 2.177-5.592 4.864l-.035.175-.035.213c-.03.201-.05.405-.06.61L3.003 20 10 20a1 1 0 0 1 .993.883L11 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876l.005-.223.02-.356.02-.222.03-.248.022-.15c.02-.133.044-.265.071-.397.44-2.178 1.725-4.105 3.595-5.301a7.75 7.75 0 0 1 3.755-1.215l.12-.004a7.908 7.908 0 0 1 5.87 2.252Z"/></symbol><symbol id="icon-eds-i-user-delete-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6ZM4.763 13.227a7.713 7.713 0 0 1 7.692-.378 1 1 0 1 1-.91 1.781 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20H11.5a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897Zm11.421 1.543 2.554 2.553 2.555-2.553a1 1 0 0 1 1.414 1.414l-2.554 2.554 2.554 2.555a1 1 0 0 1-1.414 1.414l-2.555-2.554-2.554 2.554a1 1 0 0 1-1.414-1.414l2.553-2.555-2.553-2.554a1 1 0 0 1 1.414-1.414Z"/></symbol><symbol id="icon-eds-i-user-edit-medium" viewBox="0 0 24 24"><path d="m19.876 10.77 2.831 2.83a1 1 0 0 1 0 1.415l-7.246 7.246a1 1 0 0 1-.572.284l-3.277.446a1 1 0 0 1-1.125-1.13l.461-3.277a1 1 0 0 1 .283-.567l7.23-7.246a1 1 0 0 1 1.415-.001Zm-7.421 2.08a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 7.5 20a1 1 0 0 1 .993.883L8.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378Zm6.715.042-6.29 6.3-.23 1.639 1.633-.222 6.302-6.302-1.415-1.415ZM9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Z"/></symbol><symbol id="icon-eds-i-user-linked-medium" viewBox="0 0 24 24"><path d="M15.65 6c.31 0 .706.066 1.122.274C17.522 6.65 18 7.366 18 8.35v12.3c0 .31-.066.706-.274 1.122-.375.75-1.092 1.228-2.076 1.228H3.35a2.52 2.52 0 0 1-1.122-.274C1.478 22.35 1 21.634 1 20.65V8.35c0-.31.066-.706.274-1.122C1.65 6.478 2.366 6 3.35 6h12.3Zm0 2-12.376.002c-.134.007-.17.04-.21.12A.672.672 0 0 0 3 8.35v12.3c0 .198.028.24.122.287.09.044.2.063.228.063h.887c.788-2.269 2.814-3.5 5.263-3.5 2.45 0 4.475 1.231 5.263 3.5h.887c.198 0 .24-.028.287-.122.044-.09.063-.2.063-.228V8.35c0-.198-.028-.24-.122-.287A.672.672 0 0 0 15.65 8ZM9.5 19.5c-1.36 0-2.447.51-3.06 1.5h6.12c-.613-.99-1.7-1.5-3.06-1.5ZM20.65 1A2.35 2.35 0 0 1 23 3.348V15.65A2.35 2.35 0 0 1 20.65 18H20a1 1 0 0 1 0-2h.65a.35.35 0 0 0 .35-.35V3.348A.35.35 0 0 0 20.65 3H8.35a.35.35 0 0 0-.35.348V4a1 1 0 1 1-2 0v-.652A2.35 2.35 0 0 1 8.35 1h12.3ZM9.5 10a3.5 3.5 0 1 1 0 7 3.5 3.5 0 0 1 0-7Zm0 2a1.5 1.5 0 1 0 0 3 1.5 1.5 0 0 0 0-3Z"/></symbol><symbol id="icon-eds-i-user-multiple-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm6 0a5 5 0 0 1 0 10 1 1 0 0 1-.117-1.993L15 9a3 3 0 0 0 0-6 1 1 0 0 1 0-2ZM9 3a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm8.857 9.545a7.99 7.99 0 0 1 2.651 1.715A8.31 8.31 0 0 1 23 20.134V21a1 1 0 0 1-1 1h-3a1 1 0 0 1 0-2h1.995l-.005-.153a6.307 6.307 0 0 0-1.673-3.945l-.204-.209a5.99 5.99 0 0 0-1.988-1.287 1 1 0 1 1 .732-1.861Zm-3.349 1.715A8.31 8.31 0 0 1 17 20.134V21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.877c.044-4.343 3.387-7.908 7.638-8.115a7.908 7.908 0 0 1 5.87 2.252ZM9.016 14l-.285.006c-3.104.15-5.58 2.718-5.725 5.9L3.004 20h11.991l-.005-.153a6.307 6.307 0 0 0-1.673-3.945l-.204-.209A5.924 5.924 0 0 0 9.3 14.008L9.016 14Z"/></symbol><symbol id="icon-eds-i-user-notify-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm10 18v1a1 1 0 0 1-2 0v-1h-3a1 1 0 0 1 0-2v-2.818C14 13.885 15.777 12 18 12s4 1.885 4 4.182V19a1 1 0 0 1 0 2h-3Zm-6.545-8.15a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM18 14c-1.091 0-2 .964-2 2.182V19h4v-2.818c0-1.165-.832-2.098-1.859-2.177L18 14Z"/></symbol><symbol id="icon-eds-i-user-remove-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm3.455 9.85a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM22 17a1 1 0 0 1 0 2h-8a1 1 0 0 1 0-2h8Z"/></symbol><symbol id="icon-eds-i-user-single-medium" viewBox="0 0 24 24"><path d="M12 1a5 5 0 1 1 0 10 5 5 0 0 1 0-10Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm-.406 9.008a8.965 8.965 0 0 1 6.596 2.494A9.161 9.161 0 0 1 21 21.025V22a1 1 0 0 1-1 1H4a1 1 0 0 1-1-1v-.985c.05-4.825 3.815-8.777 8.594-9.007Zm.39 1.992-.299.006c-3.63.175-6.518 3.127-6.678 6.775L5 21h13.998l-.009-.268a7.157 7.157 0 0 0-1.97-4.573l-.214-.213A6.967 6.967 0 0 0 11.984 14Z"/></symbol><symbol id="icon-eds-i-warning-circle-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18Zm0 11.5a1.5 1.5 0 0 1 .144 2.993L12 17.5a1.5 1.5 0 0 1 0-3ZM12 6a1 1 0 0 1 1 1v5a1 1 0 0 1-2 0V7a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-warning-filled-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 13.5a1.5 1.5 0 0 0 0 3l.144-.007A1.5 1.5 0 0 0 12 14.5ZM12 6a1 1 0 0 0-1 1v5a1 1 0 0 0 2 0V7a1 1 0 0 0-1-1Z"/></symbol><symbol id="icon-chevron-left-medium" viewBox="0 0 24 24"><path d="M15.7194 3.3054C15.3358 2.90809 14.7027 2.89699 14.3054 3.28061L6.54342 10.7757C6.19804 11.09 6 11.5335 6 12C6 12.4665 6.19804 12.91 6.5218 13.204L14.3054 20.7194C14.7027 21.103 15.3358 21.0919 15.7194 20.6946C16.103 20.2973 16.0919 19.6642 15.6946 19.2806L8.155 12L15.6946 4.71939C16.0614 4.36528 16.099 3.79863 15.8009 3.40105L15.7194 3.3054Z"/></symbol><symbol id="icon-chevron-right-medium" viewBox="0 0 24 24"><path d="M8.28061 3.3054C8.66423 2.90809 9.29729 2.89699 9.6946 3.28061L17.4566 10.7757C17.802 11.09 18 11.5335 18 12C18 12.4665 17.802 12.91 17.4782 13.204L9.6946 20.7194C9.29729 21.103 8.66423 21.0919 8.28061 20.6946C7.89699 20.2973 7.90809 19.6642 8.3054 19.2806L15.845 12L8.3054 4.71939C7.93865 4.36528 7.90098 3.79863 8.19908 3.40105L8.28061 3.3054Z"/></symbol><symbol id="icon-eds-alerts" viewBox="0 0 32 32"><path d="M28 12.667c.736 0 1.333.597 1.333 1.333v13.333A3.333 3.333 0 0 1 26 30.667H6a3.333 3.333 0 0 1-3.333-3.334V14a1.333 1.333 0 1 1 2.666 0v1.252L16 21.769l10.667-6.518V14c0-.736.597-1.333 1.333-1.333Zm-1.333 5.71-9.972 6.094c-.427.26-.963.26-1.39 0l-9.972-6.094v8.956c0 .368.299.667.667.667h20a.667.667 0 0 0 .667-.667v-8.956ZM19.333 12a1.333 1.333 0 1 1 0 2.667h-6.666a1.333 1.333 0 1 1 0-2.667h6.666Zm4-10.667a3.333 3.333 0 0 1 3.334 3.334v6.666a1.333 1.333 0 1 1-2.667 0V4.667A.667.667 0 0 0 23.333 4H8.667A.667.667 0 0 0 8 4.667v6.666a1.333 1.333 0 1 1-2.667 0V4.667a3.333 3.333 0 0 1 3.334-3.334h14.666Zm-4 5.334a1.333 1.333 0 0 1 0 2.666h-6.666a1.333 1.333 0 1 1 0-2.666h6.666Z"/></symbol><symbol id="icon-eds-arrow-up" viewBox="0 0 24 24"><path fill-rule="evenodd" d="m13.002 7.408 4.88 4.88a.99.99 0 0 0 1.32.08l.09-.08c.39-.39.39-1.03 0-1.42l-6.58-6.58a1.01 1.01 0 0 0-1.42 0l-6.58 6.58a1 1 0 0 0-.09 1.32l.08.1a1 1 0 0 0 1.42-.01l4.88-4.87v11.59a.99.99 0 0 0 .88.99l.12.01c.55 0 1-.45 1-1V7.408z" class="layer"/></symbol><symbol id="icon-eds-checklist" viewBox="0 0 32 32"><path d="M19.2 1.333a3.468 3.468 0 0 1 3.381 2.699L24.667 4C26.515 4 28 5.52 28 7.38v19.906c0 1.86-1.485 3.38-3.333 3.38H7.333c-1.848 0-3.333-1.52-3.333-3.38V7.38C4 5.52 5.485 4 7.333 4h2.093A3.468 3.468 0 0 1 12.8 1.333h6.4ZM9.426 6.667H7.333c-.36 0-.666.312-.666.713v19.906c0 .401.305.714.666.714h17.334c.36 0 .666-.313.666-.714V7.38c0-.4-.305-.713-.646-.714l-2.121.033A3.468 3.468 0 0 1 19.2 9.333h-6.4a3.468 3.468 0 0 1-3.374-2.666Zm12.715 5.606c.586.446.7 1.283.253 1.868l-7.111 9.334a1.333 1.333 0 0 1-1.792.306l-3.556-2.333a1.333 1.333 0 1 1 1.463-2.23l2.517 1.651 6.358-8.344a1.333 1.333 0 0 1 1.868-.252ZM19.2 4h-6.4a.8.8 0 0 0-.8.8v1.067a.8.8 0 0 0 .8.8h6.4a.8.8 0 0 0 .8-.8V4.8a.8.8 0 0 0-.8-.8Z"/></symbol><symbol id="icon-eds-citation" viewBox="0 0 36 36"><path d="M23.25 1.5a1.5 1.5 0 0 1 1.06.44l8.25 8.25a1.5 1.5 0 0 1 .44 1.06v19.5c0 2.105-1.645 3.75-3.75 3.75H18a1.5 1.5 0 0 1 0-3h11.25c.448 0 .75-.302.75-.75V11.873L22.628 4.5H8.31a.811.811 0 0 0-.8.68l-.011.13V16.5a1.5 1.5 0 0 1-3 0V5.31A3.81 3.81 0 0 1 8.31 1.5h14.94ZM8.223 20.358a.984.984 0 0 1-.192 1.378l-.048.034c-.54.36-.942.676-1.206.951-.59.614-.885 1.395-.885 2.343.115-.028.288-.042.518-.042.662 0 1.26.237 1.791.711.533.474.799 1.074.799 1.799 0 .753-.259 1.352-.777 1.799-.518.446-1.151.669-1.9.669-1.006 0-1.812-.293-2.417-.878C3.302 28.536 3 27.657 3 26.486c0-1.115.165-2.085.496-2.907.331-.823.734-1.513 1.209-2.071.475-.558.971-.997 1.49-1.318a6.01 6.01 0 0 1 .347-.2 1.321 1.321 0 0 1 1.681.368Zm7.5 0a.984.984 0 0 1-.192 1.378l-.048.034c-.54.36-.942.676-1.206.951-.59.614-.885 1.395-.885 2.343.115-.028.288-.042.518-.042.662 0 1.26.237 1.791.711.533.474.799 1.074.799 1.799 0 .753-.259 1.352-.777 1.799-.518.446-1.151.669-1.9.669-1.006 0-1.812-.293-2.417-.878-.604-.586-.906-1.465-.906-2.636 0-1.115.165-2.085.496-2.907.331-.823.734-1.513 1.209-2.071.475-.558.971-.997 1.49-1.318a6.01 6.01 0 0 1 .347-.2 1.321 1.321 0 0 1 1.681.368Z"/></symbol><symbol id="icon-eds-i-access-indicator" viewBox="0 0 16 16"><circle cx="4.5" cy="11.5" r="3.5" style="fill:currentColor"/><path fill-rule="evenodd" d="M4 3v3a1 1 0 0 1-2 0V2.923C2 1.875 2.84 1 3.909 1h5.909a1 1 0 0 1 .713.298l3.181 3.231a1 1 0 0 1 .288.702v7.846c0 .505-.197.993-.554 1.354a1.902 1.902 0 0 1-1.355.569H10a1 1 0 1 1 0-2h2V5.64L9.4 3H4Z" clip-rule="evenodd" style="fill:#222"/></symbol><symbol id="icon-eds-i-copy-link" viewBox="0 0 24 24"><path fill-rule="evenodd" clip-rule="evenodd" d="M19.4594 8.57015C19.0689 8.17963 19.0689 7.54646 19.4594 7.15594L20.2927 6.32261C20.2927 6.32261 20.2927 6.32261 20.2927 6.32261C21.0528 5.56252 21.0528 4.33019 20.2928 3.57014C19.5327 2.81007 18.3004 2.81007 17.5404 3.57014L16.7071 4.40347C16.3165 4.794 15.6834 4.794 15.2928 4.40348C14.9023 4.01296 14.9023 3.3798 15.2928 2.98927L16.1262 2.15594C17.6673 0.614803 20.1659 0.614803 21.707 2.15593C23.2481 3.69705 23.248 6.19569 21.707 7.7368L20.8737 8.57014C20.4831 8.96067 19.85 8.96067 19.4594 8.57015Z"/><path fill-rule="evenodd" clip-rule="evenodd" d="M18.0944 5.90592C18.4849 6.29643 18.4849 6.9296 18.0944 7.32013L16.4278 8.9868C16.0373 9.37733 15.4041 9.37734 15.0136 8.98682C14.6231 8.59631 14.6231 7.96314 15.0136 7.57261L16.6802 5.90594C17.0707 5.51541 17.7039 5.5154 18.0944 5.90592Z"/><path fill-rule="evenodd" clip-rule="evenodd" d="M13.5113 6.32243C13.9018 6.71295 13.9018 7.34611 13.5113 7.73664L12.678 8.56997C12.678 8.56997 12.678 8.56997 12.678 8.56997C11.9179 9.33006 11.9179 10.5624 12.6779 11.3224C13.438 12.0825 14.6703 12.0825 15.4303 11.3224L16.2636 10.4891C16.6542 10.0986 17.2873 10.0986 17.6779 10.4891C18.0684 10.8796 18.0684 11.5128 17.6779 11.9033L16.8445 12.7366C15.3034 14.2778 12.8048 14.2778 11.2637 12.7366C9.72262 11.1955 9.72266 8.69689 11.2637 7.15578L12.097 6.32244C12.4876 5.93191 13.1207 5.93191 13.5113 6.32243Z"/><path d="M8 20V22H19.4619C20.136 22 20.7822 21.7311 21.2582 21.2529C21.7333 20.7757 22 20.1289 22 19.4549V15C22 14.4477 21.5523 14 21 14C20.4477 14 20 14.4477 20 15V19.4549C20 19.6004 19.9426 19.7397 19.8408 19.842C19.7399 19.9433 19.6037 20 19.4619 20H8Z"/><path d="M4 13H2V19.4619C2 20.136 2.26889 20.7822 2.74705 21.2582C3.22434 21.7333 3.87105 22 4.5451 22H9C9.55228 22 10 21.5523 10 21C10 20.4477 9.55228 20 9 20H4.5451C4.39957 20 4.26028 19.9426 4.15804 19.8408C4.05668 19.7399 4 19.6037 4 19.4619V13Z"/><path d="M4 13H2V4.53808C2 3.86398 2.26889 3.21777 2.74705 2.74178C3.22434 2.26666 3.87105 2 4.5451 2H9C9.55228 2 10 2.44772 10 3C10 3.55228 9.55228 4 9 4H4.5451C4.39957 4 4.26028 4.05743 4.15804 4.15921C4.05668 4.26011 4 4.39633 4 4.53808V13Z"/></symbol><symbol id="icon-eds-i-github-medium" viewBox="0 0 24 24"><path d="M 11.964844 0 C 5.347656 0 0 5.269531 0 11.792969 C 0 17.003906 3.425781 21.417969 8.179688 22.976562 C 8.773438 23.09375 8.992188 22.722656 8.992188 22.410156 C 8.992188 22.136719 8.972656 21.203125 8.972656 20.226562 C 5.644531 20.929688 4.953125 18.820312 4.953125 18.820312 C 4.417969 17.453125 3.625 17.101562 3.625 17.101562 C 2.535156 16.378906 3.703125 16.378906 3.703125 16.378906 C 4.914062 16.457031 5.546875 17.589844 5.546875 17.589844 C 6.617188 19.386719 8.339844 18.878906 9.03125 18.566406 C 9.132812 17.804688 9.449219 17.277344 9.785156 16.984375 C 7.132812 16.710938 4.339844 15.695312 4.339844 11.167969 C 4.339844 9.878906 4.8125 8.824219 5.566406 8.003906 C 5.445312 7.710938 5.03125 6.5 5.683594 4.878906 C 5.683594 4.878906 6.695312 4.566406 8.972656 6.089844 C 9.949219 5.832031 10.953125 5.703125 11.964844 5.699219 C 12.972656 5.699219 14.003906 5.835938 14.957031 6.089844 C 17.234375 4.566406 18.242188 4.878906 18.242188 4.878906 C 18.898438 6.5 18.480469 7.710938 18.363281 8.003906 C 19.136719 8.824219 19.589844 9.878906 19.589844 11.167969 C 19.589844 15.695312 16.796875 16.691406 14.125 16.984375 C 14.558594 17.355469 14.933594 18.058594 14.933594 19.171875 C 14.933594 20.753906 14.914062 22.019531 14.914062 22.410156 C 14.914062 22.722656 15.132812 23.09375 15.726562 22.976562 C 20.480469 21.414062 23.910156 17.003906 23.910156 11.792969 C 23.929688 5.269531 18.558594 0 11.964844 0 Z M 11.964844 0 "/></symbol><symbol id="icon-eds-i-institution-medium" viewBox="0 0 24 24"><g><path fill-rule="evenodd" clip-rule="evenodd" d="M11.9967 1C11.6364 1 11.279 1.0898 10.961 1.2646C10.9318 1.28061 10.9035 1.29806 10.8761 1.31689L2.79765 6.87C2.46776 7.08001 2.20618 7.38466 2.07836 7.76668C1.94823 8.15561 1.98027 8.55648 2.12665 8.90067C2.42086 9.59246 3.12798 10 3.90107 10H4.99994V16H4.49994C3.11923 16 1.99994 17.1193 1.99994 18.5V19.5C1.99994 20.8807 3.11923 22 4.49994 22H19.4999C20.8807 22 21.9999 20.8807 21.9999 19.5V18.5C21.9999 17.1193 20.8807 16 19.4999 16H18.9999V10H20.0922C20.8653 10 21.5725 9.59252 21.8667 8.90065C22.0131 8.55642 22.0451 8.15553 21.9149 7.7666C21.7871 7.38459 21.5255 7.07997 21.1956 6.86998L13.1172 1.31689C13.0898 1.29806 13.0615 1.28061 13.0324 1.2646C12.7143 1.0898 12.357 1 11.9967 1ZM4.6844 8L11.9472 3.00755C11.9616 3.00295 11.9783 3 11.9967 3C12.015 3 12.0318 3.00295 12.0461 3.00755L19.3089 8H4.6844ZM16.9999 16V10H14.9999V16H16.9999ZM12.9999 16V10H10.9999V16H12.9999ZM8.99994 16V10H6.99994V16H8.99994ZM3.99994 18.5C3.99994 18.2239 4.2238 18 4.49994 18H19.4999C19.7761 18 19.9999 18.2239 19.9999 18.5V19.5C19.9999 19.7761 19.7761 20 19.4999 20H4.49994C4.2238 20 3.99994 19.7761 3.99994 19.5V18.5Z"/></g></symbol><symbol id="icon-eds-i-limited-access" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M4 3v3a1 1 0 0 1-2 0V2.923C2 1.875 2.84 1 3.909 1h5.909a1 1 0 0 1 .713.298l3.181 3.231a1 1 0 0 1 .288.702V6a1 1 0 1 1-2 0v-.36L9.4 3H4ZM3 8a1 1 0 0 1 1 1v1a1 1 0 1 1-2 0V9a1 1 0 0 1 1-1Zm10 0a1 1 0 0 1 1 1v1a1 1 0 1 1-2 0V9a1 1 0 0 1 1-1Zm-3.5 6a1 1 0 0 1-1 1h-1a1 1 0 1 1 0-2h1a1 1 0 0 1 1 1Zm2.441-1a1 1 0 0 1 2 0c0 .73-.246 1.306-.706 1.664a1.61 1.61 0 0 1-.876.334l-.032.002H11.5a1 1 0 1 1 0-2h.441ZM4 13a1 1 0 0 0-2 0c0 .73.247 1.306.706 1.664a1.609 1.609 0 0 0 .876.334l.032.002H4.5a1 1 0 1 0 0-2H4Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-search-category-medium" viewBox="0 0 32 32"><path fill-rule="evenodd" d="M2 5.306A3.306 3.306 0 0 1 5.306 2h5.833a3.306 3.306 0 0 1 3.306 3.306v5.833a3.306 3.306 0 0 1-3.306 3.305H5.306A3.306 3.306 0 0 1 2 11.14V5.306Zm3.306-.584a.583.583 0 0 0-.584.584v5.833c0 .322.261.583.584.583h5.833a.583.583 0 0 0 .583-.583V5.306a.583.583 0 0 0-.583-.584H5.306Zm15.555 8.945a7.194 7.194 0 1 0 4.034 13.153l2.781 2.781a1.361 1.361 0 1 0 1.925-1.925l-2.781-2.781a7.194 7.194 0 0 0-5.958-11.228Zm3.173 10.346a4.472 4.472 0 1 0-.021.021l.01-.01.011-.011Zm-5.117-19.29a.583.583 0 0 0-.584.583v5.833a1.361 1.361 0 0 1-2.722 0V5.306A3.306 3.306 0 0 1 18.917 2h5.833a3.306 3.306 0 0 1 3.306 3.306v5.833c0 .6-.161 1.166-.443 1.654a1.361 1.361 0 1 1-2.357-1.363.575.575 0 0 0 .078-.291V5.306a.583.583 0 0 0-.584-.584h-5.833ZM2 18.916a3.306 3.306 0 0 1 3.306-3.306h5.833a1.361 1.361 0 1 1 0 2.722H5.306a.583.583 0 0 0-.584.584v5.833c0 .322.261.583.584.583h5.833a.574.574 0 0 0 .29-.077 1.361 1.361 0 1 1 1.364 2.356 3.296 3.296 0 0 1-1.654.444H5.306A3.306 3.306 0 0 1 2 24.75v-5.833Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-subjects-medium" viewBox="0 0 24 24"><g id="icon-subjects-copy" stroke="none" stroke-width="1" fill-rule="evenodd"><path d="M13.3846154,2 C14.7015971,2 15.7692308,3.06762994 15.7692308,4.38461538 L15.7692308,7.15384615 C15.7692308,8.47082629 14.7015955,9.53846154 13.3846154,9.53846154 L13.1038388,9.53925278 C13.2061091,9.85347965 13.3815528,10.1423885 13.6195822,10.3804178 C13.9722182,10.7330539 14.436524,10.9483278 14.9293854,10.9918129 L15.1153846,11 C16.2068332,11 17.2535347,11.433562 18.0254647,12.2054189 C18.6411944,12.8212361 19.0416785,13.6120766 19.1784166,14.4609738 L19.6153846,14.4615385 C20.932386,14.4615385 22,15.5291672 22,16.8461538 L22,19.6153846 C22,20.9323924 20.9323924,22 19.6153846,22 L16.8461538,22 C15.5291672,22 14.4615385,20.932386 14.4615385,19.6153846 L14.4615385,16.8461538 C14.4615385,15.5291737 15.5291737,14.4615385 16.8461538,14.4615385 L17.126925,14.460779 C17.0246537,14.1465537 16.8492179,13.857633 16.6112344,13.6196157 C16.2144418,13.2228606 15.6764136,13 15.1153846,13 C14.0239122,13 12.9771569,12.5664197 12.2053686,11.7946314 C12.1335167,11.7227795 12.0645962,11.6485444 11.9986839,11.5721119 C11.9354038,11.6485444 11.8664833,11.7227795 11.7946314,11.7946314 C11.0228431,12.5664197 9.97608778,13 8.88461538,13 C8.323576,13 7.78552852,13.2228666 7.38881294,13.6195822 C7.15078359,13.8576115 6.97533988,14.1465203 6.8730696,14.4607472 L7.15384615,14.4615385 C8.47082629,14.4615385 9.53846154,15.5291737 9.53846154,16.8461538 L9.53846154,19.6153846 C9.53846154,20.932386 8.47083276,22 7.15384615,22 L4.38461538,22 C3.06762347,22 2,20.9323876 2,19.6153846 L2,16.8461538 C2,15.5291721 3.06762994,14.4615385 4.38461538,14.4615385 L4.8215823,14.4609378 C4.95831893,13.6120029 5.3588057,12.8211623 5.97459937,12.2053686 C6.69125996,11.488708 7.64500941,11.0636656 8.6514968,11.0066017 L8.88461538,11 C9.44565477,11 9.98370225,10.7771334 10.3804178,10.3804178 C10.6184472,10.1423885 10.7938909,9.85347965 10.8961612,9.53925278 L10.6153846,9.53846154 C9.29840448,9.53846154 8.23076923,8.47082629 8.23076923,7.15384615 L8.23076923,4.38461538 C8.23076923,3.06762994 9.29840286,2 10.6153846,2 L13.3846154,2 Z M7.15384615,16.4615385 L4.38461538,16.4615385 C4.17220099,16.4615385 4,16.63374 4,16.8461538 L4,19.6153846 C4,19.8278134 4.17218833,20 4.38461538,20 L7.15384615,20 C7.36626945,20 7.53846154,19.8278103 7.53846154,19.6153846 L7.53846154,16.8461538 C7.53846154,16.6337432 7.36625679,16.4615385 7.15384615,16.4615385 Z M19.6153846,16.4615385 L16.8461538,16.4615385 C16.6337432,16.4615385 16.4615385,16.6337432 16.4615385,16.8461538 L16.4615385,19.6153846 C16.4615385,19.8278103 16.6337306,20 16.8461538,20 L19.6153846,20 C19.8278229,20 20,19.8278229 20,19.6153846 L20,16.8461538 C20,16.6337306 19.8278103,16.4615385 19.6153846,16.4615385 Z M13.3846154,4 L10.6153846,4 C10.4029708,4 10.2307692,4.17220099 10.2307692,4.38461538 L10.2307692,7.15384615 C10.2307692,7.36625679 10.402974,7.53846154 10.6153846,7.53846154 L13.3846154,7.53846154 C13.597026,7.53846154 13.7692308,7.36625679 13.7692308,7.15384615 L13.7692308,4.38461538 C13.7692308,4.17220099 13.5970292,4 13.3846154,4 Z" id="Shape" fill-rule="nonzero"/></g></symbol><symbol id="icon-eds-small-arrow-left" viewBox="0 0 16 17"><path stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="2" d="M14 8.092H2m0 0L8 2M2 8.092l6 6.035"/></symbol><symbol id="icon-eds-small-arrow-right" viewBox="0 0 16 16"><g fill-rule="evenodd" stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="2"><path d="M2 8.092h12M8 2l6 6.092M8 14.127l6-6.035"/></g></symbol><symbol id="icon-orcid-logo" viewBox="0 0 40 40"><path fill-rule="evenodd" d="M12.281 10.453c.875 0 1.578-.719 1.578-1.578 0-.86-.703-1.578-1.578-1.578-.875 0-1.578.703-1.578 1.578 0 .86.703 1.578 1.578 1.578Zm-1.203 18.641h2.406V12.359h-2.406v16.735Z"/><path fill-rule="evenodd" d="M17.016 12.36h6.5c6.187 0 8.906 4.421 8.906 8.374 0 4.297-3.36 8.375-8.875 8.375h-6.531V12.36Zm6.234 14.578h-3.828V14.53h3.703c4.688 0 6.828 2.844 6.828 6.203 0 2.063-1.25 6.203-6.703 6.203Z" clip-rule="evenodd"/></symbol></svg> </div> <a class="c-skip-link" href="#main">Skip to main content</a> <div class="u-lazy-ad-wrapper u-mbs-0"> <div class="c-ad c-ad--728x90 c-ad--conditional" data-test="springer-doubleclick-ad"> <div class="c-ad c-ad__inner" > <p class="c-ad__label">Advertisement</p> <div id="div-gpt-ad-LB1" class="div-gpt-ad grade-c-hide" data-gpt data-gpt-unitpath="/270604982/springerlink/10052/article" data-gpt-sizes="728x90" data-gpt-targeting="pos=top;articleid=s10052-016-4285-4;" data-ad-type="top" style="min-width:728px;min-height:90px"> <noscript> <a href="//pubads.g.doubleclick.net/gampad/jump?iu=/270604982/springerlink/10052/article&amp;sz=728x90&amp;pos=top&amp;articleid=s10052-016-4285-4"> <img data-test="gpt-advert-fallback-img" src="//pubads.g.doubleclick.net/gampad/ad?iu=/270604982/springerlink/10052/article&amp;sz=728x90&amp;pos=top&amp;articleid=s10052-016-4285-4" alt="Advertisement" width="728" height="90"> </a> </noscript> </div> </div> </div> </div> <header class="eds-c-header" data-eds-c-header> <div class="eds-c-header__container" data-eds-c-header-expander-anchor> <div class="eds-c-header__brand"> <a href="https://link.springer.com" data-test=springerlink-logo data-track="click_imprint_logo" data-track-context="unified header" data-track-action="click logo link" data-track-category="unified header" data-track-label="link" > <img src="/oscar-static/images/darwin/header/img/logo-springer-nature-link-3149409f62.svg" alt="Springer Nature Link"> </a> </div> <a class="c-header__link eds-c-header__link" id="identity-account-widget" data-track="click_login" data-track-context="header" href='https://idp.springer.com/auth/personal/springernature?redirect_uri=https://link.springer.com/article/10.1140/epjc/s10052-016-4285-4?'><span class="eds-c-header__widget-fragment-title">Log in</span></a> </div> <nav class="eds-c-header__nav" aria-label="header navigation"> <div class="eds-c-header__nav-container"> <div class="eds-c-header__item eds-c-header__item--menu"> <a href="#eds-c-header-nav" class="eds-c-header__link" data-eds-c-header-expander> <svg class="eds-c-header__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-menu-medium"></use> </svg><span>Menu</span> </a> </div> <div class="eds-c-header__item eds-c-header__item--inline-links"> <a class="eds-c-header__link" href="https://link.springer.com/journals/" data-track="nav_find_a_journal" data-track-context="unified header" data-track-action="click find a journal" data-track-category="unified header" data-track-label="link" > Find a journal </a> <a class="eds-c-header__link" href="https://www.springernature.com/gp/authors" data-track="nav_how_to_publish" data-track-context="unified header" data-track-action="click publish with us link" data-track-category="unified header" data-track-label="link" > Publish with us </a> <a class="eds-c-header__link" href="https://link.springernature.com/home/" data-track="nav_track_your_research" data-track-context="unified header" data-track-action="click track your research" data-track-category="unified header" data-track-label="link" > Track your research </a> </div> <div class="eds-c-header__link-container"> <div class="eds-c-header__item eds-c-header__item--divider"> <a href="#eds-c-header-popup-search" class="eds-c-header__link" data-eds-c-header-expander data-eds-c-header-test-search-btn> <svg class="eds-c-header__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-search-medium"></use> </svg><span>Search</span> </a> </div> <div id="ecommerce-header-cart-icon-link" class="eds-c-header__item ecommerce-cart" style="display:inline-block"> <a class="eds-c-header__link" href="https://order.springer.com/public/cart" style="appearance:none;border:none;background:none;color:inherit;position:relative"> <svg id="eds-i-cart" class="eds-c-header__icon" xmlns="http://www.w3.org/2000/svg" height="24" width="24" viewBox="0 0 24 24" aria-hidden="true" focusable="false"> <path fill="currentColor" fill-rule="nonzero" d="M2 1a1 1 0 0 0 0 2l1.659.001 2.257 12.808a2.599 2.599 0 0 0 2.435 2.185l.167.004 9.976-.001a2.613 2.613 0 0 0 2.61-1.748l.03-.106 1.755-7.82.032-.107a2.546 2.546 0 0 0-.311-1.986l-.108-.157a2.604 2.604 0 0 0-2.197-1.076L6.042 5l-.56-3.17a1 1 0 0 0-.864-.82l-.12-.007L2.001 1ZM20.35 6.996a.63.63 0 0 1 .54.26.55.55 0 0 1 .082.505l-.028.1L19.2 15.63l-.022.05c-.094.177-.282.299-.526.317l-10.145.002a.61.61 0 0 1-.618-.515L6.394 6.999l13.955-.003ZM18 19a2 2 0 1 0 0 4 2 2 0 0 0 0-4ZM8 19a2 2 0 1 0 0 4 2 2 0 0 0 0-4Z"></path> </svg><span>Cart</span><span class="cart-info" style="display:none;position:absolute;top:10px;right:45px;background-color:#C65301;color:#fff;width:18px;height:18px;font-size:11px;border-radius:50%;line-height:17.5px;text-align:center"></span></a> <script>(function () { var exports = {}; if (window.fetch) { "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.headerWidgetClientInit = void 0; var headerWidgetClientInit = function (getCartInfo) { document.body.addEventListener("updatedCart", function () { updateCartIcon(); }, false); return updateCartIcon(); function updateCartIcon() { return getCartInfo() .then(function (res) { return res.json(); }) .then(refreshCartState) .catch(function (_) { }); } function refreshCartState(json) { var indicator = document.querySelector("#ecommerce-header-cart-icon-link .cart-info"); /* istanbul ignore else */ if (indicator && json.itemCount) { indicator.style.display = 'block'; indicator.textContent = json.itemCount > 9 ? '9+' : json.itemCount.toString(); var moreThanOneItem = json.itemCount > 1; indicator.setAttribute('title', "there ".concat(moreThanOneItem ? "are" : "is", " ").concat(json.itemCount, " item").concat(moreThanOneItem ? "s" : "", " in your cart")); } return json; } }; exports.headerWidgetClientInit = headerWidgetClientInit; headerWidgetClientInit( function () { return window.fetch("https://cart.springer.com/cart-info", { credentials: "include", headers: { Accept: "application/json" } }) } ) }})()</script> </div> </div> </div> </nav> </header> <article lang="en" id="main" class="app-masthead__colour-default"> <section class="app-masthead " aria-label="article masthead"> <div class="app-masthead__container"> <div class="app-article-masthead u-sans-serif js-context-bar-sticky-point-masthead" data-track-component="article" data-test="masthead-component"> <div class="app-article-masthead__info"> <nav aria-label="breadcrumbs" data-test="breadcrumbs"> <ol class="c-breadcrumbs c-breadcrumbs--contrast" itemscope itemtype="https://schema.org/BreadcrumbList"> <li class="c-breadcrumbs__item" id="breadcrumb0" itemprop="itemListElement" itemscope="" itemtype="https://schema.org/ListItem"> <a href="/" class="c-breadcrumbs__link" itemprop="item" data-track="click_breadcrumb" data-track-context="article page" data-track-category="article" data-track-action="breadcrumbs" data-track-label="breadcrumb1"><span itemprop="name">Home</span></a><meta itemprop="position" content="1"> <svg class="c-breadcrumbs__chevron" role="img" aria-hidden="true" focusable="false" width="10" height="10" viewBox="0 0 10 10"> <path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/> </svg> </li> <li class="c-breadcrumbs__item" id="breadcrumb1" itemprop="itemListElement" itemscope="" itemtype="https://schema.org/ListItem"> <a href="/journal/10052" class="c-breadcrumbs__link" itemprop="item" data-track="click_breadcrumb" data-track-context="article page" data-track-category="article" data-track-action="breadcrumbs" data-track-label="breadcrumb2"><span itemprop="name">The European Physical Journal C</span></a><meta itemprop="position" content="2"> <svg class="c-breadcrumbs__chevron" role="img" aria-hidden="true" focusable="false" width="10" height="10" viewBox="0 0 10 10"> <path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/> </svg> </li> <li class="c-breadcrumbs__item" id="breadcrumb2" itemprop="itemListElement" itemscope="" itemtype="https://schema.org/ListItem"> <span itemprop="name">Article</span><meta itemprop="position" content="3"> </li> </ol> </nav> <h1 class="c-article-title" data-test="article-title" data-article-title="">A critical appraisal and evaluation of modern PDFs</h1> <ul class="c-article-identifiers"> <li class="c-article-identifiers__item" data-test="article-category">Regular Article - Experimental Physics</li> <li class="c-article-identifiers__item"> <a href="https://www.springernature.com/gp/open-research/about/the-fundamentals-of-open-access-and-open-research" data-track="click" data-track-action="open access" data-track-label="link" class="u-color-open-access" data-test="open-access">Open access</a> </li> <li class="c-article-identifiers__item"> Published: <time datetime="2016-08-23">23 August 2016</time> </li> </ul> <ul class="c-article-identifiers c-article-identifiers--cite-list"> <li class="c-article-identifiers__item"> <span data-test="journal-volume">Volume 76</span>, article number <span data-test="article-number">471</span>, (<span data-test="article-publication-year">2016</span>) </li> <li class="c-article-identifiers__item c-article-identifiers__item--cite"> <a href="#citeas" data-track="click" data-track-action="cite this article" data-track-category="article body" data-track-label="link">Cite this article</a> </li> </ul> <div class="app-article-masthead__buttons" data-test="download-article-link-wrapper" data-track-context="masthead"> <div class="c-pdf-container"> <div class="c-pdf-download u-clear-both u-mb-16"> <a href="/content/pdf/10.1140/epjc/s10052-016-4285-4.pdf" class="u-button u-button--full-width u-button--primary u-justify-content-space-between c-pdf-download__link" data-article-pdf="true" data-readcube-pdf-url="true" data-test="pdf-link" data-draft-ignore="true" data-track="content_download" data-track-type="article pdf download" data-track-action="download pdf" data-track-label="button" data-track-external download> <span class="c-pdf-download__text">Download PDF</span> <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon"><use xlink:href="#icon-eds-i-download-medium"/></svg> </a> </div> </div> <p class="app-article-masthead__access"> <svg width="16" height="16" focusable="false" role="img" aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-check-filled-medium"></use></svg> You have full access to this <a href="https://www.springernature.com/gp/open-research/about/the-fundamentals-of-open-access-and-open-research" data-track="click" data-track-action="open access" data-track-label="link">open access</a> article</p> </div> </div> <div class="app-article-masthead__brand"> <a href="/journal/10052" class="app-article-masthead__journal-link" data-track="click_journal_home" data-track-action="journal homepage" data-track-context="article page" data-track-label="link"> <picture> <source type="image/webp" media="(min-width: 768px)" width="120" height="159" srcset="https://media.springernature.com/w120/springer-static/cover-hires/journal/10052?as=webp, https://media.springernature.com/w316/springer-static/cover-hires/journal/10052?as=webp 2x"> <img width="72" height="95" src="https://media.springernature.com/w72/springer-static/cover-hires/journal/10052?as=webp" srcset="https://media.springernature.com/w144/springer-static/cover-hires/journal/10052?as=webp 2x" alt=""> </picture> <span class="app-article-masthead__journal-title">The European Physical Journal C</span> </a> <a href="https://link.springer.com/journal/10052/aims-and-scope" class="app-article-masthead__submission-link" data-track="click_aims_and_scope" data-track-action="aims and scope" data-track-context="article page" data-track-label="link"> Aims and scope <svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-arrow-right-medium"></use></svg> </a> <a href="https://mc.manuscriptcentral.com/epjc" class="app-article-masthead__submission-link" data-track="click_submit_manuscript" data-track-context="article masthead on springerlink article page" data-track-action="submit manuscript" data-track-label="link"> Submit manuscript <svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-arrow-right-medium"></use></svg> </a> </div> </div> </div> </section> <div class="c-article-main u-container u-mt-24 u-mb-32 l-with-sidebar" id="main-content" data-component="article-container"> <main class="u-serif js-main-column" data-track-component="article body"> <div class="c-context-bar u-hide" data-test="context-bar" data-context-bar aria-hidden="true"> <div class="c-context-bar__container u-container"> <div class="c-context-bar__title"> A critical appraisal and evaluation of modern PDFs </div> <div data-test="inCoD" data-track-context="sticky banner"> <div class="c-pdf-container"> <div class="c-pdf-download u-clear-both u-mb-16"> <a href="/content/pdf/10.1140/epjc/s10052-016-4285-4.pdf" class="u-button u-button--full-width u-button--primary u-justify-content-space-between c-pdf-download__link" data-article-pdf="true" data-readcube-pdf-url="true" data-test="pdf-link" data-draft-ignore="true" data-track="content_download" data-track-type="article pdf download" data-track-action="download pdf" data-track-label="button" data-track-external download> <span class="c-pdf-download__text">Download PDF</span> <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon"><use xlink:href="#icon-eds-i-download-medium"/></svg> </a> </div> </div> </div> </div> </div> <div class="c-article-header"> <header> <ul class="c-article-author-list c-article-author-list--short" data-test="authors-list" data-component-authors-activator="authors-list"><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-A_-Accardi-Aff1-Aff2" data-author-popup="auth-A_-Accardi-Aff1-Aff2" data-author-search="Accardi, A.">A. Accardi</a><sup class="u-js-hide"><a href="#Aff1">1</a>,<a href="#Aff2">2</a></sup>, </li><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-S_-Alekhin-Aff3-Aff4" data-author-popup="auth-S_-Alekhin-Aff3-Aff4" data-author-search="Alekhin, S.">S. Alekhin</a><sup class="u-js-hide"><a href="#Aff3">3</a>,<a href="#Aff4">4</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-J_-Bl_mlein-Aff5" data-author-popup="auth-J_-Bl_mlein-Aff5" data-author-search="Blümlein, J.">J. Blümlein</a><sup class="u-js-hide"><a href="#Aff5">5</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-M__V_-Garzelli-Aff3" data-author-popup="auth-M__V_-Garzelli-Aff3" data-author-search="Garzelli, M. V.">M. V. Garzelli</a><sup class="u-js-hide"><a href="#Aff3">3</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-K_-Lipka-Aff6" data-author-popup="auth-K_-Lipka-Aff6" data-author-search="Lipka, K.">K. Lipka</a><sup class="u-js-hide"><a href="#Aff6">6</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-W_-Melnitchouk-Aff2" data-author-popup="auth-W_-Melnitchouk-Aff2" data-author-search="Melnitchouk, W.">W. Melnitchouk</a><sup class="u-js-hide"><a href="#Aff2">2</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-S_-Moch-Aff3" data-author-popup="auth-S_-Moch-Aff3" data-author-search="Moch, S." data-corresp-id="c1">S. Moch<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-mail-medium"></use></svg></a><sup class="u-js-hide"><a href="#Aff3">3</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-J__F_-Owens-Aff7" data-author-popup="auth-J__F_-Owens-Aff7" data-author-search="Owens, J. F.">J. F. Owens</a><sup class="u-js-hide"><a href="#Aff7">7</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-R_-Pla_akyt_-Aff6" data-author-popup="auth-R_-Pla_akyt_-Aff6" data-author-search="Plačakytė, R.">R. Plačakytė</a><sup class="u-js-hide"><a href="#Aff6">6</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-E_-Reya-Aff8" data-author-popup="auth-E_-Reya-Aff8" data-author-search="Reya, E.">E. Reya</a><sup class="u-js-hide"><a href="#Aff8">8</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-N_-Sato-Aff2" data-author-popup="auth-N_-Sato-Aff2" data-author-search="Sato, N.">N. Sato</a><sup class="u-js-hide"><a href="#Aff2">2</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-A_-Vogt-Aff9" data-author-popup="auth-A_-Vogt-Aff9" data-author-search="Vogt, A.">A. Vogt</a><sup class="u-js-hide"><a href="#Aff9">9</a></sup> &amp; </li><li class="c-article-author-list__show-more" aria-label="Show all 13 authors for this article" title="Show all 13 authors for this article">…</li><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-O_-Zenaiev-Aff6" data-author-popup="auth-O_-Zenaiev-Aff6" data-author-search="Zenaiev, O.">O. Zenaiev</a><sup class="u-js-hide"><a href="#Aff6">6</a></sup> </li></ul><button aria-expanded="false" class="c-article-author-list__button"><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-down-medium"></use></svg><span>Show authors</span></button> <div data-test="article-metrics"> <ul class="app-article-metrics-bar u-list-reset"> <li class="app-article-metrics-bar__item"> <p class="app-article-metrics-bar__count"><svg class="u-icon app-article-metrics-bar__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-accesses-medium"></use> </svg>5787 <span class="app-article-metrics-bar__label">Accesses</span></p> </li> <li class="app-article-metrics-bar__item"> <p class="app-article-metrics-bar__count"><svg class="u-icon app-article-metrics-bar__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-altmetric-medium"></use> </svg>1 <span class="app-article-metrics-bar__label">Altmetric</span></p> </li> <li class="app-article-metrics-bar__item app-article-metrics-bar__item--metrics"> <p class="app-article-metrics-bar__details"><a href="/article/10.1140/epjc/s10052-016-4285-4/metrics" data-track="click" data-track-action="view metrics" data-track-label="link" rel="nofollow">Explore all metrics <svg class="u-icon app-article-metrics-bar__arrow-icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-arrow-right-medium"></use> </svg></a></p> </li> </ul> </div> <div class="u-mt-32"> </div> <div class="u-mb-8 c-status-message c-status-message--boxed c-status-message--info"><span class="c-status-message__icon"><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-info-filled-medium"></use></svg></span><p class="u-mt-0">A <a href="https://arxiv.org/abs/1603.08906" class="relation-link" data-track="click" data-track-label="link" data-track-action="preprint">preprint version</a> of the article is available at arXiv.</p></div> </header> </div> <div data-article-body="true" data-track-component="article body" class="c-article-body"> <section aria-labelledby="Abs1" data-title="Abstract" lang="en"><div class="c-article-section" id="Abs1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Abs1">Abstract</h2><div class="c-article-section__content" id="Abs1-content"><p>We review the present status of the determination of parton distribution functions (PDFs) in the light of the precision requirements for the LHC in Run 2 and other future hadron colliders. We provide brief reviews of all currently available PDF sets and use them to compute cross sections for a number of benchmark processes, including Higgs boson production in gluon–gluon fusion at the LHC. We show that the differences in the predictions obtained with the various PDFs are due to particular theory assumptions made in the fits of those PDFs. We discuss PDF uncertainties in the kinematic region covered by the LHC and on averaging procedures for PDFs, such as advocated by the PDF4LHC15 sets, and provide recommendations for the usage of PDF sets for theory predictions at the LHC.</p></div></div></section> <div data-test="cobranding-download"> </div> <section aria-labelledby="inline-recommendations" data-title="Inline Recommendations" class="c-article-recommendations" data-track-component="inline-recommendations"> <h3 class="c-article-recommendations-title" id="inline-recommendations">Similar content being viewed by others</h3> <div class="c-article-recommendations-list"> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w215h120/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-021-09602-x/MediaObjects/10052_2021_9602_Fig1_HTML.png" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://link.springer.com/10.1140/epjc/s10052-021-09602-x?fromPaywallRec=false" data-track="select_recommendations_1" data-track-context="inline recommendations" data-track-action="click recommendations inline - 1" data-track-label="10.1140/epjc/s10052-021-09602-x">Correlation of theoretical uncertainties in PDF fits and theoretical uncertainties in predictions </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Article</span> <span class="c-article-meta-recommendations__access-type">Open access</span> <span class="c-article-meta-recommendations__date">18 September 2021</span> </div> </div> </article> </div> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w215h120/springer-static/image/art%3A10.1140%2Fepjp%2Fs13360-024-05865-x/MediaObjects/13360_2024_5865_Fig1_HTML.png" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://link.springer.com/10.1140/epjp/s13360-024-05865-x?fromPaywallRec=false" data-track="select_recommendations_2" data-track-context="inline recommendations" data-track-action="click recommendations inline - 2" data-track-label="10.1140/epjp/s13360-024-05865-x">New results in the CTEQ-TEA global analysis of parton distributions in the nucleon </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Article</span> <span class="c-article-meta-recommendations__access-type">Open access</span> <span class="c-article-meta-recommendations__date">04 December 2024</span> </div> </div> </article> </div> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w215h120/springer-static/image/art%3A10.1007%2FJHEP04%282015%29040/MediaObjects/13130_2015_1078_Figa_HTML.gif" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://link.springer.com/10.1007/JHEP04(2015)040?fromPaywallRec=false" data-track="select_recommendations_3" data-track-context="inline recommendations" data-track-action="click recommendations inline - 3" data-track-label="10.1007/JHEP04(2015)040">Parton distributions for the LHC run II </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Article</span> <span class="c-article-meta-recommendations__access-type">Open access</span> <span class="c-article-meta-recommendations__date">08 April 2015</span> </div> </div> </article> </div> </div> </section> <script> window.dataLayer = window.dataLayer || []; window.dataLayer.push({ recommendations: { recommender: 'semantic', model: 'specter', policy_id: 'NA', timestamp: 1740221327, embedded_user: 'null' } }); </script> <section aria-labelledby="content-related-subjects" data-test="subject-content"> <h3 id="content-related-subjects" class="c-article__sub-heading">Explore related subjects</h3> <span class="u-sans-serif u-text-s u-display-block u-mb-24">Discover the latest articles, news and stories from top researchers in related subjects.</span> <ul class="c-article-subject-list" role="list"> <li class="c-article-subject-list__subject"> <a href="/subject/experimental-particle-physics" data-track="select_related_subject_1" data-track-context="related subjects from content page" data-track-label="Experimental Particle Physics">Experimental Particle Physics</a> </li> </ul> </section> <div class="app-card-service" data-test="article-checklist-banner"> <div> <a class="app-card-service__link" data-track="click_presubmission_checklist" data-track-context="article page top of reading companion" data-track-category="pre-submission-checklist" data-track-action="clicked article page checklist banner test 2 old version" data-track-label="link" href="https://beta.springernature.com/pre-submission?journalId=10052" data-test="article-checklist-banner-link"> <span class="app-card-service__link-text">Use our pre-submission checklist</span> <svg class="app-card-service__link-icon" aria-hidden="true" focusable="false"><use xlink:href="#icon-eds-i-arrow-right-small"></use></svg> </a> <p class="app-card-service__description">Avoid common mistakes on your manuscript.</p> </div> <div class="app-card-service__icon-container"> <svg class="app-card-service__icon" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-clipboard-check-medium"></use> </svg> </div> </div> <div class="main-content"> <section data-title="Introduction"><div class="c-article-section" id="Sec1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec1"><span class="c-article-section__title-number">1 </span>Introduction</h2><div class="c-article-section__content" id="Sec1-content"><p>In Run 2 of the Large Hadron Collider (LHC), the very details of the Standard Model (SM), including cross sections of different processes and Higgs bosons properties, are being measured with very high precision. At the same time, the new data at the highest center-of-mass collision energies ever achieved (<span class="mathjax-tex">\(\sqrt{s}=13\)</span> TeV) are used to search for physics phenomena beyond the SM (BSM). The experimental data used to perform those measurements are generally expected to have percent-level accuracy, depending on details such as the final states and the acceptance and efficiency of the detectors in particular kinematics ranges.</p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-1"><figure><figcaption class="c-article-table__figcaption"><b id="Tab1" data-test="table-caption">Table 1 Summary of major hard processes used in the various PDF analyses and the confidence level criteria employed. Detailed references to the different specific data sets used by the various groups are given in Refs. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 1" title="A. Accardi, L.T. Brady, W. Melnitchouk, J.F. Owens, N. Sato, Constraints on large-&#xA; &#xA; &#xA; &#xA; $$x$$&#xA; &#xA; &#xA; x&#xA; &#xA; &#xA; parton distributions from new weak boson production and deep-inelastic scattering data. &#xA; arXiv:1602.03154&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR1" id="ref-link-section-d90629110e701">1</a>–<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 7" title="NNPDF Collaboration, R.D. Ball et al., Parton distributions for the LHC Run II. JHEP 04, 040 (2015). &#xA; arXiv:1410.8849&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR7" id="ref-link-section-d90629110e704">7</a>] and also the specific statistical analysis applied is described in these papers. Note that different analyses use partly different data sets for some processes</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1140/epjc/s10052-016-4285-4/tables/1" aria-label="Full size table 1"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <p>To further test the SM and to identify signals for new physics, measurements need to be compared to precise theoretical predictions, which need to incorporate higher order radiative corrections in quantum chromodynamics (QCD) and, possibly, the electroweak sector of the SM. In order to reach the benchmark precision set by the accuracy of the experimental data, next-to-next-to-leading order (NNLO) corrections in QCD are often required. At next-to-leading order (NLO) in QCD, the residual theoretical uncertainty from truncating the perturbative expansion commonly estimated by variations of the renormalization and factorization scales <span class="mathjax-tex">\(\mu _r\)</span> and <span class="mathjax-tex">\(\mu _f\)</span> are often too large compared to the experimental accuracy. Nonetheless, for observables with complex final states, and indeed for many BSM signals, one must still contend with NLO calculations, which will continue to require corresponding NLO fits.</p><p>Parton distribution functions (PDFs) in the proton serve as an essential input for any cross section prediction at hadron colliders and have been measured with increasing precision over the last three decades. Likewise, the strong coupling constant <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span> at the <i>Z</i> boson mass scale <span class="mathjax-tex">\(M_Z\)</span> and the masses <span class="mathjax-tex">\(m_h\)</span> of the heavy quarks <span class="mathjax-tex">\(h=c, b, t\)</span> are well constrained by existing data and their determination is accurate at least to NNLO. However, despite steady improvements in the accuracy of PDF determinations over the years, the uncertainties associated with PDFs, the strong coupling <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span>, and quark masses still dominate many calculations of cross sections for SM processes at the LHC. A particularly prominent example is the cross section for the production of a SM Higgs boson in the gluon–gluon fusion channel.</p><p>The currently available PDF sets are CJ15 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 1" title="A. Accardi, L.T. Brady, W. Melnitchouk, J.F. Owens, N. Sato, Constraints on large-&#xA; &#xA; &#xA; &#xA; $$x$$&#xA; &#xA; &#xA; x&#xA; &#xA; &#xA; parton distributions from new weak boson production and deep-inelastic scattering data. &#xA; arXiv:1602.03154&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR1" id="ref-link-section-d90629110e1816">1</a>], accurate to NLO in QCD, as well as ABM12 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2" title="S. Alekhin, J. Blümlein, S. Moch, The ABM parton distributions tuned to LHC data. Phys. Rev. D 89, 054028 (2014). &#xA; arXiv:1310.3059&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR2" id="ref-link-section-d90629110e1819">2</a>], CT14 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 3" title="S. Dulat, T.J. Hou, J. Gao, M. Guzzi, J. Huston, P. Nadolsky, J. Pumplin, C. Schmidt, D. Stump, C.P. Yuan, The CT14 global analysis of quantum chromodynamics. &#xA; arXiv:1506.07443&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR3" id="ref-link-section-d90629110e1822">3</a>], HERAPDF2.0 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 4" title="ZEUS, H1 Collaboration, H. Abramowicz et al., Combination of measurements of inclusive deep-inelastic &#xA; &#xA; &#xA; &#xA; $$e^{\pm }p$$&#xA; &#xA; &#xA; &#xA; &#xA; e&#xA; ±&#xA; &#xA; p&#xA; &#xA; &#xA; &#xA; scattering cross sections and QCD analysis of HERA data. &#xA; arXiv:1506.06042&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR4" id="ref-link-section-d90629110e1825">4</a>], JR14 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 5" title="P. Jimenez-Delgado, E. Reya, Delineating parton distributions and the strong coupling. Phys. Rev. D 89, 074049 (2014). &#xA; arXiv:1403.1852&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR5" id="ref-link-section-d90629110e1828">5</a>], MMHT14 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 6" title="L.A. Harland-Lang, A.D. Martin, P. Motylinski, R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs. Eur. Phys. J. C 75, 204 (2015). &#xA; arXiv:1412.3989&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR6" id="ref-link-section-d90629110e1832">6</a>], and NNPDF3.0 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 7" title="NNPDF Collaboration, R.D. Ball et al., Parton distributions for the LHC Run II. JHEP 04, 040 (2015). &#xA; arXiv:1410.8849&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR7" id="ref-link-section-d90629110e1835">7</a>] to NNLO in QCD. These provide a detailed description of the parton content of the proton, which depends on the chosen sets of experimental data as well as on the theory assumptions and the underlying physics models used in the analyses. Both theoretical and experimental inputs have direct impact on the obtained nonperturbative parameters, namely, the fitted PDFs, the value of <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span> and the quark masses. Moreover, they can lead to large systematic shifts compared to the uncertainties of the experimental data used in the fit. For precision predictions in Run 2 of the LHC it is therefore very important to quantify those effects in detailed validations of the individual PDF sets in order to reduce the uncertainties in those nonperturbative input parameters. Moreover, this will allow one to pinpoint problems with the determination of certain PDFs. Any approach to determine the parton luminosities at the LHC which implies mixing or averaging of various PDFs or of their respective uncertainties, such as that advocated in the recent PDF4LHC recommendations [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 8" title="J. Butterworth et al., PDF4LHC recommendations for LHC Run II. J. Phys. G43, 023001 (2016). &#xA; arXiv:1510.03865&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR8" id="ref-link-section-d90629110e1882">8</a>], is therefore potentially dangerous in the context of precision measurements, in particular, or when studying processes at kinematic edges such as at large values of Bjorken <i>x</i> or small scales <span class="mathjax-tex">\(Q^2\)</span>. The precision measurements of the LHC experiments themselves help to constrain the different sets of PDFs and may even indicate deviations from SM, cf. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 9" title="A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, A. Huss, T.A. Morgan, The NNLO QCD corrections to Z boson production at large transverse momentum. &#xA; arXiv:1605.04295&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR9" id="ref-link-section-d90629110e1913">9</a>] for an example. It is thus of central importance that comparisons for all available PDF sets are performed in a quantitative manner and with the best available accuracy.</p><p>In this paper we briefly discuss the available world data used to constrain PDFs in Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Sec2">2</a> and stress the need to include only compatible data sets in any analysis. The data analysis relies on comparison with precise theoretical predictions, with many of these implemented in software tools. In this respect, we underline in Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Sec5">3</a> the importance of open-source code to provide benchmarks and to facilitate theory improvements through indication and reduction of possible errors. In addition, Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Sec5">3</a> is devoted to a discussion of a number of crucial theory aspects in PDF fits. These include the treatment of heavy quarks and their masses, QCD corrections for <span class="mathjax-tex">\(W^\pm \)</span>- and <i>Z</i>-boson production applied in the fit of light-flavor PDFs, and the importance of nuclear corrections in scattering data off nuclei. The strong coupling constant is correlated with the PDFs and is therefore an important parameter to be determined simultaneously with the PDFs. The state of the art is reviewed in Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Sec19">4</a>. The need to address PDF uncertainties for cross section predictions is illustrated in Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Sec20">5</a>, with the Higgs boson cross section in the gluon–gluon fusion channel being the most prominent case. Other examples include the production of heavy quarks at the LHC in different kinematic regimes. Our observations illustrate important shortcomings of the recent PDF4LHC recommendations [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 8" title="J. Butterworth et al., PDF4LHC recommendations for LHC Run II. J. Phys. G43, 023001 (2016). &#xA; arXiv:1510.03865&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR8" id="ref-link-section-d90629110e1963">8</a>] which are addressed in Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Sec28">6</a>, where alternative recommendations for the usage of sets of PDFs for theory predictions at the LHC are provided. Finally, we conclude in Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Sec31">7</a>.</p></div></div></section><section data-title="Data sets and results for PDF fits"><div class="c-article-section" id="Sec2-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec2"><span class="c-article-section__title-number">2 </span>Data sets and results for PDF fits</h2><div class="c-article-section__content" id="Sec2-content"><p>We begin with an overview of the currently available data which can be used to determine PDFs and present the fit results of the various groups.</p><h3 class="c-article__sub-heading" id="Sec3"><span class="c-article-section__title-number">2.1 </span>Data sets used in PDF fits</h3><p>The data used in the various PDF fits overlap to a large extent, as indicated in Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab1">1</a>. However, there are also substantial differences which are related to the accuracy required in the analysis, the feasibility of efficiently implementing the corresponding theoretical computations, or the subjective evaluation of the data quality, to name a few.</p><p>The core of all PDF fits comprises the deep-inelastic scattering (DIS) data obtained at the HERA electron–proton (<i>ep</i>) collider and in fixed-target experiments. While the former has used only a proton target, the latter have collected large amounts of data for the deuteron and heavier targets as well. The analysis of nuclear-target data requires an accurate account of nuclear effects. This is challenging already in the case of the loosely-bound deuteron (cf. Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Sec5">3</a>), and even more so for heavier targets. Therefore, in general, data sets for DIS on targets heavier than deuteron are not used. Nonetheless, different combinations of data sets for the neutrino-induced DIS off iron and lead targets obtained by the CCFR/NuTeV, CDHSW, and CHORUS experiments are included in the CT14, MMHT14, and NNPDF3.0 analyses, but are not used by other groups to avoid any influence of nuclear correction uncertainties. One can also point out the abnormal dependence of the DIS structure functions on the beam energy in the NuTeV experiment [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 11" title="H. Paukkunen, C.A. Salgado, Agreement of neutrino deep-inelastic scattering data with global fits of parton distributions. Phys. Rev. Lett. 110, 212301 (2013). &#xA; arXiv:1302.2001&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR11" id="ref-link-section-d90629110e1999">11</a>] and the poor agreement of the CDHSW data with the QCD predictions on the <span class="mathjax-tex">\(Q^2\)</span> slope of structure functions [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 12" title="G. Altarelli, in QCD and experiment: status of &#xA; &#xA; &#xA; &#xA; $$\alpha _s$$&#xA; &#xA; &#xA; &#xA; α&#xA; s&#xA; &#xA; &#xA; &#xA; . eds. by: P.M. Zerwas, H.A. Kastrup, Workshop on QCD: 20 Years Later Aachen, Germany, June 9–13, pp. 172–204 (1992)" href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR12" id="ref-link-section-d90629110e2026">12</a>–<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 14" title="J.P. Berge et al., A measurement of differential cross sections and nucleon structure functions in charged current neutrino interactions on iron. Z. Phys. C 49, 187 (1991)" href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR14" id="ref-link-section-d90629110e2030">14</a>] as an additional motivation to exclude these data sets.</p><p>The kinematic cuts applied to the commonly used DIS data also differ in various analyses in order to minimize the influence of higher twist contributions. Another important feature of the DIS data analyses in PDF fits concerns the use of data for the DIS structure function <span class="mathjax-tex">\(F_2\)</span> instead of the data for the measured cross sections. These aspects will be discussed in Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Sec5">3</a>.</p><p>The inclusive DIS data are often supplemented by the semi-inclusive data on the neutral-current and charged-current DIS charm-quark production. The neutral-current sample collected by the HERA experiments provides a valuable tool to study the heavy-quark production mechanism. This is vital for pinning down PDFs, in particular the gluon PDF at small <i>x</i>, relevant for important phenomenological applications at the LHC (cf. Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Sec20">5</a>). The charged-current charm production data help to constrain the strange sea PDF, which is strongly mixed with contributions from non-strange PDFs in other observables (cf. Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Sec5">3</a>).</p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-2"><figure><figcaption class="c-article-table__figcaption"><b id="Tab2" data-test="table-caption">Table 2 Compilation of precise data on <i>W</i>- and <i>Z</i>-boson production in <i>pp</i> and <span class="mathjax-tex">\(p\bar{p}\)</span> collisions and the <span class="mathjax-tex">\(\chi ^2\)</span> values per number of data points obtained for these data sets in different PDF analyses using their individual definitions of <span class="mathjax-tex">\(\chi ^2\)</span>. The NNLO fit results are quoted as a default, while the NLO values are given for the CJ15 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 1" title="A. Accardi, L.T. Brady, W. Melnitchouk, J.F. Owens, N. Sato, Constraints on large-&#xA; &#xA; &#xA; &#xA; $$x$$&#xA; &#xA; &#xA; x&#xA; &#xA; &#xA; parton distributions from new weak boson production and deep-inelastic scattering data. &#xA; arXiv:1602.03154&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR1" id="ref-link-section-d90629110e2181">1</a>] and <span class="u-monospace">HERAFitter</span> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 31" title="HERAFitter developers’ Team Collaboration, S. Camarda et al., QCD analysis of &#xA; &#xA; &#xA; &#xA; $$W$$&#xA; &#xA; &#xA; W&#xA; &#xA; &#xA; - and &#xA; &#xA; &#xA; &#xA; $$Z$$&#xA; &#xA; &#xA; Z&#xA; &#xA; &#xA; -boson production at the Tevatron. &#xA; arXiv:1503.05221&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR31" id="ref-link-section-d90629110e2187">31</a>] PDFs. Missing table entries indicate that the respective data sets have not been used in the analysis. Other data sets of lower accuracy, which have become obsolete and data sets superseded are listed in Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab3">3</a> </b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1140/epjc/s10052-016-4285-4/tables/2" aria-label="Full size table 2"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <p>The Drell–Yan (DY) data are also a necessary ingredient of any PDF analysis since DIS data alone do not allow for a comprehensive disentangling of the quark and anti-quark distributions. Historically, for a long time only fixed-target DY data were available for PDF fits. In particular, this did not allow for a model-independent separation of the valence and sea quarks at small-<i>x</i>. The high precision DY data obtained in proton-proton (<i>pp</i>) and proton–anti-proton (<span class="mathjax-tex">\(p\bar{p}\)</span>) collisions from the LHC and the Tevatron open new possibilities to study the PDFs at small and large <i>x</i>. The LHC experiments are quickly accumulating statistics and are currently providing data samples at <span class="mathjax-tex">\(\sqrt{s}=\)</span> 7 and 8 TeV for <i>W</i>- and <i>Z</i>-boson production with typical luminosities of over 20 <span class="mathjax-tex">\(\text {fb}^{-1}\)</span> per experiment. The rapid progress in experimental measurements causes a greatly non-uniform coverage of the recent DY data in various PDF fits (cf. Tables <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab2">2</a>, <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab3">3</a>) and leads to corresponding differences in the accuracy of the extracted PDFs. Another issue here is the theoretical accuracy achieved for the description of the DY data. This varies substantially and will be discussed in Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Sec5">3</a>.</p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-3"><figure><figcaption class="c-article-table__figcaption"><b id="Tab3" data-test="table-caption">Table 3 Same as Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab2">2</a> for the Tevatron and LHC data sets of lower accuracy and those, which have become superseded but are still used in various PDF analyses</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1140/epjc/s10052-016-4285-4/tables/3" aria-label="Full size table 3"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <p>Often, jet production in <i>pp</i> and <span class="mathjax-tex">\(p\bar{p}\)</span> collisions is used as an additional process to constrain the large-<i>x</i> gluon PDF. Here, the QCD corrections are known to NLO and the calculation of the NNLO ones is in progress [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 15" title="A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, J. Pires, Second order QCD corrections to jet production at hadron colliders: the all-gluon contribution. Phys. Rev. Lett. 110, 162003 (2013). &#xA; arXiv:1301.7310&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR15" id="ref-link-section-d90629110e7876">15</a>]. The incomplete knowledge of the latter is problematic in view of a consistent PDF analysis at NNLO when including those jet data. This will be discussed in Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Sec19">4</a> in connection with the determination of the value of the strong coupling constant <span class="mathjax-tex">\(\alpha _s\)</span>.</p><p>In addition to these major categories of data commonly used to constrain PDFs, some complementary processes are also employed in some cases, as indicated in Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab1">1</a>. These comprise the hadro-production of top-quark pairs from <i>pp</i> and <span class="mathjax-tex">\(p\bar{p}\)</span> collisions and the associated production of <i>W</i> bosons with charm quarks in <i>pp</i> collisions. Sometimes, also jet production in <i>ep</i> collisions and prompt photon (<span class="mathjax-tex">\(\gamma \)</span>+jet) production from <i>pp</i> and <span class="mathjax-tex">\(p\bar{p}\)</span> collisions is considered. Except for <span class="mathjax-tex">\(t\bar{t}\)</span> production, the necessary QCD corrections are known to NLO only, so that the same arguments as in the case of jet hadro-production data apply, if those data are included in a fit at NNLO accuracy. For <span class="mathjax-tex">\(t\bar{t}\)</span> production, only the inclusive cross section is considered at the moment in the available PDFs and there is a significant correlation with PDFs, especially of the gluon PDF with the top-quark mass.</p><p>Taken together, the set of these data has a number of data points (NDP) of the order of few thousand, and provides sufficient information to describe the PDFs with an ansatz of about <span class="mathjax-tex">\(\mathcal{O}(30)\)</span> free parameters. The parameters can include the strong coupling constant <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span> and the heavy-quark masses <span class="mathjax-tex">\(m_c\)</span>, <span class="mathjax-tex">\(m_b\)</span> and <span class="mathjax-tex">\(m_t\)</span>, which are correlated with the PDFs, as will be discussed in Sects. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Sec5">3</a> and <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Sec19">4</a>. This provides sufficient flexibility for all PDF groups and it is routinely checked that no additional terms are required to improve the quality of the fit. The exception is the NNPDF group, which typically uses <span class="mathjax-tex">\(\mathcal{O}(250)\)</span> free parameters in the neural network.</p><p>Apart from those considerations there is the general problem of the quality of the experimental data, that is to say whether or not the PDFs are extracted from a consistent data set. The various groups have different approaches, which roughly fall into two classes according to the different confidence level (c.l.) criteria for the value of <span class="mathjax-tex">\(\chi ^2\)</span> in the goodness-of-fit test. One approach is to fit to a very wide (or even the widest possible) set of data, while the other one rejects inconsistent data sets. In the former case, a tolerance criterion for <span class="mathjax-tex">\(\Delta \chi ^2\)</span> is introduced (e.g. <span class="mathjax-tex">\(\Delta \chi ^2=100\)</span>), while the latter approach maintains that <span class="mathjax-tex">\(\Delta \chi ^2=1\)</span>. For the various PDF groups this information is listed in Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab1">1</a>.</p><p>For further reference, we quote here the definition of <span class="mathjax-tex">\(\chi ^2\)</span> used in data comparisons (Tables <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab4">4</a>, <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab10">10</a>, <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab11">11</a>, <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab12">12</a>, <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab14">14</a>, <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab15">15</a>, <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab16">16</a>). It follows the definition described in Refs. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 16" title="H1 Collaboration, F.D. Aaron et al., Inclusive deep-inelastic scattering at high &#xA; &#xA; &#xA; &#xA; $$Q^2$$&#xA; &#xA; &#xA; &#xA; Q&#xA; 2&#xA; &#xA; &#xA; &#xA; with longitudinally polarised lepton beams at HERA. JHEP 09, 061 (2012). &#xA; arXiv:1206.7007&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR16" id="ref-link-section-d90629110e8464">16</a>–<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 18" title="ZEUS Collaboration, S. Chekanov et al., A ZEUS next-to-leading-order QCD analysis of data on deep inelastic scattering, Phys. Rev. D 67, 012007 (2003). &#xA; arXiv:hep-ex/0208023&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR18" id="ref-link-section-d90629110e8467">18</a>] and is expressed as follows:</p><div id="Equ1" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \chi ^2= &amp; {} \sum _i \frac{\left[ {\mu _i} - m_i \left( 1 - \sum _j \gamma ^i_j b_j \right) \right] ^2}{ \textstyle \delta ^2_{i,\mathrm{unc}}m_i^2 + \delta ^2_{i,\mathrm{stat}}\, {\mu _i} m_i } + \sum _j b^2_j\nonumber \\&amp;+ \sum _i \ln \frac{ \textstyle \delta ^2_{i,\mathrm{unc}}m_i^2 + \delta ^2_{i,\mathrm{stat}}\, {\mu _i} m_i }{ \textstyle \delta ^2_{i,\mathrm{unc}}\mu _i^2 + \delta ^2_{i,\mathrm{stat}}\mu _i^2 }, \end{aligned}$$</span></div><div class="c-article-equation__number"> (1) </div></div><p>where <span class="mathjax-tex">\(\mu _i\)</span> represents the measurement at the point <i>i</i>, <span class="mathjax-tex">\(m_i\)</span> is the corresponding theoretical prediction and <span class="mathjax-tex">\(\delta _{i,\mathrm{stat}}\)</span>, <span class="mathjax-tex">\(\delta _{i,\mathrm{unc}}\)</span> are the relative statistical and uncorrelated systematic uncertainties, respectively. <span class="mathjax-tex">\(\gamma ^i_j\)</span> denotes the sensitivity of the measurement to the correlated systematic source <i>j</i> and <span class="mathjax-tex">\(b_j\)</span> their shifts, with a penalty term <span class="mathjax-tex">\(\sum _j b_j^2\)</span> added. In addition, a logarithmic term is introduced arising from the likelihood transition to <span class="mathjax-tex">\(\chi ^2\)</span> when scaling of the errors is applied [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 16" title="H1 Collaboration, F.D. Aaron et al., Inclusive deep-inelastic scattering at high &#xA; &#xA; &#xA; &#xA; $$Q^2$$&#xA; &#xA; &#xA; &#xA; Q&#xA; 2&#xA; &#xA; &#xA; &#xA; with longitudinally polarised lepton beams at HERA. JHEP 09, 061 (2012). &#xA; arXiv:1206.7007&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR16" id="ref-link-section-d90629110e9078">16</a>].</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-1" data-title="Fig. 1"><figure><figcaption><b id="Fig1" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 1</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1140/epjc/s10052-016-4285-4/figures/1" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig1_HTML.gif?as=webp"><img aria-describedby="Fig1" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig1_HTML.gif" alt="figure 1" loading="lazy"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-1-desc"><p>The <i>u</i>-valence, <i>d</i>-valence, gluon and sea quark (<span class="mathjax-tex">\(x\Sigma = 2x(\bar{u}+\bar{c}+\bar{d}+\bar{s})\)</span>) PDFs with their 1 <span class="mathjax-tex">\(\sigma \)</span> uncertainty bands of ABM12 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2" title="S. Alekhin, J. Blümlein, S. Moch, The ABM parton distributions tuned to LHC data. Phys. Rev. D 89, 054028 (2014). &#xA; arXiv:1310.3059&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR2" id="ref-link-section-d90629110e9218">2</a>], HERAPDF2.0 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 4" title="ZEUS, H1 Collaboration, H. Abramowicz et al., Combination of measurements of inclusive deep-inelastic &#xA; &#xA; &#xA; &#xA; $$e^{\pm }p$$&#xA; &#xA; &#xA; &#xA; &#xA; e&#xA; ±&#xA; &#xA; p&#xA; &#xA; &#xA; &#xA; scattering cross sections and QCD analysis of HERA data. &#xA; arXiv:1506.06042&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR4" id="ref-link-section-d90629110e9222">4</a>] and JR14 (set <span class="u-monospace">JR14NNLO08VF</span>) [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 5" title="P. Jimenez-Delgado, E. Reya, Delineating parton distributions and the strong coupling. Phys. Rev. D 89, 074049 (2014). &#xA; arXiv:1403.1852&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR5" id="ref-link-section-d90629110e9228">5</a>] at NNLO at the scale <span class="mathjax-tex">\(Q^2=4~\,\mathrm {GeV}^2\)</span>; absolute results (<i>left</i>) and ratio with respect to ABM12 (<i>right</i>)</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1140/epjc/s10052-016-4285-4/figures/1" data-track-dest="link:Figure1 Full size image" aria-label="Full size image figure 1" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-2" data-title="Fig. 2"><figure><figcaption><b id="Fig2" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 2</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1140/epjc/s10052-016-4285-4/figures/2" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig2_HTML.gif?as=webp"><img aria-describedby="Fig2" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig2_HTML.gif" alt="figure 2" loading="lazy"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-2-desc"><p>Same as Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig1">1</a> for the CT14 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 3" title="S. Dulat, T.J. Hou, J. Gao, M. Guzzi, J. Huston, P. Nadolsky, J. Pumplin, C. Schmidt, D. Stump, C.P. Yuan, The CT14 global analysis of quantum chromodynamics. &#xA; arXiv:1506.07443&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR3" id="ref-link-section-d90629110e9307">3</a>], MMHT14 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 6" title="L.A. Harland-Lang, A.D. Martin, P. Motylinski, R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs. Eur. Phys. J. C 75, 204 (2015). &#xA; arXiv:1412.3989&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR6" id="ref-link-section-d90629110e9310">6</a>] and NNPDF3.0 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 7" title="NNPDF Collaboration, R.D. Ball et al., Parton distributions for the LHC Run II. JHEP 04, 040 (2015). &#xA; arXiv:1410.8849&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR7" id="ref-link-section-d90629110e9313">7</a>] PDF sets with their 1 <span class="mathjax-tex">\(\sigma \)</span> uncertainty bands at NNLO; absolute results (<i>left</i>) and ratio with respect to CT14 (<i>right</i>)</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1140/epjc/s10052-016-4285-4/figures/2" data-track-dest="link:Figure2 Full size image" aria-label="Full size image figure 2" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-3" data-title="Fig. 3"><figure><figcaption><b id="Fig3" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 3</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1140/epjc/s10052-016-4285-4/figures/3" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig3_HTML.gif?as=webp"><img aria-describedby="Fig3" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig3_HTML.gif" alt="figure 3" loading="lazy"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-3-desc"><p>Same as Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig1">1</a> at the scale <span class="mathjax-tex">\(Q^2=100~\,\mathrm {GeV}^2\)</span> with the sea <span class="mathjax-tex">\( x\Sigma = 2x(\bar{u}+\bar{c}+\bar{d}+\bar{s}+\bar{b})\)</span> </p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1140/epjc/s10052-016-4285-4/figures/3" data-track-dest="link:Figure3 Full size image" aria-label="Full size image figure 3" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-4" data-title="Fig. 4"><figure><figcaption><b id="Fig4" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 4</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1140/epjc/s10052-016-4285-4/figures/4" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig4_HTML.gif?as=webp"><img aria-describedby="Fig4" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig4_HTML.gif" alt="figure 4" loading="lazy"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-4-desc"><p>Same as Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig2">2</a> at the scale <span class="mathjax-tex">\(Q^2=100~\,\mathrm {GeV}^2\)</span> with the sea <span class="mathjax-tex">\( x\Sigma = 2x(\bar{u}+\bar{c}+\bar{d}+\bar{s}+\bar{b})\)</span> </p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1140/epjc/s10052-016-4285-4/figures/4" data-track-dest="link:Figure4 Full size image" aria-label="Full size image figure 4" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-5" data-title="Fig. 5"><figure><figcaption><b id="Fig5" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 5</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1140/epjc/s10052-016-4285-4/figures/5" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig5_HTML.gif?as=webp"><img aria-describedby="Fig5" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig5_HTML.gif" alt="figure 5" loading="lazy"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-5-desc"><p>Same as Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig3">3</a> at the scale <span class="mathjax-tex">\(Q^2=M_Z^2\)</span> </p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1140/epjc/s10052-016-4285-4/figures/5" data-track-dest="link:Figure5 Full size image" aria-label="Full size image figure 5" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-6" data-title="Fig. 6"><figure><figcaption><b id="Fig6" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 6</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1140/epjc/s10052-016-4285-4/figures/6" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig6_HTML.gif?as=webp"><img aria-describedby="Fig6" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig6_HTML.gif" alt="figure 6" loading="lazy"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-6-desc"><p>Same as Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig4">4</a> at the scale <span class="mathjax-tex">\(Q^2=M_Z^2\)</span> </p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1140/epjc/s10052-016-4285-4/figures/6" data-track-dest="link:Figure6 Full size image" aria-label="Full size image figure 6" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <p>It is important to note that the <span class="mathjax-tex">\(\chi ^2\)</span> values obtained with Eq. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Equ1">1</a>) will not necessarily correspond to numbers quoted by PDF groups due to different <span class="mathjax-tex">\(\chi ^2\)</span> definitions, data treatment and other parameters, see also Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab1">1</a>.</p><h3 class="c-article__sub-heading" id="Sec4"><span class="c-article-section__title-number">2.2 </span>Results for PDFs</h3><p>Before we start a detailed discussion of the theoretical aspects of the PDF determinations we would like to illustrate the present status of PDF sets at NNLO in QCD and discuss briefly some differences, which are clearly visible. The currently available sets at NNLO in QCD are shown in Figs. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig1">1</a>, <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig2">2</a>, <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig3">3</a>, <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig4">4</a>, <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig5">5</a> and <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig6">6</a>. The light-quark (<i>u</i>, <i>d</i>) valence PDFs together with the gluon and the quark sea distributions (<span class="mathjax-tex">\(x\Sigma = 2x(\bar{u}+\bar{c}+\bar{d}+\bar{s})\)</span> for four active flavors) with the respective uncertainty bands are displayed in Figs. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig1">1</a>, <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig3">3</a> and <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig5">5</a> at the scales <span class="mathjax-tex">\(Q^2=4~\,\mathrm {GeV}^2\)</span>, <span class="mathjax-tex">\(100~\,\mathrm {GeV}^2\)</span> and <span class="mathjax-tex">\(M_Z^2\)</span> in the range <span class="mathjax-tex">\(10^{-4} \le x \le 1\)</span> for the sets ABM12 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2" title="S. Alekhin, J. Blümlein, S. Moch, The ABM parton distributions tuned to LHC data. Phys. Rev. D 89, 054028 (2014). &#xA; arXiv:1310.3059&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR2" id="ref-link-section-d90629110e10198">2</a>], HERAPDF2.0 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 4" title="ZEUS, H1 Collaboration, H. Abramowicz et al., Combination of measurements of inclusive deep-inelastic &#xA; &#xA; &#xA; &#xA; $$e^{\pm }p$$&#xA; &#xA; &#xA; &#xA; &#xA; e&#xA; ±&#xA; &#xA; p&#xA; &#xA; &#xA; &#xA; scattering cross sections and QCD analysis of HERA data. &#xA; arXiv:1506.06042&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR4" id="ref-link-section-d90629110e10202">4</a>] and JR14 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 5" title="P. Jimenez-Delgado, E. Reya, Delineating parton distributions and the strong coupling. Phys. Rev. D 89, 074049 (2014). &#xA; arXiv:1403.1852&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR5" id="ref-link-section-d90629110e10205">5</a>]. Likewise, Figs. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig2">2</a>, <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig4">4</a> and <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig6">6</a> show the sets CT14 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 3" title="S. Dulat, T.J. Hou, J. Gao, M. Guzzi, J. Huston, P. Nadolsky, J. Pumplin, C. Schmidt, D. Stump, C.P. Yuan, The CT14 global analysis of quantum chromodynamics. &#xA; arXiv:1506.07443&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR3" id="ref-link-section-d90629110e10217">3</a>], MMHT14 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 6" title="L.A. Harland-Lang, A.D. Martin, P. Motylinski, R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs. Eur. Phys. J. C 75, 204 (2015). &#xA; arXiv:1412.3989&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR6" id="ref-link-section-d90629110e10221">6</a>] and NNPDF3.0 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 7" title="NNPDF Collaboration, R.D. Ball et al., Parton distributions for the LHC Run II. JHEP 04, 040 (2015). &#xA; arXiv:1410.8849&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR7" id="ref-link-section-d90629110e10224">7</a>].</p><p>The main features of the present NNLO PDFs in Figs. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig1">1</a>, <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig2">2</a>, <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig3">3</a>, <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig4">4</a>, <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig5">5</a> and <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig6">6</a> in the main kinematic region of <i>x</i> and <span class="mathjax-tex">\(Q^2\)</span> relevant for hard scattering events at Tevatron and the LHC can be characterized as follows. The agreement in the distributions <span class="mathjax-tex">\(xu_v\)</span>, and to a slightly lesser extent <span class="mathjax-tex">\(\Sigma \)</span>, is very good for ABM12, JR14 and HERAPDF2.0, as shown in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig1">1</a>. For the valence PDF <span class="mathjax-tex">\(xd_v\)</span> there is also an overall reasonable agreement, but the distribution deviates by more than <span class="mathjax-tex">\(1 \sigma \)</span> at <span class="mathjax-tex">\(x \gtrsim 0.1\)</span> in the case of HERAPDF2.0. One should note that <span class="mathjax-tex">\(xd_v\)</span> is more difficult to measure in <span class="mathjax-tex">\(e^{\pm }p\)</span> DIS at HERA than <span class="mathjax-tex">\(xu_v\)</span> and additional constraints from deuteron data are important to fix the details of this PDF, as discussed in Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Sec5">3</a> below.</p><p>The results on the gluon momentum distribution <i>xg</i> are clearly different at low values of <i>x</i>. Here, JR14 obtains the largest values, followed by ABM12 and HERAPDF2.0, with the latter displaying a valence-like shape below <span class="mathjax-tex">\(x = 10^{-3}\)</span>. For CT14, MMHT14 and NNPDF3.0 there is very good agreement for <span class="mathjax-tex">\(xu_v\)</span>, cf. Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig2">2</a>. Some differences are visible in case of <span class="mathjax-tex">\(xd_v\)</span>, where CT14 reports larger values than NNPDF3.0 at <span class="mathjax-tex">\(x \gtrsim 5 \cdot 10^{-3}\)</span> and vice versa for smaller <i>x</i>. The spread in <span class="mathjax-tex">\(\Sigma \)</span> for the sets in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig2">2</a> is much greater than those by ABM12, JR14 and HERAPDF2.0. This is true as well for the gluon PDF <i>xg</i> with the CT14 uncertainty band for the gluon PDF also covering the predictions for the distributions by ABM12, and HERAPDF2.0. Note that the error bands for CT14 in Figs. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig2">2</a>, <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig4">4</a> and <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig6">6</a> correspond to the c.l. of 68 %.</p><p>The disagreement in <span class="mathjax-tex">\(xd_v\)</span> between HERAPDF2.0 and ABM12 or JR14 persists through the evolution from <span class="mathjax-tex">\(Q^2 = 4~\,\mathrm {GeV}^2\)</span> to <span class="mathjax-tex">\(Q^2 = M_Z^2\)</span>, cf. Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig3">3</a> and <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig5">5</a>. Likewise, the spread in <span class="mathjax-tex">\(xd_v\)</span> between CT14, MMHT14 and NNPDF3.0 becomes more pronounced, as shown in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig4">4</a> and <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig6">6</a>. On the other hand, differences in the singlet PDFs <span class="mathjax-tex">\(\Sigma \)</span> and <i>xg</i>, while still somewhat visible at <span class="mathjax-tex">\(Q^2 = 100~\,\mathrm {GeV}^2\)</span>, largely wash out at scales <span class="mathjax-tex">\(Q^2 = M_Z^2\)</span> which govern the physics of central rapidity events at the LHC. Those remaining differences persist at large scales (as in the case of the gluon PDFs at large <span class="mathjax-tex">\(x &gt; 0.1\)</span>) and will have a significant impact. The crucial test for all PDF sets comes through a detailed comparison of cross section predictions to data. This will be discussed in the remainder of the paper, in particular in Sects. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Sec5">3</a> and <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Sec20">5</a>.</p></div></div></section><section data-title="Theory for PDF fits"><div class="c-article-section" id="Sec5-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec5"><span class="c-article-section__title-number">3 </span>Theory for PDF fits</h2><div class="c-article-section__content" id="Sec5-content"><p>In the following we describe the basic theoretical issues for a consistent determination of the twist-two PDFs from DIS and other hard scattering data, on the basis of perturbative QCD at NNLO using the <span class="mathjax-tex">\(\overline{\mathrm {MS}}\, \)</span> scheme for renormalization and factorization.</p><h3 class="c-article__sub-heading" id="Sec6"><span class="c-article-section__title-number">3.1 </span>Theory for analyses of DIS data</h3><p>The world DIS data are provided in terms of reduced cross sections by the different experiments. QED and electroweak radiative corrections [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 45" title="A. Kwiatkowski, H. Spiesberger, H.J. Möhring, Heracles: an event generator for &#xA; &#xA; &#xA; &#xA; $$e p$$&#xA; &#xA; &#xA; &#xA; e&#xA; p&#xA; &#xA; &#xA; &#xA; interactions at HERA energies including radiative processes: version 1.0. Comput. Phys. Commun. 69, 155 (1992)" href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR45" id="ref-link-section-d90629110e11032">45</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 46" title="A. Arbuzov, D.Yu. Bardin, J. Blümlein, L. Kalinovskaya, T. Riemann, Hector 1.00: a program for the calculation of QED, QCD and electroweak corrections to &#xA; &#xA; &#xA; &#xA; $$ep$$&#xA; &#xA; &#xA; &#xA; e&#xA; p&#xA; &#xA; &#xA; &#xA; and &#xA; &#xA; &#xA; &#xA; $$l^\pm N$$&#xA; &#xA; &#xA; &#xA; &#xA; l&#xA; ±&#xA; &#xA; N&#xA; &#xA; &#xA; &#xA; deep-inelastic neutral and charged current scattering. Comput. Phys. Commun. 94, 128 (1996). &#xA; arXiv:hep-ph/9511434&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR46" id="ref-link-section-d90629110e11035">46</a>] are applied, which requires careful study of different kinematic variables [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 46" title="A. Arbuzov, D.Yu. Bardin, J. Blümlein, L. Kalinovskaya, T. Riemann, Hector 1.00: a program for the calculation of QED, QCD and electroweak corrections to &#xA; &#xA; &#xA; &#xA; $$ep$$&#xA; &#xA; &#xA; &#xA; e&#xA; p&#xA; &#xA; &#xA; &#xA; and &#xA; &#xA; &#xA; &#xA; $$l^\pm N$$&#xA; &#xA; &#xA; &#xA; &#xA; l&#xA; ±&#xA; &#xA; N&#xA; &#xA; &#xA; &#xA; deep-inelastic neutral and charged current scattering. Comput. Phys. Commun. 94, 128 (1996). &#xA; arXiv:hep-ph/9511434&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR46" id="ref-link-section-d90629110e11038">46</a>–<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 49" title="J. Blümlein, H. Kawamura, &#xA; &#xA; &#xA; &#xA; $${\cal {O}}(\alpha ^2 L)$$&#xA; &#xA; &#xA; &#xA; O&#xA; (&#xA; &#xA; α&#xA; 2&#xA; &#xA; L&#xA; )&#xA; &#xA; &#xA; &#xA; radiative corrections to deep-inelastic &#xA; &#xA; &#xA; &#xA; $$ep$$&#xA; &#xA; &#xA; &#xA; e&#xA; p&#xA; &#xA; &#xA; &#xA; scattering. Phys. Lett. B 553, 242 (2003). &#xA; arXiv:hep-ph/0211191&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR49" id="ref-link-section-d90629110e11041">49</a>]. In this way also the contributions from the exchange of more than one gauge boson to the partonic twist-2 terms are taken care of. In part, also the very small QED corrections to the hadronic tensor are already accounted for. These have a flat kinematic behavior and amount to <span class="mathjax-tex">\(\mathcal{O}(1\,\%)\)</span> or less [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 50" title="J. Kripfganz, H. Perlt, Electroweak radiative corrections and quark mass singularities. Z. Phys. C 41, 319 (1988)" href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR50" id="ref-link-section-d90629110e11081">50</a>–<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 53" title="M. Roth, S. Weinzierl, QED corrections to the evolution of parton distributions. Phys. Lett. B 590, 190 (2004). &#xA; arXiv:hep-ph/0403200&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR53" id="ref-link-section-d90629110e11084">53</a>].</p><p>The reduced cross sections are differential in either two of the kinematic variables in the set <span class="mathjax-tex">\(\{x,y,Q^2\}\)</span>. The virtuality <span class="mathjax-tex">\(Q^2 = -q^2\)</span> of the process is given by the 4-momentum transfer <i>q</i> to the hadronic system. The Bjorken variable is defined as <span class="mathjax-tex">\(x = Q^2/(s y)\)</span>, with <span class="mathjax-tex">\(y = 2 p \cdot q/s\)</span>, and <span class="mathjax-tex">\(s = (p+l)^2\)</span> the squared center-of-mass energy, where <i>p</i> and <i>l</i> denote the 4-momenta of the nucleon and the lepton. At energies much greater than the nucleon mass <i>M</i>, in the nucleon rest frame <i>y</i> is the fractional energy of the lepton transferred to the nucleon. The double differential cross sections used in the QCD analyses are given by [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 46" title="A. Arbuzov, D.Yu. Bardin, J. Blümlein, L. Kalinovskaya, T. Riemann, Hector 1.00: a program for the calculation of QED, QCD and electroweak corrections to &#xA; &#xA; &#xA; &#xA; $$ep$$&#xA; &#xA; &#xA; &#xA; e&#xA; p&#xA; &#xA; &#xA; &#xA; and &#xA; &#xA; &#xA; &#xA; $$l^\pm N$$&#xA; &#xA; &#xA; &#xA; &#xA; l&#xA; ±&#xA; &#xA; N&#xA; &#xA; &#xA; &#xA; deep-inelastic neutral and charged current scattering. Comput. Phys. Commun. 94, 128 (1996). &#xA; arXiv:hep-ph/9511434&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR46" id="ref-link-section-d90629110e11315">46</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 54" title="J. Blümlein, The theory of deeply inelastic scattering. Prog. Part. Nucl. Phys. 69, 28 (2013). &#xA; arXiv:1208.6087&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR54" id="ref-link-section-d90629110e11319">54</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 55" title="K.A. Olive, Review of particle physics. Chin. Phys. C 38, 090001 (2014)" href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR55" id="ref-link-section-d90629110e11322">55</a>]</p><div id="Equ2" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \frac{d^2 \sigma _\mathrm{NC}^{l^\pm N}}{dx dy}= &amp; {} \frac{2 \pi \alpha ^2 s}{Q^4} \Biggl \{ \left[ 2(1-y) - 2xy \frac{M^2}{s} \right] \nonumber \\&amp;\times F^{NC}_2(x,Q^2) + Y_- xF^{NC}_3(x,Q^2) \nonumber \\&amp;+\, y^2\left( 1 - \frac{2m_l^2}{Q^2}\right) 2xF^{NC}_1(x,Q^2) \Biggr \}, \end{aligned}$$</span></div><div class="c-article-equation__number"> (2) </div></div> <div id="Equ3" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \frac{d^2 \sigma _\mathrm{NC}^{\nu (\bar{\nu })N}}{dx dy}= &amp; {} \frac{G_F^2 s}{16 \pi } \left[ \frac{M_Z^2}{Q^2 +M_Z^2}\right] ^2 \left\{ Y_+ W_2^\mathrm{NC}(x,Q^2) \right. \nonumber \\&amp;\left. \pm Y_- xW_3^\mathrm{NC}(x,Q^2) - y^2 W_L^\mathrm{NC}(x,Q^2)\right\} \, , \end{aligned}$$</span></div><div class="c-article-equation__number"> (3) </div></div> <div id="Equ4" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \frac{d^2 \sigma _\mathrm{CC}}{dx dy}= &amp; {} \frac{G_F^2 s}{4 \pi } \left[ \frac{M_W^2}{Q^2 + M_W^2}\right] ^2 \left\{ Y_+ W_2^\mathrm{CC}(x,Q^2) \right. \nonumber \\&amp;\left. \pm Y_- xW_3^\mathrm{CC}(x,Q^2) - y^2 W_L^\mathrm{CC}(x,Q^2)\right\} , \end{aligned}$$</span></div><div class="c-article-equation__number"> (4) </div></div><p>where <span class="mathjax-tex">\(\alpha \)</span> and <span class="mathjax-tex">\(G_F\)</span> denote the fine-structure and Fermi constants, <span class="mathjax-tex">\(Y_\pm = 1 \pm (1-y)^2\)</span> and we keep the dependence on the masses of the nucleon (<i>M</i>), the <i>W</i> and <i>Z</i> boson (<span class="mathjax-tex">\(M_{W}\)</span>, <span class="mathjax-tex">\(M_{Z}\)</span>) and the lepton (<span class="mathjax-tex">\(m_l\)</span>).</p><p>The structure functions <span class="mathjax-tex">\(F^{NC}_i\)</span> and <span class="mathjax-tex">\(W_i\)</span> are nonperturbative quantities defining the hadronic tensor. They can be measured by varying <i>y</i> at fixed <span class="mathjax-tex">\(Q^2\)</span> and <i>x</i> and form the input to the subsequent analysis. Note that in some previous experiments, assumptions were made about the longitudinal structure functions <span class="mathjax-tex">\(F^{NC}_L\)</span> and <span class="mathjax-tex">\(W_L\)</span>, where (in the massless limit)</p><div id="Equ5" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} F^{NC}_L(x,Q^2) = F^{NC}_2(x,Q^2) - 2x F^{NC}_1(x,Q^2)\, , \end{aligned}$$</span></div><div class="c-article-equation__number"> (5) </div></div><p>since at the time of the data analysis the corresponding QCD corrections were still missing. Therefore, it is important to use the differential cross sections in Eqs. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Equ2">2</a>)–(<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Equ4">4</a>) and to add the correct longitudinal structure functions [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 56" title="S. Moch, J.A.M. Vermaseren, A. Vogt, The longitudinal structure function at the third order. Phys. Lett. B 606, 123 (2005). &#xA; arXiv:hep-ph/0411112&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR56" id="ref-link-section-d90629110e12771">56</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 57" title="J.A.M. Vermaseren, A. Vogt, S. Moch, The third-order QCD corrections to deep-inelastic scattering by photon exchange. Nucl. Phys. B 724, 3 (2005). &#xA; arXiv:hep-ph/0504242&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR57" id="ref-link-section-d90629110e12775">57</a>], cf. also [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 58" title="J. Blümlein, H. Böttcher, A. Guffanti, Non-singlet QCD analysis of deep-inelastic world data at &#xA; &#xA; &#xA; &#xA; $$(\alpha _s^3)$$&#xA; &#xA; &#xA; &#xA; (&#xA; &#xA; α&#xA; s&#xA; 3&#xA; &#xA; )&#xA; &#xA; &#xA; &#xA; . Nucl. Phys. B 774, 182 (2007). &#xA; arXiv:hep-ph/0607200&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR58" id="ref-link-section-d90629110e12778">58</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 59" title="S. Alekhin, J. Blümlein, S. Moch, Higher order constraints on the Higgs production rate from fixed-target DIS data. Eur. Phys. J. C 71, 1723 (2011). &#xA; arXiv:1101.5261&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR59" id="ref-link-section-d90629110e12781">59</a>]. The structure functions are measured for DIS off massive proton and deuteron targets and are, therefore, subject to target mass corrections, which play an important role in the region of lower values of <span class="mathjax-tex">\(Q^2\)</span> and larger values of <i>x</i>. They are available in Refs. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 54" title="J. Blümlein, The theory of deeply inelastic scattering. Prog. Part. Nucl. Phys. 69, 28 (2013). &#xA; arXiv:1208.6087&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR54" id="ref-link-section-d90629110e12811">54</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 60" title="H. Georgi, H.D. Politzer, Freedom at moderate energies: masses in color dynamics. Phys. Rev. D 14, 1829 (1976)" href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR60" id="ref-link-section-d90629110e12815">60</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 61" title="F.M. Steffens, M.D. Brown, W. Melnitchouk, S. Sanches, Parton distributions in the presence of target mass corrections. Phys. Rev. C 86, 065208 (2012). &#xA; arXiv:1210.4398&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR61" id="ref-link-section-d90629110e12818">61</a>].</p><p>The neutral- and charged-current structure functions <span class="mathjax-tex">\(F^{NC}_i\)</span>, <span class="mathjax-tex">\(W^{NC}_i\)</span> and <span class="mathjax-tex">\(W^{CC}_i\)</span> consist of a sum of several terms, each weighted by powers of the QED and electroweak couplings, and <span class="mathjax-tex">\(F^{NC}_i\)</span> also include the <span class="mathjax-tex">\(\gamma -Z\)</span> mixing, which has to be accounted for, cf. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 46" title="A. Arbuzov, D.Yu. Bardin, J. Blümlein, L. Kalinovskaya, T. Riemann, Hector 1.00: a program for the calculation of QED, QCD and electroweak corrections to &#xA; &#xA; &#xA; &#xA; $$ep$$&#xA; &#xA; &#xA; &#xA; e&#xA; p&#xA; &#xA; &#xA; &#xA; and &#xA; &#xA; &#xA; &#xA; $$l^\pm N$$&#xA; &#xA; &#xA; &#xA; &#xA; l&#xA; ±&#xA; &#xA; N&#xA; &#xA; &#xA; &#xA; deep-inelastic neutral and charged current scattering. Comput. Phys. Commun. 94, 128 (1996). &#xA; arXiv:hep-ph/9511434&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR46" id="ref-link-section-d90629110e12976">46</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 54" title="J. Blümlein, The theory of deeply inelastic scattering. Prog. Part. Nucl. Phys. 69, 28 (2013). &#xA; arXiv:1208.6087&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR54" id="ref-link-section-d90629110e12979">54</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 55" title="K.A. Olive, Review of particle physics. Chin. Phys. C 38, 090001 (2014)" href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR55" id="ref-link-section-d90629110e12982">55</a>]. Then, considering one specific gauge boson exchange, one arrives at a representation for the individual structure functions <span class="mathjax-tex">\(F_i\)</span>, which are only subject to QCD corrections. For example, for pure photon exchange, they are given by</p><div id="Equ6" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} F_i(x,Q^2) = F_i^{\tau =2}(x,Q^2) + \sum _{k=2}^\infty \frac{C^{\tau =2k}_i(x,Q^2)}{Q^{2(k-1)}}~, \end{aligned}$$</span></div><div class="c-article-equation__number"> (6) </div></div><p>where <span class="mathjax-tex">\(F_i^{\tau =2}\)</span> denotes the leading-twist term and the coefficients <span class="mathjax-tex">\(C^\tau _i\)</span> parametrize the higher twist contributions. The latter terms are of relevance for many DIS data sets, see Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Sec2">2</a>.</p><p>Present day QCD analyses are aimed at determining the leading-twist contributions to the structure functions. There are two ways to account for the higher twist terms:</p><ol class="u-list-style-none"> <li> <span class="u-custom-list-number">(i)</span> <p>One is fitting the higher twist terms in <span class="mathjax-tex">\(F_i\)</span>. A rigorous approach requires the knowledge of their scaling violations (term by term) and of the various Wilson coefficients to higher orders in <span class="mathjax-tex">\(\alpha _s\)</span>, see e.g. Sect. 16 in Ref. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 54" title="J. Blümlein, The theory of deeply inelastic scattering. Prog. Part. Nucl. Phys. 69, 28 (2013). &#xA; arXiv:1208.6087&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR54" id="ref-link-section-d90629110e13328">54</a>]. Since at present this is practically out of reach, such fits remain rather phenomenological. Moreover, the size of the (non-singlet) higher twist contributions to the structure function <span class="mathjax-tex">\(F_2\)</span> vary strongly with the correction applied to the leading-twist term up to next-to-next-to-next-to-leading order (N<span class="mathjax-tex">\(^3\)</span>LO), as shown in Ref. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 58" title="J. Blümlein, H. Böttcher, A. Guffanti, Non-singlet QCD analysis of deep-inelastic world data at &#xA; &#xA; &#xA; &#xA; $$(\alpha _s^3)$$&#xA; &#xA; &#xA; &#xA; (&#xA; &#xA; α&#xA; s&#xA; 3&#xA; &#xA; )&#xA; &#xA; &#xA; &#xA; . Nucl. Phys. B 774, 182 (2007). &#xA; arXiv:hep-ph/0607200&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR58" id="ref-link-section-d90629110e13380">58</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 62" title="J. Blümlein, H. Böttcher, Higher twist contributions to the structure functions &#xA; &#xA; &#xA; &#xA; $$F_2^p(x, Q^2)$$&#xA; &#xA; &#xA; &#xA; &#xA; F&#xA; 2&#xA; p&#xA; &#xA; &#xA; (&#xA; x&#xA; ,&#xA; &#xA; Q&#xA; 2&#xA; &#xA; )&#xA; &#xA; &#xA; &#xA; &#xA; and &#xA; &#xA; &#xA; &#xA; $$F_2^d(x, Q^2)$$&#xA; &#xA; &#xA; &#xA; &#xA; F&#xA; 2&#xA; d&#xA; &#xA; &#xA; (&#xA; x&#xA; ,&#xA; &#xA; Q&#xA; 2&#xA; &#xA; )&#xA; &#xA; &#xA; &#xA; &#xA; at large &#xA; &#xA; &#xA; &#xA; $$x$$&#xA; &#xA; &#xA; x&#xA; &#xA; &#xA; and higher orders. Phys. Lett. B 662, 336 (2008). &#xA; arXiv:0802.0408&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR62" id="ref-link-section-d90629110e13383">62</a>]. Also, the non-singlet and singlet higher twist contributions are different [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 63" title="S.I. Alekhin, Global fit to the charged leptons DIS data: &#xA; &#xA; &#xA; &#xA; $$\alpha _s$$&#xA; &#xA; &#xA; &#xA; α&#xA; s&#xA; &#xA; &#xA; &#xA; parton distributions, and high twists. Phys. Rev. D 63, 094022 (2001). &#xA; arXiv:hep-ph/0011002&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR63" id="ref-link-section-d90629110e13386">63</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 64" title="S. Alekhin, J. Blümlein, S. Moch, Parton distribution functions and benchmark cross sections at NNLO. Phys. Rev. D 86, 054009 (2012). &#xA; arXiv:1202.2281&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR64" id="ref-link-section-d90629110e13389">64</a>].</p> </li> <li> <span class="u-custom-list-number">(ii)</span> <p>One has to find appropriate cuts to sufficiently reduce the higher twist terms. For instance, in the flavor non-singlet analysis of Ref. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 58" title="J. Blümlein, H. Böttcher, A. Guffanti, Non-singlet QCD analysis of deep-inelastic world data at &#xA; &#xA; &#xA; &#xA; $$(\alpha _s^3)$$&#xA; &#xA; &#xA; &#xA; (&#xA; &#xA; α&#xA; s&#xA; 3&#xA; &#xA; )&#xA; &#xA; &#xA; &#xA; . Nucl. Phys. B 774, 182 (2007). &#xA; arXiv:hep-ph/0607200&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR58" id="ref-link-section-d90629110e13403">58</a>] the cuts are taken to be <span class="mathjax-tex">\(Q^2 \ge 4~\,\mathrm {GeV}^2\)</span>, <span class="mathjax-tex">\(W^2 = M^2 + Q^2(1-x)/x \ge 12.5~\,\mathrm {GeV}^2\)</span>. In the combined singlet and non-singlet analysis of Ref. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 64" title="S. Alekhin, J. Blümlein, S. Moch, Parton distribution functions and benchmark cross sections at NNLO. Phys. Rev. D 86, 054009 (2012). &#xA; arXiv:1202.2281&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR64" id="ref-link-section-d90629110e13539">64</a>], <span class="mathjax-tex">\(Q^2 \ge 10~\,\mathrm {GeV}^2\)</span>, <span class="mathjax-tex">\(W^2 \ge 12.5~\,\mathrm {GeV}^2\)</span> have been used. These bounds are found empirically by cutting on <span class="mathjax-tex">\(W^2\)</span> and/or <span class="mathjax-tex">\(Q^2\)</span> starting from larger values. Applying these cuts severely limits the amount of large-<i>x</i> DIS data to be fitted, and usually leads to an increase of the errors of <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span> and other fitted fundamental parameters and distributions.</p> </li> </ol><p>Both methods (i) and (ii) allow to access the leading-twist contributions to the DIS structure functions, with some qualifications, however. The cuts suggested in (ii) remove the large-<i>x</i> region potentially sensitive to the higher twist terms. However, they do not affect the data at <span class="mathjax-tex">\(x \lesssim 0.1\)</span>, where higher twist terms still play an important role [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 64" title="S. Alekhin, J. Blümlein, S. Moch, Parton distribution functions and benchmark cross sections at NNLO. Phys. Rev. D 86, 054009 (2012). &#xA; arXiv:1202.2281&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR64" id="ref-link-section-d90629110e13765">64</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 65" title="L.A. Harland-Lang, A.D. Martin, P. Motylinski, R.S. Thorne, The impact of the final HERA combined data on PDFs obtained from a global fit. &#xA; arXiv:1601.03413&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR65" id="ref-link-section-d90629110e13768">65</a>]. To some extent, the influence of higher twist can be dampened by using the DIS data for the structure function <span class="mathjax-tex">\(F_2\)</span> instead of the cross section, since in this case the contribution to the structure function <span class="mathjax-tex">\(F_L\)</span> need not be considered. It should be kept in mind, though, that the experimental separation of the structure functions <span class="mathjax-tex">\(F_{2}\)</span> and <span class="mathjax-tex">\(F_{L}\)</span> in the full phase space of common DIS experiments is very difficult without dedicated longitudinal–transverse cross section separations. Therefore, the data on <span class="mathjax-tex">\(F_{2}\)</span> and <span class="mathjax-tex">\(F_{3}\)</span> are typically extracted from the cross section once a certain model for the structure function <span class="mathjax-tex">\(F_L\)</span> is taken. This approach is justified only at large <i>x</i>, however, where the contribution of <span class="mathjax-tex">\(F_L\)</span> is small and even large uncertainties in the modeling of <span class="mathjax-tex">\(F_L\)</span> cannot affect the extracted values of <span class="mathjax-tex">\(F_{2}\)</span> and <span class="mathjax-tex">\(F_{3}\)</span>. The procedure is not applicable for HERA kinematics, on the other hand, and introduces a bias into the analysis of the data taken by the New Muon Collaboration (NMC), in particular, a shift in the value of <span class="mathjax-tex">\(\alpha _s\)</span> preferred by the fit [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 59" title="S. Alekhin, J. Blümlein, S. Moch, Higher order constraints on the Higgs production rate from fixed-target DIS data. Eur. Phys. J. C 71, 1723 (2011). &#xA; arXiv:1101.5261&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR59" id="ref-link-section-d90629110e14066">59</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 66" title="J. Gao, M. Guzzi, J. Huston, H.-L. Lai, Z. Li, P. Nadolsky, J. Pumplin, D. Stump, C.P. Yuan, CT10 next-to-next-to-leading order global analysis of QCD. Phys. Rev. D 89, 033009 (2014). &#xA; arXiv:1302.6246&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR66" id="ref-link-section-d90629110e14069">66</a>], cf. Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Sec19">4</a>. Nonetheless, the MMHT14 analysis [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 6" title="L.A. Harland-Lang, A.D. Martin, P. Motylinski, R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs. Eur. Phys. J. C 75, 204 (2015). &#xA; arXiv:1412.3989&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR6" id="ref-link-section-d90629110e14075">6</a>] is still based on the DIS structure function data, as are the CJ15 and CT14 analyses [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 1" title="A. Accardi, L.T. Brady, W. Melnitchouk, J.F. Owens, N. Sato, Constraints on large-&#xA; &#xA; &#xA; &#xA; $$x$$&#xA; &#xA; &#xA; x&#xA; &#xA; &#xA; parton distributions from new weak boson production and deep-inelastic scattering data. &#xA; arXiv:1602.03154&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR1" id="ref-link-section-d90629110e14078">1</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 3" title="S. Dulat, T.J. Hou, J. Gao, M. Guzzi, J. Huston, P. Nadolsky, J. Pumplin, C. Schmidt, D. Stump, C.P. Yuan, The CT14 global analysis of quantum chromodynamics. &#xA; arXiv:1506.07443&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR3" id="ref-link-section-d90629110e14082">3</a>]. The latter two use cross section data for HERA, and for HERA and NMC, respectively, and structure function data elsewhere. While CT14 performed this important change for the HERA and NMC data, the authors of Ref. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 67" title="R.S. Thorne, G. Watt, PDF dependence of Higgs cross sections at the tevatron and LHC: response to recent criticism. JHEP 08, 100 (2011). &#xA; arXiv:1106.5789&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR67" id="ref-link-section-d90629110e14085">67</a>] report that the change has little impact. Refs. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 59" title="S. Alekhin, J. Blümlein, S. Moch, Higher order constraints on the Higgs production rate from fixed-target DIS data. Eur. Phys. J. C 71, 1723 (2011). &#xA; arXiv:1101.5261&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR59" id="ref-link-section-d90629110e14088">59</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 64" title="S. Alekhin, J. Blümlein, S. Moch, Parton distribution functions and benchmark cross sections at NNLO. Phys. Rev. D 86, 054009 (2012). &#xA; arXiv:1202.2281&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR64" id="ref-link-section-d90629110e14091">64</a>], on the other hand, disagree with this claim.</p><p>The deep-inelastic structure functions are inclusive quantities and contain massless parton and heavy-quark contributions,</p><div id="Equ7" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} F_i^{\tau = 2}(x,Q^2) = F_i^\mathrm{massless}(x,Q^2) + F_i^\mathrm{massive}(x,Q^2)\, . \end{aligned}$$</span></div><div class="c-article-equation__number"> (7) </div></div><p>Here the massless terms are given by</p><div id="Equ8" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} F_i^\mathrm{massless}(x,Q^2) = \sum _{j}\, C_{i,j}\left( x,\frac{Q^2}{\mu ^2}\right) \otimes f_j(x,\mu ^2)\, , \end{aligned}$$</span></div><div class="c-article-equation__number"> (8) </div></div><p>where <span class="mathjax-tex">\(C_{i,j}\)</span> denote the massless Wilson coefficients, <span class="mathjax-tex">\(f_j\)</span> the massless PDFs and <span class="mathjax-tex">\(\mu ^2\)</span> is the factorization scale. The Mellin convolution is abbreviated by <span class="mathjax-tex">\(\otimes \)</span> and the sum over <i>j</i> is over all contributing partons. The renormalization group equation for <span class="mathjax-tex">\(F_i^\mathrm{massless}\)</span> allows one to eliminate the dependence on <span class="mathjax-tex">\(\mu ^2\)</span> order-by-order in perturbation theory. This also applies to <span class="mathjax-tex">\(F_i^{\tau = 2}\)</span>. Through the massive contributions <span class="mathjax-tex">\(F_i^\mathrm{massive}\)</span> there is a dependence on the heavy-quark masses <span class="mathjax-tex">\(m_c\)</span> and <span class="mathjax-tex">\(m_b\)</span> in the present world DIS data. Note that <span class="mathjax-tex">\(F_i^\mathrm{massive}\)</span> is <i>not</i> the structure function of a tagged heavy-flavor sample, which would be infrared sensitive [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 68" title="A. Chuvakin, J. Smith, W.L. van Neerven, Comparison between variable flavor number schemes for charm quark electroproduction. Phys. Rev. D 61, 096004 (2000). &#xA; arXiv:hep-ph/9910250&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR68" id="ref-link-section-d90629110e14682">68</a>]. Rather, <span class="mathjax-tex">\(F_i^\mathrm{massive}\)</span> is just given as the difference of the complete structure function <span class="mathjax-tex">\(F_i^{\tau = 2}\)</span> and the massless one in Eq. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Equ8">8</a>).</p><h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec7"><span class="c-article-section__title-number">3.1.1 </span>Massless PDFs</h4><p>For all QCD calculations we use perturbation theory. The factorized representation in terms of Wilson coefficients and PDFs is obtained using the light-cone expansion [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 69" title="K.G. Wilson, Nonlagrangian models of current algebra. Phys. Rev. 179, 1499 (1969)" href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR69" id="ref-link-section-d90629110e14757">69</a>–<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 72" title="Y. Frishman, Operator products at almost light like distances. Ann. Phys. 66, 373 (1971)" href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR72" id="ref-link-section-d90629110e14760">72</a>]. For a proper definition of the Wilson coefficients and the PDFs one has to use the LSZ formalism and refer to asymptotic states at large times <span class="mathjax-tex">\(t \rightarrow \pm \infty \)</span>, given by massless partons. We first describe the massless contributions in Eqs. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Equ7">7</a>) and (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Equ8">8</a>), and then discuss the contribution of heavy quarks. The Wilson coefficients in Eq. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Equ8">8</a>) have a perturbative expansion in the strong coupling constant. At one- [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 73" title="W. Furmanski, R. Petronzio, Lepton–hadron processes beyond leading order in quantum chromodynamics. Z. Phys. C 11, 293 (1982)" href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR73" id="ref-link-section-d90629110e14802">73</a>], two- [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 74" title="E.B. Zijlstra, W.L. van Neerven, Contribution of the second order gluonic Wilson coefficient to the deep-inelastic structure function. Phys. Lett. B 273, 476 (1991)" href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR74" id="ref-link-section-d90629110e14805">74</a>–<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 81" title="S. Moch, J.A.M. Vermaseren, Deep-inelastic structure functions at two loops. Nucl. Phys. B 573, 853 (2000). &#xA; arXiv:hep-ph/9912355&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR81" id="ref-link-section-d90629110e14808">81</a>], and three-loop order [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 56" title="S. Moch, J.A.M. Vermaseren, A. Vogt, The longitudinal structure function at the third order. Phys. Lett. B 606, 123 (2005). &#xA; arXiv:hep-ph/0411112&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR56" id="ref-link-section-d90629110e14811">56</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 57" title="J.A.M. Vermaseren, A. Vogt, S. Moch, The third-order QCD corrections to deep-inelastic scattering by photon exchange. Nucl. Phys. B 724, 3 (2005). &#xA; arXiv:hep-ph/0504242&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR57" id="ref-link-section-d90629110e14814">57</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 82" title="S. Moch, M. Rogal, Charged current deep-inelastic scattering at three loops. Nucl. Phys. B 782, 51 (2007). &#xA; arXiv:0704.1740&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR82" id="ref-link-section-d90629110e14818">82</a>–<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 84" title="S. Moch, J.A.M. Vermaseren, A. Vogt, Third-order QCD corrections to the charged-current structure function &#xA; &#xA; &#xA; &#xA; $$F_3$$&#xA; &#xA; &#xA; &#xA; F&#xA; 3&#xA; &#xA; &#xA; &#xA; . Nucl. Phys. B 813, 220 (2009). &#xA; arXiv:0812.4168&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR84" id="ref-link-section-d90629110e14821">84</a>] they have been calculated for the neutral-current structure functions <span class="mathjax-tex">\(F_{i}\)</span>, with <span class="mathjax-tex">\(i=1,2,3\)</span>, except for the <span class="mathjax-tex">\(\gamma -Z\)</span> mixing contribution at three loops.</p><p>The structure functions in general depend on the following three non-singlet and singlet combinations of parton densities:</p><div id="Equ9" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} q_{jk}^{\pm }= &amp; {} f_j \pm \bar{f}_j - (f_k \pm \bar{f}_k), \quad q^{v} = \sum _{l=1}^{n_f} (f_l - \bar{f}_l), \nonumber \\ q^{s}= &amp; {} \sum _{l=1}^{n_f} (f_l + \bar{f}_l), \end{aligned}$$</span></div><div class="c-article-equation__number"> (9) </div></div><p>with the light-quark distributions <span class="mathjax-tex">\(f_i\)</span> of flavor <i>i</i> and <span class="mathjax-tex">\(n_f\)</span> the number of massless flavors. These combinations evolve in <span class="mathjax-tex">\(\mu ^2\)</span> from an initial scale <span class="mathjax-tex">\(\mu _0^2\)</span> by the QCD evolution equations, where the singlet distribution <span class="mathjax-tex">\(q^{s}(x,\mu ^2)\)</span> mixes with the gluon distribution <span class="mathjax-tex">\(g(x,\mu ^2)\)</span>,</p><div id="Equ10" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned}&amp;\frac{d}{d \ln (\mu ^2)} q^{i}(x,\mu ^2) = P^{i}(x) \otimes q^{i}(x,\mu ^2), \quad \nonumber \\&amp;\quad i = \pm , v\, , \end{aligned}$$</span></div><div class="c-article-equation__number"> (10) </div></div> <div id="Equ11" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned}&amp;\frac{d}{d \ln (\mu ^2)} \left( \begin{array}{c} q^{s}(x,\mu ^2)\\ g(x,\mu ^2) \end{array} \right) = \left( \begin{array}{cc} P_{qq}(x) &amp;{} P_{qg}(x) \\ P_{gq}(x) &amp;{} P_{gg}(x) \end{array} \right) \nonumber \\&amp;\quad \otimes \left( \begin{array}{c} q^{s}(x,\mu ^2)\\ g(x,\mu ^2) \end{array} \right) . \end{aligned}$$</span></div><div class="c-article-equation__number"> (11) </div></div><p>The non-singlet splitting functions are given by</p><div id="Equ12" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} P^{\pm } (x)= &amp; {} P_{qq}(x) \pm P_{q\bar{q}}(x)\, ,\end{aligned}$$</span></div><div class="c-article-equation__number"> (12) </div></div> <div id="Equ13" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} P^{v} (x)= &amp; {} P_{qq}(x) - P_{q\bar{q}}(x) + {n_f}\left( P_{qq}^s(x) - P_{q\bar{q}}^s(x)\right) ,\nonumber \\ \end{aligned}$$</span></div><div class="c-article-equation__number"> (13) </div></div><p>while the anomalous dimensions <span class="mathjax-tex">\(\gamma _{ij}\)</span> corresponding to the splitting functions <span class="mathjax-tex">\(P_{ij}\)</span> are obtained by a Mellin transform,</p><div id="Equ14" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \gamma _{ij}(N) = - \int _0^1 dx\, x^N\, P_{ij}(x), \end{aligned}$$</span></div><div class="c-article-equation__number"> (14) </div></div><p>where we suppress for brevity the dependence of <span class="mathjax-tex">\(P_{ij}\)</span> and <span class="mathjax-tex">\(\gamma _{ij}\)</span> on the strong coupling <span class="mathjax-tex">\(a_s(\mu ^2) = \alpha _s(\mu ^2)/(4\pi )\)</span>. The <span class="mathjax-tex">\(P_{ij}\)</span> are known as well at one- [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 85" title="D.J. Gross, F. Wilczek, Asymptotically free gauge theories. 1. Phys. Rev. D 8, 3633 (1973)" href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR85" id="ref-link-section-d90629110e16634">85</a>–<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 90" title="G. Altarelli, G. Parisi, Asymptotic freedom in parton language. Nucl. Phys. B 126, 298 (1977)" href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR90" id="ref-link-section-d90629110e16637">90</a>], two- [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 81" title="S. Moch, J.A.M. Vermaseren, Deep-inelastic structure functions at two loops. Nucl. Phys. B 573, 853 (2000). &#xA; arXiv:hep-ph/9912355&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR81" id="ref-link-section-d90629110e16640">81</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 91" title="E.G. Floratos, D.A. Ross, C.T. Sachrajda, Higher order effects in asymptotically free gauge theories: The anomalous dimensions of Wilson operators. Nucl. Phys. B 129, 66 (1977). [Erratum: Nucl. Phys. B 139, 545 (1978)]" href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR91" id="ref-link-section-d90629110e16643">91</a>–<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 102" title="R.K. Ellis, W. Vogelsang, The evolution of parton distributions beyond leading order: The singlet case. &#xA; arXiv:hep-ph/9602356&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR102" id="ref-link-section-d90629110e16647">102</a>] and at three-loop order [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 103" title="S. Moch, J.A.M. Vermaseren, A. Vogt, The three-loop splitting functions in QCD: The nonsinglet case. Nucl. Phys. B 688, 101–134 (2004). &#xA; arXiv:hep-ph/0403192&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR103" id="ref-link-section-d90629110e16650">103</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 104" title="A. Vogt, S. Moch, J.A.M. Vermaseren, The three-loop splitting functions in QCD: The singlet case. Nucl. Phys. B 691, 129–181 (2004). &#xA; arXiv:hep-ph/0404111&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR104" id="ref-link-section-d90629110e16653">104</a>] (see also [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 105" title="J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, A. von Manteuffel, C. Schneider, The 3-loop pure singlet heavy flavor contributions to the structure function &#xA; &#xA; &#xA; &#xA; $$F_2(x, Q^2)$$&#xA; &#xA; &#xA; &#xA; &#xA; F&#xA; 2&#xA; &#xA; &#xA; (&#xA; x&#xA; ,&#xA; &#xA; Q&#xA; 2&#xA; &#xA; )&#xA; &#xA; &#xA; &#xA; &#xA; and the anomalous dimension. Nucl. Phys. B 890, 48 (2014). &#xA; arXiv:1409.1135&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR105" id="ref-link-section-d90629110e16656">105</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 106" title="C. Anastasiou, C. Duhr, F. Dulat, E. Furlan, T. Gehrmann, F. Herzog, A. Lazopoulos, B. Mistlberger, High precision determination of the gluon fusion Higgs boson cross section at the LHC. &#xA; arXiv:1602.00695&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR106" id="ref-link-section-d90629110e16659">106</a>] for checks of <span class="mathjax-tex">\(P_{ps}\)</span> and <span class="mathjax-tex">\(P_{gg}\)</span> at that order). The scale evolution of the strong coupling constant in the <span class="mathjax-tex">\(\overline{\mathrm{MS}}\)</span> scheme is given by</p><div id="Equ15" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \frac{d a_s(\mu ^2)}{d \ln (\mu ^2)} = - \sum _{k=0}^\infty \beta _k\, a_s^{k+2}(\mu ^2), \end{aligned}$$</span></div><div class="c-article-equation__number"> (15) </div></div><p>where <span class="mathjax-tex">\(\beta _k\)</span> denote the expansion coefficients of the QCD <span class="mathjax-tex">\(\beta \)</span>-function [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 107" title="I.B. Khriplovich, Green’s functions in theories with non-abelian gauge group, Sov. J. Nucl. Phys. 10 (1969) 235. [Yad. Fiz.10,409(1969)]" href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR107" id="ref-link-section-d90629110e16944">107</a>–<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 116" title="M. Czakon, The four-loop QCD beta-function and anomalous dimensions. Nucl. Phys. B 710, 485 (2005). &#xA; arXiv:hep-ph/0411261&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR116" id="ref-link-section-d90629110e16948">116</a>].</p><p>The evolution equations (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Equ10">10</a>), (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Equ11">11</a>) can be either solved in <i>x</i>- or Mellin (or moment) <i>N</i>-space. In Mellin-space, defined by the transform Eq. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Equ14">14</a>), an analytic solution is possible [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 117" title="M. Diemoz, F. Ferroni, E. Longo, G. Martinelli, Parton densities from deep-inelastic scattering to hadronic processes at super collider energies. Z. Phys. C 39, 21 (1988)" href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR117" id="ref-link-section-d90629110e16970">117</a>–<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 120" title="J. Blümlein, A. Vogt, The volution of unpolarized singlet structure functions at small x. Phys. Rev. D 58, 014020 (1998). &#xA; arXiv:hep-ph/9712546&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR120" id="ref-link-section-d90629110e16973">120</a>] by arranging the solution systematically in powers of the coupling constants <span class="mathjax-tex">\(a_s(\mu ^2)\)</span> and <span class="mathjax-tex">\(a_s(\mu _0^2)\)</span>, and even forming factorization-scheme invariant expressions. In case of the <i>x</i>-space solutions this is usually not done due to the necessary iterative solution. In the small-<i>x</i> region the iterative solution usually leads to a pile-up of a few per cent [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 121" title="J. Blümlein, S. Riemersma, W.L. van Neerven, A. Vogt, Theoretical uncertainties in the QCD evolution of structure functions and their impact on &#xA; &#xA; &#xA; &#xA; $$\alpha _s(M_Z^2)$$&#xA; &#xA; &#xA; &#xA; &#xA; α&#xA; s&#xA; &#xA; &#xA; (&#xA; &#xA; M&#xA; Z&#xA; 2&#xA; &#xA; )&#xA; &#xA; &#xA; &#xA; &#xA; . Nucl. Phys. Proc. Suppl. 51C, 97 (1996). &#xA; arXiv:hep-ph/9609217&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR121" id="ref-link-section-d90629110e17073">121</a>]. This can be corrected for in <i>x</i>-space solutions by applying the method given in [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 122" title="G. Rossi, x Space analysis for the photon structure functions in QCD. Phys. Rev. D 29, 852 (1984)" href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR122" id="ref-link-section-d90629110e17079">122</a>]. Likewise, the iterated solution can be obtained in Mellin <i>N</i>-space and is a standard option of the evolution program <span class="u-monospace">QCD-Pegasus</span> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 123" title="A. Vogt, Efficient evolution of unpolarized and polarized parton distributions with QCD-PEGASUS. Comput. Phys. Commun. 170, 65 (2005). &#xA; arXiv:hep-ph/0408244&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR123" id="ref-link-section-d90629110e17088">123</a>].</p><h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec8"><span class="c-article-section__title-number">3.1.2 </span>Heavy-quark structure functions</h4><p>Disregarding contributions from charm at the input scale (“intrinsic charm”), cf. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 124" title="S.J. Brodsky, P. Hoyer, C. Peterson, N. Sakai, The intrinsic charm of the proton. Phys. Lett. B 93, 451 (1980)" href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR124" id="ref-link-section-d90629110e17099">124</a>–<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 126" title="J. Blümlein, A kinematic condition on intrinsic charm. Phys. Lett. B 753, 619 (2016). &#xA; arXiv:1511.00229&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR126" id="ref-link-section-d90629110e17102">126</a>], the heavy-flavor corrections to the DIS functions are described by Wilson coefficients. The leading order results are of <span class="mathjax-tex">\(\mathcal{O}(a_s)\)</span>. Higher order corrections in the perturbative expansions are, therefore, of <span class="mathjax-tex">\(\mathcal{O}(a_s^2)\)</span> at NLO, and of <span class="mathjax-tex">\(\mathcal{O}(a_s^3)\)</span> at NNLO, similar to the case of the longitudinal structure function [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 56" title="S. Moch, J.A.M. Vermaseren, A. Vogt, The longitudinal structure function at the third order. Phys. Lett. B 606, 123 (2005). &#xA; arXiv:hep-ph/0411112&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR56" id="ref-link-section-d90629110e17218">56</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 57" title="J.A.M. Vermaseren, A. Vogt, S. Moch, The third-order QCD corrections to deep-inelastic scattering by photon exchange. Nucl. Phys. B 724, 3 (2005). &#xA; arXiv:hep-ph/0504242&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR57" id="ref-link-section-d90629110e17221">57</a>]. The corrections in the neutral- and charged-current cases are available in one- [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 127" title="E. Witten, Heavy quark contributions to deep-inelastic scattering. Nucl. Phys. B 104, 445 (1976)" href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR127" id="ref-link-section-d90629110e17224">127</a>–<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 134" title="J. Blümlein, A. Hasselhuhn, P. Kovacikova, S. Moch, &#xA; &#xA; &#xA; &#xA; $${\cal O}(\alpha _s)$$&#xA; &#xA; &#xA; &#xA; O&#xA; (&#xA; &#xA; α&#xA; s&#xA; &#xA; )&#xA; &#xA; &#xA; &#xA; heavy flavor corrections to charged current deep-inelastic scattering in Mellin space. Phys. Lett. B 700, 294 (2011). &#xA; arXiv:1104.3449&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR134" id="ref-link-section-d90629110e17227">134</a>] and two-loop order [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 135" title="E. Laenen, S. Riemersma, J. Smith, W.L. van Neerven, Complete &#xA; &#xA; &#xA; &#xA; $${\cal {O}}(\alpha _s)$$&#xA; &#xA; &#xA; &#xA; O&#xA; (&#xA; &#xA; α&#xA; s&#xA; &#xA; )&#xA; &#xA; &#xA; &#xA; corrections to heavy flavor structure functions in electroproduction. Nucl. Phys. B 392, 162 (1993)" href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR135" id="ref-link-section-d90629110e17230">135</a>–<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 138" title="I. Bierenbaum, J. Blümlein, S. Klein, The gluonic operator matrix elements at &#xA; &#xA; &#xA; &#xA; $${\cal {O}}(\alpha _s^2)$$&#xA; &#xA; &#xA; &#xA; O&#xA; (&#xA; &#xA; α&#xA; s&#xA; 2&#xA; &#xA; )&#xA; &#xA; &#xA; &#xA; for DIS heavy flavor production. Phys. Lett. B 672, 401 (2009). &#xA; arXiv:0901.0669&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR138" id="ref-link-section-d90629110e17233">138</a>], where the latter corrections were given in semi-analytic form.</p><p>For the neutral-current exchange the heavy-flavor contributions to the structure functions <span class="mathjax-tex">\(F_{i}\)</span> with <span class="mathjax-tex">\(i=2,L\)</span> are [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 139" title="A. Behring, I. Bierenbaum, J. Blümlein, A. De Freitas, S. Klein, F. Wißbrock, The logarithmic contributions to the &#xA; &#xA; &#xA; &#xA; $${\cal O}(\alpha ^3_s)$$&#xA; &#xA; &#xA; &#xA; O&#xA; (&#xA; &#xA; α&#xA; s&#xA; 3&#xA; &#xA; )&#xA; &#xA; &#xA; &#xA; asymptotic massive Wilson coefficients and operator matrix elements in deeply inelastic scattering. Eur. Phys. J. C 74, 3033 (2014). &#xA; arXiv:1403.6356&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR139" id="ref-link-section-d90629110e17293">139</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 140" title="I. Bierenbaum, J. Blümlein, S. Klein, Mellin moments of the &#xA; &#xA; &#xA; &#xA; $${\cal O}(\alpha ^3_s)$$&#xA; &#xA; &#xA; &#xA; O&#xA; (&#xA; &#xA; α&#xA; s&#xA; 3&#xA; &#xA; )&#xA; &#xA; &#xA; &#xA; heavy flavor contributions to unpolarized deep-inelastic scattering at &#xA; &#xA; &#xA; &#xA; $$Q^2 \gg m^2$$&#xA; &#xA; &#xA; &#xA; &#xA; Q&#xA; 2&#xA; &#xA; ≫&#xA; &#xA; m&#xA; 2&#xA; &#xA; &#xA; &#xA; &#xA; and anomalous dimensions. Nucl. Phys. B 820, 417 (2009). &#xA; arXiv:0904.3563&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR140" id="ref-link-section-d90629110e17296">140</a>]:</p><div id="Equ16" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned}&amp;F_{i}^\mathrm{massive}(x,n_f+2,Q^2,m^2_c,m^2_b) \nonumber \\&amp;\quad =\sum _{i=c,b} x \Biggl \{\sum _{k=1}^{n_f}e_k^2\Biggl \{ L_{i,q}^{ns}\left( x,n_f+1,\frac{Q^2}{\mu ^2},\frac{m^2_i}{\mu ^2}\right) \nonumber \\&amp;\qquad \otimes \left[ f_k(x,\mu ^2,n_f)+f_{\bar{k}}(x,\mu ^2,n_f)\right] \nonumber \\&amp;\qquad +\,\frac{1}{n_f}L_{i,q}^{ps}\left( x,n_f+1,\frac{Q^2}{\mu ^2},\frac{m^2_i}{\mu ^2}\right) \otimes q^{s}(x,\mu ^2,n_f) \nonumber \\&amp;\qquad +\,\frac{1}{n_f}L_{i,g}^{s}\left( x,n_f+1,\frac{Q^2}{\mu ^2},\frac{m^2_i}{\mu ^2}\right) \otimes g(x,\mu ^2,n_f) \Biggr \} \nonumber \\&amp;\qquad +\,e_i^2\Biggl [ H_{i,q}^{ps}\left( x,n_f+1,\frac{Q^2}{\mu ^2},\frac{m^2_i}{\mu ^2}\right) \otimes q^{s}(x,\mu ^2,n_f) \nonumber \\&amp;\qquad +\,H_{i,g}^{s}\left( x,n_f+1,\frac{Q^2}{\mu ^2},\frac{m^2_i}{\mu ^2}\right) \otimes g(x,\mu ^2,n_f) \Biggr ]\Biggr \} \nonumber \\&amp;\qquad + \,\delta _{i,2} F_{2}^{\mathrm{massive},\{c,b\}}(x,n_f + 2,Q^2,m^2_c,m_b^2). \end{aligned}$$</span></div><div class="c-article-equation__number"> (16) </div></div><p>They are determined by five massive Wilson coefficients, <span class="mathjax-tex">\(L_{i,k}^{\{ns,ps,s\}}\)</span> and <span class="mathjax-tex">\(H_{i,k}^{\{ps,s\}}\)</span>, where the electroweak current couples either to a massless (<span class="mathjax-tex">\(L_{i,k}\)</span>) or the massive (<span class="mathjax-tex">\(H_{i,k}\)</span>) quark line. From three-loop order onwards there are contributions containing both heavy flavors <i>c</i> and <i>b</i> in a non-separable form, denoted by <span class="mathjax-tex">\(F_{2}^{\mathrm{massive},\{c,b\}}\)</span>, in Eq. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Equ16">16</a>). The PDFs and the coupling constant in Eq. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Equ16">16</a>) are defined in the <span class="mathjax-tex">\(\overline{\mathrm {MS}}\, \)</span>scheme, while the heavy quark masses are taken either in the on-shell or <span class="mathjax-tex">\(\overline{\mathrm {MS}}\, \)</span>schemes [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 140" title="I. Bierenbaum, J. Blümlein, S. Klein, Mellin moments of the &#xA; &#xA; &#xA; &#xA; $${\cal O}(\alpha ^3_s)$$&#xA; &#xA; &#xA; &#xA; O&#xA; (&#xA; &#xA; α&#xA; s&#xA; 3&#xA; &#xA; )&#xA; &#xA; &#xA; &#xA; heavy flavor contributions to unpolarized deep-inelastic scattering at &#xA; &#xA; &#xA; &#xA; $$Q^2 \gg m^2$$&#xA; &#xA; &#xA; &#xA; &#xA; Q&#xA; 2&#xA; &#xA; ≫&#xA; &#xA; m&#xA; 2&#xA; &#xA; &#xA; &#xA; &#xA; and anomalous dimensions. Nucl. Phys. B 820, 417 (2009). &#xA; arXiv:0904.3563&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR140" id="ref-link-section-d90629110e18703">140</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 141" title="S. Alekhin, S. Moch, Heavy-quark deep-inelastic scattering with a running mass. Phys. Lett. B 699, 345 (2011). &#xA; arXiv:1011.5790&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR141" id="ref-link-section-d90629110e18707">141</a>]. The relations of the heavy quark masses between the pole mass (on-shell scheme) and the <span class="mathjax-tex">\(\overline{\mathrm{MS}}\)</span> scheme are available to four-loop order [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 142" title="P. Marquard, A.V. Smirnov, V.A. Smirnov, M. Steinhauser, Quark mass relations to four-loop order in perturbative QCD. Phys. Rev. Lett. 114, 142002 (2015). &#xA; arXiv:1502.01030&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR142" id="ref-link-section-d90629110e18735">142</a>]. Due to its better perturbative stability, the <span class="mathjax-tex">\(\overline{\mathrm{MS}}\)</span> scheme for the definition of the heavy-quark mass is preferred.</p><p>For <span class="mathjax-tex">\(Q^2 \gg m_i^2\)</span> the asymptotic corrections to <span class="mathjax-tex">\(F_L\)</span> are available at three-loop order [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 139" title="A. Behring, I. Bierenbaum, J. Blümlein, A. De Freitas, S. Klein, F. Wißbrock, The logarithmic contributions to the &#xA; &#xA; &#xA; &#xA; $${\cal O}(\alpha ^3_s)$$&#xA; &#xA; &#xA; &#xA; O&#xA; (&#xA; &#xA; α&#xA; s&#xA; 3&#xA; &#xA; )&#xA; &#xA; &#xA; &#xA; asymptotic massive Wilson coefficients and operator matrix elements in deeply inelastic scattering. Eur. Phys. J. C 74, 3033 (2014). &#xA; arXiv:1403.6356&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR139" id="ref-link-section-d90629110e18828">139</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 143" title="J. Blümlein, A. De Freitas, W.L. van Neerven, S. Klein, The longitudinal heavy quark structure function &#xA; &#xA; &#xA; &#xA; $$F^{Q\bar{Q}}_L$$&#xA; &#xA; &#xA; &#xA; F&#xA; L&#xA; &#xA; Q&#xA; &#xA; &#xA; Q&#xA; &#xA; &#xA; ¯&#xA; &#xA; &#xA; &#xA; &#xA; &#xA; &#xA; in the region &#xA; &#xA; &#xA; &#xA; $$Q^2 \gg m^2$$&#xA; &#xA; &#xA; &#xA; &#xA; Q&#xA; 2&#xA; &#xA; ≫&#xA; &#xA; m&#xA; 2&#xA; &#xA; &#xA; &#xA; &#xA; at &#xA; &#xA; &#xA; &#xA; $${\cal {O}}(\alpha _s^3)$$&#xA; &#xA; &#xA; &#xA; O&#xA; (&#xA; &#xA; α&#xA; s&#xA; 3&#xA; &#xA; )&#xA; &#xA; &#xA; &#xA; . Nucl. Phys. B 755, 272 (2006). &#xA; arXiv:hep-ph/0608024&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR143" id="ref-link-section-d90629110e18831">143</a>]. For <span class="mathjax-tex">\(F_2\)</span>, four out of the five massive Wilson coefficients, <span class="mathjax-tex">\(L_{2,q}^{ns}\)</span>, <span class="mathjax-tex">\(L_{2,q}^{ps}\)</span>, <span class="mathjax-tex">\(L_{2,g}^{s}\)</span> and <span class="mathjax-tex">\(H_{2,q}^{ps}\)</span> are known as well [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 105" title="J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, A. von Manteuffel, C. Schneider, The 3-loop pure singlet heavy flavor contributions to the structure function &#xA; &#xA; &#xA; &#xA; $$F_2(x, Q^2)$$&#xA; &#xA; &#xA; &#xA; &#xA; F&#xA; 2&#xA; &#xA; &#xA; (&#xA; x&#xA; ,&#xA; &#xA; Q&#xA; 2&#xA; &#xA; )&#xA; &#xA; &#xA; &#xA; &#xA; and the anomalous dimension. Nucl. Phys. B 890, 48 (2014). &#xA; arXiv:1409.1135&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR105" id="ref-link-section-d90629110e19006">105</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 139" title="A. Behring, I. Bierenbaum, J. Blümlein, A. De Freitas, S. Klein, F. Wißbrock, The logarithmic contributions to the &#xA; &#xA; &#xA; &#xA; $${\cal O}(\alpha ^3_s)$$&#xA; &#xA; &#xA; &#xA; O&#xA; (&#xA; &#xA; α&#xA; s&#xA; 3&#xA; &#xA; )&#xA; &#xA; &#xA; &#xA; asymptotic massive Wilson coefficients and operator matrix elements in deeply inelastic scattering. Eur. Phys. J. C 74, 3033 (2014). &#xA; arXiv:1403.6356&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR139" id="ref-link-section-d90629110e19009">139</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 144" title="J. Ablinger, J. Blümlein, S. Klein, C. Schneider, F. Wissbrock, The &#xA; &#xA; &#xA; &#xA; $${\cal {O}}(\alpha _s^3)$$&#xA; &#xA; &#xA; &#xA; O&#xA; (&#xA; &#xA; α&#xA; s&#xA; 3&#xA; &#xA; )&#xA; &#xA; &#xA; &#xA; massive operator matrix elements of &#xA; &#xA; &#xA; &#xA; $${\cal {O}}(n_f)$$&#xA; &#xA; &#xA; &#xA; O&#xA; (&#xA; &#xA; n&#xA; f&#xA; &#xA; )&#xA; &#xA; &#xA; &#xA; for the structure function &#xA; &#xA; &#xA; &#xA; $$F_2(x, Q^2)$$&#xA; &#xA; &#xA; &#xA; &#xA; F&#xA; 2&#xA; &#xA; &#xA; (&#xA; x&#xA; ,&#xA; &#xA; Q&#xA; 2&#xA; &#xA; )&#xA; &#xA; &#xA; &#xA; &#xA; and transversity. Nucl. Phys. B 844, 26 (2011). &#xA; arXiv:1008.3347&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR144" id="ref-link-section-d90629110e19013">144</a>–<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 146" title="J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, A. Hasselhuhn, A. von Manteuffel, M. Round, C. Schneider, F. Wißbrock, The 3-loop non-singlet heavy flavor contributions and anomalous dimensions for the structure function &#xA; &#xA; &#xA; &#xA; $$F_2(x, Q^2)$$&#xA; &#xA; &#xA; &#xA; &#xA; F&#xA; 2&#xA; &#xA; &#xA; (&#xA; x&#xA; ,&#xA; &#xA; Q&#xA; 2&#xA; &#xA; )&#xA; &#xA; &#xA; &#xA; &#xA; and transversity. Nucl. Phys. B 886, 733 (2014). &#xA; arXiv:1406.4654&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR146" id="ref-link-section-d90629110e19016">146</a>] at large scales <span class="mathjax-tex">\(Q^2\)</span>. For the remaining coefficient, <span class="mathjax-tex">\(H_{2,g}^{s}\)</span>, an estimate has been made in Ref. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 147" title="H. Kawamura, N.A. Lo, Presti, S. Moch, A. Vogt, On the next-to-next-to-leading order QCD corrections to heavy-quark production in deep-inelastic scattering. Nucl. Phys. B864, 399 (2012). &#xA; arXiv:1205.5727&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR147" id="ref-link-section-d90629110e19076">147</a>] based on the anticipated small-<i>x</i> behavior [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 148" title="S. Catani, M. Ciafaloni, F. Hautmann, High-energy factorization and small x heavy flavor production. Nucl. Phys. B 366, 135 (1991)" href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR148" id="ref-link-section-d90629110e19083">148</a>], a series of moments calculated in [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 140" title="I. Bierenbaum, J. Blümlein, S. Klein, Mellin moments of the &#xA; &#xA; &#xA; &#xA; $${\cal O}(\alpha ^3_s)$$&#xA; &#xA; &#xA; &#xA; O&#xA; (&#xA; &#xA; α&#xA; s&#xA; 3&#xA; &#xA; )&#xA; &#xA; &#xA; &#xA; heavy flavor contributions to unpolarized deep-inelastic scattering at &#xA; &#xA; &#xA; &#xA; $$Q^2 \gg m^2$$&#xA; &#xA; &#xA; &#xA; &#xA; Q&#xA; 2&#xA; &#xA; ≫&#xA; &#xA; m&#xA; 2&#xA; &#xA; &#xA; &#xA; &#xA; and anomalous dimensions. Nucl. Phys. B 820, 417 (2009). &#xA; arXiv:0904.3563&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR140" id="ref-link-section-d90629110e19086">140</a>], and two-loop operator matrix elements from Refs. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 149" title="I. Bierenbaum, J. Blümlein, S. Klein, Two-loop massive operator matrix elements and unpolarized heavy flavor production at asymptotic values &#xA; &#xA; &#xA; &#xA; $$Q^2 \gg m^2$$&#xA; &#xA; &#xA; &#xA; &#xA; Q&#xA; 2&#xA; &#xA; ≫&#xA; &#xA; m&#xA; 2&#xA; &#xA; &#xA; &#xA; &#xA; . Nucl. Phys. B 780, 40 (2007). &#xA; arXiv:hep-ph/0703285&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR149" id="ref-link-section-d90629110e19089">149</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 150" title="I. Bierenbaum, J. Blümlein, S. Klein, C. Schneider, Two-loop massive operator matrix elements for unpolarized heavy flavor production to &#xA; &#xA; &#xA; &#xA; $${\cal {O}}(\epsilon )$$&#xA; &#xA; &#xA; &#xA; O&#xA; (&#xA; ϵ&#xA; )&#xA; &#xA; &#xA; &#xA; . Nucl. Phys. B 803, 1 (2008). &#xA; arXiv:0803.0273&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR150" id="ref-link-section-d90629110e19092">150</a>]. This provides a good approximation of the NNLO corrections.</p><h3 class="c-article__sub-heading" id="Sec9"><span class="c-article-section__title-number">3.2 </span>Heavy-flavor PDFs</h3><p>An important issue in PDF fits concerns the number of active quark flavors and the theoretical description of heavy quarks such as charm and bottom. Due to the large range of hard scales <i>Q</i> for the scattering processes considered, different effective theories may be applied. At low scales, when <span class="mathjax-tex">\(Q \simeq \mathcal{O}(\mathrm{few})~\,\mathrm {GeV}\)</span>, one typically works with <span class="mathjax-tex">\(n_f = 3\)</span> massless quark flavors, setting <span class="mathjax-tex">\(n_f = 3\)</span> in the hard scattering cross section, the evolution kernels and the anomalous dimensions. In this case, only the light-quark PDFs for up, down and strange are taken into account. At higher scales, e.g., for hadro-production of jets at high transverse momentum <span class="mathjax-tex">\(p_t\)</span> or top quarks, additional dynamical degrees of freedom lead to theories with <span class="mathjax-tex">\(n_f \,{&gt;}\, 3\)</span>. By means of the renormalization group and matching these are related to the case with <span class="mathjax-tex">\(n_f = 3\)</span> massless quarks. Technically, one has to apply decoupling relations [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 151" title="T. Appelquist, J. Carazzone, Infrared singularities and massive fields. Phys. Rev. D 11, 2856 (1975)" href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR151" id="ref-link-section-d90629110e19304">151</a>] at some matching scale <span class="mathjax-tex">\(\mu \)</span>, for instance in the transition of <span class="mathjax-tex">\(\alpha _s^{(n_f)} \rightarrow \alpha _s^{(n_f+1)}\)</span>. This introduces some logarithmic dependence on the masses of the heavy quarks <span class="mathjax-tex">\(m_c\)</span>, <span class="mathjax-tex">\(m_b\)</span> and <span class="mathjax-tex">\(m_t\)</span> for charm, bottom and top. One should also note that the matching of the effective theories for <span class="mathjax-tex">\(n_f \rightarrow n_f+1\)</span> does not need to be smooth. In fact, it introduces discontinuities, such as for the running coupling as a solution of the QCD <span class="mathjax-tex">\(\beta \)</span>-function at higher order in the perturbative expansion, where <span class="mathjax-tex">\(\alpha _s^{(n_f)}(\mu ) \ne \alpha _s^{(n_f+1)}(\mu )\)</span> in the <span class="mathjax-tex">\(\overline{\mathrm {MS}}\, \)</span>scheme at the matching scale <span class="mathjax-tex">\(\mu \)</span>, see e.g., [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 152" title="K.G. Chetyrkin, J.H. Kühn, M. Steinhauser, RunDec: a mathematica package for running and decoupling of the strong coupling and quark masses. Comput. Phys. Commun. 133, 43 (2000). &#xA; arXiv:hep-ph/0004189&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR152" id="ref-link-section-d90629110e19685">152</a>].</p><p>In a similar manner, PDFs in theories with a fixed number <span class="mathjax-tex">\(n_f &gt; 3\)</span> of quark flavors are related to those for <span class="mathjax-tex">\(n_f = 3\)</span> with the help of heavy-quark operator matrix elements (OMEs) <span class="mathjax-tex">\(A_{ij}\)</span> at a chosen matching scale <span class="mathjax-tex">\(\mu \)</span>. Potential non-universal non-logarithmic heavy-flavor effects are taken care of by the Wilson coefficients. Starting with the PDFs in a so-called fixed-flavor number scheme (FFNS) with <span class="mathjax-tex">\(n_f\)</span> fixed, one has <span class="mathjax-tex">\(f_i^{(n_f)} \rightarrow f_i^{(n_f+1)}\)</span> for the light-quark distributions <span class="mathjax-tex">\(f_i\)</span> and <span class="mathjax-tex">\((q^{s,\, (n_f)}, g^{(n_f)}) \rightarrow (q^{s,\, (n_f+1)}, g^{(n_f+1)})\)</span> for the gluon and the singlet quark distributions with operator mixing in the singlet sector. In particular, one has [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 140" title="I. Bierenbaum, J. Blümlein, S. Klein, Mellin moments of the &#xA; &#xA; &#xA; &#xA; $${\cal O}(\alpha ^3_s)$$&#xA; &#xA; &#xA; &#xA; O&#xA; (&#xA; &#xA; α&#xA; s&#xA; 3&#xA; &#xA; )&#xA; &#xA; &#xA; &#xA; heavy flavor contributions to unpolarized deep-inelastic scattering at &#xA; &#xA; &#xA; &#xA; $$Q^2 \gg m^2$$&#xA; &#xA; &#xA; &#xA; &#xA; Q&#xA; 2&#xA; &#xA; ≫&#xA; &#xA; m&#xA; 2&#xA; &#xA; &#xA; &#xA; &#xA; and anomalous dimensions. Nucl. Phys. B 820, 417 (2009). &#xA; arXiv:0904.3563&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR140" id="ref-link-section-d90629110e20075">140</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 153" title="M. Buza, Y. Matiounine, J. Smith, W.L. van Neerven, Charm electroproduction viewed in the variable flavor number scheme versus fixed order perturbation theory. Eur. Phys. J. C 1, 301–320 (1998). &#xA; arXiv:hep-ph/9612398&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR153" id="ref-link-section-d90629110e20078">153</a>]</p><div id="Equ17" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned}&amp;f_k(n_f+1, \mu ^2) + f_{\bar{k}}(n_f+1, \mu ^2)\nonumber \\&amp;\quad = A_{qq,h}^{ns}\Big (n_f, \frac{\mu ^2}{m^2}\Big ) \otimes \left[ f_k(n_f, \mu ^2) + f_{\bar{k}}(n_f, \mu ^2)\right] \nonumber \\&amp;\qquad + \frac{1}{n_f} A_{qq,h}^{ps}\Big (n_f, \frac{\mu ^2}{m^2}\Big ) \otimes {q^{s}(n_f, \mu ^2)} \nonumber \\&amp;\qquad + \frac{1}{n_f} A_{qg,h}^{s}\Big (n_f, \frac{\mu ^2}{m^2}\Big ) \otimes {g(n_f, \mu ^2)}, \end{aligned}$$</span></div><div class="c-article-equation__number"> (17) </div></div> <div id="Equ18" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned}&amp;g(n_f+1, \mu ^2) = A_{gq,h}^{s}\Bigl (n_f,\frac{\mu ^2}{m^2}\Bigr ) \otimes q^{s}(n_f,\mu ^2)\nonumber \\&amp;\quad + A_{gg,h}^{s}\Bigl (n_f,\frac{\mu ^2}{m^2}\Bigr ) \otimes g(n_f,\mu ^2), \end{aligned}$$</span></div><div class="c-article-equation__number"> (18) </div></div> <div id="Equ19" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned}&amp;q^{s}(n_f+1,\mu ^2) = \left[ A_{qq,h}^{ns}\left( n_f, \frac{\mu ^2}{m^2}\right) + A_{qq,h}^{ps} \left( n_f, \frac{\mu ^2}{m^2}\right) \right. \nonumber \\&amp;\quad \left. +A_{hq}^{ps} \left( n_f, \frac{\mu ^2}{m^2}\right) \right] \otimes q^{s}(n_f,\mu ^2) \nonumber \\&amp;\quad +\left[ A^{s}_{qg,h}\left( n_f, \frac{\mu ^2}{m^2}\right) + A^{s}_{hg}\left( n_f, \frac{\mu ^2}{m^2}\right) \right] \nonumber \\&amp;\quad \otimes g(n_f,\mu ^2). \end{aligned}$$</span></div><div class="c-article-equation__number"> (19) </div></div><p>PDFs for charm and bottom (<span class="mathjax-tex">\(h=c,b\)</span>) are then constructed as</p><div id="Equ20" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} f_{h+\bar{h}}(n_f+1, \mu ^2)= &amp; {} {A_{hq}^{ps}\left( n_f, \frac{\mu ^2}{m^2}\right) } \otimes {q^{s}(n_f, \mu ^2)}\nonumber \\&amp;+ {A_{hg}^{s}\left( n_f, \frac{\mu ^2}{m^2}\right) } \otimes {g(n_f, \mu ^2)} \end{aligned}$$</span></div><div class="c-article-equation__number"> (20) </div></div><p>at the matching scale <span class="mathjax-tex">\(\mu \)</span> from the quark singlet and gluon PDFs with <span class="mathjax-tex">\(h = {\bar{h}}\)</span>.