CINXE.COM
Search results for: water scarcity
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: water scarcity</title> <meta name="description" content="Search results for: water scarcity"> <meta name="keywords" content="water scarcity"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="water scarcity" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="water scarcity"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8846</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: water scarcity</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8846</span> Contrasting The Water Consumption Estimation Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Etienne%20Alain%20Feukeu">Etienne Alain Feukeu</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20W.%20Snyman"> L. W. Snyman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water scarcity is becoming a real issue nowadays. Most countries in the world are facing it in their own way based on their own geographical coordinate and condition. Many countries are facing a challenge of a growing water demand as a result of not only an increased population, economic growth, but also as a pressure of the population dynamic and urbanization. In view to mitigate some of this related problem, an accurate method of water estimation and future prediction, forecast is essential to guarantee not only the sufficient quantity, but also a good water distribution and management system. Beside the fact that several works have been undertaken to address this concern, there is still a considerable disparity between different methods and standard used for water prediction and estimation. Hence this work contrast and compare two well-defined and established methods from two countries (USA and South Africa) to demonstrate the inconsistency when different method and standards are used interchangeably. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20scarcity" title="water scarcity">water scarcity</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20estimation" title=" water estimation"> water estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20prediction" title=" water prediction"> water prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20forecast." title=" water forecast."> water forecast.</a> </p> <a href="https://publications.waset.org/abstracts/142268/contrasting-the-water-consumption-estimation-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142268.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8845</span> Socio-Economic Analysis of Water Saving Technologies in Agricultural Sector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Yazdani">Saeed Yazdani</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Nekoofar"> F. Nekoofar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Considering the importance and scarcity of water resources, the efficient management of water resources is of great importance. In the agriculture sector, farmers are facilitated with various practices and technologies to encounter water insufficiency. This study aims to assess socio-economic factors affecting the application of water-saving technologies. A Logit method was employed to examine the impact of different variables on the use of water-saving technology. The required data was gathered from a sample of 204 farmers in 2021 in Alborz Province in Iran. The results indicate that different variables such as crop price variability, water sources, farm size, income, education, experience, membership in cooperatives have positive effects, and variables such as age and number of plots have negative effects on the probability of applying modern water-saving technologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=socio-economics" title="socio-economics">socio-economics</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation" title=" irrigation"> irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20saving%20technologies" title=" water saving technologies"> water saving technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=scarcity" title=" scarcity"> scarcity</a> </p> <a href="https://publications.waset.org/abstracts/191932/socio-economic-analysis-of-water-saving-technologies-in-agricultural-sector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191932.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">21</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8844</span> Resilence and Adaptation to Water Scarcity in San Martín de las Palmas, Santiago Tilantongo, Nochixtlán Oaxaca</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Montesinos-Pedro">E. Montesinos-Pedro</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20G.%20Toscano-Flores"> L. G. Toscano-Flores</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Dom%C3%ADnguez-Ram%C3%ADrez"> N. Domínguez-Ramírez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water scarcity is a worldwide issue, coupled with climate change is a relevant problem, that affect not only large cities, but also rural areas. The Municipality of Santiago Tilantongo belongs to the district of Nochixtlán Oaxaca, it’s built up from 14 communities, one of them San Martin de las Palmas. This community was founded in 1900, at that time the inhabitants were supplied with water through rivers of the region which were abundant (they used containers filled in the river for that purpose); However, over the years the level of the rivers began to drop and in 1994 specific wells were located to store water and at the same time make it drinkable, this whit support of the state of Oaxaca and the program Procampo. By the year 2000 the shortage of water in the supply sources was notorious, the community requested support from the Oaxaca State government to solve the problem. The government’s response consisted in the implementation of ferro-cement tanks (2005) and water wells (2010), both for rainwater collection, Hower, it was not enough. Now days the community has a population of 60 inhabitants who have resisted and adapted to water scarcity, not only with the programs implemented by the government, but they also have implemented important structural analysis strategies. The objective of this research is to know the adaptation strategies used by the community to analyze them and propose improvements for water conservation and mitigation of this scarcity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptation" title="adaptation">adaptation</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=mitigation" title=" mitigation"> mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=resiliencia" title=" resiliencia"> resiliencia</a> </p> <a href="https://publications.waset.org/abstracts/162697/resilence-and-adaptation-to-water-scarcity-in-san-martin-de-las-palmas-santiago-tilantongo-nochixtlan-oaxaca" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162697.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8843</span> Water Scarcity in the Gomti Nagar Area under the Impact of Climate Changes and Assessment for Groundwater Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajkumar%20Ghosh">Rajkumar Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climate change has led to decreased water availability in the Gomti Nagar area of Uttar Pradesh, India. Climate change has reduced the amount of precipitation and increased the rate of evaporation. The region is heavily reliant on surface water sources (Gomti river, Sharda Canal) and groundwater. Efficient management of groundwater resources is crucial for addressing water shortages. These may include: Exploring alternative water sources, such as wastewater recycling and desalination, can help augment water supply and reduce dependency on rainfall-dependent sources. Promoting the use of water-efficient technologies in industries, agriculture, and water-efficient infrastructure in urban areas can contribute to reducing water demand and optimizing water use. Incorporating climate change considerations into urban planning and infrastructure development can help ensure water security in the face of future climate uncertainties. Addressing water scarcity in the Gomti Nagar area requires a multi-pronged approach that combines sustainable groundwater management practices, climate change adaptation strategies, and integrated water resource management. By implementing these measures, the region can work towards ensuring a more sustainable and reliable water supply in the context of climate change. Water is the most important natural resource for the existence of living beings in the Earth's ecosystem. On Earth, 1.2 percent of the water is drinkable, but only 0.3 percent is usable by people. Water scarcity is a growing concern in India due to the impact of climate change and over-exploitation of water resources. Excess groundwater withdrawal causes regular declines in groundwater level. Due to city boundary expansion and growing urbanization, the recharge point for groundwater tables is decreasing. Rainwater infiltration into the subsoil is also reduced by unplanned, uneven settlements in urban change. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20scarcity" title=" water scarcity"> water scarcity</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall" title=" rainfall"> rainfall</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20supply" title=" water supply"> water supply</a> </p> <a href="https://publications.waset.org/abstracts/168386/water-scarcity-in-the-gomti-nagar-area-under-the-impact-of-climate-changes-and-assessment-for-groundwater-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168386.