CINXE.COM

Thermodynamic free energy - Wikipedia

<!DOCTYPE html> <html class="client-nojs skin-theme-clientpref-day mf-expand-sections-clientpref-0 mf-font-size-clientpref-small mw-mf-amc-clientpref-0" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Thermodynamic free energy - Wikipedia</title> <script>(function(){var className="client-js skin-theme-clientpref-day mf-expand-sections-clientpref-0 mf-font-size-clientpref-small mw-mf-amc-clientpref-0";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"ee7a775b-fe57-4c36-a4f1-cb0f109759cc","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Thermodynamic_free_energy","wgTitle":"Thermodynamic free energy","wgCurRevisionId":1219835869,"wgRevisionId":1219835869, "wgArticleId":39221,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Thermodynamic_free_energy","wgRelevantArticleId":39221,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFMode":"stable","wgMFAmc":false,"wgMFAmcOutreachActive":false,"wgMFAmcOutreachUserEligible":false,"wgMFLazyLoadImages":true,"wgMFEditNoticesFeatureConflict":false,"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgMFIsSupportedEditRequest":true, "wgMFScriptPath":"","wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":30000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":true,"wgEditSubmitButtonLabelPublish":true,"wgSectionTranslationMissingLanguages":[{"lang":"ace","autonym":"Acèh","dir":"ltr"},{"lang":"ady","autonym":"адыгабзэ","dir":"ltr"},{"lang":"alt","autonym":"алтай тил","dir":"ltr"},{"lang":"am","autonym":"አማርኛ","dir":"ltr"},{"lang":"ami","autonym":"Pangcah","dir":"ltr"},{"lang":"an","autonym":"aragonés","dir":"ltr"},{"lang":"ang","autonym":"Ænglisc","dir":"ltr"},{"lang":"ann","autonym":"Obolo","dir":"ltr"},{"lang":"anp","autonym":"अंगिका","dir":"ltr"},{"lang":"ary","autonym":"الدارجة","dir":"rtl"},{"lang":"arz","autonym":"مصرى","dir":"rtl"},{"lang":"as","autonym":"অসমীয়া","dir":"ltr"},{"lang":"av","autonym":"авар","dir":"ltr"},{"lang":"avk","autonym":"Kotava","dir":"ltr"},{"lang":"awa","autonym":"अवधी","dir":"ltr"},{"lang": "ay","autonym":"Aymar aru","dir":"ltr"},{"lang":"az","autonym":"azərbaycanca","dir":"ltr"},{"lang":"azb","autonym":"تۆرکجه","dir":"rtl"},{"lang":"ba","autonym":"башҡортса","dir":"ltr"},{"lang":"ban","autonym":"Basa Bali","dir":"ltr"},{"lang":"bar","autonym":"Boarisch","dir":"ltr"},{"lang":"bbc","autonym":"Batak Toba","dir":"ltr"},{"lang":"bcl","autonym":"Bikol Central","dir":"ltr"},{"lang":"bdr","autonym":"Bajau Sama","dir":"ltr"},{"lang":"be","autonym":"беларуская","dir":"ltr"},{"lang":"bew","autonym":"Betawi","dir":"ltr"},{"lang":"bg","autonym":"български","dir":"ltr"},{"lang":"bho","autonym":"भोजपुरी","dir":"ltr"},{"lang":"bi","autonym":"Bislama","dir":"ltr"},{"lang":"bjn","autonym":"Banjar","dir":"ltr"},{"lang":"blk","autonym":"ပအိုဝ်ႏဘာႏသာႏ","dir":"ltr"},{"lang":"bm","autonym":"bamanankan","dir":"ltr"},{"lang":"bn","autonym":"বাংলা","dir":"ltr"},{"lang":"bo","autonym":"བོད་ཡིག","dir" :"ltr"},{"lang":"bpy","autonym":"বিষ্ণুপ্রিয়া মণিপুরী","dir":"ltr"},{"lang":"br","autonym":"brezhoneg","dir":"ltr"},{"lang":"bs","autonym":"bosanski","dir":"ltr"},{"lang":"btm","autonym":"Batak Mandailing","dir":"ltr"},{"lang":"bug","autonym":"Basa Ugi","dir":"ltr"},{"lang":"cdo","autonym":"閩東語 / Mìng-dĕ̤ng-ngṳ̄","dir":"ltr"},{"lang":"ce","autonym":"нохчийн","dir":"ltr"},{"lang":"ceb","autonym":"Cebuano","dir":"ltr"},{"lang":"ch","autonym":"Chamoru","dir":"ltr"},{"lang":"chr","autonym":"ᏣᎳᎩ","dir":"ltr"},{"lang":"ckb","autonym":"کوردی","dir":"rtl"},{"lang":"co","autonym":"corsu","dir":"ltr"},{"lang":"cr","autonym":"Nēhiyawēwin / ᓀᐦᐃᔭᐍᐏᐣ","dir":"ltr"},{"lang":"crh","autonym":"qırımtatarca","dir":"ltr"},{"lang":"cs","autonym":"čeština","dir":"ltr"},{"lang":"cu","autonym":"словѣньскъ / ⰔⰎⰑⰂⰡⰐⰠⰔⰍⰟ","dir":"ltr"},{"lang":"cy","autonym":"Cymraeg","dir":"ltr"},{"lang":"da", "autonym":"dansk","dir":"ltr"},{"lang":"dag","autonym":"dagbanli","dir":"ltr"},{"lang":"de","autonym":"Deutsch","dir":"ltr"},{"lang":"dga","autonym":"Dagaare","dir":"ltr"},{"lang":"din","autonym":"Thuɔŋjäŋ","dir":"ltr"},{"lang":"diq","autonym":"Zazaki","dir":"ltr"},{"lang":"dsb","autonym":"dolnoserbski","dir":"ltr"},{"lang":"dtp","autonym":"Kadazandusun","dir":"ltr"},{"lang":"dv","autonym":"ދިވެހިބަސް","dir":"rtl"},{"lang":"dz","autonym":"ཇོང་ཁ","dir":"ltr"},{"lang":"ee","autonym":"eʋegbe","dir":"ltr"},{"lang":"el","autonym":"Ελληνικά","dir":"ltr"},{"lang":"eml","autonym":"emiliàn e rumagnòl","dir":"ltr"},{"lang":"et","autonym":"eesti","dir":"ltr"},{"lang":"eu","autonym":"euskara","dir":"ltr"},{"lang":"fat","autonym":"mfantse","dir":"ltr"},{"lang":"ff","autonym":"Fulfulde","dir":"ltr"},{"lang":"fi","autonym":"suomi","dir":"ltr"},{"lang":"fj","autonym":"Na Vosa Vakaviti","dir":"ltr"},{"lang":"fo","autonym":"føroyskt","dir":"ltr"},{"lang":"fon", "autonym":"fɔ̀ngbè","dir":"ltr"},{"lang":"fr","autonym":"français","dir":"ltr"},{"lang":"frp","autonym":"arpetan","dir":"ltr"},{"lang":"frr","autonym":"Nordfriisk","dir":"ltr"},{"lang":"fur","autonym":"furlan","dir":"ltr"},{"lang":"fy","autonym":"Frysk","dir":"ltr"},{"lang":"gag","autonym":"Gagauz","dir":"ltr"},{"lang":"gan","autonym":"贛語","dir":"ltr"},{"lang":"gcr","autonym":"kriyòl gwiyannen","dir":"ltr"},{"lang":"gl","autonym":"galego","dir":"ltr"},{"lang":"glk","autonym":"گیلکی","dir":"rtl"},{"lang":"gn","autonym":"Avañe'ẽ","dir":"ltr"},{"lang":"gom","autonym":"गोंयची कोंकणी / Gõychi Konknni","dir":"ltr"},{"lang":"gor","autonym":"Bahasa Hulontalo","dir":"ltr"},{"lang":"gpe","autonym":"Ghanaian Pidgin","dir":"ltr"},{"lang":"gu","autonym":"ગુજરાતી","dir":"ltr"},{"lang":"guc","autonym":"wayuunaiki","dir":"ltr"},{"lang":"gur","autonym":"farefare","dir":"ltr"},{"lang":"guw","autonym":"gungbe","dir":"ltr"},{"lang":"gv","autonym": "Gaelg","dir":"ltr"},{"lang":"ha","autonym":"Hausa","dir":"ltr"},{"lang":"hak","autonym":"客家語 / Hak-kâ-ngî","dir":"ltr"},{"lang":"haw","autonym":"Hawaiʻi","dir":"ltr"},{"lang":"hi","autonym":"हिन्दी","dir":"ltr"},{"lang":"hif","autonym":"Fiji Hindi","dir":"ltr"},{"lang":"hr","autonym":"hrvatski","dir":"ltr"},{"lang":"hsb","autonym":"hornjoserbsce","dir":"ltr"},{"lang":"ht","autonym":"Kreyòl ayisyen","dir":"ltr"},{"lang":"hu","autonym":"magyar","dir":"ltr"},{"lang":"hyw","autonym":"Արեւմտահայերէն","dir":"ltr"},{"lang":"ia","autonym":"interlingua","dir":"ltr"},{"lang":"iba","autonym":"Jaku Iban","dir":"ltr"},{"lang":"ie","autonym":"Interlingue","dir":"ltr"},{"lang":"ig","autonym":"Igbo","dir":"ltr"},{"lang":"igl","autonym":"Igala","dir":"ltr"},{"lang":"ilo","autonym":"Ilokano","dir":"ltr"},{"lang":"io","autonym":"Ido","dir":"ltr"},{"lang":"is","autonym":"íslenska","dir":"ltr"},{"lang":"iu","autonym":"ᐃᓄᒃᑎᑐᑦ / inuktitut","dir":"ltr"},{ "lang":"jam","autonym":"Patois","dir":"ltr"},{"lang":"jv","autonym":"Jawa","dir":"ltr"},{"lang":"ka","autonym":"ქართული","dir":"ltr"},{"lang":"kaa","autonym":"Qaraqalpaqsha","dir":"ltr"},{"lang":"kab","autonym":"Taqbaylit","dir":"ltr"},{"lang":"kbd","autonym":"адыгэбзэ","dir":"ltr"},{"lang":"kbp","autonym":"Kabɩyɛ","dir":"ltr"},{"lang":"kcg","autonym":"Tyap","dir":"ltr"},{"lang":"kg","autonym":"Kongo","dir":"ltr"},{"lang":"kge","autonym":"Kumoring","dir":"ltr"},{"lang":"ki","autonym":"Gĩkũyũ","dir":"ltr"},{"lang":"kk","autonym":"қазақша","dir":"ltr"},{"lang":"kl","autonym":"kalaallisut","dir":"ltr"},{"lang":"km","autonym":"ភាសាខ្មែរ","dir":"ltr"},{"lang":"kn","autonym":"ಕನ್ನಡ","dir":"ltr"},{"lang":"koi","autonym":"перем коми","dir":"ltr"},{"lang":"krc","autonym":"къарачай-малкъар","dir":"ltr"},{"lang":"ks","autonym":"कॉशुर / کٲشُر","dir":"rtl"},{"lang":"ku","autonym":"kurdî","dir": "ltr"},{"lang":"kus","autonym":"Kʋsaal","dir":"ltr"},{"lang":"kv","autonym":"коми","dir":"ltr"},{"lang":"kw","autonym":"kernowek","dir":"ltr"},{"lang":"ky","autonym":"кыргызча","dir":"ltr"},{"lang":"lad","autonym":"Ladino","dir":"ltr"},{"lang":"lb","autonym":"Lëtzebuergesch","dir":"ltr"},{"lang":"lez","autonym":"лезги","dir":"ltr"},{"lang":"lg","autonym":"Luganda","dir":"ltr"},{"lang":"li","autonym":"Limburgs","dir":"ltr"},{"lang":"lij","autonym":"Ligure","dir":"ltr"},{"lang":"lld","autonym":"Ladin","dir":"ltr"},{"lang":"lmo","autonym":"lombard","dir":"ltr"},{"lang":"ln","autonym":"lingála","dir":"ltr"},{"lang":"lo","autonym":"ລາວ","dir":"ltr"},{"lang":"lt","autonym":"lietuvių","dir":"ltr"},{"lang":"ltg","autonym":"latgaļu","dir":"ltr"},{"lang":"lv","autonym":"latviešu","dir":"ltr"},{"lang":"mad","autonym":"Madhurâ","dir":"ltr"},{"lang":"mai","autonym":"मैथिली","dir":"ltr"},{"lang":"map-bms","autonym":"Basa Banyumasan","dir":"ltr"},{"lang": "mdf","autonym":"мокшень","dir":"ltr"},{"lang":"mg","autonym":"Malagasy","dir":"ltr"},{"lang":"mhr","autonym":"олык марий","dir":"ltr"},{"lang":"mi","autonym":"Māori","dir":"ltr"},{"lang":"min","autonym":"Minangkabau","dir":"ltr"},{"lang":"mk","autonym":"македонски","dir":"ltr"},{"lang":"mn","autonym":"монгол","dir":"ltr"},{"lang":"mni","autonym":"ꯃꯤꯇꯩ ꯂꯣꯟ","dir":"ltr"},{"lang":"mnw","autonym":"ဘာသာမန်","dir":"ltr"},{"lang":"mos","autonym":"moore","dir":"ltr"},{"lang":"mr","autonym":"मराठी","dir":"ltr"},{"lang":"mrj","autonym":"кырык мары","dir":"ltr"},{"lang":"mt","autonym":"Malti","dir":"ltr"},{"lang":"mwl","autonym":"Mirandés","dir":"ltr"},{"lang":"my","autonym":"မြန်မာဘာသာ","dir":"ltr"},{"lang":"myv","autonym":"эрзянь","dir":"ltr"},{"lang":"mzn","autonym":"مازِرونی","dir":"rtl"},{"lang":"nah","autonym":"Nāhuatl","dir":"ltr"},{"lang":"nan","autonym": "閩南語 / Bân-lâm-gú","dir":"ltr"},{"lang":"nap","autonym":"Napulitano","dir":"ltr"},{"lang":"nb","autonym":"norsk bokmål","dir":"ltr"},{"lang":"nds","autonym":"Plattdüütsch","dir":"ltr"},{"lang":"nds-nl","autonym":"Nedersaksies","dir":"ltr"},{"lang":"ne","autonym":"नेपाली","dir":"ltr"},{"lang":"new","autonym":"नेपाल भाषा","dir":"ltr"},{"lang":"nia","autonym":"Li Niha","dir":"ltr"},{"lang":"nqo","autonym":"ߒߞߏ","dir":"rtl"},{"lang":"nr","autonym":"isiNdebele seSewula","dir":"ltr"},{"lang":"nso","autonym":"Sesotho sa Leboa","dir":"ltr"},{"lang":"ny","autonym":"Chi-Chewa","dir":"ltr"},{"lang":"oc","autonym":"occitan","dir":"ltr"},{"lang":"om","autonym":"Oromoo","dir":"ltr"},{"lang":"or","autonym":"ଓଡ଼ିଆ","dir":"ltr"},{"lang":"os","autonym":"ирон","dir":"ltr"},{"lang":"pa","autonym":"ਪੰਜਾਬੀ","dir":"ltr"},{"lang":"pag","autonym":"Pangasinan","dir":"ltr"},{"lang":"pam","autonym":"Kapampangan","dir":"ltr"},{"lang":"pap", "autonym":"Papiamentu","dir":"ltr"},{"lang":"pcd","autonym":"Picard","dir":"ltr"},{"lang":"pcm","autonym":"Naijá","dir":"ltr"},{"lang":"pdc","autonym":"Deitsch","dir":"ltr"},{"lang":"pms","autonym":"Piemontèis","dir":"ltr"},{"lang":"pnb","autonym":"پنجابی","dir":"rtl"},{"lang":"pwn","autonym":"pinayuanan","dir":"ltr"},{"lang":"qu","autonym":"Runa Simi","dir":"ltr"},{"lang":"rm","autonym":"rumantsch","dir":"ltr"},{"lang":"rn","autonym":"ikirundi","dir":"ltr"},{"lang":"rsk","autonym":"руски","dir":"ltr"},{"lang":"rue","autonym":"русиньскый","dir":"ltr"},{"lang":"rup","autonym":"armãneashti","dir":"ltr"},{"lang":"rw","autonym":"Ikinyarwanda","dir":"ltr"},{"lang":"sa","autonym":"संस्कृतम्","dir":"ltr"},{"lang":"sah","autonym":"саха тыла","dir":"ltr"},{"lang":"sat","autonym":"ᱥᱟᱱᱛᱟᱲᱤ","dir":"ltr"},{"lang":"sc","autonym":"sardu","dir":"ltr"},{"lang":"scn","autonym":"sicilianu","dir":"ltr"},{"lang":"sco","autonym":"Scots","dir": "ltr"},{"lang":"sd","autonym":"سنڌي","dir":"rtl"},{"lang":"se","autonym":"davvisámegiella","dir":"ltr"},{"lang":"sg","autonym":"Sängö","dir":"ltr"},{"lang":"sgs","autonym":"žemaitėška","dir":"ltr"},{"lang":"sh","autonym":"srpskohrvatski / српскохрватски","dir":"ltr"},{"lang":"shi","autonym":"Taclḥit","dir":"ltr"},{"lang":"shn","autonym":"ၽႃႇသႃႇတႆး ","dir":"ltr"},{"lang":"si","autonym":"සිංහල","dir":"ltr"},{"lang":"sk","autonym":"slovenčina","dir":"ltr"},{"lang":"skr","autonym":"سرائیکی","dir":"rtl"},{"lang":"sm","autonym":"Gagana Samoa","dir":"ltr"},{"lang":"smn","autonym":"anarâškielâ","dir":"ltr"},{"lang":"sn","autonym":"chiShona","dir":"ltr"},{"lang":"so","autonym":"Soomaaliga","dir":"ltr"},{"lang":"sq","autonym":"shqip","dir":"ltr"},{"lang":"sr","autonym":"српски / srpski","dir":"ltr"},{"lang":"srn","autonym":"Sranantongo","dir":"ltr"},{"lang":"ss","autonym":"SiSwati","dir":"ltr"},{"lang":"st","autonym": "Sesotho","dir":"ltr"},{"lang":"stq","autonym":"Seeltersk","dir":"ltr"},{"lang":"su","autonym":"Sunda","dir":"ltr"},{"lang":"sw","autonym":"Kiswahili","dir":"ltr"},{"lang":"szl","autonym":"ślůnski","dir":"ltr"},{"lang":"ta","autonym":"தமிழ்","dir":"ltr"},{"lang":"tay","autonym":"Tayal","dir":"ltr"},{"lang":"tcy","autonym":"ತುಳು","dir":"ltr"},{"lang":"tdd","autonym":"ᥖᥭᥰ ᥖᥬᥲ ᥑᥨᥒᥰ","dir":"ltr"},{"lang":"te","autonym":"తెలుగు","dir":"ltr"},{"lang":"tet","autonym":"tetun","dir":"ltr"},{"lang":"tg","autonym":"тоҷикӣ","dir":"ltr"},{"lang":"ti","autonym":"ትግርኛ","dir":"ltr"},{"lang":"tk","autonym":"Türkmençe","dir":"ltr"},{"lang":"tl","autonym":"Tagalog","dir":"ltr"},{"lang":"tly","autonym":"tolışi","dir":"ltr"},{"lang":"tn","autonym":"Setswana","dir":"ltr"},{"lang":"to","autonym":"lea faka-Tonga","dir":"ltr"},{"lang":"tpi","autonym":"Tok Pisin","dir":"ltr"},{"lang":"trv","autonym":"Seediq","dir":"ltr"},{"lang":"ts", "autonym":"Xitsonga","dir":"ltr"},{"lang":"tt","autonym":"татарча / tatarça","dir":"ltr"},{"lang":"tum","autonym":"chiTumbuka","dir":"ltr"},{"lang":"tw","autonym":"Twi","dir":"ltr"},{"lang":"ty","autonym":"reo tahiti","dir":"ltr"},{"lang":"tyv","autonym":"тыва дыл","dir":"ltr"},{"lang":"udm","autonym":"удмурт","dir":"ltr"},{"lang":"ur","autonym":"اردو","dir":"rtl"},{"lang":"ve","autonym":"Tshivenda","dir":"ltr"},{"lang":"vec","autonym":"vèneto","dir":"ltr"},{"lang":"vep","autonym":"vepsän kel’","dir":"ltr"},{"lang":"vi","autonym":"Tiếng Việt","dir":"ltr"},{"lang":"vls","autonym":"West-Vlams","dir":"ltr"},{"lang":"vo","autonym":"Volapük","dir":"ltr"},{"lang":"vro","autonym":"võro","dir":"ltr"},{"lang":"wa","autonym":"walon","dir":"ltr"},{"lang":"war","autonym":"Winaray","dir":"ltr"},{"lang":"wo","autonym":"Wolof","dir":"ltr"},{"lang":"wuu","autonym":"吴语","dir":"ltr"},{"lang":"xal","autonym":"хальмг","dir":"ltr"},{"lang":"xh","autonym": "isiXhosa","dir":"ltr"},{"lang":"xmf","autonym":"მარგალური","dir":"ltr"},{"lang":"yi","autonym":"ייִדיש","dir":"rtl"},{"lang":"yo","autonym":"Yorùbá","dir":"ltr"},{"lang":"yue","autonym":"粵語","dir":"ltr"},{"lang":"za","autonym":"Vahcuengh","dir":"ltr"},{"lang":"zgh","autonym":"ⵜⴰⵎⴰⵣⵉⵖⵜ ⵜⴰⵏⴰⵡⴰⵢⵜ","dir":"ltr"},{"lang":"zu","autonym":"isiZulu","dir":"ltr"}],"wgSectionTranslationTargetLanguages":["ace","ady","alt","am","ami","an","ang","ann","anp","ar","ary","arz","as","ast","av","avk","awa","ay","az","azb","ba","ban","bar","bbc","bcl","bdr","be","bew","bg","bho","bi","bjn","blk","bm","bn","bo","bpy","br","bs","btm","bug","ca","cdo","ce","ceb","ch","chr","ckb","co","cr","crh","cs","cu","cy","da","dag","de","dga","din","diq","dsb","dtp","dv","dz","ee","el","eml","eo","es","et","eu","fa","fat","ff","fi","fj","fo","fon","fr","frp","frr","fur","fy","gag","gan","gcr","gl","glk","gn","gom","gor","gpe","gu","guc","gur","guw","gv","ha", "hak","haw","he","hi","hif","hr","hsb","ht","hu","hy","hyw","ia","iba","ie","ig","igl","ilo","io","is","it","iu","ja","jam","jv","ka","kaa","kab","kbd","kbp","kcg","kg","kge","ki","kk","kl","km","kn","ko","koi","krc","ks","ku","kus","kv","kw","ky","lad","lb","lez","lg","li","lij","lld","lmo","ln","lo","lt","ltg","lv","mad","mai","map-bms","mdf","mg","mhr","mi","min","mk","ml","mn","mni","mnw","mos","mr","mrj","ms","mt","mwl","my","myv","mzn","nah","nan","nap","nb","nds","nds-nl","ne","new","nia","nl","nn","nqo","nr","nso","ny","oc","om","or","os","pa","pag","pam","pap","pcd","pcm","pdc","pl","pms","pnb","ps","pt","pwn","qu","rm","rn","ro","rsk","rue","rup","rw","sa","sah","sat","sc","scn","sco","sd","se","sg","sgs","sh","shi","shn","si","sk","skr","sl","sm","smn","sn","so","sq","sr","srn","ss","st","stq","su","sv","sw","szl","ta","tay","tcy","tdd","te","tet","tg","th","ti","tk","tl","tly","tn","to","tpi","tr","trv","ts","tt","tum","tw","ty","tyv","udm","ur","uz","ve","vec","vep","vi", "vls","vo","vro","wa","war","wo","wuu","xal","xh","xmf","yi","yo","yue","za","zgh","zh","zu"],"isLanguageSearcherCXEntrypointEnabled":true,"mintEntrypointLanguages":["ace","ast","azb","bcl","bjn","bh","crh","ff","fon","ig","is","ki","ks","lmo","min","sat","ss","tn","vec"],"wgWikibaseItemId":"Q1146448","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false,"wgMinervaPermissions":{"watchable":true,"watch":false},"wgMinervaFeatures":{"beta":false,"donate":true,"mobileOptionsLink":true,"categories":false,"pageIssues":true,"talkAtTop":true,"historyInPageActions":false,"overflowSubmenu":false,"tabsOnSpecials":true,"personalMenu":false,"mainMenuExpanded":false,"echo":true,"nightMode":true},"wgMinervaDownloadNamespaces":[0]};RLSTATE={ "ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.minerva.styles":"ready","skins.minerva.content.styles.images":"ready","mediawiki.hlist":"ready","skins.minerva.codex.styles":"ready","skins.minerva.icons":"ready","skins.minerva.amc.styles":"ready","ext.wikimediamessages.styles":"ready","mobile.init.styles":"ready","ext.relatedArticles.styles":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","site","mediawiki.page.ready","skins.minerva.scripts","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","ext.popups","mobile.init","ext.echo.centralauth","ext.relatedArticles.readMore.bootstrap","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.cx.eventlogging.campaigns", "ext.cx.entrypoints.mffrequentlanguages","ext.cx.entrypoints.languagesearcher.init","mw.externalguidance.init","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.relatedArticles.styles%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cmediawiki.hlist%7Cmobile.init.styles%7Cskins.minerva.amc.styles%7Cskins.minerva.codex.styles%7Cskins.minerva.content.styles.images%7Cskins.minerva.icons%2Cstyles%7Cwikibase.client.init&amp;only=styles&amp;skin=minerva"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=minerva"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=minerva"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="theme-color" content="#eaecf0"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/2/22/Carnot_heat_engine_2.svg/1200px-Carnot_heat_engine_2.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="529"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/2/22/Carnot_heat_engine_2.svg/800px-Carnot_heat_engine_2.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="352"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/2/22/Carnot_heat_engine_2.svg/640px-Carnot_heat_engine_2.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="282"> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes, minimum-scale=0.25, maximum-scale=5.0"> <meta property="og:title" content="Thermodynamic free energy - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="manifest" href="/w/api.php?action=webapp-manifest"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Thermodynamic_free_energy&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Thermodynamic_free_energy"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Thermodynamic_free_energy rootpage-Thermodynamic_free_energy stable issues-group-B skin-minerva action-view skin--responsive mw-mf-amc-disabled mw-mf"><div id="mw-mf-viewport"> <div id="mw-mf-page-center"> <a class="mw-mf-page-center__mask" href="#"></a> <header class="header-container header-chrome"> <div class="minerva-header"> <nav class="navigation-drawer toggle-list view-border-box"> <input type="checkbox" id="main-menu-input" class="toggle-list__checkbox" role="button" aria-haspopup="true" aria-expanded="false" aria-labelledby="mw-mf-main-menu-button"> <label role="button" for="main-menu-input" id="mw-mf-main-menu-button" aria-hidden="true" data-event-name="ui.mainmenu" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet toggle-list__toggle"> <span class="minerva-icon minerva-icon--menu"></span> <span></span> </label> <div id="mw-mf-page-left" class="menu view-border-box"> <ul id="p-navigation" class="toggle-list__list"> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--home" href="/wiki/Main_Page" data-mw="interface"> <span class="minerva-icon minerva-icon--home"></span> <span class="toggle-list-item__label">Home</span> </a> </li> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--random" href="/wiki/Special:Random" data-mw="interface"> <span class="minerva-icon minerva-icon--die"></span> <span class="toggle-list-item__label">Random</span> </a> </li> <li class="toggle-list-item skin-minerva-list-item-jsonly"> <a class="toggle-list-item__anchor menu__item--nearby" href="/wiki/Special:Nearby" data-event-name="menu.nearby" data-mw="interface"> <span class="minerva-icon minerva-icon--mapPin"></span> <span class="toggle-list-item__label">Nearby</span> </a> </li> </ul> <ul id="p-personal" class="toggle-list__list"> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--login" href="/w/index.php?title=Special:UserLogin&amp;returnto=Thermodynamic+free+energy" data-event-name="menu.login" data-mw="interface"> <span class="minerva-icon minerva-icon--logIn"></span> <span class="toggle-list-item__label">Log in</span> </a> </li> </ul> <ul id="pt-preferences" class="toggle-list__list"> <li class="toggle-list-item skin-minerva-list-item-jsonly"> <a class="toggle-list-item__anchor menu__item--settings" href="/w/index.php?title=Special:MobileOptions&amp;returnto=Thermodynamic+free+energy" data-event-name="menu.settings" data-mw="interface"> <span class="minerva-icon minerva-icon--settings"></span> <span class="toggle-list-item__label">Settings</span> </a> </li> </ul> <ul id="p-donation" class="toggle-list__list"> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--donate" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en&amp;utm_key=minerva" data-event-name="menu.donate" data-mw="interface"> <span class="minerva-icon minerva-icon--heart"></span> <span class="toggle-list-item__label">Donate</span> </a> </li> </ul> <ul class="hlist"> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--about" href="/wiki/Wikipedia:About" data-mw="interface"> <span class="toggle-list-item__label">About Wikipedia</span> </a> </li> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--disclaimers" href="/wiki/Wikipedia:General_disclaimer" data-mw="interface"> <span class="toggle-list-item__label">Disclaimers</span> </a> </li> </ul> </div> <label class="main-menu-mask" for="main-menu-input"></label> </nav> <div class="branding-box"> <a href="/wiki/Main_Page"> <span><img src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" alt="Wikipedia" width="120" height="18" style="width: 7.5em; height: 1.125em;"/> </span> </a> </div> <form action="/w/index.php" method="get" class="minerva-search-form"> <div class="search-box"> <input type="hidden" name="title" value="Special:Search"/> <input class="search skin-minerva-search-trigger" id="searchInput" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f"> <span class="search-box-icon-overlay"><span class="minerva-icon minerva-icon--search"></span> </span> </div> <button id="searchIcon" class="cdx-button cdx-button--size-large cdx-button--icon-only cdx-button--weight-quiet skin-minerva-search-trigger"> <span class="minerva-icon minerva-icon--search"></span> <span>Search</span> </button> </form> <nav class="minerva-user-navigation" aria-label="User navigation"> </nav> </div> </header> <main id="content" class="mw-body"> <div class="banner-container"> <div id="siteNotice"></div> </div> <div class="pre-content heading-holder"> <div class="page-heading"> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Thermodynamic free energy</span></h1> <div class="tagline"></div> </div> <ul id="p-associated-pages" class="minerva__tab-container"> <li class="minerva__tab selected"> <a class="minerva__tab-text" href="/wiki/Thermodynamic_free_energy" rel="" data-event-name="tabs.subject">Article</a> </li> <li class="minerva__tab "> <a class="minerva__tab-text" href="/wiki/Talk:Thermodynamic_free_energy" rel="discussion" data-event-name="tabs.talk">Talk</a> </li> </ul> <nav class="page-actions-menu"> <ul id="p-views" class="page-actions-menu__list"> <li id="language-selector" class="page-actions-menu__list-item"> <a role="button" href="#p-lang" data-mw="interface" data-event-name="menu.languages" title="Language" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet language-selector"> <span class="minerva-icon minerva-icon--language"></span> <span>Language</span> </a> </li> <li id="page-actions-watch" class="page-actions-menu__list-item"> <a role="button" id="ca-watch" href="/w/index.php?title=Special:UserLogin&amp;returnto=Thermodynamic+free+energy" data-event-name="menu.watch" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet menu__item--page-actions-watch"> <span class="minerva-icon minerva-icon--star"></span> <span>Watch</span> </a> </li> <li id="page-actions-edit" class="page-actions-menu__list-item"> <a role="button" id="ca-edit" href="/w/index.php?title=Thermodynamic_free_energy&amp;action=edit" data-event-name="menu.edit" data-mw="interface" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet edit-page menu__item--page-actions-edit"> <span class="minerva-icon minerva-icon--edit"></span> <span>Edit</span> </a> </li> </ul> </nav> <!-- version 1.0.2 (change every time you update a partial) --> <div id="mw-content-subtitle"></div> </div> <div id="bodyContent" class="content"> <div id="mw-content-text" class="mw-body-content"><script>function mfTempOpenSection(id){var block=document.getElementById("mf-section-"+id);block.className+=" open-block";block.previousSibling.className+=" open-block";}</script><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><section class="mf-section-0" id="mf-section-0"> <p class="mw-empty-elt"> </p> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"> <p>In <a href="/wiki/Thermodynamics" title="Thermodynamics">thermodynamics</a>, the <b>thermodynamic free energy</b> is one of the <a href="/wiki/State_function" title="State function">state functions</a> of a <a href="/wiki/Thermodynamic_system" title="Thermodynamic system">thermodynamic system</a> (the others being <a href="/wiki/Internal_energy" title="Internal energy">internal energy</a>, <a href="/wiki/Enthalpy" title="Enthalpy">enthalpy</a>, <a href="/wiki/Entropy" title="Entropy">entropy</a>, etc.). The change in the free energy is the maximum amount of <a href="/wiki/Work_(thermodynamics)" title="Work (thermodynamics)">work</a> that the system can perform in a <a href="/wiki/Thermodynamic_process" title="Thermodynamic process">process</a> at <a href="/wiki/Isothermal_process" title="Isothermal process">constant temperature</a>, and its sign indicates whether the process is thermodynamically favorable or forbidden. Since free energy usually contains <a href="/wiki/Potential_energy" title="Potential energy">potential energy</a>, it is not absolute but depends on the choice of a zero point. Therefore, only relative free energy values, or changes in free energy, are physically meaningful. </p><p>The free energy is the portion of any <a href="/wiki/First_law_of_thermodynamics" title="First law of thermodynamics">first-law</a> energy that is <b>available</b> to perform thermodynamic work at constant temperature, <i>i.e.</i>, work mediated by <a href="/wiki/Thermal_energy" title="Thermal energy">thermal energy</a>. Free energy is subject to <a href="/wiki/Irreversibility" class="mw-redirect" title="Irreversibility">irreversible</a> loss in the course of such work.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> Since first-law energy is always conserved, it is evident that free energy is an expendable, <a href="/wiki/Second_law_of_thermodynamics" title="Second law of thermodynamics">second-law</a> kind of energy. Several free energy functions may be formulated based on system criteria. Free energy <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">functions</a> are <a href="/wiki/Legendre_transformation" title="Legendre transformation">Legendre transforms</a> of the <a href="/wiki/Internal_energy" title="Internal energy">internal energy</a>. </p><p>The <a href="/wiki/Gibbs_free_energy" title="Gibbs free energy">Gibbs free energy</a> is given by <span class="texhtml"><i>G</i> = <i>H</i> − <i>TS</i></span>, where <span class="texhtml mvar" style="font-style:italic;">H</span> is the <a href="/wiki/Enthalpy" title="Enthalpy">enthalpy</a>, <span class="texhtml mvar" style="font-style:italic;">T</span> is the <a href="/wiki/Thermodynamic_temperature" title="Thermodynamic temperature">absolute temperature</a>, and <span class="texhtml mvar" style="font-style:italic;">S</span> is the <a href="/wiki/Entropy" title="Entropy">entropy</a>. <span class="texhtml"><i>H</i> = <i>U</i> + <i>pV</i></span>, where <span class="texhtml mvar" style="font-style:italic;">U</span> is the internal energy, <span class="texhtml mvar" style="font-style:italic;">p</span> is the <a href="/wiki/Pressure" title="Pressure">pressure</a>, and <span class="texhtml mvar" style="font-style:italic;">V</span> is the volume. <span class="texhtml mvar" style="font-style:italic;">G</span> is the most useful for <a href="/wiki/Thermodynamic_process" title="Thermodynamic process">processes</a> involving a system at <a href="https://en.wiktionary.org/wiki/Constant" class="extiw" title="wiktionary:Constant">constant</a> <a href="/wiki/Pressure" title="Pressure">pressure</a> <span class="texhtml mvar" style="font-style:italic;">p</span> and temperature <span class="texhtml mvar" style="font-style:italic;">T</span>, because, in addition to subsuming any entropy change due merely to heat, a change in <span class="texhtml mvar" style="font-style:italic;">G</span> also excludes the <span class="texhtml mvar" style="font-style:italic;">p dV</span> work needed to "make space for additional molecules" produced by various processes. Gibbs free energy change therefore equals work not associated with system expansion or compression, at constant temperature and pressure, hence its utility to <a href="/wiki/Solution_(chemistry)" title="Solution (chemistry)">solution</a>-<a href="/wiki/Phase_(matter)" title="Phase (matter)">phase</a> chemists, including biochemists. </p><p>The historically earlier <a href="/wiki/Helmholtz_free_energy" title="Helmholtz free energy">Helmholtz free energy</a> is defined in contrast as <span class="texhtml"><i>A</i> = <i>U</i> − <i>TS</i></span>. Its change is equal to the amount of <a href="/wiki/Reversible_process_(thermodynamics)" title="Reversible process (thermodynamics)">reversible</a> work done on, or obtainable from, a system at constant <span class="texhtml mvar" style="font-style:italic;">T</span>. Thus its appellation "work content", and the designation <span class="texhtml mvar" style="font-style:italic;">A</span> (from <a href="/wiki/German_language" title="German language">German</a> <i> Arbeit</i> 'work'). Since it makes no reference to any quantities involved in work (such as <span class="texhtml mvar" style="font-style:italic;">p</span> and <span class="texhtml mvar" style="font-style:italic;">V</span>), the Helmholtz function