</p><p>The matching conditions are typically imposed at the scale <span class="mathjax-tex">\(\mu = m_h\)</span>, and <span class="mathjax-tex">\(f_{h + {\bar{h}}} = 0\)</span> is assumed for scales <span class="mathjax-tex">\(\mu \le m_h\)</span>. The necessary heavy-quark OMEs <span class="mathjax-tex">\(A_{ij}\)</span> depend logarithmically on the heavy-quark masses as <span class="mathjax-tex">\(\alpha _s^l \ln ^k(\mu ^2/m_h^2)\)</span> with <span class="mathjax-tex">\(0 \le k \le l\)</span> in the perturbative expansion. As discussed above, the OMEs are known to NLO analytically [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 149" title="I. Bierenbaum, J. Blümlein, S. Klein, Two-loop massive operator matrix elements and unpolarized heavy flavor production at asymptotic values &#xA; &#xA; &#xA; &#xA; $$Q^2 \gg m^2$$&#xA; &#xA; &#xA; &#xA; &#xA; Q&#xA; 2&#xA; &#xA; ≫&#xA; &#xA; m&#xA; 2&#xA; &#xA; &#xA; &#xA; &#xA; . Nucl. Phys. B 780, 40 (2007). &#xA; arXiv:hep-ph/0703285&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR149" id="ref-link-section-d90629110e21970">149</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 154" title="M. Buza, Y. Matiounine, J. Smith, R. Migneron, W.L. van Neerven, Heavy quark coefficient functions at asymptotic values &#xA; &#xA; &#xA; &#xA; $$Q^2 \gg m^2$$&#xA; &#xA; &#xA; &#xA; &#xA; Q&#xA; 2&#xA; &#xA; ≫&#xA; &#xA; m&#xA; 2&#xA; &#xA; &#xA; &#xA; &#xA; . Nucl. Phys. B 472, 611 (1996). &#xA; arXiv:hep-ph/9601302&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR154" id="ref-link-section-d90629110e21973">154</a>] and at NNLO either exactly or to a good approximation [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 105" title="J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, A. von Manteuffel, C. Schneider, The 3-loop pure singlet heavy flavor contributions to the structure function &#xA; &#xA; &#xA; &#xA; $$F_2(x, Q^2)$$&#xA; &#xA; &#xA; &#xA; &#xA; F&#xA; 2&#xA; &#xA; &#xA; (&#xA; x&#xA; ,&#xA; &#xA; Q&#xA; 2&#xA; &#xA; )&#xA; &#xA; &#xA; &#xA; &#xA; and the anomalous dimension. Nucl. Phys. B 890, 48 (2014). &#xA; arXiv:1409.1135&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR105" id="ref-link-section-d90629110e21976">105</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 140" title="I. Bierenbaum, J. Blümlein, S. Klein, Mellin moments of the &#xA; &#xA; &#xA; &#xA; $${\cal O}(\alpha ^3_s)$$&#xA; &#xA; &#xA; &#xA; O&#xA; (&#xA; &#xA; α&#xA; s&#xA; 3&#xA; &#xA; )&#xA; &#xA; &#xA; &#xA; heavy flavor contributions to unpolarized deep-inelastic scattering at &#xA; &#xA; &#xA; &#xA; $$Q^2 \gg m^2$$&#xA; &#xA; &#xA; &#xA; &#xA; Q&#xA; 2&#xA; &#xA; ≫&#xA; &#xA; m&#xA; 2&#xA; &#xA; &#xA; &#xA; &#xA; and anomalous dimensions. Nucl. Phys. B 820, 417 (2009). &#xA; arXiv:0904.3563&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR140" id="ref-link-section-d90629110e21979">140</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 144" title="J. Ablinger, J. Blümlein, S. Klein, C. Schneider, F. Wissbrock, The &#xA; &#xA; &#xA; &#xA; $${\cal {O}}(\alpha _s^3)$$&#xA; &#xA; &#xA; &#xA; O&#xA; (&#xA; &#xA; α&#xA; s&#xA; 3&#xA; &#xA; )&#xA; &#xA; &#xA; &#xA; massive operator matrix elements of &#xA; &#xA; &#xA; &#xA; $${\cal {O}}(n_f)$$&#xA; &#xA; &#xA; &#xA; O&#xA; (&#xA; &#xA; n&#xA; f&#xA; &#xA; )&#xA; &#xA; &#xA; &#xA; for the structure function &#xA; &#xA; &#xA; &#xA; $$F_2(x, Q^2)$$&#xA; &#xA; &#xA; &#xA; &#xA; F&#xA; 2&#xA; &#xA; &#xA; (&#xA; x&#xA; ,&#xA; &#xA; Q&#xA; 2&#xA; &#xA; )&#xA; &#xA; &#xA; &#xA; &#xA; and transversity. Nucl. Phys. B 844, 26 (2011). &#xA; arXiv:1008.3347&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR144" id="ref-link-section-d90629110e21982">144</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 147" title="H. Kawamura, N.A. Lo, Presti, S. Moch, A. Vogt, On the next-to-next-to-leading order QCD corrections to heavy-quark production in deep-inelastic scattering. Nucl. Phys. B864, 399 (2012). &#xA; arXiv:1205.5727&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR147" id="ref-link-section-d90629110e21986">147</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 155" title="J. Ablinger, J. Blümlein, A. De Freitas, A. Hasselhuhn, A. von Manteuffel, M. Round, C. Schneider, F. Wissbrock, The transition matrix element &#xA; &#xA; &#xA; &#xA; $$A_{gq}(N)$$&#xA; &#xA; &#xA; &#xA; &#xA; A&#xA; &#xA; g&#xA; q&#xA; &#xA; &#xA; &#xA; (&#xA; N&#xA; )&#xA; &#xA; &#xA; &#xA; &#xA; of the variable flavor number scheme at &#xA; &#xA; &#xA; &#xA; $${\cal {O}}(\alpha _s^3)$$&#xA; &#xA; &#xA; &#xA; O&#xA; (&#xA; &#xA; α&#xA; s&#xA; 3&#xA; &#xA; )&#xA; &#xA; &#xA; &#xA; . Nucl. Phys. B 882, 263 (2014). &#xA; arXiv:1402.0359&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR155" id="ref-link-section-d90629110e21989">155</a>]. Thus, charm and bottom PDFs can be consistently extracted in QCD with a fixed number <span class="mathjax-tex">\(n_f =3,4\)</span> or 5.</p><p>It should be stressed, however, that the decoupling relations for PDFs in Eqs. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Equ17">17</a> <a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Equ18">18</a>)–(<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Equ20">20</a>) assume the presence of one heavy quark at a time upon moving from lower scales to higher ones. Beginning at three-loop order, however, there are graphs containing both charm- and bottom-quark lines, and charm quarks cannot be treated as massless at the scale of the bottom-quark due to <span class="mathjax-tex">\((m_c/m_b)^2 \approx 1/10\)</span>. Such terms cannot be attributed to either the charm- or bottom-quark PDFs, but rather one has to decouple charm and bottom quarks together at some large scale. The simultaneous decoupling of bottom and charm quarks in the strong coupling constant <span class="mathjax-tex">\(\alpha _s\)</span> is discussed, for instance, in Ref. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 156" title="A.G. Grozin, M. Höschele, J. Hoff, M. Steinhauser, Simultaneous decoupling of bottom and charm quarks. JHEP 09, 066 (2011). &#xA; arXiv:1107.5970&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR156" id="ref-link-section-d90629110e22125">156</a>].</p><h3 class="c-article__sub-heading" id="Sec10"><span class="c-article-section__title-number">3.3 </span>Heavy-quarks schemes</h3><h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec11"><span class="c-article-section__title-number">3.3.1 </span>Variable-flavor number schemes</h4><p>The hard scattering cross sections also depend on the number of flavors <span class="mathjax-tex">\(n_f\)</span> and additional parton channels may open up, which have to be included as well. In addition, processes involving massive quarks depend logarithmically on the ratio <span class="mathjax-tex">\(Q^2/m_h^2\)</span>, where <i>Q</i> is some hard scale associated with the scattering. For the heavy-flavor Wilson coefficients in Eq. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Equ16">16</a>) these logarithms are of the type <span class="mathjax-tex">\(\alpha _s^l \ln ^k(Q^2/m_h^2)\)</span> with <span class="mathjax-tex">\(1 \le k \le l\)</span> in perturbation theory. These originate from collinear singularities screened by the heavy-quark mass due to the constrained phase space for gluon emission from massive quark lines, and as a prefactor of these logarithms one has the standard splitting functions. In addition to logarithmic terms, there are also power corrections <span class="mathjax-tex">\((m_h^2/Q^2)^l\)</span> in the heavy-flavor Wilson coefficients, usually appearing in form of higher transcendental functions. In the asymptotic regime of <span class="mathjax-tex">\(Q^2 \gg m_h^2\)</span> the logarithms dominate and the kinematic dependence is measured experimentally, for instance in the tagged flavor case for charm-quark pairs in the structure function <span class="mathjax-tex">\(F_2^{c\bar{c}}\)</span>. Logarithms of a similar kind are also experimentally observed in differential distributions, e.g. due to the QED corrections proportional to <span class="mathjax-tex">\(\ln ^k(Q^2/m_l^2)\)</span> with <span class="mathjax-tex">\(m_l\)</span> being the charged lepton mass, cf. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 45" title="A. Kwiatkowski, H. Spiesberger, H.J. Möhring, Heracles: an event generator for &#xA; &#xA; &#xA; &#xA; $$e p$$&#xA; &#xA; &#xA; &#xA; e&#xA; p&#xA; &#xA; &#xA; &#xA; interactions at HERA energies including radiative processes: version 1.0. Comput. Phys. Commun. 69, 155 (1992)" href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR45" id="ref-link-section-d90629110e22516">45</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 46" title="A. Arbuzov, D.Yu. Bardin, J. Blümlein, L. Kalinovskaya, T. Riemann, Hector 1.00: a program for the calculation of QED, QCD and electroweak corrections to &#xA; &#xA; &#xA; &#xA; $$ep$$&#xA; &#xA; &#xA; &#xA; e&#xA; p&#xA; &#xA; &#xA; &#xA; and &#xA; &#xA; &#xA; &#xA; $$l^\pm N$$&#xA; &#xA; &#xA; &#xA; &#xA; l&#xA; ±&#xA; &#xA; N&#xA; &#xA; &#xA; &#xA; deep-inelastic neutral and charged current scattering. Comput. Phys. Commun. 94, 128 (1996). &#xA; arXiv:hep-ph/9511434&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR46" id="ref-link-section-d90629110e22519">46</a>].</p><p>The resummation of the logarithms <span class="mathjax-tex">\(\alpha _s^l \ln ^k(Q^2/m_h^2)\)</span> to all orders in perturbation theory is effectively carried out by the transition <span class="mathjax-tex">\(n_f \rightarrow n_f+1\)</span> along with the introduction of new heavy-quark PDFs as described in Eqs. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Equ17">17</a> <a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Equ18">18</a>)–(<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Equ20">20</a>). Whether such a transition is appropriate or not depends, of course, on the detailed kinematics. If the hard scale is closer to threshold, <span class="mathjax-tex">\(Q^2 \simeq m_h^2\)</span>, a description with <span class="mathjax-tex">\(n_f\)</span> light flavors is more suitable, while for <span class="mathjax-tex">\(Q^2 \gg m_h^2\)</span> one switches to a theory with <span class="mathjax-tex">\(n_f+1\)</span> massless flavors. In order to achieve a unified description for hard scattering cross sections both at low scales <span class="mathjax-tex">\(Q^2 \simeq m_h^2\)</span> and asymptotically for <span class="mathjax-tex">\(Q^2 \gg m_h^2\)</span>, so-called variable-flavor number schemes (VFNS) have been constructed. Effectively, these aim at an interpolation between the asymptotic limits of the quarks being very light or very heavy relative to the other hard scales of the process. At the LHC such considerations apply to processes with bottom quarks in the initial state such as single top-quark production as well as bottom-quark initiated Higgs boson production (see Ref. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 157" title="F. Maltoni, G. Ridolfi, M. Ubiali, b-Initiated processes at the LHC: a reappraisal. JHEP 07, 022 (2012). &#xA; arXiv:1203.6393&#xA; &#xA; . [Erratum: JHEP04,095(2013)]" href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR157" id="ref-link-section-d90629110e22849">157</a>] for more recent studies and Ref. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 158" title="R. Harlander, M. Krämer, M. Schumacher, Bottom-quark associated Higgs-boson production: reconciling the four- and five-flavour scheme approach. &#xA; arXiv:1112.3478&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR158" id="ref-link-section-d90629110e22852">158</a>] for the so-called <i>Santander matching</i> scheme for Higgs boson production in <span class="mathjax-tex">\(b\bar{b}\)</span> annihilation).</p><p>Of particular interest for PDF fits is the reduced cross section for the pair-production of heavy quarks in DIS, which is parametrized in terms of the DIS heavy-quark structure functions <span class="mathjax-tex">\(F_i^h\)</span> for <span class="mathjax-tex">\(i=2,L\)</span> in Eq. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Equ16">16</a>) and with heavy-flavor Wilson coefficients which are known exactly at NLO [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 135" title="E. Laenen, S. Riemersma, J. Smith, W.L. van Neerven, Complete &#xA; &#xA; &#xA; &#xA; $${\cal {O}}(\alpha _s)$$&#xA; &#xA; &#xA; &#xA; O&#xA; (&#xA; &#xA; α&#xA; s&#xA; &#xA; )&#xA; &#xA; &#xA; &#xA; corrections to heavy flavor structure functions in electroproduction. Nucl. Phys. B 392, 162 (1993)" href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR135" id="ref-link-section-d90629110e22956">135</a>], and to a good approximation at NNLO [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 147" title="H. Kawamura, N.A. Lo, Presti, S. Moch, A. Vogt, On the next-to-next-to-leading order QCD corrections to heavy-quark production in deep-inelastic scattering. Nucl. Phys. B864, 399 (2012). &#xA; arXiv:1205.5727&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR147" id="ref-link-section-d90629110e22959">147</a>] in QCD. For the interpolation <span class="mathjax-tex">\(n_f \rightarrow n_f+1\)</span> of the heavy-quark structure functions <span class="mathjax-tex">\(F_i^h\)</span> a number of so-called general-mass VFNS (GM-VFNS) have been discussed in the literature, such as ACOT [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 159" title="M.A.G. Aivazis, J.C. Collins, F.I. Olness, W.-K. Tung, Leptoproduction of heavy quarks. 2. A Unified QCD formulation of charged and neutral current processes from fixed target to collider energies. Phys. Rev. D 50, 3102 (1994). &#xA; arXiv:hep-ph/9312319&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR159" id="ref-link-section-d90629110e23030">159</a>–<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 161" title="W.-K. Tung, S. Kretzer, C. Schmidt, Open heavy flavor production in QCD: Conceptual framework and implementation issues. J. Phys. G28, 983 (2002). &#xA; arXiv:hep-ph/0110247&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR161" id="ref-link-section-d90629110e23033">161</a>], BMSN [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 153" title="M. Buza, Y. Matiounine, J. Smith, W.L. van Neerven, Charm electroproduction viewed in the variable flavor number scheme versus fixed order perturbation theory. Eur. Phys. J. C 1, 301–320 (1998). &#xA; arXiv:hep-ph/9612398&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR153" id="ref-link-section-d90629110e23036">153</a>], FONLL [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 162" title="S. Forte, E. Laenen, P. Nason, J. Rojo, Heavy quarks in deep-inelastic scattering. Nucl. Phys. B 834, 116 (2010). &#xA; arXiv:1001.2312&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR162" id="ref-link-section-d90629110e23039">162</a>] or RT [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 163" title="R.S. Thorne, Effect of changes of variable flavor number scheme on parton distribution functions and predicted cross sections. Phys. Rev. D 86, 074017 (2012). &#xA; arXiv:1201.6180&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR163" id="ref-link-section-d90629110e23043">163</a>]. These keep <span class="mathjax-tex">\(m_h \ne 0\)</span> and are to be distinguished from the zero-mass VFNS (ZM-VFNS), which describes essentially the massless case. Note that presently the GM-VFNS are applied only to one single heavy flavor at the time. That is the sequential transition <span class="mathjax-tex">\(n_f \rightarrow n_f+1\)</span>, so that the charm or bottom quarks are not considered simultaneously and charm-quark mass effects in the bottom-quark structure function <span class="mathjax-tex">\(F_i^b\)</span> are neglected as discussed above.</p><p>The various GM-VFNS contain a number of additional assumptions, and some come in more than one variety. The GM-VFNS differ, for instance, in the way the low-<span class="mathjax-tex">\(Q^2\)</span> region is modeled. This modeling is a necessary undertaking to provide a reasonable behavior of the VFNS in the kinematical regime of present DIS data. Additional assumptions in the GM-VFNS are related to the matching scale <span class="mathjax-tex">\(\mu \)</span> for the transition <span class="mathjax-tex">\(n_f \rightarrow n_f+1\)</span> as the adopted choice <span class="mathjax-tex">\(\mu = m_h\)</span> is not unique, see [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 164" title="S. Alekhin, J. Blümlein, S. Moch, Heavy-quark production in deep-inelastic scattering, PoS DIS2013 297 (2013). &#xA; arXiv:1307.7258&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR164" id="ref-link-section-d90629110e23264">164</a>] for an in-depth discussion.</p><p>Briefly, the problem can be illustrated with the heavy-quark velocity, the leading order formula [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 131" title="M. Glück, E. Hoffmann, E. Reya, Scaling violations and the gluon distribution of the nucleon. Z. Phys. C 13, 119 (1982)" href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR131" id="ref-link-section-d90629110e23271">131</a>] being</p><div id="Equ21" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} v= &amp; {} \sqrt{ 1 - \frac{4 m_h^2}{s}} = \sqrt{ 1 - \frac{4 m_h^2 x}{Q^2(1-x)}}, \nonumber \\ x\le &amp; {} \frac{1}{1+ 4 m_h^2/Q^2}. \end{aligned}$$</span></div><div class="c-article-equation__number"> (21) </div></div><p>The transition <span class="mathjax-tex">\(n_f \rightarrow n_f+1\)</span> when the corresponding flavor is considered as nearly massless requires light-like velocities <span class="mathjax-tex">\(v \simeq 1\)</span>. That implies the absence of all power corrections <span class="mathjax-tex">\((m_h^2/Q^2)^l\)</span> in the heavy-flavor Wilson coefficients at the matching scale <span class="mathjax-tex">\(\mu ^2\)</span>. In practice, the matching is often applied at the scale <span class="mathjax-tex">\(\mu ^2 = m_h^2\)</span> and for kinematics <img src="//media.springernature.com/full/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_IEq375_HTML.gif" alt="">, where this condition is not fulfilled, which implies restrictions on the range in <i>x</i> in Eq. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Equ21">21</a>).</p><p>Finally, the logarithmic accuracy of the resummation for large scales <span class="mathjax-tex">\(Q^2 \gg m_h^2\)</span>, or the order of perturbation theory in current implementations of GM-VFNS, is often not consistent. For example, NNLO evolution [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 103" title="S. Moch, J.A.M. Vermaseren, A. Vogt, The three-loop splitting functions in QCD: The nonsinglet case. Nucl. Phys. B 688, 101–134 (2004). &#xA; arXiv:hep-ph/0403192&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR103" id="ref-link-section-d90629110e23703">103</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 104" title="A. Vogt, S. Moch, J.A.M. Vermaseren, The three-loop splitting functions in QCD: The singlet case. Nucl. Phys. B 691, 129–181 (2004). &#xA; arXiv:hep-ph/0404111&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR104" id="ref-link-section-d90629110e23706">104</a>] of the massless PDFs is sometimes combined with the heavy-quark OMEs at NLO [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 149" title="I. Bierenbaum, J. Blümlein, S. Klein, Two-loop massive operator matrix elements and unpolarized heavy flavor production at asymptotic values &#xA; &#xA; &#xA; &#xA; $$Q^2 \gg m^2$$&#xA; &#xA; &#xA; &#xA; &#xA; Q&#xA; 2&#xA; &#xA; ≫&#xA; &#xA; m&#xA; 2&#xA; &#xA; &#xA; &#xA; &#xA; . Nucl. Phys. B 780, 40 (2007). &#xA; arXiv:hep-ph/0703285&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR149" id="ref-link-section-d90629110e23709">149</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 154" title="M. Buza, Y. Matiounine, J. Smith, R. Migneron, W.L. van Neerven, Heavy quark coefficient functions at asymptotic values &#xA; &#xA; &#xA; &#xA; $$Q^2 \gg m^2$$&#xA; &#xA; &#xA; &#xA; &#xA; Q&#xA; 2&#xA; &#xA; ≫&#xA; &#xA; m&#xA; 2&#xA; &#xA; &#xA; &#xA; &#xA; . Nucl. Phys. B 472, 611 (1996). &#xA; arXiv:hep-ph/9601302&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR154" id="ref-link-section-d90629110e23712">154</a>], omitting NNLO results [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 105" title="J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, A. von Manteuffel, C. Schneider, The 3-loop pure singlet heavy flavor contributions to the structure function &#xA; &#xA; &#xA; &#xA; $$F_2(x, Q^2)$$&#xA; &#xA; &#xA; &#xA; &#xA; F&#xA; 2&#xA; &#xA; &#xA; (&#xA; x&#xA; ,&#xA; &#xA; Q&#xA; 2&#xA; &#xA; )&#xA; &#xA; &#xA; &#xA; &#xA; and the anomalous dimension. Nucl. Phys. B 890, 48 (2014). &#xA; arXiv:1409.1135&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR105" id="ref-link-section-d90629110e23716">105</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 140" title="I. Bierenbaum, J. Blümlein, S. Klein, Mellin moments of the &#xA; &#xA; &#xA; &#xA; $${\cal O}(\alpha ^3_s)$$&#xA; &#xA; &#xA; &#xA; O&#xA; (&#xA; &#xA; α&#xA; s&#xA; 3&#xA; &#xA; )&#xA; &#xA; &#xA; &#xA; heavy flavor contributions to unpolarized deep-inelastic scattering at &#xA; &#xA; &#xA; &#xA; $$Q^2 \gg m^2$$&#xA; &#xA; &#xA; &#xA; &#xA; Q&#xA; 2&#xA; &#xA; ≫&#xA; &#xA; m&#xA; 2&#xA; &#xA; &#xA; &#xA; &#xA; and anomalous dimensions. Nucl. Phys. B 820, 417 (2009). &#xA; arXiv:0904.3563&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR140" id="ref-link-section-d90629110e23719">140</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 144" title="J. Ablinger, J. Blümlein, S. Klein, C. Schneider, F. Wissbrock, The &#xA; &#xA; &#xA; &#xA; $${\cal {O}}(\alpha _s^3)$$&#xA; &#xA; &#xA; &#xA; O&#xA; (&#xA; &#xA; α&#xA; s&#xA; 3&#xA; &#xA; )&#xA; &#xA; &#xA; &#xA; massive operator matrix elements of &#xA; &#xA; &#xA; &#xA; $${\cal {O}}(n_f)$$&#xA; &#xA; &#xA; &#xA; O&#xA; (&#xA; &#xA; n&#xA; f&#xA; &#xA; )&#xA; &#xA; &#xA; &#xA; for the structure function &#xA; &#xA; &#xA; &#xA; $$F_2(x, Q^2)$$&#xA; &#xA; &#xA; &#xA; &#xA; F&#xA; 2&#xA; &#xA; &#xA; (&#xA; x&#xA; ,&#xA; &#xA; Q&#xA; 2&#xA; &#xA; )&#xA; &#xA; &#xA; &#xA; &#xA; and transversity. Nucl. Phys. B 844, 26 (2011). &#xA; arXiv:1008.3347&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR144" id="ref-link-section-d90629110e23722">144</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 147" title="H. Kawamura, N.A. Lo, Presti, S. Moch, A. Vogt, On the next-to-next-to-leading order QCD corrections to heavy-quark production in deep-inelastic scattering. Nucl. Phys. B864, 399 (2012). &#xA; arXiv:1205.5727&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR147" id="ref-link-section-d90629110e23725">147</a>].</p><p>Altogether, these facts introduce a significant model dependence in any GM-VFNS implementation. A sensitive parameter to test this model dependence is the extraction of the charm- or bottom-quark mass used in different versions of GM-VFNS and subsequent comparison with the Particle Data Group (PDG) results [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 55" title="K.A. Olive, Review of particle physics. Chin. Phys. C 38, 090001 (2014)" href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR55" id="ref-link-section-d90629110e23731">55</a>]. In addition, the quality of the various GM-VFNS can be quantified with the goodness-of-fit for the description of HERA data on DIS charm-quark production obtained from the combination of individual H1 and ZEUS results [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 165" title="ZEUS, H1 Collaboration, H. Abramowicz et al., Combination and QCD analysis of charm production cross section measurements in deep-inelastic ep scattering at HERA, Eur. Phys. J. C73, 2311 (2013). &#xA; arXiv:1211.1182&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR165" id="ref-link-section-d90629110e23734">165</a>].</p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-4"><figure><figcaption class="c-article-table__figcaption"><b id="Tab4" data-test="table-caption">Table 4 Values of the charm-quark mass and renormalization scheme used in the PDF fits together with a summary of schemes chosen for the description of the charm-quark structure function <span class="mathjax-tex">\(F_2^c\)</span> and the theoretical accuracy for the massive quark DIS Wilson coefficients. The values of <span class="mathjax-tex">\(\chi ^2\)</span>/NDP for the DIS charm production cross section data [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 165" title="ZEUS, H1 Collaboration, H. Abramowicz et al., Combination and QCD analysis of charm production cross section measurements in deep-inelastic ep scattering at HERA, Eur. Phys. J. C73, 2311 (2013). &#xA; arXiv:1211.1182&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR165" id="ref-link-section-d90629110e23798">165</a>] and HERA inclusive cross section data [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 4" title="ZEUS, H1 Collaboration, H. Abramowicz et al., Combination of measurements of inclusive deep-inelastic &#xA; &#xA; &#xA; &#xA; $$e^{\pm }p$$&#xA; &#xA; &#xA; &#xA; &#xA; e&#xA; ±&#xA; &#xA; p&#xA; &#xA; &#xA; &#xA; scattering cross sections and QCD analysis of HERA data. &#xA; arXiv:1506.06042&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR4" id="ref-link-section-d90629110e23801">4</a>] are given in two columns with the account of PDF uncertainties (with unc., where CT14 PDF errors scaled from 90 % c.l. to 68 % c.l., i.e., reduced by a factor 1.645) and for the central prediction of each PDF set (nominal). In xFitter [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 166" title="S. Alekhin, O. Behnke, P. Belov, S. Borroni, M. Botje, et al., HERAFitter, Open source QCD fit project. &#xA; arXiv:1410.4412&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR166" id="ref-link-section-d90629110e23804">166</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 167" title="xFitter, An open source QCD fit framework. &#xA; http://xFitter.org&#xA; &#xA; [xFitter.org]" href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR167" id="ref-link-section-d90629110e23808">167</a>], the values of electroweak parameters like the Fermi constant and <i>W</i>-boson mass are taken from Ref. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 55" title="K.A. Olive, Review of particle physics. Chin. Phys. C 38, 090001 (2014)" href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR55" id="ref-link-section-d90629110e23814">55</a>]. The values for CT14 and for PDF4LHC with the SACOT(<span class="mathjax-tex">\(\chi \)</span>) scheme have been determined with a cut on <span class="mathjax-tex">\(Q^2 \ge 5 \,\mathrm {GeV}^2\)</span> on the HERA data [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 165" title="ZEUS, H1 Collaboration, H. Abramowicz et al., Combination and QCD analysis of charm production cross section measurements in deep-inelastic ep scattering at HERA, Eur. Phys. J. C73, 2311 (2013). &#xA; arXiv:1211.1182&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR165" id="ref-link-section-d90629110e23881">165</a>]</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1140/epjc/s10052-016-4285-4/tables/4" aria-label="Full size table 4"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec12"><span class="c-article-section__title-number">3.3.2 </span>Validation with DIS charm-quark production</h4><p>The H1 and ZEUS combined data for the DIS charm production cross section are unique for tests of GM-VFNS and span the region of <span class="mathjax-tex">\(2.5 \le Q^2 \le 2000~\,\mathrm {GeV}^2\)</span> and <span class="mathjax-tex">\(3\times 10^{-5} \le x \le 0.05\)</span>. Values for the charm-quark mass and <span class="mathjax-tex">\(\chi ^2\)</span>/NDP for the individual PDF sets ABM12, CJ15, CT14, HERAPDF2.0, JR14, MMHT14, NNPDF3.0 as well as the averaged set PDF4LHC15 are given in Table  <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab4">4</a>, along with the information on the scheme choice for the heavy-quark structure functions and on the theoretical accuracy for the massive quark DIS Wilson coefficients. For reference, Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab4">4</a> also list the <span class="mathjax-tex">\(\chi ^2\)</span>/NDP values for the HERA inclusive cross section data [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 4" title="ZEUS, H1 Collaboration, H. Abramowicz et al., Combination of measurements of inclusive deep-inelastic &#xA; &#xA; &#xA; &#xA; $$e^{\pm }p$$&#xA; &#xA; &#xA; &#xA; &#xA; e&#xA; ±&#xA; &#xA; p&#xA; &#xA; &#xA; &#xA; scattering cross sections and QCD analysis of HERA data. &#xA; arXiv:1506.06042&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR4" id="ref-link-section-d90629110e26868">4</a>]. Comparisons to data for the DIS charm production cross section are shown in Figs. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig7">7</a>, <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig8">8</a>, <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig9">9</a> and <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig10">10</a>. Note that Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab4">4</a> adopt the standard definition of perturbative orders for the heavy-quark structure functions. This is not shared by CT14, MMHT14 and NNPDF3.0 in their GM-VFNS. There the Born contribution to the heavy-quark Wilson coefficients for <span class="mathjax-tex">\(ep \rightarrow c{\bar{c}}\)</span>, which is proportional to <span class="mathjax-tex">\(\mathcal{O}(\alpha _s)\)</span>, is referred to as being “NLO”. Analogously, the one-loop corrections of order <span class="mathjax-tex">\(\mathcal{O}(\alpha _s^2)\)</span> are denoted by “NNLO”.</p><p>Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab4">4</a> and Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig7">7</a> show that the ABM12 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2" title="S. Alekhin, J. Blümlein, S. Moch, The ABM parton distributions tuned to LHC data. Phys. Rev. D 89, 054028 (2014). &#xA; arXiv:1310.3059&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR2" id="ref-link-section-d90629110e27015">2</a>] and JR14 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 5" title="P. Jimenez-Delgado, E. Reya, Delineating parton distributions and the strong coupling. Phys. Rev. D 89, 074049 (2014). &#xA; arXiv:1403.1852&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR5" id="ref-link-section-d90629110e27018">5</a>] PDFs at NNLO, using charm-quark masses in the <span class="mathjax-tex">\(\overline{\mathrm {MS}}\, \)</span>scheme, provide a good description of the data. Both ABM12 and JR14 use the approximate massive three-loop Wilson coefficients as obtained in [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 147" title="H. Kawamura, N.A. Lo, Presti, S. Moch, A. Vogt, On the next-to-next-to-leading order QCD corrections to heavy-quark production in deep-inelastic scattering. Nucl. Phys. B864, 399 (2012). &#xA; arXiv:1205.5727&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR147" id="ref-link-section-d90629110e27052">147</a>] by interpolating between existing <span class="mathjax-tex">\(\mathcal{O}(\alpha _s^3)\)</span> soft-gluon threshold resummation results and the <span class="mathjax-tex">\(\mathcal{O}(\alpha _s^3)\)</span> asymptotic <span class="mathjax-tex">\((Q^2 \gg m_c^2)\)</span> coefficients [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 140" title="I. Bierenbaum, J. Blümlein, S. Klein, Mellin moments of the &#xA; &#xA; &#xA; &#xA; $${\cal O}(\alpha ^3_s)$$&#xA; &#xA; &#xA; &#xA; O&#xA; (&#xA; &#xA; α&#xA; s&#xA; 3&#xA; &#xA; )&#xA; &#xA; &#xA; &#xA; heavy flavor contributions to unpolarized deep-inelastic scattering at &#xA; &#xA; &#xA; &#xA; $$Q^2 \gg m^2$$&#xA; &#xA; &#xA; &#xA; &#xA; Q&#xA; 2&#xA; &#xA; ≫&#xA; &#xA; m&#xA; 2&#xA; &#xA; &#xA; &#xA; &#xA; and anomalous dimensions. Nucl. Phys. B 820, 417 (2009). &#xA; arXiv:0904.3563&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR140" id="ref-link-section-d90629110e27177">140</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 144" title="J. Ablinger, J. Blümlein, S. Klein, C. Schneider, F. Wissbrock, The &#xA; &#xA; &#xA; &#xA; $${\cal {O}}(\alpha _s^3)$$&#xA; &#xA; &#xA; &#xA; O&#xA; (&#xA; &#xA; α&#xA; s&#xA; 3&#xA; &#xA; )&#xA; &#xA; &#xA; &#xA; massive operator matrix elements of &#xA; &#xA; &#xA; &#xA; $${\cal {O}}(n_f)$$&#xA; &#xA; &#xA; &#xA; O&#xA; (&#xA; &#xA; n&#xA; f&#xA; &#xA; )&#xA; &#xA; &#xA; &#xA; for the structure function &#xA; &#xA; &#xA; &#xA; $$F_2(x, Q^2)$$&#xA; &#xA; &#xA; &#xA; &#xA; F&#xA; 2&#xA; &#xA; &#xA; (&#xA; x&#xA; ,&#xA; &#xA; Q&#xA; 2&#xA; &#xA; )&#xA; &#xA; &#xA; &#xA; &#xA; and transversity. Nucl. Phys. B 844, 26 (2011). &#xA; arXiv:1008.3347&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR144" id="ref-link-section-d90629110e27180">144</a>]. This is referred to as <span class="mathjax-tex">\(\mathcal{O}(\alpha _s^3)_\mathrm{approx}\)</span> in Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab4">4</a>. The HERAPDF2.0 fit [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 4" title="ZEUS, H1 Collaboration, H. Abramowicz et al., Combination of measurements of inclusive deep-inelastic &#xA; &#xA; &#xA; &#xA; $$e^{\pm }p$$&#xA; &#xA; &#xA; &#xA; &#xA; e&#xA; ±&#xA; &#xA; p&#xA; &#xA; &#xA; &#xA; scattering cross sections and QCD analysis of HERA data. &#xA; arXiv:1506.06042&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR4" id="ref-link-section-d90629110e27235">4</a>] also obtains a good description of the data, cf. Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig8">8</a>. This is the only set which has fitted also to the HERA inclusive cross section data of Ref. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 4" title="ZEUS, H1 Collaboration, H. Abramowicz et al., Combination of measurements of inclusive deep-inelastic &#xA; &#xA; &#xA; &#xA; $$e^{\pm }p$$&#xA; &#xA; &#xA; &#xA; &#xA; e&#xA; ±&#xA; &#xA; p&#xA; &#xA; &#xA; &#xA; scattering cross sections and QCD analysis of HERA data. &#xA; arXiv:1506.06042&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR4" id="ref-link-section-d90629110e27241">4</a>]. On the other hand, the SACOT [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 160" title="M. Krämer, F.I. Olness, D.E. Soper, Treatment of heavy quarks in deeply inelastic scattering. Phys. Rev. D 62, 096007 (2000). &#xA; arXiv:hep-ph/0003035&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR160" id="ref-link-section-d90629110e27244">160</a>] GM-VFNS at NLO used by CJ15 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 1" title="A. Accardi, L.T. Brady, W. Melnitchouk, J.F. Owens, N. Sato, Constraints on large-&#xA; &#xA; &#xA; &#xA; $$x$$&#xA; &#xA; &#xA; x&#xA; &#xA; &#xA; parton distributions from new weak boson production and deep-inelastic scattering data. &#xA; arXiv:1602.03154&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR1" id="ref-link-section-d90629110e27248">1</a>] does not describe the data too well, although we should note that the HERA charm data were not included in the CJ15 fit itself.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-7" data-title="Fig. 7"><figure><figcaption><b id="Fig7" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 7</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1140/epjc/s10052-016-4285-4/figures/7" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig7_HTML.gif?as=webp"><img aria-describedby="Fig7" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig7_HTML.gif" alt="figure 7" loading="lazy"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-7-desc"><p>Comparison of HERA data for the DIS pair-production of charm quarks [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 165" title="ZEUS, H1 Collaboration, H. Abramowicz et al., Combination and QCD analysis of charm production cross section measurements in deep-inelastic ep scattering at HERA, Eur. Phys. J. C73, 2311 (2013). &#xA; arXiv:1211.1182&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR165" id="ref-link-section-d90629110e27261">165</a>] to the QCD predictions at NNLO in the FFNS using ABM12 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2" title="S. Alekhin, J. Blümlein, S. Moch, The ABM parton distributions tuned to LHC data. Phys. Rev. D 89, 054028 (2014). &#xA; arXiv:1310.3059&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR2" id="ref-link-section-d90629110e27264">2</a>] and JR14 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 5" title="P. Jimenez-Delgado, E. Reya, Delineating parton distributions and the strong coupling. Phys. Rev. D 89, 074049 (2014). &#xA; arXiv:1403.1852&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR5" id="ref-link-section-d90629110e27267">5</a>] PDFs with a running charm-quark mass</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1140/epjc/s10052-016-4285-4/figures/7" data-track-dest="link:Figure7 Full size image" aria-label="Full size image figure 7" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-8" data-title="Fig. 8"><figure><figcaption><b id="Fig8" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 8</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1140/epjc/s10052-016-4285-4/figures/8" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig8_HTML.gif?as=webp"><img aria-describedby="Fig8" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig8_HTML.gif" alt="figure 8" loading="lazy"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-8-desc"><p>Same as Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig7">7</a> with QCD predictions at NLO and NNLO in the RT optimal [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 163" title="R.S. Thorne, Effect of changes of variable flavor number scheme on parton distribution functions and predicted cross sections. Phys. Rev. D 86, 074017 (2012). &#xA; arXiv:1201.6180&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR163" id="ref-link-section-d90629110e27292">163</a>] VFNS using the HERAPDF2.0 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 4" title="ZEUS, H1 Collaboration, H. Abramowicz et al., Combination of measurements of inclusive deep-inelastic &#xA; &#xA; &#xA; &#xA; $$e^{\pm }p$$&#xA; &#xA; &#xA; &#xA; &#xA; e&#xA; ±&#xA; &#xA; p&#xA; &#xA; &#xA; &#xA; scattering cross sections and QCD analysis of HERA data. &#xA; arXiv:1506.06042&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR4" id="ref-link-section-d90629110e27295">4</a>] PDF sets at NLO and NNLO</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1140/epjc/s10052-016-4285-4/figures/8" data-track-dest="link:Figure8 Full size image" aria-label="Full size image figure 8" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-9" data-title="Fig. 9"><figure><figcaption><b id="Fig9" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 9</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1140/epjc/s10052-016-4285-4/figures/9" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig9_HTML.gif?as=webp"><img aria-describedby="Fig9" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig9_HTML.gif" alt="figure 9" loading="lazy"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-9-desc"><p>Same as Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig7">7</a> with QCD predictions at NLO and different versions of VFNS using the PDFs CT14 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 3" title="S. Dulat, T.J. Hou, J. Gao, M. Guzzi, J. Huston, P. Nadolsky, J. Pumplin, C. Schmidt, D. Stump, C.P. Yuan, The CT14 global analysis of quantum chromodynamics. &#xA; arXiv:1506.07443&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR3" id="ref-link-section-d90629110e27320">3</a>] (SACOT-<span class="mathjax-tex">\(\chi \)</span> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 161" title="W.-K. Tung, S. Kretzer, C. Schmidt, Open heavy flavor production in QCD: Conceptual framework and implementation issues. J. Phys. G28, 983 (2002). &#xA; arXiv:hep-ph/0110247&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR161" id="ref-link-section-d90629110e27343">161</a>]), MMHT14 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 6" title="L.A. Harland-Lang, A.D. Martin, P. Motylinski, R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs. Eur. Phys. J. C 75, 204 (2015). &#xA; arXiv:1412.3989&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR6" id="ref-link-section-d90629110e27346">6</a>] (RT optimal [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 163" title="R.S. Thorne, Effect of changes of variable flavor number scheme on parton distribution functions and predicted cross sections. Phys. Rev. D 86, 074017 (2012). &#xA; arXiv:1201.6180&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR163" id="ref-link-section-d90629110e27350">163</a>]), and NNPDF3.0 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 7" title="NNPDF Collaboration, R.D. Ball et al., Parton distributions for the LHC Run II. JHEP 04, 040 (2015). &#xA; arXiv:1410.8849&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR7" id="ref-link-section-d90629110e27353">7</a>] (FONLL-B [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 162" title="S. Forte, E. Laenen, P. Nason, J. Rojo, Heavy quarks in deep-inelastic scattering. Nucl. Phys. B 834, 116 (2010). &#xA; arXiv:1001.2312&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR162" id="ref-link-section-d90629110e27356">162</a>])</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1140/epjc/s10052-016-4285-4/figures/9" data-track-dest="link:Figure9 Full size image" aria-label="Full size image figure 9" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-10" data-title="Fig. 10"><figure><figcaption><b id="Fig10" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 10</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1140/epjc/s10052-016-4285-4/figures/10" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig10_HTML.gif?as=webp"><img aria-describedby="Fig10" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig10_HTML.gif" alt="figure 10" loading="lazy"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-10-desc"><p>Same as Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig7">7</a> with QCD predictions at NLO using the <span class="u-monospace">PDF4LHC_100</span> PDF set and various VFNS: FONLL-B [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 162" title="S. Forte, E. Laenen, P. Nason, J. Rojo, Heavy quarks in deep-inelastic scattering. Nucl. Phys. B 834, 116 (2010). &#xA; arXiv:1001.2312&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR162" id="ref-link-section-d90629110e27384">162</a>], RT optimal [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 163" title="R.S. Thorne, Effect of changes of variable flavor number scheme on parton distribution functions and predicted cross sections. Phys. Rev. D 86, 074017 (2012). &#xA; arXiv:1201.6180&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR163" id="ref-link-section-d90629110e27387">163</a>] and SACOT-<span class="mathjax-tex">\(\chi \)</span> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 161" title="W.-K. Tung, S. Kretzer, C. Schmidt, Open heavy flavor production in QCD: Conceptual framework and implementation issues. J. Phys. G28, 983 (2002). &#xA; arXiv:hep-ph/0110247&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR161" id="ref-link-section-d90629110e27411">161</a>]</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1140/epjc/s10052-016-4285-4/figures/10" data-track-dest="link:Figure10 Full size image" aria-label="Full size image figure 10" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <p>The remarkable fact in Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab4">4</a> and Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig9">9</a> is, however, that the GM-VFNS SACOT(<span class="mathjax-tex">\(\chi \)</span>) [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 161" title="W.-K. Tung, S. Kretzer, C. Schmidt, Open heavy flavor production in QCD: Conceptual framework and implementation issues. J. Phys. G28, 983 (2002). &#xA; arXiv:hep-ph/0110247&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR161" id="ref-link-section-d90629110e27452">161</a>] of CT14 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 3" title="S. Dulat, T.J. Hou, J. Gao, M. Guzzi, J. Huston, P. Nadolsky, J. Pumplin, C. Schmidt, D. Stump, C.P. Yuan, The CT14 global analysis of quantum chromodynamics. &#xA; arXiv:1506.07443&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR3" id="ref-link-section-d90629110e27455">3</a>] and RT optimal [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 163" title="R.S. Thorne, Effect of changes of variable flavor number scheme on parton distribution functions and predicted cross sections. Phys. Rev. D 86, 074017 (2012). &#xA; arXiv:1201.6180&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR163" id="ref-link-section-d90629110e27459">163</a>] of MMHT14 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 6" title="L.A. Harland-Lang, A.D. Martin, P. Motylinski, R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs. Eur. Phys. J. C 75, 204 (2015). &#xA; arXiv:1412.3989&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR6" id="ref-link-section-d90629110e27462">6</a>] have difficulties in describing the DIS charm production data. Note that MMHT14 models the heavy-quark Wilson coefficient functions at <span class="mathjax-tex">\(\mathcal{O}(\alpha _s^3)\)</span> for low <span class="mathjax-tex">\(Q^2\)</span> as described in [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 163" title="R.S. Thorne, Effect of changes of variable flavor number scheme on parton distribution functions and predicted cross sections. Phys. Rev. D 86, 074017 (2012). &#xA; arXiv:1201.6180&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR163" id="ref-link-section-d90629110e27528">163</a>] using known leading threshold logarithms [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 168" title="E. Laenen, S. Moch, Soft gluon resummation for heavy quark electroproduction. Phys. Rev. D 59, 034027 (1999). &#xA; arXiv:hep-ph/9809550&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR168" id="ref-link-section-d90629110e27531">168</a>] and <span class="mathjax-tex">\(\ln (1/x)\)</span> terms [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 148" title="S. Catani, M. Ciafaloni, F. Hautmann, High-energy factorization and small x heavy flavor production. Nucl. Phys. B 366, 135 (1991)" href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR148" id="ref-link-section-d90629110e27571">148</a>], which have been shown not to be leading. This is indicated as <span class="mathjax-tex">\(\mathcal{O}(\alpha _s^2)\)</span> in Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab4">4</a>. Note that CT14 has applied a universal cut of <span class="mathjax-tex">\(Q^2 \ge 4~\,\mathrm {GeV}^2\)</span> on all DIS data, excluding the bin at <span class="mathjax-tex">\(Q^2 = 2.5~\,\mathrm {GeV}^2\)</span> in the HERA data [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 165" title="ZEUS, H1 Collaboration, H. Abramowicz et al., Combination and QCD analysis of charm production cross section measurements in deep-inelastic ep scattering at HERA, Eur. Phys. J. C73, 2311 (2013). &#xA; arXiv:1211.1182&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR165" id="ref-link-section-d90629110e27711">165</a>] from the fit (cf. the upper left plot in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig9">9</a>). We have checked that including the low <span class="mathjax-tex">\(Q^2\)</span> bin leads to a dramatic deterioration of the fit quality.</p><p>In addition, the schemes SACOT(<span class="mathjax-tex">\(\chi \)</span>) and RT optimal as well as FONLL-C [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 162" title="S. Forte, E. Laenen, P. Nason, J. Rojo, Heavy quarks in deep-inelastic scattering. Nucl. Phys. B 834, 116 (2010). &#xA; arXiv:1001.2312&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR162" id="ref-link-section-d90629110e27764">162</a>] of NNPDF3.0 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 7" title="NNPDF Collaboration, R.D. Ball et al., Parton distributions for the LHC Run II. JHEP 04, 040 (2015). &#xA; arXiv:1410.8849&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR7" id="ref-link-section-d90629110e27767">7</a>] do not improve the fit quality when comparing NLO and NNLO fits. We note in this context that those fits do not include the exact asymptotic [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 105" title="J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, A. von Manteuffel, C. Schneider, The 3-loop pure singlet heavy flavor contributions to the structure function &#xA; &#xA; &#xA; &#xA; $$F_2(x, Q^2)$$&#xA; &#xA; &#xA; &#xA; &#xA; F&#xA; 2&#xA; &#xA; &#xA; (&#xA; x&#xA; ,&#xA; &#xA; Q&#xA; 2&#xA; &#xA; )&#xA; &#xA; &#xA; &#xA; &#xA; and the anomalous dimension. Nucl. Phys. B 890, 48 (2014). &#xA; arXiv:1409.1135&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR105" id="ref-link-section-d90629110e27770">105</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 140" title="I. Bierenbaum, J. Blümlein, S. Klein, Mellin moments of the &#xA; &#xA; &#xA; &#xA; $${\cal O}(\alpha ^3_s)$$&#xA; &#xA; &#xA; &#xA; O&#xA; (&#xA; &#xA; α&#xA; s&#xA; 3&#xA; &#xA; )&#xA; &#xA; &#xA; &#xA; heavy flavor contributions to unpolarized deep-inelastic scattering at &#xA; &#xA; &#xA; &#xA; $$Q^2 \gg m^2$$&#xA; &#xA; &#xA; &#xA; &#xA; Q&#xA; 2&#xA; &#xA; ≫&#xA; &#xA; m&#xA; 2&#xA; &#xA; &#xA; &#xA; &#xA; and anomalous dimensions. Nucl. Phys. B 820, 417 (2009). &#xA; arXiv:0904.3563&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR140" id="ref-link-section-d90629110e27773">140</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 144" title="J. Ablinger, J. Blümlein, S. Klein, C. Schneider, F. Wissbrock, The &#xA; &#xA; &#xA; &#xA; $${\cal {O}}(\alpha _s^3)$$&#xA; &#xA; &#xA; &#xA; O&#xA; (&#xA; &#xA; α&#xA; s&#xA; 3&#xA; &#xA; )&#xA; &#xA; &#xA; &#xA; massive operator matrix elements of &#xA; &#xA; &#xA; &#xA; $${\cal {O}}(n_f)$$&#xA; &#xA; &#xA; &#xA; O&#xA; (&#xA; &#xA; n&#xA; f&#xA; &#xA; )&#xA; &#xA; &#xA; &#xA; for the structure function &#xA; &#xA; &#xA; &#xA; $$F_2(x, Q^2)$$&#xA; &#xA; &#xA; &#xA; &#xA; F&#xA; 2&#xA; &#xA; &#xA; (&#xA; x&#xA; ,&#xA; &#xA; Q&#xA; 2&#xA; &#xA; )&#xA; &#xA; &#xA; &#xA; &#xA; and transversity. Nucl. Phys. B 844, 26 (2011). &#xA; arXiv:1008.3347&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR144" id="ref-link-section-d90629110e27777">144</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 146" title="J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, A. Hasselhuhn, A. von Manteuffel, M. Round, C. Schneider, F. Wißbrock, The 3-loop non-singlet heavy flavor contributions and anomalous dimensions for the structure function &#xA; &#xA; &#xA; &#xA; $$F_2(x, Q^2)$$&#xA; &#xA; &#xA; &#xA; &#xA; F&#xA; 2&#xA; &#xA; &#xA; (&#xA; x&#xA; ,&#xA; &#xA; Q&#xA; 2&#xA; &#xA; )&#xA; &#xA; &#xA; &#xA; &#xA; and transversity. Nucl. Phys. B 886, 733 (2014). &#xA; arXiv:1406.4654&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR146" id="ref-link-section-d90629110e27780">146</a>] and approximate [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 147" title="H. Kawamura, N.A. Lo, Presti, S. Moch, A. Vogt, On the next-to-next-to-leading order QCD corrections to heavy-quark production in deep-inelastic scattering. Nucl. Phys. B864, 399 (2012). &#xA; arXiv:1205.5727&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR147" id="ref-link-section-d90629110e27783">147</a>] <span class="mathjax-tex">\(O(\alpha _s^3)\)</span> results for the heavy-quark Wilson coefficients in their theory predictions. The averaged set PDF4LHC15 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 8" title="J. Butterworth et al., PDF4LHC recommendations for LHC Run II. J. Phys. G43, 023001 (2016). &#xA; arXiv:1510.03865&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR8" id="ref-link-section-d90629110e27824">8</a>], shown in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig10">10</a>, mixes PDFs derived with different mass schemes (ACOT, FONNL and RT) and does not describe the data very well for virtualities up to <span class="mathjax-tex">\(Q^2 \lesssim 20~\,\mathrm {GeV}^2\)</span>.</p><h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec13"><span class="c-article-section__title-number">3.3.3 </span>Charm-quark mass</h4><p>Dedicated studies of the charm-quark mass dependence have been performed by several groups. In the <span class="mathjax-tex">\(\overline{\mathrm {MS}}\, \)</span>scheme, the value of <span class="mathjax-tex">\(m_c(m_c)=1.24~^{+~0.04}_{-~0.08}~\)</span>GeV has been obtained in [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 169" title="S. Alekhin, J. Blümlein, K. Daum, K. Lipka, S. Moch, Precise charm-quark mass from deep-inelastic scattering. Phys. Lett. B 720, 172 (2013). &#xA; arXiv:1212.2355&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR169" id="ref-link-section-d90629110e27989">169</a>] together with <span class="mathjax-tex">\(\chi ^2/\)</span>NDP=61/52 for the description of the HERA data [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 165" title="ZEUS, H1 Collaboration, H. Abramowicz et al., Combination and QCD analysis of charm production cross section measurements in deep-inelastic ep scattering at HERA, Eur. Phys. J. C73, 2311 (2013). &#xA; arXiv:1211.1182&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR165" id="ref-link-section-d90629110e28023">165</a>] as a variant of the ABM11 fit [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 64" title="S. Alekhin, J. Blümlein, S. Moch, Parton distribution functions and benchmark cross sections at NNLO. Phys. Rev. D 86, 054009 (2012). &#xA; arXiv:1202.2281&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR64" id="ref-link-section-d90629110e28027">64</a>]. Other groups, which keep a fixed value of <span class="mathjax-tex">\(m_c\)</span> in the analyses, cf. Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab4">4</a>, have studied the effects of varying <span class="mathjax-tex">\(m_c\)</span> in predefined ranges. This has been done, for example, in the older NNPDF2.1 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 170" title="R.D. Ball, V. Bertone, F. Cerutti, L. Del Debbio, S. Forte, A. Guffanti, J.I. Latorre, J. Rojo, M. Ubiali, Impact of heavy quark masses on parton distributions and LHC phenomenology. Nucl. Phys. B 849, 296 (2011). &#xA; arXiv:1101.1300&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR170" id="ref-link-section-d90629110e28081">170</a>] and MSTW analyses [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 171" title="A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Heavy-quark mass dependence in global PDF analyses and 3- and 4-flavour parton distributions. Eur. Phys. J. C 70, 51 (2010). &#xA; arXiv:1007.2624&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR171" id="ref-link-section-d90629110e28084">171</a>] as well as for the MMHT PDFs [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 172" title="L.A. Harland-Lang, A.D. Martin, P. Motylinski, R.S. Thorne, Charm and beauty quark masses in the MMHT2014 global PDF analysis. &#xA; arXiv:1510.02332&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR172" id="ref-link-section-d90629110e28088">172</a>]. The latter yields a pole mass of <span class="mathjax-tex">\(m_c^\mathrm{pole}=1.25~\,\mathrm {GeV}\)</span> as the best fit with <span class="mathjax-tex">\(\chi ^2\)</span>/NDP = 75/52, while the nominal fit uses <span class="mathjax-tex">\(m_c^\mathrm{pole}=1.4~\,\mathrm {GeV}\)</span> at the price of a deterioration in the value of <span class="mathjax-tex">\(\chi ^2\)</span>/NDP = 82/52. HERAPDF2.0 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 4" title="ZEUS, H1 Collaboration, H. Abramowicz et al., Combination of measurements of inclusive deep-inelastic &#xA; &#xA; &#xA; &#xA; $$e^{\pm }p$$&#xA; &#xA; &#xA; &#xA; &#xA; e&#xA; ±&#xA; &#xA; p&#xA; &#xA; &#xA; &#xA; scattering cross sections and QCD analysis of HERA data. &#xA; arXiv:1506.06042&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR4" id="ref-link-section-d90629110e28225">4</a>] has performed a scan of the values of <span class="mathjax-tex">\(\chi ^2\)</span>/NDP leading to <span class="mathjax-tex">\(m_c^\mathrm{pole} = 1.43~\,\mathrm {GeV}\)</span> at NNLO quoted in Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab4">4</a> as the best fit. NNPDF3.0 computes heavy-quark structure functions with expressions for the pole mass definition, but adopts numerical values for the charm-quark pole mass, <span class="mathjax-tex">\(m_c^\mathrm{pole} = 1.275~\,\mathrm {GeV}\)</span>, which corresponds to the current PDG value for the <span class="mathjax-tex">\(\overline{\mathrm {MS}}\, \)</span>mass. This value is different from the one used in NNPDF2.3, namely <span class="mathjax-tex">\(m_c^\mathrm{pole} = \sqrt{2}~\,\mathrm {GeV}\)</span>. Within the framework of the CT10 PDFs [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 173" title="H.L. Lai, M. Guzzi, J. Huston, Z. Li, P.M. Nadolsky, J. Pumplin, C.-P. Yuan, New parton distributions for collider physics. Phys. Rev. D 82, 074024 (2010). &#xA; arXiv:1007.2241&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR173" id="ref-link-section-d90629110e28417">173</a>] the charm-quark mass in the <span class="mathjax-tex">\(\overline{\mathrm {MS}}\, \)</span>scheme has been determined in Ref. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 174" title="J. Gao, M. Guzzi, P.M. Nadolsky, Charm quark mass dependence in a global QCD analysis. Eur. Phys. J. C 73, 2541 (2013). &#xA; arXiv:1304.3494&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR174" id="ref-link-section-d90629110e28450">174</a>] using the SACOT(<span class="mathjax-tex">\(\chi \)</span>) scheme at order <span class="mathjax-tex">\(\mathcal{O}(\alpha _s^2)\)</span>, although with a significant spread in the central values reported (<span class="mathjax-tex">\(m_c(m_c)=1.12 - 1.24~\)</span>GeV) depending on assumption in the fit.</p><p>In this context, it is worth to point out that the running mass <span class="mathjax-tex">\(m_c(\mu )\)</span> in the <span class="mathjax-tex">\(\overline{\mathrm {MS}}\, \)</span>scheme is free from renormalon ambiguities and can therefore be determined with high precision. The PDG [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 55" title="K.A. Olive, Review of particle physics. Chin. Phys. C 38, 090001 (2014)" href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR55" id="ref-link-section-d90629110e28638">55</a>] quotes <span class="mathjax-tex">\(m_c(m_c) = 1.275 \pm 0.025~\,\mathrm {GeV}\)</span> based on the averaging different mass determination in various kinematics. DIS charm-quark production analyzed in the FFNS <span class="mathjax-tex">\((n_f=3)\)</span> leads to <span class="mathjax-tex">\(m_c(m_c) = 1.24 \pm 0.03~^{+~0.03}_{-~0.03}\)</span> GeV at NNLO [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 169" title="S. Alekhin, J. Blümlein, K. Daum, K. Lipka, S. Moch, Precise charm-quark mass from deep-inelastic scattering. Phys. Lett. B 720, 172 (2013). &#xA; arXiv:1212.2355&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR169" id="ref-link-section-d90629110e28813">169</a>], while measurements of the <span class="mathjax-tex">\(\overline{\mathrm {MS}}\, \)</span>mass in <span class="mathjax-tex">\(e^+e^-\)</span> annihilation give, for instance, <span class="mathjax-tex">\(m_c(m_c) = 1.279 \pm 0.013\)</span> GeV [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 175" title="K.G. Chetyrkin, J.H. Kühn, A. Maier, P. Maierhöfer, P. Marquard, M. Steinhauser, C. Sturm, Charm and bottom quark masses: an update. Phys. Rev. D 80, 074010 (2009). &#xA; arXiv:0907.2110&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR175" id="ref-link-section-d90629110e28932">175</a>] and <span class="mathjax-tex">\(m_c(m_c) = 1.288 \pm 0.020\)</span> GeV [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 176" title="B. Dehnadi, A.H. Hoang, V. Mateu, Bottom and charm mass determinations with a convergence test. JHEP 08, 155 (2015). &#xA; arXiv:1504.07638&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR176" id="ref-link-section-d90629110e28988">176</a>]. The determination from quarkonium 1<i>S</i> energy levels yields <span class="mathjax-tex">\(m_c(m_c) = 1.246 \pm 0.023\)</span> GeV [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 177" title="Y. Kiyo, G. Mishima, Y. Sumino, Determination of &#xA; &#xA; &#xA; &#xA; $$m_c$$&#xA; &#xA; &#xA; &#xA; m&#xA; c&#xA; &#xA; &#xA; &#xA; and &#xA; &#xA; &#xA; &#xA; $$m_b$$&#xA; &#xA; &#xA; &#xA; m&#xA; b&#xA; &#xA; &#xA; &#xA; from quarkonium 1S energy levels in perturbative QCD. &#xA; arXiv:1510.07072&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR177" id="ref-link-section-d90629110e29046">177</a>]. All these values are consistent with each other within the uncertainties.</p><p>In contrast, the accuracy of the pole mass <span class="mathjax-tex">\(m_c^\mathrm{pole}\)</span> is limited to be of the order of the QCD scale <span class="mathjax-tex">\(\Lambda _\mathrm{QCD}\)</span> and, moreover, the conversion from the <span class="mathjax-tex">\(\overline{\mathrm {MS}}\, \)</span>mass <span class="mathjax-tex">\(m_c(m_c)\)</span> at low scales to the pole mass <span class="mathjax-tex">\(m_c^\mathrm{pole}\)</span> does not converge. Using <span class="mathjax-tex">\(\alpha _s(M_Z)=0.1184\)</span>, for example, the conversion yields for the central value of the PDG <span class="mathjax-tex">\(m_c^\mathrm{pole}=1.47~\,\mathrm {GeV}\)</span> at one loop, <span class="mathjax-tex">\(m_c^\mathrm{pole}=1.67~\,\mathrm {GeV}\)</span> at two loops, <span class="mathjax-tex">\(m_c^\mathrm{pole}=1.93~\,\mathrm {GeV}\)</span> at three loops, and <span class="mathjax-tex">\(m_c^\mathrm{pole}=2.39~\,\mathrm {GeV}\)</span> at four-loops [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 142" title="P. Marquard, A.V. Smirnov, V.A. Smirnov, M. Steinhauser, Quark mass relations to four-loop order in perturbative QCD. Phys. Rev. Lett. 114, 142002 (2015). &#xA; arXiv:1502.01030&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR142" id="ref-link-section-d90629110e29422">142</a>]. The PDG quotes <span class="mathjax-tex">\(m_c^\mathrm{pole}=1.67 \pm 0.07~\,\mathrm {GeV}\)</span> for conversion at two loops.</p><p>The low values for the pole mass of the charm quark assumed or obtained in some PDF fits as shown in Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab4">4</a> are thus not compatible with other determinations and with the world average. The rigorous determination of the charm-quark mass discussed, for instance, in [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 169" title="S. Alekhin, J. Blümlein, K. Daum, K. Lipka, S. Moch, Precise charm-quark mass from deep-inelastic scattering. Phys. Lett. B 720, 172 (2013). &#xA; arXiv:1212.2355&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR169" id="ref-link-section-d90629110e29478">169</a>] provides a more controlled way of determining <span class="mathjax-tex">\(m_c\)</span> from the world DIS data, taking also into account its correlation with <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span>.</p><h3 class="c-article__sub-heading" id="Sec14"><span class="c-article-section__title-number">3.4 </span>Light-flavor PDFs</h3><h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec15"><span class="c-article-section__title-number">3.4.1 </span>Up- and down-quark distributions</h4><p>The total quark contribution to nucleon matrix elements is known fairly well due to constraints from the available DIS data obtained in the fixed-target and collider experiments in the <i>x</i>-range <span class="mathjax-tex">\(10^{-4} \lesssim x \lesssim 0.8\)</span>. However, a thorough disentangling of the quark flavor structure is still a challenging task in any PDF analysis. At moderate and large <i>x</i> values this has been routinely achieved by using a combination of the DIS data obtained on proton and deuteron targets. However, uncertainties in the modeling of nuclear corrections in the deuteron introduce a controllable source of theoretical uncertainty on the <i>d</i>-quark PDF obtained in this way, especially at large <i>x</i>, as discussed below.</p><p>An alternative way to resolve the <i>u</i>- and <i>d</i>-quark contributions is to use data on <i>W</i>- and <i>Z</i>-boson production obtained in <i>pp</i> and <span class="mathjax-tex">\(p\bar{p}\)</span> collisions at the LHC and Tevatron, respectively. Those experiments probe the <i>W</i> and <i>Z</i> rapidity distributions up to rapidities of <span class="mathjax-tex">\(y=3-4\)</span>, depending on details of the experiments, with an integrated luminosity of <span class="mathjax-tex">\(O(1)~\mathrm{fb}^{-1}\)</span> achieved in each run. Such data samples are quite competitive in accuracy with the ones obtained in fixed-target DIS experiments, and provide simultaneously constraints on the quark and anti-quark PDFs at large and small <i>x</i>. Furthermore, the <i>d</i>-quark PDF extracted from a combination of the existing data on DIS off protons and <i>W</i> / <i>Z</i>-boson production in <span class="mathjax-tex">\(pp (p\bar{p})\)</span> collisions is not sensitive to nuclear corrections. Moreover, if DIS data with small hadronic invariant masses <span class="mathjax-tex">\(W^2\)</span> are not used in the analyses in order to reduce the sensitivity to higher twist contributions, the statistical potential of the deuteron data is reduced and they become less competitive as compared to the collider data, cf. Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig11">11</a>.</p><p>As mentioned above, one can further constrain the <i>u</i>- and <i>d</i>-quark flavor separated distributions by utilizing fixed-target deuteron DIS data. However, nuclear effects need to be accounted for in cross sections and structure functions in order to access the underlying PDFs. The theoretical uncertainty inherent in this nuclear correction procedure should be added to the statistical PDF uncertainties. Nonetheless, the reduction of the uncertainties due to the increased number of fitted data points is even greater, leading to an overall smaller <i>d</i>-quark PDF uncertainty than in fits performed without deuterium data [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 30" title="S. Alekhin, J. Blümlein, S. Moch, R. Placakyte, Iso-spin asymmetry of quark distributions and implications for single top-quark production at the LHC. &#xA; arXiv:1508.07923&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR30" id="ref-link-section-d90629110e29856">30</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 191" title="J.F. Owens, A. Accardi, W. Melnitchouk, Global parton distributions with nuclear and finite-&#xA; &#xA; &#xA; &#xA; $$Q^2$$&#xA; &#xA; &#xA; &#xA; Q&#xA; 2&#xA; &#xA; &#xA; &#xA; corrections. Phys. Rev. D 87, 094012 (2013). &#xA; arXiv:1212.1702&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR191" id="ref-link-section-d90629110e29859">191</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 192" title="A. Accardi, PDFs from nucleons to nuclei. PoS DIS2015, 001 (2015). &#xA; arXiv:1602.02035&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR192" id="ref-link-section-d90629110e29863">192</a>]. Furthermore, as shown in [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 1" title="A. Accardi, L.T. Brady, W. Melnitchouk, J.F. Owens, N. Sato, Constraints on large-&#xA; &#xA; &#xA; &#xA; $$x$$&#xA; &#xA; &#xA; x&#xA; &#xA; &#xA; parton distributions from new weak boson production and deep-inelastic scattering data. &#xA; arXiv:1602.03154&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR1" id="ref-link-section-d90629110e29866">1</a>], and discussed in more detail below, it is possible to significantly reduce the nuclear correction uncertainty by exploiting the interplay of the deuteron DIS data and the recent high-statistics DØ data on the reconstructed <span class="mathjax-tex">\(W^\pm \)</span> boson charge asymmetry at large rapidity, which is equally sensitive to the <i>d</i> / <i>u</i> ratio but is not affected by nuclear corrections.</p><p>The <i>W</i> / <i>Z</i>-boson collider data also provide a valuable constraint on the small-<i>x</i> quark PDFs. In particular, the charge asymmetry of leptons originating from the <i>W</i> decays is sensitive to the SU(2) flavor asymmetry of the non-strange sea, also referred to as the “isospin” asymmetry <span class="mathjax-tex">\(I(x)=[\bar{d}(x)-\bar{u}(x)]\)</span> at small <i>x</i>. This asymmetry is constrained by the DY data from fixed-targets with protons and deuterons collected by the Fermilab experiment E866 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 193" title="NuSea Collaboration, R.S. Towell et al., Improved measurement of the &#xA; &#xA; &#xA; &#xA; $${\bar{d}}/{\bar{u}}$$&#xA; &#xA; &#xA; &#xA; &#xA; &#xA; d&#xA; &#xA; &#xA; ¯&#xA; &#xA; &#xA; /&#xA; &#xA; &#xA; u&#xA; &#xA; &#xA; ¯&#xA; &#xA; &#xA; &#xA; &#xA; &#xA; asymmetry in the nucleon sea. Phys. Rev. D64, 052002 (2001). &#xA; arXiv:hep-ex/0103030&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR193" id="ref-link-section-d90629110e30004">193</a>]. However, the E866 data are not sensitive to the value of <i>I</i>(<i>x</i>) at small <i>x</i> (<span class="mathjax-tex">\(x \lesssim 0.2\)</span>). Therefore, <i>I</i>(<i>x</i>) is sometimes parametrized in a Regge-like form as <span class="mathjax-tex">\(I(x) \sim x^{0.5}\)</span> such that it vanishes at <span class="mathjax-tex">\(x=0\)</span> (cf. the MMHT results in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig12">12</a>).</p><p>The large-rapidity tail of the <i>W</i> / <i>Z</i>-boson production data allows for a model-independent check of <i>I</i>(<i>x</i>) at small <i>x</i>. The asymmetry preferred by the combination of the currently available LHC and Tevatron data turns out to be negative at <span class="mathjax-tex">\(x&lt;0.01\)</span>, while the Regge-like limit with a vanishing <i>I</i>(<i>x</i>) can still be recovered at <span class="mathjax-tex">\(x \lesssim 10^{-5}\)</span>, cf. the ABMP15 results in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig12">12</a>. The CT14 analysis only includes the Tevatron forward DY data, but also confirms the negative trend in <i>I</i>(<i>x</i>) at small <i>x</i>, with errors in <i>I</i>(<i>x</i>) being substantially larger than those from ABMP15.</p><p>Finally, an important issue is the theoretical accuracy which is employed in the description of the DY data. There are significant differences as shown in Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab5">5</a> and these cause an additional spread in the fit quality and the results for the PDFs when comparing different NNLO PDF sets.</p><h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec16"><span class="c-article-section__title-number">3.4.2 </span>Strange-quark distribution</h4><p>The main information on the strange sea distribution comes from charm-quark production in neutrino-induced charged-current DIS experiments. The publication of data from CHORUS and NOMAD has recently enlarged the statistics available for those experiments. As a net result, the uncertainty in the strange PDF is now reduced down to a few percent at <span class="mathjax-tex">\(x\sim 0.1\)</span> (cf. Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig13">13</a>). However, at small <i>x</i> the strange sea distribution is still poorly known in view of the restricted kinematics of the production of charm quarks from fixed targets. Furthermore, since neutrino DIS experiments usually involve nuclear targets, care needs to be taken when extracting free-nucleon PDFs from the nuclear cross sections. Nuclear effects in neutrino DIS and possible differences between those in charged-lepton DIS have been discussed recently in Refs. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 192" title="A. Accardi, PDFs from nucleons to nuclei. PoS DIS2015, 001 (2015). &#xA; arXiv:1602.02035&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR192" id="ref-link-section-d90629110e30276">192</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 194" title="S.A. Kulagin, R. Petti, Neutrino inelastic scattering off nuclei. Phys. Rev. D 76, 094023 (2007). &#xA; arXiv:hep-ph/0703033&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR194" id="ref-link-section-d90629110e30279">194</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 195" title="K. Kovarik, I. Schienbein, F.I. Olness, J.Y. Yu, C. Keppel, J.G. Morfin, J.F. Owens, T. Stavreva, Nuclear corrections in neutrino-nucleus DIS and their compatibility with global NPDF analyses. Phys. Rev. Lett. 106, 122301 (2011). &#xA; arXiv:1012.0286&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR195" id="ref-link-section-d90629110e30283">195</a>], for instance. Supplementary information on the strange sea at small <i>x</i>, independent of nuclear effects, can be obtained from the associated production of charm quarks and <i>W</i> bosons in the <i>pp</i> collisions at the LHC. A constraint from collider data on <span class="mathjax-tex">\(W+c\)</span> is potentially less sensitive to the <i>c</i>-quark fragmentation model compared to the one from semi-leptonic decays of charm, which plays major role in the existing fixed-target DIS experiments. The <span class="mathjax-tex">\(W+c\)</span> data collected by ATLAS and CMS prefer a somewhat enhanced strange sea as compared to the fixed-target determination, cf. Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig13">13</a>. However, the NNLO QCD corrections to this process are still unknown. They are not taken into account in the analysis of <span class="mathjax-tex">\(W+c\)</span> data so far and may have a substantial influence on the fit. The strange sea extracted by ATLAS from an analysis of the combined inclusive data on the <i>W</i>- and <i>Z</i>-boson production is even further enhanced, which suggests a restoration of SU(3) flavor symmetry in the sea distributions. However, the accuracy of this determination is poor due to a limited potential of the inclusive data in disentangling the quark flavors. Therefore, the ATLAS result is in fact comparable with other determinations within uncertainties.</p><p>In general, the existing experimental constraints on the strange PDF are relatively poor. Therefore, the results of various determinations demonstrate a significant spread, which is mainly driven by the data selection. An additional spread between results of earlier PDF analyses appears due to implementation issues. In particular, the strong strange-sea suppression observed in the NNPDF2.1 analysis [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 170" title="R.D. Ball, V. Bertone, F. Cerutti, L. Del Debbio, S. Forte, A. Guffanti, J.I. Latorre, J. Rojo, M. Ubiali, Impact of heavy quark masses on parton distributions and LHC phenomenology. Nucl. Phys. B 849, 296 (2011). &#xA; arXiv:1101.1300&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR170" id="ref-link-section-d90629110e30389">170</a>] was related to an error in the DIS charm-quark production cross section being off by a factor of two for low scales due to an additional factor of <span class="mathjax-tex">\((1+m_c^2/Q^2)\)</span> in Eq. (34) of Ref. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 170" title="R.D. Ball, V. Bertone, F. Cerutti, L. Del Debbio, S. Forte, A. Guffanti, J.I. Latorre, J. Rojo, M. Ubiali, Impact of heavy quark masses on parton distributions and LHC phenomenology. Nucl. Phys. B 849, 296 (2011). &#xA; arXiv:1101.1300&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR170" id="ref-link-section-d90629110e30442">170</a>]. This is now correct in NNPDF3.0 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 7" title="NNPDF Collaboration, R.D. Ball et al., Parton distributions for the LHC Run II. JHEP 04, 040 (2015). &#xA; arXiv:1410.8849&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR7" id="ref-link-section-d90629110e30445">7</a>]. The CT10 analysis [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 66" title="J. Gao, M. Guzzi, J. Huston, H.-L. Lai, Z. Li, P. Nadolsky, J. Pumplin, D. Stump, C.P. Yuan, CT10 next-to-next-to-leading order global analysis of QCD. Phys. Rev. D 89, 033009 (2014). &#xA; arXiv:1302.6246&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR66" id="ref-link-section-d90629110e30448">66</a>], which reported an enhanced strange sea, may be flawed due to a wrong sign of the photon-<i>Z</i> interference for massive quarks in the structure function <span class="mathjax-tex">\(xF_3\)</span> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 3" title="S. Dulat, T.J. Hou, J. Gao, M. Guzzi, J. Huston, P. Nadolsky, J. Pumplin, C. Schmidt, D. Stump, C.P. Yuan, The CT14 global analysis of quantum chromodynamics. &#xA; arXiv:1506.07443&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR3" id="ref-link-section-d90629110e30484">3</a>]. This error also concerns the earlier results on the strange–anti-strange asymmetry [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 196" title="H.L. Lai, P.M. Nadolsky, J. Pumplin, D. Stump, W.K. Tung, C.P. Yuan, The strange parton distribution of the nucleon: global analysis and applications. JHEP 04, 089 (2007). &#xA; arXiv:hep-ph/0702268&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR196" id="ref-link-section-d90629110e30487">196</a>] and has now been corrected in CT14 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 3" title="S. Dulat, T.J. Hou, J. Gao, M. Guzzi, J. Huston, P. Nadolsky, J. Pumplin, C. Schmidt, D. Stump, C.P. Yuan, The CT14 global analysis of quantum chromodynamics. &#xA; arXiv:1506.07443&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR3" id="ref-link-section-d90629110e30490">3</a>]. Finally, the MSTW [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 197" title="A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Parton distributions for the LHC. Eur. Phys. J. C 63, 189 (2009). &#xA; arXiv:0901.0002&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR197" id="ref-link-section-d90629110e30493">197</a>] analysis suffered from an error in the NLO QCD correction for the charged-current DIS charm-quark production as it had omitted a part of the gluon Wilson coefficient at NLO, which was corrected in MMHT14 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 6" title="L.A. Harland-Lang, A.D. Martin, P. Motylinski, R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs. Eur. Phys. J. C 75, 204 (2015). &#xA; arXiv:1412.3989&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR6" id="ref-link-section-d90629110e30497">6</a>].</p> <div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-11" data-title="Fig. 11"><figure><figcaption><b id="Fig11" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 11</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1140/epjc/s10052-016-4285-4/figures/11" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig11_HTML.gif?as=webp"><img aria-describedby="Fig11" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig11_HTML.gif" alt="figure 11" loading="lazy"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-11-desc"><p>The <span class="mathjax-tex">\(1\sigma \)</span> band for the <i>d</i> / <i>u</i> ratio for the 4-flavor scheme and at the factorization scale <span class="mathjax-tex">\(\mu =2~\,\mathrm {GeV}\)</span> obtained in the PDF analyses including forward <span class="mathjax-tex">\(W^{\pm }\)</span> data (CT14 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 3" title="S. Dulat, T.J. Hou, J. Gao, M. Guzzi, J. Huston, P. Nadolsky, J. Pumplin, C. Schmidt, D. Stump, C.P. Yuan, The CT14 global analysis of quantum chromodynamics. &#xA; arXiv:1506.07443&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR3" id="ref-link-section-d90629110e30604">3</a>]: <i>red right-tilted hatch</i>, ABMP15 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 30" title="S. Alekhin, J. Blümlein, S. Moch, R. Placakyte, Iso-spin asymmetry of quark distributions and implications for single top-quark production at the LHC. &#xA; arXiv:1508.07923&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR30" id="ref-link-section-d90629110e30610">30</a>]: <i>gray shaded area</i>, CJ15 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 1" title="A. Accardi, L.T. Brady, W. Melnitchouk, J.F. Owens, N. Sato, Constraints on large-&#xA; &#xA; &#xA; &#xA; $$x$$&#xA; &#xA; &#xA; x&#xA; &#xA; &#xA; parton distributions from new weak boson production and deep-inelastic scattering data. &#xA; arXiv:1602.03154&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR1" id="ref-link-section-d90629110e30616">1</a>]: <i>black dotted lines</i>) in comparison to those including the central <i>W</i>, <i>Z</i> data only and a cut of <span class="mathjax-tex">\(W^2 \gtrsim 13~\,\mathrm {GeV}^2\)</span> imposed on the deuteron DIS data (MMHT14 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 6" title="L.A. Harland-Lang, A.D. Martin, P. Motylinski, R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs. Eur. Phys. J. C 75, 204 (2015). &#xA; arXiv:1412.3989&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR6" id="ref-link-section-d90629110e30676">6</a>]: <i>blue dashed lines</i>, NNPDF3.0 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 7" title="NNPDF Collaboration, R.D. Ball et al., Parton distributions for the LHC Run II. JHEP 04, 040 (2015). &#xA; arXiv:1410.8849&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR7" id="ref-link-section-d90629110e30682">7</a>]: <i>green left-tilted hatch</i>)</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1140/epjc/s10052-016-4285-4/figures/11" data-track-dest="link:Figure11 Full size image" aria-label="Full size image figure 11" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-12" data-title="Fig. 12"><figure><figcaption><b id="Fig12" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 12</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1140/epjc/s10052-016-4285-4/figures/12" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig12_HTML.gif?as=webp"><img aria-describedby="Fig12" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig12_HTML.gif" alt="figure 12" loading="lazy"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-12-desc"><p>Same as Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig11">11</a> for the SU(2) flavor asymmetry of the light-quark sea, or the “isospin” asymmetry, <span class="mathjax-tex">\(I(x)=[\bar{d}(x)-\bar{u}(x)]\)</span> </p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1140/epjc/s10052-016-4285-4/figures/12" data-track-dest="link:Figure12 Full size image" aria-label="Full size image figure 12" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <h3 class="c-article__sub-heading" id="Sec17"><span class="c-article-section__title-number">3.5 </span>Nuclear corrections</h3><p>Many global PDF analyses make use of data with deuterium targets, such as lepton-deuteron DIS and proton-deuteron DY, as a way of obtaining stronger constraints on the flavor dependence of PDFs that are not possible with proton data alone. The use of deuterium data requires that one takes into account differences between PDFs in the deuteron and those in the free nucleon, which arise from effects such as nuclear Fermi motion and binding of the nucleons in the nucleus, as well as nucleon off-shell corrections and nuclear shadowing. While some analyses assume that nuclear corrections in the deuteron are negligible, a number of recent global PDF studies have incorporated nuclear effects into their analyses [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 1" title="A. Accardi, L.T. Brady, W. Melnitchouk, J.F. Owens, N. Sato, Constraints on large-&#xA; &#xA; &#xA; &#xA; $$x$$&#xA; &#xA; &#xA; x&#xA; &#xA; &#xA; parton distributions from new weak boson production and deep-inelastic scattering data. &#xA; arXiv:1602.03154&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR1" id="ref-link-section-d90629110e30815">1</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 5" title="P. Jimenez-Delgado, E. Reya, Delineating parton distributions and the strong coupling. Phys. Rev. D 89, 074049 (2014). &#xA; arXiv:1403.1852&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR5" id="ref-link-section-d90629110e30818">5</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 64" title="S. Alekhin, J. Blümlein, S. Moch, Parton distribution functions and benchmark cross sections at NNLO. Phys. Rev. D 86, 054009 (2012). &#xA; arXiv:1202.2281&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR64" id="ref-link-section-d90629110e30821">64</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 191" title="J.F. Owens, A. Accardi, W. Melnitchouk, Global parton distributions with nuclear and finite-&#xA; &#xA; &#xA; &#xA; $$Q^2$$&#xA; &#xA; &#xA; &#xA; Q&#xA; 2&#xA; &#xA; &#xA; &#xA; corrections. Phys. Rev. D 87, 094012 (2013). &#xA; arXiv:1212.1702&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR191" id="ref-link-section-d90629110e30824">191</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 198" title="S. Alekhin, J. Blümlein, S. Klein, S. Moch, The 3, 4, and 5-flavor NNLO parton from deep-inelastic scattering data and at hadron colliders. Phys. Rev. D 81, 014032 (2010). &#xA; arXiv:0908.2766&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR198" id="ref-link-section-d90629110e30827">198</a>–<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 200" title="A. Accardi, W. Melnitchouk, J.F. Owens, M.E. Christy, C.E. Keppel, L. Zhu, J.G. Morfin, Uncertainties in determining parton distributions at large &#xA; &#xA; &#xA; &#xA; $$x$$&#xA; &#xA; &#xA; x&#xA; &#xA; &#xA; . Phys. Rev. D 84, 014008 (2011). &#xA; arXiv:1102.3686&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR200" id="ref-link-section-d90629110e30831">200</a>].</p><p>Generally, the nuclear effects become increasingly important at large values of <i>x</i> (<span class="mathjax-tex">\(x \gtrsim 0.4\)</span>), as Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig14">14</a> illustrates for the ratio of the deuteron to isoscalar nucleon structure functions. In this region the nuclear PDFs can be computed through convolutions of the bound nucleon PDFs and nuclear smearing functions describing the momentum distributions of nucleons in the deuteron. The latter can be expressed in terms of deuteron wave functions, calculated from modern potentials based on high-precision fits to nucleon–nucleon scattering data. These potentials differ primarily in their treatment of the short range <i>NN</i> interaction, and the different strengths of the high-momentum tails of the wave functions translate directly to the magnitude of the nuclear corrections at large <i>x</i> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 199" title="A. Accardi, M.E. Christy, C.E. Keppel, P. Monaghan, W. Melnitchouk, J.G. Morfin, J.F. Owens, New parton distributions from large-&#xA; &#xA; &#xA; &#xA; $$x$$&#xA; &#xA; &#xA; x&#xA; &#xA; &#xA; and low-&#xA; &#xA; &#xA; &#xA; $$Q^2$$&#xA; &#xA; &#xA; &#xA; Q&#xA; 2&#xA; &#xA; &#xA; &#xA; data. Phys. Rev. D 81, 034016 (2010). &#xA; arXiv:0911.2254&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR199" id="ref-link-section-d90629110e30876">199</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 201" title="J. Arrington, J.G. Rubin, W. Melnitchouk, How well do we know the neutron structure function? Phys. Rev. Lett. 108, 252001 (2012). &#xA; arXiv:1110.3362&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR201" id="ref-link-section-d90629110e30879">201</a>].</p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-5"><figure><figcaption class="c-article-table__figcaption"><b id="Tab5" data-test="table-caption">Table 5 Description of the ATLAS data at <span class="mathjax-tex">\(\sqrt{s} = 7\)</span> TeV for <span class="mathjax-tex">\(W^\pm \rightarrow l^\pm \nu \)</span>, <span class="mathjax-tex">\(Z\rightarrow l^+l^-\)</span> (Ref. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 19" title="ATLAS Collaboration, G. Aad et al., Measurement of the inclusive &#xA; &#xA; &#xA; &#xA; $$W^\pm $$&#xA; &#xA; &#xA; &#xA; W&#xA; ±&#xA; &#xA; &#xA; &#xA; and Z/&#xA; &#xA; &#xA; &#xA; $$\gamma $$&#xA; &#xA; &#xA; γ&#xA; &#xA; &#xA; cross sections in the electron and muon decay channels in &#xA; &#xA; &#xA; &#xA; $$pp$$&#xA; &#xA; &#xA; &#xA; p&#xA; p&#xA; &#xA; &#xA; &#xA; collisions at &#xA; &#xA; &#xA; &#xA; $$\sqrt{s}=7$$&#xA; &#xA; &#xA; &#xA; &#xA; s&#xA; &#xA; =&#xA; 7&#xA; &#xA; &#xA; &#xA; TeV with the ATLAS detector. Phys. Rev. D 85, 072004 (2012). &#xA; arXiv:1109.5141&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR19" id="ref-link-section-d90629110e31000">19</a>]) used in the PDF fits. The columns indicate the QCD accuracy of the theoretical predictions along with the tools used to obtain them</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1140/epjc/s10052-016-4285-4/tables/5" aria-label="Full size table 5"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-13" data-title="Fig. 13"><figure><figcaption><b id="Fig13" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 13</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1140/epjc/s10052-016-4285-4/figures/13" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig13_HTML.gif?as=webp"><img aria-describedby="Fig13" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig13_HTML.gif" alt="figure 13" loading="lazy"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-13-desc"><p>The <span class="mathjax-tex">\(1\sigma \)</span> band for the strange sea suppression factor <span class="mathjax-tex">\(r_s=(s+\bar{s})/(2\bar{d})\)</span> as a function of Bjorken <i>x</i> obtained in the variants of the ABM analysis [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 184" title="S. Alekhin, J. Blümlein, L. Caminadac, K. Lipka, K. Lohwasser, S. Moch, R. Petti, R. Placakyte, Determination of strange sea quark distributions from fixed-target and collider data. Phys. Rev. D 91, 094002 (2015). &#xA; arXiv:1404.6469&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR184" id="ref-link-section-d90629110e31404">184</a>] based on the combination of the data by NuTeV/CCFR [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 185" title="NuTeV Collaboration, M. Goncharov et al., Precise measurement of dimuon production cross sections in muon neutrino Fe and muon anti-neutrino Fe deep-inelastic scattering at the Tevatron. Phys. Rev. D64, 112006 (2001). &#xA; arXiv:hep-ex/0102049&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR185" id="ref-link-section-d90629110e31407">185</a>], CHORUS [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 186" title="A. Kayis-Topaksu et al., Measurement of charm production in neutrino charged-current interactions. New J. Phys. 13, 093002 (2011). &#xA; arXiv:1107.0613&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR186" id="ref-link-section-d90629110e31411">186</a>] and NOMAD [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 187" title="NOMAD Collaboration, O. Samoylov et al., A precision measurement of charm dimuon production in neutrino interactions from the NOMAD experiment, Nucl. Phys. B876, 339 (2013). &#xA; arXiv:1308.4750&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR187" id="ref-link-section-d90629110e31414">187</a>] (<i>shaded area</i>), and CHORUS [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 186" title="A. Kayis-Topaksu et al., Measurement of charm production in neutrino charged-current interactions. New J. Phys. 13, 093002 (2011). &#xA; arXiv:1107.0613&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR186" id="ref-link-section-d90629110e31420">186</a>], CMS [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 188" title="CMS Collaboration, S. Chatrchyan et al., Measurement of associated &#xA; &#xA; &#xA; &#xA; $$W$$&#xA; &#xA; &#xA; W&#xA; &#xA; &#xA; +charm production in &#xA; &#xA; &#xA; &#xA; $$pp$$&#xA; &#xA; &#xA; &#xA; p&#xA; p&#xA; &#xA; &#xA; &#xA; collisions at &#xA; &#xA; &#xA; &#xA; $$\sqrt{s}$$&#xA; &#xA; &#xA; &#xA; s&#xA; &#xA; &#xA; &#xA; = 7 TeV. JHEP 02, 013 (2014). &#xA; arXiv:1310.1138&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR188" id="ref-link-section-d90629110e31423">188</a>] and ATLAS [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 189" title="ATLAS Collaboration, G. Aad et al., Measurement of the production of a &#xA; &#xA; &#xA; &#xA; $$W$$&#xA; &#xA; &#xA; W&#xA; &#xA; &#xA; boson in association with a charm quark in &#xA; &#xA; &#xA; &#xA; $$pp$$&#xA; &#xA; &#xA; &#xA; p&#xA; p&#xA; &#xA; &#xA; &#xA; collisions at &#xA; &#xA; &#xA; &#xA; $$\sqrt{s} =$$&#xA; &#xA; &#xA; &#xA; &#xA; s&#xA; &#xA; =&#xA; &#xA; &#xA; &#xA; 7 TeV with the ATLAS detector. JHEP 05, 068 (2014). &#xA; arXiv:1402.6263&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR189" id="ref-link-section-d90629110e31426">189</a>] (<i>dashed lines</i>), compared with the results obtained by the CMS analysis [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 21" title="CMS Collaboration, S. Chatrchyan et al., Measurement of the muon charge asymmetry in inclusive &#xA; &#xA; &#xA; &#xA; $$pp \rightarrow W+X$$&#xA; &#xA; &#xA; &#xA; p&#xA; p&#xA; →&#xA; W&#xA; +&#xA; X&#xA; &#xA; &#xA; &#xA; production at &#xA; &#xA; &#xA; &#xA; $$\sqrt{s} =$$&#xA; &#xA; &#xA; &#xA; &#xA; s&#xA; &#xA; =&#xA; &#xA; &#xA; &#xA; 7 TeV and an improved determination of light parton distribution functions. Phys. Rev. D 90(3), 032004 (2014). &#xA; arXiv:1312.6283&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR21" id="ref-link-section-d90629110e31433">21</a>] (<i>hatched area</i>) and by the ATLAS <i>epWZ</i>-fit [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 189" title="ATLAS Collaboration, G. Aad et al., Measurement of the production of a &#xA; &#xA; &#xA; &#xA; $$W$$&#xA; &#xA; &#xA; W&#xA; &#xA; &#xA; boson in association with a charm quark in &#xA; &#xA; &#xA; &#xA; $$pp$$&#xA; &#xA; &#xA; &#xA; p&#xA; p&#xA; &#xA; &#xA; &#xA; collisions at &#xA; &#xA; &#xA; &#xA; $$\sqrt{s} =$$&#xA; &#xA; &#xA; &#xA; &#xA; s&#xA; &#xA; =&#xA; &#xA; &#xA; &#xA; 7 TeV with the ATLAS detector. JHEP 05, 068 (2014). &#xA; arXiv:1402.6263&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR189" id="ref-link-section-d90629110e31442">189</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 190" title="ATLAS Collaboration, G. Aad et al., Determination of the strange quark density of the proton from ATLAS measurements of the &#xA; &#xA; &#xA; &#xA; $$W \rightarrow \ell \nu $$&#xA; &#xA; &#xA; &#xA; W&#xA; →&#xA; ℓ&#xA; ν&#xA; &#xA; &#xA; &#xA; and &#xA; &#xA; &#xA; &#xA; $$Z \rightarrow \ell \ell $$&#xA; &#xA; &#xA; &#xA; Z&#xA; →&#xA; ℓ&#xA; ℓ&#xA; &#xA; &#xA; &#xA; cross sections. Phys. Rev. Lett. 109, 012001 (2012). &#xA; arXiv:1203.4051&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR190" id="ref-link-section-d90629110e31445">190</a>] at different values of <i>x</i> (<i>full circles</i>). All quantities refer to the factorization scale <span class="mathjax-tex">\(\mu ^2=1.9~\,\mathrm {GeV}^2\)</span> </p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1140/epjc/s10052-016-4285-4/figures/13" data-track-dest="link:Figure13 Full size image" aria-label="Full size image figure 13" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <p>The nucleon off-shell corrections, on the other hand, are somewhat more model dependent, and several model studies have been performed to estimate their effect on nuclear PDFs [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 202" title="W. Melnitchouk, A.W. Schreiber, A.W. Thomas, Deep-inelastic scattering from off-shell nucleons. Phys. Rev. D49, 1183 (1994). &#xA; arXiv:nucl-th/9311008&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR202" id="ref-link-section-d90629110e31515">202</a>–<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 206" title="P.J. Ehlers, A. Accardi, L.T. Brady, W. Melnitchouk, Nuclear effects in the proton-deuteron Drell–Yan process. Phys. Rev. D 90, 014010 (2014). &#xA; arXiv:1405.2039&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR206" id="ref-link-section-d90629110e31518">206</a>]. Some earlier PDF analyses [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 191" title="J.F. Owens, A. Accardi, W. Melnitchouk, Global parton distributions with nuclear and finite-&#xA; &#xA; &#xA; &#xA; $$Q^2$$&#xA; &#xA; &#xA; &#xA; Q&#xA; 2&#xA; &#xA; &#xA; &#xA; corrections. Phys. Rev. D 87, 094012 (2013). &#xA; arXiv:1212.1702&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR191" id="ref-link-section-d90629110e31521">191</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 199" title="A. Accardi, M.E. Christy, C.E. Keppel, P. Monaghan, W. Melnitchouk, J.G. Morfin, J.F. Owens, New parton distributions from large-&#xA; &#xA; &#xA; &#xA; $$x$$&#xA; &#xA; &#xA; x&#xA; &#xA; &#xA; and low-&#xA; &#xA; &#xA; &#xA; $$Q^2$$&#xA; &#xA; &#xA; &#xA; Q&#xA; 2&#xA; &#xA; &#xA; &#xA; data. Phys. Rev. D 81, 034016 (2010). &#xA; arXiv:0911.2254&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR199" id="ref-link-section-d90629110e31524">199</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 200" title="A. Accardi, W. Melnitchouk, J.F. Owens, M.E. Christy, C.E. Keppel, L. Zhu, J.G. Morfin, Uncertainties in determining parton distributions at large &#xA; &#xA; &#xA; &#xA; $$x$$&#xA; &#xA; &#xA; x&#xA; &#xA; &#xA; . Phys. Rev. D 84, 014008 (2011). &#xA; arXiv:1102.3686&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR200" id="ref-link-section-d90629110e31527">200</a>] used specific physics-motivated models for the off-shell corrections, while more recent approaches have fitted the off-shell parameters directly to data [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 1" title="A. Accardi, L.T. Brady, W. Melnitchouk, J.F. Owens, N. Sato, Constraints on large-&#xA; &#xA; &#xA; &#xA; $$x$$&#xA; &#xA; &#xA; x&#xA; &#xA; &#xA; parton distributions from new weak boson production and deep-inelastic scattering data. &#xA; arXiv:1602.03154&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR1" id="ref-link-section-d90629110e31531">1</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 205" title="S.A. Kulagin, R. Petti, Global study of nuclear structure functions. Nucl. Phys. A 765, 126 (2006). &#xA; arXiv:hep-ph/0412425&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR205" id="ref-link-section-d90629110e31534">205</a>]. Other analyses [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 6" title="L.A. Harland-Lang, A.D. Martin, P. Motylinski, R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs. Eur. Phys. J. C 75, 204 (2015). &#xA; arXiv:1412.3989&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR6" id="ref-link-section-d90629110e31537">6</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 207" title="A.D. Martin, A.J.T.M. Mathijssen, W.J. Stirling, R.S. Thorne, B.J.A. Watt, G. Watt, Extended parameterisations for MSTW PDFs and their effect on lepton charge asymmetry from W decays. Eur. Phys. J. C 73, 2318 (2013). &#xA; arXiv:1211.1215&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR207" id="ref-link-section-d90629110e31540">207</a>] have attempted to parametrize the entire nuclear correction in terms of a universal, <span class="mathjax-tex">\(Q^2\)</span>-independent function, without appealing to physical constraints. In this approach, to account for the effects of Fermi smearing a functional form must be used that produces the steep rise in the <span class="mathjax-tex">\(F_2^d/F_2^N\)</span> ratio at high <i>x</i>, such as with a logarithm raised to a high power [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 207" title="A.D. Martin, A.J.T.M. Mathijssen, W.J. Stirling, R.S. Thorne, B.J.A. Watt, G. Watt, Extended parameterisations for MSTW PDFs and their effect on lepton charge asymmetry from W decays. Eur. Phys. J. C 73, 2318 (2013). &#xA; arXiv:1211.1215&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR207" id="ref-link-section-d90629110e31612">207</a>].</p> <div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-14" data-title="Fig. 14"><figure><figcaption><b id="Fig14" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 14</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1140/epjc/s10052-016-4285-4/figures/14" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig14_HTML.gif?as=webp"><img aria-describedby="Fig14" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig14_HTML.gif" alt="figure 14" loading="lazy"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-14-desc"><p>(<i>Left panel</i>) Ratio of deuteron to isoscalar nucleon structure functions <span class="mathjax-tex">\(F_2^d/F_2^N\)</span> computed from the CJ15 PDFs [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 1" title="A. Accardi, L.T. Brady, W. Melnitchouk, J.F. Owens, N. Sato, Constraints on large-&#xA; &#xA; &#xA; &#xA; $$x$$&#xA; &#xA; &#xA; x&#xA; &#xA; &#xA; parton distributions from new weak boson production and deep-inelastic scattering data. &#xA; arXiv:1602.03154&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR1" id="ref-link-section-d90629110e31673">1</a>] for different values of <span class="mathjax-tex">\(Q^2\)</span>. The <i>pink envelope</i> represents the fit uncertainties for <span class="mathjax-tex">\(Q^2=10\)</span> GeV<span class="mathjax-tex">\(^2\)</span>. The downturn in the ratio at <span class="mathjax-tex">\(Q^2=2\)</span> GeV<span class="mathjax-tex">\(^2\)</span> is due to target mass corrections. (<i>Right panel</i>) Impact on the <i>d</i> / <i>u</i> ratio from the CJ15 fit [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 1" title="A. Accardi, L.T. Brady, W. Melnitchouk, J.F. Owens, N. Sato, Constraints on large-&#xA; &#xA; &#xA; &#xA; $$x$$&#xA; &#xA; &#xA; x&#xA; &#xA; &#xA; parton distributions from new weak boson production and deep-inelastic scattering data. &#xA; arXiv:1602.03154&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR1" id="ref-link-section-d90629110e31824">1</a>] (<i>red band</i>) of removing the deuterium nuclear corrections (<i>green band</i>), and omitting all deuterium data (<i>cross-hatched band</i>)</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1140/epjc/s10052-016-4285-4/figures/14" data-track-dest="link:Figure14 Full size image" aria-label="Full size image figure 14" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <p>The effects of the nuclear corrections are most directly visible in the extraction of the <i>d</i>-quark PDF at large <i>x</i>, see [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 1" title="A. Accardi, L.T. Brady, W. Melnitchouk, J.F. Owens, N. Sato, Constraints on large-&#xA; &#xA; &#xA; &#xA; $$x$$&#xA; &#xA; &#xA; x&#xA; &#xA; &#xA; parton distributions from new weak boson production and deep-inelastic scattering data. &#xA; arXiv:1602.03154&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR1" id="ref-link-section-d90629110e31854">1</a>]. Figure <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig14">14</a> shows that omitting nuclear smearing effects in the deuteron leads to an overestimated <i>d</i> / <i>u</i> ratio at <span class="mathjax-tex">\(x \gtrsim 0.6\)</span>. In fact, omitting nuclear corrections induces a strong tension between the SLAC deuteron DIS data (see, e.g., [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 208" title="S. Dasu, P. de Barbaro, A. Bodek, H. Harada, M. Krasny, et al., Measurement of kinematic and nuclear dependence of &#xA; &#xA; &#xA; &#xA; $$R = \sigma _L/\sigma _T$$&#xA; &#xA; &#xA; &#xA; R&#xA; =&#xA; &#xA; σ&#xA; L&#xA; &#xA; /&#xA; &#xA; σ&#xA; T&#xA; &#xA; &#xA; &#xA; &#xA; in deep-inelastic electron scattering. Phys. Rev. D 49, 5641 (1994)" href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR208" id="ref-link-section-d90629110e31893">208</a>]) and the recent high precision <i>W</i>-boson asymmetry data from the DØ collaboration at the Tevatron [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 26" title="DØ Collaboration, V.M. Abazov et al., Measurement of the electron charge asymmetry in &#xA; &#xA; &#xA; &#xA; $${p\bar{p}\rightarrow W+X \rightarrow e\nu +X}$$&#xA; &#xA; &#xA; &#xA; p&#xA; &#xA; &#xA; p&#xA; &#xA; &#xA; ¯&#xA; &#xA; &#xA; →&#xA; W&#xA; +&#xA; X&#xA; →&#xA; e&#xA; ν&#xA; +&#xA; X&#xA; &#xA; &#xA; &#xA; decays in &#xA; &#xA; &#xA; &#xA; $${p\bar{p}}$$&#xA; &#xA; &#xA; &#xA; p&#xA; &#xA; &#xA; p&#xA; &#xA; &#xA; ¯&#xA; &#xA; &#xA; &#xA; &#xA; &#xA; collisions at &#xA; &#xA; &#xA; &#xA; $${\sqrt{s}=1.96}$$&#xA; &#xA; &#xA; &#xA; &#xA; s&#xA; &#xA; =&#xA; 1.96&#xA; &#xA; &#xA; &#xA; TeV. Phys. Rev. D 91(3), 032007 (2015). &#xA; arXiv:1412.2862&#xA; &#xA; . [Erratum: Phys. Rev. D 91(7), 079901 (2015)]" href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR26" id="ref-link-section-d90629110e31899">26</a>], which are sensitive to the <i>d</i>-quark PDF in a similar large-<i>x</i> range as the SLAC data, but are not affected by nuclear corrections. It also causes an artificial deformation of the <i>d</i>-quark distribution, leading to essentially uncontrolled systematic errors when quark distributions are needed beyond the <i>x</i> range constrained by the data. This illustrates not only the theoretical but also the phenomenological need for such corrections when considering data at large <i>x</i>. Of course, one can choose to avoid nuclear effects altogether by using only proton data; however, doing so increases the uncertainty on the <i>d</i>-quark PDF at both small and large values of <i>x</i>, as Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig14">14</a> illustrates. Additional details concerning the role of nuclear corrections when using deuterium target data in global fits can be found in Ref. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 1" title="A. Accardi, L.T. Brady, W. Melnitchouk, J.F. Owens, N. Sato, Constraints on large-&#xA; &#xA; &#xA; &#xA; $$x$$&#xA; &#xA; &#xA; x&#xA; &#xA; &#xA; parton distributions from new weak boson production and deep-inelastic scattering data. &#xA; arXiv:1602.03154&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR1" id="ref-link-section-d90629110e31928">1</a>]. The extrapolation of nuclear effects from the deuteron to heavy nuclei is unclear, especially in view of the differences between the off-shell quark deformation fitted using deuteron targets [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 1" title="A. Accardi, L.T. Brady, W. Melnitchouk, J.F. Owens, N. Sato, Constraints on large-&#xA; &#xA; &#xA; &#xA; $$x$$&#xA; &#xA; &#xA; x&#xA; &#xA; &#xA; parton distributions from new weak boson production and deep-inelastic scattering data. &#xA; arXiv:1602.03154&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR1" id="ref-link-section-d90629110e31931">1</a>] and using the ratio of heavy nuclei to deuteron structure functions [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 205" title="S.A. Kulagin, R. Petti, Global study of nuclear structure functions. Nucl. Phys. A 765, 126 (2006). &#xA; arXiv:hep-ph/0412425&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR205" id="ref-link-section-d90629110e31934">205</a>]. As mentioned in the previous section, in general care should also be exercised when using neutrino-nucleus scattering data to obtain, for example, constraints on strange-quark PDFs, due to the currently poor understanding of the interaction dynamics of the final state heavy quark propagating through the target nucleus [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 192" title="A. Accardi, PDFs from nucleons to nuclei. PoS DIS2015, 001 (2015). &#xA; arXiv:1602.02035&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR192" id="ref-link-section-d90629110e31937">192</a>].</p><h3 class="c-article__sub-heading" id="Sec18"><span class="c-article-section__title-number">3.6 </span>Software and tools</h3><p>Data used in the PDF fits cover a wide range of kinematics and stem from a large number of different scattering processes. In order to achieve an accurate theoretical description of both the PDF evolution and the hard scattering cross sections, well-tested software and tools are necessary. Benchmark numbers for the PDF evolution have long been established, see e.g., the Les Houches report [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 209" title="W. Giele et al., The QCD / SM Working Group: Summary Report. &#xA; arXiv:hep-ph/0204316&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR209" id="ref-link-section-d90629110e31948">209</a>], and open-source evolution codes such as <span class="u-monospace">QCDNUM</span> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 210" title="M. Botje, QCDNUM: fast QCD evolution and convolution. Comput. Phys. Commun. 182, 490 (2011). &#xA; arXiv:1005.1481&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR210" id="ref-link-section-d90629110e31954">210</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 211" title="M. Botje, Erratum for the time-like evolution in QCDNUM. &#xA; arXiv:1602.08383&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR211" id="ref-link-section-d90629110e31957">211</a>] and <span class="u-monospace">Hoppet</span> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 212" title="G.P. Salam, J. Rojo, A higher order perturbative parton evolution toolkit (HOPPET). Comput. Phys. Commun. 180, 120 (2009). &#xA; arXiv:0804.3755&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR212" id="ref-link-section-d90629110e31964">212</a>] are available in Bjorken <i>x</i>-space and <span class="u-monospace">QCD-Pegasus</span> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 123" title="A. Vogt, Efficient evolution of unpolarized and polarized parton distributions with QCD-PEGASUS. Comput. Phys. Commun. 170, 65 (2005). &#xA; arXiv:hep-ph/0408244&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR123" id="ref-link-section-d90629110e31973">123</a>] in Mellin <i>N</i>-space. This is an important development as it allows to expose the software used in the PDF fits to systematic validation, the need of which can be illustrated with recent theory improvements published by various groups. For example, MSTW [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 197" title="A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Parton distributions for the LHC. Eur. Phys. J. C 63, 189 (2009). &#xA; arXiv:0901.0002&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR197" id="ref-link-section-d90629110e31979">197</a>] has tested its NNLO evolution code against <span class="u-monospace">QCD-Pegasus</span> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 123" title="A. Vogt, Efficient evolution of unpolarized and polarized parton distributions with QCD-PEGASUS. Comput. Phys. Commun. 170, 65 (2005). &#xA; arXiv:hep-ph/0408244&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR123" id="ref-link-section-d90629110e31986">123</a>] and corrected the implementation of one of the heavy-quark OMEs.</p><p>For the hard scattering cross sections of the various processes, fast fitting methods like <span class="u-monospace">fastNLO</span> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 213" title="T. Kluge, K. Rabbertz, M. Wobisch, FastNLO: Fast pQCD calculations for PDF fits. &#xA; arXiv:hep-ph/0609285&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR213" id="ref-link-section-d90629110e31995">213</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 214" title="D. Britzger, K. Rabbertz, F. Stober, M. Wobisch, New features in version 2 of the fastNLO project. &#xA; arXiv:1208.3641&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR214" id="ref-link-section-d90629110e31998">214</a>] and <span class="u-monospace">APPLGrid</span> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 181" title="T. Carli, D. Clements, A. Cooper-Sarkar, C. Gwenlan, G.P. Salam, F. Siegert, P. Starovoitov, M. Sutton, A posteriori inclusion of parton density functions in NLO QCD final-state calculations at hadron colliders: the APPLGRID Project. Eur. Phys. J. C 66, 503 (2010). &#xA; arXiv:0911.2985&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR181" id="ref-link-section-d90629110e32004">181</a>] have been developed. In addition, some groups have also published open-source code for the theory predictions of all physical cross sections employed in their analyses. The ABM11 and ABM12 fits [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2" title="S. Alekhin, J. Blümlein, S. Moch, The ABM parton distributions tuned to LHC data. Phys. Rev. D 89, 054028 (2014). &#xA; arXiv:1310.3059&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR2" id="ref-link-section-d90629110e32008">2</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 64" title="S. Alekhin, J. Blümlein, S. Moch, Parton distribution functions and benchmark cross sections at NNLO. Phys. Rev. D 86, 054009 (2012). &#xA; arXiv:1202.2281&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR64" id="ref-link-section-d90629110e32011">64</a>] use <span class="u-monospace">OPENQCDRAD</span> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 215" title="OPENQCDRAD. &#xA; http://www-zeuthen.desy.de/~alekhin/OPENQCDRAD&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR215" id="ref-link-section-d90629110e32017">215</a>] code, which is publicly available. The HERAPDF2.0 fit [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 4" title="ZEUS, H1 Collaboration, H. Abramowicz et al., Combination of measurements of inclusive deep-inelastic &#xA; &#xA; &#xA; &#xA; $$e^{\pm }p$$&#xA; &#xA; &#xA; &#xA; &#xA; e&#xA; ±&#xA; &#xA; p&#xA; &#xA; &#xA; &#xA; scattering cross sections and QCD analysis of HERA data. &#xA; arXiv:1506.06042&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR4" id="ref-link-section-d90629110e32020">4</a>] relies on the QCD fit platform <span class="u-monospace">xFitter</span> (formerly known as <span class="u-monospace">HERAFitter</span>) [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 166" title="S. Alekhin, O. Behnke, P. Belov, S. Borroni, M. Botje, et al., HERAFitter, Open source QCD fit project. &#xA; arXiv:1410.4412&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR166" id="ref-link-section-d90629110e32030">166</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 167" title="xFitter, An open source QCD fit framework. &#xA; http://xFitter.org&#xA; &#xA; [xFitter.org]" href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR167" id="ref-link-section-d90629110e32033">167</a>], which is an open-source package that provides a framework for the determination of PDFs and enables the choice of theoretical options for obtaining PDF-dependent cross section predictions. In particular, <span class="u-monospace">xFitter</span> allows for a choice of different available schemes for treatment of heavy quarks in DIS. In Mellin <i>N</i>-space, an efficient method exists [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 216" title="D.A. Kosower, Extracting parton densities from collider data. Nucl. Phys. B 520, 263 (1998). &#xA; arXiv:hep-ph/9708392&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR216" id="ref-link-section-d90629110e32042">216</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 217" title="M. Stratmann, W. Vogelsang, Towards a global analysis of polarized parton distributions. Phys. Rev. D 64, 114007 (2001). &#xA; arXiv:hep-ph/0107064&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR217" id="ref-link-section-d90629110e32046">217</a>] which improves on that by [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 218" title="D. Graudenz, M. Hampel, A. Vogt, C. Berger, The Mellin transform technique for the extraction of the gluon density. Z. Phys. C 70, 77 (1996). &#xA; arXiv:hep-ph/9506333&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR218" id="ref-link-section-d90629110e32049">218</a>] and which has been widely used in analyses, e.g. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 217" title="M. Stratmann, W. Vogelsang, Towards a global analysis of polarized parton distributions. Phys. Rev. D 64, 114007 (2001). &#xA; arXiv:hep-ph/0107064&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR217" id="ref-link-section-d90629110e32052">217</a>]. However, no code has been made publicly available so far.</p><p>Given the increasing precision of PDF analyses, which is driven by the accuracy of the experimental data, there is ongoing demand to provide theoretical predictions that are as precise as possible. This has stimulated recent checks of the analysis software used by various groups and has resulted in a number of documented improvements. The list includes, for example, the corrections to the different parts of the DIS cross section calculations in the NNPDF2.1, MSTW and CT10 PDF analyses as mentioned in the discussion of the PDFs for strange sea above.</p><p>This illustrates that there is a continued need for benchmarking the hard scattering cross sections of relevance for PDF determinations in order to consolidate the accuracy of theory predictions for those observables. In this respect, open-source software may facilitate future theory improvements and may help to establish standards for precision theory predictions.</p></div></div></section><section data-title="Strong coupling constant"><div class="c-article-section" id="Sec19-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec19"><span class="c-article-section__title-number">4 </span>Strong coupling constant</h2><div class="c-article-section__content" id="Sec19-content"><p>The value of the strong coupling constant <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span> has a direct impact on the size of a number of cross sections at the LHC, such as Higgs boson production, see Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Sec20">5</a>, and is therefore an important parameter. Due to QCD factorization, <span class="mathjax-tex">\(\alpha _s\)</span> exhibits a significant correlation with the gluon PDF and also with the charm-quark mass, as documented in the published correlation matrices, see for instance [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 64" title="S. Alekhin, J. Blümlein, S. Moch, Parton distribution functions and benchmark cross sections at NNLO. Phys. Rev. D 86, 054009 (2012). &#xA; arXiv:1202.2281&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR64" id="ref-link-section-d90629110e32142">64</a>]. Therefore, the strong coupling constant has come to require particular attention in the context of global PDF analyses.</p><p>Current precision determinations of <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span> require NNLO accuracy in QCD because of the small uncertainties in the experimental data analyzed and the significantly reduced dependence from the variation of the renormalization scale indicating the uncertainty due to the truncation of the perturbative series. Extractions of <span class="mathjax-tex">\(\alpha _s\)</span> at NLO typically yield <span class="mathjax-tex">\(\alpha _s(M_Z) \simeq 0.118\)</span>, however, the NLO scale uncertainty is large, giving sizable variations <span class="mathjax-tex">\(\Delta \alpha _s(M_Z) = 0.005\)</span> for <span class="mathjax-tex">\(\mu _r \in [Q/2,2Q]\)</span> in DIS analyses. Determinations of <span class="mathjax-tex">\(\alpha _s\)</span> to NNLO accuracy benefit from a significantly reduced renormalization scale dependence, but generally result in smaller central values for <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span>, with shifts downwards from NLO to NNLO of a few percent in DIS analyses. Beyond NNLO, the perturbative expansion converges, as illustrated in DIS in a valence analysis [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 58" title="J. Blümlein, H. Böttcher, A. Guffanti, Non-singlet QCD analysis of deep-inelastic world data at &#xA; &#xA; &#xA; &#xA; $$(\alpha _s^3)$$&#xA; &#xA; &#xA; &#xA; (&#xA; &#xA; α&#xA; s&#xA; 3&#xA; &#xA; )&#xA; &#xA; &#xA; &#xA; . Nucl. Phys. B 774, 182 (2007). &#xA; arXiv:hep-ph/0607200&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR58" id="ref-link-section-d90629110e32439">58</a>] at N<span class="mathjax-tex">\(^3\)</span>LO which yields <span class="mathjax-tex">\(\alpha _s(M_Z) = 0.1141~_{-~0.0022}^{+~0.0020}\)</span>, in agreement with the NNLO values listed in Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab7">7</a>.</p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-6"><figure><figcaption class="c-article-table__figcaption"><b id="Tab6" data-test="table-caption">Table 6 Values of <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span> obtained or used in the nominal PDF sets of the various groups</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1140/epjc/s10052-016-4285-4/tables/6" aria-label="Full size table 6"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-7"><figure><figcaption class="c-article-table__figcaption"><b id="Tab7" data-test="table-caption">Table 7 Determinations of <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span> values at NNLO from QCD analyses of the deep-inelastic world data and, partly, including other hard scattering data. For recent compilations, see [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 219" title="S. Bethke et al., Workshop On Precision Measurements of &#xA; &#xA; &#xA; &#xA; $$\alpha _s$$&#xA; &#xA; &#xA; &#xA; α&#xA; s&#xA; &#xA; &#xA; &#xA; . &#xA; arXiv:1110.0016&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR219" id="ref-link-section-d90629110e33460">219</a>–<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 221" title="D. d’Enterria et al., High-precision &#xA; &#xA; &#xA; &#xA; $$\alpha _s$$&#xA; &#xA; &#xA; &#xA; α&#xA; s&#xA; &#xA; &#xA; &#xA; measurements from LHC to FCC-ee. &#xA; arXiv:1512.05194&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR221" id="ref-link-section-d90629110e33463">221</a>]</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1140/epjc/s10052-016-4285-4/tables/7" aria-label="Full size table 7"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <p>Of course, measurements of <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span> are not limited to global fits of PDFs, but stem from a large number of different processes and methods at different scales, see, e.g., [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 219" title="S. Bethke et al., Workshop On Precision Measurements of &#xA; &#xA; &#xA; &#xA; $$\alpha _s$$&#xA; &#xA; &#xA; &#xA; α&#xA; s&#xA; &#xA; &#xA; &#xA; . &#xA; arXiv:1110.0016&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR219" id="ref-link-section-d90629110e34977">219</a>–<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 221" title="D. d’Enterria et al., High-precision &#xA; &#xA; &#xA; &#xA; $$\alpha _s$$&#xA; &#xA; &#xA; &#xA; α&#xA; s&#xA; &#xA; &#xA; &#xA; measurements from LHC to FCC-ee. &#xA; arXiv:1512.05194&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR221" id="ref-link-section-d90629110e34980">221</a>] for discussions and comparisons. Here we restrict ourselves to issues of <span class="mathjax-tex">\(\alpha _s\)</span> arising in PDF fits. In Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab6">6</a> we give an overview of the <span class="mathjax-tex">\(\alpha _s\)</span> values currently used in the PDF analyses. There, two aspects are important. Firstly, some PDF analyses leave <span class="mathjax-tex">\(\alpha _s\)</span> as a free parameter in their fits, which obviously allows one to control its correlation with other PDF parameters and avoids potential biases. Secondly, among the NNLO values of <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span> used there exists a large spread of <span class="mathjax-tex">\(\alpha _s\)</span> values, ranging from <span class="mathjax-tex">\(\alpha _s(M_Z) = 0.1132\)</span> to 0.1183. Some of those fitted values of <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span> are significantly smaller than, for example, an average provided by the PDG [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 55" title="K.A. Olive, Review of particle physics. Chin. Phys. C 38, 090001 (2014)" href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR55" id="ref-link-section-d90629110e35224">55</a>] in 2014, which gives <span class="mathjax-tex">\(\alpha _s(M_Z) = 0.1185 \pm 0.0006\)</span> at NNLO, and is often quoted as a motivation for fixing <span class="mathjax-tex">\(\alpha _s(M_Z) = 0.118\)</span> as in some entries in Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab6">6</a>. In the recent 2015 update, the PDG [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 222" title="Particle Data Group Collaboration. &#xA; http://pdg.lbl.gov/2015/reviews/rpp2015-rev-qcd&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR222" id="ref-link-section-d90629110e35331">222</a>] reports the value <span class="mathjax-tex">\(\alpha _s(M_Z) = 0.1181 \pm 0.0013\)</span> with the uncertainty increased by a factor of two.</p><p>While the potential agreement or disagreement with the PDG average is beyond the scope of this study, it is instructive to focus on <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span> measurements from PDF analyses as listed in Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab7">7</a> which have been performed since the NNLO QCD corrections in DIS first became available. This series of measurements has led to <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span> values which are not only mostly lower than the PDG average, but also exhibit a large spread in the range <span class="mathjax-tex">\(\alpha _s(M_Z) = 0.1120 - 0.1175\)</span>. This spread is significant given the small size of the experimental uncertainties in the data. As it turns out, the differences in the values of <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span> can be traced back to different data sets used or to different theory assumptions applied, as indicated in Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab7">7</a>.</p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-8"><figure><figcaption class="c-article-table__figcaption"><b id="Tab8" data-test="table-caption">Table 8 The jet data sets and the theory approximations used in the NNLO PDF fits. The threshold corrections of Ref. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 237" title="N. Kidonakis, J.F. Owens, Effects of higher order threshold corrections in high &#xA; &#xA; &#xA; &#xA; $$E_T$$&#xA; &#xA; &#xA; &#xA; E&#xA; T&#xA; &#xA; &#xA; &#xA; jet production. Phys. Rev. D 63, 054019 (2001). &#xA; arXiv:hep-ph/0007268&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR237" id="ref-link-section-d90629110e35593">237</a>] neglect the dependence on the jet radius <i>R</i>. Ref. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 238" title="S. Carrazza, J. Pires, Perturbative QCD description of jet data from LHC Run-I and Tevatron Run-II. JHEP 10, 145 (2014). &#xA; arXiv:1407.7031&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR238" id="ref-link-section-d90629110e35599">238</a>] has determined the regime of validity (“safety cuts”) of the threshold approximation of Ref. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 240" title="D. de Florian, P. Hinderer, A. Mukherjee, F. Ringer, W. Vogelsang, Approximate next-to-next-to-leading order corrections to hadronic jet production. Phys. Rev. Lett. 112, 082001 (2014). &#xA; arXiv:1310.7192&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR240" id="ref-link-section-d90629110e35602">240</a>] by comparing to the exact NNLO result for the <i>gg</i> channel [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 15" title="A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, J. Pires, Second order QCD corrections to jet production at hadron colliders: the all-gluon contribution. Phys. Rev. Lett. 110, 162003 (2013). &#xA; arXiv:1301.7310&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR15" id="ref-link-section-d90629110e35609">15</a>]</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1140/epjc/s10052-016-4285-4/tables/8" aria-label="Full size table 8"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <p>For instance, the inclusion of data for the hadro-production of jets, e.g., from the LHC, does have an impact on the value of <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span> and can therefore provide valuable constraints. However, it is important to note that the perturbative QCD corrections to the hard scattering cross section are only known completely to NLO, while the exact NNLO result for the <i>gg</i> channel [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 15" title="A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, J. Pires, Second order QCD corrections to jet production at hadron colliders: the all-gluon contribution. Phys. Rev. Lett. 110, 162003 (2013). &#xA; arXiv:1301.7310&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR15" id="ref-link-section-d90629110e35894">15</a>] and approximations based on soft gluon enhancement [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 237" title="N. Kidonakis, J.F. Owens, Effects of higher order threshold corrections in high &#xA; &#xA; &#xA; &#xA; $$E_T$$&#xA; &#xA; &#xA; &#xA; E&#xA; T&#xA; &#xA; &#xA; &#xA; jet production. Phys. Rev. D 63, 054019 (2001). &#xA; arXiv:hep-ph/0007268&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR237" id="ref-link-section-d90629110e35897">237</a>–<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 240" title="D. de Florian, P. Hinderer, A. Mukherjee, F. Ringer, W. Vogelsang, Approximate next-to-next-to-leading order corrections to hadronic jet production. Phys. Rev. Lett. 112, 082001 (2014). &#xA; arXiv:1310.7192&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR240" id="ref-link-section-d90629110e35900">240</a>] indicate corrections as large as 15–20 %. Those corrections and their magnitude depend, of course, on the details of the kinematics, the choice of the scale and on the jet parameters (e.g., jet radius <i>R</i>). For high <span class="mathjax-tex">\(p_T\)</span> they are dominated by threshold logarithms <span class="mathjax-tex">\(\ln (p_T)\)</span> accompanied by logarithms <span class="mathjax-tex">\(\ln (R)\)</span> for small jet radii [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 240" title="D. de Florian, P. Hinderer, A. Mukherjee, F. Ringer, W. Vogelsang, Approximate next-to-next-to-leading order corrections to hadronic jet production. Phys. Rev. Lett. 112, 082001 (2014). &#xA; arXiv:1310.7192&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR240" id="ref-link-section-d90629110e35996">240</a>].</p><p>The <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span> values in PDF analyses currently determined with the help of jet data (cf. Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab7">7</a>) are, strictly speaking, valid to NLO accuracy only and therefore subject to significantly larger theory uncertainties due to the variation of the renormalization scale. The various groups employ different approaches in their NNLO analyses to cope with this inconsistency, such as using dynamical scales or applying some variant of threshold corrections, as detailed in Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab8">8</a>. As a result of these efforts, the gluon PDF and <span class="mathjax-tex">\(\alpha _s\)</span> obtained, for example, in the MMHT14 and NNPDF3.0 analyses are in a good agreement.</p><p>Different modeling of important theory aspects, such as whether or not to include target mass corrections, higher twist contributions and nuclear corrections in the description of DIS data, or whether or not to use a VFNS in the description of DIS heavy-quark data, can account for the range of <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span> values in Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab7">7</a>. With largely similar model assumptions, NNPDF2.1 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 234" title="S. Lionetti, R.D. Ball, V. Bertone, F. Cerutti, L. Del Debbio, S. Forte, A. Guffanti, J.I. Latorre, J. Rojo, M. Ubiali, Precision determination of &#xA; &#xA; &#xA; &#xA; $$\alpha _s$$&#xA; &#xA; &#xA; &#xA; α&#xA; s&#xA; &#xA; &#xA; &#xA; using an unbiased global NLO parton set. Phys. Lett. B 701, 346 (2011). &#xA; arXiv:1103.2369&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR234" id="ref-link-section-d90629110e36127">234</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 235" title="R.D. Ball, V. Bertone, L. Del Debbio, S. Forte, A. Guffanti, J.I. Latorre, S. Lionetti, J. Rojo, M. Ubiali, Precision NNLO determination of &#xA; &#xA; &#xA; &#xA; $$\alpha _s(M_Z)$$&#xA; &#xA; &#xA; &#xA; &#xA; α&#xA; s&#xA; &#xA; &#xA; (&#xA; &#xA; M&#xA; Z&#xA; &#xA; )&#xA; &#xA; &#xA; &#xA; &#xA; using an unbiased global parton set. Phys. Lett. B 707, 66 (2012). &#xA; arXiv:1110.2483&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR235" id="ref-link-section-d90629110e36130">235</a>], MSTW [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 231" title="A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Uncertainties on &#xA; &#xA; &#xA; &#xA; $$\alpha _s$$&#xA; &#xA; &#xA; &#xA; α&#xA; s&#xA; &#xA; &#xA; &#xA; in global PDF analyses and implications for predicted hadronic cross sections. Eur. Phys. J. C 64, 653 (2009). &#xA; arXiv:0905.3531&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR231" id="ref-link-section-d90629110e36133">231</a>] and MMHT [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 236" title="L.A. Harland-Lang, A.D. Martin, P. Motylinski, R.S. Thorne, Uncertainties on &#xA; &#xA; &#xA; &#xA; $$\alpha _S$$&#xA; &#xA; &#xA; &#xA; α&#xA; S&#xA; &#xA; &#xA; &#xA; in the MMHT2014 global PDF analysis and implications for SM predictions. Eur. Phys. J. C 75, 435 (2015). &#xA; arXiv:1506.05682&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR236" id="ref-link-section-d90629110e36137">236</a>] obtained the range <span class="mathjax-tex">\(\alpha _s(M_Z) = 0.1171 - 0.1174\)</span>. All these choices can lead to systematic shifts of the value of <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span>. Let us briefly mention some of the issues in detail.</p><p>Higher twist contributions do have a big impact, because these terms are fitted within a combined analysis. Alternatively, the part of the DIS data significantly affected by these terms has to be removed by suitable kinematical cuts on the scale <span class="mathjax-tex">\(Q^2\)</span> and center-of-mass energies <span class="mathjax-tex">\(W^2\)</span>. In a variant of the ABM11 analysis [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 64" title="S. Alekhin, J. Blümlein, S. Moch, Parton distribution functions and benchmark cross sections at NNLO. Phys. Rev. D 86, 054009 (2012). &#xA; arXiv:1202.2281&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR64" id="ref-link-section-d90629110e36288">64</a>], higher twist terms have been omitted and the cuts <span class="mathjax-tex">\(W^2 &gt; 12.5~\,\mathrm {GeV}^2\)</span> and <span class="mathjax-tex">\(Q^2 &gt; 2.5~\,\mathrm {GeV}^2\)</span> as used by MSTW [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 231" title="A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Uncertainties on &#xA; &#xA; &#xA; &#xA; $$\alpha _s$$&#xA; &#xA; &#xA; &#xA; α&#xA; s&#xA; &#xA; &#xA; &#xA; in global PDF analyses and implications for predicted hadronic cross sections. Eur. Phys. J. C 64, 653 (2009). &#xA; arXiv:0905.3531&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR231" id="ref-link-section-d90629110e36386">231</a>] have been applied. This resulted in a sizable shift upwards to <span class="mathjax-tex">\(\alpha _s(M_Z^2) = 0.1191 \pm 0.0016\)</span> in line with earlier studies in [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 241" title="A. Vogt, Structure function evolution at next-to-leading order and beyond. Nucl. Phys. Proc. Suppl. 79, 102 (1999). &#xA; arXiv:hep-ph/9906337&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR241" id="ref-link-section-d90629110e36444">241</a>]. Yet more conservative cuts of <span class="mathjax-tex">\(W^2 &gt; 12.5~\,\mathrm {GeV}^2\)</span> and <span class="mathjax-tex">\(Q^2 &gt; 10~\,\mathrm {GeV}^2\)</span> in the ABM11 variant with higher twist terms set to zero led to <span class="mathjax-tex">\(\alpha _s(M_Z^2) = 0.1134 \pm 0.0008\)</span>, well in agreement with the nominal value in the ABM11 analysis, cf. Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab7">7</a>. Thus, in PDF analyses without account of higher twist contributions to DIS data such tight cuts are essential. In this regard we disagree with Refs. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 67" title="R.S. Thorne, G. Watt, PDF dependence of Higgs cross sections at the tevatron and LHC: response to recent criticism. JHEP 08, 100 (2011). &#xA; arXiv:1106.5789&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR67" id="ref-link-section-d90629110e36600">67</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 232" title="R.S. Thorne, The effect on PDFs and &#xA; &#xA; &#xA; &#xA; $$\alpha _S(M_Z^2)$$&#xA; &#xA; &#xA; &#xA; &#xA; α&#xA; S&#xA; &#xA; &#xA; (&#xA; &#xA; M&#xA; Z&#xA; 2&#xA; &#xA; )&#xA; &#xA; &#xA; &#xA; &#xA; due to changes in flavour scheme and higher twist contributions. Eur. Phys. J. C 74, 2958 (2014). &#xA; arXiv:1402.3536&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR232" id="ref-link-section-d90629110e36603">232</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 243" title="NNPDF Collaboration, R.D. Ball et al., Theoretical issues in PDF determination and associated uncertainties. Phys. Lett. B723 (2013) 330. &#xA; arXiv:1303.1189&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR243" id="ref-link-section-d90629110e36606">243</a>] which claim higher twist effects to be negligible in the framework of MSTW [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 197" title="A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Parton distributions for the LHC. Eur. Phys. J. C 63, 189 (2009). &#xA; arXiv:0901.0002&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR197" id="ref-link-section-d90629110e36609">197</a>] and NNPDF2.3 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 250" title="R.D. Ball et al., Parton distributions with LHC data. Nucl. Phys. B 867, 244 (2013). &#xA; arXiv:1207.1303&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR250" id="ref-link-section-d90629110e36612">250</a>]. We also note that NNPDF3.0 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 7" title="NNPDF Collaboration, R.D. Ball et al., Parton distributions for the LHC Run II. JHEP 04, 040 (2015). &#xA; arXiv:1410.8849&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR7" id="ref-link-section-d90629110e36616">7</a>] uses a cut of <span class="mathjax-tex">\(Q^2 &gt; 3.5~\,\mathrm {GeV}^2\)</span> which is too low to remove the higher twist contributions.</p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-9"><figure><figcaption class="c-article-table__figcaption"><b id="Tab9" data-test="table-caption">Table 9 The Higgs cross section at NNLO in QCD (computed in the effective theory) at <span class="mathjax-tex">\(\sqrt{s}=13\)</span> TeV for <span class="mathjax-tex">\(m_H=125.0\)</span> GeV at the nominal scale <span class="mathjax-tex">\(\mu _r=\mu _f=m_H\)</span> with the PDF (and, if available, also <span class="mathjax-tex">\(\alpha _s\)</span>) uncertainties. The columns correspond to different choices for the central value of <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span> using the nominal PDF set. The numbers in parenthesis are obtained using the PDF sets <span class="u-monospace">CT14nnlo_as_0115</span>, <span class="u-monospace">HERAPDF20_NNLO_ALPHAS_115</span>, <span class="u-monospace">MMHT2014nnlo_asmzlargerange</span> and <span class="u-monospace">NNPDF30_nnlo_as</span> <span class="u-monospace">_0115</span> </b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1140/epjc/s10052-016-4285-4/tables/9" aria-label="Full size table 9"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <p>Higher order constraints from fixed-target DIS data can also lead to shifts in <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 59" title="S. Alekhin, J. Blümlein, S. Moch, Higher order constraints on the Higgs production rate from fixed-target DIS data. Eur. Phys. J. C 71, 1723 (2011). &#xA; arXiv:1101.5261&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR59" id="ref-link-section-d90629110e38483">59</a>]. For instance, NMC has measured the DIS differential cross sections and extracted the DIS structure functions <span class="mathjax-tex">\(F_2^\mathrm{NMC}\)</span> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 242" title="New Muon Collaboration, M. Arneodo et al., Measurement of the proton and deuteron structure functions, &#xA; &#xA; &#xA; &#xA; $$F_2^p$$&#xA; &#xA; &#xA; &#xA; F&#xA; 2&#xA; p&#xA; &#xA; &#xA; &#xA; and &#xA; &#xA; &#xA; &#xA; $$F_2^d$$&#xA; &#xA; &#xA; &#xA; F&#xA; 2&#xA; d&#xA; &#xA; &#xA; &#xA; , and of the ratio &#xA; &#xA; &#xA; &#xA; $$\sigma _L/\sigma _T$$&#xA; &#xA; &#xA; &#xA; &#xA; σ&#xA; L&#xA; &#xA; /&#xA; &#xA; σ&#xA; T&#xA; &#xA; &#xA; &#xA; &#xA; . Nucl. Phys. B483, 3 (1997). &#xA; arXiv:hep-ph/9610231&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR242" id="ref-link-section-d90629110e38513">242</a>]. At the time of the NMC analysis, however, the relevant DIS corrections to <span class="mathjax-tex">\(\mathcal{O}(\alpha _s^3)\)</span> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 57" title="J.A.M. Vermaseren, A. Vogt, S. Moch, The third-order QCD corrections to deep-inelastic scattering by photon exchange. Nucl. Phys. B 724, 3 (2005). &#xA; arXiv:hep-ph/0504242&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR57" id="ref-link-section-d90629110e38556">57</a>] were not available (see discussion after Eq. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Equ5">5</a>) above). This information is, however, important and has to be taken into account now. In case of fitting <span class="mathjax-tex">\(F_2^\mathrm{NMC}\)</span> and not describing <span class="mathjax-tex">\(F_L(x,Q^2)\)</span> at NNLO, much larger values of <span class="mathjax-tex">\(\alpha _s(M_Z^2)\)</span> are obtained [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 67" title="R.S. Thorne, G. Watt, PDF dependence of Higgs cross sections at the tevatron and LHC: response to recent criticism. JHEP 08, 100 (2011). &#xA; arXiv:1106.5789&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR67" id="ref-link-section-d90629110e38682">67</a>]. It is therefore strongly recommended to fit the published differential scattering cross sections using <span class="mathjax-tex">\(F_L(x,Q^2)\)</span> at <span class="mathjax-tex">\(\mathcal{O}(\alpha _s^3)\)</span>. Presently, the MMHT [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 236" title="L.A. Harland-Lang, A.D. Martin, P. Motylinski, R.S. Thorne, Uncertainties on &#xA; &#xA; &#xA; &#xA; $$\alpha _S$$&#xA; &#xA; &#xA; &#xA; α&#xA; S&#xA; &#xA; &#xA; &#xA; in the MMHT2014 global PDF analysis and implications for SM predictions. Eur. Phys. J. C 75, 435 (2015). &#xA; arXiv:1506.05682&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR236" id="ref-link-section-d90629110e38772">236</a>] analysis uses <span class="mathjax-tex">\(F_L(x,Q^2)\)</span> only at NLO. One should note, however, that the values of <span class="mathjax-tex">\(F_L(x,Q^2)\)</span> at NNLO are significantly different in the small-<i>x</i> region (see [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 67" title="R.S. Thorne, G. Watt, PDF dependence of Higgs cross sections at the tevatron and LHC: response to recent criticism. JHEP 08, 100 (2011). &#xA; arXiv:1106.5789&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR67" id="ref-link-section-d90629110e38873">67</a>]).</p><p>Finally, great care needs to be exercised when DIS data off nuclei are included in global fits, see Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Sec5">3</a>. Details of modeling of nuclear corrections can in fact also cause systematic shifts in the value of <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span>. Therefore, Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab7">7</a> indicates if scattering data on heavy nuclei have been included in the determination. For example, MMHT [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 236" title="L.A. Harland-Lang, A.D. Martin, P. Motylinski, R.S. Thorne, Uncertainties on &#xA; &#xA; &#xA; &#xA; $$\alpha _S$$&#xA; &#xA; &#xA; &#xA; α&#xA; S&#xA; &#xA; &#xA; &#xA; in the MMHT2014 global PDF analysis and implications for SM predictions. Eur. Phys. J. C 75, 435 (2015). &#xA; arXiv:1506.05682&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR236" id="ref-link-section-d90629110e38930">236</a>] has reported a comparatively high value of <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span> as a consequence of fitting the NuTeV <span class="mathjax-tex">\(\nu \)</span>Fe DIS data [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 185" title="NuTeV Collaboration, M. Goncharov et al., Precise measurement of dimuon production cross sections in muon neutrino Fe and muon anti-neutrino Fe deep-inelastic scattering at the Tevatron. Phys. Rev. D64, 112006 (2001). &#xA; arXiv:hep-ex/0102049&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR185" id="ref-link-section-d90629110e38998">185</a>]. In general, determinations of <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span> should be based upon, or at least cross-checked with, fits using proton and deuteron DIS data only.</p></div></div></section><section data-title="Cross section predictions for the LHC"><div class="c-article-section" id="Sec20-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec20"><span class="c-article-section__title-number">5 </span>Cross section predictions for the LHC</h2><div class="c-article-section__content" id="Sec20-content"><h3 class="c-article__sub-heading" id="Sec21"><span class="c-article-section__title-number">5.1 </span>Higgs boson production</h3><p>The dominant production mechanism for the SM Higgs boson at the LHC is the gluon–gluon fusion process. The large size of the QCD radiative corrections to the inclusive cross section at NLO, see, e.g. Ref. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 244" title="M. Spira, A. Djouadi, D. Graudenz, P.M. Zerwas, Higgs boson production at the LHC. Nucl. Phys. B 453, 17 (1995). &#xA; arXiv:hep-ph/9504378&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR244" id="ref-link-section-d90629110e39057">244</a>], together with the sizable scale uncertainty have motivated systematic theory improvements. In the effective theory based on the limit of a large top-quark mass (<span class="mathjax-tex">\(m_t \rightarrow \infty \)</span>, integrating out the top-quark loop, but using the full <span class="mathjax-tex">\(m_t\)</span> dependence in the Born cross section), this has led to the computation of the corresponding corrections at NNLO [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 245" title="R.V. Harlander, W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders. Phys. Rev. Lett. 88, 201801 (2002). &#xA; arXiv:hep-ph/0201206&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR245" id="ref-link-section-d90629110e39116">245</a>–<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 247" title="V. Ravindran, J. Smith, W.L. van Neerven, NNLO corrections to the total cross section for Higgs boson production in hadron hadron collisions. Nucl. Phys. B 665, 325 (2003). &#xA; arXiv:hep-ph/0302135&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR247" id="ref-link-section-d90629110e39119">247</a>] and even to N<span class="mathjax-tex">\(^3\)</span>LO in QCD [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 106" title="C. Anastasiou, C. Duhr, F. Dulat, E. Furlan, T. Gehrmann, F. Herzog, A. Lazopoulos, B. Mistlberger, High precision determination of the gluon fusion Higgs boson cross section at the LHC. &#xA; arXiv:1602.00695&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR106" id="ref-link-section-d90629110e39147">106</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 248" title="C. Anastasiou, C. Duhr, F. Dulat, F. Herzog, B. Mistlberger, Higgs boson gluon fusion production in QCD at three loops. Phys. Rev. Lett. 114, 212001 (2015). &#xA; arXiv:1503.06056&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR248" id="ref-link-section-d90629110e39150">248</a>]. This shows an apparent, if slow, convergence of the perturbative expansion, along with greatly reduced sensitivity to the choice for the renormalization and factorization scales <span class="mathjax-tex">\(\mu _r\)</span> and <span class="mathjax-tex">\(\mu _f\)</span>. At N<span class="mathjax-tex">\(^3\)</span>LO the total scale variation amounts to 3 % and estimates of the four-loop corrections support these findings [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 249" title="D. de Florian, J. Mazzitelli, S. Moch, A. Vogt, Approximate N&#xA; &#xA; &#xA; &#xA; $$^{3}$$&#xA; &#xA; &#xA; &#xA; &#xA; 3&#xA; &#xA; &#xA; &#xA; LO Higgs-boson production cross section using physical-kernel constraints. JHEP 10, 176 (2014). &#xA; arXiv:1408.6277&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR249" id="ref-link-section-d90629110e39228">249</a>].