CINXE.COM

Search results for: mesh topology

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: mesh topology</title> <meta name="description" content="Search results for: mesh topology"> <meta name="keywords" content="mesh topology"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="mesh topology" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="mesh topology"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 768</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: mesh topology</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">768</span> 3D Mesh Coarsening via Uniform Clustering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shuhua%20Lai">Shuhua Lai</a>, <a href="https://publications.waset.org/abstracts/search?q=Kairui%20Chen"> Kairui Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a fast and efficient mesh coarsening algorithm for 3D triangular meshes. Theis approach can be applied to very complex 3D meshes of arbitrary topology and with millions of vertices. The algorithm is based on the clustering of the input mesh elements, which divides the faces of an input mesh into a given number of clusters for clustering purpose by approximating the Centroidal Voronoi Tessellation of the input mesh. Once a clustering is achieved, it provides us an efficient way to construct uniform tessellations, and therefore leads to good coarsening of polygonal meshes. With proliferation of 3D scanners, this coarsening algorithm is particularly useful for reverse engineering applications of 3D models, which in many cases are dense, non-uniform, irregular and arbitrary topology. Examples demonstrating effectiveness of the new algorithm are also included in the paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coarsening" title="coarsening">coarsening</a>, <a href="https://publications.waset.org/abstracts/search?q=mesh%20clustering" title=" mesh clustering"> mesh clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20approximation" title=" shape approximation"> shape approximation</a>, <a href="https://publications.waset.org/abstracts/search?q=mesh%20simplification" title=" mesh simplification"> mesh simplification</a> </p> <a href="https://publications.waset.org/abstracts/48919/3d-mesh-coarsening-via-uniform-clustering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48919.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">767</span> GPU-Accelerated Triangle Mesh Simplification Using Parallel Vertex Removal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Odaker">Thomas Odaker</a>, <a href="https://publications.waset.org/abstracts/search?q=Dieter%20Kranzlmueller"> Dieter Kranzlmueller</a>, <a href="https://publications.waset.org/abstracts/search?q=Jens%20Volkert"> Jens Volkert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present an approach to triangle mesh simplification designed to be executed on the GPU. We use a quadric error metric to calculate an error value for each vertex of the mesh and order all vertices based on this value. This step is followed by the parallel removal of a number of vertices with the lowest calculated error values. To allow for the parallel removal of multiple vertices we use a set of per-vertex boundaries that prevent mesh foldovers even when simplification operations are performed on neighbouring vertices. We execute multiple iterations of the calculation of the vertex errors, ordering of the error values and removal of vertices until either a desired number of vertices remains in the mesh or a minimum error value is reached. This parallel approach is used to speed up the simplification process while maintaining mesh topology and avoiding foldovers at every step of the simplification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20graphics" title="computer graphics">computer graphics</a>, <a href="https://publications.waset.org/abstracts/search?q=half%20edge%20collapse" title=" half edge collapse"> half edge collapse</a>, <a href="https://publications.waset.org/abstracts/search?q=mesh%20simplification" title=" mesh simplification"> mesh simplification</a>, <a href="https://publications.waset.org/abstracts/search?q=precomputed%20simplification" title=" precomputed simplification"> precomputed simplification</a>, <a href="https://publications.waset.org/abstracts/search?q=topology%20preserving" title=" topology preserving"> topology preserving</a> </p> <a href="https://publications.waset.org/abstracts/36600/gpu-accelerated-triangle-mesh-simplification-using-parallel-vertex-removal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36600.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">766</span> Nano Generalized Topology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Y.%20Bakeir">M. Y. Bakeir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rough set theory is a recent approach for reasoning about data. It has achieved a large amount of applications in various real-life fields. The main idea of rough sets corresponds to the lower and upper set approximations. These two approximations are exactly the interior and the closure of the set with respect to a certain topology on a collection U of imprecise data acquired from any real-life field. The base of the topology is formed by equivalence classes of an equivalence relation E defined on U using the available information about data. The theory of generalized topology was studied by Cs´asz´ar. It is well known that generalized topology in the sense of Cs´asz´ar is a generalization of the topology on a set. On the other hand, many important collections of sets related with the topology on a set form a generalized topology. The notion of Nano topology was introduced by Lellis Thivagar, which was defined in terms of approximations and boundary region of a subset of an universe using an equivalence relation on it. The purpose of this paper is to introduce a new generalized topology in terms of rough set called nano generalized topology <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rough%20sets" title="rough sets">rough sets</a>, <a href="https://publications.waset.org/abstracts/search?q=topological%20space" title=" topological space"> topological space</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20topology" title=" generalized topology"> generalized topology</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20topology" title=" nano topology "> nano topology </a> </p> <a href="https://publications.waset.org/abstracts/28088/nano-generalized-topology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28088.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">765</span> Solving the Wireless Mesh Network Design Problem Using Genetic Algorithm and Simulated Annealing Optimization Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moheb%20R.%20Girgis">Moheb R. Girgis</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarek%20M.%20Mahmoud"> Tarek M. Mahmoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahgat%20A.%20Abdullatif"> Bahgat A. Abdullatif</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20Rabie"> Ahmed M. Rabie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mesh clients, mesh routers and gateways are components of Wireless Mesh Network (WMN). In WMN, gateways connect to Internet using wireline links and supply Internet access services for users. We usually need multiple gateways, which takes time and costs a lot of money set up, due to the limited wireless channel bit rate. WMN is a highly developed technology that offers to end users a wireless broadband access. It offers a high degree of flexibility contrasted to conventional networks; however, this attribute comes at the expense of a more complex construction. Therefore, a challenge is the planning and optimization of WMNs. In this paper, we concentrate on this challenge using a genetic algorithm and simulated annealing. The genetic algorithm and simulated annealing enable searching for a low-cost WMN configuration with constraints and determine the number of used gateways. Experimental results proved that the performance of the genetic algorithm and simulated annealing in minimizing WMN network costs while satisfying quality of service. The proposed models are presented to significantly outperform the existing solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wireless%20mesh%20networks" title="wireless mesh networks">wireless mesh networks</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithms" title=" genetic algorithms"> genetic algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=simulated%20annealing" title=" simulated annealing"> simulated annealing</a>, <a href="https://publications.waset.org/abstracts/search?q=topology%20design" title=" topology design"> topology design</a> </p> <a href="https://publications.waset.org/abstracts/11103/solving-the-wireless-mesh-network-design-problem-using-genetic-algorithm-and-simulated-annealing-optimization-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11103.