is completely general: its decrease is the maximum amount of work which can be done <i>by</i> a system at constant temperature, and it can increase at most by the amount of work done <i>on</i> a system isothermally. The Helmholtz free energy has a special theoretical importance since it is proportional to the <a href="/wiki/Logarithm" title="Logarithm">logarithm</a> of the <a href="/wiki/Partition_function_(statistical_mechanics)#Relation_to_thermodynamic_variables" title="Partition function (statistical mechanics)">partition function</a> for the <a href="/wiki/Canonical_ensemble" title="Canonical ensemble">canonical ensemble</a> in <a href="/wiki/Statistical_mechanics" title="Statistical mechanics">statistical mechanics</a>. (Hence its utility to <a href="/wiki/Physicist" title="Physicist">physicists</a>; and to gas-phase chemists and engineers, who do not want to ignore <span class="texhtml mvar" style="font-style:italic;">p dV</span> work.) </p><p>Historically, the term 'free energy' has been used for either quantity. In <a href="/wiki/Physics" title="Physics">physics</a>, <i>free energy</i> most often refers to the Helmholtz free energy, denoted by <span class="texhtml mvar" style="font-style:italic;">A</span> (or <span class="texhtml mvar" style="font-style:italic;">F</span>), while in <a href="/wiki/Chemistry" title="Chemistry">chemistry</a>, <i>free energy</i> most often refers to the Gibbs free energy. The values of the two free energies are usually quite similar and the intended free energy function is often implicit in manuscripts and presentations. </p> <div id="toc" class="toc" role="navigation" aria-labelledby="mw-toc-heading"><input type="checkbox" role="button" id="toctogglecheckbox" class="toctogglecheckbox" style="display:none"><div class="toctitle" lang="en" dir="ltr"><h2 id="mw-toc-heading">Contents</h2><span class="toctogglespan"><label class="toctogglelabel" for="toctogglecheckbox"></label></span></div> <ul> <li class="toclevel-1 tocsection-1"><a href="#Meaning_of_%22free%22"><span class="tocnumber">1</span> <span class="toctext">Meaning of "free"</span></a></li> <li class="toclevel-1 tocsection-2"><a href="#Application"><span class="tocnumber">2</span> <span class="toctext">Application</span></a> <ul> <li class="toclevel-2 tocsection-3"><a href="#Work_and_free_energy_change"><span class="tocnumber">2.1</span> <span class="toctext">Work and free energy change</span></a></li> <li class="toclevel-2 tocsection-4"><a href="#Free_energy_change_and_spontaneous_processes"><span class="tocnumber">2.2</span> <span class="toctext">Free energy change and spontaneous processes</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-5"><a href="#History"><span class="tocnumber">3</span> <span class="toctext">History</span></a></li> <li class="toclevel-1 tocsection-6"><a href="#See_also"><span class="tocnumber">4</span> <span class="toctext">See also</span></a></li> <li class="toclevel-1 tocsection-7"><a href="#References"><span class="tocnumber">5</span> <span class="toctext">References</span></a></li> </ul> </div> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(1)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id='Meaning_of_"free"'><span id="Meaning_of_.22free.22"></span>Meaning of "free"</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Thermodynamic_free_energy&amp;action=edit&amp;section=1" title='Edit section: Meaning of "free"' class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-1 collapsible-block" id="mf-section-1"> <p>The basic definition of "energy" is a measure of a body's (in thermodynamics, the system's) ability to cause change. For example, when a person pushes a heavy box a few metres forward, that person exerts mechanical energy, also known as work, on the box over a distance of a few meters forward. The mathematical definition of this form of energy is the product of the force exerted on the object and the distance by which the box moved (<span class="nowrap">Work = Force × Distance</span>). Because the person changed the stationary position of the box, that person exerted energy on that box. The work exerted can also be called "useful energy", because energy was converted from one form into the intended purpose, i.e. mechanical use. For the case of the person pushing the box, the energy in the form of internal (or potential) energy obtained through metabolism was converted into work to push the box. This energy conversion, however, was not straightforward: while some internal energy went into pushing the box, some was diverted away (lost) in the form of heat (transferred thermal energy). </p><p>For a reversible process, heat is the product of the absolute temperature <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></noscript><span class="lazy-image-placeholder" style="width: 1.636ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" data-alt="{\displaystyle T}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> and the change in entropy <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></noscript><span class="lazy-image-placeholder" style="width: 1.499ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" data-alt="{\displaystyle S}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> of a body (entropy is a measure of disorder in a system). The difference between the change in internal energy, which is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta U}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d4716a2c49bbbe155e8b399117ca78342e802cbe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.718ex; height:2.176ex;" alt="{\displaystyle \Delta U}"></noscript><span class="lazy-image-placeholder" style="width: 3.718ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d4716a2c49bbbe155e8b399117ca78342e802cbe" data-alt="{\displaystyle \Delta U}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, and the energy lost in the form of heat is what is called the "useful energy" of the body, or the work of the body performed on an object. In thermodynamics, this is what is known as "free energy". In other words, free energy is a measure of work (useful energy) a system can perform at constant temperature. </p><p>Mathematically, free energy is expressed as </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=U-TS}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mi>U</mi> <mo>−<!-- − --></mo> <mi>T</mi> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=U-TS}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/63e9f78d0225aa7363f6cdbdee236c6c70d58f02" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:12.6ex; height:2.343ex;" alt="{\displaystyle A=U-TS}"></noscript><span class="lazy-image-placeholder" style="width: 12.6ex;height: 2.343ex;vertical-align: -0.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/63e9f78d0225aa7363f6cdbdee236c6c70d58f02" data-alt="{\displaystyle A=U-TS}" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span> </p><p>This expression has commonly been interpreted to mean that work is extracted from the internal energy <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.783ex; height:2.176ex;" alt="{\displaystyle U}"></noscript><span class="lazy-image-placeholder" style="width: 1.783ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" data-alt="{\displaystyle U}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> while <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle TS}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle TS}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3a5d1bbb125e49462686f0912d3984f85c099ac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.135ex; height:2.176ex;" alt="{\displaystyle TS}"></noscript><span class="lazy-image-placeholder" style="width: 3.135ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3a5d1bbb125e49462686f0912d3984f85c099ac" data-alt="{\displaystyle TS}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> represents energy not available to perform work. However, this is incorrect. For instance, in an isothermal expansion of an ideal gas, the internal energy change is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta U=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>U</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta U=0}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc15afdcbd260089782229afb870e314bf021913" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.979ex; height:2.176ex;" alt="{\displaystyle \Delta U=0}"></noscript><span class="lazy-image-placeholder" style="width: 7.979ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc15afdcbd260089782229afb870e314bf021913" data-alt="{\displaystyle \Delta U=0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> and the expansion work <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w=-T\Delta S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>w</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi>T</mi> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w=-T\Delta S}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/423b3894ea89e897bfe9e5c209f0161ec971bd2b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:11.642ex; height:2.343ex;" alt="{\displaystyle w=-T\Delta S}"></noscript><span class="lazy-image-placeholder" style="width: 11.642ex;height: 2.343ex;vertical-align: -0.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/423b3894ea89e897bfe9e5c209f0161ec971bd2b" data-alt="{\displaystyle w=-T\Delta S}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> is derived exclusively from the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle TS}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle TS}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3a5d1bbb125e49462686f0912d3984f85c099ac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.135ex; height:2.176ex;" alt="{\displaystyle TS}"></noscript><span class="lazy-image-placeholder" style="width: 3.135ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3a5d1bbb125e49462686f0912d3984f85c099ac" data-alt="{\displaystyle TS}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> term supposedly not available to perform work. But it is noteworthy that the derivative form of the free energy: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle dA=-SdT-PdV}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>A</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi>S</mi> <mi>d</mi> <mi>T</mi> <mo>−<!-- − --></mo> <mi>P</mi> <mi>d</mi> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle dA=-SdT-PdV}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6fa0f980bfe003060f18dc6489388f0f71bf7d09" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:19.806ex; height:2.343ex;" alt="{\displaystyle dA=-SdT-PdV}"></noscript><span class="lazy-image-placeholder" style="width: 19.806ex;height: 2.343ex;vertical-align: -0.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6fa0f980bfe003060f18dc6489388f0f71bf7d09" data-alt="{\displaystyle dA=-SdT-PdV}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> (for Helmholtz free energy) does indeed indicate that a spontaneous change in a non-reactive system's free energy (NOT the internal energy) comprises the available energy to do work (compression in this case) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -PdV}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <mi>P</mi> <mi>d</mi> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -PdV}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cbc2d2cba2819d34a1ce48d56db907e8f7358e86" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.557ex; height:2.343ex;" alt="{\displaystyle -PdV}"></noscript><span class="lazy-image-placeholder" style="width: 6.557ex;height: 2.343ex;vertical-align: -0.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cbc2d2cba2819d34a1ce48d56db907e8f7358e86" data-alt="{\displaystyle -PdV}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> and the unavailable energy <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -SdT}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <mi>S</mi> <mi>d</mi> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -SdT}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04350005c4247cf1ccb7170d2401664ddbae5b4c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.16ex; height:2.343ex;" alt="{\displaystyle -SdT}"></noscript><span class="lazy-image-placeholder" style="width: 6.16ex;height: 2.343ex;vertical-align: -0.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04350005c4247cf1ccb7170d2401664ddbae5b4c" data-alt="{\displaystyle -SdT}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-:0_3-0" class="reference"><a href="#cite_note-:0-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-:1_4-0" class="reference"><a href="#cite_note-:1-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> Similar expression can be written for the Gibbs free energy change.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-:0_3-1" class="reference"><a href="#cite_note-:0-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-:1_4-1" class="reference"><a href="#cite_note-:1-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> </p><p>In the 18th and 19th centuries, the <a href="/wiki/Theory_of_heat" class="mw-redirect" title="Theory of heat">theory of heat</a>, i.e., that heat is a form of energy having relation to vibratory motion, was beginning to supplant both the <a href="/wiki/Caloric_theory" title="Caloric theory">caloric theory</a>, i.e., that heat is a fluid, and the <a href="/wiki/Four_element_theory" class="mw-redirect" title="Four element theory">four element theory</a>, in which heat was the lightest of the four elements. In a similar manner, during these years, heat was beginning to be distinguished into different classification categories, such as "free heat", "combined heat", "radiant heat", <a href="/wiki/Specific_heat" class="mw-redirect" title="Specific heat">specific heat</a>, <a href="/wiki/Heat_capacity" title="Heat capacity">heat capacity</a>, "absolute heat", "latent caloric", "free" or "perceptible" caloric (<i>calorique sensible</i>), among others. </p><p>In 1780, for example, <a href="/wiki/Laplace" class="mw-redirect" title="Laplace">Laplace</a> and <a href="/wiki/Lavoisier" class="mw-redirect" title="Lavoisier">Lavoisier</a> stated: “In general, one can change the first hypothesis into the second by changing the words ‘free heat, combined heat, and heat released’ into ‘<a href="/wiki/Vis_viva" title="Vis viva">vis viva</a>, loss of vis viva, and increase of vis viva.’" In this manner, the total mass of caloric in a body, called <i>absolute heat</i>, was regarded as a mixture of two components; the free or perceptible caloric could affect a thermometer, whereas the other component, the latent caloric, could not.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> The use of the words "latent heat" implied a similarity to latent heat in the more usual sense; it was regarded as chemically <i>bound</i> to the molecules of the body. In the <a href="/wiki/Adiabatic_process" title="Adiabatic process">adiabatic</a> <a href="/wiki/Gas_compression" class="mw-redirect" title="Gas compression">compression</a> of a gas, the absolute heat remained constant but the observed rise in temperature implied that some latent caloric had become "free" or perceptible. </p><p>During the early 19th century, the concept of perceptible or free caloric began to be referred to as "free heat" or "heat set free". In 1824, for example, the French physicist <a href="/wiki/Nicolas_L%C3%A9onard_Sadi_Carnot" title="Nicolas Léonard Sadi Carnot">Sadi Carnot</a>, in his famous "<a href="/wiki/Reflections_on_the_Motive_Power_of_Fire" title="Reflections on the Motive Power of Fire">Reflections on the Motive Power of Fire</a>", speaks of quantities of heat ‘absorbed or set free’ in different transformations. In 1882, the German physicist and physiologist <a href="/wiki/Hermann_von_Helmholtz" title="Hermann von Helmholtz">Hermann von Helmholtz</a> coined the phrase ‘free energy’ for the expression <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=U-TS}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mi>U</mi> <mo>−<!