CINXE.COM

The Story of Spikey—Stephen Wolfram Writings

<!DOCTYPE html> <html lang="en" prefix="fb: http://www.facebook.com/2008/fbml, og: http://ogp.me/ns#"> <head> <!-- begin framework head en --> <meta http-equiv="x-ua-compatible" content="ie=edge"> <meta name="viewport" content="width=device-width, initial-scale=1"> <meta charset="utf-8"> <title>The Story of Spikey&mdash;Stephen Wolfram Writings</title> <meta name="description" content="Spikey, the symbol of the Wolfram companies, is actually a rhombic hexecontahedron. Stephen Wolfram shares the origins and development of the Wolfram Spikey, its physical properties, the history of the shape’s discovery, and occurrences in nature."> <meta property="og:title" content="The Story of Spikey&mdash;Stephen Wolfram Writings"> <meta property="og:description" content="Spikey, the symbol of the Wolfram companies, is actually a rhombic hexecontahedron. Stephen Wolfram shares the origins and development of the Wolfram Spikey, its physical properties, the history of the shape’s discovery, and occurrences in nature."> <meta name="twitter:title" content="The Story of Spikey&mdash;Stephen Wolfram Writings"> <meta name="twitter:description" content="Spikey, the symbol of the Wolfram companies, is actually a rhombic hexecontahedron. Stephen Wolfram shares the origins and development of the Wolfram Spikey, its physical properties, the history of the shape’s discovery, and occurrences in nature."> <link rel="stylesheet" href="/common/framework/css/framework.en.css"> <script src="//www.wolframcdn.com/consent/cookie-consent.js"></script> <script src="/common/javascript/wal/latest/walLoad.js"></script> <script defer src="/common/js/announcements/script.js"></script> <script src="/common/framework/js/head.en.js"></script> <script src="/common/js/jquery/3.7.1/jquery.min.js"></script> <script src="/common/js/jquery/plugins/migrate/3.5.2/jquery.migrate.min.js"></script> <script src="/common/javascript/analytics.js"></script> <!-- end framework head en --> <script src="https://writings.stephenwolfram.com/wp-content/themes/sw-writings/jquery.lazy.min.js"></script> <script> $(function() { $('.lazy').Lazy({ effect: 'fadeIn', effectTime: 250, threshold:200 }); }); </script> <script type="text/javascript" src="https://writings.stephenwolfram.com/wp-content/themes/sw-writings/sw.js"></script> <link rel="stylesheet" href="//www.wolframcdn.com/fonts/source-sans-pro/1.0/global.css"> <link rel="stylesheet" href="//www.wolframcdn.com/fonts/hack/3.003/global.css"> <link rel="stylesheet" href="//www.wolframcdn.com/fonts/mathematica/1.0/all.css"> <link rel="stylesheet" href="https://writings.stephenwolfram.com/wp-content/themes/sw-writings/clipboard.css" type="text/css" media="all" /> <link rel="stylesheet" href="https://writings.stephenwolfram.com/wp-content/themes/sw-writings/python-pygments.css" type="text/css" media="all" /> <link rel="stylesheet" href="/common/js/clipboard/2.0/clipboard.css"> <link rel="stylesheet" href="/common/templates/www.stephenwolfram.com/css/responsive-header.css" /> <link rel="stylesheet" href="https://writings.stephenwolfram.com/wp-content/themes/sw-writings/style.css" type="text/css" media="all" /> <link rel="alternate" type="application/rss+xml" title="Stephen Wolfram Writings RSS Feed" href="https://writings.stephenwolfram.com/feed/" /> <link rel="alternate" type="application/atom+xml" title="Stephen Wolfram Writings Atom Feed" href="https://writings.stephenwolfram.com/feed/atom/" /> <script type="text/javascript" src="https://files.wolframcdn.com/pub/writings.stephenwolfram.com/js/menu.js?5db8f077951d5e4ef6fbad86daf24214146552f3ae141ac21f7cf2aef767799678b244ec4070f219c19860ab58d8271a"></script> <link rel="stylesheet" href="/common/javascript/jquery/ui/1.10.2/themes/base/jquery.ui.all.css"> <link rel="stylesheet" href="/common/javascript/jquery/plugins/colorbox/colorbox.css"> <script src="/common/javascript/jquery/ui/1.10.2/ui/jquery.ui.core.js"></script> <script src="/common/javascript/jquery/ui/1.10.2/ui/jquery.ui.widget.js"></script> <script src="/common/javascript/jquery/ui/1.10.2/ui/jquery.ui.mouse.js"></script> <script src="/common/javascript/jquery/ui/1.10.2/ui/jquery.ui.slider.js"></script> <script src="/common/javascript/jquery/plugins/colorbox/jquery.colorbox.js"></script> <link rel="stylesheet" href="/common/javascript/jquery/plugins/magnific/magnific.css"> <link rel="stylesheet" href="/common/javascript/jquery/plugins/magnific/magnific-types.css"> <script src="/common/javascript/jquery/plugins/magnific/magnific.min.js"></script> <script src="/common/javascript/jquery/plugins/magnific/magnific-types.js"></script> <link rel='dns-prefetch' href='//s.w.org' /> <link rel="alternate" type="application/rss+xml" title="Stephen Wolfram Writings &raquo; The Story of Spikey Comments Feed" href="https://writings.stephenwolfram.com/2018/12/the-story-of-spikey/feed/" /> <script type="text/javascript"> window._wpemojiSettings = {"baseUrl":"https:\/\/s.w.org\/images\/core\/emoji\/2.2.1\/72x72\/","ext":".png","svgUrl":"https:\/\/s.w.org\/images\/core\/emoji\/2.2.1\/svg\/","svgExt":".svg","source":{"concatemoji":"https:\/\/writings.stephenwolfram.com\/wp-includes\/js\/wp-emoji-release.min.js?ver=4.7.2"}}; !function(a,b,c){function d(a){var b,c,d,e,f=String.fromCharCode;if(!k||!k.fillText)return!1;switch(k.clearRect(0,0,j.width,j.height),k.textBaseline="top",k.font="600 32px Arial",a){case"flag":return k.fillText(f(55356,56826,55356,56819),0,0),!(j.toDataURL().length<3e3)&&(k.clearRect(0,0,j.width,j.height),k.fillText(f(55356,57331,65039,8205,55356,57096),0,0),b=j.toDataURL(),k.clearRect(0,0,j.width,j.height),k.fillText(f(55356,57331,55356,57096),0,0),c=j.toDataURL(),b!==c);case"emoji4":return k.fillText(f(55357,56425,55356,57341,8205,55357,56507),0,0),d=j.toDataURL(),k.clearRect(0,0,j.width,j.height),k.fillText(f(55357,56425,55356,57341,55357,56507),0,0),e=j.toDataURL(),d!==e}return!1}function e(a){var c=b.createElement("script");c.src=a,c.defer=c.type="text/javascript",b.getElementsByTagName("head")[0].appendChild(c)}var f,g,h,i,j=b.createElement("canvas"),k=j.getContext&&j.getContext("2d");for(i=Array("flag","emoji4"),c.supports={everything:!0,everythingExceptFlag:!0},h=0;h<i.length;h++)c.supports[i[h]]=d(i[h]),c.supports.everything=c.supports.everything&&c.supports[i[h]],"flag"!==i[h]&&(c.supports.everythingExceptFlag=c.supports.everythingExceptFlag&&c.supports[i[h]]);c.supports.everythingExceptFlag=c.supports.everythingExceptFlag&&!c.supports.flag,c.DOMReady=!1,c.readyCallback=function(){c.DOMReady=!0},c.supports.everything||(g=function(){c.readyCallback()},b.addEventListener?(b.addEventListener("DOMContentLoaded",g,!1),a.addEventListener("load",g,!1)):(a.attachEvent("onload",g),b.attachEvent("onreadystatechange",function(){"complete"===b.readyState&&c.readyCallback()})),f=c.source||{},f.concatemoji?e(f.concatemoji):f.wpemoji&&f.twemoji&&(e(f.twemoji),e(f.wpemoji)))}(window,document,window._wpemojiSettings); </script> <style type="text/css"> img.wp-smiley, img.emoji { display: inline !important; border: none !important; box-shadow: none !important; height: 1em !important; width: 1em !important; margin: 0 .07em !important; vertical-align: -0.1em !important; background: none !important; padding: 0 !important; } </style> <link rel='stylesheet' id='howToCiteCss-css' href='https://writings.stephenwolfram.com/wp-content/themes/sw-writings/HowToCite/style.css?ver=4.7.2' type='text/css' media='all' /> <script type='text/javascript' src='https://writings.stephenwolfram.com/wp-content/themes/sw-writings/HowToCite/HowToCite.js?ver=4.7.2'></script> <link rel='https://api.w.org/' href='https://writings.stephenwolfram.com/wp-json/' /> <link rel="wlwmanifest" type="application/wlwmanifest+xml" href="https://writings.stephenwolfram.com/wp-includes/wlwmanifest.xml" /> <link rel='prev' title='Logic, Explainability and the Future of Understanding' href='https://writings.stephenwolfram.com/2018/11/logic-explainability-and-the-future-of-understanding/' /> <link rel='next' title='Seeking the Productive Life: Some Details of My Personal Infrastructure' href='https://writings.stephenwolfram.com/2019/02/seeking-the-productive-life-some-details-of-my-personal-infrastructure/' /> <link rel='shortlink' href='https://writings.stephenwolfram.com/?p=17568' /> <link rel="alternate" type="application/json+oembed" href="https://writings.stephenwolfram.com/wp-json/oembed/1.0/embed?url=https%3A%2F%2Fwritings.stephenwolfram.com%2F2018%2F12%2Fthe-story-of-spikey%2F" /> <link rel="alternate" type="text/xml+oembed" href="https://writings.stephenwolfram.com/wp-json/oembed/1.0/embed?url=https%3A%2F%2Fwritings.stephenwolfram.com%2F2018%2F12%2Fthe-story-of-spikey%2F&#038;format=xml" /> <link rel='canonical' href='https://writings.stephenwolfram.com/2018/12/the-story-of-spikey/'/> <style type="text/css">.recentcomments a{display:inline !important;padding:0 !important;margin:0 !important;}</style> </head> <body id="blog" class="post-template-default single single-post postid-17568 single-format-standard"> <a name="top"></a> <div id="wrapper"> <header id="header"> <div class="inner"> <button class="hamburger">&equiv;</button> <h1 id="logo"> <a href="https://www.stephenwolfram.com">Stephen Wolfram <svg viewBox="6.252 51.944 1031.673 96.468"> <g id="logoSVG"> <path d="M643.657,60.162c1.429-0.357,2.501-0.714,3.572-0.714h0.536V53.91h-34.121v5.538h0.536 c4.287,0.357,7.503,1.072,9.468,1.965c1.787,0.894,2.68,1.965,2.68,3.216c0,1.072-0.179,2.322-0.357,3.751 s-0.893,4.288-1.965,8.218c-1.429,5.716-3.395,12.505-5.538,20.544c-2.144,7.682-4.645,16.436-7.503,26.439L588.456,55.16h-6.968 