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">764</span> Topology Optimization of Heat Exchanger Manifolds for Aircraft</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanjong%20Kim">Hanjong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Changwan%20Han"> Changwan Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Seonghun%20Park"> Seonghun Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat exchanger manifolds in aircraft play an important role in evenly distributing the fluid entering through the inlet to the heat transfer unit. In order to achieve this requirement, the manifold should be designed to have a light weight by withstanding high internal pressure. Therefore, this study aims at minimizing the weight of the heat exchanger manifold through topology optimization. For topology optimization, the initial design space was created with the inner surface extracted from the currently used manifold model and with the outer surface having a dimension of 243.42 mm of X 74.09 mm X 65 mm. This design space solid model was transformed into a finite element model with a maximum tetrahedron mesh size of 2 mm using ANSYS Workbench. Then, topology optimization was performed under the boundary conditions of an internal pressure of 5.5 MPa and the fixed support for rectangular inlet boundaries by SIMULIA TOSCA. This topology optimization produced the minimized finial volume of the manifold (i.e., 7.3% of the initial volume) based on the given constraints (i.e., 6% of the initial volume) and the objective function (i.e., maximizing manifold stiffness). Weight of the optimized model was 6.7% lighter than the currently used manifold, but after smoothing the topology optimized model, this difference would be bigger. The current optimized model has uneven thickness and skeleton-shaped outer surface to reduce stress concentration. We are currently simplifying the optimized model shape with spline interpolations by reflecting the design characteristics in thickness and skeletal structures from the optimized model. This simplified model will be validated again by calculating both stress distributions and weight reduction and then the validated model will be manufactured using 3D printing processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=topology%20optimization" title="topology optimization">topology optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=manifold" title=" manifold"> manifold</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20exchanger" title=" heat exchanger"> heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title=" 3D printing"> 3D printing</a> </p> <a href="https://publications.waset.org/abstracts/60709/topology-optimization-of-heat-exchanger-manifolds-for-aircraft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">763</span> Topology Optimization of Structures with Web-Openings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20K.%20Lee">D. K. Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Shin"> S. M. Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20H.%20Lee"> J. H. Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Topology optimization technique utilizes constant element densities as design parameters. Finally, optimal distribution contours of the material densities between voids (0) and solids (1) in design domain represent the determination of topology. It means that regions with element density values become occupied by solids in design domain, while there are only void phases in regions where no density values exist. Therefore the void regions of topology optimization results provide design information to decide appropriate depositions of web-opening in structure. Contrary to the basic objective of the topology optimization technique which is to obtain optimal topology of structures, this present study proposes a new idea that topology optimization results can be also utilized for decision of proper web-opening&rsquo;s position. Numerical examples of linear elastostatic structures demonstrate efficiency of methodological design processes using topology optimization in order to determinate the proper deposition of web-openings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=topology%20optimization" title="topology optimization">topology optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=web-opening" title=" web-opening"> web-opening</a>, <a href="https://publications.waset.org/abstracts/search?q=structure" title=" structure"> structure</a>, <a href="https://publications.waset.org/abstracts/search?q=element%20density" title=" element density"> element density</a>, <a href="https://publications.waset.org/abstracts/search?q=material" title=" material "> material </a> </p> <a href="https://publications.waset.org/abstracts/12450/topology-optimization-of-structures-with-web-openings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12450.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">762</span> Topology Enhancement of a Straight Fin Using a Porous Media Computational Fluid Dynamics Simulation Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Wakim">S. Wakim</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Nemer"> M. Nemer</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Zeghondy"> B. Zeghondy</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Ghannam"> B. Ghannam</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Bouallou"> C. Bouallou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Designing the optimal heat exchanger is still an essential objective to be achieved. Parametrical optimization involves the evaluation of the heat exchanger dimensions to find those that best satisfy certain objectives. This method contributes to an enhanced design rather than an optimized one. On the contrary, topology optimization finds the optimal structure that satisfies the design objectives. The huge development in metal additive manufacturing allowed topology optimization to find its way into engineering applications especially in the aerospace field to optimize metal structures. Using topology optimization in 3d heat and mass transfer problems requires huge computational time, therefore coupling it with CFD simulations can reduce this it. However, existed CFD models cannot be coupled with topology optimization. The CFD model must allow creating a uniform mesh despite the initial geometry complexity and also to swap the cells from fluid to solid and vice versa. In this paper, a porous media approach compatible with topology optimization criteria is developed. It consists of modeling the fluid region of the heat exchanger as porous media having high porosity and similarly the solid region is modeled as porous media having low porosity. The switching from fluid to solid cells required by topology optimization is simply done by changing each cell porosity using a user defined function. This model is tested on a plate and fin heat exchanger and validated by comparing its results to experimental data and simulations results. Furthermore, this model is used to perform a material reallocation based on local criteria to optimize a plate and fin heat exchanger under a constant heat duty constraint. The optimized fin uses 20% fewer materials than the first while the pressure drop is reduced by about 13%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20methods" title="computational methods">computational methods</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20exchanger" title=" heat exchanger"> heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20media" title=" porous media"> porous media</a>, <a href="https://publications.waset.org/abstracts/search?q=topology%20optimization" title=" topology optimization"> topology optimization</a> </p> <a href="https://publications.waset.org/abstracts/97886/topology-enhancement-of-a-straight-fin-using-a-porous-media-computational-fluid-dynamics-simulation-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97886.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">761</span> Analysis of Decentralized on Demand Cross Layer in Cognitive Radio Ad Hoc Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Sri%20Janani">A. Sri Janani</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Immanuel%20Arokia%20James"> K. Immanuel Arokia James</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cognitive radio ad hoc networks different unlicensed users may acquire different available channel sets. This non-uniform spectrum availability imposes special design challenges for broadcasting in CR ad hoc networks. Cognitive radio automatically detects available channels in wireless spectrum. This is a form of dynamic spectrum management. Cross-layer optimization is proposed, using this can allow far away secondary users can also involve into channel work. So it can increase the throughput and it will overcome the collision and time delay. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cognitive%20radio" title="cognitive radio">cognitive radio</a>, <a href="https://publications.waset.org/abstracts/search?q=cross%20layer%20optimization" title=" cross layer optimization"> cross layer optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=CR%20mesh%20network" title=" CR mesh network"> CR mesh network</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20spectrum" title=" heterogeneous spectrum"> heterogeneous spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=mesh%20topology" title=" mesh topology"> mesh topology</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20routing%20optimization%20technique" title=" random routing optimization technique"> random routing optimization technique</a> </p> <a href="https://publications.waset.org/abstracts/47391/analysis-of-decentralized-on-demand-cross-layer-in-cognitive-radio-ad-hoc-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47391.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">760</span> The Design and Implementation of an Enhanced 2D Mesh Switch</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manel%20Langar">Manel Langar</a>, <a href="https://publications.waset.org/abstracts/search?q=Riad%20Bourguiba"> Riad Bourguiba</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaouhar%20Mouine"> Jaouhar Mouine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose the design and implementation of an enhanced wormhole virtual channel on chip router. It is a heart of a mesh NoC using the XY deterministic routing algorithm. It is characterized by its simple virtual channel allocation strategy which allows reducing area and complexity of connections without affecting the performance. We implemented our router on a Tezzaron process to validate its performances. This router is a basic element that will be used later to design a 3D mesh NoC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NoC" title="NoC">NoC</a>, <a href="https://publications.waset.org/abstracts/search?q=mesh" title=" mesh"> mesh</a>, <a href="https://publications.waset.org/abstracts/search?q=router" title=" router"> router</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20NoC" title=" 3D NoC"> 3D NoC</a> </p> <a href="https://publications.waset.org/abstracts/16177/the-design-and-implementation-of-an-enhanced-2d-mesh-switch" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16177.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">568</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">759</span> Integral Domains and Alexandroff Topology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shai%20Sarussi">Shai Sarussi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Let S be an integral domain which is not a field, let F be its field of fractions, and let A be an F-algebra. An S-subalgebra R of A is called S-nice if R ∩ F = S and F R = A. A topological space whose set of open sets is closed under arbitrary intersections is called an Alexandroff space. Inspired by the well-known Zariski-Riemann space and the Zariski topology on the set of prime ideals of a commutative ring, we define a topology on the set of all S-nice subalgebras of A. Consequently, we get an interplay between Algebra and topology, that gives us a better understanding of the S-nice subalgebras of A. It is shown that every irreducible subset of S-nice subalgebras of A has a supremum; and a characterization of the irreducible components is given, in terms of maximal S-nice subalgebras of A. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexandroff%20topology" title="Alexandroff topology">Alexandroff topology</a>, <a href="https://publications.waset.org/abstracts/search?q=integral%20domains" title=" integral domains"> integral domains</a>, <a href="https://publications.waset.org/abstracts/search?q=Zariski-Riemann%20space" title=" Zariski-Riemann space"> Zariski-Riemann space</a>, <a href="https://publications.waset.org/abstracts/search?q=S-nice%20subalgebras" title=" S-nice subalgebras"> S-nice subalgebras</a> </p> <a href="https://publications.waset.org/abstracts/154343/integral-domains-and-alexandroff-topology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154343.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">758</span> 3D-Mesh Robust Watermarking Technique for Ownership Protection and Authentication</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farhan%20A.%20Alenizi">Farhan A. Alenizi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Digital watermarking has evolved in the past years as an important means for data authentication and ownership protection. The images and video watermarking was well known in the field of multimedia processing; however, 3D objects' watermarking techniques have emerged as an important means for the same purposes, as 3D mesh models are in increasing use in different areas of scientific, industrial, and medical applications. Like the image watermarking techniques, 3D watermarking can take place in either space or transform domains. Unlike images and video watermarking, where the frames have regular structures in both space and temporal domains, 3D objects are represented in different ways as meshes that are basically irregular samplings of surfaces; moreover, meshes can undergo a large variety of alterations which may be hard to tackle. This makes the watermarking process more challenging. While the transform domain watermarking is preferable in images and videos, they are still difficult to implement in 3d meshes due to the huge number of vertices involved and the complicated topology and geometry, and hence the difficulty to perform the spectral decomposition, even though significant work was done in the field. Spatial domain watermarking has attracted significant attention in the past years; they can either act on the topology or on the geometry of the model. Exploiting the statistical characteristics in the 3D mesh models from both geometrical and topological aspects was useful in hiding data. However, doing that with minimal surface distortions to the mesh attracted significant research in the field. A 3D mesh blind watermarking technique is proposed in this research. The watermarking method depends on modifying the vertices' positions with respect to the center of the object. An optimal method will be developed to reduce the errors, minimizing the distortions that the 3d object may experience due to the watermarking process, and reducing the computational complexity due to the iterations and other factors. The technique relies on the displacement process of the vertices' locations depending on the modification of the variances of the vertices’ norms. Statistical analyses were performed to establish the proper distributions that best fit each mesh, and hence establishing the bins sizes. Several optimizing approaches were introduced in the realms of mesh local roughness, the statistical distributions of the norms, and the displacements in the mesh centers. To evaluate the algorithm's robustness against other common geometry and connectivity attacks, the watermarked objects were subjected to uniform noise, Laplacian smoothing, vertices quantization, simplification, and cropping. Experimental results showed that the approach is robust in terms of both perceptual and quantitative qualities. It was also robust against both geometry and connectivity attacks. Moreover, the probability of true positive detection versus the probability of false-positive detection was evaluated. To validate the accuracy of the test cases, the receiver operating characteristics (ROC) curves were drawn, and they’ve shown robustness from this aspect. 3D watermarking is still a new field but still a promising one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=watermarking" title="watermarking">watermarking</a>, <a href="https://publications.waset.org/abstracts/search?q=mesh%20objects" title=" mesh objects"> mesh objects</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20roughness" title=" local roughness"> local roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=Laplacian%20Smoothing" title=" Laplacian Smoothing"> Laplacian Smoothing</a> </p> <a href="https://publications.waset.org/abstracts/135460/3d-mesh-robust-watermarking-technique-for-ownership-protection-and-authentication" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135460.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">757</span> Pathology of Explanted Transvaginal Meshes </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20V.%20Iakovlev">Vladimir V. Iakovlev</a>, <a href="https://publications.waset.org/abstracts/search?q=Erin%20T.