</p><p>This leaves, as the largest remaining source of uncertainties in the predictions of the physical cross section, the input for the strong coupling constant <span class="mathjax-tex">\(\alpha _s\)</span> and the PDFs. Despite the impressive progress in theory and experiment, the situation resembles that after the completion of the NLO QCD corrections, when it was pointed out in Ref. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 244" title="M. Spira, A. Djouadi, D. Graudenz, P.M. Zerwas, Higgs boson production at the LHC. Nucl. Phys. B 453, 17 (1995). &#xA; arXiv:hep-ph/9504378&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR244" id="ref-link-section-d90629110e39259">244</a>] that one of the main residual uncertainties in the predictions was due to the gluon PDF.</p><p>In Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab9">9</a> we summarize the PDF dependence of the inclusive cross section <span class="mathjax-tex">\(\sigma (H)^\mathrm{NNLO}\)</span> in the effective theory (i.e., in the limit of <span class="mathjax-tex">\(m_t \gg m_H\)</span>) at <span class="mathjax-tex">\(\sqrt{s}=13\)</span> TeV for a Higgs boson mass <span class="mathjax-tex">\(m_H=125.0\)</span> GeV, <span class="mathjax-tex">\(\mu _r = \mu _f = m_H\)</span>, and <span class="mathjax-tex">\(m_t^\mathrm{pole}=172.5\)</span> GeV with uncertainties <span class="mathjax-tex">\(\sigma (H)^\mathrm{NNLO} + \Delta \sigma (\mathrm {PDF}+\alpha _s)\)</span>, and compare the results for various PDF sets. The PDF uncertainties are typically given at the 1<span class="mathjax-tex">\(\sigma \)</span> c.l. We list the results for <span class="mathjax-tex">\(\sigma (H)^\mathrm{NNLO}\)</span> using either the values for the strong coupling constant <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span> at NNLO, corresponding to the respective PDF set, or fixed values of <span class="mathjax-tex">\(\alpha _s(M_Z)=0.115\)</span> and <span class="mathjax-tex">\(\alpha _s(M_Z)=0.118\)</span>. This is done to illustrate the fact that in some PDFs the value of <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span> is not obtained from a fit to data (including faithful uncertainties) but fixed beforehand, e.g., to the world average [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 55" title="K.A. Olive, Review of particle physics. Chin. Phys. C 38, 090001 (2014)" href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR55" id="ref-link-section-d90629110e39802">55</a>]. Often the same fixed value of <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span> is chosen at NLO and at NNLO independent of the order of perturbation theory, see also Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Sec19">4</a>. Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab9">9</a> shows a large spread for predictions from different PDFs with a range <span class="mathjax-tex">\(\sigma (H)^\mathrm{NNLO} = 38.0 - 42.6\)</span> pb using the nominal value of <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span>. Specifically, the PDF and <span class="mathjax-tex">\(\alpha _s\)</span> differences between different sets are up to <span class="mathjax-tex">\(11\,\%\)</span> and are significantly larger than the residual scale uncertainty due to N<span class="mathjax-tex">\(^3\)</span>LO QCD corrections. In addition, the cross sections shift in the range <span class="mathjax-tex">\(\sigma (H)^\mathrm{NNLO} = 39.0 - 44.7\)</span> pb if a fixed value of <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span> in the range <span class="mathjax-tex">\(\alpha _s(M_Z)=0.115 - 0.118\)</span> is used. This amounts to a relative difference of more than <span class="mathjax-tex">\(13\,\%\)</span> and contradicts the most recent estimates of the combined PDF and <span class="mathjax-tex">\(\alpha _s\)</span> uncertainties in the inclusive cross section [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 106" title="C. Anastasiou, C. Duhr, F. Dulat, E. Furlan, T. Gehrmann, F. Herzog, A. Lazopoulos, B. Mistlberger, High precision determination of the gluon fusion Higgs boson cross section at the LHC. &#xA; arXiv:1602.00695&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR106" id="ref-link-section-d90629110e40222">106</a>], which quote <span class="mathjax-tex">\(3.2\,\%\)</span>. In general, the findings underpin the importance of controlling the accuracy and the correlation of the strong coupling constant with the PDF parameters in fits.</p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-10"><figure><figcaption class="c-article-table__figcaption"><b id="Tab10" data-test="table-caption">Table 10 The values of the charm-quark mass (on-shell scheme <span class="mathjax-tex">\(m^\mathrm{pole}\)</span>) and the strong coupling <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span> in the MSTW analysis [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 171" title="A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Heavy-quark mass dependence in global PDF analyses and 3- and 4-flavour parton distributions. Eur. Phys. J. C 70, 51 (2010). &#xA; arXiv:1007.2624&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR171" id="ref-link-section-d90629110e40331">171</a>] using the set <span class="u-monospace">MSTW2008nnlo_mcrange</span> together with the value for <span class="mathjax-tex">\(\chi ^2\)</span>/NDP for the HERA data [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 165" title="ZEUS, H1 Collaboration, H. Abramowicz et al., Combination and QCD analysis of charm production cross section measurements in deep-inelastic ep scattering at HERA, Eur. Phys. J. C73, 2311 (2013). &#xA; arXiv:1211.1182&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR165" id="ref-link-section-d90629110e40363">165</a>] and the Higgs cross section at NNLO in QCD (computed in the effective theory) at <span class="mathjax-tex">\(\sqrt{s}=13\)</span> TeV for <span class="mathjax-tex">\(m_H=125.0\)</span> GeV at the nominal scale <span class="mathjax-tex">\(\mu _r=\mu _f=m_H\)</span>. The numbers in parentheses are obtained using the PDF set <span class="u-monospace">MSTW2008nnlo_mcrange_fixasmz</span> with the value of <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span> fixed to <span class="mathjax-tex">\(\alpha _s(M_Z)=0.1171\)</span> </b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1140/epjc/s10052-016-4285-4/tables/10" aria-label="Full size table 10"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-11"><figure><figcaption class="c-article-table__figcaption"><b id="Tab11" data-test="table-caption">Table 11 Same as Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab10">10</a> for the MMHT14 analysis [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 172" title="L.A. Harland-Lang, A.D. Martin, P. Motylinski, R.S. Thorne, Charm and beauty quark masses in the MMHT2014 global PDF analysis. &#xA; arXiv:1510.02332&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR172" id="ref-link-section-d90629110e41335">172</a>] using the set <span class="u-monospace">MMHT2014nnlo_mcrange_nf5</span> and setting <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span> to the best fit value. The numbers of Ref. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 182" title="L. Harland-Lang, R. Thorne, Private communication, Apr 12 and June 6 (2016)" href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR182" id="ref-link-section-d90629110e41385">182</a>] keep full account of the correlation between the PDFs and <span class="mathjax-tex">\(\alpha _s\)</span>. The values of <span class="mathjax-tex">\(\chi ^2\)</span>/NDP for the HERA data [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 165" title="ZEUS, H1 Collaboration, H. Abramowicz et al., Combination and QCD analysis of charm production cross section measurements in deep-inelastic ep scattering at HERA, Eur. Phys. J. C73, 2311 (2013). &#xA; arXiv:1211.1182&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR165" id="ref-link-section-d90629110e41439">165</a>] are those quoted in [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 172" title="L.A. Harland-Lang, A.D. Martin, P. Motylinski, R.S. Thorne, Charm and beauty quark masses in the MMHT2014 global PDF analysis. &#xA; arXiv:1510.02332&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR172" id="ref-link-section-d90629110e41442">172</a>] for the best fit value of <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span>. The numbers in parentheses are obtained with the value of <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span> fixed to <span class="mathjax-tex">\(\alpha _s(M_Z)=0.118\)</span> </b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1140/epjc/s10052-016-4285-4/tables/11" aria-label="Full size table 11"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <p>Of particular interest is the impact of additional parameters in the PDF fits, such as the charm-quark mass, on the Higgs cross section. The differences in the treatment of heavy quarks and the consequences for the quality of the description of charm-quark DIS data have already been discussed in Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Sec5">3</a>. ABM12 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2" title="S. Alekhin, J. Blümlein, S. Moch, The ABM parton distributions tuned to LHC data. Phys. Rev. D 89, 054028 (2014). &#xA; arXiv:1310.3059&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR2" id="ref-link-section-d90629110e42252">2</a>] fits the value of <span class="mathjax-tex">\(m_c(m_c)\)</span> in the <span class="mathjax-tex">\(\overline{\mathrm {MS}}\, \)</span>scheme and the uncertainties in the charm-quark mass are included in the uncertainties quoted in Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab9">9</a>. Other groups keep a fixed value of the charm-quark mass in the on-shell scheme, cf. Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab4">4</a>, and vary the value of <span class="mathjax-tex">\(m_c^\mathrm{pole}\)</span> within some range. Such studies have been performed in the past by NNPDF2.1 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 170" title="R.D. Ball, V. Bertone, F. Cerutti, L. Del Debbio, S. Forte, A. Guffanti, J.I. Latorre, J. Rojo, M. Ubiali, Impact of heavy quark masses on parton distributions and LHC phenomenology. Nucl. Phys. B 849, 296 (2011). &#xA; arXiv:1101.1300&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR170" id="ref-link-section-d90629110e42362">170</a>] and MSTW [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 171" title="A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Heavy-quark mass dependence in global PDF analyses and 3- and 4-flavour parton distributions. Eur. Phys. J. C 70, 51 (2010). &#xA; arXiv:1007.2624&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR171" id="ref-link-section-d90629110e42365">171</a>] and more recently by MMHT [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 172" title="L.A. Harland-Lang, A.D. Martin, P. Motylinski, R.S. Thorne, Charm and beauty quark masses in the MMHT2014 global PDF analysis. &#xA; arXiv:1510.02332&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR172" id="ref-link-section-d90629110e42368">172</a>].</p><p>In Tables <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab10">10</a>, <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab11">11</a> and <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab12">12</a> we display the results of these fits together with the values of <span class="mathjax-tex">\(\chi ^2\)</span>/NDP for the DIS charm-quark data [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 165" title="ZEUS, H1 Collaboration, H. Abramowicz et al., Combination and QCD analysis of charm production cross section measurements in deep-inelastic ep scattering at HERA, Eur. Phys. J. C73, 2311 (2013). &#xA; arXiv:1211.1182&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR165" id="ref-link-section-d90629110e42408">165</a>], mostly computed with <span class="u-monospace">xFitter</span> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 166" title="S. Alekhin, O. Behnke, P. Belov, S. Borroni, M. Botje, et al., HERAFitter, Open source QCD fit project. &#xA; arXiv:1410.4412&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR166" id="ref-link-section-d90629110e42415">166</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 167" title="xFitter, An open source QCD fit framework. &#xA; http://xFitter.org&#xA; &#xA; [xFitter.org]" href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR167" id="ref-link-section-d90629110e42418">167</a>], as well as the corresponding cross section for Higgs boson production to NNLO accuracy. The MSTW analysis in Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab10">10</a> shows a linear rise of the cross section for increasing values <span class="mathjax-tex">\(m_c^\mathrm{pole} = 1.05 - 1.75~\,\mathrm {GeV}\)</span> in the range <span class="mathjax-tex">\(\sigma (H) = 40.6 - 43.8~\text{ pb }\)</span>, which amounts to a variation of more than <span class="mathjax-tex">\(7\,\%\)</span>. Even if <span class="mathjax-tex">\(\alpha _s(M_Z)=0.1171\)</span> is kept fixed, the cross section varies in the range <span class="mathjax-tex">\(\sigma (H) = 41.6 - 42.6~\text{ pb }\)</span>, which is equivalent to <span class="mathjax-tex">\(2\,\%\)</span>. The best fit in the MSTW analysis with <span class="mathjax-tex">\(\chi ^2\)</span>/NDP = 63/52 leads to <span class="mathjax-tex">\(m_c^\mathrm{pole}=1.3~\,\mathrm {GeV}\)</span> and <span class="mathjax-tex">\(\alpha _s(M_Z)=0.1166\)</span>, both of which are lower than the ones of the nominal fit with <span class="mathjax-tex">\(m_c^\mathrm{pole}=1.4~\,\mathrm {GeV}\)</span> and <span class="mathjax-tex">\(\alpha _s(M_Z)=0.1171\)</span>. In Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab11">11</a> the same study is performed for the MMHT PDFs [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 172" title="L.A. Harland-Lang, A.D. Martin, P. Motylinski, R.S. Thorne, Charm and beauty quark masses in the MMHT2014 global PDF analysis. &#xA; arXiv:1510.02332&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR172" id="ref-link-section-d90629110e42878">172</a>], where the reduced quark mass range <span class="mathjax-tex">\(m_c^\mathrm{pole} = 1.15 - 1.55~\,\mathrm {GeV}\)</span> still leads to cross section variations <span class="mathjax-tex">\(\sigma (H) = 40.5 - 42.1~\text{ pb }\)</span> (i.e., <span class="mathjax-tex">\(4\,\%\)</span>) for the best fit <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span>, or <span class="mathjax-tex">\(\sigma (H) = 42.1 - 42.6~\text{ pb }\)</span> (i.e., <span class="mathjax-tex">\(1\,\%\)</span>) for a fixed <span class="mathjax-tex">\(\alpha _s(M_Z)=0.118\)</span>. The latter case leads to a best fit of <span class="mathjax-tex">\(m_c^\mathrm{pole}=1.2~\,\mathrm {GeV}\)</span> with <span class="mathjax-tex">\(\chi ^2\)</span>/NDP = 70/52, which is significantly smaller than the nominal fit with <span class="mathjax-tex">\(m_c^\mathrm{pole}=1.4~\,\mathrm {GeV}\)</span> and <span class="mathjax-tex">\(\chi ^2\)</span>/NDP = 82/52.</p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-12"><figure><figcaption class="c-article-table__figcaption"><b id="Tab12" data-test="table-caption">Table 12 Same as Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab10">10</a> for various NNPDF analyses. The values of the strong coupling <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span> have been fixed in those fits. The values of <span class="mathjax-tex">\(\chi ^2\)</span>/NDP for the description of the HERA data have been determined with the FONLL-C [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 162" title="S. Forte, E. Laenen, P. Nason, J. Rojo, Heavy quarks in deep-inelastic scattering. Nucl. Phys. B 834, 116 (2010). &#xA; arXiv:1001.2312&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR162" id="ref-link-section-d90629110e43387">162</a>] scheme</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1140/epjc/s10052-016-4285-4/tables/12" aria-label="Full size table 12"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <p>NNPDF has performed a study of the <span class="mathjax-tex">\(m_c\)</span> dependence in [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 170" title="R.D. Ball, V. Bertone, F. Cerutti, L. Del Debbio, S. Forte, A. Guffanti, J.I. Latorre, J. Rojo, M. Ubiali, Impact of heavy quark masses on parton distributions and LHC phenomenology. Nucl. Phys. B 849, 296 (2011). &#xA; arXiv:1101.1300&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR170" id="ref-link-section-d90629110e44036">170</a>], which shows the same trend as for MSTW and MMHT, i.e., the smaller the chosen value of <span class="mathjax-tex">\(m_c^\mathrm{pole}\)</span>, the better the goodness-of-fit for the HERA data [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 165" title="ZEUS, H1 Collaboration, H. Abramowicz et al., Combination and QCD analysis of charm production cross section measurements in deep-inelastic ep scattering at HERA, Eur. Phys. J. C73, 2311 (2013). &#xA; arXiv:1211.1182&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR165" id="ref-link-section-d90629110e44066">165</a>]. In addition, Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab12">12</a> displays the changes in the charm-quark mass values from <span class="mathjax-tex">\(m_c^\mathrm{pole} =\sqrt{2}~\,\mathrm {GeV}\)</span> to <span class="mathjax-tex">\(m_c^\mathrm{pole} = 1.275~\,\mathrm {GeV}\)</span> in the evolution of the NNPDF fits from v2.1 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 170" title="R.D. Ball, V. Bertone, F. Cerutti, L. Del Debbio, S. Forte, A. Guffanti, J.I. Latorre, J. Rojo, M. Ubiali, Impact of heavy quark masses on parton distributions and LHC phenomenology. Nucl. Phys. B 849, 296 (2011). &#xA; arXiv:1101.1300&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR170" id="ref-link-section-d90629110e44160">170</a>] and v2.3 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 250" title="R.D. Ball et al., Parton distributions with LHC data. Nucl. Phys. B 867, 244 (2013). &#xA; arXiv:1207.1303&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR250" id="ref-link-section-d90629110e44163">250</a>] to v3.0 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 7" title="NNPDF Collaboration, R.D. Ball et al., Parton distributions for the LHC Run II. JHEP 04, 040 (2015). &#xA; arXiv:1410.8849&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR7" id="ref-link-section-d90629110e44166">7</a>], with the obvious correlation of smaller cross sections for Higgs boson production with smaller chosen values of <span class="mathjax-tex">\(m_c^\mathrm{pole}\)</span>.</p><p>As pointed out already in Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Sec5">3</a>, on-shell masses <span class="mathjax-tex">\(m_c^\mathrm{pole}=1.2 - 1.3~\,\mathrm {GeV}\)</span>, as preferred by the goodness-of-fit analyses in Tables <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab10">10</a>, <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab11">11</a> and <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab12">12</a> for the charm-quark data from HERA [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 165" title="ZEUS, H1 Collaboration, H. Abramowicz et al., Combination and QCD analysis of charm production cross section measurements in deep-inelastic ep scattering at HERA, Eur. Phys. J. C73, 2311 (2013). &#xA; arXiv:1211.1182&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR165" id="ref-link-section-d90629110e44258">165</a>], are not compatible with the world average of the PDG [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 55" title="K.A. Olive, Review of particle physics. Chin. Phys. C 38, 090001 (2014)" href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR55" id="ref-link-section-d90629110e44261">55</a>]. Thus, in some PDF fits, the numerical value of the charm-quark mass effectively takes over the role of a “tuning” parameter for the Higgs cross section. Note that the three analyses are based on partly different data sets, theory and methodology.</p><h3 class="c-article__sub-heading" id="Sec22"><span class="c-article-section__title-number">5.2 </span>Hadro-production of heavy quarks</h3><h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec23"><span class="c-article-section__title-number">5.2.1 </span>Top-quark hadro-production: inclusive cross section</h4> <div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-13"><figure><figcaption class="c-article-table__figcaption"><b id="Tab13" data-test="table-caption">Table 13 The inclusive cross section for top-quark pair production at NNLO in QCD at <span class="mathjax-tex">\(\sqrt{s}=13\)</span> TeV for a pole mass of <span class="mathjax-tex">\(m_t^\mathrm{pole}=172.0\)</span> GeV at the nominal scale <span class="mathjax-tex">\(\mu _r=\mu _f=m_t^\mathrm{pole}\)</span> with the PDF (and, if available, also <span class="mathjax-tex">\(\alpha _s\)</span>) uncertainties. The columns correspond to different choices for the central value of <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span> using the nominal PDF set. The numbers in parenthesis are obtained using PDF sets <span class="u-monospace">CT14nnlo_as_0115</span>, <span class="u-monospace">HERAPDF20_NNLO_ALPHAS_115</span>, <span class="u-monospace">MMHT2014nnlo_asmzlargerange</span> and <span class="u-monospace">NNPDF30_nnlo_as</span> <span class="u-monospace">_0115</span> </b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1140/epjc/s10052-016-4285-4/tables/13" aria-label="Full size table 13"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <p>The cross section for the hadro-production of top-quark pairs has been measured with unprecedented accuracy at the LHC in Run 1 with <span class="mathjax-tex">\(\sqrt{s}=7~\,\mathrm {TeV}\)</span> and <span class="mathjax-tex">\(8~\,\mathrm {TeV}\)</span>. The inclusive cross section is known to NNLO in QCD [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 251" title="P. Bärnreuther, M. Czakon, A. Mitov, Percent Level Precision Physics at the Tevatron: First Genuine NNLO QCD Corrections to &#xA; &#xA; &#xA; &#xA; $$q \bar{q} \rightarrow t \bar{t} + X$$&#xA; &#xA; &#xA; &#xA; q&#xA; &#xA; &#xA; q&#xA; &#xA; &#xA; ¯&#xA; &#xA; &#xA; →&#xA; t&#xA; &#xA; &#xA; t&#xA; &#xA; &#xA; ¯&#xA; &#xA; &#xA; +&#xA; X&#xA; &#xA; &#xA; &#xA; . Phys. Rev. Lett. 109, 132001 (2012). &#xA; arXiv:1204.5201&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR251" id="ref-link-section-d90629110e46245">251</a>–<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 254" title="M. Czakon, P. Fiedler, A. Mitov, Total top-quark pair-production cross section at hadron colliders through &#xA; &#xA; &#xA; &#xA; $$O(\alpha _s^4)$$&#xA; &#xA; &#xA; &#xA; O&#xA; (&#xA; &#xA; α&#xA; s&#xA; 4&#xA; &#xA; )&#xA; &#xA; &#xA; &#xA; . Phys. Rev. Lett. 110, 252004 (2013). &#xA; arXiv:1303.6254&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR254" id="ref-link-section-d90629110e46248">254</a>], featuring good convergence of the perturbation series and reduced sensitivity to the renormalization and factorization scales <span class="mathjax-tex">\(\mu _r\)</span> and <span class="mathjax-tex">\(\mu _f\)</span>. These theory predictions adopt the on-shell renormalization scheme for the heavy-quark mass. The conversion to the <span class="mathjax-tex">\(\overline{\mathrm {MS}}\, \)</span>scheme for the heavy-quark mass has been discussed in Refs. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 255" title="U. Langenfeld, S. Moch, P. Uwer, Measuring the running top-quark mass. Phys. Rev. D 80, 054009 (2009). &#xA; arXiv:0906.5273&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR255" id="ref-link-section-d90629110e46332">255</a>–<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 257" title="M. Dowling, S. Moch, Differential distributions for top-quark hadro-production with a running mass. Eur. Phys. J. C 74, 3167 (2014). &#xA; arXiv:1305.6422&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR257" id="ref-link-section-d90629110e46335">257</a>]. For observables such as the inclusive cross section which are dominated by hard scales <span class="mathjax-tex">\(\mu _r \simeq \mu _f \simeq m_t\)</span>, the theory predictions in terms of the <span class="mathjax-tex">\(\overline{\mathrm {MS}}\, \)</span>mass for the top quark show an even better scale stability and perturbative convergence.</p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-14"><figure><figcaption class="c-article-table__figcaption"><b id="Tab14" data-test="table-caption">Table 14 The values of the charm-quark mass (on-shell scheme <span class="mathjax-tex">\(m_c^\mathrm{pole}\)</span>) and the strong coupling <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span> in the MMHT14 analysis [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 172" title="L.A. Harland-Lang, A.D. Martin, P. Motylinski, R.S. Thorne, Charm and beauty quark masses in the MMHT2014 global PDF analysis. &#xA; arXiv:1510.02332&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR172" id="ref-link-section-d90629110e46497">172</a>] together the inclusive cross section for top-quark pair production at NNLO in QCD computed with the set <span class="u-monospace">MMHT2014nnlo_mcrange_nf5</span> at <span class="mathjax-tex">\(\sqrt{s}=13\)</span> TeV for a pole mass of <span class="mathjax-tex">\(m_t^\mathrm{pole}=172.0\)</span> GeV at the nominal scale <span class="mathjax-tex">\(\mu _r=\mu _f=m_t^\mathrm{pole}\)</span> and setting <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span> to the best fit value. The numbers of Ref. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 182" title="L. Harland-Lang, R. Thorne, Private communication, Apr 12 and June 6 (2016)" href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR182" id="ref-link-section-d90629110e46661">182</a>] keep full account of the correlation between the PDFs and <span class="mathjax-tex">\(\alpha _s\)</span>. The values of <span class="mathjax-tex">\(\chi ^2\)</span>/NDP for the HERA data [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 165" title="ZEUS, H1 Collaboration, H. Abramowicz et al., Combination and QCD analysis of charm production cross section measurements in deep-inelastic ep scattering at HERA, Eur. Phys. J. C73, 2311 (2013). &#xA; arXiv:1211.1182&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR165" id="ref-link-section-d90629110e46715">165</a>] are those quoted in [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 172" title="L.A. Harland-Lang, A.D. Martin, P. Motylinski, R.S. Thorne, Charm and beauty quark masses in the MMHT2014 global PDF analysis. &#xA; arXiv:1510.02332&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR172" id="ref-link-section-d90629110e46718">172</a>] for the best fit value of <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span>. The numbers in parentheses for the cross section and <span class="mathjax-tex">\(\chi ^2\)</span>/NDP are obtained using the PDF set with the value of <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span> fixed to <span class="mathjax-tex">\(\alpha _s(M_Z)=0.118\)</span> </b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1140/epjc/s10052-016-4285-4/tables/14" aria-label="Full size table 14"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <p>In a similar study as for Higgs boson production in Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab9">9</a> we illustrate in Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab13">13</a> the PDF dependence of the inclusive cross section <span class="mathjax-tex">\(\sigma (t{\bar{t}})^\mathrm{NNLO}\)</span> for various sets with uncertainties <span class="mathjax-tex">\(\Delta \sigma (\mathrm {PDF}+\alpha _s)\)</span>. The computation is performed in the theoretical framework as implemented in the <span class="u-monospace">HATHOR</span> code [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 256" title="M. Aliev, H. Lacker, U. Langenfeld, S. Moch, P. Uwer, M. Wiedermann, HATHOR: HAdronic Top and Heavy quarks crOss section calculatoR. Comput. Phys. Commun. 182, 1034 (2011). &#xA; arXiv:1007.1327&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR256" id="ref-link-section-d90629110e47686">256</a>]. In Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab13">13</a> we choose <span class="mathjax-tex">\(\sqrt{s}=13\)</span> TeV and fix the pole mass <span class="mathjax-tex">\(m_t^\mathrm{pole}=172.0\)</span> GeV and the scales at <span class="mathjax-tex">\(\mu _r = \mu _f = m_t^\mathrm{pole}\)</span>. For this fixed value of <span class="mathjax-tex">\(m_t^\mathrm{pole}\)</span>, we show the impact of different values for the strong coupling constant at NNLO. We choose <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span> either corresponding to the respective PDF set or fixed to the values 0.115 and 0.118. The results in Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab13">13</a> display a spread in a range <span class="mathjax-tex">\(\sigma (t{\bar{t}})^\mathrm{NNLO} = 715 - 834~\text{ pb }\)</span> using the nominal value of <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span> for each PDF set, which amounts to a relative range of more than <span class="mathjax-tex">\(15\,\%\)</span>. This decreases to about <span class="mathjax-tex">\(6\,\%\)</span>, if the values of <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span> are fixed to 0.115 or 0.118.</p><p>The theoretical predictions at leading order depend parametrically on the strong coupling constant and the top-quark mass to second power, as well as on the convolution of the gluon PDFs, <span class="mathjax-tex">\(\sigma (t{\bar{t}})^\mathrm{LO} \propto (\alpha _s^2/m_t^2) \left( g \otimes g \right) \)</span>. Therefore, it is necessary to fully account for the correlations between the top-quark mass, the gluon PDF and the strong coupling when comparing to experimental data. A number of analyses have considered <span class="mathjax-tex">\(t{\bar{t}}\)</span> hadro-production data. ABM12 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2" title="S. Alekhin, J. Blümlein, S. Moch, The ABM parton distributions tuned to LHC data. Phys. Rev. D 89, 054028 (2014). &#xA; arXiv:1310.3059&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR2" id="ref-link-section-d90629110e48227">2</a>] has included data for top-quark pair-production in a variant of the fit to determine the <span class="mathjax-tex">\(\overline{\mathrm {MS}}\, \)</span>mass <span class="mathjax-tex">\(m_t(m_t)\)</span>, keeping the full correlation with <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span> and the gluon PDF. On the other hand, CMS has determined the top-quark pole mass as well as the strong coupling constant in a fit which kept all other parameters mutually fixed [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 258" title="CMS Collaboration, S. Chatrchyan et al., Determination of the top-quark pole mass and strong coupling constant from the &#xA; &#xA; &#xA; &#xA; $$t \bar{t}$$&#xA; &#xA; &#xA; &#xA; t&#xA; &#xA; &#xA; t&#xA; &#xA; &#xA; ¯&#xA; &#xA; &#xA; &#xA; &#xA; &#xA; production cross section in &#xA; &#xA; &#xA; &#xA; $$pp$$&#xA; &#xA; &#xA; &#xA; p&#xA; p&#xA; &#xA; &#xA; &#xA; collisions at &#xA; &#xA; &#xA; &#xA; $$\sqrt{s}$$&#xA; &#xA; &#xA; &#xA; s&#xA; &#xA; &#xA; &#xA; = 7 TeV. Phys. Lett. B 728, 496 (2014). &#xA; arXiv:1307.1907&#xA; &#xA; . [Erratum: Phys. Lett. B728,526(2014)]" href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR258" id="ref-link-section-d90629110e48348">258</a>], while Ref. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 259" title="M. Czakon, M.L. Mangano, A. Mitov, J. Rojo, Constraints on the gluon PDF from top quark pair production at hadron colliders. JHEP 07, 167 (2013). &#xA; arXiv:1303.7215&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR259" id="ref-link-section-d90629110e48351">259</a>] has explored constraints on the gluon PDF from <span class="mathjax-tex">\(t{\bar{t}}\)</span> hadro-production data using fixed values for <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span> and the pole mass <span class="mathjax-tex">\(m_t^\mathrm{pole}\)</span>.</p><p>In the global analyses by MMHT14 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 6" title="L.A. Harland-Lang, A.D. Martin, P. Motylinski, R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs. Eur. Phys. J. C 75, 204 (2015). &#xA; arXiv:1412.3989&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR6" id="ref-link-section-d90629110e48465">6</a>] and NNPDF3.0 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 7" title="NNPDF Collaboration, R.D. Ball et al., Parton distributions for the LHC Run II. JHEP 04, 040 (2015). &#xA; arXiv:1410.8849&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR7" id="ref-link-section-d90629110e48468">7</a>] those data were also used to fit <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span> and the gluon PDF. These analyses employ a fixed value for the pole mass <span class="mathjax-tex">\(m_t^\mathrm{pole}\)</span>, which is motivated by precisely measured top-quark masses from kinematic reconstructions, i.e., Monte Carlo masses, but does not account for the above mentioned correlation with <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span> and the gluon PDF. Moreover, the Monte Carlo mass requires additional calibration [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 260" title="J. Kieseler, K. Lipka, S. Moch, Calibration of the top-quark Monte Carlo mass. &#xA; arXiv:1511.00841&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR260" id="ref-link-section-d90629110e48587">260</a>].</p><p>For the inclusive top-quark cross section we explore in Tables <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab14">14</a> and <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab15">15</a> the implicit dependence of the cross section on the charm-quark mass <span class="mathjax-tex">\(m_c\)</span> used in the GM-VFNS of the PDF fits and list the corresponding values of <span class="mathjax-tex">\(\chi ^2\)</span>/NDP for the DIS charm-quark data [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 165" title="ZEUS, H1 Collaboration, H. Abramowicz et al., Combination and QCD analysis of charm production cross section measurements in deep-inelastic ep scattering at HERA, Eur. Phys. J. C73, 2311 (2013). &#xA; arXiv:1211.1182&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR165" id="ref-link-section-d90629110e48648">165</a>]. This is analogous to the study for the Higgs cross section in Tables <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab11">11</a> and <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab12">12</a>. For MMHT [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 172" title="L.A. Harland-Lang, A.D. Martin, P. Motylinski, R.S. Thorne, Charm and beauty quark masses in the MMHT2014 global PDF analysis. &#xA; arXiv:1510.02332&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR172" id="ref-link-section-d90629110e48658">172</a>] the best fit with <span class="mathjax-tex">\(m_c^\mathrm{pole} = 1.25~\,\mathrm {GeV}\)</span> and <span class="mathjax-tex">\(\alpha _s(M_Z)=0.1167\)</span> leads to an inclusive cross section of <span class="mathjax-tex">\(\sigma (t{\bar{t}})^\mathrm{NNLO} = 814\)</span> pb, which is <span class="mathjax-tex">\(2\,\%\)</span> lower than the value obtained for the nominal MMHT fit, cf. Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab13">13</a>. Likewise, the changes in the NNPDF fits from v2.1 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 170" title="R.D. Ball, V. Bertone, F. Cerutti, L. Del Debbio, S. Forte, A. Guffanti, J.I. Latorre, J. Rojo, M. Ubiali, Impact of heavy quark masses on parton distributions and LHC phenomenology. Nucl. Phys. B 849, 296 (2011). &#xA; arXiv:1101.1300&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR170" id="ref-link-section-d90629110e48839">170</a>] and v2.3 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 250" title="R.D. Ball et al., Parton distributions with LHC data. Nucl. Phys. B 867, 244 (2013). &#xA; arXiv:1207.1303&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR250" id="ref-link-section-d90629110e48842">250</a>] to v3.0 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 7" title="NNPDF Collaboration, R.D. Ball et al., Parton distributions for the LHC Run II. JHEP 04, 040 (2015). &#xA; arXiv:1410.8849&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR7" id="ref-link-section-d90629110e48845">7</a>] are documented in Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab15">15</a>. The effects amount to almost <span class="mathjax-tex">\(2\,\%\)</span> when comparing <span class="mathjax-tex">\(\sigma (t{\bar{t}})^\mathrm{NNLO}\)</span> for the best fit of NNPDF2.1 with <span class="mathjax-tex">\(m_c^\mathrm{pole} = \sqrt{2}~\,\mathrm {GeV}\)</span> and <span class="mathjax-tex">\(\alpha _s(M_Z)=0.119\)</span> to the cross section computed with NNPDF3.0 with <span class="mathjax-tex">\(m_c^\mathrm{pole} = 1.275~\,\mathrm {GeV}\)</span> and <span class="mathjax-tex">\(\alpha _s(M_Z)=0.118\)</span>. In both Tables <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab14">14</a> and <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab15">15</a> there is a correlation showing decreasing cross sections with decreasing values of <span class="mathjax-tex">\(m_c^\mathrm{pole}\)</span>, although less pronounced than in the case of the Higgs production cross section. The potential bias in the prediction of the inclusive top-quark pair production cross section due to a particular “tuning” of the value of the charm-quark mass for some PDFs is, however, of the same order of magnitude or larger than the quoted PDF uncertainties. Therefore, this needs to be accounted for as an additional modeling uncertainty.</p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-15"><figure><figcaption class="c-article-table__figcaption"><b id="Tab15" data-test="table-caption">Table 15 Same as Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab14">14</a> for various NNPDF analyses. The values of the strong coupling <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span> have always been fixed in those fits. The values of <span class="mathjax-tex">\(\chi ^2\)</span>/NDP for the description of the HERA data have been determined with the FONLL-C [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 162" title="S. Forte, E. Laenen, P. Nason, J. Rojo, Heavy quarks in deep-inelastic scattering. Nucl. Phys. B 834, 116 (2010). &#xA; arXiv:1001.2312&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR162" id="ref-link-section-d90629110e49231">162</a>] scheme</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1140/epjc/s10052-016-4285-4/tables/15" aria-label="Full size table 15"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-15" data-title="Fig. 15"><figure><figcaption><b id="Fig15" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 15</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1140/epjc/s10052-016-4285-4/figures/15" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig15_HTML.gif?as=webp"><img aria-describedby="Fig15" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig15_HTML.gif" alt="figure 15" loading="lazy"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-15-desc"><p>(<i>Left panel</i>) Predictions for top-quark pair production cross sections at approximate NNLO as a function of the top-quark rapidity using different PDFs at NNLO with the respective PDF uncertainty (depicted by bands of different style). (<i>Right panel</i>) The acceptance and extrapolation estimators with the respective PDF uncertainties, obtained by using different PDF sets</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1140/epjc/s10052-016-4285-4/figures/15" data-track-dest="link:Figure15 Full size image" aria-label="Full size image figure 15" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec24"><span class="c-article-section__title-number">5.2.2 </span>Top-quark hadro-production: differential distributions</h4><p>The differential cross section of the top-quark pair production is also known to NNLO in QCD [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 261" title="M. Czakon, D. Heymes, A. Mitov, High-precision differential predictions for top-quark pairs at the LHC. &#xA; arXiv:1511.00549&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR261" id="ref-link-section-d90629110e49903">261</a>]. Publicly available codes such as <span class="u-monospace">Difftop</span> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 262" title="M. Guzzi, K. Lipka, S. Moch, Top-quark pair production at hadron colliders: differential cross section and phenomenological applications with DiffTop. JHEP 01, 082 (2015). &#xA; arXiv:1406.0386&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR262" id="ref-link-section-d90629110e49909">262</a>] provide differential distributions to approximate NNLO accuracy based on soft-gluon threshold resummation results. We use <span class="u-monospace">Difftop</span> to calculate the distribution in the top-quark rapidity <span class="mathjax-tex">\(y_t\)</span> for proton-proton collisions at <span class="mathjax-tex">\(\sqrt{s}=13\)</span> TeV at NNLO<span class="mathjax-tex">\(_\mathrm{approx}\)</span> accuracy using the ABM12, CT14, MMHT14, NNPDF3.0, and the PDF4LHC15 PDF sets at NNLO with their respective <span class="mathjax-tex">\(\alpha _s\)</span> values. Here, we take the top-quark pole mass to be <span class="mathjax-tex">\(m_t^\mathrm{pole}=172.5\)</span> GeV, following the preferences in the LHC analyses. The renormalization and factorization scales are set to <span class="mathjax-tex">\(m_t^\mathrm{pole}\)</span> and the choice of a dynamical scale does not change the following discussions.</p><p>By using differential cross sections, not only the sensitivity of top-quark pair production to the PDFs can be estimated, but also possible effects on the experimental acceptance by changing the PDF choice. In the experimental analysis, the PDF dependent acceptance corrections arise mostly from the PDF dependent normalization of the production cross section and originate from the phase space regions uncovered by the detector. Usually, the acceptances are determined by using Monte Carlo simulations as a ratio of the number of reconstructed events in the fiducial volume of the detector (visible phase space) to the number of events generated in the full phase space. In the case of top-quark pair production, the visible (full) phase space would correspond to the top-quark rapidity range of <span class="mathjax-tex">\(|y_t|&lt;2.5\)</span> <span class="mathjax-tex">\((|y_t|&lt;3)\)</span>. Here, an acceptance estimator and a related extrapolation factor are calculated by using <span class="u-monospace">Difftop</span> predictions for the respective cross section ratios <span class="mathjax-tex">\(\sigma _\mathrm{vis}/\sigma _\mathrm{tot}\)</span> and <span class="mathjax-tex">\(\sigma _\mathrm{unmeasured}/\sigma _\mathrm{tot}\)</span>. Such estimators are not expected to describe the true experimental efficiency, but are helpful for drawing conclusions about PDF related effects.</p><p>The predictions of the top-quark rapidity and the acceptance estimates obtained by using <span class="u-monospace">Difftop</span> with different PDFs are shown in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig15">15</a>. The largest difference in the global normalization of the predicted cross sections is observed if the ABM12 PDFs are used instead of the CT14, NNPDF3.0 or MMHT14 sets. The origin of this effect is again the smaller nominal value of <span class="mathjax-tex">\(\alpha _s\)</span> in ABM12 in combination with a smaller gluon PDF in the <i>x</i> range relevant to top-quark pair production at <span class="mathjax-tex">\(\sqrt{s}=13~\,\mathrm {TeV}\)</span>. The corresponding acceptance estimators and their uncertainties, obtained from the error propagation of the corresponding PDF uncertainties at 68 % c.l., however, demonstrate significant differences also in the expected acceptance corrections, obtained by using ABM12 alternative to other PDFs.</p><p>The recent PDF4LHC recommendation [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 8" title="J. Butterworth et al., PDF4LHC recommendations for LHC Run II. J. Phys. G43, 023001 (2016). &#xA; arXiv:1510.03865&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR8" id="ref-link-section-d90629110e50332">8</a>] for calculation of the acceptance corrections for precision observables, such as the top-quark pair-production cross section in the LHC Run 2 data taking period, is to use the set <span class="u-monospace">PDF4LHC15_100</span>, which is obtained by averaging the CT14, MMHT14 and NNPDF3.0 PDFs. While the central prediction obtained by using PDF4LHC15 is indeed very close to those obtained with the CT14, MMHT14 or NNPDF3.0 PDFs, the error on the corresponding acceptance estimator somewhat underestimates the acceptance spread of the individual PDFs with their uncertainties. Furthermore, it does not cover the difference in the acceptances to the one using the ABM12 PDF. Therefore, for the conservative estimate of the acceptance correction and its uncertainty, as demanded in the measurement of SM precision observables, the use of the <span class="u-monospace">PDF4LHC15_100</span> set would lead to a significant underestimation of the uncertainty on the resulting cross section measurement.</p><p>A further conclusion from Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig15">15</a> is that in the case of top-quark pair production, once calculational speed is needed, it seems to be sufficient to consider a reduced choice of PDF sets. For instance, instead of using the averaged set <span class="u-monospace">PDF4LHC15_100</span> one can take just one of the three PDFs, CT14, MMHT14 or NNPDF3.0. Alternative PDF choices can then always be studied to some approximation with a reweighting method. In spite of the valiant effort in Ref. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 8" title="J. Butterworth et al., PDF4LHC recommendations for LHC Run II. J. Phys. G43, 023001 (2016). &#xA; arXiv:1510.03865&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR8" id="ref-link-section-d90629110e50351">8</a>] to provide a uniform solution, the PDF choice for measurements of precision observables must be decided on a case-by-case basis for each particular process.</p><h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec25"><span class="c-article-section__title-number">5.2.3 </span>Bottom-quark hadro-production</h4><p>Bottom-quark production in proton-proton collisions at the LHC is also dominated by the gluon–gluon fusion process. Therefore, the LHCb measurements of <i>B</i>-meson production in the forward region [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 263" title="LHCb Collaboration, R. Aaij et al., Measurement of B meson production cross sections in proton–proton collisions at &#xA; &#xA; &#xA; &#xA; $$\sqrt{s} =$$&#xA; &#xA; &#xA; &#xA; &#xA; s&#xA; &#xA; =&#xA; &#xA; &#xA; &#xA; 7 TeV. JHEP 08 (2013) 117, &#xA; arXiv:1306.3663&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR263" id="ref-link-section-d90629110e50365">263</a>] with rapidities <span class="mathjax-tex">\(2.0&lt; y &lt; 4.5\)</span> at <span class="mathjax-tex">\(\sqrt{s}=7\)</span> TeV probe the gluon distributions simultaneously at small <i>x</i> up to <span class="mathjax-tex">\(x \sim 2 \times 10^{-5}\)</span> and at large <span class="mathjax-tex">\(x \simeq 1\)</span>. The small-<i>x</i> region is not accessible with HERA DIS data, for example. The potential improvements of PDFs near the edges of the currently covered kinematical region, namely, at small <i>x</i> and low scales, was first illustrated in [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 264" title="O. Zenaiev, A. Geiser, K. Lipka, J. Blümlein, A. Cooper-Sarkar, et al., Impact of heavy-flavour production cross sections measured by the LHCb experiment on parton distribution functions at low x. &#xA; arXiv:1503.04581&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR264" id="ref-link-section-d90629110e50503">264</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 265" title="O. Zenaiev, Charm production and QCD analysis at HERA and LHC. PhD thesis, U. Hamburg, Dept. Phys., DESY-THESIS-2015-012 (2015)" href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR265" id="ref-link-section-d90629110e50506">265</a>] using differential LHCb data on hadro-production of <span class="mathjax-tex">\(c\bar{c}\)</span> and <span class="mathjax-tex">\(b\bar{b}\)</span> pairs.</p><p>In the present comparison in Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab16">16</a>, the normalized cross sections, <span class="mathjax-tex">\((\mathrm{d}\sigma /\mathrm{d}y) / (\mathrm{d}\sigma /\mathrm{d}y_0)\)</span>, for bottom-quark production are calculated from the absolute measurements published by LHCb, with <span class="mathjax-tex">\(\mathrm{d}\sigma /\mathrm{d}y_0\)</span> being the cross section in the central bin, <span class="mathjax-tex">\(3&lt; y_0 &lt; 3.5\)</span>, of the measured rapidity range in each <span class="mathjax-tex">\(p_T\)</span> bin [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 264" title="O. Zenaiev, A. Geiser, K. Lipka, J. Blümlein, A. Cooper-Sarkar, et al., Impact of heavy-flavour production cross sections measured by the LHCb experiment on parton distribution functions at low x. &#xA; arXiv:1503.04581&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR264" id="ref-link-section-d90629110e50763">264</a>]. In the absence of NNLO QCD corrections, the theoretical predictions are obtained at NLO in QCD [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 266" title="P. Nason, S. Dawson, R.K. Ellis, The total cross section for the production of heavy quarks in hadronic collisions. Nucl. Phys. B 303, 607 (1988)" href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR266" id="ref-link-section-d90629110e50766">266</a>–<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 268" title="P. Nason, S. Dawson, R.K. Ellis, The one particle inclusive differential cross section for heavy quark production in hadronic collisions. Nucl. Phys. B327, 49 (1989). [Erratum: Nucl. Phys.B 335, 260 (1990)]" href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR268" id="ref-link-section-d90629110e50769">268</a>] using a fixed number of flavors, <span class="mathjax-tex">\(n_f = 3\)</span>, for the hard scattering cross sections. Since data for the hadro-production of heavy quarks other than top have not been considered for publicly available PDF fits thus far, issues of any model dependence such as in [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 158" title="R. Harlander, M. Krämer, M. Schumacher, Bottom-quark associated Higgs-boson production: reconciling the four- and five-flavour scheme approach. &#xA; arXiv:1112.3478&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR158" id="ref-link-section-d90629110e50803">158</a>] due to the use of GM-VFNS cannot be quantified. In the calculation of the normalized cross sections, the theoretical uncertainty is strongly reduced, since variations of the renormalization and factorization scales as well as of the fragmentation parameters do not significantly affect the shape of the <i>y</i> distributions for heavy-flavor production, while this shape remains sensitive to PDFs.</p> <div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-16"><figure><figcaption class="c-article-table__figcaption"><b id="Tab16" data-test="table-caption">Table 16 The values of <span class="mathjax-tex">\(\chi ^2\)</span>/NDP for the normalised bottom-quark cross sections measured at LHCb [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 263" title="LHCb Collaboration, R. Aaij et al., Measurement of B meson production cross sections in proton–proton collisions at &#xA; &#xA; &#xA; &#xA; $$\sqrt{s} =$$&#xA; &#xA; &#xA; &#xA; &#xA; s&#xA; &#xA; =&#xA; &#xA; &#xA; &#xA; 7 TeV. JHEP 08 (2013) 117, &#xA; arXiv:1306.3663&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR263" id="ref-link-section-d90629110e50847">263</a>] using the NLO PDFs of the individual groups. The left column accounts for the quoted PDF uncertainties (with the CJ15 and CT14 PDF uncertainties rescaled to 68 % c.l.), while the right column uses the central prediction of each PDF set</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1140/epjc/s10052-016-4285-4/tables/16" aria-label="Full size table 16"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-16" data-title="Fig. 16"><figure><figcaption><b id="Fig16" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 16</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1140/epjc/s10052-016-4285-4/figures/16" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig16_HTML.gif?as=webp"><img aria-describedby="Fig16" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig16_HTML.gif" alt="figure 16" loading="lazy"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-16-desc"><p>Theoretical predictions for the total <span class="mathjax-tex">\(pp \rightarrow c\bar{c}\)</span> cross section as a function of the center-of-mass energy <span class="mathjax-tex">\(\sqrt{s}\)</span> at NLO (<i>dashed lines</i>) and NNLO (<i>solid lines</i>) QCD accuracy in the <span class="mathjax-tex">\(\overline{\mathrm {MS}}\, \)</span>mass scheme with <span class="mathjax-tex">\(m_c(m_c)~=~1.27\)</span> GeV and scale choice <span class="mathjax-tex">\(\mu _R = \mu _F = 2m_c(m_c)\)</span> using the central PDF sets (<i>solid lines</i>) of ABM12 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2" title="S. Alekhin, J. Blümlein, S. Moch, The ABM parton distributions tuned to LHC data. Phys. Rev. D 89, 054028 (2014). &#xA; arXiv:1310.3059&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR2" id="ref-link-section-d90629110e51414">2</a>], CJ15 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 1" title="A. Accardi, L.T. Brady, W. Melnitchouk, J.F. Owens, N. Sato, Constraints on large-&#xA; &#xA; &#xA; &#xA; $$x$$&#xA; &#xA; &#xA; x&#xA; &#xA; &#xA; parton distributions from new weak boson production and deep-inelastic scattering data. &#xA; arXiv:1602.03154&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR1" id="ref-link-section-d90629110e51417">1</a>], CT14 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 3" title="S. Dulat, T.J. Hou, J. Gao, M. Guzzi, J. Huston, P. Nadolsky, J. Pumplin, C. Schmidt, D. Stump, C.P. Yuan, The CT14 global analysis of quantum chromodynamics. &#xA; arXiv:1506.07443&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR3" id="ref-link-section-d90629110e51420">3</a>] and JR14 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 5" title="P. Jimenez-Delgado, E. Reya, Delineating parton distributions and the strong coupling. Phys. Rev. D 89, 074049 (2014). &#xA; arXiv:1403.1852&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR5" id="ref-link-section-d90629110e51424">5</a>] and the respective PDF uncertainties (<i>dashed lines</i>). The predictions for ABM12 (CJ15) use the NNLO (NLO) PDFs independent of the order of perturbation theory. See text for details and references on the experimental data from fixed target experiments and colliders (STAR, PHENIX, ALICE, ATLAS, LHCb)</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1140/epjc/s10052-016-4285-4/figures/16" data-track-dest="link:Figure16 Full size image" aria-label="Full size image figure 16" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-17" data-title="Fig. 17"><figure><figcaption><b id="Fig17" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 17</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1140/epjc/s10052-016-4285-4/figures/17" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig17_HTML.gif?as=webp"><img aria-describedby="Fig17" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig17_HTML.gif" alt="figure 17" loading="lazy"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-17-desc"><p>Same as Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig16">16</a> using the central PDF sets of HERAPDF2.0 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 4" title="ZEUS, H1 Collaboration, H. Abramowicz et al., Combination of measurements of inclusive deep-inelastic &#xA; &#xA; &#xA; &#xA; $$e^{\pm }p$$&#xA; &#xA; &#xA; &#xA; &#xA; e&#xA; ±&#xA; &#xA; p&#xA; &#xA; &#xA; &#xA; scattering cross sections and QCD analysis of HERA data. &#xA; arXiv:1506.06042&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR4" id="ref-link-section-d90629110e51452">4</a>], MMHT14 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 6" title="L.A. Harland-Lang, A.D. Martin, P. Motylinski, R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs. Eur. Phys. J. C 75, 204 (2015). &#xA; arXiv:1412.3989&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR6" id="ref-link-section-d90629110e51455">6</a>], NNPDF3.0 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 7" title="NNPDF Collaboration, R.D. Ball et al., Parton distributions for the LHC Run II. JHEP 04, 040 (2015). &#xA; arXiv:1410.8849&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR7" id="ref-link-section-d90629110e51458">7</a>] and PDF4LHC15 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 8" title="J. Butterworth et al., PDF4LHC recommendations for LHC Run II. J. Phys. G43, 023001 (2016). &#xA; arXiv:1510.03865&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR8" id="ref-link-section-d90629110e51461">8</a>] together with the respective PDF uncertainties</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1140/epjc/s10052-016-4285-4/figures/17" data-track-dest="link:Figure17 Full size image" aria-label="Full size image figure 17" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <p>The values for <span class="mathjax-tex">\(\chi ^2\)</span>/NDP given in Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab16">16</a> are computed with the QCD fit platform <span class="u-monospace">xFitter</span> for the individual PDF sets obtained at NLO, namely, ABM11 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 64" title="S. Alekhin, J. Blümlein, S. Moch, Parton distribution functions and benchmark cross sections at NNLO. Phys. Rev. D 86, 054009 (2012). &#xA; arXiv:1202.2281&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR64" id="ref-link-section-d90629110e51508">64</a>], CJ15 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 1" title="A. Accardi, L.T. Brady, W. Melnitchouk, J.F. Owens, N. Sato, Constraints on large-&#xA; &#xA; &#xA; &#xA; $$x$$&#xA; &#xA; &#xA; x&#xA; &#xA; &#xA; parton distributions from new weak boson production and deep-inelastic scattering data. &#xA; arXiv:1602.03154&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR1" id="ref-link-section-d90629110e51511">1</a>], CT14 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 3" title="S. Dulat, T.J. Hou, J. Gao, M. Guzzi, J. Huston, P. Nadolsky, J. Pumplin, C. Schmidt, D. Stump, C.P. Yuan, The CT14 global analysis of quantum chromodynamics. &#xA; arXiv:1506.07443&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR3" id="ref-link-section-d90629110e51515">3</a>], HERAPDF2.0 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 4" title="ZEUS, H1 Collaboration, H. Abramowicz et al., Combination of measurements of inclusive deep-inelastic &#xA; &#xA; &#xA; &#xA; $$e^{\pm }p$$&#xA; &#xA; &#xA; &#xA; &#xA; e&#xA; ±&#xA; &#xA; p&#xA; &#xA; &#xA; &#xA; scattering cross sections and QCD analysis of HERA data. &#xA; arXiv:1506.06042&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR4" id="ref-link-section-d90629110e51518">4</a>], JR14 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 5" title="P. Jimenez-Delgado, E. Reya, Delineating parton distributions and the strong coupling. Phys. Rev. D 89, 074049 (2014). &#xA; arXiv:1403.1852&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR5" id="ref-link-section-d90629110e51521">5</a>], MMHT14 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 6" title="L.A. Harland-Lang, A.D. Martin, P. Motylinski, R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs. Eur. Phys. J. C 75, 204 (2015). &#xA; arXiv:1412.3989&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR6" id="ref-link-section-d90629110e51524">6</a>], NNPDF3.0 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 7" title="NNPDF Collaboration, R.D. Ball et al., Parton distributions for the LHC Run II. JHEP 04, 040 (2015). &#xA; arXiv:1410.8849&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR7" id="ref-link-section-d90629110e51527">7</a>], as well as the averaged set PDF4LHC15 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 8" title="J. Butterworth et al., PDF4LHC recommendations for LHC Run II. J. Phys. G43, 023001 (2016). &#xA; arXiv:1510.03865&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR8" id="ref-link-section-d90629110e51530">8</a>]. All PDFs provide a good description of the data, despite the fact that none of the groups use any data sensitive to the gluons at very low <i>x</i>, in the region directly probed by the LHCb <i>B</i>-meson measurement. Remarkably, one finds that <span class="mathjax-tex">\(\chi ^2/\text{ NDP } &lt; 1\)</span> for the vast majority of the groups (left column in Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab16">16</a>), suggesting that the derived PDF uncertainties at the edges of the so far measured regions might be inflated.</p><h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec26"><span class="c-article-section__title-number">5.2.4 </span>Charm-quark hadro-production</h4><p>Charm-quark hadro-production offers another possibility to illustrate the consistency of the theory predictions for the various PDF sets. The exclusive production of charmed mesons in the forward region at LHCb probes the gluon distribution down to small-<i>x</i> values of <span class="mathjax-tex">\(x \sim 5 \times 10^{-6}\)</span> at <span class="mathjax-tex">\(\sqrt{s}=7\)</span> TeV, and data can be confronted with QCD predictions at NLO accuracy, see, e.g., [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 269" title="M.V. Garzelli, S. Moch, G. Sigl, Lepton fluxes from atmospheric charm revisited. JHEP 10, 115 (2015). &#xA; arXiv:1507.01570&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR269" id="ref-link-section-d90629110e51665">269</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 270" title="R. Gauld, J. Rojo, L. Rottoli, J. Talbert, Charm production in the forward region: constraints on the small-x gluon and backgrounds for neutrino astronomy. JHEP 11, 009 (2015). &#xA; arXiv:1506.08025&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR270" id="ref-link-section-d90629110e51668">270</a>].</p><p>For the inclusive cross section of the reaction <i>pp</i> <span class="mathjax-tex">\(\rightarrow \)</span> <span class="mathjax-tex">\(c\bar{c}\)</span> the QCD predictions are known up to NNLO in the <span class="mathjax-tex">\(\overline{\mathrm {MS}}\, \)</span>scheme for the charm-quark mass and display good convergence of the perturbative expansion and stability under variation of the renormalization and factorization scales [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 269" title="M.V. Garzelli, S. Moch, G. Sigl, Lepton fluxes from atmospheric charm revisited. JHEP 10, 115 (2015). &#xA; arXiv:1507.01570&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR269" id="ref-link-section-d90629110e51763">269</a>]. In Figs. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig16">16</a> and <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig17">17</a> we compare the theory predictions at NLO and NNLO with <span class="mathjax-tex">\(m_c(m_c) = 1.27~\,\mathrm {GeV}\)</span> in the <span class="mathjax-tex">\(\overline{\mathrm {MS}}\, \)</span>scheme, see Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Sec5">3</a>, for the scale choice <span class="mathjax-tex">\(\mu _r=\mu _f=2m_c(m_c)\)</span> as a function of the center-of-mass energy <span class="mathjax-tex">\(\sqrt{s}\)</span> to available experimental data. These data span a large range in <span class="mathjax-tex">\(\sqrt{s}\)</span>, which starts with fixed target experiments at energies up to <span class="mathjax-tex">\(\sqrt{s} = 50~\,\mathrm {GeV}\)</span> summarized in [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 271" title="C. Lourenco, H. Wöhri, Heavy flavour hadro-production from fixed-target to collider energies. Phys. Rept. 433, 127 (2006). &#xA; arXiv:hep-ph/0609101&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR271" id="ref-link-section-d90629110e52009">271</a>] and HERA-B data [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 272" title="HERA-B Collaboration, I. Abt et al., Measurement of &#xA; &#xA; &#xA; &#xA; $$D^0$$&#xA; &#xA; &#xA; &#xA; D&#xA; 0&#xA; &#xA; &#xA; &#xA; , &#xA; &#xA; &#xA; &#xA; $$D^+$$&#xA; &#xA; &#xA; &#xA; D&#xA; +&#xA; &#xA; &#xA; &#xA; , &#xA; &#xA; &#xA; &#xA; $$D^+_s$$&#xA; &#xA; &#xA; &#xA; D&#xA; s&#xA; +&#xA; &#xA; &#xA; &#xA; and &#xA; &#xA; &#xA; &#xA; $$D^{*+}$$&#xA; &#xA; &#xA; &#xA; D&#xA; &#xA; &#xA; ∗&#xA; +&#xA; &#xA; &#xA; &#xA; &#xA; production in fixed target 920-GeV proton-nucleus collisions. Eur. Phys. J. C52, 531 (2007). &#xA; arXiv:0708.1443&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR272" id="ref-link-section-d90629110e52012">272</a>] (purple points in Figs. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig16">16</a>, <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig17">17</a>). At higher energies RHIC data from PHENIX and STAR [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 273" title="PHENIX Collaboration, A. Adare et al., Measurement of high-&#xA; &#xA; &#xA; &#xA; $$p_T$$&#xA; &#xA; &#xA; &#xA; p&#xA; T&#xA; &#xA; &#xA; &#xA; single electrons from heavy-flavor decays in p+p collisions at &#xA; &#xA; &#xA; &#xA; $$s^{1/2} = 200$$&#xA; &#xA; &#xA; &#xA; &#xA; s&#xA; &#xA; 1&#xA; /&#xA; 2&#xA; &#xA; &#xA; =&#xA; 200&#xA; &#xA; &#xA; &#xA; GeV. Phys. Rev. Lett. 97, 252002 (2006). &#xA; arXiv:hep-ex/0609010&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR273" id="ref-link-section-d90629110e52022">273</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 274" title="STAR Collaboration, L. Adamczyk et al., Measurements of &#xA; &#xA; &#xA; &#xA; $$D^{0}$$&#xA; &#xA; &#xA; &#xA; D&#xA; 0&#xA; &#xA; &#xA; &#xA; and &#xA; &#xA; &#xA; &#xA; $$D^{*}$$&#xA; &#xA; &#xA; &#xA; D&#xA; &#xA; &#xA; ∗&#xA; &#xA; &#xA; &#xA; &#xA; production in &#xA; &#xA; &#xA; &#xA; $$p+p$$&#xA; &#xA; &#xA; &#xA; p&#xA; +&#xA; p&#xA; &#xA; &#xA; &#xA; collisions at &#xA; &#xA; &#xA; &#xA; $$\sqrt{s} = 200$$&#xA; &#xA; &#xA; &#xA; &#xA; s&#xA; &#xA; =&#xA; 200&#xA; &#xA; &#xA; &#xA; GeV. Phys. Rev. D 86, 072013 (2012). &#xA; arXiv:1204.4244&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR274" id="ref-link-section-d90629110e52025">274</a>] (black points in Figs. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig16">16</a>, <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig17">17</a>) are available and the LHC contributes measurements at energies <span class="mathjax-tex">\(\sqrt{s}=2.76~\,\mathrm {TeV}\)</span> from ALICE [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 275" title="ALICE Collaboration, B. Abelev et al., Measurement of charm production at central rapidity in proton–proton collisions at &#xA; &#xA; &#xA; &#xA; $$\sqrt{s}=2.76$$&#xA; &#xA; &#xA; &#xA; &#xA; s&#xA; &#xA; =&#xA; 2.76&#xA; &#xA; &#xA; &#xA; TeV. JHEP 1207, 191 (2012). &#xA; arXiv:1205.4007&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR275" id="ref-link-section-d90629110e52072">275</a>], at <span class="mathjax-tex">\(\sqrt{s}=7~\,\mathrm {TeV}\)</span> from ALICE [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 275" title="ALICE Collaboration, B. Abelev et al., Measurement of charm production at central rapidity in proton–proton collisions at &#xA; &#xA; &#xA; &#xA; $$\sqrt{s}=2.76$$&#xA; &#xA; &#xA; &#xA; &#xA; s&#xA; &#xA; =&#xA; 2.76&#xA; &#xA; &#xA; &#xA; TeV. JHEP 1207, 191 (2012). &#xA; arXiv:1205.4007&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR275" id="ref-link-section-d90629110e52112">275</a>], ATLAS [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 276" title="ATLAS Collaboration, Measurement of &#xA; &#xA; &#xA; &#xA; $$D^{(*)}$$&#xA; &#xA; &#xA; &#xA; D&#xA; &#xA; (&#xA; &#xA; ∗&#xA; )&#xA; &#xA; &#xA; &#xA; &#xA; meson production cross sections in pp collisions at &#xA; &#xA; &#xA; &#xA; $$\sqrt{s}=7$$&#xA; &#xA; &#xA; &#xA; &#xA; s&#xA; &#xA; =&#xA; 7&#xA; &#xA; &#xA; &#xA; TeV with the ATLAS detector, ATLAS-CONF-2011-017, ATLAS-COM-CONF-2011-030" href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR276" id="ref-link-section-d90629110e52115">276</a>] and LHCb [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 277" title="LHCb Collaboration, R. Aaij et al., Prompt charm production in pp collisions at &#xA; &#xA; &#xA; &#xA; $$\sqrt{s}=7$$&#xA; &#xA; &#xA; &#xA; &#xA; s&#xA; &#xA; =&#xA; 7&#xA; &#xA; &#xA; &#xA; TeV. Nucl. Phys. B871, 1 (2013). &#xA; arXiv:1302.2864&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR277" id="ref-link-section-d90629110e52118">277</a>], and at the highest available energy <span class="mathjax-tex">\(\sqrt{s}=13~\,\mathrm {TeV}\)</span> from LHCb [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 278" title="LHCb Collaboration, R. Aaij et al., Measurements of prompt charm production cross sections in &#xA; &#xA; &#xA; &#xA; $$pp$$&#xA; &#xA; &#xA; &#xA; p&#xA; p&#xA; &#xA; &#xA; &#xA; collisions at &#xA; &#xA; &#xA; &#xA; $$\sqrt{s}$$&#xA; &#xA; &#xA; &#xA; s&#xA; &#xA; &#xA; &#xA; = 13 TeV. &#xA; arXiv:1510.01707&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR278" id="ref-link-section-d90629110e52159">278</a>] (blue points in Figs. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig16">16</a>, <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig17">17</a>). The total cross sections of LHCb have been obtained from charmed hadron production measurements in a limited phase space region [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 277" title="LHCb Collaboration, R. Aaij et al., Prompt charm production in pp collisions at &#xA; &#xA; &#xA; &#xA; $$\sqrt{s}=7$$&#xA; &#xA; &#xA; &#xA; &#xA; s&#xA; &#xA; =&#xA; 7&#xA; &#xA; &#xA; &#xA; TeV. Nucl. Phys. B871, 1 (2013). &#xA; arXiv:1302.2864&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR277" id="ref-link-section-d90629110e52168">277</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 278" title="LHCb Collaboration, R. Aaij et al., Measurements of prompt charm production cross sections in &#xA; &#xA; &#xA; &#xA; $$pp$$&#xA; &#xA; &#xA; &#xA; p&#xA; p&#xA; &#xA; &#xA; &#xA; collisions at &#xA; &#xA; &#xA; &#xA; $$\sqrt{s}$$&#xA; &#xA; &#xA; &#xA; s&#xA; &#xA; &#xA; &#xA; = 13 TeV. &#xA; arXiv:1510.01707&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR278" id="ref-link-section-d90629110e52171">278</a>] using extrapolations based on NLO QCD predictions matched with parton shower Monte Carlo generators.</p><p>The theory predictions for the PDF sets ABM12, CJ15, CT14 and JR14 at NLO and NNLO are shown in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig16">16</a>, together with the respective PDF uncertainties. For all these PDF sets the perturbative expansion is stable, the theory computations agree well with the data and predictions, e.g., for a future collider with <span class="mathjax-tex">\(\sqrt{s} \simeq 100~\,\mathrm {TeV}\)</span>, yield positive cross sections. The PDF uncertainties obtained for CT14, however, do increase significantly above energies of <span class="mathjax-tex">\(\sqrt{s} \simeq 1~\,\mathrm {TeV}\)</span>.</p><p>The same information for the sets HERAPDF2.0, MMHT14, NNPDF3.0 and PDF4LHC15 is displayed in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig17">17</a>. These predictions all agree with data at low energies but start to behave very differently for HERAPDF2.0, MMHT14 or NNPDF3.0 at energies above <span class="mathjax-tex">\(\sqrt{s} \simeq \mathcal{O}(10)~\,\mathrm {TeV}\)</span> and for PDF4LHC15 above <span class="mathjax-tex">\(\sqrt{s} \simeq \mathcal{O}(100)~\,\mathrm {TeV}\)</span>. At the same time, the associated PDF uncertainties in this region of phase space become very large, thereby limiting the predictive power. Typically, the PDF uncertainties of the NNLO sets are even larger than at NLO. In the case of MMHT14 the consistency of the NNLO predictions with LHC data from ALICE [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 275" title="ALICE Collaboration, B. Abelev et al., Measurement of charm production at central rapidity in proton–proton collisions at &#xA; &#xA; &#xA; &#xA; $$\sqrt{s}=2.76$$&#xA; &#xA; &#xA; &#xA; &#xA; s&#xA; &#xA; =&#xA; 2.76&#xA; &#xA; &#xA; &#xA; TeV. JHEP 1207, 191 (2012). &#xA; arXiv:1205.4007&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR275" id="ref-link-section-d90629110e52358">275</a>], ATLAS [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 276" title="ATLAS Collaboration, Measurement of &#xA; &#xA; &#xA; &#xA; $$D^{(*)}$$&#xA; &#xA; &#xA; &#xA; D&#xA; &#xA; (&#xA; &#xA; ∗&#xA; )&#xA; &#xA; &#xA; &#xA; &#xA; meson production cross sections in pp collisions at &#xA; &#xA; &#xA; &#xA; $$\sqrt{s}=7$$&#xA; &#xA; &#xA; &#xA; &#xA; s&#xA; &#xA; =&#xA; 7&#xA; &#xA; &#xA; &#xA; TeV with the ATLAS detector, ATLAS-CONF-2011-017, ATLAS-COM-CONF-2011-030" href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR276" id="ref-link-section-d90629110e52361">276</a>] and LHCb [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 277" title="LHCb Collaboration, R. Aaij et al., Prompt charm production in pp collisions at &#xA; &#xA; &#xA; &#xA; $$\sqrt{s}=7$$&#xA; &#xA; &#xA; &#xA; &#xA; s&#xA; &#xA; =&#xA; 7&#xA; &#xA; &#xA; &#xA; TeV. Nucl. Phys. B871, 1 (2013). &#xA; arXiv:1302.2864&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR277" id="ref-link-section-d90629110e52365">277</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 278" title="LHCb Collaboration, R. Aaij et al., Measurements of prompt charm production cross sections in &#xA; &#xA; &#xA; &#xA; $$pp$$&#xA; &#xA; &#xA; &#xA; p&#xA; p&#xA; &#xA; &#xA; &#xA; collisions at &#xA; &#xA; &#xA; &#xA; $$\sqrt{s}$$&#xA; &#xA; &#xA; &#xA; s&#xA; &#xA; &#xA; &#xA; = 13 TeV. &#xA; arXiv:1510.01707&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR278" id="ref-link-section-d90629110e52368">278</a>] at energies of <span class="mathjax-tex">\(\sqrt{s}=7~\,\mathrm {TeV}\)</span> and <span class="mathjax-tex">\(13~\,\mathrm {TeV}\)</span> deteriorates. For NNPDF3.0 the central prediction at NNLO displays a change in slope for energies above <span class="mathjax-tex">\(\sqrt{s} \simeq 3~\,\mathrm {TeV}\)</span> leading to a steeply rising cross section. The most striking feature, however, are the negative cross sections for HERAPDF2.0, MMHT14 and PDF4LHC15 at energies above <span class="mathjax-tex">\(\sqrt{s} \simeq \mathcal{O}(30 - 100)~\,\mathrm {TeV}\)</span>, depending on the chosen set. This is an effect of the negative gluon PDF for those sets at values of <i>x</i> within the kinematic reach of current or future hadron colliders up to <span class="mathjax-tex">\(\sqrt{s} \simeq 100~\,\mathrm {TeV}\)</span>. This results in an instability of the perturbative expansion of the <span class="mathjax-tex">\(\sigma _{pp \rightarrow c{\bar{c}}}\)</span> cross section at high energies when the contribution from the quark–gluon channel dominates. The reason for a negative gluon PDF in the NNLO set of PDF4LHC15 (being some average of the CT14, MMHT14 and NNPDF3.0 sets) is unclear. In contrast, other PDFs shown in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig16">16</a> demonstrate stability of the perturbative expansion through NNLO up to very high energies and good consistency of the predictions with the experimental data.