l-22.33,66.812c-4.823-16.971-8.218-29.297-10.719-37.693c-2.501-8.575-4.287-15.006-5.181-18.758c0-0.357-0.179-1.072-0.357-1.786 c-0.179-0.715-0.179-1.251-0.179-1.608c0-1.072,1.607-1.608,3.037-1.965c2.322-0.536,5.002-0.714,8.218-0.893h0.536V53.91h-38.23 v5.538h0.536c1.071,0,2.322,0.357,3.751,0.714c1.43,0.357,2.502,0.894,3.573,1.608c1.251,0.893,2.144,1.787,2.858,2.68 s1.251,2.144,1.607,3.394c1.608,5.538,4.646,16.257,9.111,32.514c4.466,16.078,8.933,31.799,13.22,46.805l0.179,0.357h6.432 l23.581-69.314l22.509,68.957l0.179,0.357h6.61l0.178-0.357c4.646-14.827,9.111-29.119,13.041-42.339 c4.109-13.22,7.504-24.832,10.54-34.657c0.715-2.144,1.43-3.751,2.323-5.002c0.893-1.25,2.144-2.144,3.572-3.215 C640.978,61.234,642.406,60.698,643.657,60.162z" /> <path d="M693.856,87.673c-2.858-3.037-6.253-5.359-10.183-6.967c-3.931-1.608-8.039-2.501-12.506-2.501 c-4.287,0-8.396,0.893-12.147,2.501c-3.931,1.607-7.324,3.93-10.183,6.967c-2.858,3.037-5.359,6.789-6.968,11.076 c-1.607,4.288-2.501,9.111-2.501,14.47c0,4.823,0.894,9.647,2.322,13.935c1.608,4.287,3.752,8.039,6.61,11.076 s6.253,5.537,10.004,7.324c3.931,1.786,8.218,2.68,12.862,2.68c4.288,0,8.396-0.894,12.327-2.502 c3.751-1.607,7.146-3.93,10.183-6.967s5.359-6.788,6.967-11.076c1.608-4.287,2.501-9.11,2.501-14.291s-0.893-10.004-2.501-14.292 C699.037,94.462,696.715,90.71,693.856,87.673z M690.998,113.041c0,4.287-0.357,8.218-1.251,11.791 c-0.714,3.395-1.965,6.609-3.751,9.289l0,0c-1.608,2.68-3.752,4.823-6.253,6.252c-2.501,1.43-5.538,2.323-8.575,2.323 c-3.394,0-6.431-0.715-8.753-2.144c-2.501-1.43-4.467-3.573-6.074-6.253s-2.858-5.896-3.752-9.29 c-0.714-3.572-1.25-7.502-1.25-11.969c0-3.93,0.357-7.86,1.071-11.434c0.715-3.572,1.787-6.788,3.395-9.289 c1.608-2.68,3.573-5.002,6.074-6.61s5.538-2.501,9.11-2.501c3.216,0,6.074,0.714,8.575,2.144s4.466,3.395,6.253,5.896 c1.607,2.68,2.858,5.716,3.751,9.468C690.641,104.467,690.998,108.754,690.998,113.041z" /> <path d="M760.49,126.082c-0.714,1.787-1.786,4.109-3.394,6.967c-1.608,2.859-3.037,5.002-4.288,6.432 c-0.356,0.357-0.893,0.715-1.786,1.072s-1.786,0.535-2.858,0.715c-1.071,0.178-2.322,0.356-3.395,0.356 c-1.25,0-2.322,0.179-3.572,0.179c-2.501,0-4.466,0-5.896-0.179c-1.25-0.179-2.322-0.536-2.858-0.894 c-0.715-0.535-1.071-1.25-1.25-2.322c-0.179-1.071-0.357-2.68-0.357-4.645V89.46c0-0.893,0.179-1.787,0.535-2.68 c0.357-0.714,0.894-1.25,1.787-1.608c0.536-0.179,1.607-0.536,2.858-0.714c1.25-0.357,2.501-0.357,3.216-0.536h0.535v-4.287 h-28.583v4.287h0.536c0.715,0,1.786,0.179,3.037,0.536c1.25,0.357,2.144,0.714,2.858,1.072c0.893,0.357,1.607,1.072,1.786,1.608 c0.357,0.714,0.536,1.608,0.536,2.501v46.983c0,1.071-0.179,1.966-0.536,2.68c-0.357,0.715-0.894,1.251-1.786,1.608 c-0.536,0.178-1.43,0.357-2.858,0.535c-1.43,0.179-2.501,0.179-3.216,0.357h-0.536v4.287h51.986l1.429-20.543h-4.108 L760.49,126.082z" /> <path d="M768.708,83.922h0.536c0.715,0,1.965,0.179,3.216,0.536c1.429,0.357,2.501,0.714,3.216,1.072 c0.893,0.357,1.607,1.072,1.786,1.608c0.357,0.714,0.536,1.608,0.536,2.501v47.341c0,1.071-0.179,1.965-0.536,2.68 c-0.357,0.714-0.894,1.251-1.786,1.608c-0.357,0.178-1.072,0.356-2.858,0.535c-1.608,0.179-2.68,0.179-3.752,0.357h-0.536v4.287 h29.298v-4.287h-0.536c-0.714,0-1.965-0.179-3.394-0.536c-1.787-0.356-2.68-0.536-2.858-0.714 c-0.894-0.357-1.608-1.072-1.965-1.787c-0.357-0.715-0.536-1.607-0.536-2.501v-22.151h6.967c1.965,0,3.573,0.178,5.002,0.535 c1.251,0.357,2.322,1.072,3.216,2.145c0.536,0.714,1.072,1.965,1.607,3.572c0.536,1.607,0.894,3.216,0.894,4.467v0.535h4.466 V98.928h-4.466v0.357c-0.179,1.607-0.536,3.037-0.894,4.466c-0.535,1.429-1.071,2.322-1.607,3.037 c-0.894,0.893-1.786,1.607-3.037,2.143c-1.25,0.537-2.858,0.715-5.181,0.715h-6.967V84.458h10.54c1.607,0,3.037,0,4.466,0.179 c1.251,0,2.501,0.179,3.395,0.357c1.786,0.179,3.572,1.787,5.538,4.466c1.965,2.68,3.394,5.359,3.93,7.682l0.179,0.357h4.288V80.17 h-52.165V83.922L768.708,83.922z" /> <path d="M952.534,141.624c-1.072-0.356-1.966-0.536-2.68-1.071c-1.072-0.715-1.787-1.43-2.323-2.145 c-0.535-0.715-1.071-1.607-1.429-2.857l-21.795-56.452l-0.179-0.357h-4.287l-0.179,0.357c-3.037,8.039-6.609,17.15-10.54,27.333 c-3.93,10.182-7.503,19.472-10.897,27.689c-0.714,1.607-1.25,2.858-1.965,3.572c-0.715,0.895-1.607,1.787-2.68,2.502 c-0.715,0.535-1.607,0.893-2.858,1.072c-0.536,0.178-1.071,0.178-1.607,0.356c-0.357,0-0.715-0.179-1.251-0.179 c-1.071-0.178-2.144-0.535-2.858-0.893c-1.071-0.536-2.144-1.251-3.215-2.145c-1.072-0.893-2.323-2.144-3.573-3.93 c-3.037-4.109-5.717-7.682-7.86-10.719c-1.965-2.858-4.645-6.252-7.682-10.183c2.144-0.715,4.108-1.429,5.896-2.322 c1.965-1.072,3.751-2.144,5.002-3.573c1.607-1.43,2.68-3.215,3.572-5.181c0.715-1.965,1.251-4.288,1.251-6.789 c0-2.858-0.536-5.359-1.787-7.503c-1.25-1.965-2.68-3.751-4.645-5.002s-4.287-2.144-6.788-2.858 c-2.501-0.536-5.181-0.893-7.86-0.893H826.59v4.287h0.535c0.894,0,1.965,0.179,3.037,0.357c1.251,0.179,2.144,0.536,2.858,0.715 c1.072,0.357,1.607,0.893,1.965,1.607c0.357,0.715,0.357,1.608,0.357,2.68v47.341c0,1.072-0.179,1.965-0.536,2.68 c-0.356,0.715-0.893,1.25-1.786,1.607c-0.536,0.18-1.429,0.357-2.858,0.537c-1.429,0.178-2.501,0.178-3.216,0.356h-0.535v4.288 h28.583v-4.288h-0.536c-0.894,0-2.144-0.179-3.395-0.356c-1.25-0.18-2.322-0.357-2.858-0.537c-0.893-0.357-1.607-0.893-1.965-1.607 s-0.536-1.607-0.536-2.68v-19.83h5.896c3.573,4.646,6.967,9.29,10.004,13.578c3.037,4.466,6.61,9.825,10.54,15.898l0.179,0.18 h14.471h3.93h21.616v-4.288h-0.536c-2.322-0.179-4.466-0.536-6.431-1.251c-1.786-0.535-2.501-1.429-2.501-2.322 c0-0.535,0-1.071,0.179-1.965c0.179-0.893,0.356-1.965,0.893-3.215c0.357-1.43,0.894-2.859,1.43-4.467 c0.536-1.43,1.25-3.215,1.965-5.359h22.331l5.359,14.291c0.178,0.357,0.178,0.537,0.178,0.895c0,0.356,0,0.714,0,0.893 c0,0.357-0.714,0.893-1.965,1.25c-1.607,0.537-3.572,0.715-5.895,0.894h-0.536v4.288h28.94v-4.288h-0.536 C954.499,141.981,953.605,141.803,952.534,141.624z M928.238,118.579h-18.222l9.11-23.581L928.238,118.579z M866.069,96.963 c0,4.467-1.429,8.039-4.108,10.719s-6.253,3.93-10.183,3.93h-5.538V84.637h7.324c3.931,0,7.146,1.072,9.29,3.394 C864.998,90.175,866.069,93.211,866.069,96.963z" /> <path d="M1037.211,141.981c-0.714,0-1.965-0.179-3.215-0.357c-1.43-0.179-2.322-0.536-2.858-0.894 c-0.894-0.535-1.608-1.071-1.965-1.786c-0.357-0.714-0.536-1.429-0.536-2.501V89.281c0-0.893,0.179-1.786,0.536-2.68 c0.356-0.714,0.893-1.25,1.786-1.608c0.536-0.178,1.607-0.357,2.858-0.714c1.25-0.179,2.322-0.357,3.216-0.357h0.535v-4.287h-22.33 v0.536c0,0.357-0.179,1.25-0.715,3.216c-0.357,1.607-0.894,3.215-1.429,4.645l-15.542,40.016L979.33,79.992l-0.178-0.357h-23.046 v4.287h0.536c1.25,0,2.68,0.357,3.93,0.715c1.251,0.357,2.502,0.893,3.395,1.786c0.715,0.715,1.43,1.608,1.787,2.858 s0.714,2.68,0.714,4.645v33.585c0,4.108-0.179,7.146-0.536,8.932c-0.356,1.607-1.071,2.858-1.965,3.752 c-0.715,0.715-1.965,1.072-3.394,1.429c-1.43,0.357-2.858,0.536-4.288,0.715h-0.357v4.288h27.333v-4.288h-0.536 c-0.357,0-1.429-0.179-4.108-0.894c-1.966-0.535-3.395-1.072-3.931-1.786c-0.893-0.715-1.607-2.144-1.965-3.931 c-0.536-1.965-0.715-4.822-0.715-8.574v-38.23l21.08,56.452h3.037l22.152-55.559v46.805c0,1.071-0.179,1.966-0.536,2.68 c-0.357,0.715-1.072,1.251-1.965,1.786c-0.536,0.357-1.608,0.536-3.216,0.715s-3.037,0.357-3.93,0.357h-0.536v4.287h29.833v-4.287 L1037.211,141.981z" /> <path d="M64.133,103.572L64.133,103.572c-1.786-1.965-3.93-3.572-6.252-5.001s-4.823-2.68-7.503-3.751 c-2.858-1.25-5.717-2.501-8.754-3.573c-3.037-1.072-6.074-2.323-9.111-3.93c-3.394-1.608-6.074-3.752-7.86-6.253 c-1.786-2.501-2.68-5.716-2.68-9.468c0-3.573,1.429-6.789,4.109-9.29c2.68-2.501,6.074-3.751,10.004-3.751 c3.751,0,6.967,0.714,9.468,2.144c2.501,1.429,4.824,3.394,6.61,5.895c1.787,2.501,3.395,5.359,4.466,8.575 c1.25,3.215,2.144,6.431,3.216,10.004l0.178,0.357h6.074l-0.536-31.62h-5.895l-2.501,4.288c-2.68-1.608-5.538-3.037-8.754-4.288 c-3.394-1.25-7.146-1.965-11.433-1.965c-3.751,0-7.324,0.715-10.719,1.965c-3.394,1.25-6.431,3.037-8.932,5.359 c-2.68,2.322-4.824,5.002-6.252,8.039c-1.429,3.037-2.144,6.431-2.144,10.004c0,6.074,1.429,11.255,4.288,15.006 s6.967,6.967,12.148,9.289c2.68,1.251,5.716,2.502,9.29,3.752c3.573,1.25,6.789,2.501,9.646,3.752 c3.93,1.607,6.967,3.93,8.933,6.967c1.965,3.037,3.037,6.432,3.037,10.004c0,2.501-0.357,4.645-0.893,6.432 c-0.714,1.786-1.608,3.395-2.858,4.823s-3.037,2.501-5.181,3.216s-4.645,1.071-7.503,1.071c-3.93,0-7.325-0.714-10.183-2.144 c-2.858-1.43-5.538-3.395-7.682-5.896c-2.322-2.679-4.287-5.538-5.538-8.575c-1.608-3.215-2.858-6.788-3.931-10.539l-0.178-0.357 H6.252l0.894,32.334h5.895l2.68-4.466c2.858,1.786,6.252,3.216,10.183,4.466c4.109,1.251,8.218,1.965,12.327,1.965 c8.932,0,16.435-2.68,22.509-8.039c6.074-5.358,9.111-12.146,9.111-20.365c0-3.395-0.536-6.431-1.429-9.11 S66.099,105.717,64.133,103.572z" /> <path d="M81.462,96.784h4.288l0.179-0.357c0.357-1.072,0.714-2.323,1.429-3.93c0.714-1.608,1.607-3.037,2.501-4.466 c0.893-1.429,1.965-2.68,3.037-3.751c1.072-1.072,1.965-1.608,3.037-1.787c1.25-0.179,2.68-0.179,4.109-0.357 c1.429,0,2.68,0,3.751,0h2.323v54.308c0,1.25-0.179,2.145-0.715,2.858c-0.357,0.715-1.072,1.251-2.144,1.608 c-0.715,0.357-1.965,0.535-3.752,0.714c-1.786,0.179-3.215,0.357-4.108,0.357H94.86v4.288h33.049v-4.288h-0.536 c-0.893,0-2.322-0.179-4.109-0.536c-1.786-0.357-3.037-0.715-3.573-0.893c-1.072-0.357-1.787-1.072-2.144-1.787 c-0.357-0.715-0.536-1.786-0.536-2.68v-53.95h2.322c1.25,0,2.68,0,4.109,0.178c1.429,0,2.68,0.179,3.752,0.357 c0.893,0.179,1.965,0.715,3.037,1.787s2.144,2.322,3.037,3.751s1.787,2.858,2.501,4.466c0.714,1.607,1.25,2.858,1.608,3.93 l0.179,0.357h4.108V77.312H81.462V96.784z" /> <path d="M200.439,125.725c-0.357,1.43-1.429,3.752-3.037,6.789s-3.037,5.359-4.466,6.788 c-0.536,0.536-1.25,0.894-2.501,1.251c-1.251,0.357-2.501,0.535-3.752,0.715c-1.072,0.178-2.68,0.178-4.287,0.178h-4.109 c-2.68,0-4.645,0-6.074-0.178c-1.429-0.18-2.322-0.537-3.215-1.072c-0.715-0.536-1.25-1.251-1.429-2.322 