%20Carey"> Erin T. Carey</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Steege"> John Steege</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of polypropylene mesh devices for Pelvic Organ Prolapse (POP) spread rapidly during the last decade, yet our knowledge of the mesh-tissue interaction is far from complete. We aimed to perform a thorough pathological examination of explanted POP meshes and describe findings that may explain mechanisms of complications resulting in product excision. We report a spectrum of important findings, including nerve ingrowth, mesh deformation, involvement of detrusor muscle with neural ganglia, and polypropylene degradation. Analysis of these findings may improve and guide future treatment strategies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transvaginal" title="transvaginal">transvaginal</a>, <a href="https://publications.waset.org/abstracts/search?q=mesh" title=" mesh"> mesh</a>, <a href="https://publications.waset.org/abstracts/search?q=nerves" title=" nerves"> nerves</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene%20degradation" title=" polypropylene degradation"> polypropylene degradation</a> </p> <a href="https://publications.waset.org/abstracts/9618/pathology-of-explanted-transvaginal-meshes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">756</span> Investigation on Mesh Sensitivity of a Transient Model for Nozzle Clogging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Barati">H. Barati</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Wu"> M. Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kharicha"> A. Kharicha</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ludwig"> A. Ludwig</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A transient model for nozzle clogging has been developed and successfully validated against a laboratory experiment. Key steps of clogging are considered: transport of particles by turbulent flow towards the nozzle wall; interactions between fluid flow and nozzle wall, and the adhesion of the particle on the wall; the growth of the clog layer and its interaction with the flow. The current paper is to investigate the mesh (size and type) sensitivity of the model in both two and three dimensions. It is found that the algorithm for clog growth alone excluding the flow effect is insensitive to the mesh type and size, but the calculation including flow becomes sensitive to the mesh quality. The use of 2D meshes leads to overestimation of the clog growth because the 3D nature of flow in the boundary layer cannot be properly solved by 2D calculation. 3D simulation with tetrahedron mesh can also lead to an error estimation of the clog growth. A mesh-independent result can be achieved with hexahedral mesh, or at least with triangular prism (inflation layer) for near-wall regions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clogging" title="clogging">clogging</a>, <a href="https://publications.waset.org/abstracts/search?q=continuous%20casting" title=" continuous casting"> continuous casting</a>, <a href="https://publications.waset.org/abstracts/search?q=inclusion" title=" inclusion"> inclusion</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=submerged%20entry%20nozzle" title=" submerged entry nozzle"> submerged entry nozzle</a> </p> <a href="https://publications.waset.org/abstracts/74984/investigation-on-mesh-sensitivity-of-a-transient-model-for-nozzle-clogging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74984.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">755</span> Isogeometric Topology Optimization in Cracked Structures Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dongkyu%20Lee">Dongkyu Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Thanh%20Banh%20Thien"> Thanh Banh Thien</a>, <a href="https://publications.waset.org/abstracts/search?q=Soomi%20Shin"> Soomi Shin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, the isogeometric topology optimization is proposed for cracked structures through using Solid Isotropic Material with Penalization (SIMP) as a design model. Design density variables defined in the variable space are used to approximate the element analysis density by the bivariate B-spline basis functions. The mathematical formulation of topology optimization problem solving minimum structural compliance is an alternating active-phase algorithm with the Gauss-Seidel version as an optimization model of optimality criteria. Stiffness and adjoint sensitivity formulations linked to strain energy of cracked structure are proposed in terms of design density variables. Numerical examples demonstrate interactions of topology optimization to structures design with cracks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=topology%20optimization" title="topology optimization">topology optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=isogeometric" title=" isogeometric"> isogeometric</a>, <a href="https://publications.waset.org/abstracts/search?q=NURBS" title=" NURBS"> NURBS</a>, <a href="https://publications.waset.org/abstracts/search?q=design" title=" design"> design</a> </p> <a href="https://publications.waset.org/abstracts/79410/isogeometric-topology-optimization-in-cracked-structures-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79410.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">492</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">754</span> A Novel Gateway Location Algorithm for Wireless Mesh Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20M.%20Komba">G. M. Komba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Internet Gateway (IGW) has extra ability than a simple Mesh Router (MR) and the responsibility to route mostly the all traffic from Mesh Clients (MCs) to the Internet backbone however, IGWs are more expensive. Choosing strategic locations for the Internet Gateways (IGWs) best location in Backbone Wireless Mesh (BWM) precarious to the Wireless Mesh Network (WMN) and the location of IGW can improve a quantity of performance related problem. In this paper, we propose a novel algorithm, namely New Gateway Location Algorithm (NGLA), which aims to achieve four objectives, decreasing the network cost effective, minimizing delay, optimizing the throughput capacity, Different from existing algorithms, the NGLA increasingly recognizes IGWs, allocates mesh routers (MRs) to identify IGWs and promises to find a feasible IGW location and install minimum as possible number of IGWs while regularly conserving the all Quality of Service (QoS) requests. Simulation results showing that the NGLA outperforms other different algorithms by comparing the number of IGWs with a large margin and it placed 40% less IGWs and 80% gain of throughput. Furthermore the NGLA is easy to implement and could be employed for BWM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wireless%20Mesh%20Network" title="Wireless Mesh Network">Wireless Mesh Network</a>, <a href="https://publications.waset.org/abstracts/search?q=Gateway%20Location%20Algorithm" title=" Gateway Location Algorithm"> Gateway Location Algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=Quality%20of%20Service" title=" Quality of Service"> Quality of Service</a>, <a href="https://publications.waset.org/abstracts/search?q=BWM" title=" BWM"> BWM</a> </p> <a href="https://publications.waset.org/abstracts/15679/a-novel-gateway-location-algorithm-for-wireless-mesh-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15679.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">753</span> Routing Metrics and Protocols for Wireless Mesh Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samira%20Kalantary">Samira Kalantary</a>, <a href="https://publications.waset.org/abstracts/search?q=Zohre%20Saatzade"> Zohre Saatzade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wireless Mesh Networks (WMNs) are low-cost access networks built on cooperative routing over a backbone composed of stationary wireless routers. WMNs must deal with the highly unstable wireless medium. Thus, routing metrics and protocols are evolving by designing algorithms that consider link quality to choose the best routes. In this work, we analyse the state of the art in WMN metrics and propose taxonomy for WMN routing protocols. Performance measurements of a wireless mesh network deployed using various routing metrics are presented and corroborate our analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wireless%20mesh%20networks" title="wireless mesh networks">wireless mesh networks</a>, <a href="https://publications.waset.org/abstracts/search?q=routing%20protocols" title=" routing protocols"> routing protocols</a>, <a href="https://publications.waset.org/abstracts/search?q=routing%20metrics" title=" routing metrics"> routing metrics</a>, <a href="https://publications.waset.org/abstracts/search?q=bioinformatics" title=" bioinformatics"> bioinformatics</a> </p> <a href="https://publications.waset.org/abstracts/2240/routing-metrics-and-protocols-for-wireless-mesh-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2240.