</p><h3 class="c-article__sub-heading" id="Sec27"><span class="c-article-section__title-number">5.3 </span> <span class="mathjax-tex">\(W'/Z'\)</span> production</h3><p>Cross sections sensitive to large-<i>x</i> parton distributions typically fall rapidly with increasing <i>x</i> values, leading to limitations in the quantity and precision of experimental data and the kinematic range over which they can be obtained. Consequently, the precision to which one can constrain large-<i>x</i> PDFs decreases with <i>x</i>, and systematic uncertainties due to extrapolations into unmeasured regions of <i>x</i> (or those excluded by cuts) increase. Similarly, the theoretical uncertainties due to various approximations in the treatment of nuclear corrections for deuterium data, or target mass and higher twist effects, also become larger.</p><p>To illustrate this, consider the production of a heavy <span class="mathjax-tex">\(W'\)</span> boson as a function of the <span class="mathjax-tex">\(W'\)</span> rapidity <span class="mathjax-tex">\(y_{W'}\)</span> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 279" title="L.T. Brady, A. Accardi, W. Melnitchouk, J.F. Owens, Impact of PDF uncertainties at large &#xA; &#xA; &#xA; &#xA; $$x$$&#xA; &#xA; &#xA; x&#xA; &#xA; &#xA; on heavy boson production. JHEP 06, 019 (2012). &#xA; arXiv:1110.5398&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR279" id="ref-link-section-d90629110e52762">279</a>]. Assuming Standard Model couplings, the parton luminosity for a produced negatively charged <span class="mathjax-tex">\(W'^-\)</span> boson is given by</p><div id="Equ22" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned}&amp;{{ \mathcal{L}_{W'^-} \, = \, }} \frac{2 \pi G_F}{3\sqrt{2}} x_1 x_2 \bigg [ \cos ^2\theta _C \big ( \bar{u}(x_2)d(x_1) + \bar{c}(x_2)s(x_1) \big )\nonumber \\&amp;\quad + \sin ^2\theta _C \big ( \bar{u}(x_2)s(x_1) + \bar{c}(x_2)d(x_1) \big ) \bigg ] + (x_1 \leftrightarrow x_2) \, , \end{aligned}$$</span></div><div class="c-article-equation__number"> (22) </div></div><p>where <span class="mathjax-tex">\(G_F\)</span> is the Fermi constant and <span class="mathjax-tex">\(\theta _C\)</span> the Cabibbo angle. The uncertainty <span class="mathjax-tex">\(\delta \mathcal{L}_{W'^-}\)</span> in the luminosity is shown in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig18">18</a> for various PDF sets as a function of <span class="mathjax-tex">\(y_{W'}\)</span>, for several fixed values of the boson mass from the SM <i>W</i> up to <span class="mathjax-tex">\(M_{W'}=7\)</span> TeV.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-18" data-title="Fig. 18"><figure><figcaption><b id="Fig18" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 18</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1140/epjc/s10052-016-4285-4/figures/18" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig18_HTML.gif?as=webp"><img aria-describedby="Fig18" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig18_HTML.gif" alt="figure 18" loading="lazy"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-18-desc"><p>Relative uncertainty <span class="mathjax-tex">\(\delta \mathcal{L}_{W'^-} / \mathcal{L}_{W'^-}\)</span> in the <span class="mathjax-tex">\(W'^-\)</span> luminosity as a function of rapidity <span class="mathjax-tex">\(y_{W'}\)</span> for the combined PDF4LHC15 set (<i>dotted</i>), the CJ15 (<i>solid</i>), MMHT14 (<i>dot-dashed</i>), and CT14 (<i>dashed</i>) PDFs for various <span class="mathjax-tex">\(W'\)</span> masses from 80 GeV (SM) to 7.0 TeV. All PDF uncertainties have been scaled to a common 68 % c.l. as provided by the various groups</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1140/epjc/s10052-016-4285-4/figures/18" data-track-dest="link:Figure18 Full size image" aria-label="Full size image figure 18" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <p>Note that as the rapidity or mass of the produced boson increases, so does the momentum fraction <span class="mathjax-tex">\(x_{1,2} = (M_{W'}/\sqrt{s})\, e^{\pm y_{W'}}\)</span> of one or both partons, in which case the luminosity behaves as <span class="mathjax-tex">\(\mathcal{L}^- \sim \bar{u}(x_2) d(x_1)\)</span>. Except for the highest <span class="mathjax-tex">\(M_{W'}\)</span> values, the PDF uncertainty typically remains small up to large values of <span class="mathjax-tex">\(y_{W'}\)</span>, corresponding to <span class="mathjax-tex">\(x_1 \approx 0.65\)</span>, beyond which it rises dramatically for all <span class="mathjax-tex">\(M_{W'}\)</span>. This is precisely the region where data constraining the <i>d</i>-quark PDF are scarce, and theoretical assumptions play an important role [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 1" title="A. Accardi, L.T. Brady, W. Melnitchouk, J.F. Owens, N. Sato, Constraints on large-&#xA; &#xA; &#xA; &#xA; $$x$$&#xA; &#xA; &#xA; x&#xA; &#xA; &#xA; parton distributions from new weak boson production and deep-inelastic scattering data. &#xA; arXiv:1602.03154&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR1" id="ref-link-section-d90629110e53852">1</a>]. This is particularly pronounced for fits that exclude DIS data at low invariant masses, such as the three fits included in the PDF4LHC combination [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 8" title="J. Butterworth et al., PDF4LHC recommendations for LHC Run II. J. Phys. G43, 023001 (2016). &#xA; arXiv:1510.03865&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR8" id="ref-link-section-d90629110e53855">8</a>]. For large <span class="mathjax-tex">\(W'\)</span> masses, the <span class="mathjax-tex">\(\bar{u}\)</span> PDF is evaluated at <span class="mathjax-tex">\(x_2 \sim 0.2 - 0.5\)</span>, where data are either nonexistent or have large errors, giving rise to the increased uncertainties in some of the PDF sets at <span class="mathjax-tex">\(y_{W'} \sim 0\)</span>.</p><p>The relative uncertainties in the luminosities in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig18">18</a> have been scaled to a common 68 % c.l., as in the tables in the previous sections. One observes a very large range of uncertainties for the various PDF sets, which stems from different tolerance criteria used and different methodologies employed for the treatment of data at high values of <i>x</i>. The smallest uncertainty is obtained for the CJ15 PDF set, which makes use of low invariant mass data to constrain the high-<i>x</i> region, and does not employ additional tolerance factors inflating the uncertainties. The MMHT and CT14 PDF sets have larger errors, due to stronger cuts on low-mass DIS data and larger tolerances, and consequently the averaged PDF4LHC15 set gives similarly large uncertainties.</p><p>This example illustrates the problematic nature of statistically combining PDF sets that have been determined using very different theoretical treatments of the high-<i>x</i> region, leading to an overestimate of the uncertainties at these kinematics. Using the PDF4LHC15 set as the sole basis for background estimates, for example, one could potentially miss signals of new physics in regions such as at high rapidity <span class="mathjax-tex">\(y_{W'}\)</span>. A more meaningful PDF uncertainty would be obtained when combining PDF sets obtained under similar conditions and inputs; if large differences are found, these should be investigated further rather than simply averaged over.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-19" data-title="Fig. 19"><figure><figcaption><b id="Fig19" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 19</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1140/epjc/s10052-016-4285-4/figures/19" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig19_HTML.gif?as=webp"><img aria-describedby="Fig19" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1140%2Fepjc%2Fs10052-016-4285-4/MediaObjects/10052_2016_4285_Fig19_HTML.gif" alt="figure 19" loading="lazy"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-19-desc"><p>Ratio of central values of the <span class="mathjax-tex">\(W'^-\)</span> luminosity <span class="mathjax-tex">\(\mathcal{L}_{W'^-}\)</span> to the PDF4LHC value (dotted, 68 % c.l. shaded band) as a function of rapidity <span class="mathjax-tex">\(y_{W'}\)</span>. The PDF sets CJ15 (<i>red solid curve</i>), MMHT14 (<i>blue dot-dashed curve</i>), CT14 (<i>blue dashed curve</i>), and NNPDF3.0 (<i>green dashed curve</i>) are compared for a <span class="mathjax-tex">\(W'\)</span> mass <span class="mathjax-tex">\(M_{W'}=3.5\)</span> TeV</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1140/epjc/s10052-016-4285-4/figures/19" data-track-dest="link:Figure19 Full size image" aria-label="Full size image figure 19" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <p>This is also illustrated in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig19">19</a>, where the central values for the <span class="mathjax-tex">\(W'^-\)</span> luminosity for several PDF sets are compared relative to the luminosity computed from the central PDF4LHC15 distributions. The different theoretical assumptions utilized in the fits produce systematic differences in the large-<i>x</i> PDFs, which give rise to ratios of central values that are of the same order as the overall PDF4LHC15 68 % c.l. uncertainty, and in the case of the NNPDF3.0 set are about twice as large.</p><p>The fact that the uncertainty bands of the individual sets overlap with that of the PDF4LHC15 set is not, however, an indication that the latter is a good estimate of the PDF uncertainties in this extrapolation region. Rather, the PDF4LHC15 band effectively represents a statistical envelope of the systematic theoretical differences between the sets included in the combination. A comparison with the luminosity computed using the CJ15 PDF set, which is not included in the PDF4LHC15 combination, is instructive in this respect. The two main theoretical assumptions affecting the <span class="mathjax-tex">\(W'^-\)</span> luminosity are the nuclear corrections in deuterium (applied or fitted in the CJ15 and MMHT14 analyses, as well as in JR14 and ABM12), and the parametrization of the <i>d</i>-quark PDF.</p><p>For the latter, the traditional choice has been to assume a behavior <span class="mathjax-tex">\(\propto (1-x)^\beta \)</span> as <span class="mathjax-tex">\(x \rightarrow 1\)</span> for both the <i>d</i>- and <i>u</i>-quark PDFs (as, <i>e.g.</i>, in the MMHT14 and NNPDF3.0 analyses), in which case the <i>d</i> / <i>u</i> ratio either vanishes or becomes infinite in the <span class="mathjax-tex">\(x \rightarrow 1\)</span> limit depending on whether the exponent <span class="mathjax-tex">\(\beta \)</span> is larger for <i>d</i> or <i>u</i>. Alternatively, including an additive term in the <i>d</i>-quark PDF proportional to <i>u</i>(<i>x</i>) (as in CJ15) or constraining <span class="mathjax-tex">\(\beta _u=\beta _d\)</span> (as in CT14) allows the <i>d</i> / <i>u</i> ratio to reach a finite, nonzero limiting value at <span class="mathjax-tex">\(x \rightarrow 1\)</span>. Furthermore, the CJ15 distributions were also fitted to low invariant mass (3.5 GeV<span class="mathjax-tex">\(^2&lt; W^2 &lt; 12.5\)</span> GeV<span class="mathjax-tex">\(^2\)</span>) DIS data, which were excluded by kinematic cuts in the MMHT14, CT14 and NNPDF3.0 analyses. Consequently, the following features can be observed in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig19">19</a>:</p><ul class="u-list-style-bullet"> <li> <p>The MMHT14 curve follows CJ15 closely until <span class="mathjax-tex">\(y_{W'} \approx 1 (x \approx 0.65)\)</span>, after which the <i>d</i>-quark PDF turns upwards relative to CJ15, in the region not constrained by the large-<i>x</i> and low-<span class="mathjax-tex">\(W^2\)</span> SLAC data utilized in CJ15.</p> </li> <li> <p>The CT14 curve is lower than CJ15 at <span class="mathjax-tex">\(y_{W'} \lesssim 0.6\)</span>  (<span class="mathjax-tex">\(x \lesssim 0.45\)</span>), and higher at larger <span class="mathjax-tex">\(y_{W'}\)</span>, because of the neglect of nuclear corrections. At <span class="mathjax-tex">\(y_{W'} &gt; 1\)</span> the <i>d</i>-quark PDF is essentially unconstrained since neither the low-<span class="mathjax-tex">\(W^2\)</span> SLAC data nor the reconstructed Tevatron <i>W</i>-boson production data are included in the fit.</p> </li> <li> <p>The NNPDF3.0 fit, which excludes low-<span class="mathjax-tex">\(W^2\)</span> DIS data and does not utilize nuclear or hadronic corrections, consistently deviates from all others. It is, however, compatible with those within its own uncertainties, which at large <i>x</i> are about four times larger than that of the other fits.</p> </li> </ul><p>In summary, in extreme kinematic regions, such as at large rapidity or for large-mass observables, caution must be exercised when utilizing PDF error bands and nominal confidence levels provided by the various PDF groups for precision calculations and statistically meaningful comparisons to data. Utilizing the PDF4LHC15 band at face value likely overestimates the current uncertainty on large-<i>x</i> PDFs, and could lead to signals of new physics being missed. Calculations performed with the combination set should always be cross-checked with as many individual PDF sets as possible, taking into account the amount and kind of data included in each fit, as well as the different theoretical inputs. The latter explore different physics issues and can vary considerably from one PDF set to another. When differences arise, further scrutiny of the PDF fit results themselves may be needed before drawing any definitive conclusions.</p></div></div></section><section data-title="Recommendations for PDF usage"><div class="c-article-section" id="Sec28-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec28"><span class="c-article-section__title-number">6 </span>Recommendations for PDF usage</h2><div class="c-article-section__content" id="Sec28-content"><p>Recommendations for the usage of PDFs generally aim in providing guidance for estimates of the magnitude and the uncertainties of cross sections in a reliable but also efficient way. First recommendations have been provided by the <i>PDF4LHC Working Group</i> in the <i>Interim Recommendations</i> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 280" title="M. Botje et al., The PDF4LHC working group interim recommendations. &#xA; arXiv:1101.0538&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR280" id="ref-link-section-d90629110e54888">280</a>]. There, the MSTW [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 197" title="A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Parton distributions for the LHC. Eur. Phys. J. C 63, 189 (2009). &#xA; arXiv:0901.0002&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR197" id="ref-link-section-d90629110e54891">197</a>] PDF was used as a central set for predictions at NNLO in QCD and the procedure for calculation of the PDF uncertainties, based on an envelope of several PDF sets, was proposed. This approach has been criticized for being impractical. The 2015 PDF4LHC recommendations [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 8" title="J. Butterworth et al., PDF4LHC recommendations for LHC Run II. J. Phys. G43, 023001 (2016). &#xA; arXiv:1510.03865&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR8" id="ref-link-section-d90629110e54894">8</a>] have evolved from related discussions and aim in improving the efficiency of cross section computations by averaging several PDFs along with their respective uncertainties. Here, we briefly recall these suggestions and put them into context of the findings of the previous sections. We comment on several shortcomings of the recommendations [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 8" title="J. Butterworth et al., PDF4LHC recommendations for LHC Run II. J. Phys. G43, 023001 (2016). &#xA; arXiv:1510.03865&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR8" id="ref-link-section-d90629110e54898">8</a>] and propose an alternative for the PDF usage at the LHC.</p><h3 class="c-article__sub-heading" id="Sec29"><span class="c-article-section__title-number">6.1 </span>The 2015 PDF4LHC recommendations: A critical appraisal</h3><p>The 2015 PDF4LHC recommendations [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 8" title="J. Butterworth et al., PDF4LHC recommendations for LHC Run II. J. Phys. G43, 023001 (2016). &#xA; arXiv:1510.03865&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR8" id="ref-link-section-d90629110e54908">8</a>] distinguish four cases: (i) Comparisons between data and theory for Standard Model measurements, (ii) Searches for Beyond the Standard Model phenomena, (iii) Calculation of PDF uncertainties in situations when computational speed is needed, or a more limited number of error PDFs may be desirable and (iv) Calculation of PDF uncertainties in precision observables.</p><p>For the case (i), the recommendation is to use the individual PDF sets ABM12 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2" title="S. Alekhin, J. Blümlein, S. Moch, The ABM parton distributions tuned to LHC data. Phys. Rev. D 89, 054028 (2014). &#xA; arXiv:1310.3059&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR2" id="ref-link-section-d90629110e54914">2</a>], CJ12 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 191" title="J.F. Owens, A. Accardi, W. Melnitchouk, Global parton distributions with nuclear and finite-&#xA; &#xA; &#xA; &#xA; $$Q^2$$&#xA; &#xA; &#xA; &#xA; Q&#xA; 2&#xA; &#xA; &#xA; &#xA; corrections. Phys. Rev. D 87, 094012 (2013). &#xA; arXiv:1212.1702&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR191" id="ref-link-section-d90629110e54917">191</a>], CT14 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 3" title="S. Dulat, T.J. Hou, J. Gao, M. Guzzi, J. Huston, P. Nadolsky, J. Pumplin, C. Schmidt, D. Stump, C.P. Yuan, The CT14 global analysis of quantum chromodynamics. &#xA; arXiv:1506.07443&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR3" id="ref-link-section-d90629110e54920">3</a>], JR14 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 5" title="P. Jimenez-Delgado, E. Reya, Delineating parton distributions and the strong coupling. Phys. Rev. D 89, 074049 (2014). &#xA; arXiv:1403.1852&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR5" id="ref-link-section-d90629110e54923">5</a>], HERAPDF2.0 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 4" title="ZEUS, H1 Collaboration, H. Abramowicz et al., Combination of measurements of inclusive deep-inelastic &#xA; &#xA; &#xA; &#xA; $$e^{\pm }p$$&#xA; &#xA; &#xA; &#xA; &#xA; e&#xA; ±&#xA; &#xA; p&#xA; &#xA; &#xA; &#xA; scattering cross sections and QCD analysis of HERA data. &#xA; arXiv:1506.06042&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR4" id="ref-link-section-d90629110e54926">4</a>], MMHT14 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 6" title="L.A. Harland-Lang, A.D. Martin, P. Motylinski, R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs. Eur. Phys. J. C 75, 204 (2015). &#xA; arXiv:1412.3989&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR6" id="ref-link-section-d90629110e54930">6</a>], and NNPDF3.0 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 7" title="NNPDF Collaboration, R.D. Ball et al., Parton distributions for the LHC Run II. JHEP 04, 040 (2015). &#xA; arXiv:1410.8849&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR7" id="ref-link-section-d90629110e54933">7</a>]. It is not clear, why the full account of the PDF dependence should be limited to SM processes only. Deviations observed in the theory predictions obtained with the various PDFs can often be traced back to the differences in the underlying theoretical assumptions and models in the PDF fits. With more LHC data available, tests of the compatibility of those data sets in the individual PDF fits will become more stringent. Studies to quantify the constraining power of processes like hadro-production of <span class="mathjax-tex">\(t {\bar{t}}\)</span> pairs, jets or <span class="mathjax-tex">\(W^\pm \)</span> and <i>Z</i> bosons become possible at high precision.</p><p>For the case (ii), it is recommended to employ the PDF4LHC15 sets [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 8" title="J. Butterworth et al., PDF4LHC recommendations for LHC Run II. J. Phys. G43, 023001 (2016). &#xA; arXiv:1510.03865&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR8" id="ref-link-section-d90629110e55002">8</a>], which represent the combination of the CT14 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 3" title="S. Dulat, T.J. Hou, J. Gao, M. Guzzi, J. Huston, P. Nadolsky, J. Pumplin, C. Schmidt, D. Stump, C.P. Yuan, The CT14 global analysis of quantum chromodynamics. &#xA; arXiv:1506.07443&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR3" id="ref-link-section-d90629110e55005">3</a>], MMHT14 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 6" title="L.A. Harland-Lang, A.D. Martin, P. Motylinski, R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs. Eur. Phys. J. C 75, 204 (2015). &#xA; arXiv:1412.3989&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR6" id="ref-link-section-d90629110e55008">6</a>], and NNPDF3.0 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 7" title="NNPDF Collaboration, R.D. Ball et al., Parton distributions for the LHC Run II. JHEP 04, 040 (2015). &#xA; arXiv:1410.8849&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR7" id="ref-link-section-d90629110e55011">7</a>]. The combination is performed using the Monte Carlo approach at different levels of precision, leading to the recommended sets <span class="u-monospace">PDF4LHC15_30</span> and <span class="u-monospace">PDF4LHC15_100</span>. The restriction to CT14, MMHT14 and NNPDF3.0 implies a bias both for the central value and for the PDF uncertainties of BSM cross section predictions. For example, a bias is introduced by fixing the central value of <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span> to an agreed common value, currently chosen to be <span class="mathjax-tex">\(\alpha _s(M_Z) = 0.118\)</span> at both NLO and NNLO. This choice is in contradiction with the precision determinations of <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span> at different orders in perturbation theory, as summarized in Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Sec19">4</a>. Further, for searches at the highest energies, the PDFs are probed close to the hadronic threshold near <span class="mathjax-tex">\(x \simeq 1\)</span>, where nuclear corrections and other hadronic effects, considered for instance in the CJ15 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 1" title="A. Accardi, L.T. Brady, W. Melnitchouk, J.F. Owens, N. Sato, Constraints on large-&#xA; &#xA; &#xA; &#xA; $$x$$&#xA; &#xA; &#xA; x&#xA; &#xA; &#xA; parton distributions from new weak boson production and deep-inelastic scattering data. &#xA; arXiv:1602.03154&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR1" id="ref-link-section-d90629110e55187">1</a>] and JR14 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 5" title="P. Jimenez-Delgado, E. Reya, Delineating parton distributions and the strong coupling. Phys. Rev. D 89, 074049 (2014). &#xA; arXiv:1403.1852&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR5" id="ref-link-section-d90629110e55190">5</a>] analyses, are important.</p><p>For the case (iii), the <span class="u-monospace">PDF4LHC15_30</span> sets are recommended to use. We would like to note, that here the balance between the computational speed and the precision of the result (in e.g. MC simulation) has to be determined by the analysers. The problem rises from the large deviations between data and theory predictions at low scales and also at the edges of the kinematical ranges of data currently used in PDF fits as illustrated in Sects. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Sec5">3</a> and <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Sec20">5</a>. The average of various GM-VFNS for heavy quark production, such as ACOT [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 159" title="M.A.G. Aivazis, J.C. Collins, F.I. Olness, W.-K. Tung, Leptoproduction of heavy quarks. 2. A Unified QCD formulation of charged and neutral current processes from fixed target to collider energies. Phys. Rev. D 50, 3102 (1994). &#xA; arXiv:hep-ph/9312319&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR159" id="ref-link-section-d90629110e55205">159</a>], FONLL [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 162" title="S. Forte, E. Laenen, P. Nason, J. Rojo, Heavy quarks in deep-inelastic scattering. Nucl. Phys. B 834, 116 (2010). &#xA; arXiv:1001.2312&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR162" id="ref-link-section-d90629110e55208">162</a>] and RT [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 163" title="R.S. Thorne, Effect of changes of variable flavor number scheme on parton distribution functions and predicted cross sections. Phys. Rev. D 86, 074017 (2012). &#xA; arXiv:1201.6180&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR163" id="ref-link-section-d90629110e55212">163</a>], leaves a large degree of arbitrariness in the theory predictions, cf. Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig10">10</a>. Note that the <span class="u-monospace">PDF4LHC15_30</span> sets were updated in December 2015 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 281" title="A. Buckley, J. Rojo, Private communication" href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR281" id="ref-link-section-d90629110e55221">281</a>] to account for an extension of their validity range below the original <span class="mathjax-tex">\(Q &gt; 8~\,\mathrm {GeV}\)</span> as only discussed in the later publication [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 282" title="J. R. Andersen et al. Les Houches 2015: Physics at TeV Colliders Standard Model Working Group Report. &#xA; arXiv:1605.04692&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR282" id="ref-link-section-d90629110e55258">282</a>].</p><p>For the case (iv), the set <span class="u-monospace">PDF4LHC15_100</span> is recommended. Recalling that this case concerns measurements of the precision observables, it is unclear why PDFs should be treated differently than in the case (i). The differences between individual PDF sets propagate the cross section measurements directly through the acceptance corrections or extrapolation factors, as illustrated in Figs. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig15">15</a>, <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig17">17</a> and <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Fig19">19</a>. Use of the <span class="u-monospace">PDF4LHC15_100</span> is worrysome, since these differences are smeared out in the combination, which, in addition, is limited to only three PDF sets. The SM parameters, determined using the precision observables obtained in this way, may be biased.</p><p>In summary, the recent PDF4LHC recommendations [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 8" title="J. Butterworth et al., PDF4LHC recommendations for LHC Run II. J. Phys. G43, 023001 (2016). &#xA; arXiv:1510.03865&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR8" id="ref-link-section-d90629110e55283">8</a>] cannot be viewed as definitive in the case of precision theory predictions, as the advocated averaging procedure introduces bias, artificially inflates the uncertainties, and makes it difficult to quantify potential discrepancies between the individual PDF sets.</p><h3 class="c-article__sub-heading" id="Sec30"><span class="c-article-section__title-number">6.2 </span>New recommendations for the PDF usage at the LHC</h3><p>Based on the considerations above, we propose modifications to the recommendations for PDF usage at the LHC in order to retain the predictive capability of the individual PDF sets. Two cases can be distinguished:</p><ol class="u-list-style-none"> <li> <span class="u-custom-list-number">1.</span> <p> <b>Precise theory predictions</b>, addressing a class of predictions, within or beyond the SM, which encompasses any type of cross section prediction including radiative corrections of any kind, whether at fixed-order or via resummation to some logarithmic accuracy. This class also includes the MC simulations used for the calculation of the acceptance corrections for precision observables, e.g. cross sections which might be used further for determination of SM parameters.</p><ul class="u-list-style-bullet"> <li> <p> <i>Recommendation:</i> Use the individual recent PDF sets, currently ABM12 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2" title="S. Alekhin, J. Blümlein, S. Moch, The ABM parton distributions tuned to LHC data. Phys. Rev. D 89, 054028 (2014). &#xA; arXiv:1310.3059&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR2" id="ref-link-section-d90629110e55316">2</a>], CJ15 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 1" title="A. Accardi, L.T. Brady, W. Melnitchouk, J.F. Owens, N. Sato, Constraints on large-&#xA; &#xA; &#xA; &#xA; $$x$$&#xA; &#xA; &#xA; x&#xA; &#xA; &#xA; parton distributions from new weak boson production and deep-inelastic scattering data. &#xA; arXiv:1602.03154&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR1" id="ref-link-section-d90629110e55319">1</a>], CT14 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 3" title="S. Dulat, T.J. Hou, J. Gao, M. Guzzi, J. Huston, P. Nadolsky, J. Pumplin, C. Schmidt, D. Stump, C.P. Yuan, The CT14 global analysis of quantum chromodynamics. &#xA; arXiv:1506.07443&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR3" id="ref-link-section-d90629110e55322">3</a>], JR14 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 5" title="P. Jimenez-Delgado, E. Reya, Delineating parton distributions and the strong coupling. Phys. Rev. D 89, 074049 (2014). &#xA; arXiv:1403.1852&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR5" id="ref-link-section-d90629110e55325">5</a>], HERAPDF2.0 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 4" title="ZEUS, H1 Collaboration, H. Abramowicz et al., Combination of measurements of inclusive deep-inelastic &#xA; &#xA; &#xA; &#xA; $$e^{\pm }p$$&#xA; &#xA; &#xA; &#xA; &#xA; e&#xA; ±&#xA; &#xA; p&#xA; &#xA; &#xA; &#xA; scattering cross sections and QCD analysis of HERA data. &#xA; arXiv:1506.06042&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR4" id="ref-link-section-d90629110e55329">4</a>], MMHT14 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 6" title="L.A. Harland-Lang, A.D. Martin, P. Motylinski, R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs. Eur. Phys. J. C 75, 204 (2015). &#xA; arXiv:1412.3989&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR6" id="ref-link-section-d90629110e55332">6</a>], and NNPDF3.0 [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 7" title="NNPDF Collaboration, R.D. Ball et al., Parton distributions for the LHC Run II. JHEP 04, 040 (2015). &#xA; arXiv:1410.8849&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR7" id="ref-link-section-d90629110e55335">7</a>] (or as many as possible), together with the respective uncertainties for the chosen PDF set, the strong coupling <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span> and the heavy quark masses <span class="mathjax-tex">\(m_c\)</span>, <span class="mathjax-tex">\(m_b\)</span> and <span class="mathjax-tex">\(m_t\)</span>. Once a PDF set is updated, the most recent version should be used.</p> </li> <li> <p> <i>Rationale:</i> Precise theory predictions as needed for any comparisons between theory and data for processes in the SM or beyond (such as hadro-production of jets, <span class="mathjax-tex">\(W^\pm \)</span>- or <i>Z</i>-boson production, either singly or in pairs, heavy-quark hadro-production, or generally the production of new massive particles at the TeV scale) often depend on details of the PDF fits and the underlying theory assumptions and schemes used. Differences in the theory predictions based on the individual sets can give an indication of residual systematic uncertainties or shed light on drawbacks and need for potential improvements in the physics models used in the extraction of those PDFs. This applies in particular to measurements used for the determination of SM parameters such as the strong coupling <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span>, heavy quark masses <span class="mathjax-tex">\(m_c\)</span>, <span class="mathjax-tex">\(m_b\)</span> and <span class="mathjax-tex">\(m_t\)</span> or the <i>W</i>-boson mass, because these parameters are directly correlated to the PDFs used in their extraction from the experimental observables.</p> </li> </ul> </li> <li> <span class="u-custom-list-number">2.</span> <p> <b>Theory predictions for feasibility studies</b>, the complementary class containing all other cross section predictions where high precision is not required, such as those based on Born approximations and/or order of magnitude estimates, or in cases where precision may be sacrificed in favor of computational speed. Here, also studies of novel accelerators and detectors are addressed.</p><ul class="u-list-style-bullet"> <li> <p> <i>Recommendation</i>: Use any of the recent PDF sets (listed in <span class="u-monospace">LHAPDFv6</span> or later versions).</p> </li> <li> <p> <i>Rationale</i>: Often in phenomenological applications for the modern and future facilities one is interested in a quick order of magnitude estimate for the particular cross sections. These are directly proportional to the parton luminosity and to the value of <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span>. In these cases, one may be willing to sacrifice precision in favor of computational speed. Here, the usage of the sets <span class="u-monospace">PDF4LHC15_30</span> and <span class="u-monospace">PDF4LHC15_100</span> may provide an efficient estimate of PDF uncertainties, although care must be taken in their interpretation depending on the observable and covered kinematic range. Restricting the recommendation to PDFs listed in the <span class="u-monospace">LHAPDF(v6)</span> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 283" title="A. Buckley, J. Ferrando, S. Lloyd, K. Nordström, B. Page, M. Rüfenacht, M. Schönherr, G. Watt, LHAPDF6: parton density access in the LHC precision era. Eur. Phys. J. C 75, 132 (2015). &#xA; arXiv:1412.7420&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR283" id="ref-link-section-d90629110e55703">283</a>] interface excludes parton luminosities with lesser precision in the interpolation of the underlying grids (e.g., in <span class="u-monospace">LHAPDF(v5)</span> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 284" title="M. R. Whalley, D. Bourilkov, R. C. Group, The Les Houches accord PDFs (LHAPDF) and LHAGLUE, in HERA and the LHC: A workshop on the implications of HERA for LHC physics. in Proceedings, Part B (2005). &#xA; arXiv:hep-ph/0508110&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR284" id="ref-link-section-d90629110e55709">284</a>]) or “partonometers” [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 285" title="J.P. Ralston, Pocket partonometer. Phys. Lett. B 172, 430 (1986)" href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR285" id="ref-link-section-d90629110e55712">285</a>] with outdated calibration.</p> </li> </ul> </li> </ol><p>In the Monte Carlo generators, for example, <span class="u-monospace">MadGraph5_aMC@NLO</span> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 286" title="J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.S. Shao, T. Stelzer, P. Torrielli, M. Zaro, The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. JHEP 07, 079 (2014). &#xA; arXiv:1405.0301&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR286" id="ref-link-section-d90629110e55725">286</a>], <span class="u-monospace">POWHEG-BOX (v2)</span> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 287" title="POWHEG-BOX (v2). &#xA; http://powhegbox.mib.infn.it/&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR287" id="ref-link-section-d90629110e55731">287</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 288" title="S. Alioli, P. Nason, C. Oleari, E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX. JHEP 06, 043 (2010). &#xA; arXiv:1002.2581&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR288" id="ref-link-section-d90629110e55735">288</a>] and <span class="u-monospace">SHERPA (v2)</span> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 289" title="SHERPA (v2). &#xA; https://sherpa.hepforge.org/doc/SHERPA-MC-2.2.0.html&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR289" id="ref-link-section-d90629110e55741">289</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 290" title="T. Gleisberg, S. Höche, F. Krauss, M. Schönherr, S. Schumann, F. Siegert, J. Winter, Event generation with SHERPA 1.1. JHEP 02 (2009) 007. &#xA; arXiv:0811.4622&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR290" id="ref-link-section-d90629110e55744">290</a>], or other recently developed generators, like <span class="u-monospace">Geneva</span> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 291" title="S. Alioli, C.W. Bauer, C. Berggren, F.J. Tackmann, J.R. Walsh, Drell–Yan production at NNLL’+NNLO matched to parton showers. Phys. Rev. D 92, 094020 (2015). &#xA; arXiv:1508.01475&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR291" id="ref-link-section-d90629110e55750">291</a>], different PDF sets can be efficiently studied with reweighting methods. This allows to generate weighted events for a given setup, and to reweight a-posteriori each event in a fast and efficient way, by generating new weights associated with different choices of renormalization and factorization scales and/or PDFs. Please note, that at present, PDF reweighting is performed by assuming the linear PDF weight dependence, which is not correct, since PDFs are also present in the Sudakov form-factor. Efforts to extend the reweighting to the entire Sudakov form-factor and to the full parton shower are ongoing. The reweighting technique turns out to be particularly useful to compute in a fast (although at the moment approximate) way PDF uncertainties affecting the predictions.</p></div></div></section><section data-title="Conclusion"><div class="c-article-section" id="Sec31-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec31"><span class="c-article-section__title-number">7 </span>Conclusion</h2><div class="c-article-section__content" id="Sec31-content"><p>In this report we have reviewed recent developments in the determination of PDFs in global QCD analyses. Thanks to high precision experimental measurements and continuous theoretical improvements, the parton content of the proton is generally well constrained and PDFs, along with the strong coupling constant <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span> and the heavy-quark masses <span class="mathjax-tex">\(m_c\)</span>, <span class="mathjax-tex">\(m_b\)</span> and <span class="mathjax-tex">\(m_t\)</span>, have been determined with good accuracy, at least at NNLO in QCD. This forms the foundation for precise cross section predictions at the LHC in Run 2.</p><p>We have briefly discussed the available data used in PDF extractions and the kinematic range covered, and emphasized the importance of selecting mutually consistent sets of data in PDF fits in order to achieve acceptable <span class="mathjax-tex">\(\chi ^2\)</span> values for the goodness-of-fit estimate. The main thrust of the study has been the computation of benchmark cross sections for a variety of processes at hadron colliders, including Higgs boson production in gluon–gluon fusion. We have illustrated how different choices for the theoretical description of the hard scattering process and choices of parameters have an impact on the predicted cross sections, and lead to systematic shifts that are often significantly larger than the associated PDF and <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span> uncertainties. A particular example has been the treatment of heavy quarks in DIS, where the quality of the various scheme choices has been quantified in terms of <span class="mathjax-tex">\(\chi ^2\)</span>/NDP values when comparing predicted cross sections to data. We have also pointed out the inconsistently low values for the pole mass of the charm quark used in some fits, and have stressed the correlation of the strong coupling constant <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span> with the PDF parameters. Ideally, <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span> should be determined simultaneously with the PDFs, and we have summarized here the state of the art in the context of PDF analyses.</p><p>Our findings expose a number of shortcomings in the recent PDF4LHC recommendations [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 8" title="J. Butterworth et al., PDF4LHC recommendations for LHC Run II. J. Phys. G43, 023001 (2016). &#xA; arXiv:1510.03865&#xA; &#xA; &#xA; " href="/article/10.1140/epjc/s10052-016-4285-4#ref-CR8" id="ref-link-section-d90629110e56066">8</a>]. We have shown that these do not provide sufficient control over some theoretical uncertainties, and may therefore be problematic for precision predictions in Run 2 of the LHC. Instead, we suggest new recommendations for the usage of PDFs based on a theoretically consistent procedure necessary to meet the precision requirements of the LHC era.</p></div></div></section> </div> <div id="MagazineFulltextArticleBodySuffix"><section aria-labelledby="Bib1" data-title="References"><div class="c-article-section" id="Bib1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Bib1">References</h2><div class="c-article-section__content" id="Bib1-content"><div data-container-section="references"><ol class="c-article-references" data-track-component="outbound reference" data-track-context="references section"><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="1."><p class="c-article-references__text" id="ref-CR1">A. Accardi, L.T. Brady, W. Melnitchouk, J.F. Owens, N. Sato, Constraints on large-<span class="mathjax-tex">\(x\)</span> parton distributions from new weak boson production and deep-inelastic scattering data. <a href="http://arxiv.org/abs/1602.03154" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1602.03154">arXiv:1602.03154</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="2."><p class="c-article-references__text" id="ref-CR2">S. Alekhin, J. Blümlein, S. Moch, The ABM parton distributions tuned to LHC data. Phys. Rev. D <b>89</b>, 054028 (2014). <a href="http://arxiv.org/abs/1310.3059" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1310.3059">arXiv:1310.3059</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="3."><p class="c-article-references__text" id="ref-CR3">S. Dulat, T.J. Hou, J. Gao, M. Guzzi, J. Huston, P. Nadolsky, J. Pumplin, C. Schmidt, D. Stump, C.P. Yuan, The CT14 global analysis of quantum chromodynamics. <a href="http://arxiv.org/abs/1506.07443" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1506.07443">arXiv:1506.07443</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="4."><p class="c-article-references__text" id="ref-CR4">ZEUS, H1 Collaboration, H. Abramowicz et al., Combination of measurements of inclusive deep-inelastic <span class="mathjax-tex">\(e^{\pm }p\)</span> scattering cross sections and QCD analysis of HERA data. <a href="http://arxiv.org/abs/1506.06042" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1506.06042">arXiv:1506.06042</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="5."><p class="c-article-references__text" id="ref-CR5">P. Jimenez-Delgado, E. Reya, Delineating parton distributions and the strong coupling. Phys. Rev. D <b>89</b>, 074049 (2014). <a href="http://arxiv.org/abs/1403.1852" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1403.1852">arXiv:1403.1852</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="6."><p class="c-article-references__text" id="ref-CR6">L.A. Harland-Lang, A.D. Martin, P. Motylinski, R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs. Eur. Phys. J. C <b>75</b>, 204 (2015). <a href="http://arxiv.org/abs/1412.3989" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1412.3989">arXiv:1412.3989</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="7."><p class="c-article-references__text" id="ref-CR7">NNPDF Collaboration, R.D. Ball et al., Parton distributions for the LHC Run II. JHEP <b>04</b>, 040 (2015). <a href="http://arxiv.org/abs/1410.8849" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1410.8849">arXiv:1410.8849</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="8."><p class="c-article-references__text" id="ref-CR8">J. Butterworth et al., PDF4LHC recommendations for LHC Run II. J. Phys. <b>G43</b>, 023001 (2016). <a href="http://arxiv.org/abs/1510.03865" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1510.03865">arXiv:1510.03865</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="9."><p class="c-article-references__text" id="ref-CR9">A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, A. Huss, T.A. Morgan, The NNLO QCD corrections to Z boson production at large transverse momentum. <a href="http://arxiv.org/abs/1605.04295" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1605.04295">arXiv:1605.04295</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="10."><p class="c-article-references__text" id="ref-CR10">S. Forte, <i>private communication</i>, May 18, 2016</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="11."><p class="c-article-references__text" id="ref-CR11">H. Paukkunen, C.A. Salgado, Agreement of neutrino deep-inelastic scattering data with global fits of parton distributions. Phys. Rev. Lett. <b>110</b>, 212301 (2013). <a href="http://arxiv.org/abs/1302.2001" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1302.2001">arXiv:1302.2001</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="12."><p class="c-article-references__text" id="ref-CR12">G. Altarelli, in QCD and experiment: status of <span class="mathjax-tex">\(\alpha _s\)</span>. eds. by: P.M. Zerwas, H.A. Kastrup, Workshop on QCD: 20 Years Later Aachen, Germany, June 9–13, pp. 172–204 (1992)</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="13."><p class="c-article-references__text" id="ref-CR13">J. Blümlein, M. Klein, G. Ingelman, R. Rückl, Testing QCD scaling violations in the HERA energy range. Z. Phys. C <b>45</b>, 501 (1990)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/BF01549682" data-track-item_id="10.1007/BF01549682" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/BF01549682" aria-label="Article reference 13" data-doi="10.1007/BF01549682">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 13" href="http://scholar.google.com/scholar_lookup?&amp;title=Testing%20QCD%20scaling%20violations%20in%20the%20HERA%20energy%20range&amp;journal=Z.%20Phys.%20C&amp;doi=10.1007%2FBF01549682&amp;volume=45&amp;publication_year=1990&amp;author=Bl%C3%BCmlein%2CJ&amp;author=Klein%2CM&amp;author=Ingelman%2CG&amp;author=R%C3%BCckl%2CR"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="14."><p class="c-article-references__text" id="ref-CR14">J.P. Berge et al., A measurement of differential cross sections and nucleon structure functions in charged current neutrino interactions on iron. Z. Phys. C <b>49</b>, 187 (1991)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/BF01555493" data-track-item_id="10.1007/BF01555493" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/BF01555493" aria-label="Article reference 14" data-doi="10.1007/BF01555493">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=1131138" aria-label="MathSciNet reference 14">MathSciNet</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 14" href="http://scholar.google.com/scholar_lookup?&amp;title=A%20measurement%20of%20differential%20cross%20sections%20and%20nucleon%20structure%20functions%20in%20charged%20current%20neutrino%20interactions%20on%20iron&amp;journal=Z.%20Phys.%20C&amp;doi=10.1007%2FBF01555493&amp;volume=49&amp;publication_year=1991&amp;author=Berge%2CJP"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="15."><p class="c-article-references__text" id="ref-CR15">A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, J. Pires, Second order QCD corrections to jet production at hadron colliders: the all-gluon contribution. Phys. Rev. Lett. <b>110</b>, 162003 (2013). <a href="http://arxiv.org/abs/1301.7310" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1301.7310">arXiv:1301.7310</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="16."><p class="c-article-references__text" id="ref-CR16">H1 Collaboration, F.D. Aaron et al., Inclusive deep-inelastic scattering at high <span class="mathjax-tex">\(Q^2\)</span> with longitudinally polarised lepton beams at HERA. JHEP <b>09</b>, 061 (2012). <a href="http://arxiv.org/abs/1206.7007" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1206.7007">arXiv:1206.7007</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="17."><p class="c-article-references__text" id="ref-CR17">H1 Collaboration, C. Adloff et al., Measurement and QCD analysis of neutral and charged current cross-sections at HERA. Eur. Phys. J. C <b>30</b>, 1 (2003). <a href="http://arxiv.org/abs/hep-ex/0304003" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ex/0304003">arXiv:hep-ex/0304003</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="18."><p class="c-article-references__text" id="ref-CR18">ZEUS Collaboration, S. Chekanov et al., A ZEUS next-to-leading-order QCD analysis of data on deep inelastic scattering, Phys. Rev. D <b>67</b>, 012007 (2003). <a href="http://arxiv.org/abs/hep-ex/0208023" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ex/0208023">arXiv:hep-ex/0208023</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="19."><p class="c-article-references__text" id="ref-CR19">ATLAS Collaboration, G. Aad et al., Measurement of the inclusive <span class="mathjax-tex">\(W^\pm \)</span> and Z/<span class="mathjax-tex">\(\gamma \)</span> cross sections in the electron and muon decay channels in <span class="mathjax-tex">\(pp\)</span> collisions at <span class="mathjax-tex">\(\sqrt{s}=7\)</span> TeV with the ATLAS detector. Phys. Rev. D <b>85</b>, 072004 (2012). <a href="http://arxiv.org/abs/1109.5141" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1109.5141">arXiv:1109.5141</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="20."><p class="c-article-references__text" id="ref-CR20">ATLAS Collaboration, G. Aad et al., Measurement of the high-mass Drell–Yan differential cross-section in pp collisions at <span class="mathjax-tex">\(\sqrt{s}=7\)</span> TeV with the ATLAS detector. Phys. Lett. B <b>725</b>, 223–242 (2013). <a href="http://arxiv.org/abs/1305.4192" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1305.4192">arXiv:1305.4192</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="21."><p class="c-article-references__text" id="ref-CR21">CMS Collaboration, S. Chatrchyan et al., Measurement of the muon charge asymmetry in inclusive <span class="mathjax-tex">\(pp \rightarrow W+X\)</span> production at <span class="mathjax-tex">\(\sqrt{s} =\)</span> 7 TeV and an improved determination of light parton distribution functions. Phys. Rev. D <b>90</b>(3), 032004 (2014). <a href="http://arxiv.org/abs/1312.6283" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1312.6283">arXiv:1312.6283</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="22."><p class="c-article-references__text" id="ref-CR22">CMS Collaboration, S. Chatrchyan et al., Measurement of the differential and double-differential Drell–Yan cross sections in proton-proton collisions at <span class="mathjax-tex">\(\sqrt{s} =\)</span> 7 TeV. JHEP <b>12</b>, 030 (2013). <a href="http://arxiv.org/abs/1310.7291" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1310.7291">arXiv:1310.7291</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="23."><p class="c-article-references__text" id="ref-CR23">CMS Collaboration, V. Khachatryan et al., Measurement of the differential cross section and charge asymmetry for inclusive pp to W + X production at <span class="mathjax-tex">\(\sqrt{s} = 8\)</span> TeV. <a href="http://arxiv.org/abs/1603.01803" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1603.01803">arXiv:1603.01803</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="24."><p class="c-article-references__text" id="ref-CR24">CMS Collaboration, V. Khachatryan et al., Measurements of differential and double-differential Drell–Yan cross sections in proton-proton collisions at 8 TeV. Eur. Phys. J. C <b>75</b>(4), 147 (2015). <a href="http://arxiv.org/abs/1412.1115" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1412.1115">arXiv:1412.1115</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="25."><p class="c-article-references__text" id="ref-CR25">DØ Collaboration, V.M. Abazov et al., Measurement of the muon charge asymmetry in <span class="mathjax-tex">\(p\bar{p}\)</span> <span class="mathjax-tex">\(\rightarrow \)</span> W+X <span class="mathjax-tex">\(\rightarrow \)</span> <span class="mathjax-tex">\(\mu \)</span> <span class="mathjax-tex">\(\nu \)</span> + X events at <span class="mathjax-tex">\(\sqrt{s}=1.96\)</span> TeV. Phys. Rev. D <b>88</b>, 091102 (2013). <a href="http://arxiv.org/abs/1309.2591" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1309.2591">arXiv:1309.2591</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="26."><p class="c-article-references__text" id="ref-CR26">DØ Collaboration, V.M. Abazov et al., Measurement of the electron charge asymmetry in <span class="mathjax-tex">\({p\bar{p}\rightarrow W+X \rightarrow e\nu +X}\)</span> decays in <span class="mathjax-tex">\({p\bar{p}}\)</span> collisions at <span class="mathjax-tex">\({\sqrt{s}=1.96}\)</span> TeV. Phys. Rev. D <b>91</b>(3), 032007 (2015). <a href="http://arxiv.org/abs/1412.2862" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1412.2862">arXiv:1412.2862</a>. [Erratum: Phys. Rev. D <b>91</b>(7), 079901 (2015)]</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="27."><p class="c-article-references__text" id="ref-CR27">LHCb Collaboration, R. Aaij et al., Measurement of the forward <span class="mathjax-tex">\(Z\)</span> boson production cross-section in <span class="mathjax-tex">\(pp\)</span> collisions at <span class="mathjax-tex">\(\sqrt{s}=7\)</span> TeV. JHEP <b>08</b>, 039 (2015). <a href="http://arxiv.org/abs/1505.07024" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1505.07024">arXiv:1505.07024</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="28."><p class="c-article-references__text" id="ref-CR28">LHCb Collaboration, R. Aaij et al., Measurement of forward <span class="mathjax-tex">\( Z\rightarrow e^+e^-\)</span> production at <span class="mathjax-tex">\(\sqrt{s}=8\)</span> TeV. JHEP <b>05</b>, 109 (2015). <a href="http://arxiv.org/abs/1503.00963" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1503.00963">arXiv:1503.00963</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="29."><p class="c-article-references__text" id="ref-CR29">LHCb Collaboration, R. Aaij et al., Measurement of forward W and Z boson production in <span class="mathjax-tex">\(pp\)</span> collisions at <span class="mathjax-tex">\( \sqrt{s}=8 \)</span> TeV. JHEP <b>01</b>, 155 (2016). <a href="http://arxiv.org/abs/1511.08039" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1511.08039">arXiv:1511.08039</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="30."><p class="c-article-references__text" id="ref-CR30">S. Alekhin, J. Blümlein, S. Moch, R. Placakyte, Iso-spin asymmetry of quark distributions and implications for single top-quark production at the LHC. <a href="http://arxiv.org/abs/1508.07923" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1508.07923">arXiv:1508.07923</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="31."><p class="c-article-references__text" id="ref-CR31">HERAFitter developers’ Team Collaboration, S. Camarda et al., QCD analysis of <span class="mathjax-tex">\(W\)</span>- and <span class="mathjax-tex">\(Z\)</span>-boson production at the Tevatron. <a href="http://arxiv.org/abs/1503.05221" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1503.05221">arXiv:1503.05221</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="32."><p class="c-article-references__text" id="ref-CR32">CDF Collaboration, F. Abe et al., Measurement of the lepton charge asymmetry in <span class="mathjax-tex">\(W\)</span> boson decays produced in <span class="mathjax-tex">\(p \bar{p}\)</span> collisions. Phys. Rev. Lett. <b>81</b>, 5754–5759 (1998). <a href="http://arxiv.org/abs/hep-ex/9809001" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ex/9809001">arXiv:hep-ex/9809001</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="33."><p class="c-article-references__text" id="ref-CR33">CDF Collaboration, D. Acosta et al., Measurement of the forward–backward charge asymmetry from <span class="mathjax-tex">\(W \rightarrow e \nu \)</span> production in <span class="mathjax-tex">\(p\bar{p}\)</span> collisions at <span class="mathjax-tex">\(\sqrt{s} = 1.96\)</span> TeV. Phys. Rev. D <b>71</b>, 051104 (2005). <a href="http://arxiv.org/abs/hep-ex/0501023" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ex/0501023">arXiv:hep-ex/0501023</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="34."><p class="c-article-references__text" id="ref-CR34">CDF Collaboration, T.A. Aaltonen et al., Measurement of <span class="mathjax-tex">\(d\sigma /dy\)</span> of Drell–Yan <span class="mathjax-tex">\(e^+e^-\)</span> pairs in the <span class="mathjax-tex">\(Z\)</span> Mass Region from <span class="mathjax-tex">\(p\bar{p}\)</span> Collisions at <span class="mathjax-tex">\(\sqrt{s}=1.96\)</span> TeV. Phys. Lett. <b>B692</b>, 232–239 (2010). <a href="http://arxiv.org/abs/0908.3914" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/0908.3914">arXiv:0908.3914</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="35."><p class="c-article-references__text" id="ref-CR35">CDF Collaboration, T. Aaltonen et al., Direct measurement of the <span class="mathjax-tex">\(W\)</span> production charge asymmetry in <span class="mathjax-tex">\(p\bar{p}\)</span> collisions at <span class="mathjax-tex">\(\sqrt{s} = 1.96\)</span> TeV. Phys. Rev. Lett. <b>102</b>, 181801 (2009). <a href="http://arxiv.org/abs/0901.2169" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/0901.2169">arXiv:0901.2169</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="36."><p class="c-article-references__text" id="ref-CR36">CMS Collaboration, S. Chatrchyan et al., Measurement of the lepton charge asymmetry in inclusive <span class="mathjax-tex">\(W\)</span> production in pp collisions at <span class="mathjax-tex">\(\sqrt{s} = 7\)</span> TeV. JHEP <b>04</b>, 050 (2011). <a href="http://arxiv.org/abs/1103.3470" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1103.3470">arXiv:1103.3470</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="37."><p class="c-article-references__text" id="ref-CR37">CMS Collaboration, S. Chatrchyan et al., Measurement of the rapidity and transverse momentum distributions of <span class="mathjax-tex">\(Z\)</span> bosons in <span class="mathjax-tex">\(pp\)</span> collisions at <span class="mathjax-tex">\(\sqrt{s}=7\)</span> TeV. Phys. Rev. D <b>85</b>, 032002 (2012). <a href="http://arxiv.org/abs/1110.4973" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1110.4973">arXiv:1110.4973</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="38."><p class="c-article-references__text" id="ref-CR38">CMS Collaboration, S. Chatrchyan et al., Measurement of the electron charge asymmetry in inclusive <span class="mathjax-tex">\(W\)</span> production in <span class="mathjax-tex">\(pp\)</span> collisions at <span class="mathjax-tex">\(\sqrt{s}=7\)</span> TeV. Phys. Rev. Lett. <b>109</b>, 111806 (2012). <a href="http://arxiv.org/abs/1206.2598" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1206.2598">arXiv:1206.2598</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="39."><p class="c-article-references__text" id="ref-CR39">DØ Collaboration, V.M. Abazov et al., Measurement of the muon charge asymmetry from <span class="mathjax-tex">\(W\)</span> boson decays. Phys. Rev. D <b>77</b>, 011106 (2008). <a href="http://arxiv.org/abs/0709.4254" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/0709.4254">arXiv:0709.4254</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="40."><p class="c-article-references__text" id="ref-CR40">DØ Collaboration, V.M. Abazov et al., Measurement of the shape of the boson rapidity distribution for <span class="mathjax-tex">\(p \bar{p} \rightarrow Z/\gamma ^* \rightarrow e^{+} e^{-}\)</span> + <span class="mathjax-tex">\(X\)</span> events produced at <span class="mathjax-tex">\(\sqrt{s}\)</span> of 1.96-TeV. Phys. Rev. D <b>76</b>, 012003 (2007). <a href="http://arxiv.org/abs/hep-ex/0702025" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ex/0702025">arXiv:hep-ex/0702025</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="41."><p class="c-article-references__text" id="ref-CR41">DØ Collaboration, V.M. Abazov et al., Measurement of the electron charge asymmetry in <span class="mathjax-tex">\(p \bar{p} \rightarrow W + X \rightarrow e \nu + X\)</span> events at <span class="mathjax-tex">\(\sqrt{s}\)</span> = 1.96-TeV. Phys. Rev. Lett. <b>101</b>, 211801 (2008). <a href="http://arxiv.org/abs/0807.3367" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/0807.3367">arXiv:0807.3367</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="42."><p class="c-article-references__text" id="ref-CR42">DØ Collaboration, V.M. Abazov et al., Measurement of the W boson production charge asymmetry in <span class="mathjax-tex">\(p\bar{p}\rightarrow W+X \rightarrow e\nu +X\)</span> events at <span class="mathjax-tex">\(\sqrt{s}=1.96\)</span> TeV</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="43."><p class="c-article-references__text" id="ref-CR43">LHCb Collaboration, R. Aaij et al., Inclusive <span class="mathjax-tex">\(W\)</span> and <span class="mathjax-tex">\(Z\)</span> production in the forward region at <span class="mathjax-tex">\(\sqrt{s} = 7\)</span> TeV, JHEP <b>06</b>, 058 (2012). <a href="http://arxiv.org/abs/1204.1620" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1204.1620">arXiv:1204.1620</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="44."><p class="c-article-references__text" id="ref-CR44">LHCb Collaboration, R. Aaij et al., Measurement of the cross-section for <span class="mathjax-tex">\(Z \rightarrow e^+e^-\)</span> production in <span class="mathjax-tex">\(pp\)</span> collisions at <span class="mathjax-tex">\(\sqrt{s}=7\)</span> TeV. JHEP <b>02</b>, 106 (2013). <a href="http://arxiv.org/abs/1212.4620" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1212.4620">arXiv:1212.4620</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="45."><p class="c-article-references__text" id="ref-CR45">A. Kwiatkowski, H. Spiesberger, H.J. Möhring, Heracles: an event generator for <span class="mathjax-tex">\(e p\)</span> interactions at HERA energies including radiative processes: version 1.0. Comput. Phys. Commun. <b>69</b>, 155 (1992)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/0010-4655(92)90136-M" data-track-item_id="10.1016/0010-4655(92)90136-M" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2F0010-4655%2892%2990136-M" aria-label="Article reference 45" data-doi="10.1016/0010-4655(92)90136-M">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=1992CoPhC..69..155K" aria-label="ADS reference 45">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 45" href="http://scholar.google.com/scholar_lookup?&amp;title=Heracles%3A%20an%20event%20generator%20for%20%24%24e%20p%24%24%20e%20p%20interactions%20at%20HERA%20energies%20including%20radiative%20processes%3A%20version%201.0&amp;journal=Comput.%20Phys.%20Commun.&amp;doi=10.1016%2F0010-4655%2892%2990136-M&amp;volume=69&amp;publication_year=1992&amp;author=Kwiatkowski%2CA&amp;author=Spiesberger%2CH&amp;author=M%C3%B6hring%2CHJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="46."><p class="c-article-references__text" id="ref-CR46">A. Arbuzov, D.Yu. Bardin, J. Blümlein, L. Kalinovskaya, T. Riemann, Hector 1.00: a program for the calculation of QED, QCD and electroweak corrections to <span class="mathjax-tex">\(ep\)</span> and <span class="mathjax-tex">\(l^\pm N\)</span> deep-inelastic neutral and charged current scattering. Comput. Phys. Commun. <b>94</b>, 128 (1996). <a href="http://arxiv.org/abs/hep-ph/9511434" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/9511434">arXiv:hep-ph/9511434</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="47."><p class="c-article-references__text" id="ref-CR47">J. Blümlein, Leading log radiative corrections to <span class="mathjax-tex">\(e p\)</span> scattering including jet measurement. Phys. Lett. B <b>271</b>, 267 (1991)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/0370-2693(91)91311-I" data-track-item_id="10.1016/0370-2693(91)91311-I" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2F0370-2693%2891%2991311-I" aria-label="Article reference 47" data-doi="10.1016/0370-2693(91)91311-I">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=1991PhLB..271..267B" aria-label="ADS reference 47">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 47" href="http://scholar.google.com/scholar_lookup?&amp;title=Leading%20log%20radiative%20corrections%20to%20%24%24e%20p%24%24%20e%20p%20scattering%20including%20jet%20measurement&amp;journal=Phys.%20Lett.%20B&amp;doi=10.1016%2F0370-2693%2891%2991311-I&amp;volume=271&amp;publication_year=1991&amp;author=Bl%C3%BCmlein%2CJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="48."><p class="c-article-references__text" id="ref-CR48">J. Blümlein, <span class="mathjax-tex">\({\cal {O}}(\alpha ^{2} L^{2})\)</span> radiative corrections to deep-inelastic <span class="mathjax-tex">\(e p\)</span> scattering for different kinematical variables. Z. Phys. C <b>65</b>, 293 (1995). <a href="http://arxiv.org/abs/hep-ph/9403342" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/9403342">arXiv:hep-ph/9403342</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="49."><p class="c-article-references__text" id="ref-CR49">J. Blümlein, H. Kawamura, <span class="mathjax-tex">\({\cal {O}}(\alpha ^2 L)\)</span> radiative corrections to deep-inelastic <span class="mathjax-tex">\(ep\)</span> scattering. Phys. Lett. B <b>553</b>, 242 (2003). <a href="http://arxiv.org/abs/hep-ph/0211191" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/0211191">arXiv:hep-ph/0211191</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="50."><p class="c-article-references__text" id="ref-CR50">J. Kripfganz, H. Perlt, Electroweak radiative corrections and quark mass singularities. Z. Phys. C <b>41</b>, 319 (1988)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/BF01566932" data-track-item_id="10.1007/BF01566932" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/BF01566932" aria-label="Article reference 50" data-doi="10.1007/BF01566932">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 50" href="http://scholar.google.com/scholar_lookup?&amp;title=Electroweak%20radiative%20corrections%20and%20quark%20mass%20singularities&amp;journal=Z.%20Phys.%20C&amp;doi=10.1007%2FBF01566932&amp;volume=41&amp;publication_year=1988&amp;author=Kripfganz%2CJ&amp;author=Perlt%2CH"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="51."><p class="c-article-references__text" id="ref-CR51">J. Blümlein, Leading log radiative corrections to deep-inelastic neutral and charged current scattering at HERA. Z. Phys. C <b>47</b>, 89 (1990)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/BF01551917" data-track-item_id="10.1007/BF01551917" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/BF01551917" aria-label="Article reference 51" data-doi="10.1007/BF01551917">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 51" href="http://scholar.google.com/scholar_lookup?&amp;title=Leading%20log%20radiative%20corrections%20to%20deep-inelastic%20neutral%20and%20charged%20current%20scattering%20at%20HERA&amp;journal=Z.%20Phys.%20C&amp;doi=10.1007%2FBF01551917&amp;volume=47&amp;publication_year=1990&amp;author=Bl%C3%BCmlein%2CJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="52."><p class="c-article-references__text" id="ref-CR52">H. Spiesberger, QED radiative corrections for parton distributions. Phys. Rev. D <b>52</b>, 4936 (1995). <a href="http://arxiv.org/abs/hep-ph/9412286" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/9412286">arXiv:hep-ph/9412286</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="53."><p class="c-article-references__text" id="ref-CR53">M. Roth, S. Weinzierl, QED corrections to the evolution of parton distributions. Phys. Lett. B <b>590</b>, 190 (2004). <a href="http://arxiv.org/abs/hep-ph/0403200" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/0403200">arXiv:hep-ph/0403200</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="54."><p class="c-article-references__text" id="ref-CR54">J. Blümlein, The theory of deeply inelastic scattering. Prog. Part. Nucl. Phys. <b>69</b>, 28 (2013). <a href="http://arxiv.org/abs/1208.6087" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1208.6087">arXiv:1208.6087</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="55."><p class="c-article-references__text" id="ref-CR55">K.A. Olive, Review of particle physics. Chin. Phys. C <b>38</b>, 090001 (2014)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1088/1674-1137/38/9/090001" data-track-item_id="10.1088/1674-1137/38/9/090001" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1088%2F1674-1137%2F38%2F9%2F090001" aria-label="Article reference 55" data-doi="10.1088/1674-1137/38/9/090001">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=2014ChPhC..38i0001O" aria-label="ADS reference 55">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 55" href="http://scholar.google.com/scholar_lookup?&amp;title=Review%20of%20particle%20physics&amp;journal=Chin.%20Phys.%20C&amp;doi=10.1088%2F1674-1137%2F38%2F9%2F090001&amp;volume=38&amp;publication_year=2014&amp;author=Olive%2CKA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="56."><p class="c-article-references__text" id="ref-CR56">S. Moch, J.A.M. Vermaseren, A. Vogt, The longitudinal structure function at the third order. Phys. Lett. B <b>606</b>, 123 (2005). <a href="http://arxiv.org/abs/hep-ph/0411112" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/0411112">arXiv:hep-ph/0411112</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.physletb.2004.11.063" data-track-item_id="10.1016/j.physletb.2004.11.063" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.physletb.2004.11.063" aria-label="Article reference 56" data-doi="10.1016/j.physletb.2004.11.063">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=2005PhLB..606..123M" aria-label="ADS reference 56">ADS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?1178.81286" aria-label="MATH reference 56">MATH</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 56" href="http://scholar.google.com/scholar_lookup?&amp;title=The%20longitudinal%20structure%20function%20at%20the%20third%20order&amp;journal=Phys.%20Lett.%20B&amp;doi=10.1016%2Fj.physletb.2004.11.063&amp;volume=606&amp;publication_year=2005&amp;author=Moch%2CS&amp;author=Vermaseren%2CJAM&amp;author=Vogt%2CA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="57."><p class="c-article-references__text" id="ref-CR57">J.A.M. Vermaseren, A. Vogt, S. Moch, The third-order QCD corrections to deep-inelastic scattering by photon exchange. Nucl. Phys. B <b>724</b>, 3 (2005). <a href="http://arxiv.org/abs/hep-ph/0504242" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/0504242">arXiv:hep-ph/0504242</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.nuclphysb.2005.06.020" data-track-item_id="10.1016/j.nuclphysb.2005.06.020" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.nuclphysb.2005.06.020" aria-label="Article reference 57" data-doi="10.1016/j.nuclphysb.2005.06.020">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=2005NuPhB.724....3V" aria-label="ADS reference 57">ADS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=2162820" aria-label="MathSciNet reference 57">MathSciNet</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?1178.81286" aria-label="MATH reference 57">MATH</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 57" href="http://scholar.google.com/scholar_lookup?&amp;title=The%20third-order%20QCD%20corrections%20to%20deep-inelastic%20scattering%20by%20photon%20exchange&amp;journal=Nucl.%20Phys.%20B&amp;doi=10.1016%2Fj.nuclphysb.2005.06.020&amp;volume=724&amp;publication_year=2005&amp;author=Vermaseren%2CJAM&amp;author=Vogt%2CA&amp;author=Moch%2CS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="58."><p class="c-article-references__text" id="ref-CR58">J. Blümlein, H. Böttcher, A. Guffanti, Non-singlet QCD analysis of deep-inelastic world data at <span class="mathjax-tex">\((\alpha _s^3)\)</span>. Nucl. Phys. B <b>774</b>, 182 (2007). <a href="http://arxiv.org/abs/hep-ph/0607200" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/0607200">arXiv:hep-ph/0607200</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.nuclphysb.2007.03.035" data-track-item_id="10.1016/j.nuclphysb.2007.03.035" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.nuclphysb.2007.03.035" aria-label="Article reference 58" data-doi="10.1016/j.nuclphysb.2007.03.035">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=2007NuPhB.774..182B" aria-label="ADS reference 58">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 58" href="http://scholar.google.com/scholar_lookup?&amp;title=Non-singlet%20QCD%20analysis%20of%20deep-inelastic%20world%20data%20at%20%24%24%28%5Calpha%20_s%5E3%29%24%24%20%28%20%CE%B1%20s%203%20%29&amp;journal=Nucl.%20Phys.%20B&amp;doi=10.1016%2Fj.nuclphysb.2007.03.035&amp;volume=774&amp;publication_year=2007&amp;author=Bl%C3%BCmlein%2CJ&amp;author=B%C3%B6ttcher%2CH&amp;author=Guffanti%2CA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="59."