c-0.357-1.072-0.357-2.68-0.357-4.645v-20.188h7.146c1.965,0,3.573,0.179,4.823,0.536c1.072,0.356,2.144,1.071,3.216,2.322 c0.536,0.714,1.072,1.965,1.607,3.573c0.536,1.607,0.894,3.215,1.072,4.823v0.536h4.466V96.963h-4.466v0.357 c-0.179,1.25-0.536,2.858-0.894,4.287c-0.536,1.43-1.072,2.68-1.786,3.573c-0.715,1.071-1.787,1.786-2.858,2.144 s-2.858,0.715-5.181,0.715h-7.146V82.136h10.183c1.787,0,3.216,0,4.645,0.178c1.429,0,2.501,0.179,3.573,0.357 c1.787,0.179,3.751,1.608,5.717,4.288c2.144,2.68,3.394,5.181,4.109,7.503l0.179,0.357h4.466V77.491H146.31v4.288h0.536 c0.893,0,1.965,0.179,3.394,0.536c1.429,0.357,2.501,0.715,3.395,1.072c1.072,0.536,1.607,1.072,1.965,1.786 c0.357,0.715,0.536,1.608,0.536,2.68v48.949c0,1.072-0.179,1.965-0.536,2.68s-1.072,1.25-1.965,1.607 c-0.357,0.18-1.072,0.357-3.037,0.536c-1.608,0.179-2.858,0.357-3.751,0.357h-0.536v4.288h57.167l1.429-21.08h-4.288 L200.439,125.725z" /> <path d="M258.499,81.957c-3.93-3.037-9.29-4.645-15.721-4.645h-31.441V81.6h0.536c0.894,0,1.787,0.179,3.037,0.357 c1.072,0.179,2.322,0.536,3.573,0.893c1.072,0.357,1.608,0.893,1.965,1.787c0.357,0.893,0.536,1.786,0.536,2.858v49.127 c0,1.071-0.179,2.144-0.536,2.858c-0.357,0.715-0.894,1.25-1.787,1.607c-0.536,0.18-1.429,0.357-2.858,0.536 s-2.501,0.357-3.394,0.357h-0.536v4.288h30.012v-4.288h-0.536c-1.25,0-2.501-0.179-3.93-0.357s-2.322-0.356-2.858-0.536 c-1.072-0.357-1.608-0.893-1.965-1.607c-0.357-0.715-0.536-1.787-0.536-2.68v-20.365h7.146c3.216,0,6.432-0.357,9.29-1.251 c2.858-0.894,5.717-2.144,8.218-3.93s4.466-4.108,5.896-6.968c1.429-2.857,2.144-6.074,2.144-9.646 C264.573,89.46,262.608,85.172,258.499,81.957z M251.353,101.25c-0.357,1.608-1.072,3.037-2.144,4.646l0,0 c-1.072,1.429-2.68,2.858-4.645,3.751c-2.144,1.072-4.823,1.608-8.217,1.608h-4.466V82.314h6.252c2.68,0,4.824,0.357,6.61,1.25 c1.787,0.715,3.216,1.965,4.288,3.395s1.787,2.858,2.144,4.823c0.357,1.787,0.715,3.751,0.715,5.359 C251.71,98.213,251.532,99.821,251.353,101.25z" /> <path d="M314.415,81.778h0.536c0.893,0,1.965,0.179,3.037,0.536c1.25,0.357,2.144,0.715,3.037,1.072 c0.894,0.357,1.608,1.072,1.965,1.786c0.357,0.715,0.536,1.608,0.536,2.501v20.187H292.62V87.316c0-1.072,0.179-1.965,0.536-2.68 c0.357-0.715,0.893-1.25,1.965-1.608c0.536-0.179,1.608-0.536,2.858-0.715c1.25-0.178,2.322-0.357,3.216-0.357h0.536v-4.288 h-29.119v4.288h0.536c0.893,0,1.965,0.179,3.037,0.536c1.251,0.357,2.144,0.715,3.037,1.072c0.894,0.357,1.608,1.072,1.965,1.787 c0.357,0.715,0.536,1.608,0.536,2.501v49.127c0,1.071-0.179,2.144-0.536,2.858c-0.357,0.715-1.072,1.25-1.965,1.607 c-0.357,0.179-1.072,0.357-2.858,0.536c-1.429,0.179-2.501,0.179-3.394,0.357h-0.536v4.288h29.119v-4.288h-0.536 c-0.715,0-1.787-0.179-3.216-0.536c-1.25-0.357-2.322-0.535-2.68-0.893c-1.072-0.537-1.608-1.072-1.965-1.787 c-0.357-0.715-0.536-1.607-0.536-2.68V113.22h30.906v23.76c0,1.071-0.179,2.144-0.536,2.858s-1.072,1.25-1.965,1.607 c-0.357,0.179-1.072,0.357-2.858,0.536c-1.429,0.179-2.501,0.179-3.395,0.357h-0.536v4.288h29.119v-4.288h-0.536 c-0.715,0-1.787-0.179-3.216-0.536c-1.25-0.357-2.322-0.535-2.68-0.893c-1.072-0.537-1.607-1.072-1.965-1.787 s-0.536-1.607-0.536-2.68V87.316c0-1.072,0.179-1.965,0.536-2.68c0.357-0.715,0.893-1.25,1.965-1.608 c0.536-0.179,1.608-0.536,2.858-0.715c1.25-0.178,2.322-0.357,3.216-0.357h0.536v-4.288h-29.119V81.778z" /> <path d="M406.596,125.725c-0.357,1.43-1.43,3.752-3.037,6.789s-3.037,5.359-4.466,6.788 c-0.536,0.536-1.251,0.894-2.501,1.251c-1.251,0.357-2.501,0.535-3.752,0.715c-1.072,0.178-2.68,0.178-4.288,0.178h-4.109 c-2.68,0-4.645,0-6.074-0.178c-1.429-0.18-2.322-0.537-3.216-1.072c-0.714-0.536-1.25-1.251-1.429-2.322 c-0.357-1.072-0.357-2.68-0.357-4.645v-20.188h7.146c1.965,0,3.573,0.179,4.824,0.536c1.072,0.356,2.144,1.071,3.037,2.322 c0.536,0.714,1.072,1.965,1.608,3.573c0.536,1.607,0.894,3.215,1.072,4.823v0.536h4.466V96.963h-4.288v0.357 c-0.179,1.25-0.536,2.858-0.893,4.287c-0.536,1.43-1.072,2.68-1.787,3.573c-0.714,1.071-1.787,1.786-2.858,2.144 s-2.858,0.715-5.181,0.715h-7.146V82.136h10.183c1.787,0,3.215,0,4.645,0.178c1.429,0,2.501,0.179,3.573,0.357 c1.786,0.179,3.751,1.608,5.716,4.288c2.144,2.68,3.395,5.181,4.109,7.503l0.179,0.357h4.466V77.491h-53.415v4.288h0.536 c0.893,0,1.965,0.179,3.394,0.536c1.429,0.357,2.501,0.715,3.395,1.072c1.072,0.536,1.608,1.072,1.965,1.786 c0.357,0.715,0.536,1.608,0.536,2.68v48.949c0,1.072-0.179,1.965-0.536,2.68c-0.357,0.715-1.072,1.25-1.965,1.607 c-0.357,0.18-1.072,0.357-3.037,0.536c-1.608,0.179-2.858,0.357-3.751,0.357h-0.536v4.288h57.167l1.429-21.08h-4.287 L406.596,125.725z" /> <path d="M460.01,81.778h0.536c1.072,0,2.501,0.357,4.467,0.893c1.965,0.536,3.394,1.072,4.287,1.608 c0.894,0.714,1.607,1.965,1.965,3.93c0.536,2.144,0.715,5.181,0.715,8.932v30.905l-37.337-50.735h-20.187V81.6h0.536 c1.071,0,2.68,0.536,4.645,1.25s3.395,1.608,4.466,2.68c0.715,0.714,1.43,1.787,1.965,3.216c0.536,1.429,0.715,2.858,0.715,4.287 v33.407c0,4.467-0.179,7.503-0.536,9.289c-0.357,1.787-1.071,3.037-2.144,3.752c-0.357,0.357-1.25,0.715-3.573,1.43 c-1.965,0.535-3.394,0.893-4.287,0.893h-0.536v4.287h28.762v-4.287h-0.535c-0.715,0-2.145-0.357-4.467-0.893 c-2.144-0.537-3.572-1.251-4.287-1.787c-0.894-0.893-1.607-2.322-2.144-4.287c-0.536-2.145-0.715-5.002-0.715-8.933V92.318 l40.374,54.665h4.823V96.784c0-3.394,0.179-6.252,0.536-8.575c0.357-2.144,1.071-3.573,2.144-4.288 c0.715-0.536,1.965-0.893,3.752-1.429c1.786-0.536,3.215-0.714,3.93-0.714h0.536v-4.288h-28.583v4.288H460.01z" /> </g> </svg> </a> </h1> <span class="pipe"></span><a href="https://writings.stephenwolfram.com" class="writings">Writings <svg viewBox="312.131 0 419.71 200"> <g id="writingsSVG"> <path d="M420.941,131.488L420.941,131.488c-2.154-0.07-4.128-1.223-5.248-3.064c-1.103-1.731-2.139-3.562-3.054-5.183 c-6.891-12.237-15.998-23.771-29.493-37.375c-4.692-4.847-10.108-8.938-16.053-12.128l-0.562-0.331 c-0.253-0.143-0.518-0.287-0.793-0.419c-1.489-0.672-1.886-0.551-1.93-0.54c-0.044,0.011-0.32,0.143-0.794,1.279 c-1.599,3.751-2.9,7.622-3.892,11.577c-0.97,3.969-1.797,8.06-2.591,12.029c-0.496,2.502-0.992,5.006-1.543,7.497l-0.066,0.353 c-0.452,2.105-1.202,5.635-5.447,5.998s-5.777-3.054-6.681-5.104c-0.612-1.382-1.128-2.804-1.543-4.256l-12.734-44.102 l-9.515-32.822c-0.188-0.662-0.419-1.312-0.662-2.007c-1.612,0.425-3.331,0.079-4.652-0.937c-1.169-1.037-1.676-2.569-1.533-4.774 c0.099-1.72,0.265-3.451,0.43-5.116c0.077-0.915,0.165-1.841,0.243-2.756c0.077-0.916,0.154-1.775,0.154-2.58 c0-1.577,0-5.767,4.575-6.538c4.829-0.816,6.362,2.205,7.167,4.961c2.602,8.923,5.175,17.85,7.718,26.781 c2.94,10.327,5.902,20.658,8.887,30.992l7.21,25.126c0-0.187,0.077-0.386,0.121-0.573c0.287-1.213,0.551-2.425,0.827-3.638 c0.893-3.947,1.819-8.038,2.855-12.04c0.585-1.913,1.412-3.743,2.458-5.447c2.205-3.958,4.686-5.16,9.118-4.41 c2.019,0.292,3.979,0.898,5.81,1.797c7.361,3.686,14.045,8.592,19.769,14.509c6.957,7.365,13.099,14.146,18.743,20.739 c2.205,2.602,4.267,5.424,6.219,8.147c0.353,0.508,0.717,1.004,1.103,1.512c-0.254-3.782-0.496-7.564-0.75-11.346 c-0.397-5.961-0.786-11.922-1.169-17.883l-0.221-3.374c-0.297-4.311-0.595-8.82-0.694-13.23c-0.209-9.173-1.742-18.401-3.22-27.332 l-0.396-2.403c-0.441-2.668-1.103-5.38-1.72-8.004c-0.475-1.985-0.971-4.035-1.378-6.086c-0.855-4.224-0.504-8.603,1.014-12.635 c0.419-1.103,1.521-4.102,4.686-4.102h0.133c2.315,0.066,3.858,1.566,4.575,4.41c0.188,0.717,0.375,1.444,0.552,2.205 c0.752,2.622,1.323,5.293,1.709,7.994l0.661,5.314c1.301,10.408,2.646,21.18,3.518,31.831c1.014,12.381,1.764,24.983,2.48,37.167 c0.279,4.483,0.551,8.975,0.815,13.473c0.375,5.942,0.75,12.261,0.948,18.512c0.09,1.93-0.381,3.845-1.355,5.513 C424.734,130.367,422.921,131.432,420.941,131.488z" /> <path d="M560.82,121.918c-3.308,0-4.686-2.635-5.248-3.704c-3.562-6.747-7.111-14.102-9.03-22.249l-0.396-1.665 c-0.771-3.241-1.576-6.615-2.117-9.923c0.013-1.077-0.841-1.965-1.918-1.996H542c-2.724-0.529-5.513-1.103-8.302-1.51 c-3.849-0.596-8.313-1.279-12.757-1.808c-1.102-0.077-2.206-0.077-3.308,0c0.177,1.323,0.342,2.547,0.519,3.782 c0.777,6.479,2.329,12.842,4.619,18.952c1.5,3.826,3.308,5.977,6.229,7.178s5.513,2.437,7.597,3.406 c0.761,0.359,1.498,0.768,2.205,1.225l1.025,0.617l1.995,1.169l-1.488,1.786c-1.442,1.78-3.745,2.627-5.998,2.205 c-3.095-0.257-6.168-0.736-9.194-1.434c-2.815-0.649-5.268-2.369-6.836-4.796c-0.562-0.86-1.169-1.698-1.819-2.569 c-0.97-1.266-1.864-2.587-2.679-3.957c-2.28-4.252-3.774-8.879-4.41-13.661c-0.552-3.473-1.103-6.946-1.731-10.496l-0.54-3.197 c-4.367-0.299-8.754-0.181-13.099,0.353l0.529,2.867c0.673,3.627,1.312,7.056,2.205,10.441c0.894,3.385,1.886,6.615,2.889,9.923 c0.849,2.768,1.731,5.635,2.514,8.49c0.348,1.506,0.507,3.051,0.475,4.598c0,0.572,0,1.102,0.065,1.676l0.1,1.367l-1.257,0.562 c-2.58,1.169-4.829,0.64-6.317-1.499l-0.529-0.75c-0.899-1.121-1.642-2.36-2.205-3.683l-0.231-0.64 c-1.687-4.531-3.429-9.229-4.752-13.991c-1.103-3.903-1.963-7.895-2.812-11.764c-0.396-1.83-0.805-3.668-1.224-5.513 c-0.133-0.551-0.287-1.103-0.463-1.687c-0.773,0.015-1.542-0.109-2.271-0.364c-1.563-0.438-2.897-1.46-3.727-2.855 c-0.364-0.772-1.301-3.473,2.304-5.722l0.1-0.066c0.385-0.28,0.824-0.475,1.29-0.573c0.849-0.143,0.959-0.166,0.706-1.852 c-0.298-1.734,0.214-3.509,1.389-4.818c1.165-1.224,2.827-1.845,4.51-1.687c3.1,0.222,5.565,2.688,5.788,5.788 c0.012,0.17,0.033,0.34,0.066,0.507c0.146,0.207,0.312,0.399,0.496,0.573c3.638,0,7.343-0.066,10.937-0.166h1.103l-0.231-2.37 c-0.253-2.79-0.529-5.678-0.849-8.49c-1.235-10.768-2.492-21.536-3.771-32.304l-0.65-5.513c-0.316-2.69-0.644-5.38-0.981-8.071 l-0.529-4.333c-0.463-3.892,1.389-6.615,4.851-7.111c1.54-0.276,3.123,0.126,4.345,1.103c1.509,1.381,2.349,3.346,2.304,5.392 c0,1.18,0,2.359,0,3.506c0,1.621,0,3.143,0.133,4.653c0.419,4.608,0.926,9.283,1.411,13.815c0.242,2.282,0.496,4.575,0.728,6.869 c0.254,2.458,0.496,4.928,0.75,7.387c0.33,3.396,0.672,6.802,1.036,10.198c0.408,3.859,0.849,7.718,1.279,11.533l0.396,3.506 