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">752</span> Design and Implementation of 2D Mesh Network on Chip Using VHDL</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boudjedra%20Abderrahim">Boudjedra Abderrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Toumi%20Salah"> Toumi Salah</a>, <a href="https://publications.waset.org/abstracts/search?q=Boutalbi%20Mostefa"> Boutalbi Mostefa</a>, <a href="https://publications.waset.org/abstracts/search?q=Frihi%20Mohammed"> Frihi Mohammed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, using the advancement of technology in semiconductor device fabrication, many transistors can be integrated to a single chip (VLSI). Although the growth chip density potentially eases systems-on-chip (SoCs) integrating thousands of processing element (PE) such as memory, processor, interfaces cores, system complexity, high-performance interconnect and scalable on-chip communication architecture become most challenges for many digital and embedded system designers. Networks-on-chip (NoCs) becomes a new paradigm that makes possible integrating heterogeneous devices and allows many communication constraints and performances. In this paper, we are interested for good performance and low area for implementation and a behavioral modeling of network on chip mesh topology design using VHDL hardware description language with performance evaluation and FPGA implementation results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design" title="design">design</a>, <a href="https://publications.waset.org/abstracts/search?q=implementation" title=" implementation"> implementation</a>, <a href="https://publications.waset.org/abstracts/search?q=communication%20system" title=" communication system"> communication system</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20on%20chip" title=" network on chip"> network on chip</a>, <a href="https://publications.waset.org/abstracts/search?q=VHDL" title=" VHDL"> VHDL</a> </p> <a href="https://publications.waset.org/abstracts/3993/design-and-implementation-of-2d-mesh-network-on-chip-using-vhdl" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">751</span> Comparative Efficacy of Prolene and Polyester Mesh for the Repair of Abdominal Wall Defect in Pigeons (Columba livia)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Naveed%20Ali">Muhammad Naveed Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamad%20Bin%20Rashid"> Hamad Bin Rashid</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Arif%20Khan"> Muhammad Arif Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Basit"> Abdul Basit</a>, <a href="https://publications.waset.org/abstracts/search?q=Hafiz%20Muhammad%20Arshad"> Hafiz Muhammad Arshad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Abdominal defects are very common in pigeons. A new technique is known as intraabdominal mesh transplant that give better protection for herniorrhaphy. The aim of this study was to determine the performance of hernia mesh. In this study, an efficacy of two synthetic hernia mesh implants viz. conventional Prolene and a lightweight mesh monofilament polyester were assessed for the abdominal wall repair in pigeons. Twenty four healthy pigeons were selected and randomly distributed into three groups, A, B and C (n=8). In all groups, experimental laparotomy was performed; thereafter, abdominal muscles and peritoneum were sutured together, while, a 2 x 2 cm defect was created in the abdominal muscles. For onlay hernioplasty, the hernia mesh (Prolene mesh: group A; Polyester mesh: group B) was implanted over the external oblique muscles of the abdomen. In group C (control), the mesh was not implanted; instead, the laparotomy incision was closed after a herniorrhaphy. Post-operative pain wound healing, adhesion formation, histopathological findings and formation of hematoma, abscess and seroma were assessed as short-term complications. Post-operatively, pain at surgical site was significantly less (P < 0.001) in group B (Polyester mesh); wound healing was also significantly better and rapid in group B (P < 0.05) than in group A (Prolene mesh). Group B (Polyester mesh) also depicted less than 25% adhesions when assessed on the basis of a Quantitative Modified Diamond scale; a Qualitative Adhesion Tenacity scale also depicted either no adhesions or flimsy adhesions (n=2) in group B (Polyester mesh), in contrast to group A (Prolene), which manifested greater adhesion formation and presence of dense adhesions requiring blunt dissection. There were observed hematoma, seroma and abscess formations in birds treated by Prolene mesh only. Conclusively, the polyester mesh proved superior to the Prolene mesh regarding lesser adhesion, better in wound healing, and no short-term follow-up complications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adhesion" title="adhesion">adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=mesh" title=" mesh"> mesh</a>, <a href="https://publications.waset.org/abstracts/search?q=polyester" title=" polyester"> polyester</a>, <a href="https://publications.waset.org/abstracts/search?q=prolene" title=" prolene"> prolene</a> </p> <a href="https://publications.waset.org/abstracts/99546/comparative-efficacy-of-prolene-and-polyester-mesh-for-the-repair-of-abdominal-wall-defect-in-pigeons-columba-livia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">750</span> Experimental Study to Determine the Effect of Wire Mesh Pore Size on Natural Draft Chimney Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Mizanur%20Rahman">Md. Mizanur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Chu%20Chi%20Ming"> Chu Chi Ming</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Suffian%20Bin%20Misaran"> Mohd Suffian Bin Misaran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chimney is an important part of the industries to remove waste heat from the processes side to the atmosphere. The increased demand of energy helps to restart to think about the efficiency of chimney as well as to find out a valid option to replace forced draft chimney system from industries. In this study natural draft chimney model is air flow rate; exit air temperature and pressure losses are studied through modification with wire mesh screen and compare the results with without wire mesh screen chimney model. The heat load is varies from 0.1 kW to 1kW and three different wire mesh screens that have pore size 0.15 mm2, 0.40 mm2 and 4.0 mm2 respectively are used. The experimental results show that natural draft chimney model with wire mesh screens significantly restored the flow losses compared to the system without wire mesh screen. The natural draft chimney model with 0.40 mm2 pore size wire mesh screen can minimize the draft losses better than others and able to enhance velocity about 54 % exit air temperature about 41% and pressure loss decreased by about 20%. Therefore, it can be decided that the wire mesh screens significantly minimize the draft losses in the natural draft chimney and 0.40 mm2 pore size screen will be a suitable option. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20draft%20dhimney" title="natural draft dhimney">natural draft dhimney</a>, <a href="https://publications.waset.org/abstracts/search?q=wire%20mesh%20screen" title=" wire mesh screen"> wire mesh screen</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20draft%20flow" title=" natural draft flow"> natural draft flow</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20engineering" title=" mechanical engineering"> mechanical engineering</a> </p> <a href="https://publications.waset.org/abstracts/29139/experimental-study-to-determine-the-effect-of-wire-mesh-pore-size-on-natural-draft-chimney-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29139.