-- − --></mo> <mi>T</mi> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=U-TS}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/63e9f78d0225aa7363f6cdbdee236c6c70d58f02" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:12.6ex; height:2.343ex;" alt="{\displaystyle A=U-TS}"></noscript><span class="lazy-image-placeholder" style="width: 12.6ex;height: 2.343ex;vertical-align: -0.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/63e9f78d0225aa7363f6cdbdee236c6c70d58f02" data-alt="{\displaystyle A=U-TS}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, in which the change in <i>A</i> (or <i>G</i>) determines the amount of energy ‘free’ for <a href="/wiki/Work_(thermodynamics)" title="Work (thermodynamics)">work</a> under the given conditions, specifically constant temperature.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 235">: 235 </span></sup> </p><p>Thus, in traditional use, the term "free" was attached to Gibbs free energy for systems at constant pressure and temperature, or to Helmholtz free energy for systems at constant temperature, to mean ‘available in the form of useful work.’<sup id="cite_ref-Perrot_8-0" class="reference"><a href="#cite_note-Perrot-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> With reference to the Gibbs free energy, we need to add the qualification that it is the energy <i>free</i> for non-volume work and compositional changes.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 77–79">: 77–79 </span></sup> </p><p>An increasing number of books and journal articles do not include the attachment "free", referring to <i>G</i> as simply Gibbs energy (and likewise for the <a href="/wiki/Helmholtz_free_energy" title="Helmholtz free energy">Helmholtz energy</a>). This is the result of a 1988 <a href="/wiki/International_Union_of_Pure_and_Applied_Chemistry" title="International Union of Pure and Applied Chemistry">IUPAC</a> meeting to set unified terminologies for the international scientific community, in which the adjective ‘free’ was supposedly banished.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> This standard, however, has not yet been universally adopted, and many published articles and books still include the descriptive ‘free’.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (August 2010)">citation needed</span></a></i>]</sup> </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(2)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Application">Application</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Thermodynamic_free_energy&amp;action=edit&amp;section=2" title="Edit section: Application" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-2 collapsible-block" id="mf-section-2"> <p>Just like the general concept of energy, free energy has a few definitions suitable for different conditions. In physics, chemistry, and biology, these conditions are thermodynamic parameters (temperature <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></noscript><span class="lazy-image-placeholder" style="width: 1.636ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" data-alt="{\displaystyle T}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, volume <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></noscript><span class="lazy-image-placeholder" style="width: 1.787ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" data-alt="{\displaystyle V}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, pressure <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></noscript><span class="lazy-image-placeholder" style="width: 1.259ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" data-alt="{\displaystyle p}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, etc.). Scientists have come up with several ways to define free energy. The mathematical expression of Helmholtz free energy is: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=U-TS}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mi>U</mi> <mo>−<!-- − --></mo> <mi>T</mi> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=U-TS}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/63e9f78d0225aa7363f6cdbdee236c6c70d58f02" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:12.6ex; height:2.343ex;" alt="{\displaystyle A=U-TS}"></noscript><span class="lazy-image-placeholder" style="width: 12.6ex;height: 2.343ex;vertical-align: -0.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/63e9f78d0225aa7363f6cdbdee236c6c70d58f02" data-alt="{\displaystyle A=U-TS}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></dd></dl> <p>This definition of free energy is useful for gas-phase reactions or in physics when modeling the behavior of isolated systems kept at a constant volume. For example, if a researcher wanted to perform a combustion reaction in a bomb calorimeter, the volume is kept constant throughout the course of a reaction. Therefore, the heat of the reaction is a direct measure of the free energy change, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q=\Delta U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mo>=</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q=\Delta U}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/186d5e421390d3d6d98e91f4727961ba4b70ef2e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.886ex; height:2.509ex;" alt="{\displaystyle q=\Delta U}"></noscript><span class="lazy-image-placeholder" style="width: 7.886ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/186d5e421390d3d6d98e91f4727961ba4b70ef2e" data-alt="{\displaystyle q=\Delta U}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. In solution chemistry, on the other hand, most chemical reactions are kept at constant pressure. Under this condition, the heat <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></noscript><span class="lazy-image-placeholder" style="width: 1.07ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" data-alt="{\displaystyle q}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> of the reaction is equal to the enthalpy change <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta H}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/385a86c9ced1913abd3606f6bfcec2c10c131cae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.999ex; height:2.176ex;" alt="{\displaystyle \Delta H}"></noscript><span class="lazy-image-placeholder" style="width: 3.999ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/385a86c9ced1913abd3606f6bfcec2c10c131cae" data-alt="{\displaystyle \Delta H}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> of the system. Under constant pressure and temperature, the free energy in a reaction is known as Gibbs free energy <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></noscript><span class="lazy-image-placeholder" style="width: 1.827ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" data-alt="{\displaystyle G}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G=H-TS}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo>=</mo> <mi>H</mi> <mo>−<!-- − --></mo> <mi>T</mi> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G=H-TS}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31abc549d1a3b34b4d49d0785f8f90abbd2396fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:12.965ex; height:2.343ex;" alt="{\displaystyle G=H-TS}"></noscript><span class="lazy-image-placeholder" style="width: 12.965ex;height: 2.343ex;vertical-align: -0.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31abc549d1a3b34b4d49d0785f8f90abbd2396fb" data-alt="{\displaystyle G=H-TS}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></dd></dl> <p>These functions have a minimum in chemical equilibrium, as long as certain variables (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></noscript><span class="lazy-image-placeholder" style="width: 1.636ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" data-alt="{\displaystyle T}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></noscript><span class="lazy-image-placeholder" style="width: 1.787ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" data-alt="{\displaystyle V}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></noscript><span class="lazy-image-placeholder" style="width: 1.259ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" data-alt="{\displaystyle p}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>) are held constant. In addition, they also have theoretical importance in deriving <a href="/wiki/Maxwell_relations" title="Maxwell relations">Maxwell relations</a>. Work other than <span class="nowrap"><i>p dV</i></span> may be added, e.g., for <a href="/wiki/Electrochemistry" title="Electrochemistry">electrochemical</a> cells, or <span class="nowrap"><i>f dx</i></span> work in <a href="/wiki/Elastomer" title="Elastomer">elastic</a> materials and in <a href="/wiki/Muscle" title="Muscle">muscle</a> contraction. Other forms of work which must sometimes be considered are <a href="/wiki/Stress_(physics)" class="mw-redirect" title="Stress (physics)">stress</a>-<a href="/wiki/Strain_(materials_science)" class="mw-redirect" title="Strain (materials science)">strain</a>, <a href="/wiki/Magnetism" title="Magnetism">magnetic</a>, as in <a href="/wiki/Adiabatic_process" title="Adiabatic process">adiabatic</a> de<a href="/wiki/Magnetization" title="Magnetization">magnetization</a> used in the approach to <a href="/wiki/Absolute_zero" title="Absolute zero">absolute zero</a>, and work due to electric <a href="/wiki/Dipole" title="Dipole">polarization</a>. These are described by <a href="/wiki/Tensor" title="Tensor">tensors</a>. </p><p>In most cases of interest there are internal <a href="/wiki/Degrees_of_freedom_(physics_and_chemistry)" title="Degrees of freedom (physics and chemistry)">degrees of freedom</a> and processes, such as <a href="/wiki/Chemical_reaction" title="Chemical reaction">chemical reactions</a> and <a href="/wiki/Phase_transition" title="Phase transition">phase transitions</a>, which create entropy. Even for homogeneous "bulk" materials, the free energy functions depend on the (often suppressed) <a href="/wiki/Chemical_compound" title="Chemical compound">composition</a>, as do all proper <a href="/wiki/Thermodynamic_potentials" class="mw-redirect" title="Thermodynamic potentials">thermodynamic potentials</a> (<a href="/wiki/Extensive_quantity" class="mw-redirect" title="Extensive quantity">extensive functions</a>), including the internal energy. </p> <table class="wikitable"> <tbody><tr> <th>Name </th> <th>Symbol </th> <th>Formula </th> <th>Natural variables </th></tr> <tr style="display:none"> <td><a href="/wiki/Internal_energy" title="Internal energy">Internal energy</a> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.783ex; height:2.176ex;" alt="{\displaystyle U}"></noscript><span class="lazy-image-placeholder" style="width: 1.783ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" data-alt="{\displaystyle U}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int \left(T\,\mathrm {d} S-p\,\mathrm {d} V+\sum _{i}\mu _{i}\mathrm {d} N_{i}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <mrow> <mo>(</mo> <mrow> <mi>T</mi> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>S</mi> <mo>−<!-- − --></mo> <mi>p</mi> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>V</mi> <mo>+</mo> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int \left(T\,\mathrm {d} S-p\,\mathrm {d} V+\sum _{i}\mu _{i}\mathrm {d} N_{i}\right)}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1bf642ff95cbe71aacf0082c0cdab27c96089311" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:31.296ex; height:7.509ex;" alt="{\displaystyle \int \left(T\,\mathrm {d} S-p\,\mathrm {d} V+\sum _{i}\mu _{i}\mathrm {d} N_{i}\right)}"></noscript><span class="lazy-image-placeholder" style="width: 31.296ex;height: 7.509ex;vertical-align: -3.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1bf642ff95cbe71aacf0082c0cdab27c96089311" data-alt="{\displaystyle \int \left(T\,\mathrm {d} S-p\,\mathrm {d} V+\sum _{i}\mu _{i}\mathrm {d} N_{i}\right)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S,V,\{N_{i}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>,</mo> <mi>V</mi> <mo>,</mo> <mo fence="false" stretchy="false">{</mo> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S,V,\{N_{i}\}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f5040c18acf7c4b9078e23be03181584fd2a043" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.345ex; height:2.843ex;" alt="{\displaystyle S,V,\{N_{i}\}}"></noscript><span class="lazy-image-placeholder" style="width: 10.345ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f5040c18acf7c4b9078e23be03181584fd2a043" data-alt="{\displaystyle S,V,\{N_{i}\}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </td></tr> <tr> <td><a href="/wiki/Helmholtz_free_energy" title="Helmholtz free energy">Helmholtz free energy</a> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></noscript><span class="lazy-image-placeholder" style="width: 1.741ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" data-alt="{\displaystyle F}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U-TS}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo>−<!-- − --></mo> <mi>T</mi> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U-TS}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c8358d6aaeb8a833c863c47da5aaeb392e379da7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.758ex; height:2.343ex;" alt="{\displaystyle U-TS}"></noscript><span class="lazy-image-placeholder" style="width: 7.758ex;height: 2.343ex;vertical-align: -0.