CINXE.COM

Search results for: Robert M. Field

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Robert M. Field</title> <meta name="description" content="Search results for: Robert M. Field"> <meta name="keywords" content="Robert M. Field"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Robert M. Field" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Robert M. Field"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8621</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Robert M. Field</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8531</span> Far-Field Noise Prediction of Tandem Cylinders Using Incompressible Large Eddy Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jesus%20Ruano">Jesus Ruano</a>, <a href="https://publications.waset.org/abstracts/search?q=Francesc%20Xavier%20Trias"> Francesc Xavier Trias</a>, <a href="https://publications.waset.org/abstracts/search?q=Asensi%20Oliva"> Asensi Oliva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A three-dimensional incompressible Large Eddy Simulation (LES) is performed to compute the hydrodynamic field around a pair of tandem cylinders. Symmetry-preserving schemes will be used during this simulation in conjunction with Finite Volume Method (FVM) to obtain the hydrodynamic field around the selected geometry. A set of results consisting of pressure and velocity and the combination of them will be stored at different surfaces near the cylinders as the initial input for the second part of the study. A post-processing of the obtained results based on Ffowcs-Williams and Hawkings (FWH) equation with a Fourier Transform of the acoustic sources will be used to compute noise at several probes located far away from the region where the hydrodynamics are computed. Directivities as well as spectral profile of the obtained acoustic field will be analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=far-field%20noise" title="far-field noise">far-field noise</a>, <a href="https://publications.waset.org/abstracts/search?q=Ffowcs-Williams%20and%20Hawkings" title=" Ffowcs-Williams and Hawkings"> Ffowcs-Williams and Hawkings</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20volume%20method" title=" finite volume method"> finite volume method</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20eddy%20simulation" title=" large eddy simulation"> large eddy simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=long-span%20bodies" title=" long-span bodies"> long-span bodies</a> </p> <a href="https://publications.waset.org/abstracts/58458/far-field-noise-prediction-of-tandem-cylinders-using-incompressible-large-eddy-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58458.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8530</span> Magnetohydrodynamic Flow over an Exponentially Stretching Sheet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raj%20Nandkeolyar">Raj Nandkeolyar</a>, <a href="https://publications.waset.org/abstracts/search?q=Precious%20Sibanda"> Precious Sibanda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The flow of a viscous, incompressible, and electrically conducting fluid under the influence of aligned magnetic field acting along the direction of fluid flow over an exponentially stretching sheet is investigated numerically. The nonlinear partial differential equations governing the flow model is transformed to a set of nonlinear ordinary differential equations using suitable similarity transformation and the solution is obtained using a local linearization method followed by the Chebyshev spectral collocation method. The effects of various parameters affecting the flow and heat transfer as well as the induced magnetic field are discussed using suitable graphs and tables. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aligned%20magnetic%20field" title="aligned magnetic field">aligned magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=exponentially%20stretching%20sheet" title=" exponentially stretching sheet"> exponentially stretching sheet</a>, <a href="https://publications.waset.org/abstracts/search?q=induced%20magnetic%20field" title=" induced magnetic field"> induced magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetohydrodynamic%20flow" title=" magnetohydrodynamic flow"> magnetohydrodynamic flow</a> </p> <a href="https://publications.waset.org/abstracts/10795/magnetohydrodynamic-flow-over-an-exponentially-stretching-sheet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10795.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8529</span> Experimental Investigation of the Thermal Performance of Fe2O3 under Magnetic Field in an Oscillating Heat Pipe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20R.%20Goshayeshi">H. R. Goshayeshi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Khalouei"> M. Khalouei</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Azarberamman"> S. Azarberamman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an experimental investigation regarding the use of Fe2O3 nano particles added to kerosene as a working fluid, under magnetic field. The experiment was made on Oscillating Heat Pipe (OHP). The experiment was performed in order to measure the temperature distribution and compare the heat transfer rate of the oscillating heat pipe with and without magnetic Field. Results showed that the addition of Fe2o3 nano particles under magnetic field improved thermal performance of OHP, compare with non-magnetic field. Furthermore applying a magnetic field enhance the heat transfer characteristic of Fe2O3 in both start up and steady state conditions. This paper presents an experimental investigation regarding the use of Fe2O3 nano particles added to kerosene as a working fluid, under magnetic field. The experiment was made on Oscillating Heat Pipe (OHP). The experiment was performed in order to measure the temperature distribution and compare the heat transfer rate of the oscillating heat pipe with and without magnetic Field. Results showed that the addition of Fe2o3 nano particles under magnetic field improved thermal performance of OHP, compare with non-magnetic field. Furthermore applying a magnetic field enhance the heat transfer characteristic of Fe2O3 in both start up and steady state conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=experimental" title="experimental">experimental</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillating%20heat%20pipe" title=" oscillating heat pipe"> oscillating heat pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field "> magnetic field </a> </p> <a href="https://publications.waset.org/abstracts/12931/experimental-investigation-of-the-thermal-performance-of-fe2o3-under-magnetic-field-in-an-oscillating-heat-pipe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12931.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8528</span> Refutation of Imre Hermann&#039;s Allegation: János Bolyai Was Not Insane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ol%C3%A1h%20G%C3%A1l%20R%C3%B3bert">Oláh Gál Róbert</a>, <a href="https://publications.waset.org/abstracts/search?q=Veress%20B%C3%A1gyi%20Ibolya"> Veress Bágyi Ibolya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The scientific public has relatively little knowledge about the Hungarian János Bolyai, one of the greatest thinkers of all times. Few people know that apart from being the founder of the non-Euclidean geometry he was also interested in sociology, philosophy, epistemology and linguistics. According to the renowned Hungarian psychoanalytic Imre Hermann, who lives in France, János Bolyai was mentally deranged. However, this is incorrect. The present article intends to prove that he was completely sane until the moment of his death. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imre%20Hermann" title="Imre Hermann">Imre Hermann</a>, <a href="https://publications.waset.org/abstracts/search?q=insane" title=" insane"> insane</a>, <a href="https://publications.waset.org/abstracts/search?q=J%C3%A1nos%20Bolyai" title=" János Bolyai"> János Bolyai</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematics" title=" mathematics"> mathematics</a>, <a href="https://publications.waset.org/abstracts/search?q=non-Euclidean%20geometry" title=" non-Euclidean geometry"> non-Euclidean geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=psyphoanalytic" title=" psyphoanalytic"> psyphoanalytic</a> </p> <a href="https://publications.waset.org/abstracts/35797/refutation-of-imre-hermanns-allegation-janos-bolyai-was-not-insane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">491</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8527</span> Governance of Energy Transitions in Developing States</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Robert%20Lindner">Robert Lindner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years a multitude of international efforts, including the United Nations’ aspirational 2030 Agenda for Sustainable Development, provided a new momentum to facilitate energy access and rural electrification projects to combat energy poverty in developing states in Asia. Rural electrification projects promise to facilitate other sustainable development aims, such as the empowerment of local communities through the creation of economic opportunities or increased disaster resilience. This study applies a multi-governance research framework to study the cases of the ongoing energy system transition in Myanmar and Cambodia. It explores what impact the international aid community, especially multilateral development banks and international development agencies, has on the governance of the transitions and how diverging aid donor interest shape policy making and project planning. The study is based on policy analysis and expert interviews, as well as extensive field research. It critically examines the current development trajectories and the strategies of the stakeholders involved. It concludes that institutional and technological competition between donors, as well as a lack of transparency and inclusion in the project planning and implementation phases, contributes to insufficient coordination in national energy policy making and project implementation at the local level. The study further discusses possible alternative approaches that might help to promote the spread of sustainable energy technologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20governance" title="energy governance">energy governance</a>, <a href="https://publications.waset.org/abstracts/search?q=developing%20countries" title=" developing countries"> developing countries</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-level%20governance" title=" multi-level governance"> multi-level governance</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20transitions" title=" energy transitions"> energy transitions</a> </p> <a href="https://publications.waset.org/abstracts/115432/governance-of-energy-transitions-in-developing-states" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115432.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8526</span> Rheological Properties of Polymer Systems in Magnetic Field </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20S.%20Soliman">T. S. Soliman</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20G.%20Galyas"> A. G. Galyas</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20V.%20Rusinova"> E. V. Rusinova</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Vshivkov"> S. A. Vshivkov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The liquid crystals combining properties of a liquid and an anisotropic crystal substance play an important role in a science and engineering. Molecules of cellulose and its derivatives have rigid helical conformation, stabilized by intramolecular hydrogen bonds. Therefore the macromolecules of these polymers are capable to be ordered at dissolution and form liquid crystals of cholesteric type. Phase diagrams of solutions of some cellulose derivatives are known. However, little is known about the effect of a magnetic field on the viscosity of polymer solutions. The systems hydroxypropyl cellulose (HPC) – ethanol, HPC – ethylene glycol, HPC–DМАA, HPC–DMF, ethyl cellulose (EC)–ethanol, EC–DMF, were studied in the presence and absence of magnetic field. The solution viscosity was determined on a Rheotest RN 4.1 rheometer. The effect of a magnetic field on the solution properties was studied with the use of two magnets, which induces a magnetic-field-lines directed perpendicularly and parallel to the rotational axis of a rotor. Application of the magnetic field is shown to be accompanied by an increase in the additional assembly of macromolecules, as is evident from a gain in the radii of light scattering particles. In the presence of a magnetic field, the long chains of macromolecules are oriented in parallel with field lines. Such an orientation is associated with the molecular diamagnetic anisotropy of macromolecules. As a result, supramolecular particles are formed, especially in the vicinity of the region of liquid crystalline phase transition. The magnetic field leads to the increase in viscosity of solutions. The results were used to plot the concentration dependence of η/η0, where η and η0 are the viscosities of solutions in the presence and absence of a magnetic field, respectively. In this case, the values of viscosity corresponding to low shear rates were chosen because the concentration dependence of viscosity at low shear rates is typical for anisotropic systems. In the investigated composition range, the values of η/η0 are described by a curve with a maximum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rheology" title="rheology">rheology</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20crystals" title=" liquid crystals"> liquid crystals</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulose%20ethers" title=" cellulose ethers"> cellulose ethers</a> </p> <a href="https://publications.waset.org/abstracts/20638/rheological-properties-of-polymer-systems-in-magnetic-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20638.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8525</span> Yang-Lee Edge Singularity of the Infinite-Range Ising Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seung-Yeon%20Kim">Seung-Yeon Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Ising model, consisting magnetic spins, is the simplest system showing phase transitions and critical phenomena at finite temperatures. The Ising model has played a central role in our understanding of phase transitions and critical phenomena. Also, the Ising model explains the gas-liquid phase transitions accurately. However, the Ising model in a nonzero magnetic field has been one of the most intriguing and outstanding unsolved problems. We study analytically the partition function zeros in the complex magnetic-field plane and the Yang-Lee edge singularity of the infinite-range Ising model in an external magnetic field. In addition, we compare the Yang-Lee edge singularity of the infinite-range Ising model with that of the square-lattice Ising model in an external magnetic field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ising%20ferromagnet" title="Ising ferromagnet">Ising ferromagnet</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=partition%20function%20zeros" title=" partition function zeros"> partition function zeros</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang-Lee%20edge%20singularity" title=" Yang-Lee edge singularity"> Yang-Lee edge singularity</a> </p> <a href="https://publications.waset.org/abstracts/20452/yang-lee-edge-singularity-of-the-infinite-range-ising-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20452.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">739</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8524</span> Electrodeposition of Nickel-Zinc Alloy on Stainless Steel in a Magnetic Field in a Chloride Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naima%20Benachour">Naima Benachour</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabiha%20Chouchane"> Sabiha Chouchane</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Paul%20Chopart"> J. Paul Chopart</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this work is to determine the appropriate conditions for a Ni-Zn deposit with good nickel content. The electrodeposition of zinc-nickel on a stainless steel is carried out in a chlorinated bath NiCl2.6H2O, ZnCl2, and H3BO3), whose composition is 1.1 M; 1.8 M; 0.1 M respectively. Studies show the effect of the concentration of NH4Cl, which reveals a significant effect on the reduction and ion transport in the electrolyte. In order to highlight the influence of magnetic field on the chemical composition and morphology of the deposit, chronopotentiometry tests were conducted, the curves obtained inform us that the application of a magnetic field promotes stability of the deposit. Characterization developed deposits was performed by scanning electron microscopy coupled with EDX and specified by the X-ray diffraction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zn-Ni%20alloys" title="Zn-Ni alloys">Zn-Ni alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=electroplating" title=" electroplating"> electroplating</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=chronopotentiometry" title=" chronopotentiometry"> chronopotentiometry</a> </p> <a href="https://publications.waset.org/abstracts/21468/electrodeposition-of-nickel-zinc-alloy-on-stainless-steel-in-a-magnetic-field-in-a-chloride-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21468.