><p class="c-article-references__text" id="ref-CR59">S. Alekhin, J. Blümlein, S. Moch, Higher order constraints on the Higgs production rate from fixed-target DIS data. Eur. Phys. J. C <b>71</b>, 1723 (2011). <a href="http://arxiv.org/abs/1101.5261" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1101.5261">arXiv:1101.5261</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1140/epjc/s10052-011-1723-1" data-track-item_id="10.1140/epjc/s10052-011-1723-1" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1140%2Fepjc%2Fs10052-011-1723-1" aria-label="Article reference 59" data-doi="10.1140/epjc/s10052-011-1723-1">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=2011EPJC...71.1723A" aria-label="ADS reference 59">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 59" href="http://scholar.google.com/scholar_lookup?&amp;title=Higher%20order%20constraints%20on%20the%20Higgs%20production%20rate%20from%20fixed-target%20DIS%20data&amp;journal=Eur.%20Phys.%20J.%20C&amp;doi=10.1140%2Fepjc%2Fs10052-011-1723-1&amp;volume=71&amp;publication_year=2011&amp;author=Alekhin%2CS&amp;author=Bl%C3%BCmlein%2CJ&amp;author=Moch%2CS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="60."><p class="c-article-references__text" id="ref-CR60">H. Georgi, H.D. Politzer, Freedom at moderate energies: masses in color dynamics. Phys. Rev. D <b>14</b>, 1829 (1976)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1103/PhysRevD.14.1829" data-track-item_id="10.1103/PhysRevD.14.1829" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1103%2FPhysRevD.14.1829" aria-label="Article reference 60" data-doi="10.1103/PhysRevD.14.1829">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=1976PhRvD..14.1829G" aria-label="ADS reference 60">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 60" href="http://scholar.google.com/scholar_lookup?&amp;title=Freedom%20at%20moderate%20energies%3A%20masses%20in%20color%20dynamics&amp;journal=Phys.%20Rev.%20D&amp;doi=10.1103%2FPhysRevD.14.1829&amp;volume=14&amp;publication_year=1976&amp;author=Georgi%2CH&amp;author=Politzer%2CHD"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="61."><p class="c-article-references__text" id="ref-CR61">F.M. Steffens, M.D. Brown, W. Melnitchouk, S. Sanches, Parton distributions in the presence of target mass corrections. Phys. Rev. C <b>86</b>, 065208 (2012). <a href="http://arxiv.org/abs/1210.4398" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1210.4398">arXiv:1210.4398</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1103/PhysRevC.86.065208" data-track-item_id="10.1103/PhysRevC.86.065208" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1103%2FPhysRevC.86.065208" aria-label="Article reference 61" data-doi="10.1103/PhysRevC.86.065208">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=2012PhRvC..86f5208S" aria-label="ADS reference 61">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 61" href="http://scholar.google.com/scholar_lookup?&amp;title=Parton%20distributions%20in%20the%20presence%20of%20target%20mass%20corrections&amp;journal=Phys.%20Rev.%20C&amp;doi=10.1103%2FPhysRevC.86.065208&amp;volume=86&amp;publication_year=2012&amp;author=Steffens%2CFM&amp;author=Brown%2CMD&amp;author=Melnitchouk%2CW&amp;author=Sanches%2CS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="62."><p class="c-article-references__text" id="ref-CR62">J. Blümlein, H. Böttcher, Higher twist contributions to the structure functions <span class="mathjax-tex">\(F_2^p(x, Q^2)\)</span> and <span class="mathjax-tex">\(F_2^d(x, Q^2)\)</span> at large <span class="mathjax-tex">\(x\)</span> and higher orders. Phys. Lett. B <b>662</b>, 336 (2008). <a href="http://arxiv.org/abs/0802.0408" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/0802.0408">arXiv:0802.0408</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.physletb.2008.03.026" data-track-item_id="10.1016/j.physletb.2008.03.026" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.physletb.2008.03.026" aria-label="Article reference 62" data-doi="10.1016/j.physletb.2008.03.026">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=2008PhLB..662..336B" aria-label="ADS reference 62">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 62" href="http://scholar.google.com/scholar_lookup?&amp;title=Higher%20twist%20contributions%20to%20the%20structure%20functions%20%24%24F_2%5Ep%28x%2C%20Q%5E2%29%24%24%20F%202%20p%20%28%20x%20%2C%20Q%202%20%29%20and%20%24%24F_2%5Ed%28x%2C%20Q%5E2%29%24%24%20F%202%20d%20%28%20x%20%2C%20Q%202%20%29%20at%20large%20%24%24x%24%24%20x%20and%20higher%20orders&amp;journal=Phys.%20Lett.%20B&amp;doi=10.1016%2Fj.physletb.2008.03.026&amp;volume=662&amp;publication_year=2008&amp;author=Bl%C3%BCmlein%2CJ&amp;author=B%C3%B6ttcher%2CH"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="63."><p class="c-article-references__text" id="ref-CR63">S.I. Alekhin, Global fit to the charged leptons DIS data: <span class="mathjax-tex">\(\alpha _s\)</span> parton distributions, and high twists. Phys. Rev. D <b>63</b>, 094022 (2001). <a href="http://arxiv.org/abs/hep-ph/0011002" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/0011002">arXiv:hep-ph/0011002</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1103/PhysRevD.63.094022" data-track-item_id="10.1103/PhysRevD.63.094022" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1103%2FPhysRevD.63.094022" aria-label="Article reference 63" data-doi="10.1103/PhysRevD.63.094022">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=2001PhRvD..63i4022A" aria-label="ADS reference 63">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 63" href="http://scholar.google.com/scholar_lookup?&amp;title=Global%20fit%20to%20the%20charged%20leptons%20DIS%20data%3A%20%24%24%5Calpha%20_s%24%24%20%CE%B1%20s%20parton%20distributions%2C%20and%20high%20twists&amp;journal=Phys.%20Rev.%20D&amp;doi=10.1103%2FPhysRevD.63.094022&amp;volume=63&amp;publication_year=2001&amp;author=Alekhin%2CSI"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="64."><p class="c-article-references__text" id="ref-CR64">S. Alekhin, J. Blümlein, S. Moch, Parton distribution functions and benchmark cross sections at NNLO. Phys. Rev. D <b>86</b>, 054009 (2012). <a href="http://arxiv.org/abs/1202.2281" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1202.2281">arXiv:1202.2281</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1103/PhysRevD.86.054009" data-track-item_id="10.1103/PhysRevD.86.054009" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1103%2FPhysRevD.86.054009" aria-label="Article reference 64" data-doi="10.1103/PhysRevD.86.054009">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=2012PhRvD..86e4009A" aria-label="ADS reference 64">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 64" href="http://scholar.google.com/scholar_lookup?&amp;title=Parton%20distribution%20functions%20and%20benchmark%20cross%20sections%20at%20NNLO&amp;journal=Phys.%20Rev.%20D&amp;doi=10.1103%2FPhysRevD.86.054009&amp;volume=86&amp;publication_year=2012&amp;author=Alekhin%2CS&amp;author=Bl%C3%BCmlein%2CJ&amp;author=Moch%2CS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="65."><p class="c-article-references__text" id="ref-CR65">L.A. Harland-Lang, A.D. Martin, P. Motylinski, R.S. Thorne, The impact of the final HERA combined data on PDFs obtained from a global fit. <a href="http://arxiv.org/abs/1601.03413" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1601.03413">arXiv:1601.03413</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="66."><p class="c-article-references__text" id="ref-CR66">J. Gao, M. Guzzi, J. Huston, H.-L. Lai, Z. Li, P. Nadolsky, J. Pumplin, D. Stump, C.P. Yuan, CT10 next-to-next-to-leading order global analysis of QCD. Phys. Rev. D <b>89</b>, 033009 (2014). <a href="http://arxiv.org/abs/1302.6246" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1302.6246">arXiv:1302.6246</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1103/PhysRevD.89.033009" data-track-item_id="10.1103/PhysRevD.89.033009" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1103%2FPhysRevD.89.033009" aria-label="Article reference 66" data-doi="10.1103/PhysRevD.89.033009">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=2014PhRvD..89c3009G" aria-label="ADS reference 66">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 66" href="http://scholar.google.com/scholar_lookup?&amp;title=CT10%20next-to-next-to-leading%20order%20global%20analysis%20of%20QCD&amp;journal=Phys.%20Rev.%20D&amp;doi=10.1103%2FPhysRevD.89.033009&amp;volume=89&amp;publication_year=2014&amp;author=Gao%2CJ&amp;author=Guzzi%2CM&amp;author=Huston%2CJ&amp;author=Lai%2CH-L&amp;author=Li%2CZ&amp;author=Nadolsky%2CP&amp;author=Pumplin%2CJ&amp;author=Stump%2CD&amp;author=Yuan%2CCP"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="67."><p class="c-article-references__text" id="ref-CR67">R.S. Thorne, G. Watt, PDF dependence of Higgs cross sections at the tevatron and LHC: response to recent criticism. JHEP <b>08</b>, 100 (2011). <a href="http://arxiv.org/abs/1106.5789" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1106.5789">arXiv:1106.5789</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/JHEP08(2011)100" data-track-item_id="10.1007/JHEP08(2011)100" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/JHEP08(2011)100" aria-label="Article reference 67" data-doi="10.1007/JHEP08(2011)100">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=2011JHEP...08..100T" aria-label="ADS reference 67">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 67" href="http://scholar.google.com/scholar_lookup?&amp;title=PDF%20dependence%20of%20Higgs%20cross%20sections%20at%20the%20tevatron%20and%20LHC%3A%20response%20to%20recent%20criticism&amp;journal=JHEP&amp;doi=10.1007%2FJHEP08%282011%29100&amp;volume=08&amp;publication_year=2011&amp;author=Thorne%2CRS&amp;author=Watt%2CG"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="68."><p class="c-article-references__text" id="ref-CR68">A. Chuvakin, J. Smith, W.L. van Neerven, Comparison between variable flavor number schemes for charm quark electroproduction. Phys. Rev. D <b>61</b>, 096004 (2000). <a href="http://arxiv.org/abs/hep-ph/9910250" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/9910250">arXiv:hep-ph/9910250</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1103/PhysRevD.61.096004" data-track-item_id="10.1103/PhysRevD.61.096004" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1103%2FPhysRevD.61.096004" aria-label="Article reference 68" data-doi="10.1103/PhysRevD.61.096004">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=2000PhRvD..61i6004C" aria-label="ADS reference 68">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 68" href="http://scholar.google.com/scholar_lookup?&amp;title=Comparison%20between%20variable%20flavor%20number%20schemes%20for%20charm%20quark%20electroproduction&amp;journal=Phys.%20Rev.%20D&amp;doi=10.1103%2FPhysRevD.61.096004&amp;volume=61&amp;publication_year=2000&amp;author=Chuvakin%2CA&amp;author=Smith%2CJ&amp;author=Neerven%2CWL"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="69."><p class="c-article-references__text" id="ref-CR69">K.G. Wilson, Nonlagrangian models of current algebra. Phys. Rev. <b>179</b>, 1499 (1969)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1103/PhysRev.179.1499" data-track-item_id="10.1103/PhysRev.179.1499" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1103%2FPhysRev.179.1499" aria-label="Article reference 69" data-doi="10.1103/PhysRev.179.1499">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=1969PhRv..179.1499W" aria-label="ADS reference 69">ADS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=260310" aria-label="MathSciNet reference 69">MathSciNet</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 69" href="http://scholar.google.com/scholar_lookup?&amp;title=Nonlagrangian%20models%20of%20current%20algebra&amp;journal=Phys.%20Rev.&amp;doi=10.1103%2FPhysRev.179.1499&amp;volume=179&amp;publication_year=1969&amp;author=Wilson%2CKG"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="70."><p class="c-article-references__text" id="ref-CR70">W. Zimmermann, Lectures on elementary particle physics and quantum field theory. in <i>Brandeis Summer Institute</i>, vol. 1, p. 395 (MIT Press, Cambridge, 1970)</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="71."><p class="c-article-references__text" id="ref-CR71">R.A. Brandt, G. Preparata, Operator product expansions near the light cone. Nucl. Phys. B <b>27</b>, 541 (1972)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/0550-3213(71)90265-3" data-track-item_id="10.1016/0550-3213(71)90265-3" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2F0550-3213%2871%2990265-3" aria-label="Article reference 71" data-doi="10.1016/0550-3213(71)90265-3">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=1971NuPhB..27..541B" aria-label="ADS reference 71">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 71" href="http://scholar.google.com/scholar_lookup?&amp;title=Operator%20product%20expansions%20near%20the%20light%20cone&amp;journal=Nucl.%20Phys.%20B&amp;doi=10.1016%2F0550-3213%2871%2990265-3&amp;volume=27&amp;publication_year=1972&amp;author=Brandt%2CRA&amp;author=Preparata%2CG"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="72."><p class="c-article-references__text" id="ref-CR72">Y. Frishman, Operator products at almost light like distances. Ann. Phys. <b>66</b>, 373 (1971)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/0003-4916(71)90195-3" data-track-item_id="10.1016/0003-4916(71)90195-3" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2F0003-4916%2871%2990195-3" aria-label="Article reference 72" data-doi="10.1016/0003-4916(71)90195-3">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=1971AnPhy..66..373F" aria-label="ADS reference 72">ADS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=284116" aria-label="MathSciNet reference 72">MathSciNet</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 72" href="http://scholar.google.com/scholar_lookup?&amp;title=Operator%20products%20at%20almost%20light%20like%20distances&amp;journal=Ann.%20Phys.&amp;doi=10.1016%2F0003-4916%2871%2990195-3&amp;volume=66&amp;publication_year=1971&amp;author=Frishman%2CY"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="73."><p class="c-article-references__text" id="ref-CR73">W. Furmanski, R. Petronzio, Lepton–hadron processes beyond leading order in quantum chromodynamics. Z. Phys. C <b>11</b>, 293 (1982)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/BF01578280" data-track-item_id="10.1007/BF01578280" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/BF01578280" aria-label="Article reference 73" data-doi="10.1007/BF01578280">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=1982ZPhyC..11..293F" aria-label="ADS reference 73">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 73" href="http://scholar.google.com/scholar_lookup?&amp;title=Lepton%E2%80%93hadron%20processes%20beyond%20leading%20order%20in%20quantum%20chromodynamics&amp;journal=Z.%20Phys.%20C&amp;doi=10.1007%2FBF01578280&amp;volume=11&amp;publication_year=1982&amp;author=Furmanski%2CW&amp;author=Petronzio%2CR"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="74."><p class="c-article-references__text" id="ref-CR74">E.B. Zijlstra, W.L. van Neerven, Contribution of the second order gluonic Wilson coefficient to the deep-inelastic structure function. Phys. Lett. B <b>273</b>, 476 (1991)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/0370-2693(91)90301-6" data-track-item_id="10.1016/0370-2693(91)90301-6" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2F0370-2693%2891%2990301-6" aria-label="Article reference 74" data-doi="10.1016/0370-2693(91)90301-6">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=1991PhLB..273..476Z" aria-label="ADS reference 74">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 74" href="http://scholar.google.com/scholar_lookup?&amp;title=Contribution%20of%20the%20second%20order%20gluonic%20Wilson%20coefficient%20to%20the%20deep-inelastic%20structure%20function&amp;journal=Phys.%20Lett.%20B&amp;doi=10.1016%2F0370-2693%2891%2990301-6&amp;volume=273&amp;publication_year=1991&amp;author=Zijlstra%2CEB&amp;author=Neerven%2CWL"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="75."><p class="c-article-references__text" id="ref-CR75">W.L. van Neerven, E.B. Zijlstra, Order <span class="mathjax-tex">\(\alpha _s^2\)</span> contributions to the deep-inelastic Wilson coefficient. Phys. Lett. B <b>272</b>, 127 (1991)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/0370-2693(91)91024-P" data-track-item_id="10.1016/0370-2693(91)91024-P" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2F0370-2693%2891%2991024-P" aria-label="Article reference 75" data-doi="10.1016/0370-2693(91)91024-P">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=1991PhLB..272..127V" aria-label="ADS reference 75">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 75" href="http://scholar.google.com/scholar_lookup?&amp;title=Order%20%24%24%5Calpha%20_s%5E2%24%24%20%CE%B1%20s%202%20contributions%20to%20the%20deep-inelastic%20Wilson%20coefficient&amp;journal=Phys.%20Lett.%20B&amp;doi=10.1016%2F0370-2693%2891%2991024-P&amp;volume=272&amp;publication_year=1991&amp;author=Neerven%2CWL&amp;author=Zijlstra%2CEB"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="76."><p class="c-article-references__text" id="ref-CR76">E.B. Zijlstra, W.L. van Neerven, Order <span class="mathjax-tex">\(\alpha _s^2\)</span> QCD corrections to the deep-inelastic proton structure functions <span class="mathjax-tex">\(F_2\)</span> and <span class="mathjax-tex">\(F_L\)</span>. Nucl. Phys. B <b>383</b>, 525 (1992)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/0550-3213(92)90087-R" data-track-item_id="10.1016/0550-3213(92)90087-R" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2F0550-3213%2892%2990087-R" aria-label="Article reference 76" data-doi="10.1016/0550-3213(92)90087-R">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=1992NuPhB.383..525Z" aria-label="ADS reference 76">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 76" href="http://scholar.google.com/scholar_lookup?&amp;title=Order%20%24%24%5Calpha%20_s%5E2%24%24%20%CE%B1%20s%202%20QCD%20corrections%20to%20the%20deep-inelastic%20proton%20structure%20functions%20%24%24F_2%24%24%20F%202%20and%20%24%24F_L%24%24%20F%20L&amp;journal=Nucl.%20Phys.%20B&amp;doi=10.1016%2F0550-3213%2892%2990087-R&amp;volume=383&amp;publication_year=1992&amp;author=Zijlstra%2CEB&amp;author=Neerven%2CWL"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="77."><p class="c-article-references__text" id="ref-CR77">D.I. Kazakov, A.V. Kotikov, Total <span class="mathjax-tex">\(\alpha _s\)</span> correction to deep-inelastic scattering cross section ratio, R = <span class="mathjax-tex">\(\sigma _L\)</span>/ <span class="mathjax-tex">\(\sigma _T\)</span> in QCD. Calculation of longitudinal structure function. Nucl. Phys. B <b>307</b>, 721 (1988). [Erratum: Nucl. Phys. B <b>345</b>, 299 (1990)]</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="78."><p class="c-article-references__text" id="ref-CR78">D.I. Kazakov, A.V. Kotikov, G. Parente, O.A. Sampayo, J. Sanchez Guillen, Complete quartic <span class="mathjax-tex">\((\alpha _s^2)\)</span> correction to the deep-inelastic longitudinal structure function <span class="mathjax-tex">\(F_L\)</span> in QCD. Phys. Rev. Lett. <b>65</b>, 1535 (1990). [Erratum: Phys. Rev. Lett. <b>65</b>, 2921 (1990)]</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="79."><p class="c-article-references__text" id="ref-CR79">J. Sanchez Guillen, J. Miramontes, M. Miramontes, G. Parente, O.A. Sampayo, Next-to-leading order analysis of the deep-inelastic <span class="mathjax-tex">\(R = \sigma _L/\sigma _{\rm total}\)</span>. Nucl. Phys. B <b>353</b>, 337 (1991)</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="80."><p class="c-article-references__text" id="ref-CR80">E.B. Zijlstra, W.L. van Neerven, Order <span class="mathjax-tex">\(\alpha _s^2\)</span> correction to the structure function <span class="mathjax-tex">\(F_3(x, Q^2)\)</span> in deep-inelastic neutrino-hadron scattering. Phys. Lett. B <b>297</b>, 377 (1992)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/0370-2693(92)91277-G" data-track-item_id="10.1016/0370-2693(92)91277-G" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2F0370-2693%2892%2991277-G" aria-label="Article reference 80" data-doi="10.1016/0370-2693(92)91277-G">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=1992PhLB..297..377Z" aria-label="ADS reference 80">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 80" href="http://scholar.google.com/scholar_lookup?&amp;title=Order%20%24%24%5Calpha%20_s%5E2%24%24%20%CE%B1%20s%202%20correction%20to%20the%20structure%20function%20%24%24F_3%28x%2C%20Q%5E2%29%24%24%20F%203%20%28%20x%20%2C%20Q%202%20%29%20in%20deep-inelastic%20neutrino-hadron%20scattering&amp;journal=Phys.%20Lett.%20B&amp;doi=10.1016%2F0370-2693%2892%2991277-G&amp;volume=297&amp;publication_year=1992&amp;author=Zijlstra%2CEB&amp;author=Neerven%2CWL"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="81."><p class="c-article-references__text" id="ref-CR81">S. Moch, J.A.M. Vermaseren, Deep-inelastic structure functions at two loops. Nucl. Phys. B <b>573</b>, 853 (2000). <a href="http://arxiv.org/abs/hep-ph/9912355" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/9912355">arXiv:hep-ph/9912355</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/S0550-3213(00)00045-6" data-track-item_id="10.1016/S0550-3213(00)00045-6" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2FS0550-3213%2800%2900045-6" aria-label="Article reference 81" data-doi="10.1016/S0550-3213(00)00045-6">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=2000NuPhB.573..853M" aria-label="ADS reference 81">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 81" href="http://scholar.google.com/scholar_lookup?&amp;title=Deep-inelastic%20structure%20functions%20at%20two%20loops&amp;journal=Nucl.%20Phys.%20B&amp;doi=10.1016%2FS0550-3213%2800%2900045-6&amp;volume=573&amp;publication_year=2000&amp;author=Moch%2CS&amp;author=Vermaseren%2CJAM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="82."><p class="c-article-references__text" id="ref-CR82">S. Moch, M. Rogal, Charged current deep-inelastic scattering at three loops. Nucl. Phys. B <b>782</b>, 51 (2007). <a href="http://arxiv.org/abs/0704.1740" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/0704.1740">arXiv:0704.1740</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.nuclphysb.2007.05.008" data-track-item_id="10.1016/j.nuclphysb.2007.05.008" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.nuclphysb.2007.05.008" aria-label="Article reference 82" data-doi="10.1016/j.nuclphysb.2007.05.008">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=2007NuPhB.782...51M" aria-label="ADS reference 82">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 82" href="http://scholar.google.com/scholar_lookup?&amp;title=Charged%20current%20deep-inelastic%20scattering%20at%20three%20loops&amp;journal=Nucl.%20Phys.%20B&amp;doi=10.1016%2Fj.nuclphysb.2007.05.008&amp;volume=782&amp;publication_year=2007&amp;author=Moch%2CS&amp;author=Rogal%2CM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="83."><p class="c-article-references__text" id="ref-CR83">S. Moch, M. Rogal, A. Vogt, Differences between charged-current coefficient functions. Nucl. Phys. B <b>790</b>, 317 (2008). <a href="http://arxiv.org/abs/0708.3731" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/0708.3731">arXiv:0708.3731</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.nuclphysb.2007.09.022" data-track-item_id="10.1016/j.nuclphysb.2007.09.022" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.nuclphysb.2007.09.022" aria-label="Article reference 83" data-doi="10.1016/j.nuclphysb.2007.09.022">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=2008NuPhB.790..317M" aria-label="ADS reference 83">ADS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?1151.81406" aria-label="MATH reference 83">MATH</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 83" href="http://scholar.google.com/scholar_lookup?&amp;title=Differences%20between%20charged-current%20coefficient%20functions&amp;journal=Nucl.%20Phys.%20B&amp;doi=10.1016%2Fj.nuclphysb.2007.09.022&amp;volume=790&amp;publication_year=2008&amp;author=Moch%2CS&amp;author=Rogal%2CM&amp;author=Vogt%2CA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="84."><p class="c-article-references__text" id="ref-CR84">S. Moch, J.A.M. Vermaseren, A. Vogt, Third-order QCD corrections to the charged-current structure function <span class="mathjax-tex">\(F_3\)</span>. Nucl. Phys. B <b>813</b>, 220 (2009). <a href="http://arxiv.org/abs/0812.4168" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/0812.4168">arXiv:0812.4168</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="85."><p class="c-article-references__text" id="ref-CR85">D.J. Gross, F. Wilczek, Asymptotically free gauge theories. 1. Phys. Rev. D <b>8</b>, 3633 (1973)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1103/PhysRevD.8.3633" data-track-item_id="10.1103/PhysRevD.8.3633" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1103%2FPhysRevD.8.3633" aria-label="Article reference 85" data-doi="10.1103/PhysRevD.8.3633">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=1973PhRvD...8.3633G" aria-label="ADS reference 85">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 85" href="http://scholar.google.com/scholar_lookup?&amp;title=Asymptotically%20free%20gauge%20theories.%201&amp;journal=Phys.%20Rev.%20D&amp;doi=10.1103%2FPhysRevD.8.3633&amp;volume=8&amp;publication_year=1973&amp;author=Gross%2CDJ&amp;author=Wilczek%2CF"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="86."><p class="c-article-references__text" id="ref-CR86">D.J. Gross, F. Wilczek, Asymptotically free gauge theories. 2. Phys. Rev. D <b>9</b>, 980 (1974)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1103/PhysRevD.9.980" data-track-item_id="10.1103/PhysRevD.9.980" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1103%2FPhysRevD.9.980" aria-label="Article reference 86" data-doi="10.1103/PhysRevD.9.980">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=1974PhRvD...9..980G" aria-label="ADS reference 86">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 86" href="http://scholar.google.com/scholar_lookup?&amp;title=Asymptotically%20free%20gauge%20theories.%202&amp;journal=Phys.%20Rev.%20D&amp;doi=10.1103%2FPhysRevD.9.980&amp;volume=9&amp;publication_year=1974&amp;author=Gross%2CDJ&amp;author=Wilczek%2CF"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="87."><p class="c-article-references__text" id="ref-CR87">H. Georgi, H.D. Politzer, Electroproduction scaling in an asymptotically free theory of strong interactions. Phys. Rev. D <b>9</b>, 416 (1974)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1103/PhysRevD.9.416" data-track-item_id="10.1103/PhysRevD.9.416" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1103%2FPhysRevD.9.416" aria-label="Article reference 87" data-doi="10.1103/PhysRevD.9.416">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=1974PhRvD...9..416G" aria-label="ADS reference 87">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 87" href="http://scholar.google.com/scholar_lookup?&amp;title=Electroproduction%20scaling%20in%20an%20asymptotically%20free%20theory%20of%20strong%20interactions&amp;journal=Phys.%20Rev.%20D&amp;doi=10.1103%2FPhysRevD.9.416&amp;volume=9&amp;publication_year=1974&amp;author=Georgi%2CH&amp;author=Politzer%2CHD"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="88."><p class="c-article-references__text" id="ref-CR88">G. Parisi, An introduction to scaling violations. in <i>Weak Interactions and Neutrino Physics. Proceedings: 11th Rencontre de Moriond, Flaine 1976, Feb 28–Mar 12, 1976. 2.</i>, pp. 83–114 (1976)</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="89."><p class="c-article-references__text" id="ref-CR89">K.J. Kim, K. Schilcher, Scaling violation in the infinite momentum frame. Phys. Rev. D <b>17</b>, 2800 (1978)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1103/PhysRevD.17.2800" data-track-item_id="10.1103/PhysRevD.17.2800" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1103%2FPhysRevD.17.2800" aria-label="Article reference 89" data-doi="10.1103/PhysRevD.17.2800">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=1978PhRvD..17.2800K" aria-label="ADS reference 89">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 89" href="http://scholar.google.com/scholar_lookup?&amp;title=Scaling%20violation%20in%20the%20infinite%20momentum%20frame&amp;journal=Phys.%20Rev.%20D&amp;doi=10.1103%2FPhysRevD.17.2800&amp;volume=17&amp;publication_year=1978&amp;author=Kim%2CKJ&amp;author=Schilcher%2CK"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="90."><p class="c-article-references__text" id="ref-CR90">G. Altarelli, G. Parisi, Asymptotic freedom in parton language. Nucl. Phys. B <b>126</b>, 298 (1977)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/0550-3213(77)90384-4" data-track-item_id="10.1016/0550-3213(77)90384-4" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2F0550-3213%2877%2990384-4" aria-label="Article reference 90" data-doi="10.1016/0550-3213(77)90384-4">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=1977NuPhB.126..298A" aria-label="ADS reference 90">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 90" href="http://scholar.google.com/scholar_lookup?&amp;title=Asymptotic%20freedom%20in%20parton%20language&amp;journal=Nucl.%20Phys.%20B&amp;doi=10.1016%2F0550-3213%2877%2990384-4&amp;volume=126&amp;publication_year=1977&amp;author=Altarelli%2CG&amp;author=Parisi%2CG"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="91."><p class="c-article-references__text" id="ref-CR91">E.G. Floratos, D.A. Ross, C.T. Sachrajda, Higher order effects in asymptotically free gauge theories: The anomalous dimensions of Wilson operators. Nucl. Phys. B <b>129</b>, 66 (1977). [Erratum: Nucl. Phys. B <b>139</b>, 545 (1978)]</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="92."><p class="c-article-references__text" id="ref-CR92">E.G. Floratos, D.A. Ross, C.T. Sachrajda, Higher order fffects in asymptotically free gauge theories. 2. Flavor singlet Wilson operators and coefficient functions. Nucl. Phys. <b>B152</b>, 493 (1979)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/0550-3213(79)90094-4" data-track-item_id="10.1016/0550-3213(79)90094-4" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2F0550-3213%2879%2990094-4" aria-label="Article reference 92" data-doi="10.1016/0550-3213(79)90094-4">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=1979NuPhB.152..493F" aria-label="ADS reference 92">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 92" href="http://scholar.google.com/scholar_lookup?&amp;title=Higher%20order%20fffects%20in%20asymptotically%20free%20gauge%20theories.%202.%20Flavor%20singlet%20Wilson%20operators%20and%20coefficient%20functions&amp;journal=Nucl.%20Phys.&amp;doi=10.1016%2F0550-3213%2879%2990094-4&amp;volume=B152&amp;publication_year=1979&amp;author=Floratos%2CEG&amp;author=Ross%2CDA&amp;author=Sachrajda%2CCT"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="93."><p class="c-article-references__text" id="ref-CR93">A. Gonzalez-Arroyo, C. Lopez, F.J. Yndurain, Second order contributions to the structure functions in deep-inelastic scattering. 1. Theoretical calculations. Nucl. Phys. <b>B153</b>, 161 (1979)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/0550-3213(79)90596-0" data-track-item_id="10.1016/0550-3213(79)90596-0" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2F0550-3213%2879%2990596-0" aria-label="Article reference 93" data-doi="10.1016/0550-3213(79)90596-0">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=1979NuPhB.153..161G" aria-label="ADS reference 93">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 93" href="http://scholar.google.com/scholar_lookup?&amp;title=Second%20order%20contributions%20to%20the%20structure%20functions%20in%20deep-inelastic%20scattering.%201.%20Theoretical%20calculations&amp;journal=Nucl.%20Phys.&amp;doi=10.1016%2F0550-3213%2879%2990596-0&amp;volume=B153&amp;publication_year=1979&amp;author=Gonzalez-Arroyo%2CA&amp;author=Lopez%2CC&amp;author=Yndurain%2CFJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="94."><p class="c-article-references__text" id="ref-CR94">A. Gonzalez-Arroyo, C. Lopez, F.J. Yndurain, Second order contributions to the structure functions in deep-inelastic scattering. 2. Comparison with experiment for the nonsinglet contributions to <span class="mathjax-tex">\(e\)</span>, <span class="mathjax-tex">\(\mu \)</span> nucleon scattering. Nucl. Phys. <b>B159</b>, 512 (1979)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/0550-3213(79)90348-1" data-track-item_id="10.1016/0550-3213(79)90348-1" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2F0550-3213%2879%2990348-1" aria-label="Article reference 94" data-doi="10.1016/0550-3213(79)90348-1">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=1979NuPhB.159..512G" aria-label="ADS reference 94">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 94" href="http://scholar.google.com/scholar_lookup?&amp;title=Second%20order%20contributions%20to%20the%20structure%20functions%20in%20deep-inelastic%20scattering.%202.%20Comparison%20with%20experiment%20for%20the%20nonsinglet%20contributions%20to%20%24%24e%24%24%20e%20%2C%20%24%24%5Cmu%20%24%24%20%CE%BC%20nucleon%20scattering&amp;journal=Nucl.%20Phys.&amp;doi=10.1016%2F0550-3213%2879%2990348-1&amp;volume=B159&amp;publication_year=1979&amp;author=Gonzalez-Arroyo%2CA&amp;author=Lopez%2CC&amp;author=Yndurain%2CFJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="95."><p class="c-article-references__text" id="ref-CR95">G. Curci, W. Furmanski, R. Petronzio, Evolution of parton densities beyond leading order: the nonsinglet case. Nucl. Phys. B <b>175</b>, 27 (1980)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/0550-3213(80)90003-6" data-track-item_id="10.1016/0550-3213(80)90003-6" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2F0550-3213%2880%2990003-6" aria-label="Article reference 95" data-doi="10.1016/0550-3213(80)90003-6">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=1980NuPhB.175...27C" aria-label="ADS reference 95">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 95" href="http://scholar.google.com/scholar_lookup?&amp;title=Evolution%20of%20parton%20densities%20beyond%20leading%20order%3A%20the%20nonsinglet%20case&amp;journal=Nucl.%20Phys.%20B&amp;doi=10.1016%2F0550-3213%2880%2990003-6&amp;volume=175&amp;publication_year=1980&amp;author=Curci%2CG&amp;author=Furmanski%2CW&amp;author=Petronzio%2CR"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="96."><p class="c-article-references__text" id="ref-CR96">W. Furmanski, R. Petronzio, Singlet parton densities beyond leading order. Phys. Lett. B <b>97</b>, 437 (1980)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/0370-2693(80)90636-X" data-track-item_id="10.1016/0370-2693(80)90636-X" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2F0370-2693%2880%2990636-X" aria-label="Article reference 96" data-doi="10.1016/0370-2693(80)90636-X">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=1980PhLB...97..437F" aria-label="ADS reference 96">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 96" href="http://scholar.google.com/scholar_lookup?&amp;title=Singlet%20parton%20densities%20beyond%20leading%20order&amp;journal=Phys.%20Lett.%20B&amp;doi=10.1016%2F0370-2693%2880%2990636-X&amp;volume=97&amp;publication_year=1980&amp;author=Furmanski%2CW&amp;author=Petronzio%2CR"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="97."><p class="c-article-references__text" id="ref-CR97">E.G. Floratos, R. Lacaze, C. Kounnas, Space and timelike cut vertices in QCD beyond the leading order. 1. Nonsinglet sector. Phys. Lett. <b>B98</b>, 89 (1981)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/0370-2693(81)90374-9" data-track-item_id="10.1016/0370-2693(81)90374-9" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2F0370-2693%2881%2990374-9" aria-label="Article reference 97" data-doi="10.1016/0370-2693(81)90374-9">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=1981PhLB...98...89F" aria-label="ADS reference 97">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 97" href="http://scholar.google.com/scholar_lookup?&amp;title=Space%20and%20timelike%20cut%20vertices%20in%20QCD%20beyond%20the%20leading%20order.%201.%20Nonsinglet%20sector&amp;journal=Phys.%20Lett.&amp;doi=10.1016%2F0370-2693%2881%2990374-9&amp;volume=B98&amp;publication_year=1981&amp;author=Floratos%2CEG&amp;author=Lacaze%2CR&amp;author=Kounnas%2CC"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="98."><p class="c-article-references__text" id="ref-CR98">E.G. Floratos, C. Kounnas, R. Lacaze, Higher order QCD effects in inclusive annihilation and deep-inelastic scattering. Nucl. Phys. B <b>192</b>, 417 (1981)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/0550-3213(81)90434-X" data-track-item_id="10.1016/0550-3213(81)90434-X" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2F0550-3213%2881%2990434-X" aria-label="Article reference 98" data-doi="10.1016/0550-3213(81)90434-X">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=1981NuPhB.192..417F" aria-label="ADS reference 98">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 98" href="http://scholar.google.com/scholar_lookup?&amp;title=Higher%20order%20QCD%20effects%20in%20inclusive%20annihilation%20and%20deep-inelastic%20scattering&amp;journal=Nucl.%20Phys.%20B&amp;doi=10.1016%2F0550-3213%2881%2990434-X&amp;volume=192&amp;publication_year=1981&amp;author=Floratos%2CEG&amp;author=Kounnas%2CC&amp;author=Lacaze%2CR"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="99."><p class="c-article-references__text" id="ref-CR99">A. Gonzalez-Arroyo, C. Lopez, Second order contributions to the structure functions in deep-inelastic scattering. 3. The singlet case. Nucl. Phys. <b>B166</b>, 429 (1980)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/0550-3213(80)90207-2" data-track-item_id="10.1016/0550-3213(80)90207-2" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2F0550-3213%2880%2990207-2" aria-label="Article reference 99" data-doi="10.1016/0550-3213(80)90207-2">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=1980NuPhB.166..429G" aria-label="ADS reference 99">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 99" href="http://scholar.google.com/scholar_lookup?&amp;title=Second%20order%20contributions%20to%20the%20structure%20functions%20in%20deep-inelastic%20scattering.%203.%20The%20singlet%20case&amp;journal=Nucl.%20Phys.&amp;doi=10.1016%2F0550-3213%2880%2990207-2&amp;volume=B166&amp;publication_year=1980&amp;author=Gonzalez-Arroyo%2CA&amp;author=Lopez%2CC"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="100."><p class="c-article-references__text" id="ref-CR100">E.G. Floratos, R. Lacaze, C. Kounnas, Space and timelike cut vertices in QCD beyond the leading order. 2. The singlet sector. Phys. Lett. <b>B98</b>, 285 (1981)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/0370-2693(81)90016-2" data-track-item_id="10.1016/0370-2693(81)90016-2" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2F0370-2693%2881%2990016-2" aria-label="Article reference 100" data-doi="10.1016/0370-2693(81)90016-2">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=1981PhLB...98..285F" aria-label="ADS reference 100">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 100" href="http://scholar.google.com/scholar_lookup?&amp;title=Space%20and%20timelike%20cut%20vertices%20in%20QCD%20beyond%20the%20leading%20order.%202.%20The%20singlet%20sector&amp;journal=Phys.%20Lett.&amp;doi=10.1016%2F0370-2693%2881%2990016-2&amp;volume=B98&amp;publication_year=1981&amp;author=Floratos%2CEG&amp;author=Lacaze%2CR&amp;author=Kounnas%2CC"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="101."><p class="c-article-references__text" id="ref-CR101">R. Hamberg, W.L. van Neerven, The correct renormalization of the gluon operator in a covariant gauge. Nucl. Phys. B <b>379</b>, 143 (1992)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/0550-3213(92)90593-Z" data-track-item_id="10.1016/0550-3213(92)90593-Z" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2F0550-3213%2892%2990593-Z" aria-label="Article reference 101" data-doi="10.1016/0550-3213(92)90593-Z">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=1992NuPhB.379..143H" aria-label="ADS reference 101">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 101" href="http://scholar.google.com/scholar_lookup?&amp;title=The%20correct%20renormalization%20of%20the%20gluon%20operator%20in%20a%20covariant%20gauge&amp;journal=Nucl.%20Phys.%20B&amp;doi=10.1016%2F0550-3213%2892%2990593-Z&amp;volume=379&amp;publication_year=1992&amp;author=Hamberg%2CR&amp;author=Neerven%2CWL"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="102."><p class="c-article-references__text" id="ref-CR102">R.K. Ellis, W. Vogelsang, The evolution of parton distributions beyond leading order: The singlet case. <a href="http://arxiv.org/abs/hep-ph/9602356" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/9602356">arXiv:hep-ph/9602356</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="103."><p class="c-article-references__text" id="ref-CR103">S. Moch, J.A.M. Vermaseren, A. Vogt, The three-loop splitting functions in QCD: The nonsinglet case. Nucl. Phys. B <b>688</b>, 101–134 (2004). <a href="http://arxiv.org/abs/hep-ph/0403192" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/0403192">arXiv:hep-ph/0403192</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="104."><p class="c-article-references__text" id="ref-CR104">A. Vogt, S. Moch, J.A.M. Vermaseren, The three-loop splitting functions in QCD: The singlet case. Nucl. Phys. B <b>691</b>, 129–181 (2004). <a href="http://arxiv.org/abs/hep-ph/0404111" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/0404111">arXiv:hep-ph/0404111</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="105."><p class="c-article-references__text" id="ref-CR105">J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, A. von Manteuffel, C. Schneider, The 3-loop pure singlet heavy flavor contributions to the structure function <span class="mathjax-tex">\(F_2(x, Q^2)\)</span> and the anomalous dimension. Nucl. Phys. B <b>890</b>, 48 (2014). <a href="http://arxiv.org/abs/1409.1135" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1409.1135">arXiv:1409.1135</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="106."><p class="c-article-references__text" id="ref-CR106">C. Anastasiou, C. Duhr, F. Dulat, E. Furlan, T. Gehrmann, F. Herzog, A. Lazopoulos, B. Mistlberger, High precision determination of the gluon fusion Higgs boson cross section at the LHC. <a href="http://arxiv.org/abs/1602.00695" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1602.00695">arXiv:1602.00695</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="107."><p class="c-article-references__text" id="ref-CR107">I.B. Khriplovich, Green’s functions in theories with non-abelian gauge group, Sov. J. Nucl. Phys. <b>10</b> (1969) 235. [Yad. Fiz.10,409(1969)]</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="108."><p class="c-article-references__text" id="ref-CR108">G. ’t Hooft, <i>unpublished</i> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="109."><p class="c-article-references__text" id="ref-CR109">H.D. Politzer, Reliable perturbative results for strong interactions? Phys. Rev. Lett. <b>30</b>, 1346 (1973)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1103/PhysRevLett.30.1346" data-track-item_id="10.1103/PhysRevLett.30.1346" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1103%2FPhysRevLett.30.1346" aria-label="Article reference 109" data-doi="10.1103/PhysRevLett.30.1346">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=1973PhRvL..30.1346P" aria-label="ADS reference 109">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 109" href="http://scholar.google.com/scholar_lookup?&amp;title=Reliable%20perturbative%20results%20for%20strong%20interactions%3F&amp;journal=Phys.%20Rev.%20Lett.&amp;doi=10.1103%2FPhysRevLett.30.1346&amp;volume=30&amp;publication_year=1973&amp;author=Politzer%2CHD"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="110."><p class="c-article-references__text" id="ref-CR110">D.J. Gross, F. Wilczek, Ultraviolet behavior of nonabelian gauge theories. Phys. Rev. Lett. <b>30</b>, 1343 (1973)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1103/PhysRevLett.30.1343" data-track-item_id="10.1103/PhysRevLett.30.1343" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1103%2FPhysRevLett.30.1343" aria-label="Article reference 110" data-doi="10.1103/PhysRevLett.30.1343">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=1973PhRvL..30.1343G" aria-label="ADS reference 110">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 110" href="http://scholar.google.com/scholar_lookup?&amp;title=Ultraviolet%20behavior%20of%20nonabelian%20gauge%20theories&amp;journal=Phys.%20Rev.%20Lett.&amp;doi=10.1103%2FPhysRevLett.30.1343&amp;volume=30&amp;publication_year=1973&amp;author=Gross%2CDJ&amp;author=Wilczek%2CF"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="111."><p class="c-article-references__text" id="ref-CR111">W.E. Caswell, Asymptotic behavior of nonabelian gauge theories to two loop order. Phys. Rev. Lett. <b>33</b>, 244 (1974)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1103/PhysRevLett.33.244" data-track-item_id="10.1103/PhysRevLett.33.244" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1103%2FPhysRevLett.33.244" aria-label="Article reference 111" data-doi="10.1103/PhysRevLett.33.244">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=1974PhRvL..33..244C" aria-label="ADS reference 111">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 111" href="http://scholar.google.com/scholar_lookup?&amp;title=Asymptotic%20behavior%20of%20nonabelian%20gauge%20theories%20to%20two%20loop%20order&amp;journal=Phys.%20Rev.%20Lett.&amp;doi=10.1103%2FPhysRevLett.33.244&amp;volume=33&amp;publication_year=1974&amp;author=Caswell%2CWE"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="112."><p class="c-article-references__text" id="ref-CR112">D.R.T. Jones, Two loop diagrams in Yang–Mills theory. Nucl. Phys. B <b>75</b>, 531 (1974)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/0550-3213(74)90093-5" data-track-item_id="10.1016/0550-3213(74)90093-5" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2F0550-3213%2874%2990093-5" aria-label="Article reference 112" data-doi="10.1016/0550-3213(74)90093-5">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=1974NuPhB..75..531J" aria-label="ADS reference 112">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 112" href="http://scholar.google.com/scholar_lookup?&amp;title=Two%20loop%20diagrams%20in%20Yang%E2%80%93Mills%20theory&amp;journal=Nucl.%20Phys.%20B&amp;doi=10.1016%2F0550-3213%2874%2990093-5&amp;volume=75&amp;publication_year=1974&amp;author=Jones%2CDRT"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="113."><p class="c-article-references__text" id="ref-CR113">O.V. Tarasov, A.A. Vladimirov, A. Y. Zharkov, The Gell-Mann–Low function of QCD in the three-loop approximation. Phys. Lett. B <b>93</b>, 429 (1980)</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="114."><p class="c-article-references__text" id="ref-CR114">S.A. Larin, J.A.M. Vermaseren, The three loop QCD beta function and anomalous dimensions. Phys. Lett. B <b>303</b>, 334 (1993). <a href="http://arxiv.org/abs/hep-ph/9302208" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/9302208">arXiv:hep-ph/9302208</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="115."><p class="c-article-references__text" id="ref-CR115">T. van Ritbergen, J.A.M. Vermaseren, S.A. Larin, The four loop beta function in Quantum Chromodynamics. Phys. Lett. B <b>400</b>, 379 (1997). <a href="http://arxiv.org/abs/hep-ph/9701390" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/9701390">arXiv:hep-ph/9701390</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="116."><p class="c-article-references__text" id="ref-CR116">M. Czakon, The four-loop QCD beta-function and anomalous dimensions. Nucl. Phys. B <b>710</b>, 485 (2005). <a href="http://arxiv.org/abs/hep-ph/0411261" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/0411261">arXiv:hep-ph/0411261</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="117."><p class="c-article-references__text" id="ref-CR117">M. Diemoz, F. Ferroni, E. Longo, G. Martinelli, Parton densities from deep-inelastic scattering to hadronic processes at super collider energies. Z. Phys. C <b>39</b>, 21 (1988)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/BF01560387" data-track-item_id="10.1007/BF01560387" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/BF01560387" aria-label="Article reference 117" data-doi="10.1007/BF01560387">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=1988ZPhyC..39...21D" aria-label="ADS reference 117">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 117" href="http://scholar.google.com/scholar_lookup?&amp;title=Parton%20densities%20from%20deep-inelastic%20scattering%20to%20hadronic%20processes%20at%20super%20collider%20energies&amp;journal=Z.%20Phys.%20C&amp;doi=10.1007%2FBF01560387&amp;volume=39&amp;publication_year=1988&amp;author=Diemoz%2CM&amp;author=Ferroni%2CF&amp;author=Longo%2CE&amp;author=Martinelli%2CG"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="118."><p class="c-article-references__text" id="ref-CR118">M. Glück, E. Reya, A. Vogt, Parton structure of the photon beyond the leading order. Phys. Rev. D <b>45</b>, 3986 (1992)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1103/PhysRevD.45.3986" data-track-item_id="10.1103/PhysRevD.45.3986" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1103%2FPhysRevD.45.3986" aria-label="Article reference 118" data-doi="10.1103/PhysRevD.45.3986">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=1992PhRvD..45.3986G" aria-label="ADS reference 118">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 118" href="http://scholar.google.com/scholar_lookup?&amp;title=Parton%20structure%20of%20the%20photon%20beyond%20the%20leading%20order&amp;journal=Phys.%20Rev.%20D&amp;doi=10.1103%2FPhysRevD.45.3986&amp;volume=45&amp;publication_year=1992&amp;author=Gl%C3%BCck%2CM&amp;author=Reya%2CE&amp;author=Vogt%2CA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="119."><p class="c-article-references__text" id="ref-CR119">R.K. Ellis, Z. Kunszt, E.M. Levin, The evolution of parton distributions at small x, Nucl. Phys. <b>B420</b> (1994) 517. [Erratum: Nucl. Phys.B433,498(1995)]</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="120."><p class="c-article-references__text" id="ref-CR120">J. Blümlein, A. Vogt, The volution of unpolarized singlet structure functions at small x. Phys. Rev. D <b>58</b>, 014020 (1998). <a href="http://arxiv.org/abs/hep-ph/9712546" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/9712546">arXiv:hep-ph/9712546</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="121."><p class="c-article-references__text" id="ref-CR121">J. Blümlein, S. Riemersma, W.L. van Neerven, A. Vogt, Theoretical uncertainties in the QCD evolution of structure functions and their impact on <span class="mathjax-tex">\(\alpha _s(M_Z^2)\)</span>. Nucl. Phys. Proc. Suppl. <b>51C</b>, 97 (1996). <a href="http://arxiv.org/abs/hep-ph/9609217" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/9609217">arXiv:hep-ph/9609217</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="122."><p class="c-article-references__text" id="ref-CR122">G. Rossi, x Space analysis for the photon structure functions in QCD. Phys. Rev. D <b>29</b>, 852 (1984)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1103/PhysRevD.29.852" data-track-item_id="10.1103/PhysRevD.29.852" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1103%2FPhysRevD.29.852" aria-label="Article reference 122" data-doi="10.1103/PhysRevD.29.852">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=1984PhRvD..29..852R" aria-label="ADS reference 122">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 122" href="http://scholar.google.com/scholar_lookup?&amp;title=x%20Space%20analysis%20for%20the%20photon%20structure%20functions%20in%20QCD&amp;journal=Phys.%20Rev.%20D&amp;doi=10.1103%2FPhysRevD.29.852&amp;volume=29&amp;publication_year=1984&amp;author=Rossi%2CG"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="123."><p class="c-article-references__text" id="ref-CR123">A. Vogt, Efficient evolution of unpolarized and polarized parton distributions with QCD-PEGASUS. Comput. Phys. Commun. <b>170</b>, 65 (2005). <a href="http://arxiv.org/abs/hep-ph/0408244" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/0408244">arXiv:hep-ph/0408244</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="124."><p class="c-article-references__text" id="ref-CR124">S.J. Brodsky, P. Hoyer, C. Peterson, N. Sakai, The intrinsic charm of the proton. Phys. Lett. B <b>93</b>, 451 (1980)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/0370-2693(80)90364-0" data-track-item_id="10.1016/0370-2693(80)90364-0" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2F0370-2693%2880%2990364-0" aria-label="Article reference 124" data-doi="10.1016/0370-2693(80)90364-0">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=1980PhLB...93..451B" aria-label="ADS reference 124">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 124" href="http://scholar.google.com/scholar_lookup?&amp;title=The%20intrinsic%20charm%20of%20the%20proton&amp;journal=Phys.%20Lett.%20B&amp;doi=10.1016%2F0370-2693%2880%2990364-0&amp;volume=93&amp;publication_year=1980&amp;author=Brodsky%2CSJ&amp;author=Hoyer%2CP&amp;author=Peterson%2CC&amp;author=Sakai%2CN"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="125."><p class="c-article-references__text" id="ref-CR125">P. Jimenez-Delgado, T.J. Hobbs, J.T. Londergan, W. Melnitchouk, New limits on intrinsic charm in the nucleon from global analysis of parton distributions. Phys. Rev. Lett. <b>114</b>, 082002 (2015). <a href="http://arxiv.org/abs/1408.1708" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1408.1708">arXiv:1408.1708</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="126."><p class="c-article-references__text" id="ref-CR126">J. Blümlein, A kinematic condition on intrinsic charm. Phys. Lett. B <b>753</b>, 619 (2016). <a href="http://arxiv.org/abs/1511.00229" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1511.00229">arXiv:1511.00229</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="127."><p class="c-article-references__text" id="ref-CR127">E. Witten, Heavy quark contributions to deep-inelastic scattering. Nucl. Phys. B <b>104</b>, 445 (1976)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/0550-3213(76)90111-5" data-track-item_id="10.1016/0550-3213(76)90111-5" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2F0550-3213%2876%2990111-5" aria-label="Article reference 127" data-doi="10.1016/0550-3213(76)90111-5">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=1976NuPhB.104..445W" aria-label="ADS reference 127">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 127" href="http://scholar.google.com/scholar_lookup?&amp;title=Heavy%20quark%20contributions%20to%20deep-inelastic%20scattering&amp;journal=Nucl.%20Phys.%20B&amp;doi=10.1016%2F0550-3213%2876%2990111-5&amp;volume=104&amp;publication_year=1976&amp;author=Witten%2CE"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="128."><p class="c-article-references__text" id="ref-CR128">J. Babcock, D.W. Sivers, S. Wolfram, QCD estimates for heavy particle production. Phys. Rev. D <b>18</b>, 162 (1978)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1103/PhysRevD.18.162" data-track-item_id="10.1103/PhysRevD.18.162" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1103%2FPhysRevD.18.162" aria-label="Article reference 128" data-doi="10.1103/PhysRevD.18.162">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=1978PhRvD..18..162B" aria-label="ADS reference 128">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 128" href="http://scholar.google.com/scholar_lookup?&amp;title=QCD%20estimates%20for%20heavy%20particle%20production&amp;journal=Phys.%20Rev.%20D&amp;doi=10.1103%2FPhysRevD.18.162&amp;volume=18&amp;publication_year=1978&amp;author=Babcock%2CJ&amp;author=Sivers%2CDW&amp;author=Wolfram%2CS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="129."><p class="c-article-references__text" id="ref-CR129">V.A. Novikov, M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Charm photoproduction and quantum chromodynamics, Nucl. Phys. <b>B136</b>, 125 (1978). [Yad. Fiz.27,771(1978)]</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="130."><p class="c-article-references__text" id="ref-CR130">J.P. Leveille, T.J. Weiler, Characteristics of heavy quark leptoproduction in QCD. Nucl. Phys. B <b>147</b>, 147 (1979)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/0550-3213(79)90420-6" data-track-item_id="10.1016/0550-3213(79)90420-6" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2F0550-3213%2879%2990420-6" aria-label="Article reference 130" data-doi="10.1016/0550-3213(79)90420-6">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=1979NuPhB.147..147L" aria-label="ADS reference 130">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 130" href="http://scholar.google.com/scholar_lookup?&amp;title=Characteristics%20of%20heavy%20quark%20leptoproduction%20in%20QCD&amp;journal=Nucl.%20Phys.%20B&amp;doi=10.1016%2F0550-3213%2879%2990420-6&amp;volume=147&amp;publication_year=1979&amp;author=Leveille%2CJP&amp;author=Weiler%2CTJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="131."><p class="c-article-references__text" id="ref-CR131">M. Glück, E. Hoffmann, E. Reya, Scaling violations and the gluon distribution of the nucleon. Z. Phys. C <b>13</b>, 119 (1982)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/BF01547675" data-track-item_id="10.1007/BF01547675" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/BF01547675" aria-label="Article reference 131" data-doi="10.1007/BF01547675">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=1982ZPhyC..13..119G" aria-label="ADS reference 131">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 131" href="http://scholar.google.com/scholar_lookup?&amp;title=Scaling%20violations%20and%20the%20gluon%20distribution%20of%20the%20nucleon&amp;journal=Z.%20Phys.%20C&amp;doi=10.1007%2FBF01547675&amp;volume=13&amp;publication_year=1982&amp;author=Gl%C3%BCck%2CM&amp;author=Hoffmann%2CE&amp;author=Reya%2CE"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="132."><p class="c-article-references__text" id="ref-CR132">T. Gottschalk, Chromodynamic corrections to neutrino production of heavy quarks. Phys. Rev. D <b>23</b>, 56 (1981)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1103/PhysRevD.23.56" data-track-item_id="10.1103/PhysRevD.23.56" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1103%2FPhysRevD.23.56" aria-label="Article reference 132" data-doi="10.1103/PhysRevD.23.56">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=1981PhRvD..23...56G" aria-label="ADS reference 132">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 132" href="http://scholar.google.com/scholar_lookup?&amp;title=Chromodynamic%20corrections%20to%20neutrino%20production%20of%20heavy%20quarks&amp;journal=Phys.%20Rev.%20D&amp;doi=10.1103%2FPhysRevD.23.56&amp;volume=23&amp;publication_year=1981&amp;author=Gottschalk%2CT"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="133."><p class="c-article-references__text" id="ref-CR133">M. Glück, S. Kretzer, E. Reya, The strange sea density and charm production in deep-inelastic charged current processes, Phys. Lett. <b>B380</b>, 171 (1996). <a href="http://arxiv.org/abs/hep-ph/9603304" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/9603304">arXiv:hep-ph/9603304</a>. [Erratum: Phys. Lett.B405,391(1997)]</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="134."><p class="c-article-references__text" id="ref-CR134">J. Blümlein, A. Hasselhuhn, P. Kovacikova, S. Moch, <span class="mathjax-tex">\({\cal O}(\alpha _s)\)</span> heavy flavor corrections to charged current deep-inelastic scattering in Mellin space. Phys. Lett. B <b>700</b>, 294 (2011). <a href="http://arxiv.org/abs/1104.3449" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1104.3449">arXiv:1104.3449</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="135."><p class="c-article-references__text" id="ref-CR135">E. Laenen, S. Riemersma, J. Smith, W.L. van Neerven, Complete <span class="mathjax-tex">\({\cal {O}}(\alpha _s)\)</span> corrections to heavy flavor structure functions in electroproduction. Nucl. Phys. B <b>392</b>, 162 (1993)</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="136."><p class="c-article-references__text" id="ref-CR136">E. Laenen, S. Riemersma, J. Smith, W.L. van Neerven, <span class="mathjax-tex">\({\cal {O}}(\alpha _s)\)</span> corrections to heavy flavor inclusive distributions in electroproduction. Nucl. Phys. B <b>392</b>, 229 (1993)</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="137."><p class="c-article-references__text" id="ref-CR137">S. Riemersma, J. Smith, W.L. van Neerven, Rates for inclusive deep-inelastic electroproduction of charm quarks at HERA. Phys. Lett. B <b>347</b>, 143 (1995). <a href="http://arxiv.org/abs/hep-ph/9411431" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/9411431">arXiv:hep-ph/9411431</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="138."><p class="c-article-references__text" id="ref-CR138">I. Bierenbaum, J. Blümlein, S. Klein, The gluonic operator matrix elements at <span class="mathjax-tex">\({\cal {O}}(\alpha _s^2)\)</span> for DIS heavy flavor production. Phys. Lett. B <b>672</b>, 401 (2009). <a href="http://arxiv.org/abs/0901.0669" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/0901.0669">arXiv:0901.0669</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="139."><p class="c-article-references__text" id="ref-CR139">A. Behring, I. Bierenbaum, J. Blümlein, A. De Freitas, S. Klein, F. Wißbrock, The logarithmic contributions to the <span class="mathjax-tex">\({\cal O}(\alpha ^3_s)\)</span> asymptotic massive Wilson coefficients and operator matrix elements in deeply inelastic scattering. Eur. Phys. J. C <b>74</b>, 3033 (2014). <a href="http://arxiv.org/abs/1403.6356" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1403.6356">arXiv:1403.6356</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="140."><p class="c-article-references__text" id="ref-CR140">I. Bierenbaum, J. Blümlein, S. Klein, Mellin moments of the <span class="mathjax-tex">\({\cal O}(\alpha ^3_s)\)</span> heavy flavor contributions to unpolarized deep-inelastic scattering at <span class="mathjax-tex">\(Q^2 \gg m^2\)</span> and anomalous dimensions. Nucl. Phys. B <b>820</b>, 417 (2009). <a href="http://arxiv.org/abs/0904.3563" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/0904.3563">arXiv:0904.3563</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="141."><p class="c-article-references__text" id="ref-CR141">S. Alekhin, S. Moch, Heavy-quark deep-inelastic scattering with a running mass. Phys. Lett. B <b>699</b>, 345 (2011). <a href="http://arxiv.org/abs/1011.5790" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1011.5790">arXiv:1011.5790</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="142."><p class="c-article-references__text" id="ref-CR142">P. Marquard, A.V. Smirnov, V.A. Smirnov, M. Steinhauser, Quark mass relations to four-loop order in perturbative QCD. Phys. Rev. Lett. <b>114</b>, 142002 (2015). <a href="http://arxiv.org/abs/1502.01030" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1502.01030">arXiv:1502.01030</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="143."><p class="c-article-references__text" id="ref-CR143">J. Blümlein, A. De Freitas, W.L. van Neerven, S. Klein, The longitudinal heavy quark structure function <span class="mathjax-tex">\(F^{Q\bar{Q}}_L\)</span> in the region <span class="mathjax-tex">\(Q^2 \gg m^2\)</span> at <span class="mathjax-tex">\({\cal {O}}(\alpha _s^3)\)</span>. Nucl. Phys. B <b>755</b>, 272 (2006). <a href="http://arxiv.org/abs/hep-ph/0608024" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/0608024">arXiv:hep-ph/0608024</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="144."><p class="c-article-references__text" id="ref-CR144">J. Ablinger, J. Blümlein, S. Klein, C. Schneider, F. Wissbrock, The <span class="mathjax-tex">\({\cal {O}}(\alpha _s^3)\)</span> massive operator matrix elements of <span class="mathjax-tex">\({\cal {O}}(n_f)\)</span> for the structure function <span class="mathjax-tex">\(F_2(x, Q^2)\)</span> and transversity. Nucl. Phys. B <b>844</b>, 26 (2011). <a href="http://arxiv.org/abs/1008.3347" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1008.3347">arXiv:1008.3347</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="145."><p class="c-article-references__text" id="ref-CR145">J. Blümlein, A. Hasselhuhn, S. Klein, C. Schneider, The <span class="mathjax-tex">\({\cal {O}}(\alpha _s^3 n_f T_F^2 C_{A, F})\)</span> contributions to the gluonic massive operator matrix elements. Nucl. Phys. B <b>866</b>, 196 (2013). <a href="http://arxiv.org/abs/1205.4184" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1205.4184">arXiv:1205.4184</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="146."><p class="c-article-references__text" id="ref-CR146">J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, A. Hasselhuhn, A. von Manteuffel, M. Round, C. Schneider, F. Wißbrock, The 3-loop non-singlet heavy flavor contributions and anomalous dimensions for the structure function <span class="mathjax-tex">\(F_2(x, Q^2)\)</span> and transversity. Nucl. Phys. B <b>886</b>, 733 (2014). <a href="http://arxiv.org/abs/1406.4654" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1406.4654">arXiv:1406.4654</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="147."><p class="c-article-references__text" id="ref-CR147">H. Kawamura, N.A. Lo, Presti, S. Moch, A. Vogt, On the next-to-next-to-leading order QCD corrections to heavy-quark production in deep-inelastic scattering. Nucl. Phys. <b>B864</b>, 399 (2012). <a href="http://arxiv.org/abs/1205.5727" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1205.5727">arXiv:1205.5727</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="148."><p class="c-article-references__text" id="ref-CR148">S. Catani, M. Ciafaloni, F. Hautmann, High-energy factorization and small x heavy flavor production. Nucl. Phys. B <b>366</b>, 135 (1991)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/0550-3213(91)90055-3" data-track-item_id="10.1016/0550-3213(91)90055-3" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2F0550-3213%2891%2990055-3" aria-label="Article reference 148" data-doi="10.1016/0550-3213(91)90055-3">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=1991NuPhB.366..135C" aria-label="ADS reference 148">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 148" href="http://scholar.google.com/scholar_lookup?&amp;title=High-energy%20factorization%20and%20small%20x%20heavy%20flavor%20production&amp;journal=Nucl.%20Phys.%20B&amp;doi=10.1016%2F0550-3213%2891%2990055-3&amp;volume=366&amp;publication_year=1991&amp;author=Catani%2CS&amp;author=Ciafaloni%2CM&amp;author=Hautmann%2CF"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="149."><p class="c-article-references__text" id="ref-CR149">I. Bierenbaum, J. Blümlein, S. Klein, Two-loop massive operator matrix elements and unpolarized heavy flavor production at asymptotic values <span class="mathjax-tex">\(Q^2 \gg m^2\)</span>. Nucl. Phys. B <b>780</b>, 40 (2007). <a href="http://arxiv.org/abs/hep-ph/0703285" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/0703285">arXiv:hep-ph/0703285</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="150."><p class="c-article-references__text" id="ref-CR150">I. Bierenbaum, J. Blümlein, S. Klein, C. Schneider, Two-loop massive operator matrix elements for unpolarized heavy flavor production to <span class="mathjax-tex">\({\cal {O}}(\epsilon )\)</span>. Nucl. Phys. B <b>803</b>, 1 (2008). <a href="http://arxiv.org/abs/0803.0273" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/0803.0273">arXiv:0803.0273</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="151."><p class="c-article-references__text" id="ref-CR151">T. Appelquist, J. Carazzone, Infrared singularities and massive fields. Phys. Rev. D <b>11</b>, 2856 (1975)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1103/PhysRevD.11.2856" data-track-item_id="10.1103/PhysRevD.11.2856" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1103%2FPhysRevD.11.2856" aria-label="Article reference 151" data-doi="10.1103/PhysRevD.11.2856">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=1975PhRvD..11.2856A" aria-label="ADS reference 151">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 151" href="http://scholar.google.com/scholar_lookup?&amp;title=Infrared%20singularities%20and%20massive%20fields&amp;journal=Phys.%20Rev.%20D&amp;doi=10.1103%2FPhysRevD.11.2856&amp;volume=11&amp;publication_year=1975&amp;author=Appelquist%2CT&amp;author=Carazzone%2CJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="152."><p class="c-article-references__text" id="ref-CR152">K.G. Chetyrkin, J.H. Kühn, M. Steinhauser, RunDec: a mathematica package for running and decoupling of the strong coupling and quark masses. Comput. Phys. Commun. <b>133</b>, 43 (2000). <a href="http://arxiv.org/abs/hep-ph/0004189" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/0004189">arXiv:hep-ph/0004189</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="153."><p class="c-article-references__text" id="ref-CR153">M. Buza, Y. Matiounine, J. Smith, W.L. van Neerven, Charm electroproduction viewed in the variable flavor number scheme versus fixed order perturbation theory. Eur. Phys. J. C <b>1</b>, 301–320 (1998). <a href="http://arxiv.org/abs/hep-ph/9612398" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/9612398">arXiv:hep-ph/9612398</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="154."><p class="c-article-references__text" id="ref-CR154">M. Buza, Y. Matiounine, J. Smith, R. Migneron, W.L. van Neerven, Heavy quark coefficient functions at asymptotic values <span class="mathjax-tex">\(Q^2 \gg m^2\)</span>. Nucl. Phys. B <b>472</b>, 611 (1996). <a href="http://arxiv.org/abs/hep-ph/9601302" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/9601302">arXiv:hep-ph/9601302</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="155."><p class="c-article-references__text" id="ref-CR155">J. Ablinger, J. Blümlein, A. De Freitas, A. Hasselhuhn, A. von Manteuffel, M. Round, C. Schneider, F. Wissbrock, The transition matrix element <span class="mathjax-tex">\(A_{gq}(N)\)</span> of the variable flavor number scheme at <span class="mathjax-tex">\({\cal {O}}(\alpha _s^3)\)</span>. Nucl. Phys. B <b>882</b>, 263 (2014). <a href="http://arxiv.org/abs/1402.0359" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1402.0359">arXiv:1402.0359</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="156."><p class="c-article-references__text" id="ref-CR156">A.G. Grozin, M. Höschele, J. Hoff, M. Steinhauser, Simultaneous decoupling of bottom and charm quarks. JHEP <b>09</b>, 066 (2011). <a href="http://arxiv.org/abs/1107.5970" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1107.5970">arXiv:1107.5970</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="157."><p class="c-article-references__text" id="ref-CR157">F. Maltoni, G. Ridolfi, M. Ubiali, b-Initiated processes at the LHC: a reappraisal. JHEP <b>07</b>, 022 (2012). <a href="http://arxiv.org/abs/1203.6393" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1203.6393">arXiv:1203.6393</a>. [Erratum: JHEP04,095(2013)]</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="158."><p class="c-article-references__text" id="ref-CR158">R. Harlander, M. Krämer, M. Schumacher, Bottom-quark associated Higgs-boson production: reconciling the four- and five-flavour scheme approach. <a href="http://arxiv.org/abs/1112.3478" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1112.3478">arXiv:1112.3478</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="159."><p class="c-article-references__text" id="ref-CR159">M.A.G. Aivazis, J.C. Collins, F.I. Olness, W.-K. Tung, Leptoproduction of heavy quarks. 2. A Unified QCD formulation of charged and neutral current processes from fixed target to collider energies. Phys. Rev. D <b>50</b>, 3102 (1994). <a href="http://arxiv.org/abs/hep-ph/9312319" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/9312319">arXiv:hep-ph/9312319</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="160."><p class="c-article-references__text" id="ref-CR160">M. Krämer, F.I. Olness, D.E. Soper, Treatment of heavy quarks in deeply inelastic scattering. Phys. Rev. D <b>62</b>, 096007 (2000). <a href="http://arxiv.org/abs/hep-ph/0003035" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/0003035">arXiv:hep-ph/0003035</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="161."><p class="c-article-references__text" id="ref-CR161">W.-K. Tung, S. Kretzer, C. Schmidt, Open heavy flavor production in QCD: Conceptual framework and implementation issues. J. Phys. <b>G28</b>, 983 (2002). <a href="http://arxiv.org/abs/hep-ph/0110247" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/0110247">arXiv:hep-ph/0110247</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="162."><p class="c-article-references__text" id="ref-CR162">S. Forte, E. Laenen, P. Nason, J. Rojo, Heavy quarks in deep-inelastic scattering. Nucl. Phys. B <b>834</b>, 116 (2010). <a href="http://arxiv.org/abs/1001.2312" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1001.2312">arXiv:1001.2312</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="163."><p class="c-article-references__text" id="ref-CR163">R.S. Thorne, Effect of changes of variable flavor number scheme on parton distribution functions and predicted cross sections. Phys. Rev. D <b>86</b>, 074017 (2012). <a href="http://arxiv.org/abs/1201.6180" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1201.6180">arXiv:1201.6180</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="164."><p class="c-article-references__text" id="ref-CR164">S. Alekhin, J. Blümlein, S. Moch, Heavy-quark production in deep-inelastic scattering, PoS <b>DIS2013</b> 297 (2013). <a href="http://arxiv.org/abs/1307.7258" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1307.7258">arXiv:1307.7258</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="165."><p class="c-article-references__text" id="ref-CR165">ZEUS, H1 Collaboration, H. Abramowicz et al., Combination and QCD analysis of charm production cross section measurements in deep-inelastic ep scattering at HERA, Eur. Phys. J. <b>C73</b>, 2311 (2013). <a href="http://arxiv.org/abs/1211.1182" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1211.1182">arXiv:1211.1182</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="166."><p class="c-article-references__text" id="ref-CR166">S. Alekhin, O. Behnke, P. Belov, S. Borroni, M. Botje, et al., HERAFitter, Open source QCD fit project. <a href="http://arxiv.org/abs/1410.4412" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1410.4412">arXiv:1410.4412</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="167."