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c8358d6aaeb8a833c863c47da5aaeb392e379da7" data-alt="{\displaystyle U-TS}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T,V,\{N_{i}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>,</mo> <mi>V</mi> <mo>,</mo> <mo fence="false" stretchy="false">{</mo> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T,V,\{N_{i}\}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a5b26f6395cbc33a906c4732b51ab323b7eb9bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.482ex; height:2.843ex;" alt="{\displaystyle T,V,\{N_{i}\}}"></noscript><span class="lazy-image-placeholder" style="width: 10.482ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a5b26f6395cbc33a906c4732b51ab323b7eb9bd" data-alt="{\displaystyle T,V,\{N_{i}\}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </td></tr> <tr style="display:none"> <td><a href="/wiki/Enthalpy" title="Enthalpy">Enthalpy</a> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></noscript><span class="lazy-image-placeholder" style="width: 2.064ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" data-alt="{\displaystyle H}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U+pV}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo>+</mo> <mi>p</mi> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U+pV}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8e077195ce5861be98320e9ef98978335d34433" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.58ex; height:2.509ex;" alt="{\displaystyle U+pV}"></noscript><span class="lazy-image-placeholder" style="width: 7.58ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8e077195ce5861be98320e9ef98978335d34433" data-alt="{\displaystyle U+pV}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S,p,\{N_{i}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>,</mo> <mi>p</mi> <mo>,</mo> <mo fence="false" stretchy="false">{</mo> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S,p,\{N_{i}\}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53ce76f7fbf9bd41d6b694f5ebc4f54398843860" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.727ex; height:2.843ex;" alt="{\displaystyle S,p,\{N_{i}\}}"></noscript><span class="lazy-image-placeholder" style="width: 9.727ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53ce76f7fbf9bd41d6b694f5ebc4f54398843860" data-alt="{\displaystyle S,p,\{N_{i}\}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </td></tr> <tr> <td><a href="/wiki/Gibbs_free_energy" title="Gibbs free energy">Gibbs free energy</a> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></noscript><span class="lazy-image-placeholder" style="width: 1.827ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" data-alt="{\displaystyle G}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U+pV-TS}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo>+</mo> <mi>p</mi> <mi>V</mi> <mo>−<!-- − --></mo> <mi>T</mi> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U+pV-TS}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3802c0bf0302bb5b9854b57f9e81154b7043bb22" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.556ex; height:2.509ex;" alt="{\displaystyle U+pV-TS}"></noscript><span class="lazy-image-placeholder" style="width: 13.556ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3802c0bf0302bb5b9854b57f9e81154b7043bb22" data-alt="{\displaystyle U+pV-TS}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T,p,\{N_{i}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>,</mo> <mi>p</mi> <mo>,</mo> <mo fence="false" stretchy="false">{</mo> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T,p,\{N_{i}\}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82008ddebd791da96f2a6e9138ee38d5387d61ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.864ex; height:2.843ex;" alt="{\displaystyle T,p,\{N_{i}\}}"></noscript><span class="lazy-image-placeholder" style="width: 9.864ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82008ddebd791da96f2a6e9138ee38d5387d61ce" data-alt="{\displaystyle T,p,\{N_{i}\}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </td></tr> <tr style="display:none"> <td><a href="/wiki/Grand_potential" title="Grand potential">Landau potential, or <br>grand potential</a> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Ω<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></noscript><span class="lazy-image-placeholder" style="width: 1.678ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" data-alt="{\displaystyle \Omega }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Phi _{\text{G}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">Φ<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>G</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Phi _{\text{G}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0226578737e0aaa90a4e31f17d906a5787bf0f82" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.2ex; height:2.509ex;" alt="{\displaystyle \Phi _{\text{G}}}"></noscript><span class="lazy-image-placeholder" style="width: 3.2ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0226578737e0aaa90a4e31f17d906a5787bf0f82" data-alt="{\displaystyle \Phi _{\text{G}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U-TS-}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo>−<!-- − --></mo> <mi>T</mi> <mi>S</mi> <mo>−<!-- − --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U-TS-}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8833665cc5e0872196dec6a80f233fb751b131bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.567ex; height:2.343ex;" alt="{\displaystyle U-TS-}"></noscript><span class="lazy-image-placeholder" style="width: 9.567ex;height: 2.343ex;vertical-align: -0.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8833665cc5e0872196dec6a80f233fb751b131bf" data-alt="{\displaystyle U-TS-}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{i}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <mspace width="thinmathspace"></mspace> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{i}\,}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/69f671f4400a9759635c041ddd93cd2c02d8299f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:3.742ex; height:5.509ex;" alt="{\displaystyle \sum _{i}\,}"></noscript><span class="lazy-image-placeholder" style="width: 3.742ex;height: 5.509ex;vertical-align: -3.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/69f671f4400a9759635c041ddd93cd2c02d8299f" data-alt="{\displaystyle \sum _{i}\,}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu _{i}N_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu _{i}N_{i}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/858d9c67f6b7cdb725d730ff6ec685afa8ec7c08" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.867ex; height:2.676ex;" alt="{\displaystyle \mu _{i}N_{i}}"></noscript><span class="lazy-image-placeholder" style="width: 4.867ex;height: 2.676ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/858d9c67f6b7cdb725d730ff6ec685afa8ec7c08" data-alt="{\displaystyle \mu _{i}N_{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T,V,\{\mu _{i}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>,</mo> <mi>V</mi> <mo>,</mo> <mo fence="false" stretchy="false">{</mo> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T,V,\{\mu _{i}\}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c0ffc858a2f9b88367920d66d6e26bca6fffbd0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.018ex; height:2.843ex;" alt="{\displaystyle T,V,\{\mu _{i}\}}"></noscript><span class="lazy-image-placeholder" style="width: 10.018ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c0ffc858a2f9b88367920d66d6e26bca6fffbd0" data-alt="{\displaystyle T,V,\{\mu _{i}\}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </td></tr></tbody></table> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N_{i}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fef58cebf23adff9199f17325aefb5515fdca99d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.666ex; height:2.509ex;" alt="{\displaystyle N_{i}}"></noscript><span class="lazy-image-placeholder" style="width: 2.666ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fef58cebf23adff9199f17325aefb5515fdca99d" data-alt="{\displaystyle N_{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> is the number of molecules (alternatively, <a href="/wiki/Mole_(unit)" title="Mole (unit)">moles</a>) of type <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></noscript><span class="lazy-image-placeholder" style="width: 0.802ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" data-alt="{\displaystyle i}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> in the system. If these quantities do not appear, it is impossible to describe compositional changes. The <a href="/wiki/Differential_(infinitesimal)" class="mw-redirect" title="Differential (infinitesimal)">differentials</a> for processes at uniform pressure and temperature are (assuming only <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle pV}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle pV}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95b6fa1d215e8d25ac97af04f9aea149ac5c9e88" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:3.046ex; height:2.509ex;" alt="{\displaystyle pV}"></noscript><span class="lazy-image-placeholder" style="width: 3.046ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95b6fa1d215e8d25ac97af04f9aea149ac5c9e88" data-alt="{\displaystyle pV}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> work): </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {d} A=-p\,\mathrm {d} V-S\,\mathrm {d} T+\sum _{i}\mu _{i}\,\mathrm {d} N_{i}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>A</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi>p</mi> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>V</mi> <mo>−<!-- − --></mo> <mi>S</mi> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>T</mi> <mo>+</mo> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {d} A=-p\,\mathrm {d} V-S\,\mathrm {d} T+\sum _{i}\mu _{i}\,\mathrm {d} N_{i}\,}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/58ddc147c2d37f5ffbb0d6af24d9944793457bef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:33.75ex; height:5.509ex;" alt="{\displaystyle \mathrm {d} A=-p\,\mathrm {d} V-S\,\mathrm {d} T+\sum _{i}\mu _{i}\,\mathrm {d} N_{i}\,}"></noscript><span class="lazy-image-placeholder" style="width: 33.75ex;height: 5.509ex;vertical-align: -3.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/58ddc147c2d37f5ffbb0d6af24d9944793457bef" data-alt="{\displaystyle \mathrm {d} A=-p\,\mathrm {d} V-S\,\mathrm {d} T+\sum _{i}\mu _{i}\,\mathrm {d} N_{i}\,}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {d} G=V\,\mathrm {d} p-S\,\mathrm {d} T+\sum _{i}\mu _{i}\,\mathrm {d} N_{i}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>G</mi> <mo>=</mo> <mi>V</mi> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>p</mi> <mo>−<!-- − --></mo> <mi>S</mi> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>T</mi> <mo>+</mo> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {d} G=V\,\mathrm {d} p-S\,\mathrm {d} T+\sum _{i}\mu _{i}\,\mathrm {d} N_{i}\,}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b2399d865da0d41ef5fdc122ad127fc6b6203b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:32.026ex; height:5.509ex;" alt="{\displaystyle \mathrm {d} G=V\,\mathrm {d} p-S\,\mathrm {d} T+\sum _{i}\mu _{i}\,\mathrm {d} N_{i}\,}"></noscript><span class="lazy-image-placeholder" style="width: 32.026ex;height: 5.509ex;vertical-align: -3.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b2399d865da0d41ef5fdc122ad127fc6b6203b2" data-alt="{\displaystyle \mathrm {d} G=V\,\mathrm {d} p-S\,\mathrm {d} T+\sum _{i}\mu _{i}\,\mathrm {d} N_{i}\,}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></dd></dl> <p>where <i>μ</i><sub><i>i</i></sub> is the <a href="/wiki/Chemical_potential" title="Chemical potential">chemical potential</a> for the <i>i</i>th <a href="/wiki/Component_(thermodynamics)" title="Component (thermodynamics)">component</a> in the system. The second relation is especially useful at constant <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></noscript><span class="lazy-image-placeholder" style="width: 1.636ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" data-alt="{\displaystyle T}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></noscript><span class="lazy-image-placeholder" style="width: 1.259ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" data-alt="{\displaystyle p}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, conditions which are easy to achieve experimentally, and which approximately characterize <a href="/wiki/Life" title="Life">living</a> creatures. Under these conditions, it simplifies to </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathrm {d} G)_{T,p}=\sum _{i}\mu _{i}\,\mathrm {d} N_{i}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>G</mi> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> <mo>,</mo> <mi>p</mi> </mrow> </msub> <mo>=</mo> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathrm {d} G)_{T,p}=\sum _{i}\mu _{i}\,\mathrm {d} N_{i}\,}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/14d9aa4d41349c61400096bd8da6436362fc42e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:21.377ex; height:5.509ex;" alt="{\displaystyle (\mathrm {d} G)_{T,p}=\sum _{i}\mu _{i}\,\mathrm {d} N_{i}\,}"></noscript><span class="lazy-image-placeholder" style="width: 21.377ex;height: 5.509ex;vertical-align: -3.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/14d9aa4d41349c61400096bd8da6436362fc42e5" data-alt="{\displaystyle (\mathrm {d} G)_{T,p}=\sum _{i}\mu _{i}\,\mathrm {d} N_{i}\,}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></dd></dl> <p>Any decrease in the Gibbs function of a system is the upper limit for any <a href="/wiki/Isothermal_process" title="Isothermal process">isothermal</a>, <a href="/wiki/Isobaric_process" title="Isobaric process">isobaric</a> work that can be captured in the surroundings, or it may simply be <a href="/wiki/Dissipation" title="Dissipation">dissipated</a>, appearing as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></noscript><span class="lazy-image-placeholder" style="width: 1.636ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" data-alt="{\displaystyle T}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> times a corresponding increase in the entropy of the system and/or its surrounding. </p><p>An example is <a href="/wiki/Surface_free_energy" class="mw-redirect" title="Surface free energy">surface free energy</a>, the amount of increase of free energy when the area of surface increases by every unit area. </p><p>The <a href="/wiki/Path_integral_Monte_Carlo" title="Path integral Monte Carlo">path integral Monte Carlo</a> method is a numerical approach for determining the values of free energies, based on quantum dynamical principles. </p> <div class="mw-heading mw-heading3"><h3 id="Work_and_free_energy_change">Work and free energy change</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Thermodynamic_free_energy&amp;action=edit&amp;section=3" title="Edit section: Work and free energy change" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>For a reversible isothermal process, Δ<i>S</i> = <i>q</i><sub>rev</sub>/<i>T</i> and therefore the definition of <i>A</i> results in </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta A=\Delta U-T\Delta S=\Delta U-q_{\text{rev}}=w_{\text{rev}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>A</mi> <mo>=</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>U</mi> <mo>−<!-- − --></mo> <mi>T</mi> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>S</mi> <mo>=</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>U</mi> <mo>−<!-- − --></mo> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>rev</mtext> </mrow> </msub> <mo>=</mo> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>rev</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta A=\Delta U-T\Delta S=\Delta U-q_{\text{rev}}=w_{\text{rev}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2bdc5108cd31e2eb953d2a1d31c88c876a0310f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:38.814ex; height:2.509ex;" alt="{\displaystyle \Delta A=\Delta U-T\Delta S=\Delta U-q_{\text{rev}}=w_{\text{rev}}}"></noscript><span class="lazy-image-placeholder" style="width: 38.814ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2bdc5108cd31e2eb953d2a1d31c88c876a0310f8" data-alt="{\displaystyle \Delta A=\Delta U-T\Delta S=\Delta U-q_{\text{rev}}=w_{\text{rev}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> (at constant temperature)</dd></dl> <p>This tells us that the change in free energy equals the reversible or maximum work for a process performed at constant temperature. Under other conditions, free-energy change is not equal to work; for instance, for a reversible adiabatic expansion of an ideal gas, <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta A=w_{\text{rev}}-S\Delta T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>A</mi> <mo>=</mo> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>rev</mtext> </mrow> </msub> <mo>−<!