CINXE.COM
Search results for: dynamic ARDL simulation model
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: dynamic ARDL simulation model</title> <meta name="description" content="Search results for: dynamic ARDL simulation model"> <meta name="keywords" content="dynamic ARDL simulation model"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="dynamic ARDL simulation model" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="dynamic ARDL simulation model"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 21678</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: dynamic ARDL simulation model</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21678</span> Impact of Economic Globalization on Ecological Footprint in India: Evidenced with Dynamic ARDL Simulations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammed%20Ashiq%20Villanthenkodath">Muhammed Ashiq Villanthenkodath</a>, <a href="https://publications.waset.org/abstracts/search?q=Shreya%20Pal"> Shreya Pal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: This study scrutinizes the impact of economic globalization on ecological footprint while endogenizing economic growth and energy consumption from 1990 to 2018 in India. Design/methodology/approach: The standard unit root test has been employed for time series analysis to unveil the integration order. Then, the cointegration was confirmed using autoregressive distributed lag (ARDL) analysis. Further, the study executed the dynamic ARDL simulation model to estimate long-run and short-run results along with simulation and robotic prediction. Findings: The cointegration analysis confirms the existence of a long-run association among variables. Further, economic globalization reduces the ecological footprint in the long run. Similarly, energy consumption decreases the ecological footprint. In contrast, economic growth spurs the ecological footprint in India. Originality/value: This study contributes to the literature in many ways. First, unlike studies that employ CO2 emissions and globalization nexus, this study employs ecological footprint for measuring environmental quality; since it is the broader measure of environmental quality, it can offer a wide range of climate change mitigation policies for India. Second, the study executes a multivariate framework with updated series from 1990 to 2018 in India to explore the link between EF, economic globalization, energy consumption, and economic growth. Third, the dynamic autoregressive distributed lag (ARDL) model has been used to explore the short and long-run association between the series. Finally, to our limited knowledge, this is the first study that uses economic globalization in the EF function of India amid facing a trade-off between sustainable economic growth and the environment in the era of globalization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=economic%20globalization" title="economic globalization">economic globalization</a>, <a href="https://publications.waset.org/abstracts/search?q=ecological%20footprint" title=" ecological footprint"> ecological footprint</a>, <a href="https://publications.waset.org/abstracts/search?q=India" title=" India"> India</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20ARDL%20simulation%20model" title=" dynamic ARDL simulation model"> dynamic ARDL simulation model</a> </p> <a href="https://publications.waset.org/abstracts/156005/impact-of-economic-globalization-on-ecological-footprint-in-india-evidenced-with-dynamic-ardl-simulations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21677</span> Impact of Workers’ Remittances on Poverty in Pakistan: A Time Series Analysis by Ardl</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syed%20Aziz%20Rasool">Syed Aziz Rasool</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayesha%20Zaman"> Ayesha Zaman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Poverty is one of the most important problems for any developing nation. Workers’ remittances and investment plays a crucial role in development of any country by reducing the poverty level in Pakistan. This research studies the relationship between workers’ remittances and poverty alleviation. It also focused the significant effect on poverty reduction. This study uses time series data for the period of 1972-2013. Autoregressive Distributed Lag (ARDL)Model and Error Correction (ECM)Model has been used in order to find out the long run and short run relationship between the worker’s remittances and poverty level respectively. Thus, inflow of remittances showed the significant and negative impact on poverty level. Moreover, coefficient of error correction model explains the adjustment towards convergence and it has highly significant and negative value. According to this research, Policy makers should strongly focus on positive and effective policies to attract more remittances. JELCODE: JEL: J61 <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ECM" title="ECM">ECM</a>, <a href="https://publications.waset.org/abstracts/search?q=ARDL" title=" ARDL"> ARDL</a>, <a href="https://publications.waset.org/abstracts/search?q=AIC" title=" AIC"> AIC</a>, <a href="https://publications.waset.org/abstracts/search?q=SC" title=" SC"> SC</a> </p> <a href="https://publications.waset.org/abstracts/36982/impact-of-workers-remittances-on-poverty-in-pakistan-a-time-series-analysis-by-ardl" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36982.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21676</span> Examining the Dynamics of FDI Inflows in Both BRICS and G7 Economies: Dissecting the Influence of Geopolitical Risk versus Economic Policy Uncertainty</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adelakun%20O.%20Johnson">Adelakun O. Johnson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The quest to mitigate the probable adverse effects of geopolitical risk on FDI inflows tends to result in more frequent changes in economic policies and, as a result, heightened policy uncertainty. In this regard, we extend the literature on the dynamics of FDI inflows to include the hypothesis of the possibility of geopolitical risk escalating the adverse effects of economic policy uncertainty on FDI inflows. To test the robustness of this hypothesis, we use the cases of different economic groups characterized by different levels of economic development and varying degrees of FDI confidence. Employing an ARDL-based dynamic panel data model that accounts for both non-stationarity and heterogeneity effects, we show result that suggests GPR and EPU retard the inflows of FDI in both economies but mainly in the short-run situation. In the long run, however, higher EPU not attributed to GPR is likely to boost the inflows of FDI rather than retarding, at least in the case of the G7 economy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FDI%20inflows" title="FDI inflows">FDI inflows</a>, <a href="https://publications.waset.org/abstracts/search?q=geopolitical%20risk" title=" geopolitical risk"> geopolitical risk</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20policy%20uncertainty" title=" economic policy uncertainty"> economic policy uncertainty</a>, <a href="https://publications.waset.org/abstracts/search?q=panel%20ARDL%20model" title=" panel ARDL model"> panel ARDL model</a> </p> <a href="https://publications.waset.org/abstracts/190114/examining-the-dynamics-of-fdi-inflows-in-both-brics-and-g7-economies-dissecting-the-influence-of-geopolitical-risk-versus-economic-policy-uncertainty" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190114.