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8842</span> Crop Price Variation and Water Saving Technologies in Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Yazdani">Saeed Yazdani</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahrbanoo%20Bagheri"> Shahrbanoo Bagheri</a>, <a href="https://publications.waset.org/abstracts/search?q=Sepideh%20%20Nikravesh"> Sepideh Nikravesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Considering the importance and scarcity of water resources, the efficient management of water resources is of great importance. Adoption of modern irrigation technology is considered to be a key of increasing the efficiency of water used in agriculture. Policy makers have implemented several ways to induce the adoption of new irrigation technology. The empirical studies show that farmers are reluctant to utilize the use of new irrigation methods. This study aims to assess factors affecting on farmer’s decision on the application of water saving technologies with emphasize on crop price variation and water sources. A Logit model was employed to examine the impact of different variables on use of water saving technology. The required data gathered from a sample of 204 farmers in the year 2012. The results indicate that different variables such as crop price variability, water supply source, high-value crops, farm size, income, education, membership in cooperatives have a positive effect and variables such as age and number of plots have a negative impact on the probability of adopting modern water saving technologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=irrigation" title="irrigation">irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20saving%20technology" title=" water saving technology"> water saving technology</a>, <a href="https://publications.waset.org/abstracts/search?q=scarcity" title=" scarcity"> scarcity</a> </p> <a href="https://publications.waset.org/abstracts/88628/crop-price-variation-and-water-saving-technologies-in-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88628.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8841</span> Impact of Climate Change on Water Resources in Morocco</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelghani%20Qadem">Abdelghani Qadem</a>, <a href="https://publications.waset.org/abstracts/search?q=Zouhair%20Qadem"> Zouhair Qadem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Like the countries of the Mediterranean region, Morocco is likely to be at high risk of water scarcity due to climate change. Morocco, which is the subject of this study, is located between two climatic zones, temperate in the North tropical in the South, Morocco is distinguished by four types of climate: humid, sub-humid, semi-arid, and arid. The last decades attest to the progression of the semi-arid climate towards the North of the country. The IPCC projections, which have been made in this direction, show that there is an overall downward trend in rainfall contributions varying on average between 10% and 30% depending on the scenario selected and the region considered, they also show an upward trend in average annual temperatures. These trends will have a real impact on water resources, which will result in a drop in the volume of water resources varying between 7.6% and 40.6%. The present study aims to describe the meteorological conditions of Morocco in order to answer the problem dealing with the effect of climatic fluctuations on water resources and to assess water vulnerability in the face of climate change. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=morocco" title="morocco">morocco</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20resources" title=" water resources"> water resources</a>, <a href="https://publications.waset.org/abstracts/search?q=impact" title=" impact"> impact</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20scarcity" title=" water scarcity"> water scarcity</a> </p> <a href="https://publications.waset.org/abstracts/157877/impact-of-climate-change-on-water-resources-in-morocco" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157877.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8840</span> Fairly Irrigation Water Distribution between Upstream and Downstream Water Users in Water Shortage Periods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Hashemy%20Shahdany">S. M. Hashemy Shahdany</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Equitable water delivery becomes one of the main concerns for water authorities in arid regions. Due to water scarcity, providing reliable amount of water is not possible for most of the irrigation districts in arid regions. In this paper, water level difference control is applied to keep the water level errors equal in adjacent reaches. Distant downstream decentralized configurations of the control method are designed and tested under a realistic scenario shows canal operation under water shortage. The simulation results show that the difference controllers share the water level error among all of the users in a fair way. Therefore, water deficit has a similar influence on downstream as well as upstream and water offtakes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=equitable%20water%20distribution" title="equitable water distribution">equitable water distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=precise%20agriculture" title=" precise agriculture"> precise agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20agriculture" title=" sustainable agriculture"> sustainable agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20shortage" title=" water shortage"> water shortage</a> </p> <a href="https://publications.waset.org/abstracts/39301/fairly-irrigation-water-distribution-between-upstream-and-downstream-water-users-in-water-shortage-periods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39301.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8839</span> Innovative Approaches to Water Resources Management: Addressing Challenges through Machine Learning and Remote Sensing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelrahman%20Elsehsah">Abdelrahman Elsehsah</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelazim%20Negm"> Abdelazim Negm</a>, <a href="https://publications.waset.org/abstracts/search?q=Eid%20Ashour"> Eid Ashour</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Elsahabi"> Mohamed Elsahabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water resources management is a critical field that encompasses the planning, development, conservation, and allocation of water resources to meet societal needs while ensuring environmental sustainability. This paper reviews the key concepts and challenges in water resources management, emphasizing the significance of a holistic approach that integrates social, economic, and environmental factors. Traditional water management practices, characterized by supply-oriented strategies and centralized control, are increasingly inadequate in addressing contemporary challenges such as water scarcity, climate change impacts, and ecosystem degradation. Emerging technologies, particularly machine learning and remote sensing, offer innovative solutions to enhance decision-making processes in water management. Machine learning algorithms facilitate accurate water demand forecasting, quality monitoring, and leak detection, while remote sensing technologies provide vital data for assessing water availability and quality. This review highlights the need for integrated water management strategies that leverage these technologies to promote sustainable practices and foster resilience in water systems. Future research should focus on improving data quality, accessibility, and the integration of diverse datasets to optimize the benefits of these technological advancements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20resources%20management" title="water resources management">water resources management</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20scarcity" title=" water scarcity"> water scarcity</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title=" water quality"> water quality</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20governance" title=" water governance"> water governance</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20practices" title=" sustainable practices"> sustainable practices</a>, <a href="https://publications.waset.org/abstracts/search?q=ecosystem%20management" title=" ecosystem management"> ecosystem management</a> </p> <a href="https://publications.waset.org/abstracts/194875/innovative-approaches-to-water-resources-management-addressing-challenges-through-machine-learning-and-remote-sensing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194875.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">6</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8838</span> Climate Change and Its Impact on Water Security and Health in Coastal Community: A Gender Outlook</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soorya%20Vennila">Soorya Vennila</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study answers the questions; how does climate change affect the water security in drought prone Ramanathapuram district? and what has water insecurity done to the health of the coastal community? The study area chosen is Devipattinam in Ramanathapuram district. Climate change evidentially wreaked havoc on the community with saltwater intrusion, water quality degradation, water scarcity and its eventual economic, social like power inequality within family and community and health hazards. The climatological data such as rainfall, minimum temperature and maximum temperature were statistically analyzed for trend using Mann-Kendall test. The test was conducted for 14 years (1989-2002) of rainfall data, maximum and minimum temperature and the data were statistically analyzed. At the outset, the water quality samples were collected from Devipattinam to test its physical and chemical parameters and their spatial variation. The results were derived as shown in ARC GIS. Using the water quality test water quality index were framed. And finally, key Informant interview, questionnaire were conducted to capture the gender perception and problem. The data collected were thereafter interpreted using SPSS software for recommendations and suggestions to overcome water scarcity and health problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=health" title="health">health</a>, <a href="https://publications.waset.org/abstracts/search?q=watersecurity" title=" watersecurity"> watersecurity</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title=" water quality"> water quality</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a> </p> <a href="https://publications.waset.org/abstracts/168742/climate-change-and-its-impact-on-water-security-and-health-in-coastal-community-a-gender-outlook" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8837</span> Importance of Determining the Water Needs of Crops in the Management of Water Resources in the Province of Djelfa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imessaoudene%20Y.">Imessaoudene Y.