-- − --></mo> <mi>S</mi> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta A=w_{\text{rev}}-S\Delta T}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87b3fbf5d7ae334b60f1286f6b65fcf2ae036356" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.828ex; height:2.509ex;" alt="{\displaystyle \Delta A=w_{\text{rev}}-S\Delta T}"></noscript><span class="lazy-image-placeholder" style="width: 18.828ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87b3fbf5d7ae334b60f1286f6b65fcf2ae036356" data-alt="{\displaystyle \Delta A=w_{\text{rev}}-S\Delta T}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>.</span> Importantly, for a heat engine, including the <a href="/wiki/Carnot_cycle" title="Carnot cycle">Carnot cycle</a>, the free-energy change after a full cycle is zero, <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta _{\text{cyc}}A=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>cyc</mtext> </mrow> </msub> <mi>A</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta _{\text{cyc}}A=0}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76407790464c39ff453bce4a7513ee95e206c4ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:10.5ex; height:2.843ex;" alt="{\displaystyle \Delta _{\text{cyc}}A=0}"></noscript><span class="lazy-image-placeholder" style="width: 10.5ex;height: 2.843ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76407790464c39ff453bce4a7513ee95e206c4ce" data-alt="{\displaystyle \Delta _{\text{cyc}}A=0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>,</span> while the engine produces nonzero work. It is important to note that for heat engines and other thermal systems, the free energies do not offer convenient characterizations; internal energy and enthalpy are the preferred potentials for characterizing thermal systems. </p> <div class="mw-heading mw-heading3"><h3 id="Free_energy_change_and_spontaneous_processes">Free energy change and spontaneous processes</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Thermodynamic_free_energy&amp;action=edit&amp;section=4" title="Edit section: Free energy change and spontaneous processes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>According to the <a href="/wiki/Second_law_of_thermodynamics" title="Second law of thermodynamics">second law of thermodynamics</a>, for any process that occurs in a closed system, the <a href="/wiki/Clausius_theorem" title="Clausius theorem">inequality of Clausius</a>, Δ<i>S</i> &gt; <i>q</i>/<i>T</i><sub>surr</sub>, applies. For a process at constant temperature and pressure without non-<i>PV</i> work, this inequality transforms into <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta G&lt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>G</mi> <mo>&lt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta G&lt;0}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41ad1c1ad25e7df4a1e249f0955f799538de5208" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.024ex; height:2.176ex;" alt="{\displaystyle \Delta G&lt;0}"></noscript><span class="lazy-image-placeholder" style="width: 8.024ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41ad1c1ad25e7df4a1e249f0955f799538de5208" data-alt="{\displaystyle \Delta G&lt;0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. Similarly, for a process at constant temperature and volume, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta A&lt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>A</mi> <mo>&lt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta A&lt;0}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/80ac4e13b480ec981508056714912f9aebcdb931" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.94ex; height:2.176ex;" alt="{\displaystyle \Delta A&lt;0}"></noscript><span class="lazy-image-placeholder" style="width: 7.94ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/80ac4e13b480ec981508056714912f9aebcdb931" data-alt="{\displaystyle \Delta A&lt;0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. Thus, a negative value of the change in free energy is a necessary condition for a process to be spontaneous; this is the most useful form of the second law of thermodynamics in chemistry. In chemical equilibrium at constant <i>T</i> and <i>p</i> without electrical work, d<i>G</i> = 0. </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(3)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="History">History</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Thermodynamic_free_energy&amp;action=edit&amp;section=5" title="Edit section: History" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-3 collapsible-block" id="mf-section-3"> <p>The quantity called "free energy" is a more advanced and accurate replacement for the outdated term <i>affinity</i>, which was used by chemists in previous years to describe the <i>force</i> that caused <a href="/wiki/Chemical_reaction" title="Chemical reaction">chemical reactions</a>. The term affinity, as used in chemical relation, dates back to at least the time of <a href="/wiki/Albertus_Magnus" title="Albertus Magnus">Albertus Magnus</a>.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> </p><p>From the 1998 textbook <i>Modern Thermodynamics</i><sup id="cite_ref-Prigogine_14-0" class="reference"><a href="#cite_note-Prigogine-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> by Nobel Laureate and chemistry professor <a href="/wiki/Ilya_Prigogine" title="Ilya Prigogine">Ilya Prigogine</a> we find: "As motion was explained by the Newtonian concept of force, chemists wanted a similar concept of ‘driving force’ for chemical change. Why do chemical reactions occur, and why do they stop at certain points? Chemists called the ‘force’ that caused chemical reactions affinity, but it lacked a clear definition." </p><p>During the entire 18th century, the dominant view with regard to heat and light was that put forth by <a href="/wiki/Isaac_Newton" title="Isaac Newton">Isaac Newton</a>, called the <i>Newtonian hypothesis</i>, which states that light and heat are forms of matter attracted or repelled by other forms of matter, with forces analogous to gravitation or to chemical affinity. </p><p>In the 19th century, the French chemist <a href="/wiki/Marcellin_Berthelot" title="Marcellin Berthelot">Marcellin Berthelot</a> and the Danish chemist <a href="/wiki/Julius_Thomsen" class="mw-redirect" title="Julius Thomsen">Julius Thomsen</a> had attempted to quantify affinity using <a href="/wiki/Heat_of_reaction" class="mw-redirect" title="Heat of reaction">heats of reaction</a>. In 1875, after quantifying the heats of reaction for a large number of compounds, Berthelot proposed the <i><a href="/wiki/Principle_of_maximum_work" title="Principle of maximum work">principle of maximum work</a></i>, in which all chemical changes occurring without intervention of outside energy tend toward the production of bodies or of a system of bodies which liberate heat. </p><p>In addition to this, in 1780 <a href="/wiki/Antoine_Lavoisier" title="Antoine Lavoisier">Antoine Lavoisier</a> and <a href="/wiki/Pierre-Simon_Laplace" title="Pierre-Simon Laplace">Pierre-Simon Laplace</a> laid the foundations of <a href="/wiki/Thermochemistry" title="Thermochemistry">thermochemistry</a> by showing that the heat given out in a reaction is equal to the heat absorbed in the reverse reaction. They also investigated the <a href="/wiki/Specific_heat" class="mw-redirect" title="Specific heat">specific heat</a> and <a href="/wiki/Latent_heat" title="Latent heat">latent heat</a> of a number of substances, and amounts of heat given out in combustion. In a similar manner, in 1840 Swiss chemist <a href="/wiki/Germain_Hess" class="mw-redirect" title="Germain Hess">Germain Hess</a> formulated the principle that the evolution of heat in a reaction is the same whether the process is accomplished in one-step process or in a number of stages. This is known as <a href="/wiki/Hess%27_law" class="mw-redirect" title="Hess' law">Hess' law</a>. With the advent of the <a href="/wiki/Mechanical_theory_of_heat" class="mw-redirect" title="Mechanical theory of heat">mechanical theory of heat</a> in the early 19th century, Hess's law came to be viewed as a consequence of the law of <a href="/wiki/Conservation_of_energy" title="Conservation of energy">conservation of energy</a>. </p><p>Based on these and other ideas, Berthelot and Thomsen, as well as others, considered the heat given out in the formation of a compound as a measure of the affinity, or the work done by the chemical forces. This view, however, was not entirely correct. In 1847, the English physicist <a href="/wiki/James_Joule" class="mw-redirect" title="James Joule">James Joule</a> showed that he could raise the temperature of water by turning a paddle wheel in it, thus showing that heat and mechanical work were equivalent or proportional to each other, i.e., approximately, <span class="nowrap"><i>dW</i> ∝ <i>dQ</i></span>. This statement came to be known as the <a href="/wiki/Mechanical_equivalent_of_heat" title="Mechanical equivalent of heat">mechanical equivalent of heat</a> and was a precursory form of the <a href="/wiki/First_law_of_thermodynamics" title="First law of thermodynamics">first law of thermodynamics</a>. </p><p>By 1865, the German physicist <a href="/wiki/Rudolf_Clausius" title="Rudolf Clausius">Rudolf Clausius</a> had shown that this <a href="/wiki/Equivalence_principle" title="Equivalence principle">equivalence principle</a> needed amendment. That is, one can use the heat derived from a <a href="/wiki/Combustion_reaction" class="mw-redirect" title="Combustion reaction">combustion reaction</a> in a coal furnace to boil water, and use this heat to vaporize steam, and then use the enhanced high-pressure energy of the vaporized steam to push a piston. Thus, we might naively reason that one can entirely convert the initial combustion heat of the chemical reaction into the work of pushing the piston. Clausius showed, however, that we must take into account the work that the molecules of the working body, i.e., the water molecules in the cylinder, do on each other as they pass or transform from one step of or <a href="/wiki/Thermodynamic_state" title="Thermodynamic state">state</a> of the <a href="/wiki/Engine_cycle" class="mw-redirect" title="Engine cycle">engine cycle</a> to the next, e.g., from (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{1},V_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{1},V_{1}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01f94903f0cb13baf369f5597c1430d3b66b7fe2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.99ex; height:2.509ex;" alt="{\displaystyle P_{1},V_{1}}"></noscript><span class="lazy-image-placeholder" style="width: 5.99ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01f94903f0cb13baf369f5597c1430d3b66b7fe2" data-alt="{\displaystyle P_{1},V_{1}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>) to (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{2},V_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{2},V_{2}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f2b836084249ce81ef5c446006de1bb53ddaeaa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.99ex; height:2.509ex;" alt="{\displaystyle P_{2},V_{2}}"></noscript><span class="lazy-image-placeholder" style="width: 5.99ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f2b836084249ce81ef5c446006de1bb53ddaeaa" data-alt="{\displaystyle P_{2},V_{2}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>). Clausius originally called this the "transformation content" of the body, and then later changed the name to <a href="/wiki/Entropy" title="Entropy">entropy</a>. Thus, the heat used to transform the working body of molecules from one state to the next cannot be used to do external work, e.g., to push the piston. Clausius defined this <i>transformation heat</i> as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle dQ=TdS}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>Q</mi> <mo>=</mo> <mi>T</mi> <mi>d</mi> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle dQ=TdS}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/96cabfdf54710796c16e14219e69f3ae33240c65" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.504ex; height:2.509ex;" alt="{\displaystyle dQ=TdS}"></noscript><span class="lazy-image-placeholder" style="width: 10.504ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/96cabfdf54710796c16e14219e69f3ae33240c65" data-alt="{\displaystyle dQ=TdS}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. </p><p>In 1873, <a href="/wiki/Willard_Gibbs" class="mw-redirect" title="Willard Gibbs">Willard Gibbs</a> published <i>A Method of Geometrical Representation of the Thermodynamic Properties of Substances by Means of Surfaces</i>, in which he introduced the preliminary outline of the principles of his new equation able to predict or estimate the tendencies of various natural processes to ensue when bodies or systems are brought into contact. By studying the interactions of homogeneous substances in contact, i.e., bodies, being in composition part solid, part liquid, and part vapor, and by using a three-dimensional <a href="/wiki/Volume_(thermodynamics)" title="Volume (thermodynamics)">volume</a>-<a href="/wiki/Entropy" title="Entropy">entropy</a>-<a href="/wiki/Internal_energy" title="Internal energy">internal energy</a> graph, Gibbs was able to determine three states of equilibrium, i.e., "necessarily stable", "neutral", and "unstable", and whether or not changes will ensue. In 1876, Gibbs built on this framework by introducing the concept of <a href="/wiki/Chemical_potential" title="Chemical potential">chemical potential</a> so to take into account chemical reactions and states of bodies that are chemically different from each other. In his own words, to summarize his results in 1873, Gibbs states: </p> <style data-mw-deduplicate="TemplateStyles:r1244412712">.mw-parser-output .templatequote{overflow:hidden;margin:1em 0;padding:0 32px}.mw-parser-output .templatequotecite{line-height:1.5em;text-align:left;margin-top:0}@media(min-width:500px){.mw-parser-output .templatequotecite{padding-left:1.6em}}</style><blockquote class="templatequote"><p>If we wish to express in a single equation the necessary and sufficient condition of <a href="/wiki/Thermodynamic_equilibrium" title="Thermodynamic equilibrium">thermodynamic equilibrium</a> for a substance when surrounded by a medium of constant <a href="/wiki/Pressure" title="Pressure">pressure</a> <i>p</i> and temperature <i>T</i>, this equation may be written: <style data-mw-deduplicate="TemplateStyles:r996643573">.mw-parser-output .block-indent{padding-left:3em;padding-right:0;overflow:hidden}</style></p><div class="block-indent"><span class="nowrap"><i>δ</i>(<i>ε</i> − <i>Tη</i> + <i>pν</i>) = 0</span></div><p> when <i>δ</i> refers to the variation produced by any variations in the <a href="/wiki/Thermodynamic_state" title="Thermodynamic state">state</a> of the parts of the body, and (when different parts of the body are in different states) in the proportion in which the body is divided between the different states. The condition of stable equilibrium is that the value of the expression in the parenthesis shall be a minimum.