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">24</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21675</span> Axle Load Estimation of Moving Vehicles Using BWIM Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Changgil%20Lee">Changgil Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Seunghee%20Park"> Seunghee Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although vehicle driving test for the development of BWIM system is necessary, but it needs much cost and time in addition application of various driving condition. Thus, we need the numerical-simulation method resolving the cost and time problems of vehicle driving test and the way of measuring response of bridge according to the various driving condition. Using the precision analysis model reflecting the dynamic characteristic is contributed to increase accuracy in numerical simulation. In this paper, we conduct a numerical simulation to apply precision analysis model, which reflects the dynamic characteristic of bridge using Bridge Weigh-in-Motion technique and suggest overload vehicle enforcement technology using precision analysis model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridge%20weigh-in-motion%28BWIM%29%20system" title="bridge weigh-in-motion(BWIM) system">bridge weigh-in-motion(BWIM) system</a>, <a href="https://publications.waset.org/abstracts/search?q=precision%20analysis%20model" title=" precision analysis model"> precision analysis model</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20characteristic%20of%20bridge" title=" dynamic characteristic of bridge"> dynamic characteristic of bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a> </p> <a href="https://publications.waset.org/abstracts/49092/axle-load-estimation-of-moving-vehicles-using-bwim-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49092.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21674</span> The Origins of Inflation in Tunisia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Narimen%20Rdhaounia%20Mohamed%20Kouni">Narimen Rdhaounia Mohamed Kouni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Our aim in this paper is to identify the origins of inflation in Tunisia on the period from 1988 to 2018. In order to estimate the model, an ARDL methodology is used. We studied also the effect of informal economy on inflation. Indeed, we estimated the size of the informal economy in Tunisia based on Gutmann method. The results showed that there are three main origins of inflation. In fact, the first origin is the fiscal policy adopted by Tunisia, particularly after revolution. The second origin is the increase of monetary variables. Finally, informal economy played an important role in inflation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inflation" title="inflation">inflation</a>, <a href="https://publications.waset.org/abstracts/search?q=consumer%20price%20index" title=" consumer price index"> consumer price index</a>, <a href="https://publications.waset.org/abstracts/search?q=informal" title=" informal"> informal</a>, <a href="https://publications.waset.org/abstracts/search?q=gutmann%20method" title=" gutmann method"> gutmann method</a>, <a href="https://publications.waset.org/abstracts/search?q=ARDL%20model" title=" ARDL model"> ARDL model</a> </p> <a href="https://publications.waset.org/abstracts/158470/the-origins-of-inflation-in-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158470.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21673</span> Linkages between Climate Change, Agricultural Productivity, Food Security and Economic Growth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jih%C3%A8ne%20Khalifa">Jihène Khalifa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study analyzed the relationships between Tunisia’s economic growth, food security, agricultural productivity, and climate change using the ARDL model for the period from 1990 to 2022. The ARDL model reveals a positive correlation between economic growth and lagged agricultural productivity. Additionally, the vector autoregressive (VAR) model highlights the beneficial impact of lagged agricultural productivity on economic growth and the negative effect of rainfall on economic growth. Granger causality analysis identifies unidirectional relationships from economic growth to agricultural productivity, crop production, food security, and temperature variations, as well as from temperature variations to crop production. Furthermore, a bidirectional causality is established between crop production and food security. The study underscores the impact of climate change on crop production and suggests the need for adaptive strategies to mitigate these climate effects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=economic%20growth" title="economic growth">economic growth</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=ARDL" title=" ARDL"> ARDL</a>, <a href="https://publications.waset.org/abstracts/search?q=Granger%20causality" title=" Granger causality"> Granger causality</a>, <a href="https://publications.waset.org/abstracts/search?q=VAR" title=" VAR"> VAR</a> </p> <a href="https://publications.waset.org/abstracts/189244/linkages-between-climate-change-agricultural-productivity-food-security-and-economic-growth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">31</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21672</span> Fault Diagnosis in Induction Motor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kirti%20Gosavi">Kirti Gosavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Anita%20Bhole"> Anita Bhole</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper demonstrates simulation and steady-state performance of three phase squirrel cage induction motor and detection of rotor broken bar fault using MATLAB. This simulation model is successfully used in the fault detection of rotor broken bar for the induction machines. A dynamic model using PWM inverter and mathematical modelling of the motor is developed. The dynamic simulation of the small power induction motor is one of the key steps in the validation of the design process of the motor drive system and it is needed for eliminating advertent design errors and the resulting error in the prototype construction and testing. The simulation model will be helpful in detecting the faults in three phase induction motor using Motor current signature analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=squirrel%20cage%20induction%20motor" title="squirrel cage induction motor">squirrel cage induction motor</a>, <a href="https://publications.waset.org/abstracts/search?q=pulse%20width%20modulation%20%28PWM%29" title=" pulse width modulation (PWM)"> pulse width modulation (PWM)</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20diagnosis" title=" fault diagnosis"> fault diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=induction%20motor" title=" induction motor"> induction motor</a> </p> <a href="https://publications.waset.org/abstracts/22499/fault-diagnosis-in-induction-motor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22499.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">633</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21671</span> Developing a Systems Dynamics Model for Security Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kuan-Chou%20Chen">Kuan-Chou Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper will demonstrate a simulation model of an information security system by using the systems dynamic approach. The relationships in the system model are designed to be simple and functional and do not necessarily represent any particular information security environments. The purpose of the paper aims to develop a generic system dynamic information security system model with implications on information security research. The interrelated and interdependent relationships of five primary sectors in the system dynamic model will be presented in this paper. The integrated information security systems model will include (1) information security characteristics, (2) users, (3) technology, (4) business functions, and (5) policy and management. Environments, attacks, government and social culture will be defined as the external sector. The interactions within each of these sectors will be depicted by system loop map as well. The proposed system dynamic model will not only provide a conceptual framework for information security analysts and designers but also allow information security managers to remove the incongruity between the management of risk incidents and the management of knowledge and further support information security managers and decision makers the foundation for managerial actions and policy decisions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=system%20thinking" title="system thinking">system thinking</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20security%20systems" title=" information security systems"> information security systems</a>, <a href="https://publications.waset.org/abstracts/search?q=security%20management" title=" security management"> security management</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/40859/developing-a-systems-dynamics-model-for-security-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40859.