><p class="c-article-references__text" id="ref-CR167">xFitter, An open source QCD fit framework. <a href="http://xFitter.org" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://xFitter.org">http://xFitter.org</a> [xFitter.org]</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="168."><p class="c-article-references__text" id="ref-CR168">E. Laenen, S. Moch, Soft gluon resummation for heavy quark electroproduction. Phys. Rev. D <b>59</b>, 034027 (1999). <a href="http://arxiv.org/abs/hep-ph/9809550" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/9809550">arXiv:hep-ph/9809550</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="169."><p class="c-article-references__text" id="ref-CR169">S. Alekhin, J. Blümlein, K. Daum, K. Lipka, S. Moch, Precise charm-quark mass from deep-inelastic scattering. Phys. Lett. B <b>720</b>, 172 (2013). <a href="http://arxiv.org/abs/1212.2355" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1212.2355">arXiv:1212.2355</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="170."><p class="c-article-references__text" id="ref-CR170">R.D. Ball, V. Bertone, F. Cerutti, L. Del Debbio, S. Forte, A. Guffanti, J.I. Latorre, J. Rojo, M. Ubiali, Impact of heavy quark masses on parton distributions and LHC phenomenology. Nucl. Phys. B <b>849</b>, 296 (2011). <a href="http://arxiv.org/abs/1101.1300" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1101.1300">arXiv:1101.1300</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="171."><p class="c-article-references__text" id="ref-CR171">A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Heavy-quark mass dependence in global PDF analyses and 3- and 4-flavour parton distributions. Eur. Phys. J. C <b>70</b>, 51 (2010). <a href="http://arxiv.org/abs/1007.2624" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1007.2624">arXiv:1007.2624</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="172."><p class="c-article-references__text" id="ref-CR172">L.A. Harland-Lang, A.D. Martin, P. Motylinski, R.S. Thorne, Charm and beauty quark masses in the MMHT2014 global PDF analysis. <a href="http://arxiv.org/abs/1510.02332" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1510.02332">arXiv:1510.02332</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="173."><p class="c-article-references__text" id="ref-CR173">H.L. Lai, M. Guzzi, J. Huston, Z. Li, P.M. Nadolsky, J. Pumplin, C.-P. Yuan, New parton distributions for collider physics. Phys. Rev. D <b>82</b>, 074024 (2010). <a href="http://arxiv.org/abs/1007.2241" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1007.2241">arXiv:1007.2241</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="174."><p class="c-article-references__text" id="ref-CR174">J. Gao, M. Guzzi, P.M. Nadolsky, Charm quark mass dependence in a global QCD analysis. Eur. Phys. J. C <b>73</b>, 2541 (2013). <a href="http://arxiv.org/abs/1304.3494" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1304.3494">arXiv:1304.3494</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="175."><p class="c-article-references__text" id="ref-CR175">K.G. Chetyrkin, J.H. Kühn, A. Maier, P. Maierhöfer, P. Marquard, M. Steinhauser, C. Sturm, Charm and bottom quark masses: an update. Phys. Rev. D <b>80</b>, 074010 (2009). <a href="http://arxiv.org/abs/0907.2110" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/0907.2110">arXiv:0907.2110</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="176."><p class="c-article-references__text" id="ref-CR176">B. Dehnadi, A.H. Hoang, V. Mateu, Bottom and charm mass determinations with a convergence test. JHEP <b>08</b>, 155 (2015). <a href="http://arxiv.org/abs/1504.07638" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1504.07638">arXiv:1504.07638</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="177."><p class="c-article-references__text" id="ref-CR177">Y. Kiyo, G. Mishima, Y. Sumino, Determination of <span class="mathjax-tex">\(m_c\)</span> and <span class="mathjax-tex">\(m_b\)</span> from quarkonium 1S energy levels in perturbative QCD. <a href="http://arxiv.org/abs/1510.07072" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1510.07072">arXiv:1510.07072</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="178."><p class="c-article-references__text" id="ref-CR178">Y. Li, F. Petriello, Combining QCD and electroweak corrections to dilepton production in FEWZ. Phys. Rev. D <b>86</b>, 094034 (2012). <a href="http://arxiv.org/abs/1208.5967" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1208.5967">arXiv:1208.5967</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="179."><p class="c-article-references__text" id="ref-CR179">S. Catani, G. Ferrera, M. Grazzini, W Boson production at hadron colliders: the lepton charge asymmetry in NNLO QCD. JHEP <b>05</b>, 006 (2010). <a href="http://arxiv.org/abs/1002.3115" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1002.3115">arXiv:1002.3115</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="180."><p class="c-article-references__text" id="ref-CR180">C. Balazs, J.-W. Qiu, C.P. Yuan, Effects of QCD resummation on distributions of leptons from the decay of electroweak vector bosons. Phys. Lett. B <b>355</b>, 548 (1995). <a href="http://arxiv.org/abs/hep-ph/9505203" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/9505203">arXiv:hep-ph/9505203</a> </p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/0370-2693(95)00726-2" data-track-item_id="10.1016/0370-2693(95)00726-2" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2F0370-2693%2895%2900726-2" aria-label="Article reference 180" data-doi="10.1016/0370-2693(95)00726-2">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=1995PhLB..355..548B" aria-label="ADS reference 180">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 180" href="http://scholar.google.com/scholar_lookup?&amp;title=Effects%20of%20QCD%20resummation%20on%20distributions%20of%20leptons%20from%20the%20decay%20of%20electroweak%20vector%20bosons&amp;journal=Phys.%20Lett.%20B&amp;doi=10.1016%2F0370-2693%2895%2900726-2&amp;volume=355&amp;publication_year=1995&amp;author=Balazs%2CC&amp;author=Qiu%2CJ-W&amp;author=Yuan%2CCP"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="181."><p class="c-article-references__text" id="ref-CR181">T. Carli, D. Clements, A. Cooper-Sarkar, C. Gwenlan, G.P. Salam, F. Siegert, P. Starovoitov, M. Sutton, A posteriori inclusion of parton density functions in NLO QCD final-state calculations at hadron colliders: the APPLGRID Project. Eur. Phys. J. C <b>66</b>, 503 (2010). <a href="http://arxiv.org/abs/0911.2985" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/0911.2985">arXiv:0911.2985</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="182."><p class="c-article-references__text" id="ref-CR182">L. Harland-Lang, R. Thorne, Private communication, Apr 12 and June 6 (2016)</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="183."><p class="c-article-references__text" id="ref-CR183">NNPDF Collaboration, R.D. Ball, V. Bertone, F. Cerutti, L. Del Debbio, S. Forte, A. Guffanti, J.I. Latorre, J. Rojo, M. Ubiali, Unbiased global determination of parton distributions and their uncertainties at NNLO and at LO, Nucl. Phys. <b>B855</b> (2012) 153. <a href="http://arxiv.org/abs/1107.2652" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1107.2652">arXiv:1107.2652</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="184."><p class="c-article-references__text" id="ref-CR184">S. Alekhin, J. Blümlein, L. Caminadac, K. Lipka, K. Lohwasser, S. Moch, R. Petti, R. Placakyte, Determination of strange sea quark distributions from fixed-target and collider data. Phys. Rev. D <b>91</b>, 094002 (2015). <a href="http://arxiv.org/abs/1404.6469" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1404.6469">arXiv:1404.6469</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="185."><p class="c-article-references__text" id="ref-CR185">NuTeV Collaboration, M. Goncharov et al., Precise measurement of dimuon production cross sections in muon neutrino Fe and muon anti-neutrino Fe deep-inelastic scattering at the Tevatron. Phys. Rev. <b>D64</b>, 112006 (2001). <a href="http://arxiv.org/abs/hep-ex/0102049" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ex/0102049">arXiv:hep-ex/0102049</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="186."><p class="c-article-references__text" id="ref-CR186">A. Kayis-Topaksu et al., Measurement of charm production in neutrino charged-current interactions. New J. Phys. <b>13</b>, 093002 (2011). <a href="http://arxiv.org/abs/1107.0613" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1107.0613">arXiv:1107.0613</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="187."><p class="c-article-references__text" id="ref-CR187">NOMAD Collaboration, O. Samoylov et al., A precision measurement of charm dimuon production in neutrino interactions from the NOMAD experiment, Nucl. Phys. <b>B876</b>, 339 (2013). <a href="http://arxiv.org/abs/1308.4750" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1308.4750">arXiv:1308.4750</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="188."><p class="c-article-references__text" id="ref-CR188">CMS Collaboration, S. Chatrchyan et al., Measurement of associated <span class="mathjax-tex">\(W\)</span>+charm production in <span class="mathjax-tex">\(pp\)</span> collisions at <span class="mathjax-tex">\(\sqrt{s}\)</span> = 7 TeV. JHEP <b>02</b>, 013 (2014). <a href="http://arxiv.org/abs/1310.1138" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1310.1138">arXiv:1310.1138</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="189."><p class="c-article-references__text" id="ref-CR189">ATLAS Collaboration, G. Aad et al., Measurement of the production of a <span class="mathjax-tex">\(W\)</span> boson in association with a charm quark in <span class="mathjax-tex">\(pp\)</span> collisions at <span class="mathjax-tex">\(\sqrt{s} =\)</span> 7 TeV with the ATLAS detector. JHEP <b>05</b>, 068 (2014). <a href="http://arxiv.org/abs/1402.6263" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1402.6263">arXiv:1402.6263</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="190."><p class="c-article-references__text" id="ref-CR190">ATLAS Collaboration, G. Aad et al., Determination of the strange quark density of the proton from ATLAS measurements of the <span class="mathjax-tex">\(W \rightarrow \ell \nu \)</span> and <span class="mathjax-tex">\(Z \rightarrow \ell \ell \)</span> cross sections. Phys. Rev. Lett. <b>109</b>, 012001 (2012). <a href="http://arxiv.org/abs/1203.4051" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1203.4051">arXiv:1203.4051</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="191."><p class="c-article-references__text" id="ref-CR191">J.F. Owens, A. Accardi, W. Melnitchouk, Global parton distributions with nuclear and finite-<span class="mathjax-tex">\(Q^2\)</span> corrections. Phys. Rev. D <b>87</b>, 094012 (2013). <a href="http://arxiv.org/abs/1212.1702" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1212.1702">arXiv:1212.1702</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="192."><p class="c-article-references__text" id="ref-CR192">A. Accardi, PDFs from nucleons to nuclei. PoS <b>DIS2015</b>, 001 (2015). <a href="http://arxiv.org/abs/1602.02035" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1602.02035">arXiv:1602.02035</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="193."><p class="c-article-references__text" id="ref-CR193">NuSea Collaboration, R.S. Towell et al., Improved measurement of the <span class="mathjax-tex">\({\bar{d}}/{\bar{u}}\)</span> asymmetry in the nucleon sea. Phys. Rev. <b>D64</b>, 052002 (2001). <a href="http://arxiv.org/abs/hep-ex/0103030" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ex/0103030">arXiv:hep-ex/0103030</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="194."><p class="c-article-references__text" id="ref-CR194">S.A. Kulagin, R. Petti, Neutrino inelastic scattering off nuclei. Phys. Rev. D <b>76</b>, 094023 (2007). <a href="http://arxiv.org/abs/hep-ph/0703033" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/0703033">arXiv:hep-ph/0703033</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="195."><p class="c-article-references__text" id="ref-CR195">K. Kovarik, I. Schienbein, F.I. Olness, J.Y. Yu, C. Keppel, J.G. Morfin, J.F. Owens, T. Stavreva, Nuclear corrections in neutrino-nucleus DIS and their compatibility with global NPDF analyses. Phys. Rev. Lett. <b>106</b>, 122301 (2011). <a href="http://arxiv.org/abs/1012.0286" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1012.0286">arXiv:1012.0286</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="196."><p class="c-article-references__text" id="ref-CR196">H.L. Lai, P.M. Nadolsky, J. Pumplin, D. Stump, W.K. Tung, C.P. Yuan, The strange parton distribution of the nucleon: global analysis and applications. JHEP <b>04</b>, 089 (2007). <a href="http://arxiv.org/abs/hep-ph/0702268" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/0702268">arXiv:hep-ph/0702268</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="197."><p class="c-article-references__text" id="ref-CR197">A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Parton distributions for the LHC. Eur. Phys. J. C <b>63</b>, 189 (2009). <a href="http://arxiv.org/abs/0901.0002" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/0901.0002">arXiv:0901.0002</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="198."><p class="c-article-references__text" id="ref-CR198">S. Alekhin, J. Blümlein, S. Klein, S. Moch, The 3, 4, and 5-flavor NNLO parton from deep-inelastic scattering data and at hadron colliders. Phys. Rev. D <b>81</b>, 014032 (2010). <a href="http://arxiv.org/abs/0908.2766" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/0908.2766">arXiv:0908.2766</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="199."><p class="c-article-references__text" id="ref-CR199">A. Accardi, M.E. Christy, C.E. Keppel, P. Monaghan, W. Melnitchouk, J.G. Morfin, J.F. Owens, New parton distributions from large-<span class="mathjax-tex">\(x\)</span> and low-<span class="mathjax-tex">\(Q^2\)</span> data. Phys. Rev. D <b>81</b>, 034016 (2010). <a href="http://arxiv.org/abs/0911.2254" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/0911.2254">arXiv:0911.2254</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="200."><p class="c-article-references__text" id="ref-CR200">A. Accardi, W. Melnitchouk, J.F. Owens, M.E. Christy, C.E. Keppel, L. Zhu, J.G. Morfin, Uncertainties in determining parton distributions at large <span class="mathjax-tex">\(x\)</span>. Phys. Rev. D <b>84</b>, 014008 (2011). <a href="http://arxiv.org/abs/1102.3686" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1102.3686">arXiv:1102.3686</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="201."><p class="c-article-references__text" id="ref-CR201">J. Arrington, J.G. Rubin, W. Melnitchouk, How well do we know the neutron structure function? Phys. Rev. Lett. <b>108</b>, 252001 (2012). <a href="http://arxiv.org/abs/1110.3362" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1110.3362">arXiv:1110.3362</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="202."><p class="c-article-references__text" id="ref-CR202">W. Melnitchouk, A.W. Schreiber, A.W. Thomas, Deep-inelastic scattering from off-shell nucleons. Phys. Rev. <b>D49</b>, 1183 (1994). <a href="http://arxiv.org/abs/nucl-th/9311008" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/nucl-th/9311008">arXiv:nucl-th/9311008</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="203."><p class="c-article-references__text" id="ref-CR203">W. Melnitchouk, A.W. Schreiber, A.W. Thomas, Relativistic deuteron structure function. Phys. Lett. <b>B335</b>, 11 (1994). <a href="http://arxiv.org/abs/nucl-th/9407007" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/nucl-th/9407007">arXiv:nucl-th/9407007</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="204."><p class="c-article-references__text" id="ref-CR204">S.A. Kulagin, G. Piller, W. Weise, Shadowing, binding and off-shell effects in nuclear deep-inelastic scattering. Phys. Rev. <b>C50</b> (1994) 1154. <a href="http://arxiv.org/abs/nucl-th/9402015" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/nucl-th/9402015">arXiv:nucl-th/9402015</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="205."><p class="c-article-references__text" id="ref-CR205">S.A. Kulagin, R. Petti, Global study of nuclear structure functions. Nucl. Phys. A <b>765</b>, 126 (2006). <a href="http://arxiv.org/abs/hep-ph/0412425" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/0412425">arXiv:hep-ph/0412425</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="206."><p class="c-article-references__text" id="ref-CR206">P.J. Ehlers, A. Accardi, L.T. Brady, W. Melnitchouk, Nuclear effects in the proton-deuteron Drell–Yan process. Phys. Rev. D <b>90</b>, 014010 (2014). <a href="http://arxiv.org/abs/1405.2039" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1405.2039">arXiv:1405.2039</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="207."><p class="c-article-references__text" id="ref-CR207">A.D. Martin, A.J.T.M. Mathijssen, W.J. Stirling, R.S. Thorne, B.J.A. Watt, G. Watt, Extended parameterisations for MSTW PDFs and their effect on lepton charge asymmetry from W decays. Eur. Phys. J. C <b>73</b>, 2318 (2013). <a href="http://arxiv.org/abs/1211.1215" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1211.1215">arXiv:1211.1215</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="208."><p class="c-article-references__text" id="ref-CR208">S. Dasu, P. de Barbaro, A. Bodek, H. Harada, M. Krasny, et al., Measurement of kinematic and nuclear dependence of <span class="mathjax-tex">\(R = \sigma _L/\sigma _T\)</span> in deep-inelastic electron scattering. Phys. Rev. D <b>49</b>, 5641 (1994)</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="209."><p class="c-article-references__text" id="ref-CR209">W. Giele et al., The QCD / SM Working Group: Summary Report. <a href="http://arxiv.org/abs/hep-ph/0204316" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/0204316">arXiv:hep-ph/0204316</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="210."><p class="c-article-references__text" id="ref-CR210">M. Botje, QCDNUM: fast QCD evolution and convolution. Comput. Phys. Commun. <b>182</b>, 490 (2011). <a href="http://arxiv.org/abs/1005.1481" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1005.1481">arXiv:1005.1481</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="211."><p class="c-article-references__text" id="ref-CR211">M. Botje, Erratum for the time-like evolution in QCDNUM. <a href="http://arxiv.org/abs/1602.08383" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1602.08383">arXiv:1602.08383</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="212."><p class="c-article-references__text" id="ref-CR212">G.P. Salam, J. Rojo, A higher order perturbative parton evolution toolkit (HOPPET). Comput. Phys. Commun. <b>180</b>, 120 (2009). <a href="http://arxiv.org/abs/0804.3755" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/0804.3755">arXiv:0804.3755</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="213."><p class="c-article-references__text" id="ref-CR213">T. Kluge, K. Rabbertz, M. Wobisch, FastNLO: Fast pQCD calculations for PDF fits. <a href="http://arxiv.org/abs/hep-ph/0609285" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/0609285">arXiv:hep-ph/0609285</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="214."><p class="c-article-references__text" id="ref-CR214">D. Britzger, K. Rabbertz, F. Stober, M. Wobisch, New features in version 2 of the fastNLO project. <a href="http://arxiv.org/abs/1208.3641" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1208.3641">arXiv:1208.3641</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="215."><p class="c-article-references__text" id="ref-CR215">OPENQCDRAD. <a href="http://www-zeuthen.desy.de/%7ealekhin/OPENQCDRAD" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://www-zeuthen.desy.de/%7ealekhin/OPENQCDRAD">http://www-zeuthen.desy.de/~alekhin/OPENQCDRAD</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="216."><p class="c-article-references__text" id="ref-CR216">D.A. Kosower, Extracting parton densities from collider data. Nucl. Phys. B <b>520</b>, 263 (1998). <a href="http://arxiv.org/abs/hep-ph/9708392" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/9708392">arXiv:hep-ph/9708392</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="217."><p class="c-article-references__text" id="ref-CR217">M. Stratmann, W. Vogelsang, Towards a global analysis of polarized parton distributions. Phys. Rev. D <b>64</b>, 114007 (2001). <a href="http://arxiv.org/abs/hep-ph/0107064" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/0107064">arXiv:hep-ph/0107064</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="218."><p class="c-article-references__text" id="ref-CR218">D. Graudenz, M. Hampel, A. Vogt, C. Berger, The Mellin transform technique for the extraction of the gluon density. Z. Phys. C <b>70</b>, 77 (1996). <a href="http://arxiv.org/abs/hep-ph/9506333" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/9506333">arXiv:hep-ph/9506333</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="219."><p class="c-article-references__text" id="ref-CR219">S. Bethke et al., Workshop On Precision Measurements of <span class="mathjax-tex">\(\alpha _s\)</span>. <a href="http://arxiv.org/abs/1110.0016" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1110.0016">arXiv:1110.0016</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="220."><p class="c-article-references__text" id="ref-CR220">S. Moch et al., High precision fundamental constants at the TeV scale. <a href="http://arxiv.org/abs/1405.4781" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1405.4781">arXiv:1405.4781</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="221."><p class="c-article-references__text" id="ref-CR221">D. d’Enterria et al., High-precision <span class="mathjax-tex">\(\alpha _s\)</span> measurements from LHC to FCC-ee. <a href="http://arxiv.org/abs/1512.05194" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1512.05194">arXiv:1512.05194</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="222."><p class="c-article-references__text" id="ref-CR222">Particle Data Group Collaboration. <a href="http://pdg.lbl.gov/2015/reviews/rpp2015-rev-qcd" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://pdg.lbl.gov/2015/reviews/rpp2015-rev-qcd">http://pdg.lbl.gov/2015/reviews/rpp2015-rev-qcd</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="223."><p class="c-article-references__text" id="ref-CR223">J. Santiago, F.J. Yndurain, Improved calculation of <span class="mathjax-tex">\(F_2\)</span> in electroproduction and <span class="mathjax-tex">\(xF_3\)</span> in neutrino scattering to NNLO and determination of <span class="mathjax-tex">\(\alpha _s\)</span>. Nucl. Phys. B <b>611</b>, 447 (2001). <a href="http://arxiv.org/abs/hep-ph/0102247" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/0102247">arXiv:hep-ph/0102247</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="224."><p class="c-article-references__text" id="ref-CR224">S.I. Alekhin, Value of <span class="mathjax-tex">\(\alpha _s\)</span> from deep-inelastic scattering data. JHEP <b>02</b>, 015 (2003). <a href="http://arxiv.org/abs/hep-ph/0211294" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/0211294">arXiv:hep-ph/0211294</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="225."><p class="c-article-references__text" id="ref-CR225">A.D. Martin, R.G. Roberts, W.J. Stirling, R.S. Thorne, Uncertainties of predictions from parton distributions. 2. Theoretical errors, Eur. Phys. J. <b>C35</b>, 325 (2004). <a href="http://arxiv.org/abs/hep-ph/0308087" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/0308087">arXiv:hep-ph/0308087</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="226."><p class="c-article-references__text" id="ref-CR226">J. Blümlein, H. Böttcher, A. Guffanti, Non-singlet QCD analysis of the structure function <span class="mathjax-tex">\(F_2\)</span> in 3-loops. Nucl. Phys. Proc. Suppl. <b>135</b>, 152 (2004). <a href="http://arxiv.org/abs/hep-ph/0407089" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/0407089">arXiv:hep-ph/0407089</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="227."><p class="c-article-references__text" id="ref-CR227">J. Blümlein, H. Böttcher, Higher twist contributions to the structure functions <span class="mathjax-tex">\(F_2(x,Q^2)\)</span> and <span class="mathjax-tex">\(g_2(x,Q^2)\)</span>. <a href="http://arxiv.org/abs/1207.3170" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1207.3170">arXiv:1207.3170</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="228."><p class="c-article-references__text" id="ref-CR228">M. Glück, E. Reya, C. Schuck, Non-singlet QCD analysis of <span class="mathjax-tex">\(F_2(x, Q^2)\)</span> up to NNLO. Nucl. Phys. B <b>754</b>, 178 (2006). <a href="http://arxiv.org/abs/hep-ph/0604116" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/0604116">arXiv:hep-ph/0604116</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="229."><p class="c-article-references__text" id="ref-CR229">S. Alekhin, K. Melnikov, F. Petriello, Fixed target Drell–Yan data and NNLO QCD fits of parton distribution functions. Phys. Rev. D <b>74</b>, 054033 (2006). <a href="http://arxiv.org/abs/hep-ph/0606237" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/0606237">arXiv:hep-ph/0606237</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="230."><p class="c-article-references__text" id="ref-CR230">P. Jimenez-Delgado, E. Reya, Dynamical NNLO parton distributions. Phys. Rev. D <b>79</b>, 074023 (2009). <a href="http://arxiv.org/abs/0810.4274" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/0810.4274">arXiv:0810.4274</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="231."><p class="c-article-references__text" id="ref-CR231">A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Uncertainties on <span class="mathjax-tex">\(\alpha _s\)</span> in global PDF analyses and implications for predicted hadronic cross sections. Eur. Phys. J. C <b>64</b>, 653 (2009). <a href="http://arxiv.org/abs/0905.3531" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/0905.3531">arXiv:0905.3531</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="232."><p class="c-article-references__text" id="ref-CR232">R.S. Thorne, The effect on PDFs and <span class="mathjax-tex">\(\alpha _S(M_Z^2)\)</span> due to changes in flavour scheme and higher twist contributions. Eur. Phys. J. C <b>74</b>, 2958 (2014). <a href="http://arxiv.org/abs/1402.3536" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1402.3536">arXiv:1402.3536</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="233."><p class="c-article-references__text" id="ref-CR233">S. Alekhin, J. Blümlein, S. Moch, Update of the NNLO PDFs in the 3-, 4-, and 5-flavour scheme. PoS <b>DIS2010</b>, 021 (2010). <a href="http://arxiv.org/abs/1007.3657" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1007.3657">arXiv:1007.3657</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="234."><p class="c-article-references__text" id="ref-CR234">S. Lionetti, R.D. Ball, V. Bertone, F. Cerutti, L. Del Debbio, S. Forte, A. Guffanti, J.I. Latorre, J. Rojo, M. Ubiali, Precision determination of <span class="mathjax-tex">\(\alpha _s\)</span> using an unbiased global NLO parton set. Phys. Lett. B <b>701</b>, 346 (2011). <a href="http://arxiv.org/abs/1103.2369" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1103.2369">arXiv:1103.2369</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="235."><p class="c-article-references__text" id="ref-CR235">R.D. Ball, V. Bertone, L. Del Debbio, S. Forte, A. Guffanti, J.I. Latorre, S. Lionetti, J. Rojo, M. Ubiali, Precision NNLO determination of <span class="mathjax-tex">\(\alpha _s(M_Z)\)</span> using an unbiased global parton set. Phys. Lett. B <b>707</b>, 66 (2012). <a href="http://arxiv.org/abs/1110.2483" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1110.2483">arXiv:1110.2483</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="236."><p class="c-article-references__text" id="ref-CR236">L.A. Harland-Lang, A.D. Martin, P. Motylinski, R.S. Thorne, Uncertainties on <span class="mathjax-tex">\(\alpha _S\)</span> in the MMHT2014 global PDF analysis and implications for SM predictions. Eur. Phys. J. C <b>75</b>, 435 (2015). <a href="http://arxiv.org/abs/1506.05682" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1506.05682">arXiv:1506.05682</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="237."><p class="c-article-references__text" id="ref-CR237">N. Kidonakis, J.F. Owens, Effects of higher order threshold corrections in high <span class="mathjax-tex">\(E_T\)</span> jet production. Phys. Rev. D <b>63</b>, 054019 (2001). <a href="http://arxiv.org/abs/hep-ph/0007268" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/0007268">arXiv:hep-ph/0007268</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="238."><p class="c-article-references__text" id="ref-CR238">S. Carrazza, J. Pires, Perturbative QCD description of jet data from LHC Run-I and Tevatron Run-II. JHEP <b>10</b>, 145 (2014). <a href="http://arxiv.org/abs/1407.7031" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1407.7031">arXiv:1407.7031</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="239."><p class="c-article-references__text" id="ref-CR239">M.C. Kumar, S. Moch, Phenomenology of threshold corrections for inclusive jet production at hadron colliders. Phys. Lett. B <b>730</b>, 122–129 (2014). <a href="http://arxiv.org/abs/1309.5311" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1309.5311">arXiv:1309.5311</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="240."><p class="c-article-references__text" id="ref-CR240">D. de Florian, P. Hinderer, A. Mukherjee, F. Ringer, W. Vogelsang, Approximate next-to-next-to-leading order corrections to hadronic jet production. Phys. Rev. Lett. <b>112</b>, 082001 (2014). <a href="http://arxiv.org/abs/1310.7192" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1310.7192">arXiv:1310.7192</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="241."><p class="c-article-references__text" id="ref-CR241">A. Vogt, Structure function evolution at next-to-leading order and beyond. Nucl. Phys. Proc. Suppl. <b>79</b>, 102 (1999). <a href="http://arxiv.org/abs/hep-ph/9906337" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/9906337">arXiv:hep-ph/9906337</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="242."><p class="c-article-references__text" id="ref-CR242">New Muon Collaboration, M. Arneodo et al., Measurement of the proton and deuteron structure functions, <span class="mathjax-tex">\(F_2^p\)</span> and <span class="mathjax-tex">\(F_2^d\)</span>, and of the ratio <span class="mathjax-tex">\(\sigma _L/\sigma _T\)</span>. Nucl. Phys. <b>B483</b>, 3 (1997). <a href="http://arxiv.org/abs/hep-ph/9610231" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/9610231">arXiv:hep-ph/9610231</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="243."><p class="c-article-references__text" id="ref-CR243">NNPDF Collaboration, R.D. Ball et al., Theoretical issues in PDF determination and associated uncertainties. Phys. Lett. <b>B723</b> (2013) 330. <a href="http://arxiv.org/abs/1303.1189" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1303.1189">arXiv:1303.1189</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="244."><p class="c-article-references__text" id="ref-CR244">M. Spira, A. Djouadi, D. Graudenz, P.M. Zerwas, Higgs boson production at the LHC. Nucl. Phys. B <b>453</b>, 17 (1995). <a href="http://arxiv.org/abs/hep-ph/9504378" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/9504378">arXiv:hep-ph/9504378</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="245."><p class="c-article-references__text" id="ref-CR245">R.V. Harlander, W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders. Phys. Rev. Lett. <b>88</b>, 201801 (2002). <a href="http://arxiv.org/abs/hep-ph/0201206" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/0201206">arXiv:hep-ph/0201206</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="246."><p class="c-article-references__text" id="ref-CR246">C. Anastasiou, K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD. Nucl. Phys. B <b>646</b>, 220 (2002). <a href="http://arxiv.org/abs/hep-ph/0207004" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/0207004">arXiv:hep-ph/0207004</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="247."><p class="c-article-references__text" id="ref-CR247">V. Ravindran, J. Smith, W.L. van Neerven, NNLO corrections to the total cross section for Higgs boson production in hadron hadron collisions. Nucl. Phys. B <b>665</b>, 325 (2003). <a href="http://arxiv.org/abs/hep-ph/0302135" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/0302135">arXiv:hep-ph/0302135</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="248."><p class="c-article-references__text" id="ref-CR248">C. Anastasiou, C. Duhr, F. Dulat, F. Herzog, B. Mistlberger, Higgs boson gluon fusion production in QCD at three loops. Phys. Rev. Lett. <b>114</b>, 212001 (2015). <a href="http://arxiv.org/abs/1503.06056" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1503.06056">arXiv:1503.06056</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="249."><p class="c-article-references__text" id="ref-CR249">D. de Florian, J. Mazzitelli, S. Moch, A. Vogt, Approximate N<span class="mathjax-tex">\(^{3}\)</span>LO Higgs-boson production cross section using physical-kernel constraints. JHEP <b>10</b>, 176 (2014). <a href="http://arxiv.org/abs/1408.6277" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1408.6277">arXiv:1408.6277</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="250."><p class="c-article-references__text" id="ref-CR250">R.D. Ball et al., Parton distributions with LHC data. Nucl. Phys. B <b>867</b>, 244 (2013). <a href="http://arxiv.org/abs/1207.1303" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1207.1303">arXiv:1207.1303</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="251."><p class="c-article-references__text" id="ref-CR251">P. Bärnreuther, M. Czakon, A. Mitov, Percent Level Precision Physics at the Tevatron: First Genuine NNLO QCD Corrections to <span class="mathjax-tex">\(q \bar{q} \rightarrow t \bar{t} + X\)</span>. Phys. Rev. Lett. <b>109</b>, 132001 (2012). <a href="http://arxiv.org/abs/1204.5201" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1204.5201">arXiv:1204.5201</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="252."><p class="c-article-references__text" id="ref-CR252">M. Czakon, A. Mitov, NNLO corrections to top-pair production at hadron colliders: the all-fermionic scattering channels. JHEP <b>12</b>, 054 (2012). <a href="http://arxiv.org/abs/1207.0236" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1207.0236">arXiv:1207.0236</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="253."><p class="c-article-references__text" id="ref-CR253">M. Czakon, A. Mitov, NNLO corrections to top pair production at hadron colliders: the quark-gluon reaction. JHEP <b>01</b>, 080 (2013). <a href="http://arxiv.org/abs/1210.6832" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1210.6832">arXiv:1210.6832</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="254."><p class="c-article-references__text" id="ref-CR254">M. Czakon, P. Fiedler, A. Mitov, Total top-quark pair-production cross section at hadron colliders through <span class="mathjax-tex">\(O(\alpha _s^4)\)</span>. Phys. Rev. Lett. <b>110</b>, 252004 (2013). <a href="http://arxiv.org/abs/1303.6254" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1303.6254">arXiv:1303.6254</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="255."><p class="c-article-references__text" id="ref-CR255">U. Langenfeld, S. Moch, P. Uwer, Measuring the running top-quark mass. Phys. Rev. D <b>80</b>, 054009 (2009). <a href="http://arxiv.org/abs/0906.5273" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/0906.5273">arXiv:0906.5273</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="256."><p class="c-article-references__text" id="ref-CR256">M. Aliev, H. Lacker, U. Langenfeld, S. Moch, P. Uwer, M. Wiedermann, HATHOR: HAdronic Top and Heavy quarks crOss section calculatoR. Comput. Phys. Commun. <b>182</b>, 1034 (2011). <a href="http://arxiv.org/abs/1007.1327" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1007.1327">arXiv:1007.1327</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="257."><p class="c-article-references__text" id="ref-CR257">M. Dowling, S. Moch, Differential distributions for top-quark hadro-production with a running mass. Eur. Phys. J. C <b>74</b>, 3167 (2014). <a href="http://arxiv.org/abs/1305.6422" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1305.6422">arXiv:1305.6422</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="258."><p class="c-article-references__text" id="ref-CR258">CMS Collaboration, S. Chatrchyan et al., Determination of the top-quark pole mass and strong coupling constant from the <span class="mathjax-tex">\(t \bar{t}\)</span> production cross section in <span class="mathjax-tex">\(pp\)</span> collisions at <span class="mathjax-tex">\(\sqrt{s}\)</span> = 7 TeV. Phys. Lett. B <b>728</b>, 496 (2014). <a href="http://arxiv.org/abs/1307.1907" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1307.1907">arXiv:1307.1907</a>. [Erratum: Phys. Lett. B728,526(2014)]</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="259."><p class="c-article-references__text" id="ref-CR259">M. Czakon, M.L. Mangano, A. Mitov, J. Rojo, Constraints on the gluon PDF from top quark pair production at hadron colliders. JHEP <b>07</b>, 167 (2013). <a href="http://arxiv.org/abs/1303.7215" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1303.7215">arXiv:1303.7215</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="260."><p class="c-article-references__text" id="ref-CR260">J. Kieseler, K. Lipka, S. Moch, Calibration of the top-quark Monte Carlo mass. <a href="http://arxiv.org/abs/1511.00841" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1511.00841">arXiv:1511.00841</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="261."><p class="c-article-references__text" id="ref-CR261">M. Czakon, D. Heymes, A. Mitov, High-precision differential predictions for top-quark pairs at the LHC. <a href="http://arxiv.org/abs/1511.00549" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1511.00549">arXiv:1511.00549</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="262."><p class="c-article-references__text" id="ref-CR262">M. Guzzi, K. Lipka, S. Moch, Top-quark pair production at hadron colliders: differential cross section and phenomenological applications with DiffTop. JHEP <b>01</b>, 082 (2015). <a href="http://arxiv.org/abs/1406.0386" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1406.0386">arXiv:1406.0386</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="263."><p class="c-article-references__text" id="ref-CR263">LHCb Collaboration, R. Aaij et al., Measurement of B meson production cross sections in proton–proton collisions at <span class="mathjax-tex">\(\sqrt{s} =\)</span> 7 TeV. JHEP <b>08</b> (2013) 117, <a href="http://arxiv.org/abs/1306.3663" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1306.3663">arXiv:1306.3663</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="264."><p class="c-article-references__text" id="ref-CR264">O. Zenaiev, A. Geiser, K. Lipka, J. Blümlein, A. Cooper-Sarkar, et al., Impact of heavy-flavour production cross sections measured by the LHCb experiment on parton distribution functions at low x. <a href="http://arxiv.org/abs/1503.04581" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1503.04581">arXiv:1503.04581</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="265."><p class="c-article-references__text" id="ref-CR265">O. Zenaiev, Charm production and QCD analysis at HERA and LHC. PhD thesis, U. Hamburg, Dept. Phys., DESY-THESIS-2015-012 (2015)</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="266."><p class="c-article-references__text" id="ref-CR266">P. Nason, S. Dawson, R.K. Ellis, The total cross section for the production of heavy quarks in hadronic collisions. Nucl. Phys. B <b>303</b>, 607 (1988)</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="267."><p class="c-article-references__text" id="ref-CR267">W. Beenakker, H. Kuijf, W.L. van Neerven, J. Smith, QCD corrections to heavy quark production in <span class="mathjax-tex">\(p \bar{p}\)</span> collisions. Phys. Rev. D <b>40</b>, 54 (1989)</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="268."><p class="c-article-references__text" id="ref-CR268">P. Nason, S. Dawson, R.K. Ellis, The one particle inclusive differential cross section for heavy quark production in hadronic collisions. Nucl. Phys. <b>B327</b>, 49 (1989). [Erratum: Nucl. Phys.B 335, 260 (1990)]</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="269."><p class="c-article-references__text" id="ref-CR269">M.V. Garzelli, S. Moch, G. Sigl, Lepton fluxes from atmospheric charm revisited. JHEP <b>10</b>, 115 (2015). <a href="http://arxiv.org/abs/1507.01570" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1507.01570">arXiv:1507.01570</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="270."><p class="c-article-references__text" id="ref-CR270">R. Gauld, J. Rojo, L. Rottoli, J. Talbert, Charm production in the forward region: constraints on the small-x gluon and backgrounds for neutrino astronomy. JHEP <b>11</b>, 009 (2015). <a href="http://arxiv.org/abs/1506.08025" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1506.08025">arXiv:1506.08025</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="271."><p class="c-article-references__text" id="ref-CR271">C. Lourenco, H. Wöhri, Heavy flavour hadro-production from fixed-target to collider energies. Phys. Rept. <b>433</b>, 127 (2006). <a href="http://arxiv.org/abs/hep-ph/0609101" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/0609101">arXiv:hep-ph/0609101</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="272."><p class="c-article-references__text" id="ref-CR272">HERA-B Collaboration, I. Abt et al., Measurement of <span class="mathjax-tex">\(D^0\)</span>, <span class="mathjax-tex">\(D^+\)</span>, <span class="mathjax-tex">\(D^+_s\)</span> and <span class="mathjax-tex">\(D^{*+}\)</span> production in fixed target 920-GeV proton-nucleus collisions. Eur. Phys. J. <b>C52</b>, 531 (2007). <a href="http://arxiv.org/abs/0708.1443" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/0708.1443">arXiv:0708.1443</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="273."><p class="c-article-references__text" id="ref-CR273">PHENIX Collaboration, A. Adare et al., Measurement of high-<span class="mathjax-tex">\(p_T\)</span> single electrons from heavy-flavor decays in p+p collisions at <span class="mathjax-tex">\(s^{1/2} = 200\)</span> GeV. Phys. Rev. Lett. 97, 252002 (2006). <a href="http://arxiv.org/abs/hep-ex/0609010" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ex/0609010">arXiv:hep-ex/0609010</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="274."><p class="c-article-references__text" id="ref-CR274">STAR Collaboration, L. Adamczyk et al., Measurements of <span class="mathjax-tex">\(D^{0}\)</span> and <span class="mathjax-tex">\(D^{*}\)</span> production in <span class="mathjax-tex">\(p+p\)</span> collisions at <span class="mathjax-tex">\(\sqrt{s} = 200\)</span> GeV. Phys. Rev. D <b>86</b>, 072013 (2012). <a href="http://arxiv.org/abs/1204.4244" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1204.4244">arXiv:1204.4244</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="275."><p class="c-article-references__text" id="ref-CR275">ALICE Collaboration, B. Abelev et al., Measurement of charm production at central rapidity in proton–proton collisions at <span class="mathjax-tex">\(\sqrt{s}=2.76\)</span> TeV. JHEP <b>1207</b>, 191 (2012). <a href="http://arxiv.org/abs/1205.4007" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1205.4007">arXiv:1205.4007</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="276."><p class="c-article-references__text" id="ref-CR276">ATLAS Collaboration, Measurement of <span class="mathjax-tex">\(D^{(*)}\)</span> meson production cross sections in pp collisions at <span class="mathjax-tex">\(\sqrt{s}=7\)</span> TeV with the ATLAS detector, ATLAS-CONF-2011-017, ATLAS-COM-CONF-2011-030</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="277."><p class="c-article-references__text" id="ref-CR277">LHCb Collaboration, R. Aaij et al., Prompt charm production in pp collisions at <span class="mathjax-tex">\(\sqrt{s}=7\)</span> TeV. Nucl. Phys. <b>B871</b>, 1 (2013). <a href="http://arxiv.org/abs/1302.2864" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1302.2864">arXiv:1302.2864</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="278."><p class="c-article-references__text" id="ref-CR278">LHCb Collaboration, R. Aaij et al., Measurements of prompt charm production cross sections in <span class="mathjax-tex">\(pp\)</span> collisions at <span class="mathjax-tex">\(\sqrt{s}\)</span> = 13 TeV. <a href="http://arxiv.org/abs/1510.01707" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1510.01707">arXiv:1510.01707</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="279."><p class="c-article-references__text" id="ref-CR279">L.T. Brady, A. Accardi, W. Melnitchouk, J.F. Owens, Impact of PDF uncertainties at large <span class="mathjax-tex">\(x\)</span> on heavy boson production. JHEP <b>06</b>, 019 (2012). <a href="http://arxiv.org/abs/1110.5398" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1110.5398">arXiv:1110.5398</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="280."><p class="c-article-references__text" id="ref-CR280">M. Botje et al., The PDF4LHC working group interim recommendations. <a href="http://arxiv.org/abs/1101.0538" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1101.0538">arXiv:1101.0538</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="281."><p class="c-article-references__text" id="ref-CR281">A. Buckley, J. Rojo, Private communication</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="282."><p class="c-article-references__text" id="ref-CR282">J. R. Andersen et al. Les Houches 2015: Physics at TeV Colliders Standard Model Working Group Report. <a href="http://arxiv.org/abs/1605.04692" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1605.04692">arXiv:1605.04692</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="283."><p class="c-article-references__text" id="ref-CR283">A. Buckley, J. Ferrando, S. Lloyd, K. Nordström, B. Page, M. Rüfenacht, M. Schönherr, G. Watt, LHAPDF6: parton density access in the LHC precision era. Eur. Phys. J. C <b>75</b>, 132 (2015). <a href="http://arxiv.org/abs/1412.7420" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1412.7420">arXiv:1412.7420</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="284."><p class="c-article-references__text" id="ref-CR284">M. R. Whalley, D. Bourilkov, R. C. Group, The Les Houches accord PDFs (LHAPDF) and LHAGLUE, in HERA and the LHC: A workshop on the implications of HERA for LHC physics. in Proceedings, Part B (2005). <a href="http://arxiv.org/abs/hep-ph/0508110" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/hep-ph/0508110">arXiv:hep-ph/0508110</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="285."><p class="c-article-references__text" id="ref-CR285">J.P. Ralston, Pocket partonometer. Phys. Lett. B <b>172</b>, 430 (1986)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/0370-2693(86)90283-2" data-track-item_id="10.1016/0370-2693(86)90283-2" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2F0370-2693%2886%2990283-2" aria-label="Article reference 285" data-doi="10.1016/0370-2693(86)90283-2">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=1986PhLB..172..430R" aria-label="ADS reference 285">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 285" href="http://scholar.google.com/scholar_lookup?&amp;title=Pocket%20partonometer&amp;journal=Phys.%20Lett.%20B&amp;doi=10.1016%2F0370-2693%2886%2990283-2&amp;volume=172&amp;publication_year=1986&amp;author=Ralston%2CJP"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="286."><p class="c-article-references__text" id="ref-CR286">J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.S. Shao, T. Stelzer, P. Torrielli, M. Zaro, The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. JHEP <b>07</b>, 079 (2014). <a href="http://arxiv.org/abs/1405.0301" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1405.0301">arXiv:1405.0301</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="287."><p class="c-article-references__text" id="ref-CR287">POWHEG-BOX (v2). <a href="http://powhegbox.mib.infn.it/" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://powhegbox.mib.infn.it/">http://powhegbox.mib.infn.it/</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="288."><p class="c-article-references__text" id="ref-CR288">S. Alioli, P. Nason, C. Oleari, E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX. JHEP <b>06</b>, 043 (2010). <a href="http://arxiv.org/abs/1002.2581" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1002.2581">arXiv:1002.2581</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="289."><p class="c-article-references__text" id="ref-CR289">SHERPA (v2). <a href="https://sherpa.hepforge.org/doc/SHERPA-MC-2.2.0.html" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="https://sherpa.hepforge.org/doc/SHERPA-MC-2.2.0.html">https://sherpa.hepforge.org/doc/SHERPA-MC-2.2.0.html</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="290."><p class="c-article-references__text" id="ref-CR290">T. Gleisberg, S. Höche, F. Krauss, M. Schönherr, S. Schumann, F. Siegert, J. Winter, Event generation with SHERPA 1.1. JHEP <b>02</b> (2009) 007. <a href="http://arxiv.org/abs/0811.4622" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/0811.4622">arXiv:0811.4622</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="291."><p class="c-article-references__text" id="ref-CR291">S. Alioli, C.W. Bauer, C. Berggren, F.J. Tackmann, J.R. Walsh, Drell–Yan production at NNLL’+NNLO matched to parton showers. Phys. Rev. D <b>92</b>, 094020 (2015). <a href="http://arxiv.org/abs/1508.01475" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1508.01475">arXiv:1508.01475</a> </p></li></ol><p class="c-article-references__download u-hide-print"><a data-track="click" data-track-action="download citation references" data-track-label="link" rel="nofollow" href="https://citation-needed.springer.com/v2/references/10.1140/epjc/s10052-016-4285-4?format=refman&amp;flavour=references">Download references<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use></svg></a></p></div></div></div></section></div><section data-title="Acknowledgments"><div class="c-article-section" id="Ack1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Ack1">Acknowledgments</h2><div class="c-article-section__content" id="Ack1-content"><p>We would like to thank S. Alioli, M. Botje, E.W.N. Glover and K. Rabbertz for discussions, K. Rabbertz also for valuable comments on the manuscript, and L. Harland-Lang and R. Thorne for providing us with the Higgs and <span class="mathjax-tex">\(t{\bar{t}}\)</span> cross sections in Tables <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab11">11</a> and <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1140/epjc/s10052-016-4285-4#Tab14">14</a>. This work has been supported by Bundesministerium für Bildung und Forschung through contract (05H15GUCC1), by the DOE contract No. DE-AC05-06OR23177, under which Jefferson Science Associates, LLC operates Jefferson Lab, and by the European Commission through PITN-GA-2012-316704 (<i>HIGGSTOOLS</i>). The work of A.A. and J.F.O. was supported in part by DOE contracts No. DE-SC0008791 and No. DE-FG02-97ER41922, respectively. Two of the authors (J.B. and S.M.) would like to thank the Mainz Institute for Theoretical Physics (MITP) for its hospitality and support.</p></div></div></section><section aria-labelledby="author-information" data-title="Author information"><div class="c-article-section" id="author-information-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="author-information">Author information</h2><div class="c-article-section__content" id="author-information-content"><h3 class="c-article__sub-heading" id="affiliations">Authors and Affiliations</h3><ol class="c-article-author-affiliation__list"><li id="Aff1"><p class="c-article-author-affiliation__address">Hampton University, Hampton, VA, 23668, USA</p><p class="c-article-author-affiliation__authors-list">A. Accardi</p></li><li id="Aff2"><p class="c-article-author-affiliation__address">Jefferson Lab, Newport News, VA, 23606, USA</p><p class="c-article-author-affiliation__authors-list">A. Accardi, W. Melnitchouk &amp; N. Sato</p></li><li id="Aff3"><p class="c-article-author-affiliation__address">II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany</p><p class="c-article-author-affiliation__authors-list">S. Alekhin, M. V. Garzelli &amp; S. Moch</p></li><li id="Aff4"><p class="c-article-author-affiliation__address">Institute for High Energy Physics, 142281, Protvino, Moscow region, Russia</p><p class="c-article-author-affiliation__authors-list">S. Alekhin</p></li><li id="Aff5"><p class="c-article-author-affiliation__address">Deutsches Elektronensynchrotron DESY, Platanenallee 6, 15738, Zeuthen, Germany</p><p class="c-article-author-affiliation__authors-list">J. Blümlein</p></li><li id="Aff6"><p class="c-article-author-affiliation__address">Deutsches Elektronensynchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany</p><p class="c-article-author-affiliation__authors-list">K. Lipka, R. Plačakytė &amp; O. Zenaiev</p></li><li id="Aff7"><p class="c-article-author-affiliation__address">Florida State University, Tallahassee, FL, 32306, USA</p><p class="c-article-author-affiliation__authors-list">J. F. Owens</p></li><li id="Aff8"><p class="c-article-author-affiliation__address">Institut für Physik, Technische Universität Dortmund, 44221, Dortmund, Germany</p><p class="c-article-author-affiliation__authors-list">E. Reya</p></li><li id="Aff9"><p class="c-article-author-affiliation__address">Department of Mathematical Sciences, University of Liverpool, Liverpool, L69 3BX, UK</p><p class="c-article-author-affiliation__authors-list">A. Vogt</p></li></ol><div class="u-js-hide u-hide-print" data-test="author-info"><span class="c-article__sub-heading">Authors</span><ol class="c-article-authors-search u-list-reset"><li id="auth-A_-Accardi-Aff1-Aff2"><span class="c-article-authors-search__title u-h3 js-search-name">A. Accardi</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=A.%20Accardi" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=A.%20Accardi" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22A.%20Accardi%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-S_-Alekhin-Aff3-Aff4"><span class="c-article-authors-search__title u-h3 js-search-name">S. Alekhin</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=S.%20Alekhin" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=S.%20Alekhin" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22S.%20Alekhin%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-J_-Bl_mlein-Aff5"><span class="c-article-authors-search__title u-h3 js-search-name">J. Blümlein</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=J.%20Bl%C3%BCmlein" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=J.%20Bl%C3%BCmlein" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22J.%20Bl%C3%BCmlein%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-M__V_-Garzelli-Aff3"><span class="c-article-authors-search__title u-h3 js-search-name">M. V. Garzelli</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=M.%20V.%20Garzelli" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=M.%20V.%20Garzelli" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22M.%20V.%20Garzelli%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-K_-Lipka-Aff6"><span class="c-article-authors-search__title u-h3 js-search-name">K. Lipka</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=K.%20Lipka" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=K.%20Lipka" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22K.%20Lipka%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-W_-Melnitchouk-Aff2"><span class="c-article-authors-search__title u-h3 js-search-name">W. Melnitchouk</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=W.%20Melnitchouk" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=W.%20Melnitchouk" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22W.%20Melnitchouk%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-S_-Moch-Aff3"><span class="c-article-authors-search__title u-h3 js-search-name">S. Moch</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=S.%20Moch" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=S.%20Moch" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22S.%20Moch%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-J__F_-Owens-Aff7"><span class="c-article-authors-search__title u-h3 js-search-name">J. F. Owens</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=J.%20F.%20Owens" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=J.%20F.%20Owens" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22J.%20F.%20Owens%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-R_-Pla_akyt_-Aff6"><span class="c-article-authors-search__title u-h3 js-search-name">R. Plačakytė</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=R.%20Pla%C4%8Dakyt%C4%97" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=R.%20Pla%C4%8Dakyt%C4%97" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22R.%20Pla%C4%8Dakyt%C4%97%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-E_-Reya-Aff8"><span class="c-article-authors-search__title u-h3 js-search-name">E. Reya</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=E.%20Reya" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=E.%20Reya" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22E.%20Reya%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-N_-Sato-Aff2"><span class="c-article-authors-search__title u-h3 js-search-name">N. Sato</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=N.%20Sato" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=N.%20Sato" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22N.%20Sato%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-A_-Vogt-Aff9"><span class="c-article-authors-search__title u-h3 js-search-name">A. Vogt</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=A.%20Vogt" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=A.%20Vogt" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22A.%20Vogt%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-O_-Zenaiev-Aff6"><span class="c-article-authors-search__title u-h3 js-search-name">O. Zenaiev</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=O.%20Zenaiev" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=O.%20Zenaiev" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22O.%20Zenaiev%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li></ol></div><h3 class="c-article__sub-heading" id="corresponding-author">Corresponding author</h3><p id="corresponding-author-list">Correspondence to <a id="corresp-c1" href="mailto:sven-olaf.moch@desy.de">S. Moch</a>.</p></div></div></section><section data-title="Rights and permissions"><div class="c-article-section" id="rightslink-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="rightslink">Rights and permissions</h2><div class="c-article-section__content" id="rightslink-content"> <p> <b>Open Access</b> This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (<a href="http://creativecommons.org/licenses/by/4.0" rel="license">http://creativecommons.org/licenses/by/4.0</a>/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.</p> <p>Funded by SCOAP<sup>3</sup>.</p> <p class="c-article-rights"><a data-track="click" data-track-action="view rights and permissions" data-track-label="link" href="https://s100.copyright.com/AppDispatchServlet?title=A%20critical%20appraisal%20and%20evaluation%20of%20modern%20PDFs&amp;author=A.%20Accardi%20et%20al&amp;contentID=10.1140%2Fepjc%2Fs10052-016-4285-4&amp;copyright=The%20Author%28s%29&amp;publication=1434-6044&amp;publicationDate=2016-08-23&amp;publisherName=SpringerNature&amp;orderBeanReset=true&amp;oa=CC%20BY">Reprints and permissions</a></p></div></div></section><section aria-labelledby="article-info" data-title="About this article"><div class="c-article-section" id="article-info-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="article-info">About this article</h2><div class="c-article-section__content" id="article-info-content"><div class="c-bibliographic-information"><div class="u-hide-print c-bibliographic-information__column c-bibliographic-information__column--border"><a data-crossmark="10.1140/epjc/s10052-016-4285-4" target="_blank" rel="noopener" href="https://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-016-4285-4" data-track="click" data-track-action="Click Crossmark" data-track-label="link" data-test="crossmark"><img loading="lazy" width="57" height="81" alt="Check for updates. Verify currency and authenticity via CrossMark" src=""></a></div><div class="c-bibliographic-information__column"><h3 class="c-article__sub-heading" id="citeas">Cite this article</h3><p class="c-bibliographic-information__citation">Accardi, A., Alekhin, S., Blümlein, J. <i>et al.</i> A critical appraisal and evaluation of modern PDFs. <i>Eur. Phys. J. C</i> <b>76</b>, 471 (2016). https://doi.org/10.1140/epjc/s10052-016-4285-4</p><p class="c-bibliographic-information__download-citation u-hide-print"><a data-test="citation-link" data-track="click" data-track-action="download article citation" data-track-label="link" data-track-external="" rel="nofollow" href="https://citation-needed.springer.com/v2/references/10.1140/epjc/s10052-016-4285-4?format=refman&amp;flavour=citation">Download citation<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use></svg></a></p><ul class="c-bibliographic-information__list" data-test="publication-history"><li class="c-bibliographic-information__list-item"><p>Received<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2016-04-05">05 April 2016</time></span></p></li><li class="c-bibliographic-information__list-item"><p>Accepted<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2016-07-26">26 July 2016</time></span></p></li><li class="c-bibliographic-information__list-item"><p>Published<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2016-08-23">23 August 2016</time></span></p></li><li class="c-bibliographic-information__list-item c-bibliographic-information__list-item--full-width"><p><abbr title="Digital Object Identifier">DOI</abbr><span class="u-hide">: </span><span class="c-bibliographic-information__value">https://doi.org/10.1140/epjc/s10052-016-4285-4</span></p></li></ul><div data-component="share-box"><div class="c-article-share-box u-display-none" hidden=""><h3 class="c-article__sub-heading">Share this article</h3><p class="c-article-share-box__description">Anyone you share the following link with will be able to read this content:</p><button class="js-get-share-url c-article-share-box__button" type="button" id="get-share-url" data-track="click" data-track-label="button" data-track-external="" data-track-action="get shareable link">Get shareable link</button><div class="js-no-share-url-container u-display-none" hidden=""><p class="js-c-article-share-box__no-sharelink-info c-article-share-box__no-sharelink-info">Sorry, a shareable link is not currently available for this article.</p></div><div class="js-share-url-container u-display-none" hidden=""><p class="js-share-url c-article-share-box__only-read-input" id="share-url" data-track="click" data-track-label="button" data-track-action="select share url"></p><button class="js-copy-share-url c-article-share-box__button--link-like" type="button" id="copy-share-url" data-track="click" data-track-label="button" data-track-action="copy share url" data-track-external="">Copy to clipboard</button></div><p class="js-c-article-share-box__additional-info c-article-share-box__additional-info"> Provided by the Springer Nature SharedIt content-sharing initiative </p></div></div><div data-component="article-info-list"></div></div></div></div></div></section> </div> </main> <div class="c-article-sidebar u-text-sm u-hide-print l-with-sidebar__sidebar" id="sidebar" data-container-type="reading-companion" data-track-component="reading companion"> <aside> <div class="app-card-service" data-test="article-checklist-banner"> <div> <a class="app-card-service__link" data-track="click_presubmission_checklist" data-track-context="article page top of reading companion" data-track-category="pre-submission-checklist" data-track-action="clicked article page checklist banner test 2 old version" data-track-label="link" href="https://beta.springernature.com/pre-submission?journalId=10052" data-test="article-checklist-banner-link"> <span class="app-card-service__link-text">Use our pre-submission checklist</span> <svg class="app-card-service__link-icon" aria-hidden="true" focusable="false"><use xlink:href="#icon-eds-i-arrow-right-small"></use></svg> </a> <p class="app-card-service__description">Avoid common mistakes on your manuscript.</p> </div> <div class="app-card-service__icon-container"> <svg class="app-card-service__icon" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-clipboard-check-medium"></use> </svg> </div> </div> <div data-test="collections"> </div> <div data-test="editorial-summary"> </div> <div class="c-reading-companion"> <div class="c-reading-companion__sticky" data-component="reading-companion-sticky" data-test="reading-companion-sticky"> <div class="c-reading-companion__panel c-reading-companion__sections c-reading-companion__panel--active" id="tabpanel-sections"> <div class="u-lazy-ad-wrapper u-mt-16 u-hide" data-component-mpu><div class="c-ad c-ad--300x250"> <div class="c-ad__inner"> <p class="c-ad__label">Advertisement</p> <div id="div-gpt-ad-MPU1" class="div-gpt-ad grade-c-hide" data-pa11y-ignore data-gpt data-gpt-unitpath="/270604982/springerlink/10052/article" data-gpt-sizes="300x250" data-test="MPU1-ad" data-gpt-targeting="pos=MPU1;articleid=s10052-016-4285-4;"> </div> </div> </div> </div> </div> <div class="c-reading-companion__panel c-reading-companion__figures c-reading-companion__panel--full-width" id="tabpanel-figures"></div> <div class="c-reading-companion__panel c-reading-companion__references c-reading-companion__panel--full-width" id="tabpanel-references"></div> </div> </div> </aside> </div> </div> </article> <div class="app-elements"> <div class="eds-c-header__expander eds-c-header__expander--search" id="eds-c-header-popup-search"> <h2 class="eds-c-header__heading">Search</h2> <div class="u-container"> <search class="eds-c-header__search" role="search" aria-label="Search from the header"> <form method="GET" action="//link.springer.com/search" data-test="header-search" data-track="search" data-track-context="search from header" data-track-action="submit search form" data-track-category="unified header" data-track-label="form" > <label for="eds-c-header-search" class="eds-c-header__search-label">Search by keyword or author</label> <div class="eds-c-header__search-container"> <input id="eds-c-header-search" class="eds-c-header__search-input" autocomplete="off" name="query" type="search" value="" required> <button class="eds-c-header__search-button" type="submit"> <svg class="eds-c-header__icon" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-search-medium"></use> </svg> <span class="u-visually-hidden">Search</span> </button> </div> </form> </search> </div> </div> <div class="eds-c-header__expander eds-c-header__expander--menu" id="eds-c-header-nav"> <h2 class="eds-c-header__heading">Navigation</h2> <ul class="eds-c-header__list"> <li class="eds-c-header__list-item"> <a class="eds-c-header__link" href="https://link.springer.com/journals/" data-track="nav_find_a_journal" data-track-context="unified header" data-track-action="click find a journal" data-track-category="unified header" data-track-label="link" > Find a journal </a> </li> <li class="eds-c-header__list-item"> <a class="eds-c-header__link" href="https://www.springernature.com/gp/authors" data-track="nav_how_to_publish" data-track-context="unified header" data-track-action="click publish with us link" data-track-category="unified header" data-track-label="link" > Publish with us </a> </li> <li class="eds-c-header__list-item"> <a class="eds-c-header__link" href="https://link.springernature.com/home/" data-track="nav_track_your_research" data-track-context="unified header" data-track-action="click track your research" data-track-category="unified header" data-track-label="link" > Track your research </a> </li> </ul> </div> <footer > <div class="eds-c-footer" > <div class="eds-c-footer__container"> <div class="eds-c-footer__grid eds-c-footer__group--separator"> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Discover content</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://link.springer.com/journals/a/1" data-track="nav_journals_a_z" data-track-action="journals a-z" data-track-context="unified footer" data-track-label="link">Journals A-Z</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://link.springer.com/books/a/1" data-track="nav_books_a_z" data-track-action="books a-z" data-track-context="unified footer" data-track-label="link">Books A-Z</a></li> </ul> </div> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Publish with us</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://link.springer.com/journals" data-track="nav_journal_finder" data-track-action="journal finder" data-track-context="unified footer" data-track-label="link">Journal finder</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/authors" data-track="nav_publish_your_research" data-track-action="publish your research" data-track-context="unified footer" data-track-label="link">Publish your research</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/open-research/about/the-fundamentals-of-open-access-and-open-research" data-track="nav_open_access_publishing" data-track-action="open access publishing" data-track-context="unified footer" data-track-label="link">Open access publishing</a></li> </ul> </div> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Products and services</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/products" data-track="nav_our_products" data-track-action="our products" data-track-context="unified footer" data-track-label="link">Our products</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/librarians" data-track="nav_librarians" data-track-action="librarians" data-track-context="unified footer" data-track-label="link">Librarians</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/societies" data-track="nav_societies" data-track-action="societies" data-track-context="unified footer" data-track-label="link">Societies</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/partners" data-track="nav_partners_and_advertisers" data-track-action="partners and advertisers" data-track-context="unified footer" data-track-label="link">Partners and advertisers</a></li> </ul> </div> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Our imprints</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springer.com/" data-track="nav_imprint_Springer" data-track-action="Springer" data-track-context="unified footer" data-track-label="link">Springer</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.nature.com/" data-track="nav_imprint_Nature_Portfolio" data-track-action="Nature Portfolio" data-track-context="unified footer" data-track-label="link">Nature Portfolio</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.biomedcentral.com/" data-track="nav_imprint_BMC" data-track-action="BMC" data-track-context="unified footer" data-track-label="link">BMC</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.palgrave.com/" data-track="nav_imprint_Palgrave_Macmillan" data-track-action="Palgrave Macmillan" data-track-context="unified footer" data-track-label="link">Palgrave Macmillan</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.apress.com/" data-track="nav_imprint_Apress" data-track-action="Apress" data-track-context="unified footer" data-track-label="link">Apress</a></li> </ul> </div> </div> </div> <div class="eds-c-footer__container"> <nav aria-label="footer navigation"> <ul class="eds-c-footer__links"> <li class="eds-c-footer__item"> <button class="eds-c-footer__link" data-cc-action="preferences" data-track="dialog_manage_cookies" data-track-action="Manage cookies" data-track-context="unified footer" data-track-label="link"><span class="eds-c-footer__button-text">Your privacy choices/Manage cookies</span></button> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://www.springernature.com/gp/legal/ccpa" data-track="nav_california_privacy_statement" data-track-action="california privacy statement" data-track-context="unified footer" data-track-label="link">Your US state privacy rights</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://www.springernature.com/gp/info/accessibility" data-track="nav_accessibility_statement" data-track-action="accessibility statement" data-track-context="unified footer" data-track-label="link">Accessibility statement</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://link.springer.com/termsandconditions" data-track="nav_terms_and_conditions" data-track-action="terms and conditions" data-track-context="unified footer" data-track-label="link">Terms and conditions</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://link.springer.com/privacystatement" data-track="nav_privacy_policy" data-track-action="privacy policy" data-track-context="unified footer" data-track-label="link">Privacy policy</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://support.springernature.com/en/support/home" data-track="nav_help_and_support" data-track-action="help and support" data-track-context="unified footer" data-track-label="link">Help and support</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://link.springer.com/legal-notice" data-track="nav_legal_notice" data-track-action="legal notice" data-track-context="unified footer" data-track-label="link">Legal notice</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://support.springernature.com/en/support/solutions/articles/6000255911-subscription-cancellations" data-track-action="cancel contracts here">Cancel contracts here</a> </li> </ul> </nav> <div class="eds-c-footer__user"> <p class="eds-c-footer__user-info"> <span data-test="footer-user-ip">8.222.208.146</span> </p> <p class="eds-c-footer__user-info" data-test="footer-business-partners">Not affiliated</p> </div> <a href="https://www.springernature.com/" class="eds-c-footer__link"> <img src="/oscar-static/images/logo-springernature-white-19dd4ba190.svg" alt="Springer Nature" loading="lazy" width="200" height="20"/> </a> <p class="eds-c-footer__legal" data-test="copyright">&copy; 2025 Springer Nature</p> </div> </div> </footer> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10