</a>, <a href="https://publications.waset.org/abstracts/search?q=Mouhouche%20B."> Mouhouche B.</a>, <a href="https://publications.waset.org/abstracts/search?q=Sengouga%20A."> Sengouga A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Kadir%20M."> Kadir M.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this work is to determine the virtual water of main crops grown in the province of Djelfa and water use efficiency (W.U.E.), Which is essential to approach the application and better integration with the offer in the region. In the case of agricultural production, virtual water is the volume of water evapo-transpired by crops. It depends on particular on the expertise of its producers and its global production area, warm and dry climates induce higher consumption. At the scale of the province, the determination of the quantities of virtual water is done by calculating the unit water requirements related to water irrigated hectare and total rainfall over the crop using the Cropwat 8.0 F.A.O. software. Quantifying the volume of agricultural virtual water of crops practiced in the study area demonstrates the quantitative importance of these volumes of water in terms of available water resources in the province, so the advantages which can be the concept of virtual water as an analysis tool and decision support for the management and distribution of water in scarcity situation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=virtual%20water" title="virtual water">virtual water</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20use%20efficiency" title=" water use efficiency"> water use efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20requirements" title=" water requirements"> water requirements</a>, <a href="https://publications.waset.org/abstracts/search?q=Djelfa" title=" Djelfa"> Djelfa</a> </p> <a href="https://publications.waset.org/abstracts/31138/importance-of-determining-the-water-needs-of-crops-in-the-management-of-water-resources-in-the-province-of-djelfa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31138.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8836</span> The Impact of Water Resources on Economic and Social Development in Kuwait</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Obaid%20Alotaibi">Obaid Alotaibi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The geographical location of the State of Kuwait contributed significantly to the suffering of Kuwait in the past, due to the scarcity of natural water resources and the inability of the State's financial resources to provide other water resources to meet the needs of the population. The problem of water scarcity in Kuwait remained until the beginning of the second half of the twentieth century, as the country's economic conditions revived with the emergence and export of oil; which was clearly reflected in the steady growth of the population. To cope with this population, increase, it was necessary to expand the various development programs to include all sectors of the state. The process of development and urbanization could not start without finding solutions to the problem of water shortage in Kuwait. The only option for officials to meet the needs of the population and the different sectors of water development is the desalination of seawater. This process necessitated the establishment of six desalination plants along the coast of Kuwait and extended freshwater arteries to reach everywhere on the land. However, this does not mean that the problem of water shortage has been completely solved. The desalination plants are not meeting the country's future water needs, especially considering the increasing population growth. These stations are nearing completion and they need to be replaced, renovation and maintenance, require significant expenses. Therefore, it was necessary for scientific research to address the issue of water in Kuwait, whether in the field of development of existing resources or in the field of rationalization of consumption and protection of available resources. The study focused on how to address the increasing demand for water resulting from population increase, the impact of water on economic and social development, the prospects of water resources in Kuwait and its ability to meet the needs of the country by 2030. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=economic" title="economic">economic</a>, <a href="https://publications.waset.org/abstracts/search?q=development" title=" development"> development</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuwait" title=" Kuwait"> Kuwait</a>, <a href="https://publications.waset.org/abstracts/search?q=social" title=" social"> social</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20resources" title=" water resources"> water resources</a> </p> <a href="https://publications.waset.org/abstracts/102561/the-impact-of-water-resources-on-economic-and-social-development-in-kuwait" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102561.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8835</span> Addressing Water Scarcity in Gomti Nagar, Lucknow, India: Assessing the Effectiveness of Rooftop Rainwater Harvesting Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajkumar%20Ghosh">Rajkumar Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water scarcity is a significant challenge in urban areas, even in smart cities (Lucknow, Bangalore, Jaipur, etc.) where efficient resource management is prioritized. The depletion of groundwater resources in Gomti Nagar, Lucknow, Uttar Pradesh, India is particularly severe, posing a significant challenge for sustainable development in the region. This study focuses on addressing the water shortage by investigating the effectiveness of rooftop rainwater harvesting systems (RTRWHs) as a sustainable approach to bridge the gap between groundwater recharge and extraction. The aim of this study is to assess the effectiveness of RTRWHs in reducing aquifer depletion and addressing the water scarcity issue in the Gomti Nagar region. The research methodology involves the utilization of RTRWHs as the primary method for collecting rainwater. RTRWHs will be implemented in residential and commercial buildings to maximize the collection of rainwater. Data for this study were collected through various sources such as government reports, surveys, and existing groundwater abstraction patterns. Statistical analysis and modelling techniques were employed to assess the current water situation, groundwater depletion rate, and the potential impact of implementing RTRWHs. The study reveals that the installation of RTRWHs in the Gomti Nagar region has a positive impact on addressing the water scarcity issue. Currently, RTRWHs cover only a small percentage of the total rainfall collected in the region. However, when RTRWHs are installed in all buildings, their influence on increasing water availability and reducing aquifer depletion will be significantly greater. The study also highlights the significant water imbalance in the region, emphasizing the urgent need for sustainable water management practices. This research contributes to the theoretical understanding of sustainable water management systems in smart cities. By highlighting the effectiveness of RTRWHs in reducing aquifer depletion, it emphasizes the importance of implementing such systems in urban areas. Data for this study were collected through various sources such as government reports, surveys, and existing groundwater abstraction patterns. The collected data were then analysed using statistical analysis and modelling techniques to assess the current water situation, groundwater depletion rate, and the potential impact of implementing RTRWHs. The findings of this study demonstrate that the implementation of RTRWHs can effectively mitigate the water scarcity crisis in Gomti Nagar. By reducing aquifer depletion and bridging the gap between groundwater recharge and extraction, RTRWHs offer a sustainable solution to the region's water scarcity challenges. Widespread adoption of RTRWHs in all buildings and integration into urban planning and development processes are crucial for efficient water management in smart cities like Gomti Nagar. These findings can serve as a basis for policymakers, urban planners, and developers to prioritize and incentivize the installation of RTRWHs as a potential solution to the water shortage crisis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20scarcity" title="water scarcity">water scarcity</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20areas" title=" urban areas"> urban areas</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20cities" title=" smart cities"> smart cities</a>, <a href="https://publications.waset.org/abstracts/search?q=resource%20management" title=" resource management"> resource management</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20depletion" title=" groundwater depletion"> groundwater depletion</a>, <a href="https://publications.waset.org/abstracts/search?q=rooftop%20rainwater%20harvesting%20systems" title=" rooftop rainwater harvesting systems"> rooftop rainwater harvesting systems</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20water%20management" title=" sustainable water management"> sustainable water management</a>, <a href="https://publications.waset.org/abstracts/search?q=mitigating%20water%20scarcity" title=" mitigating water scarcity"> mitigating water scarcity</a> </p> <a href="https://publications.waset.org/abstracts/169833/addressing-water-scarcity-in-gomti-nagar-lucknow-india-assessing-the-effectiveness-of-rooftop-rainwater-harvesting-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169833.