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21670</span> Dynamic Modeling of Wind Farms in the Jeju Power System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dae-Hee%20Son">Dae-Hee Son</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang-Hee%20Kang"> Sang-Hee Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Soon-Ryul%20Nam"> Soon-Ryul Nam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we develop a dynamic modeling of wind farms in the Jeju power system. The dynamic model of wind farms is developed to study their dynamic effects on the Jeju power system. PSS/E is used to develop the dynamic model of a wind farm composed of 1.5-MW doubly fed induction generators. The output of a wind farm is regulated based on pitch angle control, in which the two controllable parameters are speed and power references. The simulation results confirm that the pitch angle is successfully controlled, regardless of the variation in wind speed and output regulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20model" title="dynamic model">dynamic model</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeju%20power%20system" title=" Jeju power system"> Jeju power system</a>, <a href="https://publications.waset.org/abstracts/search?q=online%20limitation" title=" online limitation"> online limitation</a>, <a href="https://publications.waset.org/abstracts/search?q=pitch%20angle%20control" title=" pitch angle control"> pitch angle control</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20farm" title=" wind farm"> wind farm</a> </p> <a href="https://publications.waset.org/abstracts/47581/dynamic-modeling-of-wind-farms-in-the-jeju-power-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47581.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21669</span> Public Spending and Economic Growth: An Empirical Analysis of Developed Countries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bernur%20Acikgoz">Bernur Acikgoz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to investigate the effects of public spending on economic growth and examine the sources of economic growth in developed countries since the 1990s. This paper analyses whether public spending effect on economic growth based on Cobb-Douglas Production Function with the two econometric models with Autoregressive Distributed Lag (ARDL) and Dynamic Fixed Effect (DFE) for 21 developed countries (high-income OECD countries), over the period 1990-2013. Our models results are parallel to each other and the models support that public spending has an important role for economic growth. This result is accurate with theories and previous empirical studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=public%20spending" title="public spending">public spending</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20growth" title=" economic growth"> economic growth</a>, <a href="https://publications.waset.org/abstracts/search?q=panel%20data" title=" panel data"> panel data</a>, <a href="https://publications.waset.org/abstracts/search?q=ARDL%20models" title=" ARDL models"> ARDL models</a> </p> <a href="https://publications.waset.org/abstracts/49809/public-spending-and-economic-growth-an-empirical-analysis-of-developed-countries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21668</span> Conduction Model Compatible for Multi-Physical Domain Dynamic Investigations: Bond Graph Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Zanj">A. Zanj</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20He"> F. He</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current paper, a domain independent conduction model compatible for multi-physical system dynamic investigations is suggested. By means of a port-based approach, a classical nonlinear conduction model containing physical states is first represented. A compatible discrete configuration of the thermal domain in line with the elastic domain is then generated through the enhancement of the configuration of the conventional thermal element. The presented simulation results of a sample structure indicate that the suggested conductive model can cover a wide range of dynamic behavior of the thermal domain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-physical%20domain" title="multi-physical domain">multi-physical domain</a>, <a href="https://publications.waset.org/abstracts/search?q=conduction%20model" title=" conduction model"> conduction model</a>, <a href="https://publications.waset.org/abstracts/search?q=port%20based%20modeling" title=" port based modeling"> port based modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20interaction" title=" dynamic interaction"> dynamic interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20modeling" title=" physical modeling"> physical modeling</a> </p> <a href="https://publications.waset.org/abstracts/42625/conduction-model-compatible-for-multi-physical-domain-dynamic-investigations-bond-graph-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21667</span> Resource Allocation Modeling and Simulation in Border Security Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kai%20Jin">Kai Jin</a>, <a href="https://publications.waset.org/abstracts/search?q=Hua%20Li"> Hua Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Qing%20Song"> Qing Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Homeland security and border safety is an issue for any country. This paper takes the border security of US as an example to discuss the usage and efficiency of simulation tools in the homeland security application. In this study, available resources and different illegal infiltration parameters are defined, including their individual behavior and objective, in order to develop a model that describes border patrol system. A simulation model is created in Arena. This simulation model is used to study the dynamic activities in the border security. Possible factors that may affect the effectiveness of the border patrol system are proposed. Individual and factorial analysis of these factors is conducted and some suggestions are made. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=resource%20optimization" title="resource optimization">resource optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=border%20security" title=" border security"> border security</a> </p> <a href="https://publications.waset.org/abstracts/12476/resource-allocation-modeling-and-simulation-in-border-security-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12476.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21666</span> Dynamic Simulation for Surface Wear Prognosis of the Main Bearings in the Internal Combustion Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yanyan%20Zhang">Yanyan Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ziyu%20Diao"> Ziyu Diao</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhentao%20Liu"> Zhentao Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruidong%20Yan"> Ruidong Yan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The wear character of the main bearing is one of the critical indicators for the overhaul of an internal combustion engine, and the aim of this paper is to reveal the dynamic wear mechanism of the main bearings. A numerical simulation model combined multi-body dynamic equations of the engine, the average Reynolds equations of the bearing lubricant, asperity contact and wear model of the joint surfaces were established under typical operating conditions. The wear results were verified by experimental data, and then the influence of operating conditions, bearing clearance and cylinder pressure on the wear character of selected main bearings were analyzed. The results show that the contribution degree of different working conditions on the wear profile and depth of each bearing is obviously different, and the increase of joint clearance or cylinder pressure will accelerate the wear. The numerical model presented can be used to wear prognosis for joints and provide guidance for optimization design of sliding bearings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20simulation" title="dynamic simulation">dynamic simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-body%20dynamics" title=" multi-body dynamics"> multi-body dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20bearing" title=" sliding bearing"> sliding bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20wear" title=" surface wear"> surface wear</a> </p> <a href="https://publications.waset.org/abstracts/108763/dynamic-simulation-for-surface-wear-prognosis-of-the-main-bearings-in-the-internal-combustion-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108763.