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8523</span> Field Investigating the Effects of Lateral Support Elements on Lateral Resistance of Ballasted Tracks with Sharp Curves </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Milad%20Alizadeh%20Galdiani">Milad Alizadeh Galdiani</a>, <a href="https://publications.waset.org/abstracts/search?q=Jabbar%20Ali%20Zakeri"> Jabbar Ali Zakeri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lateral movement of CWR ballasted track occurs in sharp curves because of the lack of adequate lateral resistance. Several strategies have been proposed and used for increase the lateral resistance of ballasted tracks, but still there are some problems in tracks with small radius curves. In this paper, a new method has been presented for increase the lateral resistance. This method is using the lateral supports as numerical and field studies. In this paper, the field and laboratory tests have been conducted by using the single tie pressure test (STPT) and track panel loading test (LTPT). Then, their results were compared with the numerical results. The results of numerical and field tests showed that the lateral stiffness of ballasted tracks significantly increased when there were lateral supports in ballasted tracks. Also, the track structure had a bilinear behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ballasted%20railway" title="ballasted railway">ballasted railway</a>, <a href="https://publications.waset.org/abstracts/search?q=Lateral%20resistance" title=" Lateral resistance"> Lateral resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=railway%20buckling" title=" railway buckling"> railway buckling</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20and%20numerical%20studies" title=" field and numerical studies"> field and numerical studies</a> </p> <a href="https://publications.waset.org/abstracts/67093/field-investigating-the-effects-of-lateral-support-elements-on-lateral-resistance-of-ballasted-tracks-with-sharp-curves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67093.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8522</span> 3D Simulation and Modeling of Magnetic-Sensitive on n-type Double-Gate Metal-Oxide-Semiconductor Field-Effect Transistor (DGMOSFET)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Kessi">M. Kessi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We investigated the effect of the magnetic field on carrier transport phenomena in the transistor channel region of Double-Gate Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET). This explores the Lorentz force and basic physical properties of solids exposed to a constant external magnetic field. The magnetic field modulates the electrons and potential distribution in the case of silicon Tunnel FETs. This modulation shows up in the device's external electrical characteristics such as ON current (ION), subthreshold leakage current (IOF), the threshold voltage (VTH), the magneto-transconductance (gm) and the output magneto-conductance (gDS) of Tunnel FET. Moreover, the channel doping concentration and potential distribution are obtained using the numerical method by solving Poisson’s transport equation in 3D modules semiconductor magnetic sensors available in Silvaco TCAD tools. The numerical simulations of the magnetic nano-sensors are relatively new. In this work, we present the results of numerical simulations based on 3D magnetic sensors. The results show excellent accuracy comportment and good agreement compared with that obtained in the experimental study of MOSFETs technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single-gate%20MOSFET" title="single-gate MOSFET">single-gate MOSFET</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=hall%20field" title=" hall field"> hall field</a>, <a href="https://publications.waset.org/abstracts/search?q=Lorentz%20force" title=" Lorentz force"> Lorentz force</a> </p> <a href="https://publications.waset.org/abstracts/142674/3d-simulation-and-modeling-of-magnetic-sensitive-on-n-type-double-gate-metal-oxide-semiconductor-field-effect-transistor-dgmosfet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142674.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8521</span> A Semi-Implicit Phase Field Model for Droplet Evolution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Kazemi">M. H. Kazemi</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Salac"> D. Salac</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A semi-implicit phase field method for droplet evolution is proposed. Using the phase field Cahn-Hilliard equation, we are able to track the interface in multiphase flow. The idea of a semi-implicit finite difference scheme is reviewed and employed to solve two nonlinear equations, including the Navier-Stokes and the Cahn-Hilliard equations. The use of a semi-implicit method allows us to have larger time steps compared to explicit schemes. The governing equations are coupled and then solved by a GMRES solver (generalized minimal residual method) using modified Gram-Schmidt orthogonalization. To show the validity of the method, we apply the method to the simulation of a rising droplet, a leaky dielectric drop and the coalescence of drops. The numerical solutions to the phase field model match well with existing solutions over a defined range of variables. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coalescence" title="coalescence">coalescence</a>, <a href="https://publications.waset.org/abstracts/search?q=leaky%20dielectric" title=" leaky dielectric"> leaky dielectric</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20method" title=" numerical method"> numerical method</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20field" title=" phase field"> phase field</a>, <a href="https://publications.waset.org/abstracts/search?q=rising%20droplet" title=" rising droplet"> rising droplet</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-implicit%20method" title=" semi-implicit method"> semi-implicit method</a> </p> <a href="https://publications.waset.org/abstracts/50305/a-semi-implicit-phase-field-model-for-droplet-evolution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50305.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8520</span> Far-Field Acoustic Prediction of a Supersonic Expanding Jet Using Large Eddy Simulation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jesus%20Ruano">Jesus Ruano</a>, <a href="https://publications.waset.org/abstracts/search?q=Asensi%20Oliva"> Asensi Oliva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The hydrodynamic field generated by a jet expansion is computed via three dimensional compressible Large Eddy Simulation (LES). Finite Volume Method (FVM) will be the discretization used during this simulation as well as hybrid schemes based on Kinetic Energy Preserving (KEP) schemes and up-winding Godunov based schemes with instabilities detectors. Velocity and pressure fields will be stored at different surfaces near the jet, but far enough to enclose all the fluctuations, in order to use them as input for the acoustic solver. The acoustic field is obtained in the far-field region at several locations by means of a hybrid method based on Ffowcs-Williams and Hawkings (FWH) equation. This equation will be formulated in the spectral domain, via Fourier Transform of the acoustic sources, which are modeled from the results of the initial simulation. The obtained results will allow the study of the broadband noise generated as well as sound directivities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=far-field%20noise" title="far-field noise">far-field noise</a>, <a href="https://publications.waset.org/abstracts/search?q=Ffowcs-Williams%20and%20Hawkings" title=" Ffowcs-Williams and Hawkings"> Ffowcs-Williams and Hawkings</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20volume%20method" title=" finite volume method"> finite volume method</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20eddy%20simulation" title=" large eddy simulation"> large eddy simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=jet%20noise" title=" jet noise"> jet noise</a> </p> <a href="https://publications.waset.org/abstracts/58460/far-field-acoustic-prediction-of-a-supersonic-expanding-jet-using-large-eddy-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58460.