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">749</span> An Efficient Resource Management Algorithm for Mobility Management in Wireless Mesh Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mallikarjuna%20Rao%20Yamarthy">Mallikarjuna Rao Yamarthy</a>, <a href="https://publications.waset.org/abstracts/search?q=Subramanyam%20Makam%20Venkata"> Subramanyam Makam Venkata</a>, <a href="https://publications.waset.org/abstracts/search?q=Satya%20Prasad%20Kodati"> Satya Prasad Kodati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of the proposed work is to reduce the overall network traffic incurred by mobility management, packet delivery cost and to increase the resource utilization. The proposed algorithm, An Efficient Resource Management Algorithm (ERMA) for mobility management in wireless mesh networks, relies on pointer based mobility management scheme. Whenever a mesh client moves from one mesh router to another, the pointer is set up dynamically between the previous mesh router and current mesh router based on the distance constraints. The algorithm evaluated for signaling cost, data delivery cost and total communication cost performance metrics. The proposed algorithm is demonstrated for both internet sessions and intranet sessions. The proposed algorithm yields significantly better performance in terms of signaling cost, data delivery cost, and total communication cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20delivery%20cost" title="data delivery cost">data delivery cost</a>, <a href="https://publications.waset.org/abstracts/search?q=mobility%20management" title=" mobility management"> mobility management</a>, <a href="https://publications.waset.org/abstracts/search?q=pointer%20forwarding" title=" pointer forwarding"> pointer forwarding</a>, <a href="https://publications.waset.org/abstracts/search?q=resource%20management" title=" resource management"> resource management</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20mesh%20networks" title=" wireless mesh networks"> wireless mesh networks</a> </p> <a href="https://publications.waset.org/abstracts/76159/an-efficient-resource-management-algorithm-for-mobility-management-in-wireless-mesh-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76159.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">748</span> Stochastic Analysis of Linux Operating System through Copula Distribution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vijay%20Vir%20Singh">Vijay Vir Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work is focused studying the Linux operating system connected in a LAN (local area network). The STAR topology (to be called subsystem-1) and BUS topology (to be called subsystem-2) are taken into account, which are placed at two different locations and connected to a server through a hub. In the both topologies BUS topology and STAR topology, we have assumed n clients. The system has two types of failures i.e. partial failure and complete failure. Further, the partial failure has been categorized as minor and major partial failure. It is assumed that the minor partial failure degrades the sub-systems and the major partial failure make the subsystem break down mode. The system may completely fail due to failure of server hacking and blocking etc. The system is studied using supplementary variable technique and Laplace transform by using different types of failure and two types of repair. The various measures of reliability for example, availability of system, reliability of system, MTTF, profit function for different parametric values have been discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=star%20topology" title="star topology">star topology</a>, <a href="https://publications.waset.org/abstracts/search?q=bus%20topology" title=" bus topology"> bus topology</a>, <a href="https://publications.waset.org/abstracts/search?q=blocking" title=" blocking"> blocking</a>, <a href="https://publications.waset.org/abstracts/search?q=hacking" title=" hacking"> hacking</a>, <a href="https://publications.waset.org/abstracts/search?q=Linux%20operating%20system" title=" Linux operating system"> Linux operating system</a>, <a href="https://publications.waset.org/abstracts/search?q=Gumbel-Hougaard%20family%20copula" title=" Gumbel-Hougaard family copula"> Gumbel-Hougaard family copula</a>, <a href="https://publications.waset.org/abstracts/search?q=supplementary%20variable" title=" supplementary variable"> supplementary variable</a> </p> <a href="https://publications.waset.org/abstracts/48060/stochastic-analysis-of-linux-operating-system-through-copula-distribution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">747</span> An Improved Mesh Deformation Method Based on Radial Basis Function</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xuan%20Zhou">Xuan Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Litian%20Zhang"> Litian Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuixiang%20Li"> Shuixiang Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mesh deformation using radial basis function interpolation method has been demonstrated to produce quality meshes with relatively little computational cost using a concise algorithm. However, it still suffers from the limited deformation ability, especially in large deformation. In this paper, a pre-displacement improvement is proposed to improve the problem that illegal meshes always appear near the moving inner boundaries owing to the large relative displacement of the nodes near inner boundaries. In this improvement, nodes near the inner boundaries are first associated to the near boundary nodes, and a pre-displacement based on the displacements of associated boundary nodes is added to the nodes near boundaries in order to make the displacement closer to the boundary deformation and improve the deformation capability. Several 2D and 3D numerical simulation cases have shown that the pre-displacement improvement for radial basis function (RBF) method significantly improves the mesh quality near inner boundaries and deformation capability, with little computational burden increasement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mesh%20deformation" title="mesh deformation">mesh deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=mesh%20quality" title=" mesh quality"> mesh quality</a>, <a href="https://publications.waset.org/abstracts/search?q=background%20mesh" title=" background mesh"> background mesh</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20basis%20function" title=" radial basis function"> radial basis function</a> </p> <a href="https://publications.waset.org/abstracts/65928/an-improved-mesh-deformation-method-based-on-radial-basis-function" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65928.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">746</span> Reliability Based Topology Optimization: An Efficient Method for Material Uncertainty</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Jalalpour">Mehdi Jalalpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Mazdak%20Tootkaboni"> Mazdak Tootkaboni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present a computationally efficient method for reliability-based topology optimization under material properties uncertainty, which is assumed to be lognormally distributed and correlated within the domain. Computational efficiency is achieved through estimating the response statistics with stochastic perturbation of second order, using these statistics to fit an appropriate distribution that follows the empirical distribution of the response, and employing an efficient gradient-based optimizer. The proposed algorithm is utilized for design of new structures and the changes in the optimized topology is discussed for various levels of target reliability and correlation strength. Predictions were verified thorough comparison with results obtained using Monte Carlo simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=material%20uncertainty" title="material uncertainty">material uncertainty</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20perturbation" title=" stochastic perturbation"> stochastic perturbation</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20reliability" title=" structural reliability"> structural reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=topology%20optimization" title=" topology optimization"> topology optimization</a> </p> <a href="https://publications.waset.org/abstracts/24499/reliability-based-topology-optimization-an-efficient-method-for-material-uncertainty" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24499.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">605</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">745</span> Structural Analysis and Detail Design of APV Module Structure Using Topology Optimization Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyun%20Kyu%20Cho">Hyun Kyu Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Soo%20Kim"> Jun Soo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%20Hoon%20Lee"> Young Hoon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang%20Hoon%20Kang"> Sang Hoon Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%20Chul%20Park"> Young Chul Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the study, structure for one of offshore drilling system APV(Air Pressure Vessle) modules was designed by using topology optimum design and performed structural safety evaluation according to DNV rules. 