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21665</span> Numerical Study of the Dynamic Behavior of an Air Conditioning with a Muti Confined Swirling Jet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Roudane">Mohamed Roudane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is to know the dynamic behavior of a multi swirling jet used for air conditioning inside a room. To conduct this study, we designed a facility to ensure proper conditions of confinement in which we placed five air blowing devices with adjustable vanes, providing multiple swirling turbulent jets. The jets were issued in the same direction and the same spacing defined between them. This study concerned the numerical simulation of the dynamic mixing of confined swirling multi-jets, and examined the influence of important parameters of a swirl diffuser system on the dynamic performance characteristics. The CFD investigations are carried out by a hybrid mesh to discretize the computational domain. In this work, the simulations have been performed using the finite volume method and FLUENT solver, in which the standard k-ε RNG turbulence model was used for turbulence computations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=simulation" title="simulation">simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20behavior" title=" dynamic behavior"> dynamic behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=swirl" title=" swirl"> swirl</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20jet" title=" turbulent jet"> turbulent jet</a> </p> <a href="https://publications.waset.org/abstracts/38034/numerical-study-of-the-dynamic-behavior-of-an-air-conditioning-with-a-muti-confined-swirling-jet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21664</span> Stress Recovery and Durability Prediction of a Vehicular Structure with Random Road Dynamic Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jia-Shiun%20Chen">Jia-Shiun Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Quoc-Viet%20Huynh"> Quoc-Viet Huynh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work develops a flexible-body dynamic model of an all-terrain vehicle (ATV), capable of recovering dynamic stresses while the ATV travels on random bumpy roads. The fatigue life of components is forecasted as well. While considering the interaction between dynamic forces and structure deformation, the proposed model achieves a highly accurate structure stress prediction and fatigue life prediction. During the simulation, stress time history of the ATV structure is retrieved for life prediction. Finally, the hot sports of the ATV frame are located, and the frame life for combined road conditions is forecasted, i.e. 25833.6 hr. If the usage of vehicle is eight hours daily, the total vehicle frame life is 8.847 years. Moreover, the reaction force and deformation due to the dynamic motion can be described more accurately by using flexible body dynamics than by using rigid-body dynamics. Based on recommendations made in the product design stage before mass production, the proposed model can significantly lower development and testing costs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexible-body%20dynamics" title="flexible-body dynamics">flexible-body dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=veicle" title=" veicle"> veicle</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamics" title=" dynamics"> dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a> </p> <a href="https://publications.waset.org/abstracts/26684/stress-recovery-and-durability-prediction-of-a-vehicular-structure-with-random-road-dynamic-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26684.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21663</span> Damping Function and Dynamic Simulation of GUPFC Using IC-HS Algorithm </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Galu%20Papy%20Yuma">Galu Papy Yuma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a new dynamic simulation of a power system consisting of four machines equipped with the Generalized Unified Power Flow Controller (GUPFC) to improve power system stability. The dynamic simulation of the GUPFC consists of one shunt converter and two series converters based on voltage source converter, and DC link capacitor installed in the power system. MATLAB/Simulink is used to arrange the dynamic simulation of the GUPFC, where the power system is simulated in order to investigate the impact of the controller on power system oscillation damping and to show the simulation program reliability. The Improved Chaotic- Harmony Search (IC-HS) Algorithm is used to provide the parameter controller in order to lead-lag compensation design. The results obtained by simulation show that the power system with four machines is suitable for stability analysis. The use of GUPFC and IC-HS Algorithm provides the excellent capability in fast damping of power system oscillations and improve greatly the dynamic stability of the power system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GUPFC" title="GUPFC">GUPFC</a>, <a href="https://publications.waset.org/abstracts/search?q=IC-HS%20algorithm" title=" IC-HS algorithm"> IC-HS algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=Matlab%2FSimulink" title=" Matlab/Simulink"> Matlab/Simulink</a>, <a href="https://publications.waset.org/abstracts/search?q=damping%20oscillation" title=" damping oscillation"> damping oscillation</a> </p> <a href="https://publications.waset.org/abstracts/6263/damping-function-and-dynamic-simulation-of-gupfc-using-ic-hs-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21662</span> Model Based Simulation Approach to a 14-Dof Car Model Using Matlab/Simulink</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ishit%20Sheth">Ishit Sheth</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandrasekhar%20Jinendran"> Chandrasekhar Jinendran</a>, <a href="https://publications.waset.org/abstracts/search?q=Chinmaya%20Ranjan%20Sahu"> Chinmaya Ranjan Sahu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A fourteen degree of freedom (DOF) ride and handling control mathematical model is developed for a car using generalized boltzmann hamel equation which will create a basis for design of ride and handling controller. Mathematical model developed yield equations of motion for non-holonomic constrained systems in quasi-coordinates. The governing differential equation developed integrates ride and handling control of car. Model-based systems engineering approach is implemented for simulation using matlab/simulink, vehicle’s response in different DOF is examined and later validated using commercial software (ADAMS). This manuscript involves detailed derivation of full car vehicle model which provides response in longitudinal, lateral and yaw motion to demonstrate the advantages of the developed model over the existing dynamic model. The dynamic behaviour of the developed ride and handling model is simulated for different road conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Full%20Vehicle%20Model" title="Full Vehicle Model">Full Vehicle Model</a>, <a href="https://publications.waset.org/abstracts/search?q=MBSE" title=" MBSE"> MBSE</a>, <a href="https://publications.waset.org/abstracts/search?q=Non%20Holonomic%20Constraints" title=" Non Holonomic Constraints"> Non Holonomic Constraints</a>, <a href="https://publications.waset.org/abstracts/search?q=Boltzmann%20Hamel%20Equation" title=" Boltzmann Hamel Equation"> Boltzmann Hamel Equation</a> </p> <a href="https://publications.waset.org/abstracts/135319/model-based-simulation-approach-to-a-14-dof-car-model-using-matlabsimulink" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135319.