l27.045,3.793c0.122-0.32,0.254-0.629,0.375-0.948c1.103-2.624,3.308-3.848,5.513-3.032c1.719,0.695,3.066,2.079,3.716,3.815 c0.425,1.399,0.695,2.841,0.805,4.3c0.066,0.606,0.133,1.213,0.231,1.808c1.673,11.613,4.4,23.049,8.148,34.168 c0.198,0.562,0.451,1.102,0.716,1.72c0.265,0.617,0.662,1.499,0.938,2.326c0.211,0.739,0.318,1.503,0.319,2.271 c0,0.286,0,0.573,0.056,0.87l0.177,1.765l-1.742,0.353C561.76,121.861,561.291,121.912,560.82,121.918z" /> <path d="M713.775,141.665h-0.783c-4.397-0.225-8.778-0.703-13.12-1.434l-1.676-0.243c-1.169-0.164-4.719-0.672-4.41-4.498 c0.045-1.053,0.538-2.036,1.356-2.701c1.103-0.882,2.745-1.102,4.994-0.771c1.314,0.244,2.645,0.391,3.98,0.441 c3.958,0,8.181,0,12.426-0.133c1.009-0.105,1.985-0.422,2.866-0.926c1.323-0.684,2.139-1.5,2.304-2.293 c0.023-1.015-0.376-1.993-1.102-2.701c-2.385-2.823-4.964-5.476-7.719-7.939c-4.686-4.266-8.621-7.64-12.392-10.617 c-9.328-7.364-16.538-14.575-21.875-22.05c-6.482-8.986-4.498-17.222,4.719-24.509c7.718-6.119,16.473-7.607,28.666-4.686 c2.836,0.819,5.523,2.084,7.961,3.749c1.499,0.737,2.562,2.139,2.866,3.782c0.231,1.995-1.103,3.594-2.139,4.619 c-1.506,1.441-3.162,2.716-4.939,3.804c-1.394,0.779-3.111,0.685-4.41-0.243c-0.896-1.023-1.271-2.402-1.015-3.738 c0.054-0.484,0.161-0.961,0.32-1.422c-0.759-0.597-1.703-0.909-2.669-0.882c-0.874-0.022-1.744-0.122-2.602-0.298l-0.794-0.132 c-5.887-0.94-11.882,0.845-16.295,4.852c-1.657,1.266-2.753,3.13-3.055,5.193c-0.005,2.044,0.827,4,2.305,5.413 c6.737,7.715,14.114,14.848,22.051,21.323c4.663,3.704,9.019,7.872,13.23,11.919c1.422,1.355,2.845,2.723,4.289,4.079 c1.154,1.159,2.128,2.486,2.888,3.937c2.01,3.247,2.394,7.245,1.037,10.815c-1.52,3.435-4.545,5.971-8.192,6.868 C719.905,141.135,716.852,141.613,713.775,141.665z" /> <path d="M449.178,120.717h-0.54c-2.794-0.27-5.002-2.486-5.26-5.281c-0.396-2.459-0.782-4.906-1.103-7.365 c-0.871-5.578-1.764-11.367-2.866-16.979c-0.882-4.476-2.205-8.997-3.451-13.374c-0.298-1.103-0.606-2.084-0.904-3.131 c-0.272-0.779-0.643-1.52-1.103-2.205c-0.242-0.43-0.484-0.871-0.705-1.301c-1.643-3.308-0.904-6.527,1.83-8.125 c1.455-0.852,3.194-1.075,4.818-0.618c1.691,0.449,3.133,1.557,4.002,3.076c0.425,0.733,0.74,1.524,0.938,2.348 c0.97,4.179,1.94,8.357,2.921,12.624c0.364-2.205,0.761-4.41,1.246-6.692c0.802-3.429,1.985-6.757,3.528-9.923 c3.528-7.442,11.963-11.235,21.488-9.658c0.86,0.137,1.691,0.416,2.459,0.827c2.078,1.004,3.285,3.222,2.999,5.513 c-0.408,3.109-3.374,3.572-4.631,3.76c-0.782,0.118-1.577,0.118-2.359,0c-0.254,0-0.519-0.066-0.783-0.077 c-6.615-0.375-8.82,1.94-10.573,6.361c-3.01,7.497-4.035,15.149-5.05,24.377c-0.342,3.175-0.375,6.482-0.407,9.691 c0,1.93,0,3.914-0.133,5.888c-0.088,1.962-0.38,3.909-0.871,5.81C454.156,118.88,451.844,120.756,449.178,120.717z" /> <path d="M546.135,59.25c-0.18,0.011-0.36,0.011-0.541,0c-1.195-0.199-2.178-1.051-2.547-2.205 c-1.289-4.091-2.514-8.093-3.506-12.128c-0.684-2.823,1.103-5.513,4.212-6.406c2.506-0.891,5.259,0.417,6.152,2.921 c0.49,1.245,0.888,2.523,1.19,3.826c0.133,0.507,0.265,1.025,0.408,1.532l0.54,1.896l-1.015,0.287c0,0.221-0.055,0.452-0.077,0.673 c-0.198,1.665-0.396,3.385-0.661,5.083c-0.184,1.078-0.618,2.097-1.268,2.977C548.365,58.657,547.29,59.231,546.135,59.25z" /> <path d="M482.981,53.561l-1.709-1.103c-4.697-2.844-5.612-7.155-6.108-10.959c-0.375-2.933,1.688-5.436,4.918-5.954 c3.23-0.519,5.512,1.025,6.174,3.859c0.904,4.013,0.177,8.048-2.205,12.348L482.981,53.561z" /> <path d="M677.094,55.876c-0.234-2.991-1.067-5.903-2.447-8.567c-1.051-2.274-3.35-3.711-5.854-3.66 c-4.201,0.022-7.277,0.97-9.714,2.988c-6.683,5.544-11.577,12.939-14.068,21.257c-3.003,9.579-4.396,19.59-4.123,29.625v1.488 c0.079,1.039,0.079,2.082,0,3.12c-0.664,0.172-1.338,0.304-2.018,0.397c-0.761,0.132-1.676,0.286-2.778,0.507 c-7.332,1.488-13.804,0.187-19.317-3.87c-5.034-3.883-9.357-8.609-12.777-13.969c-1.104-1.665-2.205-3.308-3.309-4.972 c-2.381-3.672-4.84-7.464-7.562-11.025c-2.459-3.22-5.546-5.017-8.678-5.017c-2.23,0.031-4.364,0.915-5.965,2.47 c-0.705-1.478-1.443-2.966-2.281-4.41c-1.057-1.778-2.251-3.47-3.572-5.061c-1.531-1.875-4.287-2.165-6.175-0.651 c-1.95,1.261-2.644,3.786-1.609,5.866c0.156,0.351,0.345,0.687,0.562,1.003c0.083,0.115,0.157,0.236,0.22,0.364 c0.606,1.478,1.257,2.944,1.919,4.41c1.519,3.218,2.822,6.533,3.903,9.923c3.045,10.105,4.471,20.628,4.223,31.18 c0.006,2.899,0.347,5.789,1.014,8.61c0.257,1.77,1.383,3.293,2.999,4.058c1.786,0.659,3.784,0.373,5.314-0.761 c2.012-1.247,3.07-3.586,2.679-5.92l-0.595-5.679c-0.529-5.304-1.136-10.783-1.632-16.163l-0.056-0.65 c-0.496-5.259-0.948-10.221,0.231-15.127c0.091-0.323,0.221-0.634,0.387-0.926c1.428,1.102,2.626,2.473,3.527,4.036 c4.058,7.012,9.129,15.148,16.075,22.348c7.276,7.553,16.703,10.86,27.993,9.835l7.409-0.673c0,0.1,0,0.21,0,0.309 c0.231,1.456,0.452,2.823,0.629,4.19c0.221,1.741,0.407,3.483,0.595,5.226c0.375,3.43,0.75,6.979,1.4,10.452 c1.136,6.13,2.371,12.337,3.562,18.335c1.521,7.476,3.054,15.215,4.41,22.834c0.698,4.063,0.831,8.204,0.396,12.305 c-0.118,1.707-1.104,3.235-2.612,4.046c-1.84,0.905-4.008,0.839-5.789-0.177c-1.195-0.703-2.506-1.191-3.869-1.444 c-1.101-0.138-2.206,0.21-3.029,0.952c-1.564,1.41-1.689,3.822-0.278,5.388c2.844,3.539,6.218,5.325,10.055,5.325 c0.231,0,0.452,0,0.661-0.021c2.165-0.037,4.312-0.409,6.362-1.104c3.429-1.312,7.497-3.451,8.5-8.512 c0.565-2.493,0.763-5.057,0.585-7.607c-0.529-5.469-1.225-11.874-2.404-18.423c-1.18-6.55-2.458-13.175-3.682-19.593 c-1.511-7.717-3.043-15.699-4.41-23.561l-0.122-0.694c-0.672-3.749-1.334-7.618-0.672-11.29l1.422-0.85 c1.715-0.924,3.322-2.033,4.796-3.307c3.513-3.107,6.731-6.533,9.614-10.232c1.267-1.897,2.209-3.991,2.79-6.196 c0.297-0.893,0.562-1.731,0.882-2.547C674.238,77.376,677.832,67.145,677.094,55.876z M665.771,69.735l-1.411,3.914 c-1.532,4.245-3.109,8.644-4.752,12.922c-1.693,4.485-4.831,8.278-8.92,10.783c-0.011-0.118-0.011-0.235,0-0.353 c0.232-11.874,1.896-21.125,5.271-29.107c2.58-6.031,6.186-10.287,11.025-12.977c0.471,0.565,0.693,1.297,0.617,2.028 C667.788,61.286,667.168,65.623,665.771,69.735z" /> </g> </svg> </a> <nav id="nav"> <ul> <li> <ul class="links"> <li class="about"><a href="//www.stephenwolfram.com/about/">ABOUT</a></li> <li class="blog"><a href="//writings.stephenwolfram.com">WRITINGS</a></li> <li class="publications"><a href="//www.stephenwolfram.com/publications/">PUBLICATIONS</a></li> <li class="media"><a href="//www.stephenwolfram.com/media/">MEDIA</a></li> <li class="scrapbook"><a href="//www.stephenwolfram.com/scrapbook/">SCRAPBOOK</a></li> <li class="contact"><a href="//www.stephenwolfram.com/contact/">CONTACT</a></li> </ul> </li> <li> <ul class="social"> <li><a class="twitter" href="//x.com/stephen_wolfram" class="big-social-icon twitter" title="X" target="_blank"></a></li> <li><a class="facebook" href="//www.facebook.com/Stephen-Wolfram-188916357807416/" class="big-social-icon facebook" title="Facebook" target="_blank"></a></li> <li><a class="linkedin" href="//www.linkedin.com/in/stephenwolfram" class="big-social-icon linkedin" title="LinkedIn" target="_blank"></a></li> <li><a class="soundcloud" href="https://soundcloud.com/stephenwolfram/" class="big-social-icon soundcloud" title="SoundCloud" target="_blank"></a></li> <li><a class="twitch" href="https://www.twitch.tv/stephen_wolfram" class="big-social-icon twitch" title="Twitch" target="_blank"></a></li> </ul> </li> </ul> </nav> </div> <div class="stripe"></div> </header> <script> $('.hamburger').click(function(e){ e.stopPropagation(); $('.links').toggleClass('show'); $('#header > .inner').toggleClass('open'); if($('.overlay').length < 1 && !$('.links').hasClass('hide')) { $('#header').append('<div class="overlay">'); } else { $('.overlay').remove(); } }); $('body').click(function(){ $('.links').removeClass('show'); $('.overlay').remove(); $('#header > .inner').removeClass('open'); }); </script> <div class="writings-sidebar-additions"> <div class="inner"> <div class="sidebar-additions"> <div class="recent-categories"><a href="https://writings.stephenwolfram.com">Recent</a> | <div class="categories-list-wrapper"> <button class="categories">Categories</button> <div class="categories-list-menu hide"> <ul class="categories-list"> <li><a href="/category/artificial-intelligence">Artificial Intelligence</a></li><li><a href="/category/big-picture">Big Picture</a></li><li><a href="/category/companies-and-business">Companies &amp; Business</a></li><li><a href="/category/computational-science">Computational Science</a></li><li><a href="/category/computational-thinking">Computational Thinking</a></li><li><a href="/category/data-science">Data Science</a></li><li><a href="/category/education">Education</a></li><li><a href="/category/future-perspectives">Future Perspectives</a></li><li><a href="/category/historical-perspectives">Historical Perspectives</a></li><li><a href="/category/language-and-communication">Language &amp; Communication</a></li><li><a href="/category/life-and-times">Life &amp; Times</a></li><li><a href="/category/life-science">Life Science</a></li><li><a href="/category/mathematica">Mathematica</a></li><li><a href="/category/mathematics">Mathematics</a></li><li><a href="/category/new-kind-of-science">New Kind of Science</a></li><li><a href="/category/new-technology">New Technology</a></li><li><a href="/category/personal-analytics">Personal Analytics</a></li><li><a href="/category/philosophy">Philosophy</a></li><li><a href="/category/physics">Physics</a></li><li><a href="/category/ruliology">Ruliology</a></li><li><a href="/category/software-design">Software Design</a></li><li><a href="/category/wolfram-alpha">Wolfram|Alpha</a></li><li><a href="/category/wolfram-language">Wolfram Language</a></li><li><a href="/category/other">Other</a></li> </ul> </div> </div> </div> <span class="pipe">|</span> <form