3D model created base on design area and non-design area separated by using topology optimization for the environmental loads. This model separated 17 types for wind loads and dynamic loads and performed structural analysis evaluation for each model. As a result, the maximum stress occurred 181.25MPa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=APV" title="APV">APV</a>, <a href="https://publications.waset.org/abstracts/search?q=topology%20optimum%20design" title=" topology optimum design"> topology optimum design</a>, <a href="https://publications.waset.org/abstracts/search?q=DNV" title=" DNV"> DNV</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20analysis" title=" structural analysis"> structural analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a> </p> <a href="https://publications.waset.org/abstracts/53957/structural-analysis-and-detail-design-of-apv-module-structure-using-topology-optimization-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53957.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">744</span> Performance Analysis of LINUX Operating System Connected in LAN Using Gumbel-Hougaard Family Copula Distribution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20V.%20Singh">V. V. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we have focused on the study of a Linux operating system connected in a LAN (local area network). We have considered two different topologies STAR topology (subsystem-1) and BUS topology (subsystem-2) which are placed at two different places and connected to a server through a hub. In both topologies BUS topology and STAR topology, we have assumed 'n' clients. The system has two types of failure partial failure and complete failure. Further the partial failure has been categorized as minor partial failure and major partial failure. It is assumed that minor partial failure degrades the subsystem and the major partial failure brings the subsystem to break down mode. The system can completely failed due to failure of server hacking and blocking etc. The system is studied by supplementary variable technique and Laplace transform by taking different types of failure and two types of repairs. The various measures of reliability like availability of system, MTTF, profit function for different parametric values has been discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=star%20topology" title="star topology">star topology</a>, <a href="https://publications.waset.org/abstracts/search?q=bus%20topology" title=" bus topology"> bus topology</a>, <a href="https://publications.waset.org/abstracts/search?q=hacking" title=" hacking"> hacking</a>, <a href="https://publications.waset.org/abstracts/search?q=blocking" title=" blocking"> blocking</a>, <a href="https://publications.waset.org/abstracts/search?q=linux%20operating%20system" title=" linux operating system"> linux operating system</a>, <a href="https://publications.waset.org/abstracts/search?q=Gumbel-Hougaard%20family%20copula" title=" Gumbel-Hougaard family copula"> Gumbel-Hougaard family copula</a>, <a href="https://publications.waset.org/abstracts/search?q=supplementary%20variable" title=" supplementary variable "> supplementary variable </a> </p> <a href="https://publications.waset.org/abstracts/33606/performance-analysis-of-linux-operating-system-connected-in-lan-using-gumbel-hougaard-family-copula-distribution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">577</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">743</span> Effect of Mesh Size on the Supersonic Viscous Flow Parameters around an Axisymmetric Blunt Body</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haoui%20Rabah">Haoui Rabah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work is to analyze a viscous flow around the axisymmetric blunt body taken into account the mesh size both in the free stream and into the boundary layer. The resolution of the Navier-Stokes equations is realized by using the finite volume method to determine the flow parameters and detached shock position. The numerical technique uses the Flux Vector Splitting method of Van Leer. Here, adequate time stepping parameter, CFL coefficient and mesh size level are selected to ensure numerical convergence. The effect of the mesh size is significant on the shear stress and velocity profile. The best solution is obtained with using a very fine grid. This study enabled us to confirm that the determination of boundary layer thickness can be obtained only if the size of the mesh is lower than a certain value limits given by our calculations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supersonic%20flow" title="supersonic flow">supersonic flow</a>, <a href="https://publications.waset.org/abstracts/search?q=viscous%20flow" title=" viscous flow"> viscous flow</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20volume" title=" finite volume"> finite volume</a>, <a href="https://publications.waset.org/abstracts/search?q=blunt%20body" title=" blunt body"> blunt body</a> </p> <a href="https://publications.waset.org/abstracts/11486/effect-of-mesh-size-on-the-supersonic-viscous-flow-parameters-around-an-axisymmetric-blunt-body" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11486.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">604</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">742</span> The Role of Flexible Cystoscopy in Managing Recurrent Urinary Tract Infections in Patients with Mesh Implants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=George%20Shaker">George Shaker</a>, <a href="https://publications.waset.org/abstracts/search?q=Maike%20Eylert"> Maike Eylert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recurrent urinary tract infections (UTIs) in patients with mesh implants, particularly following pelvic or abdominal surgeries, pose significant clinical challenges. This paper investigates whether flexible cystoscopy is an essential diagnostic and therapeutic tool in managing such patients. With the increasing prevalence of mesh-related complications, it is crucial to explore how diagnostic procedures like cystoscopy can aid in identifying mesh-associated issues that contribute to recurrent UTIs. While flexible cystoscopy is commonly used to evaluate lower urinary tract conditions, its necessity in cases involving patients with mesh implants remains under debate. This study aims to determine the value of flexible cystoscopy in identifying complications such as mesh erosion, fistula formation, and chronic inflammation, which may contribute to recurrent infections. The research compares patients who underwent flexible cystoscopy to those managed without this procedure, examining the diagnostic yield of cystoscopy in detecting mesh-related complications. Furthermore, the study investigates the relationship between recurrent UTIs and the mechanical effects of mesh on the urinary tract, as well as the potential for cystoscopy to guide treatment decisions, such as mesh removal or revision. The results indicate that while flexible cystoscopy can identify mesh-related complications in some cases, its routine use may not be necessary for all patients with recurrent UTIs and mesh. The study emphasizes the importance of patient selection, clinical history, and symptom severity in deciding whether to employ cystoscopy. In cases where there are clear signs of mesh erosion or unexplained recurrent infections despite standard treatments, cystoscopy proves valuable. However, the study also highlights potential risks and discomfort associated with the procedure, suggesting that cystoscopy should be reserved for select cases where non-invasive methods fail to provide clarity. The research concludes that while flexible cystoscopy remains a valuable tool in certain cases, its routine use for all patients with recurrent UTIs and mesh is not justified. The paper provides recommendations for clinical guidelines, emphasizing a more personalized approach to diagnostics that considers the patient’s overall condition, infection history, and mesh type. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexible%20cystoscopy" title="flexible cystoscopy">flexible cystoscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=recurrent%20urinary%20tract%20infections" title=" recurrent urinary tract infections"> recurrent urinary tract infections</a>, <a href="https://publications.waset.org/abstracts/search?q=mesh%20implants" title=" mesh implants"> mesh implants</a>, <a href="https://publications.waset.org/abstracts/search?q=mesh%20erosion" title=" mesh erosion"> mesh erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnostic%20procedures" title=" diagnostic procedures"> diagnostic procedures</a>, <a href="https://publications.waset.org/abstracts/search?q=urology" title=" urology"> urology</a> </p> <a href="https://publications.waset.org/abstracts/192383/the-role-of-flexible-cystoscopy-in-managing-recurrent-urinary-tract-infections-in-patients-with-mesh-implants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192383.