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21661</span> Dynamic Modeling of Energy Systems Adapted to Low Energy Buildings in Lebanon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadine%20Yehya">Nadine Yehya</a>, <a href="https://publications.waset.org/abstracts/search?q=Chantal%20Maatouk"> Chantal Maatouk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Low energy buildings have been developed to achieve global climate commitments in reducing energy consumption. They comprise energy efficient buildings, zero energy buildings, positive buildings and passive house buildings. The reduced energy demands in Low Energy buildings call for advanced building energy modeling that focuses on studying active building systems such as heating, cooling and ventilation, improvement of systems performances, and development of control systems. Modeling and building simulation have expanded to cover different modeling approach i.e.: detailed physical model, dynamic empirical models, and hybrid approaches, which are adopted by various simulation tools. This paper uses DesignBuilder with EnergyPlus simulation engine in order to; First, study the impact of efficiency measures on building energy behavior by comparing Low energy residential model to a conventional one in Beirut-Lebanon. Second, choose the appropriate energy systems for the studied case characterized by an important cooling demand. Third, study dynamic modeling of Variable Refrigerant Flow (VRF) system in EnergyPlus that is chosen due to its advantages over other systems and its availability in the Lebanese market. Finally, simulation of different energy systems models with different modeling approaches is necessary to confront the different modeling approaches and to investigate the interaction between energy systems and building envelope that affects the total energy consumption of Low Energy buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=physical%20model" title="physical model">physical model</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20refrigerant%20flow%20heat%20pump" title=" variable refrigerant flow heat pump"> variable refrigerant flow heat pump</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20modeling" title=" dynamic modeling"> dynamic modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=EnergyPlus" title=" EnergyPlus"> EnergyPlus</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20modeling%20approach" title=" the modeling approach"> the modeling approach</a> </p> <a href="https://publications.waset.org/abstracts/97232/dynamic-modeling-of-energy-systems-adapted-to-low-energy-buildings-in-lebanon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97232.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21660</span> Second Order Statistics of Dynamic Response of Structures Using Gamma Distributed Damping Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Badreddine%20Chemali">Badreddine Chemali</a>, <a href="https://publications.waset.org/abstracts/search?q=Boualem%20Tiliouine"> Boualem Tiliouine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article presents the main results of a numerical investigation on the uncertainty of dynamic response of structures with statistically correlated random damping Gamma distributed. A computational method based on a Linear Statistical Model (LSM) is implemented to predict second order statistics for the response of a typical industrial building structure. The significance of random damping with correlated parameters and its implications on the sensitivity of structural peak response in the neighborhood of a resonant frequency are discussed in light of considerable ranges of damping uncertainties and correlation coefficients. The results are compared to those generated using Monte Carlo simulation techniques. The numerical results obtained show the importance of damping uncertainty and statistical correlation of damping coefficients when obtaining accurate probabilistic estimates of dynamic response of structures. Furthermore, the effectiveness of the LSM model to efficiently predict uncertainty propagation for structural dynamic problems with correlated damping parameters is demonstrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=correlated%20random%20damping" title="correlated random damping">correlated random damping</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20statistical%20model" title=" linear statistical model"> linear statistical model</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulation" title=" Monte Carlo simulation"> Monte Carlo simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty%20of%20dynamic%20response" title=" uncertainty of dynamic response"> uncertainty of dynamic response</a> </p> <a href="https://publications.waset.org/abstracts/37599/second-order-statistics-of-dynamic-response-of-structures-using-gamma-distributed-damping-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37599.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21659</span> The Impact of Bitcoin on Stock Market Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oliver%20Takawira">Oliver Takawira</a>, <a href="https://publications.waset.org/abstracts/search?q=Thembi%20Hope"> Thembi Hope</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study will analyse the relationship between Bitcoin price movements and the Johannesburg stock exchange (JSE). The aim is to determine whether Bitcoin price movements affect the stock market performance. As crypto currencies continue to gain prominence as a safe asset during periods of economic distress, this raises the question of whether Bitcoin’s prosperity could affect investment in the stock market. To identify the existence of a short run and long run linear relationship, the study will apply the Autoregressive Distributed Lag Model (ARDL) bounds test and a Vector Error Correction Model (VECM) after testing the data for unit roots and cointegration using the Augmented Dicker Fuller (ADF) and Phillips-Perron (PP). The Non-Linear Auto Regressive Distributed Lag (NARDL) will then be used to check if there is a non-linear relationship between bitcoin prices and stock market prices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bitcoin" title="bitcoin">bitcoin</a>, <a href="https://publications.waset.org/abstracts/search?q=stock%20market" title=" stock market"> stock market</a>, <a href="https://publications.waset.org/abstracts/search?q=interest%20rates" title=" interest rates"> interest rates</a>, <a href="https://publications.waset.org/abstracts/search?q=ARDL" title=" ARDL"> ARDL</a> </p> <a href="https://publications.waset.org/abstracts/150006/the-impact-of-bitcoin-on-stock-market-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150006.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21658</span> Computer Modeling and Plant-Wide Dynamic Simulation for Industrial Flare Minimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sujing%20Wang">Sujing Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Song%20Wang"> Song Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jian%20Zhang"> Jian Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiang%20Xu"> Qiang Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flaring emissions during abnormal operating conditions such as plant start-ups, shut-downs, and upsets in chemical process industries (CPI) are usually significant. Flare minimization can help to save raw material and energy for CPI plants, and to improve local environmental sustainability. In this paper, a systematic methodology based on plant-wide dynamic simulation is presented for CPI plant flare minimizations under abnormal operating conditions. Since off-specification emission sources are inevitable during abnormal operating conditions, to significantly reduce flaring emission in a CPI plant, they must be either recycled to the upstream process for online reuse, or stored somewhere temporarily for future reprocessing, when the CPI plant manufacturing returns to stable operation. Thus, the off-spec products could be reused instead of being flared. This can be achieved through the identification of viable design and operational strategies during normal and abnormal operations through plant-wide dynamic scheduling, simulation, and optimization. The proposed study includes three stages of simulation works: (i) developing and validating a steady-state model of a CPI plant; (ii) transiting the obtained steady-state plant model to the dynamic modeling environment; and refining and validating the plant dynamic model; and (iii) developing flare minimization strategies for abnormal operating conditions of a CPI plant via a validated plant-wide dynamic model. This cost-effective methodology has two main merits: (i) employing large-scale dynamic modeling and simulations for industrial flare minimization, which involves various unit models for modeling hundreds of CPI plant facilities; (ii) dealing with critical abnormal operating conditions of CPI plants such as plant start-up and shut-down. Two virtual case studies on flare minimizations for start-up operation (over 