</p></blockquote> <p>In this description, as used by Gibbs, <i>ε</i> refers to the <a href="/wiki/Internal_energy" title="Internal energy">internal energy</a> of the body, <i>η</i> refers to the <a href="/wiki/Entropy" title="Entropy">entropy</a> of the body, and <i>ν</i> is the <a href="/wiki/Volume_(thermodynamics)" title="Volume (thermodynamics)">volume</a> of the body. </p><p>Hence, in 1882, after the introduction of these arguments by Clausius and Gibbs, the German scientist <a href="/wiki/Hermann_von_Helmholtz" title="Hermann von Helmholtz">Hermann von Helmholtz</a> stated, in opposition to Berthelot and Thomas' hypothesis that chemical affinity is a measure of the heat of reaction of chemical reaction as based on the principle of maximal work, that affinity is not the heat given out in the formation of a compound but rather it is the largest quantity of work which can be gained when the reaction is carried out in a reversible manner, e.g., electrical work in a reversible cell. The maximum work is thus regarded as the diminution of the free, or available, energy of the system (<a href="/wiki/Gibbs_free_energy" title="Gibbs free energy">Gibbs free energy</a> <i>G</i> at <i>T</i> = constant, <i>P</i> = constant or <a href="/wiki/Helmholtz_free_energy" title="Helmholtz free energy">Helmholtz free energy</a> <i>A</i> at <i>T</i> = constant, <i>V</i> = constant), whilst the heat given out is usually a measure of the diminution of the total energy of the system (<a href="/wiki/Internal_energy" title="Internal energy">Internal energy</a>). Thus, <i>G</i> or <i>A</i> is the amount of energy "free" for work under the given conditions. </p><p>Up until this point, the general view had been such that: “all chemical reactions drive the system to a state of equilibrium in which the affinities of the reactions vanish”. Over the next 60 years, the term affinity came to be replaced with the term free energy. According to chemistry historian Henry Leicester, the influential 1923 textbook <i>Thermodynamics and the Free Energy of Chemical Reactions</i> by <a href="/wiki/Gilbert_N._Lewis" title="Gilbert N. Lewis">Gilbert N. Lewis</a> and <a href="/wiki/Merle_Randall" title="Merle Randall">Merle Randall</a> led to the replacement of the term "affinity" by the term "free energy" in much of the English-speaking world. </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(4)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="See_also">See also</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Thermodynamic_free_energy&amp;action=edit&amp;section=6" title="Edit section: See also" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-4 collapsible-block" id="mf-section-4"> <ul><li><a href="/wiki/Energy" title="Energy">Energy</a></li> <li><a href="/wiki/Exergy" title="Exergy">Exergy</a></li> <li><a href="/wiki/Merle_Randall" title="Merle Randall">Merle Randall</a></li> <li><a href="/wiki/Second_law_of_thermodynamics" title="Second law of thermodynamics">Second law of thermodynamics</a></li> <li><a href="/wiki/Superconductivity" title="Superconductivity">Superconductivity</a></li></ul> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(5)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="References">References</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Thermodynamic_free_energy&amp;action=edit&amp;section=7" title="Edit section: References" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-5 collapsible-block" id="mf-section-5"> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text">Stoner, Clinton D. (2000). Inquiries into the Nature of Free Energy and Entropy in Respect to Biochemical Thermodynamics. <i>Entropy Vol. 2.</i></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFOsaraBryant2019" class="citation journal cs1">Osara, Jude A.; Bryant, Michael D. (September 2019). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1016/j.triboint.2019.05.020">"Thermodynamics of grease degradation"</a>. <i>Tribology International</i>. <b>137</b>: 433–445. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.triboint.2019.05.020">10.1016/j.triboint.2019.05.020</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0301-679X">0301-679X</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:182266032">182266032</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Tribology+International&amp;rft.atitle=Thermodynamics+of+grease+degradation&amp;rft.volume=137&amp;rft.pages=433-445&amp;rft.date=2019-09&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A182266032%23id-name%3DS2CID&amp;rft.issn=0301-679X&amp;rft_id=info%3Adoi%2F10.1016%2Fj.triboint.2019.05.020&amp;rft.aulast=Osara&amp;rft.aufirst=Jude+A.&amp;rft.au=Bryant%2C+Michael+D.&amp;rft_id=http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.triboint.2019.05.020&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThermodynamic+free+energy" class="Z3988"></span></span> </li> <li id="cite_note-:0-3"><span class="mw-cite-backlink">^ <a href="#cite_ref-:0_3-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:0_3-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCallen1966" class="citation book cs1">Callen, Herbert B. (October 1966). <a rel="nofollow" class="external text" href="http://worldcat.org/oclc/651933140"><i>Thermodynamics</i></a>. Wiley. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-471-13035-4" title="Special:BookSources/0-471-13035-4"><bdi>0-471-13035-4</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/651933140">651933140</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Thermodynamics&amp;rft.pub=Wiley&amp;rft.date=1966-10&amp;rft_id=info%3Aoclcnum%2F651933140&amp;rft.isbn=0-471-13035-4&amp;rft.aulast=Callen&amp;rft.aufirst=Herbert+B.&amp;rft_id=http%3A%2F%2Fworldcat.org%2Foclc%2F651933140&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThermodynamic+free+energy" class="Z3988"></span></span> </li> <li id="cite_note-:1-4"><span class="mw-cite-backlink">^ <a href="#cite_ref-:1_4-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:1_4-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKondepudi,_Dilip,_1952-1998" class="citation book cs1">Kondepudi, Dilip, 1952- (1998). <a rel="nofollow" class="external text" href="http://worldcat.org/oclc/1167078377"><i>Modern thermodynamics : from heat engines to dissipative structures</i></a>. John Wiley. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-471-97393-9" title="Special:BookSources/0-471-97393-9"><bdi>0-471-97393-9</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/1167078377">1167078377</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Modern+thermodynamics+%3A+from+heat+engines+to+dissipative+structures&amp;rft.pub=John+Wiley&amp;rft.date=1998&amp;rft_id=info%3Aoclcnum%2F1167078377&amp;rft.isbn=0-471-97393-9&amp;rft.au=Kondepudi%2C+Dilip%2C+1952-&amp;rft_id=http%3A%2F%2Fworldcat.org%2Foclc%2F1167078377&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThermodynamic+free+energy" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_book" title="Template:Cite book">cite book</a>}}</code>: CS1 maint: multiple names: authors list (<a href="/wiki/Category:CS1_maint:_multiple_names:_authors_list" title="Category:CS1 maint: multiple names: authors list">link</a>) CS1 maint: numeric names: authors list (<a href="/wiki/Category:CS1_maint:_numeric_names:_authors_list" title="Category:CS1 maint: numeric names: authors list">link</a>)</span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOsaraBryant2019" class="citation journal cs1">Osara, Jude; Bryant, Michael (3 April 2019). <a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Finventions4020023">"A Thermodynamic Model for Lithium-Ion Battery Degradation: Application of the Degradation-Entropy Generation Theorem"</a>. <i>Inventions</i>. <b>4</b> (2): 23. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Finventions4020023">10.3390/inventions4020023</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2411-5134">2411-5134</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Inventions&amp;rft.atitle=A+Thermodynamic+Model+for+Lithium-Ion+Battery+Degradation%3A+Application+of+the+Degradation-Entropy+Generation+Theorem&amp;rft.volume=4&amp;rft.issue=2&amp;rft.pages=23&amp;rft.date=2019-04-03&amp;rft_id=info%3Adoi%2F10.3390%2Finventions4020023&amp;rft.issn=2411-5134&amp;rft.aulast=Osara&amp;rft.aufirst=Jude&amp;rft.au=Bryant%2C+Michael&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.3390%252Finventions4020023&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThermodynamic+free+energy" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMendoza1988" class="citation book cs1">Mendoza, E. (1988). Clapeyron, E.; Carnot, R. (eds.). <i>Reflections on the Motive Power of Fire – and other Papers on the Second Law of Thermodynamics</i>. Dover Publications, Inc. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-486-44641-7" title="Special:BookSources/0-486-44641-7"><bdi>0-486-44641-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Reflections+on+the+Motive+Power+of+Fire+%E2%80%93+and+other+Papers+on+the+Second+Law+of+Thermodynamics&amp;rft.pub=Dover+Publications%2C+Inc.&amp;rft.date=1988&amp;rft.isbn=0-486-44641-7&amp;rft.aulast=Mendoza&amp;rft.aufirst=E.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThermodynamic+free+energy" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBaierlein2003" class="citation book cs1">Baierlein, Ralph (2003). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/thermalphysics00ralp"><i>Thermal Physics</i></a></span>. <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-521-65838-1" title="Special:BookSources/0-521-65838-1"><bdi>0-521-65838-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Thermal+Physics&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2003&amp;rft.isbn=0-521-65838-1&amp;rft.aulast=Baierlein&amp;rft.aufirst=Ralph&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fthermalphysics00ralp&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThermodynamic+free+energy" class="Z3988"></span></span> </li> <li id="cite_note-Perrot-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-Perrot_8-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPerrot1998" class="citation book cs1">Perrot, Pierre (1998). <i>A to Z of Thermodynamics</i>. <a href="/wiki/Oxford_University_Press" title="Oxford University Press">Oxford University Press</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-19-856552-6" title="Special:BookSources/0-19-856552-6"><bdi>0-19-856552-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+to+Z+of+Thermodynamics&amp;rft.pub=Oxford+University+Press&amp;rft.date=1998&amp;rft.isbn=0-19-856552-6&amp;rft.aulast=Perrot&amp;rft.aufirst=Pierre&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThermodynamic+free+energy" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFReiss1965" class="citation book cs1">Reiss, Howard (1965). <i>Methods of Thermodynamics</i>. Dover Publications. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-486-69445-3" title="Special:BookSources/0-486-69445-3"><bdi>0-486-69445-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Methods+of+Thermodynamics&amp;rft.pub=Dover+Publications&amp;rft.date=1965&amp;rft.isbn=0-486-69445-3&amp;rft.aulast=Reiss&amp;rft.aufirst=Howard&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThermodynamic+free+energy" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFInternational_Union_of_Pure_and_Applied_Chemistry_Commission_on_Atmospheric_Chemistry1990" class="citation journal cs1"><a href="/wiki/International_Union_of_Pure_and_Applied_Chemistry" title="International Union of Pure and Applied Chemistry">International Union of Pure and Applied Chemistry</a> Commission on Atmospheric Chemistry, J. G. (1990). <a rel="nofollow" class="external text" href="http://www.iupac.org/publications/pac/1990/pdf/6211x2167.pdf">"Glossary of Atmospheric Chemistry Terms (Recommendations 1990)"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Pure_and_Applied_Chemistry" title="Pure and Applied Chemistry">Pure Appl. Chem.</a></i> <b>62</b> (11): 2167–2219. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1351%2Fpac199062112167">10.1351/pac199062112167</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:53117465">53117465</a>. <a rel="nofollow" class="external text" href="https://ghostarchive.org/archive/20221009/http://www.iupac.org/publications/pac/1990/pdf/6211x2167.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 9 October 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">28 December</span> 2006</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Pure+Appl.+Chem.&amp;rft.atitle=Glossary+of+Atmospheric+Chemistry+Terms+%28Recommendations+1990%29&amp;rft.volume=62&amp;rft.issue=11&amp;rft.pages=2167-2219&amp;rft.date=1990&amp;rft_id=info%3Adoi%2F10.1351%2Fpac199062112167&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A53117465%23id-name%3DS2CID&amp;rft.aulast=International+Union+of+Pure+and+Applied+Chemistry+Commission+on+Atmospheric+Chemistry&amp;rft.aufirst=J.+G.&amp;rft_id=http%3A%2F%2Fwww.iupac.org%2Fpublications%2Fpac%2F1990%2Fpdf%2F6211x2167.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThermodynamic+free+energy" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFInternational_Union_of_Pure_and_Applied_Chemistry_Commission_on_Physicochemical_Symbols_Terminology_and_Units1993" class="citation book cs1"><a href="/wiki/International_Union_of_Pure_and_Applied_Chemistry" title="International Union of Pure and Applied Chemistry">International Union of Pure and Applied Chemistry</a> Commission on Physicochemical Symbols Terminology and Units (1993). <a rel="nofollow" class="external text" href="https://archive.org/details/quantitiesunitss0000unse/page/48"><i>Quantities, Units and Symbols in Physical Chemistry</i></a> (2nd ed.). Oxford: Blackwell Scientific Publications. pp. <a rel="nofollow" class="external text" href="https://archive.org/details/quantitiesunitss0000unse/page/48">48</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-632-03583-8" title="Special:BookSources/0-632-03583-8"><bdi>0-632-03583-8</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">28 December</span> 2006</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Quantities%2C+Units+and+Symbols+in+Physical+Chemistry&amp;rft.place=Oxford&amp;rft.pages=48&amp;rft.edition=2nd&amp;rft.pub=Blackwell+Scientific+Publications&amp;rft.date=1993&amp;rft.isbn=0-632-03583-8&amp;rft.au=International+Union+of+Pure+and+Applied+Chemistry+Commission+on+Physicochemical+Symbols+Terminology+and+Units&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fquantitiesunitss0000unse%2Fpage%2F48&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThermodynamic+free+energy" class="Z3988"></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLehmannFuentes-ArderiuBertello1996" class="citation journal cs1">Lehmann, H. P.; Fuentes-Arderiu, X.; Bertello, L. F. (1996). <a rel="nofollow" class="external text" href="http://www.iupac.org/publications/pac/1996/pdf/6804x0957.pdf">"Glossary of Terms in Quantities and Units in Clinical Chemistry (IUPAC-IFCC Recommendations 1996)"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Pure_and_Applied_Chemistry" title="Pure and Applied Chemistry">Pure Appl. Chem.</a></i> <b>68</b> (4): 957–100 0. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1351%2Fpac199668040957">10.1351/pac199668040957</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:95196393">95196393</a>. <a rel="nofollow" class="external text" href="https://ghostarchive.org/archive/20221009/http://www.iupac.org/publications/pac/1996/pdf/6804x0957.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 9 October 2022.