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">18</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">741</span> An Investigation into the Use of Overset Mesh for a Vehicle Aerodynamics Case When Driving in Close Proximity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kushal%20Kumar%20Chode">Kushal Kumar Chode</a>, <a href="https://publications.waset.org/abstracts/search?q=Remus%20Miahi%20Cirstea"> Remus Miahi Cirstea</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent times, the drive towards more efficient vehicles and the increase in the number of vehicle on the roads has driven the aerodynamic researchers from studying the vehicle in isolation towards understanding the benefits of vehicle platooning. Vehicle platooning is defined as a series of vehicles traveling in close proximity. Due to the limitations in size and load measurement capabilities for the wind tunnels facilities, it is very difficult to perform this investigation experimentally. In this paper, the use of chimera or overset meshing technique is used within the STARCCM+ software to model the flow surrounding two identical vehicle models travelling in close proximity and also during an overtaking maneuver. The results are compared with data obtained from a polyhedral mesh and identical physics conditions. The benefits in terms of computational time and resources and the accuracy of the overset mesh approach are investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chimera%20mesh" title="chimera mesh">chimera mesh</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20accuracy" title=" computational accuracy"> computational accuracy</a>, <a href="https://publications.waset.org/abstracts/search?q=overset%20mesh" title=" overset mesh"> overset mesh</a>, <a href="https://publications.waset.org/abstracts/search?q=platooning%20vehicles" title=" platooning vehicles"> platooning vehicles</a> </p> <a href="https://publications.waset.org/abstracts/68847/an-investigation-into-the-use-of-overset-mesh-for-a-vehicle-aerodynamics-case-when-driving-in-close-proximity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68847.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">740</span> Fault Tolerant (n,k)-star Power Network Topology for Multi-Agent Communication in Automated Power Distribution Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ning%20Gong%03">Ning Gong</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Korostelev%03"> Michael Korostelev</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiangguo%20Ren%03"> Qiangguo Ren</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Bai%03"> Li Bai</a>, <a href="https://publications.waset.org/abstracts/search?q=Saroj%20K.%20Biswas%03"> Saroj K. Biswas</a>, <a href="https://publications.waset.org/abstracts/search?q=Frank%20Ferrese">Frank Ferrese</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the joint effect of the interconnected (n,k)-star network topology and Multi-Agent automated control on restoration and reconfiguration of power systems. With the increasing trend in development in Multi-Agent control technologies applied to power system reconfiguration in presence of faulty components or nodes. Fault tolerance is becoming an important challenge in the design processes of the distributed power system topology. Since the reconfiguration of a power system is performed by agent communication, the (n,k)-star interconnected network topology is studied and modeled in this paper to optimize the process of power reconfiguration. In this paper, we discuss the recently proposed (n,k)-star topology and examine its properties and advantages as compared to the traditional multi-bus power topologies. We design and simulate the topology model for distributed power system test cases. A related lemma based on the fault tolerance and conditional diagnosability properties is presented and proved both theoretically and practically. The conclusion is reached that (n,k)-star topology model has measurable advantages compared to standard bus power systems while exhibiting fault tolerance properties in power restoration, as well as showing efficiency when applied to power system route discovery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%28n" title="(n">(n</a>, <a href="https://publications.waset.org/abstracts/search?q=k%29-star%20topology" title="k)-star topology">k)-star topology</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20tolerance" title=" fault tolerance"> fault tolerance</a>, <a href="https://publications.waset.org/abstracts/search?q=conditional%20diagnosability" title=" conditional diagnosability"> conditional diagnosability</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-agent%20system" title=" multi-agent system"> multi-agent system</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20power%20system" title=" automated power system"> automated power system</a> </p> <a href="https://publications.waset.org/abstracts/17249/fault-tolerant-nk-star-power-network-topology-for-multi-agent-communication-in-automated-power-distribution-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17249.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">739</span> Fault Tolerant (n, k)-Star Power Network Topology for Multi-Agent Communication in Automated Power Distribution Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ning%20Gong">Ning Gong</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Korostelev"> Michael Korostelev</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiangguo%20Ren"> Qiangguo Ren</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Bai"> Li Bai</a>, <a href="https://publications.waset.org/abstracts/search?q=Saroj%20Biswas"> Saroj Biswas</a>, <a href="https://publications.waset.org/abstracts/search?q=Frank%20Ferrese"> Frank Ferrese</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the joint effect of the interconnected (n,k)-star network topology and Multi-Agent automated control on restoration and reconfiguration of power systems. With the increasing trend in development in Multi-Agent control technologies applied to power system reconfiguration in presence of faulty components or nodes. Fault tolerance is becoming an important challenge in the design processes of the distributed power system topology. Since the reconfiguration of a power system is performed by agent communication, the (n,k)-star interconnected network topology is studied and modeled in this paper to optimize the process of power reconfiguration. In this paper, we discuss the recently proposed (n,k)-star topology and examine its properties and advantages as compared to the traditional multi-bus power topologies. We design and simulate the topology model for distributed power system test cases. A related lemma based on the fault tolerance and conditional diagnosability properties is presented and proved both theoretically and practically. The conclusion is reached that (n,k)-star topology model has measurable advantages compared to standard bus power systems while exhibiting fault tolerance properties in power restoration, as well as showing efficiency when applied to power system route discovery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%28n" title="(n">(n</a>, <a href="https://publications.waset.org/abstracts/search?q=k%29-star%20topology" title=" k)-star topology"> k)-star topology</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20tolerance" title=" fault tolerance"> fault tolerance</a>, <a href="https://publications.waset.org/abstracts/search?q=conditional%20diagnosability" title=" conditional diagnosability"> conditional diagnosability</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-agent%20system" title=" multi-agent system"> multi-agent system</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20power%20system" title=" automated power system "> automated power system </a> </p> <a href="https://publications.waset.org/abstracts/23400/fault-tolerant-n-k-star-power-network-topology-for-multi-agent-communication-in-automated-power-distribution-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mesh%20topology&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mesh%20topology&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mesh%20topology&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mesh%20topology&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mesh%20topology&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mesh%20topology&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mesh%20topology&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mesh%20topology&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mesh%20topology&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mesh%20topology&amp;page=25">25</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mesh%20topology&amp;page=26">26</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mesh%20topology&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10