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8834</span> Perceptions of Community Members in Lephalale Area, Limpopo Province, Towards Water Conservation: Development of a Psychological Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20L.%20Seretlo-Rangata">M. L. Seretlo-Rangata</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Sodi"> T. Sodi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Govender"> S. Govender</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite interventions by various governments to regulate water demand and address water scarcity, literature shows that billions of people across the world continue to struggle with access because not everyone contributes equally to conservation efforts. Behavioral factors such as individual and collective aspects of cognition and commitment have been found to play an important role in water conservation. The aim of the present study was to explore the perceptions of community members in the Lephalale area, Limpopo province, towards water conservation with a view to developing an explanatory psychological model on water conservation. Twenty (20) participants who relied on communal taps to access water in Lephalale Local Municipality, Limpopo province, were selected through purposeful sampling. In-depth, semi-structured, individual face-to-face interviews were used to gather data and were analyzed utilizing thematic content analysis (TCA). The research findings revealed that there are various psychological effects of water scarcity on communities, such as emotional distress, interpersonal conflicts and disruptions of daily activities of living. Additionally, the study results showed that the coping strategies developed by participants to deal with water scarcity included adopting alternative water use behaviors as well as adjusting current behaviors and lifestyles. Derived from the study findings, a psychological model of water conservation was developed. The model incorporates some ideas from the Value-Belief-Norm (VBN) theory and the Afrocentric theory. The model suggests that people’s worldviews, including their values, beliefs and culture, are significant determinants of their pro-environmental behaviors. The study concludes by recommending that authorities and policymakers should consider psychological factors when developing water management programs, strategies and interventions with the consultation of psychology experts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20conservation" title="water conservation">water conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=psychological%20model" title=" psychological model"> psychological model</a>, <a href="https://publications.waset.org/abstracts/search?q=pro-environmental%20behaviour" title=" pro-environmental behaviour"> pro-environmental behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=conservation%20psychology" title=" conservation psychology"> conservation psychology</a>, <a href="https://publications.waset.org/abstracts/search?q=water-use%20behaviour" title=" water-use behaviour"> water-use behaviour</a> </p> <a href="https://publications.waset.org/abstracts/183774/perceptions-of-community-members-in-lephalale-area-limpopo-province-towards-water-conservation-development-of-a-psychological-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8833</span> Solar Aided Vacuum Desalination of Sea-Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miraz%20Hafiz%20Rossy">Miraz Hafiz Rossy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As part of planning to address shortfalls in fresh water supply for the world, Sea water can be a huge source of fresh water. But Desalinating sea water to get fresh water could require a lots of fossil fuels. To save the fossil fuel in terms of save the green world but meet the up growing need for fresh water, a very useful but energy efficient method needs to be introduced. Vacuum desalination of sea water using only the Renewable energy can be an effective solution to this issue. Taking advantage of sensitivity of water's boiling point to air pressure a vacuum desalination water treatment plant can be designed which would only use sea water as feed water and solar energy as fuel to produce fresh drinking water. The study indicates that reducing the air pressure to a certain value water can be boiled at very low temperature. Using solar energy to provide the condensation and the vacuum creation would be very useful and efficient. Compared to existing resources, desalination is considered to be expensive, but using only renewable energy the cost can be reduced significantly. Despite its very few drawbacks, it can be considered a possible solution to the world's fresh water shortages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=desalination" title="desalination">desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=scarcity%20of%20fresh%20water" title=" scarcity of fresh water"> scarcity of fresh water</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20purification" title=" water purification"> water purification</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment"> water treatment</a> </p> <a href="https://publications.waset.org/abstracts/73292/solar-aided-vacuum-desalination-of-sea-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73292.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8832</span> Corporate Water Footprint Assessment: The Case of Tata Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sujata%20Mukherjee">Sujata Mukherjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Arunavo%20Mukherjee"> Arunavo Mukherjee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water covers 70 per cent of our planet; however, freshwater is incredibly rare, and scarce has been listed as the highest impact global risk. The problems related to freshwater scarcity multiplies with the human population having more than doubled coupled with climate change, changing water cycles leading to droughts and floods and a rise in water pollution. Businesses, governments, and local communities are constrained by water scarcity and are facing growing challenges to their growth and sustainability. Water foot printing as an indicator for water use was introduced in 2002. Business water footprint measures the total water consumed to produce the goods and services it provides. It is a combination of the water that goes into the production and manufacturing of a product or service and the water used throughout the supply chain, as well as during the use of the product. A case study approach was applied describing the efforts of Tata Steel. It is based on a series of semi-structured in-depth interviews with top executives of the company as well as observation and content analysis of internal and external documents about the company’s efforts in sustainable water management. Tata Steel draws water required for industrial use from surface water sources, primarily perennial rivers and streams, internal reservoirs and water from municipal sources. The focus of the present study was to explore Tata Steel’s engagement in sustainable water management focusing on water foot printing accounting as a tool to account for water use in the steel supply chain at its Jamshedpur plant. The findings enabled the researchers to conclude that no sources of water are adversely affected by the company’s production of steel at Jamshedpur. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainability" title="sustainability">sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=corporate%20responsibility%20water%20management" title=" corporate responsibility water management"> corporate responsibility water management</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20management" title=" risk management"> risk management</a>, <a href="https://publications.waset.org/abstracts/search?q=business%20engagement" title=" business engagement"> business engagement</a> </p> <a href="https://publications.waset.org/abstracts/46394/corporate-water-footprint-assessment-the-case-of-tata-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46394.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8831</span> Predicting Long-Term Meat Productivity for the Kingdom of Saudi Arabia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahsan%20Abdullah">Ahsan Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20S.