class="search-link" method="get" action="https://writings.stephenwolfram.com/"> <svg version="1.0" class="search-button" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px" viewBox="0 0 18.2 18.5" enable-background="new 0 0 18.2 18.5" xml:space="preserve"> <g> <path class="circle" fill="#c42c1f" d="M7.7,14.2H7.6c-3.6,0-6.5-2.9-6.5-6.4V7.7c0-3.5,2.9-6.4,6.5-6.4h0.1 c3.6,0,6.5,2.9,6.5,6.4v0.1C14.2,11.3,11.3,14.2,7.7,14.2z M7.6,2.5c-2.9,0-5.2,2.3-5.2,5.1v0.1c0,2.8,2.3,5.1,5.2,5.1h0.1 c2.9,0,5.2-2.3,5.2-5.1V7.7C12.9,4.8,10.6,2.5,7.6,2.5L7.6,2.5z" /> <g> <path class="handle" fill="#c42c1f" d="M16.8,15.4l-4.4-4.4l-1.5,1.6l4.4,4.5c0.2,0.2,0.5,0.3,0.7,0.3s0.5-0.1,0.7-0.3 C17.2,16.5,17.2,15.8,16.8,15.4z" /> </g> </g> </svg> <input class="search-field hide" type="text" value="" name="s" placeholder="Search Writings" /> <span class="close hide">&times;</span> </form> </div> </div> </div> <div class="inner"> <div id="content"><script type="text/javascript"> $(document).ready(function() { $("#join-small").addClass('join-small-js'); $("#exit-button").addClass('exit-button-js'); $("#respond").addClass('respond-js'); }); </script> <article id="postid-17568" > <div id="toc-bar-wrap"> <div id="toc-bar"> <div id="toc-bar-inner"> <span class="toc-button">Contents</span> <div class="toc-menu hide"> <ul class="table-of-contents"> <li class="toplink"><a href="#top">Top</a></li> <li><a href='#spikeys-everywhere'>Spikeys Everywhere</a></li> <li><a href='#the-origins-of-spikey'>The Origins of Spikey</a></li> <li><a href='#enter-wolfram-alpha'>Enter Wolfram|Alpha</a></li> <li><a href='#the-rhombic-hexecontahedron'>The Rhombic Hexecontahedron</a></li> <li><a href='#paper-spikey-kits'>Paper Spikey Kits</a></li> <li><a href='#the-path-to-the-rhombic-hexecontahedron'>The Path to the Rhombic Hexecontahedron</a></li> <li><a href='#quasicrystals'>Quasicrystals</a></li> <li><a href='#flattening-spikey'>Flattening Spikey</a></li> <li><a href='#the-brazilian-surprise'>The Brazilian Surprise</a></li> <li><a href='#spikeys-come-to-life'>Spikeys Come to Life</a></li> <li><a href='#spikeys-forever'>Spikeys Forever</a></li> </ul> </div> <span class="toc-title">The Story of Spikey</span> </div> </div> </div> <h1 class="blog-post-title">The Story of Spikey</h1> <time class="date" datetime="2018-12-28">December 28, 2018</time> <div class="post_content" > <p><img class="aligncenter size-full wp-image-17758" title="Wolfram’s Spikey logo—a flattened rhombic hexecontahedron" src="https://content.wolfram.com/sites/43/2018/12/spikey-wolfram-logo.png" alt="Wolfram’s Spikey logo—a flattened rhombic hexecontahedron" width="267" height="278" /></p> <h2 id="spikeys-everywhere" class="section">Spikeys Everywhere</h2> <p>We call it “<a href="https://www.wolframalpha.com/input/?i=Spikey">Spikey</a>”, and in my life today, it’s everywhere:</p> <p><img class="size-full wp-image-17674" title="Stephen Wolfram surrounded by Spikeys" src="https://content.wolfram.com/sites/43/2018/12/stephen-wolfram-surrounded-by-spikeys.png" alt="Stephen Wolfram surrounded by Spikeys" width="471" height="289" srcset="https://content.wolfram.com/sites/43/2018/12/stephen-wolfram-surrounded-by-spikeys.png 471w, https://content.wolfram.com/sites/43/2018/12/stephen-wolfram-surrounded-by-spikeys-300x184.png 300w" sizes="(max-width: 471px) 100vw, 471px" /></p> <p>It comes from a 3D object&#8212;a polyhedron that’s called a <a href="https://www.wolframalpha.com/input/?i=rhombic+hexecontahedron">rhombic hexecontahedron</a>:</p> <p><img class="size-full wp-image-17677" title="3D rhombic hexecontahedron" src="https://content.wolfram.com/sites/43/2018/12/rhombic-hexecontahedron-animation.gif" alt="3D rhombic hexecontahedron" width="322" height="322" srcset="https://content.wolfram.com/sites/43/2018/12/rhombic-hexecontahedron-animation.gif 322w, https://content.wolfram.com/sites/43/2018/12/rhombic-hexecontahedron-animation-150x150.gif 150w, https://content.wolfram.com/sites/43/2018/12/rhombic-hexecontahedron-animation-300x300.gif 300w" sizes="(max-width: 322px) 100vw, 322px" /></p> <p>But what is its story, and how did we come to adopt it as our symbol?</p> <p><span id="more-17568"></span></p> <h2 id="the-origins-of-spikey" class="section">The Origins of Spikey</h2> <p>Back in 1987, when we were <a href="http://www.wolfram.com/mathematica/scrapbook/">developing the first version</a> of <a href="http://www.wolfram.com/mathematica/">Mathematica</a>, one of our innovations was being able to generate resolution-independent <a href="https://reference.wolfram.com/language/ref/Graphics3D.html">3D graphics</a> from <a href="https://reference.wolfram.com/language/guide/SymbolicGraphicsLanguage.html">symbolic descriptions</a>. In our early demos, this let us create wonderfully crisp images of <a href="https://www.wolframalpha.com/input/?i=platonic+solid">Platonic solids</a>. But as we approached the release of Mathematica 1.0, we wanted a more impressive example. So we decided to take the last of the Platonic solids&#8212;the <a href="https://www.wolframalpha.com/input/?i=icosahedron">icosahedron</a>&#8212;and then make something more complex by a certain amount of <a href="http://mathworld.wolfram.com/Stellation.html">stellation</a> (or, more correctly, <a href="http://mathworld.wolfram.com/Cumulation.html">cumulation</a>). (Yes, that’s what the original <a href="http://www.wolfram.com/notebooks/">notebook</a> interface looked like, 30 years ago&#8230;)</p> <p><img class="alignnone size-full wp-image-17683" title="Spikey's birth in a Mathematica notebook, as a stellated icosahedron" src="https://content.wolfram.com/sites/43/2018/12/spikey-is-born-in-mathematica-stellated-icosahedron.png" alt="Spikey's birth in a Mathematica notebook, as a stellated icosahedron" width="350" height="417" srcset="https://content.wolfram.com/sites/43/2018/12/spikey-is-born-in-mathematica-stellated-icosahedron.png 350w, https://content.wolfram.com/sites/43/2018/12/spikey-is-born-in-mathematica-stellated-icosahedron-251x300.png 251w" sizes="(max-width: 350px) 100vw, 350px" /></p> <p>At first this was just a nice demo that happened to run fast enough on the computers we were using back then. But quite soon the 3D object it generated began to emerge as the de facto logo for Mathematica. And by the time Mathematica 1.0 was released in 1988, the stellated icosahedron was everywhere:</p> <p><img class="alignnone size-full wp-image-17686" title="Mathematica 1 and its Spikey logo—box, disks and original Macintosh start-up screen" src="https://content.wolfram.com/sites/43/2018/12/mathematica-1-spikey-logo.png" alt="Mathematica 1 and its Spikey logo—box, disks and original Macintosh start-up screen" width="600" height="218" srcset="https://content.wolfram.com/sites/43/2018/12/mathematica-1-spikey-logo.png 600w, https://content.wolfram.com/sites/43/2018/12/mathematica-1-spikey-logo-300x109.png 300w" sizes="(max-width: 600px) 100vw, 600px" /></p> <p>In time, tributes to our particular stellation started appearing&#8212;in various materials and sizes:</p> <p><img class="alignnone size-full wp-image-17687" title="Wolfram's original Spikey as built by others—here from paper, wood and metal" src="https://content.wolfram.com/sites/43/2018/12/wolfram-spikey-tributes.png" alt="Wolfram's original Spikey as built by others—here from paper, wood and metal" width="620" height="206" srcset="https://content.wolfram.com/sites/43/2018/12/wolfram-spikey-tributes.png 620w, https://content.wolfram.com/sites/43/2018/12/wolfram-spikey-tributes-300x99.png 300w" sizes="(max-width: 620px) 100vw, 620px" /></p> <p>But just a year after we released Mathematica 1.0, we were getting ready to release <a href="http://www.wolfram.com/mathematica/scrapbook/1989/04/10/1988_mathematica1-2-2/">Mathematica 1.2</a>, and to communicate its greater sophistication, we wanted a more sophisticated logo. One of our developers, <a href="https://en.wikipedia.org/wiki/Igor_Rivin" target="_blank">Igor Rivin</a>, had done his PhD on polyhedra in hyperbolic space&#8212;and through his efforts a <a href="http://mathworld.wolfram.com/HyperbolicIcosahedron.html">hyperbolic icosahedron</a> adorned our Version 1.2 materials:</p> <p><img class="alignnone size-full wp-image-17689" title="Mathematica 1.2 and its Spikey, a hyperbolic icosahedron" src="https://content.wolfram.com/sites/43/2018/12/mathematica-1.2-spikey-logo.png" alt="Mathematica 1.2 and its Spikey, a hyperbolic icosahedron" width="374" height="280" srcset="https://content.wolfram.com/sites/43/2018/12/mathematica-1.2-spikey-logo.png 374w, https://content.wolfram.com/sites/43/2018/12/mathematica-1.2-spikey-logo-300x224.png 300w" sizes="(max-width: 374px) 100vw, 374px" /></p> <p>My staff gave me an up-to-date-Spikey T-shirt for <a href="https://www.wolframalpha.com/input/?i=stephen+wolfram%27s+30th+birthday">my 30th birthday</a> in 1989, with a quote that I guess even after all these years I’d still say:</p> <p><img class="alignnone size-full wp-image-17691" title="The Spikey T-shirt given to Stephen Wolfram on his 30th birthday: &quot;Having a company is fun.&quot;" src="https://content.wolfram.com/sites/43/2018/12/t-shirt-stephen-wolfram-30th-birthday.png" alt="The Spikey T-shirt given to Stephen Wolfram on his 30th birthday: &quot;Having a company is fun.