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8519</span> Efficient Semi-Systolic Finite Field Multiplier Using Redundant Basis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyun-Ho%20Lee">Hyun-Ho Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Kee-Won%20Kim"> Kee-Won Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The arithmetic operations over GF(2m) have been extensively used in error correcting codes and public-key cryptography schemes. Finite field arithmetic includes addition, multiplication, division and inversion operations. Addition is very simple and can be implemented with an extremely simple circuit. The other operations are much more complex. The multiplication is the most important for cryptosystems, such as the elliptic curve cryptosystem, since computing exponentiation, division, and computing multiplicative inverse can be performed by computing multiplication iteratively. In this paper, we present a parallel computation algorithm that operates Montgomery multiplication over finite field using redundant basis. Also, based on the multiplication algorithm, we present an efficient semi-systolic multiplier over finite field. The multiplier has less space and time complexities compared to related multipliers. As compared to the corresponding existing structures, the multiplier saves at least 5% area, 50% time, and 53% area-time (AT) complexity. Accordingly, it is well suited for VLSI implementation and can be easily applied as a basic component for computing complex operations over finite field, such as inversion and division operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20field" title="finite field">finite field</a>, <a href="https://publications.waset.org/abstracts/search?q=Montgomery%20multiplication" title=" Montgomery multiplication"> Montgomery multiplication</a>, <a href="https://publications.waset.org/abstracts/search?q=systolic%20array" title=" systolic array"> systolic array</a>, <a href="https://publications.waset.org/abstracts/search?q=cryptography" title=" cryptography"> cryptography</a> </p> <a href="https://publications.waset.org/abstracts/55023/efficient-semi-systolic-finite-field-multiplier-using-redundant-basis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55023.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8518</span> Field Effects on Seed Germination of Phaseolus Vulgaris, Early Seedling Growth and Chemical Composition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Najafi%20S.">Najafi S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Heidai%20R."> Heidai R.</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamei%20R."> Jamei R.</a>, <a href="https://publications.waset.org/abstracts/search?q=Tofigh%20F."> Tofigh F.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to study the effects of magnetic field on the root system and growth of Phaseolus vulgaris, an experiment was conducted in 2012. The possible involvement of magnetic field (MF) pretreatment in physiological factors of Phaseolus vulgaris was investigated. Seeds were subjected to 10 days with 1.8 mT of magnetic field for 1h per day. MF pretreatment decreased the plant height, fresh and dry weight, length of root and length of shoot, Chlorophyll a, Chlorophyll b and carotenoid in 10 days old seedling. In addition, activity of enzymes such as Catalase and Guaiacol peroxidase was decreased due to MF exposure. Also, the total Protein and DPPH content of the treated by magnetic field was not significantly changed in compare to control groups, while the flavonoid, Phenol and prolin content of the treated of the treated by magnetic field was significantly changed in compare to control groups. Lateral branches of roots and secondary roots increased with MF. The results suggest that pretreatment of this MF plays important roles in changes in crop productivity. In all cases there was observed a slight stimulating effect of the factors examined. The growth dynamics were weakened. The plants were shorter. Moreover, the effect of a magnetic field on the crop of Phaseolus vulgaris and its structure was small. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carotenoid" title="carotenoid">carotenoid</a>, <a href="https://publications.waset.org/abstracts/search?q=Chlorophyll%20a" title=" Chlorophyll a"> Chlorophyll a</a>, <a href="https://publications.waset.org/abstracts/search?q=Chlorophyll%20b" title=" Chlorophyll b"> Chlorophyll b</a>, <a href="https://publications.waset.org/abstracts/search?q=DPPH" title=" DPPH"> DPPH</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymes" title=" enzymes"> enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=flavonoid" title=" flavonoid"> flavonoid</a>, <a href="https://publications.waset.org/abstracts/search?q=germination" title=" germination"> germination</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=phenol" title=" phenol"> phenol</a>, <a href="https://publications.waset.org/abstracts/search?q=proline" title=" proline"> proline</a>, <a href="https://publications.waset.org/abstracts/search?q=protein" title=" protein"> protein</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=phaseolus%20vulgaris" title=" phaseolus vulgaris"> phaseolus vulgaris</a> </p> <a href="https://publications.waset.org/abstracts/22056/field-effects-on-seed-germination-of-phaseolus-vulgaris-early-seedling-growth-and-chemical-composition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">578</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8517</span> Thermal Degradation Kinetics of Field-Dried and Pelletized Switchgrass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karen%20E.%20Supan">Karen E. Supan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermal degradation kinetics of switchgrass (Panicum virgatum) from the field, as well as in a pellet form, are presented. Thermogravimetric analysis tests were performed at heating rates of 10-40 K min⁻¹ in an inert atmosphere. The activation energy and the pre-exponential factor were calculated using the Ozawa/Flynn/Wall method as suggested by the ASTM Standard Test Method for Decomposition Kinetics by Thermogravimetry. Four stages were seen in the degradation: dehydration, active pyrolysis of hemicellulose, active pyrolysis of cellulose, and passive pyrolysis. The derivative mass loss peak for active pyrolysis of cellulose in the field-dried sample was much higher than the pelletized. The range of activation energy in the 0.15 – 0.70 conversion interval was 191 – 242 kJ mol⁻¹ for the field-dried and 130-192 kJ mol⁻¹ for the pellets. The highest activation energies were achieved at 0.50 conversion and were 242 kJ mol⁻¹ and 192 kJ mol⁻¹ for the field-dried and pellets, respectively. The thermal degradation and activation energies were comparable to switchgrass and other biomass reported in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass" title="biomass">biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=switchgrass" title=" switchgrass"> switchgrass</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20degradation" title=" thermal degradation"> thermal degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermogravimetric%20analysis" title=" thermogravimetric analysis"> thermogravimetric analysis</a> </p> <a href="https://publications.waset.org/abstracts/152009/thermal-degradation-kinetics-of-field-dried-and-pelletized-switchgrass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152009.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8516</span> Magnetic Field Induced Mechanical Behavior of Fluid Filled Carbon Nanotube Foam </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siva%20Kumar%20Reddy">Siva Kumar Reddy</a>, <a href="https://publications.waset.org/abstracts/search?q=Anwesha%20Mukherjee"> Anwesha Mukherjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Abha%20Misra"> Abha Misra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Excellent energy absorption capability in carbon nanotubes (CNT) is shown in their bulk structure that behaves like super compressible foam. Furthermore, a tunable mechanical behavior of CNT foam is achieved using several methods like changing the concentration of precursors, polymer impregnation, non covalent functionalization of CNT microstructure etc. Influence of magnetic field on compressive behavior of magnetic CNT demonstrated an enhanced peak stress and energy absorption capability, which does not require any surface and structural modification of the foam. This presentation discusses the mechanical behavior of micro porous CNT foam that is impregnated in magnetic field responsive fluid. Magnetic particles are dispersed in a nonmagnetic fluid so that alignment of both particles and CNT could play a crucial role in controlling the stiffness of the overall structure. It is revealed that the compressive behavior of CNT foam critically depends on the fluid viscosity as well as magnetic field intensity. Both peak Stress and energy absorption in CNT foam followed a power law behavior with the increase in the magnetic field intensity. However, in the absence of magnetic field, both peak stress and energy absorption capability of CNT foam presented a linear dependence on the fluid viscosity. Hence, this work demonstrates the role magnetic filed in controlling the mechanical behavior of the foams prepared at nanoscale. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title="carbon nanotubes">carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title="magnetic field">magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20absorption%20capability%20and%20viscosity" title=" energy absorption capability and viscosity"> energy absorption capability and viscosity</a> </p> <a href="https://publications.waset.org/abstracts/13613/magnetic-field-induced-mechanical-behavior-of-fluid-filled-carbon-nanotube-foam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8515</span> Numerical Study on Self-Confined Plasmoid Transport Phenomena in an Electrodeless Plasma Thruster for Space Propulsion </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaodong%20Wen">Xiaodong Wen</a>, <a href="https://publications.waset.org/abstracts/search?q=Lijuan%20Liu"> Lijuan Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinfeng%20Sun"> Xinfeng Sun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A high power electrodeless plasma thruster is being developed at Lanzhou Institute of Physics. In this thruster, a rotating magnetic field (RMF) driven by two radio-frequency coils which dephased by 90 degrees are applied both for propellant ionization and plasma acceleration. In the ionization stage, a very high azimuthal current can be driven by RMF and then makes plasma forms a field reversed configuration, namely self-confined plasmoid. Profoundly understanding the transport characteristics of the plasmoid in the following acceleration stage is the key to improve the thruster performances. In this paper, a 3D MHD model is established and the influences of the RMF and an applied magnetic field on the self-confined plasmoid acceleration are investigated. The simulation results show that, by applying a RMF with strength and frequency of 250 G and 370 kHz, the plasmoid can be accelerated to an average velocity of 17 km/s at the exit of the thruster. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20space%20propulsion" title="electric space propulsion">electric space propulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20reversed%20configuration" title=" field reversed configuration"> field reversed configuration</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20magnetic%20field" title=" rotating magnetic field"> rotating magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=transport%20phenomena" title=" transport phenomena"> transport phenomena</a> </p> <a href="https://publications.waset.org/abstracts/102125/numerical-study-on-self-confined-plasmoid-transport-phenomena-in-an-electrodeless-plasma-thruster-for-space-propulsion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8514</span> The Unsteady Non-Equilibrium Distribution Function and Exact Equilibrium Time for a Dilute Gas Affected by Thermal Radiation Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taha%20Zakaraia%20Abdel%20Wahid">Taha Zakaraia Abdel Wahid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The behavior of the unsteady non-equilibrium distribution function for a dilute gas under the effect of non-linear thermal radiation field is presented. For the best of our knowledge this is done for the first time at all. The distinction and comparisons between the unsteady perturbed and the unsteady equilibrium velocity distribution functions are illustrated. The equilibrium time for the dilute gas is determined for the first time. The non-equilibrium thermodynamic properties of the system (gas+the heated plate) are investigated. The results are applied to the Argon gas, for various values of radiation field intensity. 3D-Graphics illustrating the calculated variables are drawn to predict their behavior. The results are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dilute%20gas" title="dilute gas">dilute gas</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20field" title=" radiation field"> radiation field</a>, <a href="https://publications.waset.org/abstracts/search?q=exact%20solutions" title=" exact solutions"> exact solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=travelling%20wave%20method" title=" travelling wave method"> travelling wave method</a>, <a href="https://publications.waset.org/abstracts/search?q=unsteady%20BGK%20model" title=" unsteady BGK model"> unsteady BGK model</a>, <a href="https://publications.waset.org/abstracts/search?q=irreversible%20thermodynamics" title=" irreversible thermodynamics"> irreversible thermodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=unsteady%20non-equilibrium%20distribution%20functions" title=" unsteady non-equilibrium distribution functions"> unsteady non-equilibrium distribution functions</a> </p> <a href="https://publications.waset.org/abstracts/10132/the-unsteady-non-equilibrium-distribution-function-and-exact-equilibrium-time-for-a-dilute-gas-affected-by-thermal-radiation-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">495</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8513</span> Effects of the Social Work Field Practicum on the Wellbeing of Non-Traditional and Underserved Students: A Mixed-Methods Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dana%20S.%20Smith">Dana S. Smith</a>, <a href="https://publications.waset.org/abstracts/search?q=Angela%20Goins"> Angela Goins</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahnaz%20Savani"> Shahnaz Savani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using a mixed-methods approach, this study explored costs to student wellbeing generated by the social work field practicum requirement. The project was conducted by faculty at a medium-sized university in the United States. Social work educators and field practicum instructors participated in interviews. Students and former students completed surveys on the topic. The data analysis revealed emotional burdens as well as threats to student wellbeing in association with the fieldwork required for those in pursuit of a social work degree. The study includes recommendations for anti-oppressive approaches for academic programs and implications for further research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emotional%20wellbeing" title="emotional wellbeing">emotional wellbeing</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20practicum" title=" field practicum"> field practicum</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed-methods" title=" mixed-methods"> mixed-methods</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20justice" title=" social justice"> social justice</a> </p> <a href="https://publications.waset.org/abstracts/160205/effects-of-the-social-work-field-practicum-on-the-wellbeing-of-non-traditional-and-underserved-students-a-mixed-methods-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160205.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8512</span> Effects of the Social Work Field Practicum on the Wellbeing of Non-traditional and Underserved Students: A Mixed-Methods Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dana%20S.%20Smith">Dana S. Smith</a>, <a href="https://publications.waset.org/abstracts/search?q=Angela%20Goins"> Angela Goins</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahnaz%20Savani"> Shahnaz Savani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using a mixed-methods approach, this study explored costs to student wellbeing generated by the social work field practicum requirement. The project was conducted by faculty at a medium sized university in the United States. Social work educators and field practicum instructors participated in interviews. Students and former students completed surveys on the topic. The data analysis revealed emotional burdens as well as threats to student wellbeing in association with the fieldwork required for those in pursuit of a social work degree. The study includes recommendations of anti-oppressive approaches for academic programs and implications for further research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emotional%20wellbeing" title="emotional wellbeing">emotional wellbeing</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20practicum" title=" field practicum"> field practicum</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed-methods" title=" mixed-methods"> mixed-methods</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20justice" title=" social justice"> social justice</a> </p> <a href="https://publications.waset.org/abstracts/163047/effects-of-the-social-work-field-practicum-on-the-wellbeing-of-non-traditional-and-underserved-students-a-mixed-methods-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163047.