%20Bakshwain"> Ahmed A. S. Bakshwain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Livestock is one of the fastest-growing sectors in agriculture. If carefully managed, have potential opportunities for economic growth, food sovereignty and food security. In this study we mainly analyse and compare long-term i.e. for year 2030 climate variability impact on predicted productivity of meat i.e. beef, mutton and poultry for the Kingdom of Saudi Arabia w.r.t three factors i.e. i) climatic-change vulnerability ii) CO2 fertilization and iii) water scarcity and compare the results with two countries of the region i.e. Iraq and Yemen. We do the analysis using data from diverse sources, which was extracted, transformed and integrated before usage. The collective impact of the three factors had an overall negative effect on the production of meat for all the three countries, with adverse impact on Iraq. High similarity was found between CO2 fertilization (effecting animal fodder) and water scarcity i.e. higher than that between production of beef and mutton for the three countries considered. Overall, the three factors do not seem to be favorable for the three Middle-East countries considered. This points to possibility of a vegetarian year 2030 based on dependency on indigenous live-stock population. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=prediction" title="prediction">prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=animal-source%20foods" title=" animal-source foods"> animal-source foods</a>, <a href="https://publications.waset.org/abstracts/search?q=pastures" title=" pastures"> pastures</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2%20fertilization" title=" CO2 fertilization"> CO2 fertilization</a>, <a href="https://publications.waset.org/abstracts/search?q=climatic-change%20vulnerability" title=" climatic-change vulnerability"> climatic-change vulnerability</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20scarcity" title=" water scarcity"> water scarcity</a> </p> <a href="https://publications.waset.org/abstracts/15906/predicting-long-term-meat-productivity-for-the-kingdom-of-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15906.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8830</span> Challenges of Water License in Agriculture Sector in British Columbia: An Exploratory Sociological Inquiry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mandana%20Karimi">Mandana Karimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Martha%20McMahon"> Martha McMahon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most important consequences of water scarcity worldwide is the increase in conflicts over water issues, reduced access to clean water, food shortages, energy shortages, and reduced economic development. The extreme weather conditions in British Columbia are because of climate change, which is leading to water scarcity becoming a serious issue affecting British Columbians, aquatic ecosystems, the BC water policy, agriculture, and the economy. In light of climate change and water stress, the British Columbia government introduced a new water legislation in 2016 named the Water Sustainability Act to manage water resources in British Columbia. So, this study aimed to present a deep understanding emanating from the political and social dimensions of the new water policy in BC in the agriculture sector and which sociological paradigm governs the current water policy (WSA) in BC. Policy analysis based on the water problem representation approach was used to present the problem and solutions identified by the water policy in the agricultural sector in BC. The results of the policy analysis highlighted that the Water Sustainability Act is governed by a positivist and modernist approach because the groundwater license is the measurable situation to access the adequate quantity of water for the farmers. In addition, by the positivist paradigm water resources are conceptualized as a commodity to be bought and sold. Under the positivist approach, the measurable parameter of groundwater is also applied based on the top-down approach for water management to show the use of water resources for economic development. In addition, the findings of the policy analysis suggest that alternative paradigms, such as relational ontology, ecofeminism, and indigenous knowledge, could be applied in introducing water policies to shift from the positivist or modernist paradigm. These new paradigms present the potential for environmental policies like the Water Sustainability Act, based on partnership, and collaboration and with an explicit emphasis on protecting water for nature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20governance" title="water governance">water governance</a>, <a href="https://publications.waset.org/abstracts/search?q=Water%20Sustainability%20Act" title=" Water Sustainability Act"> Water Sustainability Act</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20policy" title=" water policy"> water policy</a>, <a href="https://publications.waset.org/abstracts/search?q=small-scale%20farmer" title=" small-scale farmer"> small-scale farmer</a>, <a href="https://publications.waset.org/abstracts/search?q=policy%20analysis" title=" policy analysis"> policy analysis</a> </p> <a href="https://publications.waset.org/abstracts/178917/challenges-of-water-license-in-agriculture-sector-in-british-columbia-an-exploratory-sociological-inquiry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8829</span> Water Self Sufficient: Creating a Sustainable Water System Based on Urban Harvest Approach in La Serena, Chile</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zulfikar%20Dinar%20Wahidayat%20Putra">Zulfikar Dinar Wahidayat Putra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water scarcity become a major challenge in an arid area. One of the arid areas is La Serena city in the Northern Chile which become a case study of this paper. Based on that, this paper tries to identify a sustainable water system by using urban harvest approach as a method to achieve water self-sufficiency for a neighborhood area in the La Serena city. By using the method, it is possible to create sustainable water system in the neighborhood area by reducing up to 38% of water demand and 94% of wastewater production even though water self-sufficient cannot be fully achieved, because of its dependency to the drinking water supply from water treatment plant of La Serena city. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arid%20area" title="arid area">arid area</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20water%20system" title=" sustainable water system"> sustainable water system</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20harvest%20approach" title=" urban harvest approach"> urban harvest approach</a>, <a href="https://publications.waset.org/abstracts/search?q=self-sufficiency" title=" self-sufficiency"> self-sufficiency</a> </p> <a href="https://publications.waset.org/abstracts/60849/water-self-sufficient-creating-a-sustainable-water-system-based-on-urban-harvest-approach-in-la-serena-chile" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8828</span> Sustainable Water Supply: Rainwater Harvesting as Flood Reduction Measures in Ibadan, Nigeria </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omolara%20Lade">Omolara Lade</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Oloke"> David Oloke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ibadan City suffers serious water supply problems; cases of dry taps are common in virtually every part of the City. The scarcity of piped water has made communities find alternative water sources; groundwater sources being a ready source. These wells are prone to pollution due to the close proximity of septic tanks to wells, disposal of solid or liquid wastes in pits, abandoned boreholes or even stream channels and landfills. Storms and floods in Ibadan have increased with consequent devastating effects claiming over 120 lives and displacing 600 people on August 2011 alone. In this study, an analysis of the water demand and sources of supply for the city was carried out through questionnaire survey and collection of data from City’s main water supply - Water Corporation of Oyo State (WCOS), groundwater sources were explored and 30 years rainfall data were collected from Meteorological station in Ibadan. 1067 questionnaire were administered at household level with a response rate of 86.7 %. A descriptive analysis of the survey revealed that 77.1 % of the respondents did not receive water at all from WCOS while 83.8 % depend on groundwater sources. Analysis of data from WCOS revealed that main water supply is inadequate as < 10 % of the population water demand was met. Rainfall intensity is highest in June with a mean value of 188 mm, which can be harvested at community—based level and used to complement the population water demand. Rainwater harvesting if planned, and managed properly will become a valuable alternative source of managing urban flood and alleviating water scarcity in the city. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibadan" title="Ibadan">Ibadan</a>, <a href="https://publications.waset.org/abstracts/search?q=rainwater%20harvesting" title=" rainwater harvesting"> rainwater harvesting</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20water" title=" sustainable water"> sustainable water</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20flooding" title=" urban flooding"> urban flooding</a> </p> <a href="https://publications.waset.org/abstracts/78993/sustainable-water-supply-rainwater-harvesting-as-flood-reduction-measures-in-ibadan-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8827</span> Iraq Water Resources Planning: Perspectives and Prognoses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadhir%20Al-Ansari">Nadhir Al-Ansari</a>, <a href="https://publications.waset.org/abstracts/search?q=Ammar%20A.%20Ali"> Ammar A. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Sven%20Knutsson"> Sven Knutsson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Iraq is located in the Middle East. It covers an area of 433,970 square kilometres populated by about 32 million inhabitants. Iraq greatly relies in its water resources on the Tigris and Euphrates Rivers. Recently, Iraq is suffering from water shortage problems. This is due to external and internal factors. The former includes global warming and water resources policies of neighbouring countries while the latter includes mismanagement of its water resources. The supply and demand are predicted to be 43 and 66.8 Billion Cubic Meters (BCM) respectively in 2015, while in 2025 it will be 17.61 and 77 BCM respectively. In addition, future prediction suggests that Tigris and Euphrates Rivers will be completely dry in 2040. To overcome this problem, prudent water management policies are to be adopted. This includes Strategic Water Management Vision, development of irrigation techniques, reduction of water losses, use of non-conventional water resources and research and development planning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iraq" title="Iraq">Iraq</a>, <a href="https://publications.waset.org/abstracts/search?q=Tigris%20River" title=" Tigris River"> Tigris River</a>, <a href="https://publications.waset.org/abstracts/search?q=Euphrates%20River" title=" Euphrates River"> Euphrates River</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20scarcity" title=" water scarcity"> water scarcity</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20resources%20management" title=" water resources management"> water resources management</a> </p> <a href="https://publications.waset.org/abstracts/13502/iraq-water-resources-planning-perspectives-and-prognoses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8826</span> Real-Time Optimisation and Minimal Energy Use for Water and Environment Efficient Irrigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kanya%20L.%20Khatri">Kanya L. Khatri</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashfaque%20A.%20Memon"> Ashfaque A. Memon</a>, <a href="https://publications.waset.org/abstracts/search?q=Rod%20J.%20Smith"> Rod J. Smith</a>, <a href="https://publications.waset.org/abstracts/search?q=Shamas%20Bilal"> Shamas Bilal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The viability and sustainability of crop production is currently threatened by increasing water scarcity. Water scarcity problems can be addressed through improved water productivity and the options usually presumed in this context are efficient water use and conversion of surface irrigation to pressurized systems. By replacing furrow irrigation with drip or centre pivot systems, the water efficiency can be improved by up to 30 to 45%. However, the installation and application of pumps and pipes, and the associated fuels needed for these alternatives increase energy consumption and cause significant greenhouse gas emissions. Hence, a balance between the improvement in water use and the potential increase in energy consumption is required keeping in view adverse impact of increased carbon emissions on the environment. When surface water is used, pressurized systems increase energy consumption substantially, by between 65% to 75%, and produce greenhouse gas emissions around 1.75 times higher than that of gravity based irrigation. With gravity based surface irrigation methods the energy consumption is assumed to be negligible. This study has shown that a novel real-time infiltration model REIP has enabled implementation of real-time optimization and control of surface irrigation and surface irrigation with real-time optimization has potential to bring significant improvements in irrigation performance along with substantial water savings of 2.92 ML/ha which is almost equivalent to that given by pressurized systems. Thus real-time optimization and control offers a modern, environment friendly and water efficient system with close to zero increase in energy consumption and minimal greenhouse gas emissions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pressurised%20irrigation" title="pressurised irrigation">pressurised irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20emissions" title=" carbon emissions"> carbon emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=real-time" title=" real-time"> real-time</a>, <a href="https://publications.waset.org/abstracts/search?q=environmentally-friendly" title=" environmentally-friendly"> environmentally-friendly</a>, <a href="https://publications.waset.org/abstracts/search?q=REIP" title=" REIP "> REIP </a> </p> <a href="https://publications.waset.org/abstracts/16448/real-time-optimisation-and-minimal-energy-use-for-water-and-environment-efficient-irrigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16448.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">503</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8825</span> Water Demand Modelling Using Artificial Neural Network in Ramallah</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Massri">F. Massri</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Shkarneh"> M. Shkarneh</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Almassri"> B. Almassri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water scarcity and increasing water demand especially for residential use are major challenges facing Palestine. The need to accurately forecast water consumption is useful for the planning and management of this natural resource. The main objective of this paper is to (i) study the major factors influencing the water consumption in Palestine, (ii) understand the general pattern of Household water consumption, (iii) assess the possible changes in household water consumption and suggest appropriate remedies and (iv) develop prediction model based on the Artificial Neural Network to the water consumption in Palestinian cities. The paper is organized in four parts. The first part includes literature review of household water consumption studies. The second part concerns data collection methodology, conceptual frame work for the household water consumption surveys, survey descriptions and data processing methods. The third part presents descriptive statistics, multiple regression and analysis of the water consumption in the two Palestinian cities. The final part develops the use of Artificial Neural Network for modeling the water consumption in Palestinian cities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20management" title="water management">water management</a>, <a href="https://publications.waset.org/abstracts/search?q=demand%20forecasting" title=" demand forecasting"> demand forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=consumption" title=" consumption"> consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=ANN" title=" ANN"> ANN</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramallah" title=" Ramallah"> Ramallah</a> </p> <a href="https://publications.waset.org/abstracts/100250/water-demand-modelling-using-artificial-neural-network-in-ramallah" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100250.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8824</span> Development of Electric Generator and Water Purifier Cart</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luisito%20L.%20Lacatan">Luisito L. Lacatan</a>, <a href="https://publications.waset.org/abstracts/search?q=Gian%20Carlo%20J.%20Bergonia"> Gian Carlo J. Bergonia</a>, <a href="https://publications.waset.org/abstracts/search?q=Felipe%20C.%20Buado%20III"> Felipe C. Buado III</a>, <a href="https://publications.waset.org/abstracts/search?q=Gerald%20L.%20Gono"> Gerald L. Gono</a>, <a href="https://publications.waset.org/abstracts/search?q=Ron%20Mark%20V.%20Ortil"> Ron Mark V. Ortil</a>, <a href="https://publications.waset.org/abstracts/search?q=Calvin%20A.%20Yap"> Calvin A. Yap</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper features the development of a Mobile Self-sustaining Electricity Generator for water distillation process with MCU- based wireless controller & indicator designed to solve the problem of scarcity of clean water. It is a fact that pure water is precious nowadays and its value is more precious to those who do not have or enjoy it. There are many water filtration products in existence today. However, none of these products fully satisfies the needs of families needing clean drinking water. All of the following products require either large sums of money or extensive maintenance, and some products do not even come with a guarantee of potable water. The proposed project was designed to alleviate the problem of scarcity of potable water in the country and part of the purpose was also to identify the problem or loopholes of the project such as the distance and speed required to produce electricity using a wheel and alternator, the required time for the heating element to heat up, the capacity of the battery to maintain the heat of the heating element and the time required for the boiler to produce a clean and potable water. The project has three parts. The first part included the researchers’ effort to plan every part of the project from the conversion of mechanical energy to electrical energy, from purifying water to potable drinking water to the controller and indicator of the project using microcontroller unit (MCU). This included identifying the problem encountered and any possible solution to prevent and avoid errors. Gathering and reviewing related studies about the project helped the researcher reduce and prevent any problems before they could be encountered. It also included the price and quantity of materials used to control the budget. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mobile" title="mobile">mobile</a>, <a href="https://publications.waset.org/abstracts/search?q=self%20%E2%80%93%20sustaining" title=" self – sustaining"> self – sustaining</a>, <a href="https://publications.waset.org/abstracts/search?q=electricity%20generator" title=" electricity generator"> electricity generator</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20distillation" title=" water distillation"> water distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20battery%20indicator" title=" wireless battery indicator"> wireless battery indicator</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20water%20level%20indicator" title=" wireless water level indicator"> wireless water level indicator</a> </p> <a href="https://publications.waset.org/abstracts/45555/development-of-electric-generator-and-water-purifier-cart" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45555.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8823</span> Water Supply and Utility Management to Address Urban Sanitation Issues</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akshaya%20P.">Akshaya P.</a>, <a href="https://publications.waset.org/abstracts/search?q=Priyanjali%20Prabhkaran"> Priyanjali Prabhkaran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper examines the formulation of strategies to develop a comprehensive model of city level water utility management to addressing urban sanitation issues. The water is prime life sustaining natural resources and nature’s gifts to all living beings on the earth multiple urban sanitation issues are addressed in the supply of water in a city. Many of these urban sanitation issues are linked to population expansion and economic inequity. Increased usage of water and the development caused water scarcity. The lack of water supply results increases the chance of unhygienic situations in the cities. In this study, the urban sanitation issues are identified with respect to water supply and utility management. The study compared based on their best practices and initiatives. From this, best practices and initiatives identify suitable sustainable measures to address water supply issues in the city level. The paper concludes with the listed provision that should be considered suitable measures for water supply and utility management in city level to address the urban sanitation issues. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water" title="water">water</a>, <a href="https://publications.waset.org/abstracts/search?q=benchmarking%20water%20supply" title=" benchmarking water supply"> benchmarking water supply</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20supply%20networks" title=" water supply networks"> water supply networks</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20supply%20management" title=" water supply management"> water supply management</a> </p> <a href="https://publications.waset.org/abstracts/153591/water-supply-and-utility-management-to-address-urban-sanitation-issues" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153591.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8822</span> The Effect of Shading on Cooling Tower Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eitidal%20Albassam">Eitidal Albassam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cooling towers (CTs) in arid zone countries, used for heat rejection in water-cooled (WC) systems, consume a large quantity of water. Universally, water conservation is an issue because of the scarcity of fresh water and natural resources. Therefore, many studies have aimed to conserve fresh water and limit the water wasted. Nonetheless, all these methods are not related to improving the weather conditions around the entering air to CT. In Kuwait and other arid-zone countries, the dry bulb temperature (DBT) during the summer season is significantly greater than the incoming hot water temperature, and the air undergoes sensible cooling. This high DBT leads to extra heat transfer from air to water, demanding high water vaporization to achieve the required cooling of water. Thus, any reduction in ambient air temperature around the CT will minimize water consumption. This paper aims to discuss theoretically the effect of reducing the DBT around the cooling tower when considering the sun-shading barrier. The theoretical simulation model results show that if the DBT reduces by 2.8 °C approximately, the percentage of water evaporation savings in gallon per minute (GPM) starts from 6.48% when DBT reaches 51.67 °C till 9.80% for 37.78 °C. Moreover, the performance of the cooling tower will be improved when considering the appropriate shading barriers, which will not affect the existing wet-bulb temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dry-bulb%20temperature" title="dry-bulb temperature">dry-bulb temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=entering%20air" title=" entering air"> entering air</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20consumption" title=" water consumption"> water consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20vaporization" title=" water vaporization"> water vaporization</a> </p> <a href="https://publications.waset.org/abstracts/145541/the-effect-of-shading-on-cooling-tower-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8821</span> Evaluation of a Hybrid System for Renewable Energy in a Small Island in Greece</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Bertsiou">M. Bertsiou</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Feloni"> E. Feloni</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Baltas"> E. Baltas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The proper management of the water supply and electricity is the key issue, especially in small islands, where sustainability has been combined with the autonomy and covering of water needs and the fast development in potential sectors of economy. In this research work a hybrid system in Fournoi island (Icaria), a small island of Aegean, has been evaluated in order to produce hydropower and cover water demands, as it can provide solutions to acute problems, such as the water scarcity or the instability of local power grids. The meaning and the utility of hybrid system and the cooperation with a desalination plant has also been considered. This kind of project has not yet been widely applied, so the consideration will give us valuable information about the storage of water and the controlled distribution of the generated clean energy. This process leads to the conclusions about the functioning of the system and the profitability of this project, covering the demand for water and electricity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20system" title="hybrid system">hybrid system</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a>, <a href="https://publications.waset.org/abstracts/search?q=electricity" title=" electricity"> electricity</a>, <a href="https://publications.waset.org/abstracts/search?q=island" title=" island"> island</a> </p> <a href="https://publications.waset.org/abstracts/58608/evaluation-of-a-hybrid-system-for-renewable-energy-in-a-small-island-in-greece" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58608.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8820</span> Circular Economy-Relationship of Natural Water Collection System, Afforestation and Country Park Towards Environmental Sustainability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kwok%20Tak%20Kit">Kwok Tak Kit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The government and community have raised their awareness of the benefits of water reuse. Deforestation has a significant effect to climate change as it causes the drying out of the tropical rainforest and hence increases the chance of natural hazards. The loss of forests due to natural fire or human factors would be threatening the storage and supply of clean water. In this paper, we will focus on the discussion of the relationship of the natural water collection system, afforestation and country parks towards environmental sustainability and circular economy with a case study of water conservation policy and strategy in Hong Kong and Singapore for further research. The UN General Assembly launched the Water Action Decade in 2018 to mobilize action that will help to tackle the growing challenge of water scarcity through water conservation and protect and restore water-related ecosystems, including forests, wetlands, rivers, aquifers and lakes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=afforestation" title="afforestation">afforestation</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20sustainability" title=" environmental sustainability"> environmental sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20conservation" title=" water conservation"> water conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=circular%20economy" title=" circular economy"> circular economy</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development%20goal" title=" sustainable development goal"> sustainable development goal</a> </p> <a href="https://publications.waset.org/abstracts/145832/circular-economy-relationship-of-natural-water-collection-system-afforestation-and-country-park-towards-environmental-sustainability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8819</span> Bench-scale Evaluation of Alternative-to-Chlorination Disinfection Technologies for the Treatment of the Maltese Tap-water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Georgios%20Psakis">Georgios Psakis</a>, <a href="https://publications.waset.org/abstracts/search?q=Imren%20Rahbay"> Imren Rahbay</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Spiteri"> David Spiteri</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeanice%20Mallia"> Jeanice Mallia</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Polidano"> Martin Polidano</a>, <a href="https://publications.waset.org/abstracts/search?q=Vasilis%20P.