&quot;" width="620" height="332" srcset="https://content.wolfram.com/sites/43/2018/12/t-shirt-stephen-wolfram-30th-birthday.png 620w, https://content.wolfram.com/sites/43/2018/12/t-shirt-stephen-wolfram-30th-birthday-300x160.png 300w" sizes="(max-width: 620px) 100vw, 620px" /></p> <p>After Mathematica 1.2, our marketing materials had a whole collection of hyperbolic Platonic solids, but by the time <a href="http://www.wolfram.com/mathematica/scrapbook/1991/06/03/1991_version2productionline-2/">Version 2.0</a> arrived in 1991 we’d decided our favorite was the <a href="http://mathworld.wolfram.com/HyperbolicDodecahedron.html">hyperbolic dodecahedron</a>:</p> <p><img class="alignnone size-full wp-image-17693" title="Mathematica 2 and its Spikey, a hyperbolic dodecahedron" src="https://content.wolfram.com/sites/43/2018/12/mathematica-2-spikey-logo.png" alt="Mathematica 2 and its Spikey, a hyperbolic dodecahedron" width="620" height="428" srcset="https://content.wolfram.com/sites/43/2018/12/mathematica-2-spikey-logo.png 620w, https://content.wolfram.com/sites/43/2018/12/mathematica-2-spikey-logo-300x207.png 300w" sizes="(max-width: 620px) 100vw, 620px" /></p> <p>Still, we continued to explore other “Spikeyforms”. Inspired by the “wood model” style of <a href="https://www.wolframalpha.com/input/?i=leonardo+da+vinci">Leonardo da Vinci</a>’s stellated icosahedron drawing (with amazingly good perspective) for <a href="https://www.wolframalpha.com/input/?i=luca+pacioli">Luca Pacioli</a>’s book <span style="font-style: Italic;"><a href="https://archive.org/details/divinaproportion00paci/page/n3" target="_blank">De divina proportione</a></span>, we commissioned a <a href="http://www.wolfram.com/mathematica/scrapbook/1991/06/06/1991_mathematica2poster-2/">Version 2.0 poster</a> (by <a href="https://en.wikipedia.org/wiki/Scott_Kim" target="_blank">Scott Kim</a>) showing <a href="https://www.wolframalpha.com/input/?i=five+tetrahedron+compound">five intersecting tetrahedra</a> arranged so that their outermost vertices form a <a href="https://www.wolframalpha.com/input/?i=dodecahedron">dodecahedron</a>:</p> <p><img class="alignnone size-full wp-image-17697" title="da Vinci's wood-model-style polyhedron artwork and the Mathematica 2 poster it inspired" src="https://content.wolfram.com/sites/43/2018/12/mathematica-2-spikey-poster-da-vinci-style.png" alt="da Vinci's wood-model-style polyhedron artwork and the Mathematica 2 poster it inspired" width="616" height="440" srcset="https://content.wolfram.com/sites/43/2018/12/mathematica-2-spikey-poster-da-vinci-style.png 616w, https://content.wolfram.com/sites/43/2018/12/mathematica-2-spikey-poster-da-vinci-style-300x214.png 300w" sizes="(max-width: 616px) 100vw, 616px" /></p> <p>Looking through my 1991 archives today, I find some “explanatory” code (by <a href="https://de.wikipedia.org/wiki/Ilan_Vardi" target="_blank">Ilan Vardi</a>)&#8212;and it’s nice to see that it all just runs in our latest <a href="https://www.wolfram.com/language/">Wolfram Language</a> (though now it can be written a bit more elegantly):</p> <p><img class="alignnone size-full wp-image-17703" title="Explanatory code for the five-tetrahedron compound, still running in today's Wolfram Language" src="https://content.wolfram.com/sites/43/2018/12/five-tetrahedron-compound-explanatory-code.png" alt="Explanatory code for the five-tetrahedron compound, still running in today's Wolfram Language" width="620" height="416" srcset="https://content.wolfram.com/sites/43/2018/12/five-tetrahedron-compound-explanatory-code.png 620w, https://content.wolfram.com/sites/43/2018/12/five-tetrahedron-compound-explanatory-code-300x201.png 300w" sizes="(max-width: 620px) 100vw, 620px" /></p> <p>Over the years, it became a strange ritual that when we were getting ready to launch a <a href="https://www.wolfram.com/mathematica/quick-revision-history.html">new integer version of Mathematica</a>, we’d have very earnest meetings to &#8220;pick our new Spikey&#8221;. Sometimes there would be hundreds to choose from, generated (<a href="https://blog.wolfram.com/2007/05/22/making-the-mathematica-6-spikey/">most often by Michael Trott</a>) using all kinds of different algorithms:</p> <p><img class="alignnone size-full wp-image-17706" title="Some of the Spikey candidates for Mathematica 5, 6 and 7" src="https://content.wolfram.com/sites/43/2018/12/spikey-candidates-for-mathematica.png" alt="Some of the Spikey candidates for Mathematica 5, 6 and 7" width="620" height="1057" srcset="https://content.wolfram.com/sites/43/2018/12/spikey-candidates-for-mathematica.png 620w, https://content.wolfram.com/sites/43/2018/12/spikey-candidates-for-mathematica-600x1024.png 600w" sizes="(max-width: 620px) 100vw, 620px" /></p> <p>But though the color palettes evolved, and the Spikeys often reflected (though perhaps in some subtle way) new features in the system, we’ve now had a 30-year tradition of variations on the hyperbolic dodecahedron:</p> <p><img class="alignnone size-full wp-image-17709" title="Mathematica Spikeys by version" src="https://content.wolfram.com/sites/43/2018/12/mathematica-spikeys-by-version.png" alt="Mathematica Spikeys by version" width="620" height="648" srcset="https://content.wolfram.com/sites/43/2018/12/mathematica-spikeys-by-version.png 620w, https://content.wolfram.com/sites/43/2018/12/mathematica-spikeys-by-version-287x300.png 287w" sizes="(max-width: 620px) 100vw, 620px" /></p> <p>In more recent times, it’s become a bit more streamlined to explore the parameter space&#8212;though by now we’ve accumulated hundreds of parameters:</p> <p><video title="&quot;Spikey Maker&quot; notebook" src="https://content.wolfram.com/sites/43/2018/12/spikey-maker-notebook-video.mp4" autoplay="autoplay" loop="loop" muted="" width="600" height="150"><br /> </video></p> <p>A hyperbolic dodecahedron has 20 points&#8212;ideal for celebrating the <a href="https://writings.stephenwolfram.com/2008/06/mathematica-turns-20-today/">20th anniversary of Mathematica</a> in 2008. But when we wanted something similar for the <a href="https://writings.stephenwolfram.com/2013/06/celebrating-mathematicas-first-quarter-century/">25th anniversary</a> in 2013 we ran into the problem that there’s no regular polyhedron with 25 vertices. But (essentially using <tt><a href="http://reference.wolfram.com/language/ref/SpherePoints.html">SpherePoints</a>[25]</tt>) we managed to <a href="https://www.notebookarchive.org/id/2018-12-3a4b0nu">create an approximate one</a>&#8212;and made a 3D printout of it for everyone in our company, sized according to how long they’d been with us:</p> <p><img class="alignnone size-full wp-image-17711" title="The 3D 25-point Spikey we made for our 25th anniversary, as seen around our offices" src="https://content.wolfram.com/sites/43/2018/12/wolfram-3D-25th-anniversary-spikies.png" alt="The 3D 25-point Spikey we made for our 25th anniversary, as seen around our offices" width="620" height="160" srcset="https://content.wolfram.com/sites/43/2018/12/wolfram-3D-25th-anniversary-spikies.png 620w, https://content.wolfram.com/sites/43/2018/12/wolfram-3D-25th-anniversary-spikies-300x77.png 300w" sizes="(max-width: 620px) 100vw, 620px" /></p> <p>&nbsp;</p> <h2 id="enter-wolfram-alpha" class="section">Enter Wolfram|Alpha</h2> <p>In 2009, we were getting ready to launch <a href="https://www.wolframalpha.com/">Wolfram|Alpha</a>&#8212;and it needed a logo. There were all sorts of concepts:</p> <p><img class="alignnone size-full wp-image-17715" title="Some initial ideas for the Wolfram|Alpha logo" src="https://content.wolfram.com/sites/43/2018/12/wolfram-alpha-initial-logo-ideas.png" alt="Some initial ideas for the Wolfram|Alpha logo" width="620" height="172" srcset="https://content.wolfram.com/sites/43/2018/12/wolfram-alpha-initial-logo-ideas.png 620w, https://content.wolfram.com/sites/43/2018/12/wolfram-alpha-initial-logo-ideas-300x83.png 300w" sizes="(max-width: 620px) 100vw, 620px" /></p> <p>We really wanted to emphasize that Wolfram|Alpha <a href="https://www.wolframalpha.com/about/">works by doing computation</a> (rather than <a href="https://writings.stephenwolfram.com/2011/01/jeopardy-ibm-and-wolframalpha/">just, say, searching</a>). And for a while we were keen on indicating this with some kind of gear-like motif. But we also wanted the logo to be reminiscent of our longtime Mathematica logo. So this led to one of those classic “the-CEO-must-be-crazy” projects: make a gear mechanism out of Spikey-like forms.</p> <p>Longtime Mathematica and Wolfram Language user (and Hungarian mechanical engineer) <a href="https://demonstrations.wolfram.com/author.html?author=S%C3%A1ndor+Kabai">Sándor Kabai</a> helped out, suggesting a &#8220;<a href="http://demonstrations.wolfram.com/SpikeyGear/">Spikey Gear</a>”:</p> <p><a href="http://demonstrations.wolfram.com/SpikeyGear/"><img class="alignnone size-full wp-image-17719" title="&quot;Spikey Gear&quot; animation, as designed by Sándor Kabai" src="https://content.wolfram.com/sites/43/2018/12/spikey-gears-animation.gif" alt="&quot;Spikey Gear&quot; animation, as designed by Sándor Kabai" width="431" height="204" srcset="https://content.wolfram.com/sites/43/2018/12/spikey-gears-animation.gif 431w, https://content.wolfram.com/sites/43/2018/12/spikey-gears-animation-300x141.gif 300w" sizes="(max-width: 431px) 100vw, 431px" /></a></p> <p>And then, in a throwback to the Version 2 intersecting tetrahedra, he came up with <a href="http://demonstrations.wolfram.com/CompoundsOf5And10Tetrahedra/">this</a>:</p> <p><a href="http://demonstrations.wolfram.com/CompoundsOf5And10Tetrahedra/"><img class="alignnone size-full wp-image-17723" title="Spikey of intersecting tetrahedra, as designed by Sándor Kabai" src="https://content.wolfram.com/sites/43/2018/12/intersecting-tetrahedra-spikey-animation.gif" alt="Spikey of intersecting tetrahedra, as designed by Sándor Kabai" width="450" height="296" srcset="https://content.wolfram.com/sites/43/2018/12/intersecting-tetrahedra-spikey-animation.gif 450w, https://content.wolfram.com/sites/43/2018/12/intersecting-tetrahedra-spikey-animation-300x197.gif 300w" sizes="(max-width: 450px) 100vw, 450px" /></a></p> <p>In 2009, 3D printing was becoming very popular, and we thought it would be nice for Wolfram|Alpha to have a logo that was readily 3D printable. Hyperbolic polyhedra were out: their spikes would break off, and could be dangerous. (And something like the Mathematica Version 4 Spikey, with “safety spikes”, lacked elegance.)