50% of emission savings) and shut-down operation (over 70% of emission savings) of an ethylene plant have been employed to demonstrate the efficacy of the proposed study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flare%20minimization" title="flare minimization">flare minimization</a>, <a href="https://publications.waset.org/abstracts/search?q=large-scale%20modeling%20and%20simulation" title=" large-scale modeling and simulation"> large-scale modeling and simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20shut-down" title=" plant shut-down"> plant shut-down</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20start-up" title=" plant start-up"> plant start-up</a> </p> <a href="https://publications.waset.org/abstracts/49832/computer-modeling-and-plant-wide-dynamic-simulation-for-industrial-flare-minimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21657</span> Dynamic Fault Tree Analysis of Dynamic Positioning System through Monte Carlo Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Cheliyan">A. S. Cheliyan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Bhattacharyya"> S. K. Bhattacharyya </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dynamic Positioning System (DPS) is employed in marine vessels of the offshore oil and gas industry. It is a computer controlled system to automatically maintain a ship’s position and heading by using its own thrusters. Reliability assessment of the same can be analyzed through conventional fault tree. However, the complex behaviour like sequence failure, redundancy management and priority of failing of events cannot be analyzed by the conventional fault trees. The Dynamic Fault Tree (DFT) addresses these shortcomings of conventional Fault Tree by defining additional gates called dynamic gates. Monte Carlo based simulation approach has been adopted for the dynamic gates. This method of realistic modeling of DPS gives meaningful insight into the system reliability and the ability to improve the same. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20positioning%20system" title="dynamic positioning system">dynamic positioning system</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20fault%20tree" title=" dynamic fault tree"> dynamic fault tree</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulation" title=" Monte Carlo simulation"> Monte Carlo simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability%20assessment" title=" reliability assessment "> reliability assessment </a> </p> <a href="https://publications.waset.org/abstracts/58683/dynamic-fault-tree-analysis-of-dynamic-positioning-system-through-monte-carlo-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">774</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21656</span> Laboratory Simulation of Subway Dynamic Stray Current Interference with Cathodically Protected Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Derakhshani">Mohammad Derakhshani</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Reza%20Allahkaram"> Saeed Reza Allahkaram</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Isakani-Zakaria"> Michael Isakani-Zakaria</a>, <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Samadian"> Masoud Samadian</a>, <a href="https://publications.waset.org/abstracts/search?q=Hojat%20Sharifi%20Rasaey"> Hojat Sharifi Rasaey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dynamic stray currents tend to change their magnitude and polarity with time at their source which will create anodic and cathodic spots on a nearby interfered structure. To date, one of the biggest known dynamic stray current sources are DC traction systems. Laboratory simulation is a suitable method to apply theoretical principles in order to identify effective parameters in dynamic stray current influenced corrosion. Simulation techniques can be utilized for various mitigation methods applied in a small scales for selection of the most efficient method with regards to field applications. In this research, laboratory simulation of potential fluctuations caused by dynamic stray current on a cathodically protected structure was investigated. A lab model capable of generating DC static and dynamic stray currents and simulating its effects on cathodically protected samples were developed based on stray current induced (contact-less) polarization technique. Stray current pick-up and discharge spots on an influenced structure were simulated by inducing fluctuations in the sample’s stationary potential. Two mitigation methods for dynamic stray current interference on buried structures namely application of sacrificial anodes as preferred discharge point for the stray current and potentially controlled cathodic protection was investigated. Results showed that the application of sacrificial anodes can be effective in reducing interference only in discharge spot. But cathodic protection through potential controlling is more suitable for mitigating dynamic stray current effects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=simulation" title="simulation">simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20stray%20current" title=" dynamic stray current"> dynamic stray current</a>, <a href="https://publications.waset.org/abstracts/search?q=fluctuating%20potentials" title=" fluctuating potentials"> fluctuating potentials</a>, <a href="https://publications.waset.org/abstracts/search?q=sacrificial%20anode" title=" sacrificial anode"> sacrificial anode</a> </p> <a href="https://publications.waset.org/abstracts/31767/laboratory-simulation-of-subway-dynamic-stray-current-interference-with-cathodically-protected-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31767.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21655</span> Long Run Estimates of Population, Consumption and Economic Development of India: An ARDL Bounds Testing Approach of Cointegration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20Kumar">Sanjay Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Arumugam%20Sankaran"> Arumugam Sankaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Arjun%20K."> Arjun K.</a>, <a href="https://publications.waset.org/abstracts/search?q=Mousumi%20Das"> Mousumi Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The amount of domestic consumption and population growth is having a positive impact on economic growth and development as observed by the Harrod-Domar and endogenous growth models. The paper negates the Solow growth model which argues the population growth has a detrimental impact on per capita and steady-state growth. Unlike the Solow model, the paper observes, the per capita income growth never falls zero, and it sustains as positive. Hence, our goal here is to investigate the relationship among population, domestic consumption and economic growth of India. For this estimation, annual data from 1980-2016 has been collected from World Development Indicator and Reserve Bank of India. To know the long run as well as short-run dynamics among the variables, we have employed the ARDL bounds testing approach of cointegration followed by modified Wald causality test to know the direction of causality. The conclusion from cointegration and ARDL estimates reveal that there is a long run positive and statistically significant relationship among the variables under study. At the same time, the causality test shows that there is a causal relationship that exists among the variables. Hence, this calls for policies which have a long run perspective in strengthening the capabilities and entitlements of people and stabilizing domestic demand so as to serve long run and short run growth and stability of the economy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cointegration" title="cointegration">cointegration</a>, <a href="https://publications.waset.org/abstracts/search?q=consumption" title=" consumption"> consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20development" title=" economic development"> economic development</a>, <a href="https://publications.waset.org/abstracts/search?q=population%20growth" title=" population growth"> population growth</a> </p> <a href="https://publications.waset.org/abstracts/107590/long-run-estimates-of-population-consumption-and-economic-development-of-india-an-ardl-bounds-testing-approach-of-cointegration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107590.