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8511</span> The Use of the Flat Field Panel for the On-Ground Calibration of Metis Coronagraph on Board of Solar Orbiter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Casini">C. Casini</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Da%20Deppo"> V. Da Deppo</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Zuppella"> P. Zuppella</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Chioetto"> P. Chioetto</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Slemer"> A. Slemer</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Frassetto"> F. Frassetto</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Romoli"> M. Romoli</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Landini"> F. Landini</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Pancrazzi"> M. Pancrazzi</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Andretta"> V. Andretta</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Antonucci"> E. Antonucci</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bemporad"> A. Bemporad</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Casti"> M. Casti</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20De%20Leo"> Y. De Leo</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Fabi"> M. Fabi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Fineschi"> S. Fineschi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Frassati"> F. Frassati</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Grimani"> C. Grimani</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Jerse"> G. Jerse</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Heinzel"> P. Heinzel</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Heerlein"> K. Heerlein</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Liberatore"> A. Liberatore</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Magli"> E. Magli</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Naletto"> G. Naletto</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Nicolini"> G. Nicolini</a>, <a href="https://publications.waset.org/abstracts/search?q=M.G.%20Pelizzo"> M.G. Pelizzo</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Romano"> P. Romano</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Sasso"> C. Sasso</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Spadaro"> D. Spadaro</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Stangalini"> M. Stangalini</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Straus"> T. Straus</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Susino"> R. Susino</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Teriaca"> L. Teriaca</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Uslenghi"> M. Uslenghi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Volpicelli"> A. Volpicelli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar Orbiter, launched on February 9<sup>th</sup> 2020, is an ESA/NASA mission conceived to study the Sun. The payload is composed of 10 instruments, among which there is the Metis coronagraph. A coronagraph aims at taking images of the solar corona: the occulter element simulates a total solar eclipse. This work presents some of the results obtained in the visible light band (580-640 nm) using a flat field panel source. The flat field panel gives a uniform illumination; consequently, it has been used during the on-ground calibration for several purposes: evaluating the response of each pixel of the detector (linearity); and characterizing the Field of View of the coronagraph. As a conclusion, a major result is the verification that the requirement for the Field of View (FoV) of Metis is fulfilled. Some investigations are in progress in order to verify that the performance measured on-ground did not change after launch. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20orbiter" title="solar orbiter">solar orbiter</a>, <a href="https://publications.waset.org/abstracts/search?q=Metis" title=" Metis"> Metis</a>, <a href="https://publications.waset.org/abstracts/search?q=coronagraph" title=" coronagraph"> coronagraph</a>, <a href="https://publications.waset.org/abstracts/search?q=flat%20field%20panel" title=" flat field panel"> flat field panel</a>, <a href="https://publications.waset.org/abstracts/search?q=calibration" title=" calibration"> calibration</a>, <a href="https://publications.waset.org/abstracts/search?q=on-ground" title=" on-ground"> on-ground</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a> </p> <a href="https://publications.waset.org/abstracts/131441/the-use-of-the-flat-field-panel-for-the-on-ground-calibration-of-metis-coronagraph-on-board-of-solar-orbiter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131441.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8510</span> Raman Spectroscopy of Carbon Nanostructures in Strong Magnetic Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Kalbac">M. Kalbac</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Verhagen"> T. Verhagen</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Drogowska"> K. Drogowska</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Vejpravova"> J. Vejpravova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One- and two-dimensional carbon nano structures with sp2 hybridization of carbon atoms (single walled carbon nano tubes and graphene) are promising materials in future electronic and spintronics devices due to specific character of their electronic structure. In this paper, we present a comparative study of graphene and single-wall carbon nano tubes by Raman spectro-microscopy in strong magnetic field. This unique method allows to study changes in electronic band structure of the two types of carbon nano structures induced by a strong magnetic field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nano%20structures" title="carbon nano structures">carbon nano structures</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=raman%20spectroscopy" title=" raman spectroscopy"> raman spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=spectro-microscopy" title=" spectro-microscopy"> spectro-microscopy</a> </p> <a href="https://publications.waset.org/abstracts/18767/raman-spectroscopy-of-carbon-nanostructures-in-strong-magnetic-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18767.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8509</span> Intensification of Heat Transfer in Magnetically Assisted Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dawid%20So%C5%82oducha">Dawid Sołoducha</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomasz%20Borowski"> Tomasz Borowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Marian%20Kordas"> Marian Kordas</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafa%C5%82%20Rakoczy"> Rafał Rakoczy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The magnetic field in the past few years became an important part of many studies. Magnetic field (MF) may be used to affect the process in many ways; for example, it can be used as a factor to stabilize the system. We can use MF to steer the operation, to activate or inhibit the process, or even to affect the vital activity of microorganisms. Using various types of magnetic field generators is always connected with the delivery of some heat to the system. Heat transfer is a very important phenomenon; it can influence the process positively and negatively, so it’s necessary to measure heat stream transferred from the place of generation and prevent negative influence on the operation. The aim of the presented work was to apply various types of magnetic fields and to measure heat transfer phenomena. The results were obtained by continuous measurement at several measuring points with temperature probes. Results were compilated in the form of temperature profiles. The study investigated the undetermined heat transfer in a custom system equipped with a magnetic field generator. Experimental investigations are provided for the explanation of the influence of the various type of magnetic fields on the heat transfer process. The tested processes are described by means of the criteria which defined heat transfer intensification under the action of magnetic field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title="heat transfer">heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=undetermined%20heat%20transfer" title=" undetermined heat transfer"> undetermined heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20profile" title=" temperature profile"> temperature profile</a> </p> <a href="https://publications.waset.org/abstracts/140931/intensification-of-heat-transfer-in-magnetically-assisted-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140931.