</p> <p>For a while we fixated on the gears idea. But eventually we decided it&#8217;d be worth taking another look at ordinary polyhedra. But if we were going to adopt a polyhedron, which one should it be?</p> <p>There are of course an infinite number of possible polyhedra. But to make a nice logo, we wanted a symmetrical and somehow &#8220;regular&#8221; one. The five <a href="https://www.wolframalpha.com/input/?i=platonic+solid">Platonic solids</a>&#8212;all of whose faces are identical regular polygons&#8212;are in effect the &#8220;most regular&#8221; of all polyhedra:</p> <p><a href="https://www.wolframalpha.com/input/?i=platonic+solid"><img class="alignnone size-full wp-image-17726" title="The five Platonic solids" src="https://content.wolfram.com/sites/43/2018/12/platonic-solids.png" alt="The five Platonic solids" width="619" height="108" srcset="https://content.wolfram.com/sites/43/2018/12/platonic-solids.png 619w, https://content.wolfram.com/sites/43/2018/12/platonic-solids-300x52.png 300w" sizes="(max-width: 619px) 100vw, 619px" /></a></p> <p>Then there are the 13 <a href="https://www.wolframalpha.com/input/?i=archimedean+solid">Archimedean solids</a>, all of whose vertices are identical, and whose faces are regular polygons but of more than one kind:</p> <p><a href="https://www.wolframalpha.com/input/?i=archimedean+solid"><img class="alignnone size-full wp-image-17727" title="The 13 Archimedean solids" src="https://content.wolfram.com/sites/43/2018/12/archimedean-solids.png" alt="The 13 Archimedean solids" width="620" height="174" srcset="https://content.wolfram.com/sites/43/2018/12/archimedean-solids.png 620w, https://content.wolfram.com/sites/43/2018/12/archimedean-solids-300x84.png 300w" sizes="(max-width: 620px) 100vw, 620px" /></a></p> <p>One can come up with all sorts of categories of “regular” polyhedra. One example is the “uniform polyhedra”, as <a href="https://www.wolfram.com/mathematica/scrapbook/1991/06/12/1992_polyhedrondata-2/">depicted in a poster</a> for <span style="font-style: Italic;"><a href="https://www.mathematica-journal.com/">The Mathematica Journal</a></span> in 1993:</p> <p><a href="https://www.wolfram.com/mathematica/scrapbook/1991/06/12/1992_polyhedrondata-2/"><img class="alignnone size-full wp-image-17730" title="The uniform polyhedra" src="https://content.wolfram.com/sites/43/2018/12/uniform-polyhedra-poster-the-mathematica-journal.png" alt="The uniform polyhedra" width="620" height="433" srcset="https://content.wolfram.com/sites/43/2018/12/uniform-polyhedra-poster-the-mathematica-journal.png 620w, https://content.wolfram.com/sites/43/2018/12/uniform-polyhedra-poster-the-mathematica-journal-300x209.png 300w" sizes="(max-width: 620px) 100vw, 620px" /></a></p> <p>Over the years that <a href="http://mathworld.wolfram.com/about/author.html">Eric Weisstein</a> was assembling what in 1999 became <a href="http://mathworld.wolfram.com/">MathWorld</a>, he made an effort to include articles on as many <a href="http://mathworld.wolfram.com/search/?query=polyhedra">notable polyhedra</a> as possible. And in 2006, as part of putting every kind of systematic data into Mathematica and the Wolfram Language, we started including polyhedron data from MathWorld. The result was that when <a href="https://www.wolfram.com/mathematica/quick-revision-history.html#v60">Version 6.0</a> was released in 2007, it included the function <tt><a href="https://reference.wolfram.com/language/ref/PolyhedronData.html">PolyhedronData</a></tt> that contained extensive data on 187 notable polyhedra:</p> <p><a href="https://reference.wolfram.com/language/ref/PolyhedronData.html"><img class="alignnone size-full wp-image-17734" title="PolyhedronData, from the Wolfram Language reference page" src="https://content.wolfram.com/sites/43/2018/12/polyhedron-data-wolfram-language.png" alt="PolyhedronData, from the Wolfram Language reference page" width="620" height="320" srcset="https://content.wolfram.com/sites/43/2018/12/polyhedron-data-wolfram-language.png 620w, https://content.wolfram.com/sites/43/2018/12/polyhedron-data-wolfram-language-300x154.png 300w" sizes="(max-width: 620px) 100vw, 620px" /></a></p> <p>It had always been possible to generate regular polyhedra in Mathematica and the Wolfram Language, but now it became easy. With the release of Version 6.0 we also started the <a href="https://demonstrations.wolfram.com/">Wolfram Demonstrations Project</a>, which quickly began accumulating all sorts of <a href="http://demonstrations.wolfram.com/topic.html?topic=Polyhedra">polyhedron-related Demonstrations</a>.</p> <p>One created by my then-10-year-old daughter Catherine (who happens to have continued in <a href="http://math.uchicago.edu/~may/REU2016/REUPapers/Wolfram.pdf" target="_blank">geometry-related directions</a>) was &#8220;<a href="https://demonstrations.wolfram.com/PolyhedralKoalas/">Polyhedral Koalas</a>”&#8212;featuring a pull-down for all polyhedra in <tt><a href="https://reference.wolfram.com/language/ref/PolyhedronData.html">PolyhedronData</a>[]</tt>:</p> <p><a href="https://demonstrations.wolfram.com/PolyhedralKoalas/"><img class="alignnone size-full wp-image-17737" title="&quot;Polyhedral Koalas&quot;, from the Wolfram Demonstrations Project" src="https://content.wolfram.com/sites/43/2018/12/polyhedral-koalas-demonstration.png" alt="&quot;Polyhedral Koalas&quot;, from the Wolfram Demonstrations Project" width="620" height="317" srcset="https://content.wolfram.com/sites/43/2018/12/polyhedral-koalas-demonstration.png 620w, https://content.wolfram.com/sites/43/2018/12/polyhedral-koalas-demonstration-300x153.png 300w" sizes="(max-width: 620px) 100vw, 620px" /></a></p> <p>So this was the background when in early 2009 we wanted to &#8220;pick a polyhedron&#8221; for Wolfram|Alpha. It all came to a head on the evening of Friday, February 6, when I decided to just take a look at things myself.</p> <p>I still have the notebook I used, and it shows that at first I tried out the rather dubious idea of putting spheres at the vertices of polyhedra:</p> <p><img class="alignnone size-full wp-image-17740" title="Spheres on polyhedron vertices, an original unlikely idea for the Wolfram|Alpha logo" src="https://content.wolfram.com/sites/43/2018/12/spheres-on-polyhedron-vertices-early-wolfram-alpha-logo-concept.png" alt="Spheres on polyhedron vertices, an original unlikely idea for the Wolfram|Alpha logo" width="620" height="431" srcset="https://content.wolfram.com/sites/43/2018/12/spheres-on-polyhedron-vertices-early-wolfram-alpha-logo-concept.png 620w, https://content.wolfram.com/sites/43/2018/12/spheres-on-polyhedron-vertices-early-wolfram-alpha-logo-concept-300x208.png 300w" sizes="(max-width: 620px) 100vw, 620px" /></p> <p>But (as the <a href="https://reference.wolfram.com/language/tutorial/NotebookHistoryDialog.html">Notebook History system</a> recorded) just under two minutes later I’d generated pure polyhedron images&#8212;all in the orange we thought we were going to use for the logo:</p> <p><a href="https://reference.wolfram.com/language/tutorial/NotebookHistoryDialog.html"><img class="alignnone size-full wp-image-17743" title="Notebook Modification History Overview window from original Wolfram|Alpha logo-exploration notebook" src="https://content.wolfram.com/sites/43/2018/12/notebook-history-sphere-spikey.png" alt="Notebook Modification History Overview window from original Wolfram|Alpha logo-exploration notebook" width="302" height="355" srcset="https://content.wolfram.com/sites/43/2018/12/notebook-history-sphere-spikey.png 302w, https://content.wolfram.com/sites/43/2018/12/notebook-history-sphere-spikey-255x300.png 255w" sizes="(max-width: 302px) 100vw, 302px" /></a></p> <p><img class="alignnone size-full wp-image-17744" title="Pure polyhedron images generated in search of the Wolfram|Alpha logo" src="https://content.wolfram.com/sites/43/2018/12/pure-polyhedron-images-early-wolfram-alpha-logo-concept.png" alt="Pure polyhedron images generated in search of the Wolfram|Alpha logo" width="620" height="431" srcset="https://content.wolfram.com/sites/43/2018/12/pure-polyhedron-images-early-wolfram-alpha-logo-concept.png 620w, https://content.wolfram.com/sites/43/2018/12/pure-polyhedron-images-early-wolfram-alpha-logo-concept-300x208.png 300w" sizes="(max-width: 620px) 100vw, 620px" /></p> <p>The polyhedra were arranged in alphabetical order by name, and on line 28, there it was&#8212;the rhombic hexecontahedron:</p> <p><img class="alignnone size-full wp-image-17747" title="First view of the rhombic hexecontahedron that became the Wolfram|Alpha logo" src="https://content.wolfram.com/sites/43/2018/12/rhombic-hexecontahedron-found-early-wolfram-alpha-logo-concept.png" alt="First view of the rhombic hexecontahedron that became the Wolfram|Alpha logo" width="620" height="437" srcset="https://content.wolfram.com/sites/43/2018/12/rhombic-hexecontahedron-found-early-wolfram-alpha-logo-concept.png 620w, https://content.wolfram.com/sites/43/2018/12/rhombic-hexecontahedron-found-early-wolfram-alpha-logo-concept-300x211.png 300w" sizes="(max-width: 620px) 100vw, 620px" /></p> <p>A couple of minutes later, I had homed in on the rhombic hexecontahedron, and