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Pure+Appl.+Chem.&amp;rft.atitle=Glossary+of+Terms+in+Quantities+and+Units+in+Clinical+Chemistry+%28IUPAC-IFCC+Recommendations+1996%29&amp;rft.volume=68&amp;rft.issue=4&amp;rft.pages=957-100+0&amp;rft.date=1996&amp;rft_id=info%3Adoi%2F10.1351%2Fpac199668040957&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A95196393%23id-name%3DS2CID&amp;rft.aulast=Lehmann&amp;rft.aufirst=H.+P.&amp;rft.au=Fuentes-Arderiu%2C+X.&amp;rft.au=Bertello%2C+L.+F.&amp;rft_id=http%3A%2F%2Fwww.iupac.org%2Fpublications%2Fpac%2F1996%2Fpdf%2F6804x0957.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThermodynamic+free+energy" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFQuilez2019" class="citation journal cs1">Quilez, Juan (July 2019). <a rel="nofollow" class="external text" href="https://go.gale.com/ps/i.do?p=AONE&amp;u=22417_vcpl&amp;id=GALE%7CA592081896&amp;v=2.1&amp;it=r&amp;sid=ebsco">"A historical/epistemological account of the foundation of the key ideas supporting chemical equilibrium theory"</a>. <i>Foundations of Chemistry</i>. <b>21</b> (2): 223. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10698-018-9320-0">10.1007/s10698-018-9320-0</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:102566121">102566121</a><span class="reference-accessdate">. Retrieved <span class="nowrap">2 November</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Foundations+of+Chemistry&amp;rft.atitle=A+historical%2Fepistemological+account+of+the+foundation+of+the+key+ideas+supporting+chemical+equilibrium+theory&amp;rft.volume=21&amp;rft.issue=2&amp;rft.pages=223&amp;rft.date=2019-07&amp;rft_id=info%3Adoi%2F10.1007%2Fs10698-018-9320-0&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A102566121%23id-name%3DS2CID&amp;rft.aulast=Quilez&amp;rft.aufirst=Juan&amp;rft_id=https%3A%2F%2Fgo.gale.com%2Fps%2Fi.do%3Fp%3DAONE%26u%3D22417_vcpl%26id%3DGALE%257CA592081896%26v%3D2.1%26it%3Dr%26sid%3Debsco&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThermodynamic+free+energy" class="Z3988"></span></span> </li> <li id="cite_note-Prigogine-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-Prigogine_14-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKondepudiPrigogine1998" class="citation book cs1">Kondepudi, Dilip; <a href="/w/index.php?title=Ilya_Pregogine&amp;action=edit&amp;redlink=1" class="new" title="Ilya Pregogine (page does not exist)">Prigogine, Ilya</a> (1998). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/modernthermodyna0000kond"><i>Modern Thermodynamics</i></a></span>. John Wiley &amp; Sons Ltd. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-471-97394-2" title="Special:BookSources/978-0-471-97394-2"><bdi>978-0-471-97394-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Modern+Thermodynamics&amp;rft.pub=John+Wiley+%26+Sons+Ltd&amp;rft.date=1998&amp;rft.isbn=978-0-471-97394-2&amp;rft.aulast=Kondepudi&amp;rft.aufirst=Dilip&amp;rft.au=Prigogine%2C+Ilya&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fmodernthermodyna0000kond&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThermodynamic+free+energy" class="Z3988"></span> Chapter 4, Section 1, Paragraph 2 (page 103)</span> </li> </ol></div></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐qpbcg Cached time: 20241122140553 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.488 seconds Real time usage: 0.700 seconds Preprocessor visited node count: 3021/1000000 Post‐expand include size: 86689/2097152 bytes Template argument size: 3614/2097152 bytes Highest expansion depth: 16/100 Expensive parser function count: 3/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 147482/5000000 bytes Lua time usage: 0.208/10.000 seconds Lua memory usage: 8182469/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 454.026 1 -total 29.27% 132.901 1 Template:Reflist 25.18% 114.332 1 Template:Thermodynamics 17.67% 80.208 5 Template:Cite_journal 14.28% 64.822 1 Template:Short_description 8.63% 39.176 2 Template:Pagetype 8.61% 39.076 1 Template:Citation_needed 7.97% 36.174 1 Template:Fix 7.52% 34.150 3 Template:Sidebar 7.03% 31.940 8 Template:Cite_book --> <!-- Saved in parser cache with key enwiki:pcache:idhash:39221-0!canonical and timestamp 20241122140553 and revision id 1219835869. Rendering was triggered because: page-view --> </section></div> <!-- MobileFormatter took 0.029 seconds --><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.m.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&amp;mobile=1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Thermodynamic_free_energy&amp;oldid=1219835869">https://en.wikipedia.org/w/index.php?title=Thermodynamic_free_energy&amp;oldid=1219835869</a>"</div></div> </div> <div class="post-content" id="page-secondary-actions"> </div> </main> <footer class="mw-footer minerva-footer" role="contentinfo"> <a class="last-modified-bar" href="/w/index.php?title=Thermodynamic_free_energy&amp;action=history"> <div class="post-content last-modified-bar__content"> <span class="minerva-icon minerva-icon-size-medium minerva-icon--modified-history"></span> <span class="last-modified-bar__text modified-enhancement" data-user-name="DMacks" data-user-gender="unknown" data-timestamp="1713584584"> <span>Last edited on 20 April 2024, at 03:43</span> </span> <span class="minerva-icon minerva-icon-size-small minerva-icon--expand"></span> </div> </a> <div class="post-content footer-content"> <div id='mw-data-after-content'> <div class="read-more-container"></div> </div> <div id="p-lang"> <h4>Languages</h4> <section> <ul id="p-variants" class="minerva-languages"></ul> <ul class="minerva-languages"><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%B7%D8%A7%D9%82%D8%A9_%D8%AD%D8%B1%D8%A9_%D8%AB%D8%B1%D9%85%D9%88%D8%AF%D9%8A%D9%86%D8%A7%D9%85%D9%8A%D9%83%D9%8A%D8%A9" title="طاقة حرة ثرموديناميكية – Arabic" lang="ar" hreflang="ar" data-title="طاقة حرة ثرموديناميكية" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Enerx%C3%ADa_llibre_termodin%C3%A1mica" title="Enerxía llibre termodinámica – Asturian" lang="ast" hreflang="ast" data-title="Enerxía llibre termodinámica" data-language-autonym="Asturianu" data-language-local-name="Asturian" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%92%D0%BE%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D1%8D%D0%BD%D1%8D%D1%80%D0%B3%D1%96%D1%8F" title="Вольная энэргія – Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Вольная энэргія" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Energia_lliure_termodin%C3%A0mica" title="Energia lliure termodinàmica – Catalan" lang="ca" hreflang="ca" data-title="Energia lliure termodinàmica" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Energ%C3%ADa_libre_termodin%C3%A1mica" title="Energía libre termodinámica – Spanish" lang="es" hreflang="es" data-title="Energía libre termodinámica" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Libera_energio" title="Libera energio – Esperanto" lang="eo" hreflang="eo" data-title="Libera energio" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%A7%D9%86%D8%B1%DA%98%DB%8C_%D8%A2%D8%B2%D8%A7%D8%AF_%D8%AA%D8%B1%D9%85%D9%88%D8%AF%DB%8C%D9%86%D8%A7%D9%85%DB%8C%DA%A9%DB%8C" title="انرژی آزاد ترمودینامیکی – Persian" lang="fa" hreflang="fa" data-title="انرژی آزاد ترمودینامیکی" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%97%B4%EC%97%AD%ED%95%99%EC%A0%81_%EC%9E%90%EC%9C%A0_%EC%97%90%EB%84%88%EC%A7%80" title="열역학적 자유 에너지 – Korean" lang="ko" hreflang="ko" data-title="열역학적 자유 에너지" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D4%B1%D5%A6%D5%A1%D5%BF_%D5%A7%D5%B6%D5%A5%D6%80%D5%A3%D5%AB%D5%A1" title="Ազատ էներգիա – Armenian" lang="hy" hreflang="hy" data-title="Ազատ էներգիա" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Energi_bebas_termodinamika" title="Energi bebas termodinamika – Indonesian" lang="id" hreflang="id" data-title="Energi bebas termodinamika" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Energia_libera" title="Energia libera – Italian" lang="it" hreflang="it" data-title="Energia libera" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%90%D7%A0%D7%A8%D7%92%D7%99%D7%94_%D7%97%D7%95%D7%A4%D7%A9%D7%99%D7%AA" title="אנרגיה חופשית – Hebrew" lang="he" hreflang="he" data-title="אנרגיה חופשית" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%A4%E0%B4%BE%E0%B4%AA%E0%B4%97%E0%B4%A4%E0%B4%BF%E0%B4%95_%E0%B4%B8%E0%B5%8D%E0%B4%B5%E0%B4%A4%E0%B4%A8%E0%B5%8D%E0%B4%A4%E0%B5%8D%E0%B4%B0_%E0%B4%8A%E0%B5%BC%E0%B4%9C%E0%B5%8D%E0%B4%9C%E0%B4%82" title="താപഗതിക സ്വതന്ത്ര ഊർജ്ജം – Malayalam" lang="ml" hreflang="ml" data-title="താപഗതിക സ്വതന്ത്ര ഊർജ്ജം" data-language-autonym="മലയാളം" data-language-local-name="Malayalam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Tenaga_bebas_termodinamik" title="Tenaga bebas termodinamik – Malay" lang="ms" hreflang="ms" data-title="Tenaga bebas termodinamik" data-language-autonym="Bahasa Melayu" data-language-local-name="Malay" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Vrije_energie" title="Vrije energie – Dutch" lang="nl" hreflang="nl" data-title="Vrije energie" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E8%87%AA%E7%94%B1%E3%82%A8%E3%83%8D%E3%83%AB%E3%82%AE%E3%83%BC" title="自由エネルギー – Japanese" lang="ja" hreflang="ja" data-title="自由エネルギー" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Fri_energi" title="Fri energi – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Fri energi" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Fri_energi" title="Fri energi – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Fri energi" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Erkin_energiya" title="Erkin energiya – Uzbek" lang="uz" hreflang="uz" data-title="Erkin energiya" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Uzbek" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-ps mw-list-item"><a href="https://ps.wikipedia.org/wiki/%D8%A2%D8%B2%D8%A7%D8%AF%D9%87_%D8%AA%D8%B1%D9%85%D9%88%DA%89%DB%8C%D9%86%D8%A7%D9%85%DB%8C%DA%A9%D9%8A_%D8%A7%D9%86%D8%B1%DA%98%D9%8A" title="آزاده ترموډینامیکي انرژي – Pashto" lang="ps" hreflang="ps" data-title="آزاده ترموډینامیکي انرژي" data-language-autonym="پښتو" data-language-local-name="Pashto" class="interlanguage-link-target"><span>پښتو</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Energia_swobodna" title="Energia swobodna – Polish" lang="pl" hreflang="pl" data-title="Energia swobodna" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Energia_livre_termodin%C3%A2mica" title="Energia livre termodinâmica – Portuguese" lang="pt" hreflang="pt" data-title="Energia livre termodinâmica" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Energie_liber%C4%83" title="Energie liberă – Romanian" lang="ro" hreflang="ro" data-title="Energie liberă" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A1%D0%B2%D0%BE%D0%B1%D0%BE%D0%B4%D0%BD%D0%B0%D1%8F_%D1%8D%D0%BD%D0%B5%D1%80%D0%B3%D0%B8%D1%8F" title="Свободная энергия – Russian" lang="ru" hreflang="ru" data-title="Свободная энергия" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Prosta_energija" title="Prosta energija – Slovenian" lang="sl" hreflang="sl" data-title="Prosta energija" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Fri_energi" title="Fri energi – Swedish" lang="sv" hreflang="sv" data-title="Fri energi" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%9E%E0%B8%A5%E0%B8%B1%E0%B8%87%E0%B8%87%E0%B8%B2%E0%B8%99%E0%B8%AD%E0%B8%B4%E0%B8%AA%E0%B8%A3%E0%B8%B0%E0%B8%97%E0%B8%B2%E0%B8%87%E0%B8%AD%E0%B8%B8%E0%B8%93%E0%B8%AB%E0%B8%9E%E0%B8%A5%E0%B8%A8%E0%B8%B2%E0%B8%AA%E0%B8%95%E0%B8%A3%E0%B9%8C" title="พลังงานอิสระทางอุณหพลศาสตร์ – Thai" lang="th" hreflang="th" data-title="พลังงานอิสระทางอุณหพลศาสตร์" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Termodinamik_serbest_enerji" title="Termodinamik serbest enerji – Turkish" lang="tr" hreflang="tr" data-title="Termodinamik serbest enerji" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E8%87%AA%E7%94%B1%E8%83%BD" title="自由能 – Cantonese" lang="yue" hreflang="yue" data-title="自由能" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E7%83%AD%E5%8A%9B%E5%AD%A6%E8%87%AA%E7%94%B1%E8%83%BD" title="热力学自由能 – Chinese" lang="zh" hreflang="zh" data-title="热力学自由能" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li></ul> </section> </div> <div class="minerva-footer-logo"><img src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" alt="Wikipedia" width="120" height="18" style="width: 7.5em; height: 1.125em;"/> </div> <ul id="footer-info" class="footer-info hlist hlist-separated"> <li id="footer-info-lastmod"> This page was last edited on 20 April 2024, at 03:43<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Content is available under <a class="external" rel="nofollow" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en">CC BY-SA 4.0</a> unless otherwise noted.</li> </ul> <ul id="footer-places" class="footer-places hlist hlist-separated"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-terms-use"><a href="https://foundation.m.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">Terms of Use</a></li> <li id="footer-places-desktop-toggle"><a id="mw-mf-display-toggle" href="//en.wikipedia.org/w/index.php?title=Thermodynamic_free_energy&amp;mobileaction=toggle_view_desktop" data-event-name="switch_to_desktop">Desktop</a></li> </ul> </div> </footer> </div> </div> <div class="mw-notification-area" data-mw="interface"></div> <!-- v:8.3.1 --> <script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-gqt92","wgBackendResponseTime":205,"wgPageParseReport":{"limitreport":{"cputime":"0.488","walltime":"0.700","ppvisitednodes":{"value":3021,"limit":1000000},"postexpandincludesize":{"value":86689,"limit":2097152},"templateargumentsize":{"value":3614,"limit":2097152},"expansiondepth":{"value":16,"limit":100},"expensivefunctioncount":{"value":3,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":147482,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 454.026 1 -total"," 29.27% 132.901 1 Template:Reflist"," 25.18% 114.332 1 Template:Thermodynamics"," 17.67% 80.208 5 Template:Cite_journal"," 14.28% 64.822 1 Template:Short_description"," 8.63% 39.176 2 Template:Pagetype"," 8.61% 39.076 1 Template:Citation_needed"," 7.97% 36.174 1 Template:Fix"," 7.52% 34.150 3 Template:Sidebar"," 7.03% 31.940 8 Template:Cite_book"]},"scribunto":{"limitreport-timeusage":{"value":"0.208","limit":"10.000"},"limitreport-memusage":{"value":8182469,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-qpbcg","timestamp":"20241122140553","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Thermodynamic free energy","url":"https:\/\/en.wikipedia.org\/wiki\/Thermodynamic_free_energy","sameAs":"http:\/\/www.wikidata.org\/entity\/Q1146448","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q1146448","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2002-02-15T08:14:32Z","dateModified":"2024-04-20T03:43:04Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/2\/22\/Carnot_heat_engine_2.svg","headline":"concept in thermodynamics"}</script><script>(window.NORLQ=window.NORLQ||[]).push(function(){var ns,i,p,img;ns=document.getElementsByTagName('noscript');for(i=0;i<ns.length;i++){p=ns[i].nextSibling;if(p&&p.className&&p.className.indexOf('lazy-image-placeholder')>-1){img=document.createElement('img');img.setAttribute('src',p.getAttribute('data-src'));img.setAttribute('width',p.getAttribute('data-width'));img.setAttribute('height',p.getAttribute('data-height'));img.setAttribute('alt',p.getAttribute('data-alt'));p.parentNode.replaceChild(img,p);}}});</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10