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8508</span> Magneto-Transport of Single Molecular Transistor Using Anderson-Holstein-Caldeira-Leggett Model </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manasa%20Kalla">Manasa Kalla</a>, <a href="https://publications.waset.org/abstracts/search?q=Narasimha%20Raju%20Chebrolu"> Narasimha Raju Chebrolu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashok%20Chatterjee"> Ashok Chatterjee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have studied the quantum transport properties of a single molecular transistor in the presence of an external magnetic field using the Keldysh Green function technique. We also used the Anderson-Holstein-Caldeira-Leggett Model to describe the single molecular transistor that consists of a molecular quantum dot (QD) coupled to two metallic leads and placed on a substrate that acts as a heat bath. The phonons are eliminated by the Lang-Firsov transformation and the effective Hamiltonian is used to study the effect of an external magnetic field on the spectral density function, Tunneling Current, Differential Conductance and Spin polarization. A peak in the spectral function corresponds to a possible excitation. In the presence of a magnetic field, the spin-up and spin-down states are degenerate and this degeneracy is lifted by the magnetic field leading to the splitting of the central peak of the spectral function. The tunneling current decreases with increasing magnetic field. We have observed that even the differential conductance peak in the zero magnetic field curve is split in the presence electron-phonon interaction. As the magnetic field is increased, each peak splits into two peaks. And each peak indicates the existence of an energy level. Thus the number of energy levels for transport in the bias window increases with the magnetic field. In the presence of the electron-phonon interaction, Differential Conductance in general gets reduced and decreases faster with the magnetic field. As magnetic field strength increases, the spin polarization of the current is increasing. Our results show that a strongly interacting QD coupled to metallic leads in the presence of external magnetic field parallel to the plane of QD acts as a spin filter at zero temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anderson-Holstein%20model" title="Anderson-Holstein model">Anderson-Holstein model</a>, <a href="https://publications.waset.org/abstracts/search?q=Caldeira-Leggett%20model" title=" Caldeira-Leggett model"> Caldeira-Leggett model</a>, <a href="https://publications.waset.org/abstracts/search?q=spin-polarization" title=" spin-polarization"> spin-polarization</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20dots" title=" quantum dots"> quantum dots</a> </p> <a href="https://publications.waset.org/abstracts/93952/magneto-transport-of-single-molecular-transistor-using-anderson-holstein-caldeira-leggett-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93952.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8507</span> Fabrication of High-Power AlGaN/GaN Schottky Barrier Diode with Field Plate Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chia-Jui%20Yu">Chia-Jui Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Ju%20Chen"> Chien-Ju Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyun-Hao%20Liao"> Jyun-Hao Liao</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Ching%20Wu"> Chia-Ching Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Meng-Chyi%20Wu"> Meng-Chyi Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this letter, we demonstrate high-performance AlGaN/GaN planar Schottky barrier diodes (SBDs) on the silicon substrate with field plate structure for increasing breakdown voltage <em>V</em><sub>B</sub>. A low turn-on resistance R<sub>ON</sub> (3.55 m&Omega;-cm<sup>2</sup>), low reverse leakage current (&lt; 0.1 &micro;A) at -100 V, and high reverse breakdown voltage <em>V</em><sub>B</sub> (&gt; 1.1 kV) SBD has been fabricated. A virgin SBD exhibited a breakdown voltage (measured at 1 mA/mm) of 615 V, and with the field plate technology device exhibited a breakdown voltage (measured at 1 mA/mm) of 1525 V (the anode&ndash;cathode distance was L<sub>AC</sub> = 40 &micro;m). Devices without the field plate design exhibit a Baliga&rsquo;s figure of merit of <em>V</em><sub>B</sub><sup>2</sup>/ R<sub>ON</sub> = 60.2 MW/cm<sup>2</sup>, whereas devices with the field plate design show a Baliga&rsquo;s figure of merit of <em>V</em><sub>B</sub><sup>2</sup>/ R<sub>ON</sub> = 340.9 MW/cm<sup>2</sup> (the anode&ndash;cathode distance was L<sub>AC</sub> = 20 &micro;m). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AlGaN%2FGaN%20heterostructure" title="AlGaN/GaN heterostructure">AlGaN/GaN heterostructure</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20substrate" title=" silicon substrate"> silicon substrate</a>, <a href="https://publications.waset.org/abstracts/search?q=Schottky%20barrier%20diode%20%28SBD%29" title=" Schottky barrier diode (SBD)"> Schottky barrier diode (SBD)</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20breakdown%20voltage" title=" high breakdown voltage"> high breakdown voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=Baliga%E2%80%99s%20figure-of-merit" title=" Baliga’s figure-of-merit"> Baliga’s figure-of-merit</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20plate" title=" field plate"> field plate</a> </p> <a href="https://publications.waset.org/abstracts/73759/fabrication-of-high-power-algangan-schottky-barrier-diode-with-field-plate-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8506</span> Effect of Built in Polarization on Thermal Properties of InGaN/GaN Heterostructures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bijay%20Kumar%20Sahoo">Bijay Kumar Sahoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An important feature of InₓGa₁-ₓN/GaN heterostructures is strong built-in polarization (BIP) electric field at the hetero-interface due to spontaneous (sp) and piezoelectric (pz) polarizations. The intensity of this electric field reaches several MV/cm. This field has profound impact on optical, electrical and thermal properties. In this work, the effect of BIP field on thermal conductivity of InₓGa₁-ₓN/GaN heterostructure has been investigated theoretically. The interaction between the elastic strain and built in electric field induces additional electric polarization. This additional polarization contributes to the elastic constant of InₓGa₁-ₓN alloy. This in turn modifies material parameters of InₓGa₁-ₓN. The BIP mechanism enhances elastic constant, phonon velocity and Debye temperature and their bowing constants in InₓGa₁-ₓN alloy. These enhanced thermal parameters increase phonon mean free path which boost thermal conduction process. The thermal conductivity (k) of InxGa1-xN alloy has been estimated for x=0, 0.1, 0.3 and 0.9. Computation finds that irrespective of In content, the room temperature k of InₓGa₁-ₓN/GaN heterostructure is enhanced by BIP mechanism. Our analysis shows that at a certain temperature both k with and without BIP show crossover. Below this temperature k with BIP field is lower than k without BIP; however, above this temperature k with BIP field is significantly contributed by BIP mechanism leading to k with BIP field become higher than k without BIP field. The crossover temperature is primary pyroelectric transition temperature. The pyroelectric transition temperature of InₓGa₁-ₓN alloy has been predicted for different x. This signature of pyroelectric nature suggests that thermal conductivity can reveal pyroelectricity in InₓGa₁-ₓN alloy. The composition dependent room temperature k for x=0.1 and 0.3 are in line with prior experimental studies. The result can be used to minimize the self-heating effect in InₓGa₁-ₓN/GaN heterostructures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=built-in%20polarization" title="built-in polarization">built-in polarization</a>, <a href="https://publications.waset.org/abstracts/search?q=phonon%20relaxation%20time" title=" phonon relaxation time"> phonon relaxation time</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20properties%20of%20In%E2%82%93Ga%E2%82%81-%E2%82%93N%20%2FGaN%20heterostructure" title=" thermal properties of InₓGa₁-ₓN /GaN heterostructure"> thermal properties of InₓGa₁-ₓN /GaN heterostructure</a>, <a href="https://publications.waset.org/abstracts/search?q=self-heating" title=" self-heating"> self-heating</a> </p> <a href="https://publications.waset.org/abstracts/70242/effect-of-built-in-polarization-on-thermal-properties-of-ingangan-heterostructures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70242.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8505</span> Magnetic Field Effects on Seed Germination of Phaseolus Vulgaris, Early Seedling Growth, and Chemical Composition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farzad%20Tofigh">Farzad Tofigh</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeideh%20Najafi"> Saeideh Najafi</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Heidari"> Reza Heidari</a>, <a href="https://publications.waset.org/abstracts/search?q=Rashid%20Jamei"> Rashid Jamei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to study the effects of magnetic field on the root system and growth of Phaseolus vulgaris, an experiment was conducted in 2012. The possible involvement of magnetic field (MF) pretreatment in physiological factors of Phaseolus vulgaris was investigated. Seeds were subjected to 10 days with 1.8 mT of magnetic field for 1h per day. MF pretreatment decreased the plant height, fresh and dry weight, length of root and length of shoot, Chlorophyll a, Chlorophyll b and carotenoid in 10 days old seedling. In addition, activity of enzymes such as Catalase and Guaiacol peroxidase was decreased due to MF exposure. Also, the total Protein and DPPH content of the treated by magnetic field was not significantly changed in compare to control groups, while the flavonoid, Phenol and prolin content of the treated of the treated by magnetic field was significantly changed in compare to control groups. Lateral branches of roots and secondary roots increased with MF. The results suggest that pretreatment of this MF plays important roles in changes in crop productivity. In all cases there was observed a slight stimulating effect of the factors examined. The growth dynamics were weakened. The plants were shorter. Moreover, the effect of a magnetic field on the crop of Phaseolus vulgaris and its structure was small. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carotenoid" title="carotenoid">carotenoid</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorophyll%20a" title=" chlorophyll a"> chlorophyll a</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorophyll%20b" title=" chlorophyll b"> chlorophyll b</a>, <a href="https://publications.waset.org/abstracts/search?q=DPPH" title=" DPPH"> DPPH</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymes" title=" enzymes"> enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=flavonoid" title=" flavonoid"> flavonoid</a>, <a href="https://publications.waset.org/abstracts/search?q=germination" title=" germination"> germination</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=phenol" title=" phenol"> phenol</a>, <a href="https://publications.waset.org/abstracts/search?q=proline" title=" proline"> proline</a>, <a href="https://publications.waset.org/abstracts/search?q=protein" title=" protein"> protein</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a> </p> <a href="https://publications.waset.org/abstracts/21836/magnetic-field-effects-on-seed-germination-of-phaseolus-vulgaris-early-seedling-growth-and-chemical-composition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21836.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">502</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8504</span> Facts of Near Field Communication</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amin%20Hamrahi">Amin Hamrahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Near Field Communication (NFC) is one of the latest wireless communication technologies. NFC enables electronic devices to communicate in short range using the radio waves. NFC offers safe yet simple communication between electronic devices. This technology provides the fastest way to communicate two device with in a fraction of second. With NFC technology, communication occurs when an NFC-compatible device is brought within a few centimeters of another NFC device. NFC is an open-platform technology that is being standardized in the NFC Forum. NFC is based on and extends on RFID. It operates on 13.56 MHz frequency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=near%20field%20communication" title="near field communication">near field communication</a>, <a href="https://publications.waset.org/abstracts/search?q=NFC%20technology" title=" NFC technology"> NFC technology</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20communication%20technologies" title=" wireless communication technologies"> wireless communication technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=NFC-compatible%20device" title=" NFC-compatible device"> NFC-compatible device</a>, <a href="https://publications.waset.org/abstracts/search?q=NFC" title=" NFC"> NFC</a>, <a href="https://publications.waset.org/abstracts/search?q=communication" title=" communication"> communication</a> </p> <a href="https://publications.waset.org/abstracts/30917/facts-of-near-field-communication" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8503</span> Spectral Domain Fast Multipole Method for Solving Integral Equations of One and Two Dimensional Wave Scattering </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Ahmad">Mohammad Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Dayalan%20Kasilingam"> Dayalan Kasilingam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a spectral domain implementation of the fast multipole method is presented. It is shown that the aggregation, translation, and disaggregation stages of the fast multipole method (FMM) can be performed using the spectral domain (SD) analysis. The spectral domain fast multipole method (SD-FMM) has the advantage of eliminating the near field/far field classification used in conventional FMM formulation. The study focuses on the application of SD-FMM to one-dimensional (1D) and two-dimensional (2D) electric field integral equation (EFIE). The case of perfectly conducting strip, circular and square cylinders are numerically analyzed and compared with the results from the standard method of moments (MoM). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20field%20integral%20equation" title="electric field integral equation">electric field integral equation</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20multipole%20method" title=" fast multipole method"> fast multipole method</a>, <a href="https://publications.waset.org/abstracts/search?q=method%20of%20moments" title=" method of moments"> method of moments</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20scattering" title=" wave scattering"> wave scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20domain" title=" spectral domain"> spectral domain</a> </p> <a href="https://publications.waset.org/abstracts/65787/spectral-domain-fast-multipole-method-for-solving-integral-equations-of-one-and-two-dimensional-wave-scattering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65787.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8502</span> Characterization of Zn-Ni Alloy Elaborated Under Low and High Magnetic Field Immersed in Corrosive Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sabiha%20Chouchane">Sabiha Chouchane</a>, <a href="https://publications.waset.org/abstracts/search?q=Azzedine%20Hani"> Azzedine Hani</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Paul%20Chopart"> Jean-Paul Chopart</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandra%20Levesque"> Alexandra Levesque</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The electrodeposition of Zn-Ni alloy is mostly studied for its high degree of corrosion and mechanical properties. In this work, the zinc–nickel alloy coatings elaborated from sulfate bath have been carried out under low and high applied magnetic field. The effect of alloy stuctural parameters upon corrosion behavior is studied. It has been found that the magnetically induced convection changes the phase composition, promoting the zinc phase in spite of the γ-Ni₅Zn₂₁. Low magnetic field acts also on the morphology of the deposits as a levelling agent and a refiner by lowering the deposit roughness Ra and the spot size. For alloy obtained with low magnetic field (up to 1T) superimposition, surface morphology modification has no significant influence on corrosion behavior whereas for low nickel content alloy, the modification of phase composition, induced by applied magnetic field, favours higher polarization resistance. When high magnetic field amplitude is involved (up to12T), the phase composition modifications are the same that for low applied B and the morphology is not largely modified. In this case, the hydrogen reduction current dramatically decreases that leads to a large shift of the corrosion potential. It is suggested that the surface reactivity of electrodeposited alloys depends on the magnetically induced convection that is efficient during the codeposition process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title="magnetic field">magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=Zn-Ni%20alloy" title=" Zn-Ni alloy"> Zn-Ni alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosive%20medium" title=" corrosive medium"> corrosive medium</a> </p> <a href="https://publications.waset.org/abstracts/184683/characterization-of-zn-ni-alloy-elaborated-under-low-and-high-magnetic-field-immersed-in-corrosive-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">50</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Robert%20M.%20Field&amp;page=3" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Robert%20M.%20Field&amp;page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Robert%20M.%20Field&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Robert%20M.%20Field&amp;page=3">3</a></li> <li class="page-item active"><span class="page-link">4</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Robert%20M.%20Field&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Robert%20M.%20Field&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Robert%20M.%20Field&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Robert%20M.%20Field&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Robert%20M.%20Field&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Robert%20M.%20Field&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Robert%20M.%20Field&amp;page=287">287</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Robert%20M.%20Field&amp;page=288">288</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Robert%20M.%20Field&amp;page=5" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10