%20Valdramidis"> Vasilis P. Valdramidis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Absence of surface water and progressive groundwater quality deterioration have exacerbated scarcity rapidly, making the Mediterranean island of Malta one of the most water-stressed countries in Europe. Water scarcity challenges have been addressed by reverse osmosis desalination of seawater, 60% of which is blended with groundwater to form the current potable tap-water supply. Chlorination has been the adopted method of water disinfection prior to distribution. However, with the Malteseconsumer chlorine sensory-threshold being as low as 0.34 ppm, presence of chorine residuals and chlorination by-products in the distributed tap-water impacts negatively on its organoleptic attributes, deterring the public from consuming it. As part of the PURILMA initiative, and with the aim of minimizing the impact of chlorine residual on the quality of the distributed water, UV-C, and hydrosonication, have been identified as cost- and energy-effective decontamination alternatives, paving the way for more sustainable water management. Bench-scale assessment of the decontamination efficiency of UV-C (254 nm), revealed 4.7-Log10 inactivation for both Escherichia coli and Enterococcus faecalis at 36 mJ/cm2. At >200 mJ/cm2fluence rates, there was a systematic 2-Log10 difference in the reductions exhibited by E. coli and E. faecalis to suggest that UV-C disinfection was more effective against E. coli. Hybrid treatment schemes involving hydrosonication(at 9.5 and 12.5 dm3/min flow rates with 1-5 MPa maximum pressure) and UV-C showed at least 1.1-fold greater bactericidal activity relative to the individualized UV-C treatments. The observed inactivation appeared to have stemmed from additive effects of the combined treatments, with hydrosonication-generated reactive oxygen species enhancing the biocidal activity of UV-C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disinfection" title="disinfection">disinfection</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrosonication" title=" hydrosonication"> hydrosonication</a>, <a href="https://publications.waset.org/abstracts/search?q=UV-C" title=" UV-C"> UV-C</a> </p> <a href="https://publications.waset.org/abstracts/145473/bench-scale-evaluation-of-alternative-to-chlorination-disinfection-technologies-for-the-treatment-of-the-maltese-tap-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8818</span> Assessment of Rooftop Rainwater Harvesting in Gomti Nagar, Lucknow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajkumar%20Ghosh">Rajkumar Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water scarcity is a pressing issue in urban areas, even in smart cities where efficient resource management is a priority. This scarcity is mainly caused by factors such as lifestyle changes, excessive groundwater extraction, over-usage of water, rapid urbanization, and uncontrolled population growth. In the specific case of Gomti Nagar, Lucknow, Uttar Pradesh, India, the depletion of groundwater resources is particularly severe, leading to a water imbalance and posing a significant challenge for the region's sustainable development. The aim of this study is to address the water shortage in the Gomti Nagar region by focusing on the implementation of artificial groundwater recharge methods. Specifically, the research aims to investigate the effectiveness of rainwater collection through rooftop rainwater harvesting systems (RTRWHs) as a sustainable approach to reduce aquifer depletion and bridge the gap between groundwater recharge and extraction. The research methodology for this study involves the utilization of RTRWHs as the main method for collecting rainwater. This approach is considered effective in managing and conserving water resources in a sustainable manner. The focus is on implementing RTRWHs in residential and commercial buildings to maximize the collection of rainwater and its subsequent utilization for various purposes in the Gomti Nagar region. The study reveals that the installation of RTRWHs in the Gomti Nagar region has a positive impact on addressing the water scarcity issue. Currently, RTRWHs cover only a small percentage (0.04%) of the total rainfall collected in the region. However, when RTRWHs are installed in all buildings, their influence on increasing water availability and reducing aquifer depletion will be significantly greater. The study also highlights the significant water imbalance of 24519 ML/yr in the region, emphasizing the urgent need for sustainable water management practices. This research contributes to the theoretical understanding of sustainable water management systems in smart cities. By highlighting the effectiveness of RTRWHs in reducing aquifer depletion, it emphasizes the importance of implementing such systems in urban areas. The findings of this study can serve as a basis for policymakers, urban planners, and developers to prioritize and incentivize the installation of RTRWHs as a potential solution to the water shortage crisis. The data for this study were collected through various sources such as government reports, surveys, and existing groundwater abstraction patterns. The collected data were then analysed to assess the current water situation, groundwater depletion rate, and the potential impact of implementing RTRWHs. Statistical analysis and modelling techniques were employed to quantify the water imbalance and evaluate the effectiveness of RTRWHs. The findings of this study demonstrate that the implementation of RTRWHs can effectively mitigate the water scarcity crisis in Gomti Nagar. By reducing aquifer depletion and bridging the gap between groundwater recharge and extraction, RTRWHs offer a sustainable solution to the region's water scarcity challenges. The study highlights the need for widespread adoption of RTRWHs in all buildings and emphasizes the importance of integrating such systems into the urban planning and development process. By doing so, smart cities like Gomti Nagar can achieve efficient water management, ensuring a better future with improved water availability for its residents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rooftop%20rainwater%20harvesting" title="rooftop rainwater harvesting">rooftop rainwater harvesting</a>, <a href="https://publications.waset.org/abstracts/search?q=rainwater" title=" rainwater"> rainwater</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20management" title=" water management"> water management</a>, <a href="https://publications.waset.org/abstracts/search?q=aquifer" title=" aquifer"> aquifer</a> </p> <a href="https://publications.waset.org/abstracts/169025/assessment-of-rooftop-rainwater-harvesting-in-gomti-nagar-lucknow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169025.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8817</span> Power Allocation Algorithm for Orthogonal Frequency Division Multiplexing Based Cognitive Radio Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bircan%20Demiral">Bircan Demiral</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cognitive radio (CR) is the promising technology that addresses the spectrum scarcity problem for future wireless communications. Orthogonal Frequency Division Multiplexing (OFDM) technology provides more power band ratios for cognitive radio networks (CRNs). While CR is a solution to the spectrum scarcity, it also brings up the capacity problem. In this paper, a novel power allocation algorithm that aims at maximizing the sum capacity in the OFDM based cognitive radio networks is proposed. Proposed allocation algorithm is based on the previously developed water-filling algorithm. To reduce the computational complexity calculating in water filling algorithm, proposed algorithm allocates the total power according to each subcarrier. The power allocated to the subcarriers increases sum capacity. To see this increase, Matlab program was used, and the proposed power allocation was compared with average power allocation, water filling and general power allocation algorithms. The water filling algorithm performed worse than the proposed algorithm while it performed better than the other two algorithms. The proposed algorithm is better than other algorithms in terms of capacity increase. In addition the effect of the change in the number of subcarriers on capacity was discussed. Simulation results show that the increase in the number of subcarrier increases the capacity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cognitive%20radio%20network" title="cognitive radio network">cognitive radio network</a>, <a href="https://publications.waset.org/abstracts/search?q=OFDM" title=" OFDM"> OFDM</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20allocation" title=" power allocation"> power allocation</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20filling" title=" water filling"> water filling</a> </p> <a href="https://publications.waset.org/abstracts/92207/power-allocation-algorithm-for-orthogonal-frequency-division-multiplexing-based-cognitive-radio-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92207.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20scarcity&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20scarcity&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20scarcity&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20scarcity&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20scarcity&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20scarcity&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20scarcity&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20scarcity&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20scarcity&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20scarcity&page=294">294</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20scarcity&page=295">295</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20scarcity&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>