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21654</span> The Effect of Energy Consumption and Losses on the Nigerian Manufacturing Sector: Evidence from the ARDL Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Okezie%20A.%20Ihugba">Okezie A. Ihugba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The bounds testing ARDL (2, 2, 2, 2, 0) technique to cointegration was used in this study to investigate the effect of energy consumption and energy loss on Nigeria's manufacturing sector from 1981 to 2020. The model was created to determine the relationship between these three variables while also accounting for interactions with control variables such as inflation and commercial bank loans to the manufacturing sector. When the dependent variables are energy consumption and energy loss, the bounds tests show that the variables of interest are bound together in the long run. Because electricity consumption is a critical factor in determining manufacturing value-added in Nigeria, some intriguing observations were made. According to the findings, the relationship between LELC and LMVA is statistically significant. According to the findings, electricity consumption reduces manufacturing value-added. The target variable (energy loss) is statistically significant and has a positive sign. In Nigeria, a 1% reduction in energy loss increases manufacturing value-added by 36% in the first lag and 35% in the second. According to the study, the government should speed up the ongoing renovation of existing power plants across the country, as well as the construction of new gas-fired power plants. This will address a number of issues, including overpricing of electricity as a result of grid failure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=L60" title="L60">L60</a>, <a href="https://publications.waset.org/abstracts/search?q=Q43" title=" Q43"> Q43</a>, <a href="https://publications.waset.org/abstracts/search?q=H81" title=" H81"> H81</a>, <a href="https://publications.waset.org/abstracts/search?q=C52" title=" C52"> C52</a>, <a href="https://publications.waset.org/abstracts/search?q=E31" title=" E31"> E31</a>, <a href="https://publications.waset.org/abstracts/search?q=ARDL" title=" ARDL"> ARDL</a>, <a href="https://publications.waset.org/abstracts/search?q=cointegration" title=" cointegration"> cointegration</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigeria%27s%20manufacturing" title=" Nigeria's manufacturing"> Nigeria's manufacturing</a> </p> <a href="https://publications.waset.org/abstracts/149668/the-effect-of-energy-consumption-and-losses-on-the-nigerian-manufacturing-sector-evidence-from-the-ardl-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149668.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21653</span> The Effect of Macroeconomic Policies on Cambodia's Economy: ARDL and VECM Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siphat%20Lim">Siphat Lim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study used Autoregressive Distributed Lag (ARDL) approach to cointegration. In the long-run the general price level and exchange rate have a positively significant effect on domestic output. The estimated result further revealed that fiscal stimulus help stimulate domestic output in the long-run, but not in the short-run, while monetary expansion help to stimulate output in both short-run and long-run. The result is complied with the theory which is the macroeconomic policies, fiscal and monetary policy; help to stimulate domestic output in the long-run. The estimated result of the Vector Error Correction Model (VECM) has indicated more clearly that the consumer price index has a positive effect on output with highly statistically significant. Increasing in the general price level would increase the competitiveness among producers than increase in the output. However, the exchange rate also has a positive effect and highly significant on the gross domestic product. The exchange rate depreciation might increase export since the purchasing power of foreigners has increased. More importantly, fiscal stimulus would help stimulate the domestic output in the long-run since the coefficient of government expenditure is positive. In addition, monetary expansion would also help stimulate the output and the result is highly significant. Thus, fiscal stimulus and monetary expansionary would help stimulate the domestic output in the long-run in Cambodia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiscal%20policy" title="fiscal policy">fiscal policy</a>, <a href="https://publications.waset.org/abstracts/search?q=monetary%20policy" title=" monetary policy"> monetary policy</a>, <a href="https://publications.waset.org/abstracts/search?q=ARDL" title=" ARDL"> ARDL</a>, <a href="https://publications.waset.org/abstracts/search?q=VECM" title=" VECM"> VECM</a> </p> <a href="https://publications.waset.org/abstracts/22223/the-effect-of-macroeconomic-policies-on-cambodias-economy-ardl-and-vecm-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22223.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21652</span> Dynamic Mode Decomposition and Wake Flow Modelling of a Wind Turbine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nor%20Mazlin%20Zahari">Nor Mazlin Zahari</a>, <a href="https://publications.waset.org/abstracts/search?q=Lian%20Gan"> Lian Gan</a>, <a href="https://publications.waset.org/abstracts/search?q=Xuerui%20Mao"> Xuerui Mao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The power production in wind farms and the mechanical loads on the turbines are strongly impacted by the wake of the wind turbine. Thus, there is a need for understanding and modelling the turbine wake dynamic in the wind farm and the layout optimization. Having a good wake model is important in predicting plant performance and understanding fatigue loads. In this paper, the Dynamic Mode Decomposition (DMD) was applied to the simulation data generated by a Direct Numerical Simulation (DNS) of flow around a turbine, perturbed by upstream inflow noise. This technique is useful in analyzing the wake flow, to predict its future states and to reflect flow dynamics associated with the coherent structures behind wind turbine wake flow. DMD was employed to describe the dynamic of the flow around turbine from the DNS data. Since the DNS data comes with the unstructured meshes and non-uniform grid, the interpolation of each occurring within each element in the data to obtain an evenly spaced mesh was performed before the DMD was applied. DMD analyses were able to tell us characteristics of the travelling waves behind the turbine, e.g. the dominant helical flow structures and the corresponding frequencies. As the result, the dominant frequency will be detected, and the associated spatial structure will be identified. The dynamic mode which represented the coherent structure will be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coherent%20structure" title="coherent structure">coherent structure</a>, <a href="https://publications.waset.org/abstracts/search?q=Direct%20Numerical%20Simulation%20%28DNS%29" title=" Direct Numerical Simulation (DNS)"> Direct Numerical Simulation (DNS)</a>, <a href="https://publications.waset.org/abstracts/search?q=dominant%20frequency" title=" dominant frequency"> dominant frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=Dynamic%20Mode%20Decomposition%20%28DMD%29" title=" Dynamic Mode Decomposition (DMD)"> Dynamic Mode Decomposition (DMD)</a> </p> <a href="https://publications.waset.org/abstracts/72480/dynamic-mode-decomposition-and-wake-flow-modelling-of-a-wind-turbine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72480.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21651</span> Object-Oriented Programming for Modeling and Simulation of Systems in Physiology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Fernandez%20de%20Canete">J. Fernandez de Canete</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Object-oriented modeling is spreading in the current simulation of physiological systems through the use of the individual components of the model and its interconnections to define the underlying dynamic equations. In this paper, we describe the use of both the SIMSCAPE and MODELICA simulation environments in the object-oriented modeling of the closed-loop cardiovascular system. The performance of the controlled system was analyzed by simulation in light of the existing hypothesis and validation tests previously performed with physiological data. The described approach represents a valuable tool in the teaching of physiology for graduate medical students. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=object-oriented%20modeling" title="object-oriented modeling">object-oriented modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=SIMSCAPE%20simulation%20language" title=" SIMSCAPE simulation language"> SIMSCAPE simulation language</a>, <a href="https://publications.waset.org/abstracts/search?q=MODELICA%20simulation%20language" title=" MODELICA simulation language"> MODELICA simulation language</a>, <a href="https://publications.waset.org/abstracts/search?q=cardiovascular%20system" title=" cardiovascular system"> cardiovascular system</a> </p> <a href="https://publications.waset.org/abstracts/28645/object-oriented-programming-for-modeling-and-simulation-of-systems-in-physiology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">506</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21650</span> Determinants of Budget Performance in an Oil-Based Economy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adeola%20Adenikinju">Adeola Adenikinju</a>, <a href="https://publications.waset.org/abstracts/search?q=Olusanya%20E.%20Olubusoye"> Olusanya E. Olubusoye</a>, <a href="https://publications.waset.org/abstracts/search?q=Lateef%20O.%20Akinpelu"> Lateef O. Akinpelu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dilinna%20L.%20Nwobi"> Dilinna L. Nwobi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since the enactment of the Fiscal Responsibility Act (2007), the Federal Government of Nigeria (FGN) has made public its fiscal budget and the subsequent implementation report. A critical review of these documents shows significant variations in the five macroeconomic variables which are inputs in each Presidential budget; oil Production target (mbpd), oil price ($), Foreign exchange rate(N/$), and Gross Domestic Product growth rate (%) and inflation rate (%). This results in underperformance of the Federal budget expected output in terms of non-oil and oil revenue aggregates. This paper evaluates first the existing variance between budgeted and actuals, then the relationship and causality between the determinants of Federal fiscal budget assumptions, and finally the determinants of FGN’s Gross Oil Revenue. The paper employed the use of descriptive statistics, the Autoregressive distributed lag (ARDL) model, and a Profit oil probabilistic model to achieve these objectives. This model permits for both the static and dynamic effect(s) of the independent variable(s) on the dependent variable, unlike a static model that accounts for static or fixed effect(s) only. It offers a technique for checking the existence of a long-run relationship between variables, unlike other tests of cointegration, such as the Engle-Granger and Johansen tests, which consider only non-stationary series that are integrated of the same order. Finally, even with small sample size, the ARDL model is known to generate a valid result, for it is the dependent variable and is the explanatory variable. The results showed that there is a long-run relationship between oil revenue as a proxy for budget performance and its determinants; oil price, produced oil quantity, and foreign exchange rate. There is a short-run relationship between oil revenue and its determinants; oil price, produced oil quantity, and foreign exchange rate. There is a long-run relationship between non-oil revenue and its determinants; inflation rate, GDP growth rate, and foreign exchange rate. The grangers’ causality test results show that there is a mono-directional causality between oil revenue and its determinants. The Federal budget assumptions only explain 68% of oil revenue and 62% of non-oil revenue. There is a mono-directional causality between non-oil revenue and its determinants. The Profit oil Model describes production sharing contracts, joint ventures, and modified carrying arrangements as the greatest contributors to FGN’s gross oil revenue. This provides empirical justification for the selected macroeconomic variables used in the Federal budget design and performance evaluation. The research recommends other variables, debt and money supply, be included in the Federal budget design to explain the Federal budget revenue performance further. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ARDL" title="ARDL">ARDL</a>, <a href="https://publications.waset.org/abstracts/search?q=budget%20performance" title=" budget performance"> budget performance</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20price" title=" oil price"> oil price</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20quantity" title=" oil quantity"> oil quantity</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20revenue" title=" oil revenue"> oil revenue</a> </p> <a href="https://publications.waset.org/abstracts/149299/determinants-of-budget-performance-in-an-oil-based-economy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149299.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21649</span> The Dynamics of Algeria’s Natural Gas Exports to Europe: Evidence from ARDL Bounds Testing Approach with Breakpoints</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hicham%20Benamirouche">Hicham Benamirouche</a>, <a href="https://publications.waset.org/abstracts/search?q=Oum%20Elkheir%20Moussi"> Oum Elkheir Moussi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the study is to examine the dynamics of Algeria’s natural gas exports through the Autoregressive Distributed Lag (ARDL) bounds testing approach with break points. The analysis was carried out for the period from 1967 to 2015. Based on imperfect substitution specification, the ARDL approach reveals a long-run equilibrium relationship between Algeria’s Natural gas exports and their determinant factors (Algeria’s gas reserves, Domestic gas consumption, Europe’s GDP per capita, relative prices, the European gas production and the market share of competitors). All the long-run elasticities estimated are statistically significant with a large impact of domestic factors, which constitute the supply constraints. In short term, the elasticities are statistically significant, and almost comparable to those of the long term. Furthermore, the speed of adjustment towards long-run equilibrium is less than one year because of the little flexibility of the long term export contracts. Two break points have been estimated when we employ the domestic gas consumption as a break variable; 1984 and 2010, which reflect the arbitration policy between the domestic gas market and gas exports. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20gas%20exports" title="natural gas exports">natural gas exports</a>, <a href="https://publications.waset.org/abstracts/search?q=elasticity" title=" elasticity"> elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=ARDL%20bounds%20testing" title=" ARDL bounds testing"> ARDL bounds testing</a>, <a href="https://publications.waset.org/abstracts/search?q=break%20points" title=" break points"> break points</a>, <a href="https://publications.waset.org/abstracts/search?q=Algeria" title=" Algeria"> Algeria</a> </p> <a href="https://publications.waset.org/abstracts/82749/the-dynamics-of-algerias-natural-gas-exports-to-europe-evidence-from-ardl-bounds-testing-approach-with-breakpoints" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82749.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamic%20ARDL%20simulation%20model&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamic%20ARDL%20simulation%20model&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamic%20ARDL%20simulation%20model&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamic%20ARDL%20simulation%20model&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamic%20ARDL%20simulation%20model&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamic%20ARDL%20simulation%20model&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamic%20ARDL%20simulation%20model&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamic%20ARDL%20simulation%20model&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamic%20ARDL%20simulation%20model&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamic%20ARDL%20simulation%20model&page=722">722</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamic%20ARDL%20simulation%20model&page=723">723</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamic%20ARDL%20simulation%20model&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>