at exactly 12:24:24am on February 7, 2009, I rotated it into essentially the symmetrical orientation we now use:</p> <p><img class="alignnone size-full wp-image-17749" title="Wolfram|Alpha's rhombic hexecontahedron, when first rotated into roughly the current orientation" src="https://content.wolfram.com/sites/43/2018/12/rhombic-hexecontahedron-wolfram-alpha-logo-first-found.png" alt="Wolfram|Alpha's rhombic hexecontahedron, when first rotated into roughly the current orientation" width="606" height="366" srcset="https://content.wolfram.com/sites/43/2018/12/rhombic-hexecontahedron-wolfram-alpha-logo-first-found.png 606w, https://content.wolfram.com/sites/43/2018/12/rhombic-hexecontahedron-wolfram-alpha-logo-first-found-300x181.png 300w" sizes="(max-width: 606px) 100vw, 606px" /></p> <p>I wondered what it would look like in gray scale or in silhouette, and four minutes later I used <tt><a href="https://reference.wolfram.com/language/ref/ColorSeparate.html">ColorSeparate</a></tt> to find out:</p> <p><a href="https://reference.wolfram.com/language/ref/ColorSeparate.html"><img class="alignnone size-full wp-image-17751" title="Using the Wolfram Language's ColorSeparate on what's now the Wolfram|Alpha rhombic hexecontahedron" src="https://content.wolfram.com/sites/43/2018/12/color-separate-on-rhombic-hexecontahedron-wolfram-alpha-logo.png" alt="Using the Wolfram Language's ColorSeparate on what's now the Wolfram|Alpha rhombic hexecontahedron" width="606" height="247" srcset="https://content.wolfram.com/sites/43/2018/12/color-separate-on-rhombic-hexecontahedron-wolfram-alpha-logo.png 606w, https://content.wolfram.com/sites/43/2018/12/color-separate-on-rhombic-hexecontahedron-wolfram-alpha-logo-300x122.png 300w" sizes="(max-width: 606px) 100vw, 606px" /></a></p> <p>I immediately started writing an email&#8212;which I fired off at 12:32am:<br /> “I [&#8230;] rather like the RhombicHexecontahedron &#8230;.<br /> It’s an interesting shape &#8230; very symmetrical &#8230; I think it might have<br /> about the right complexity &#8230; and its silhouette is quite reasonable.”</p> <p><img class="alignnone size-full wp-image-17755" title="The email that first pinpointed the rhombic hexecontahedron for the Wolfram|Alpha logo" src="https://content.wolfram.com/sites/43/2018/12/stephen-wolfram-email-choosing-wolfram-alpha-spikey.png" alt="The email that first pinpointed the rhombic hexecontahedron for the Wolfram|Alpha logo" width="547" height="437" srcset="https://content.wolfram.com/sites/43/2018/12/stephen-wolfram-email-choosing-wolfram-alpha-spikey.png 547w, https://content.wolfram.com/sites/43/2018/12/stephen-wolfram-email-choosing-wolfram-alpha-spikey-300x239.png 300w" sizes="(max-width: 547px) 100vw, 547px" /></p> <p>I’d obviously just copied “RhombicHexecontahedron” from the label in the notebook (and I doubt I could have spelled “hexecontahedron” correctly yet). And indeed from my <a href="https://writings.stephenwolfram.com/2012/03/the-personal-analytics-of-my-life/">archives</a> I know that this was the very first time I’d ever written the name of what was destined to become my all-time-favorite polyhedron.</p> <p>It was dead easy in the Wolfram Language to get a picture of a rhombic hexecontahedron to play with:</p> <table class="InCell"> <tbody> <tr> <td class="Input"> <div><img class="alignnone size-full wp-image-17764" title="PolyhedronData[&quot;RhombicHexecontahedron&quot;]" src="https://content.wolfram.com/sites/43/2018/12/polyhedron-data-rhombic-hexecontahedron-wolfram-language.png" alt="PolyhedronData[&quot;RhombicHexecontahedron&quot;]" width="373" height="334" srcset="https://content.wolfram.com/sites/43/2018/12/polyhedron-data-rhombic-hexecontahedron-wolfram-language.png 373w, https://content.wolfram.com/sites/43/2018/12/polyhedron-data-rhombic-hexecontahedron-wolfram-language-300x268.png 300w" sizes="(max-width: 373px) 100vw, 373px" /></div> <div class="IFL"><span id="in-1" class="close">✕</span></p> <pre id="in-1_text" class="text">PolyhedronData["RhombicHexecontahedron"]</pre> </div> </td> </tr> </tbody> </table> <p>And by Monday it was clear that the rhombic hexecontahedron was a winner&#8212;and our art department set about rendering it as the Wolfram|Alpha logo. We tried some different orientations, but soon settled on the symmetrical &#8220;head-on&#8221; one that I’d picked. (We also had to figure out the best “focal length”, giving the best foreshortening.)</p> <p><img class="alignnone size-full wp-image-17771" title="Different rotations and focal lengths for the Wolfram|Alpha Spikey" src="https://content.wolfram.com/sites/43/2018/12/wolfram-alpha-logo-rotations.png" alt="Different rotations and focal lengths for the Wolfram|Alpha Spikey" width="620" height="421" srcset="https://content.wolfram.com/sites/43/2018/12/wolfram-alpha-logo-rotations.png 620w, https://content.wolfram.com/sites/43/2018/12/wolfram-alpha-logo-rotations-300x203.png 300w" sizes="(max-width: 620px) 100vw, 620px" /></p> <p>Like our Version 1.0 stellated icosahedron, the rhombic hexecontahedron has 60 faces. But somehow, with its flower-like five-fold “petal” arrangements, it felt much more elegant. It took a fair amount of effort to find the best facet shading in a 2D rendering to reflect the 3D form. But soon we had the first official version of our logo:</p> <p><a href="https://www.wolframalpha.com/"><img class="aligncenter size-full wp-image-17777" title="First official version of the Wolfram|Alpha logo" src="https://content.wolfram.com/sites/43/2018/12/wolfram-alpha-spikey-original-official-logo.png" alt="First official version of the Wolfram|Alpha logo" width="413" height="203" srcset="https://content.wolfram.com/sites/43/2018/12/wolfram-alpha-spikey-original-official-logo.png 413w, https://content.wolfram.com/sites/43/2018/12/wolfram-alpha-spikey-original-official-logo-300x147.png 300w" sizes="(max-width: 413px) 100vw, 413px" /></a></p> <p>It quickly started to show up everywhere, and in a nod to our earlier ideas, it often appeared on a “geared background”:</p> <p><a href="https://www.wolframalpha.com/"><img class="aligncenter size-full wp-image-17781" title="The original Wolfram|Alpha Spikey on a geared background" src="https://content.wolfram.com/sites/43/2018/12/wolfram-alpha-spikey-original-official-logo-gear-background.png" alt="The original Wolfram|Alpha Spikey on a geared background" width="428" height="278" srcset="https://content.wolfram.com/sites/43/2018/12/wolfram-alpha-spikey-original-official-logo-gear-background.png 428w, https://content.wolfram.com/sites/43/2018/12/wolfram-alpha-spikey-original-official-logo-gear-background-300x194.png 300w" sizes="(max-width: 428px) 100vw, 428px" /></a></p> <p>A few years later, we tweaked the facet shading slightly, giving what is still today the logo of Wolfram|Alpha:</p> <p><a href="https://www.wolframalpha.com/"><img class="aligncenter size-full wp-image-17784" title="The current Wolfram|Alpha logo" src="https://content.wolfram.com/sites/43/2018/12/wolfram-alpha-spikey-current-logo.png" alt="The current Wolfram|Alpha logo" width="406" height="200" srcset="https://content.wolfram.com/sites/43/2018/12/wolfram-alpha-spikey-current-logo.png 406w, https://content.wolfram.com/sites/43/2018/12/wolfram-alpha-spikey-current-logo-300x147.png 300w" sizes="(max-width: 406px) 100vw, 406px" /></a></p> <p>&nbsp;</p> <h2 id="the-rhombic-hexecontahedron" class="section">The Rhombic Hexecontahedron</h2> <p>What is a <a href="https://www.wolframalpha.com/input/?i=rhombic+hexecontahedron">rhombic hexecontahedron</a>? It’s called a “hexecontahedron” because it has 60 faces, and ἑξηκοντα (hexeconta) is the Greek word for 60. (Yes, the correct spelling is with an “e”, not an “a”.) It’s called “rhombic” because each of its faces is a <a href="https://www.wolframalpha.com/input/?i=rhombus">rhombus</a>. Actually, its faces are <a href="http://mathworld.wolfram.com/GoldenRhombus.html">golden rhombuses</a>, so named because their diagonals are in the <a href="https://reference.wolfram.com/language/ref/GoldenRatio.html">golden ratio</a> <span class="InlineFormula"><img title="phi = (1 + Sqrt[5])/2" src="https://content.wolfram.com/sites/43/2018/12/img2.png" alt="phi = (1 + Sqrt[5])/2" align="absmiddle" /> ≃ 1.618</span>:</p> <p><a href="http://mathworld.wolfram.com/GoldenRhombus.html"><img class="alignnone size-full wp-image-17794" title="A golden rhombus, with short diagonal 1 and long diagonal phi" src="https://content.wolfram.com/sites/43/2018/12/golden-rhombus.png" alt="A golden rhombus, with short diagonal 1 and long diagonal phi" width="260" height="164" /></a></p> <p>The rhombic hexecontahedron is a curious interpolation between an icosahedron and a dodecahedron (with an <a href="https://www.wolframalpha.com/input/?i=icosidodecahedron">icosidodecahedron</a> in the middle). The 12 innermost points of a rhombic hexecontahedron form a regular icosahedron, while the 20 outermost points form a regular dodecahedron. The 30 “middle points” form an icosidodecahedron, which has 32 faces (20 “icosahedron-like” triangular faces, and 12 “dodecahedron-like” pentagonal faces):</p> <p><img class="aligncenter size-full wp-image-17799" title="The inner points of a rhombic hexecontahedron form an icosahedron, the middle points form an icosidodecahedron, and the outer points form a dodecahedron" src="https://content.wolfram.com/sites/43/2018/12/rhombic-hexecontahedron-composition-icosahedron-icosidodecahedron-dodecahedron.png" alt="The inner points of a rhombic hexecontahedron form an icosahedron, the middle points form an icosidodecahedron, and the outer points form a dodecahedron" width="620" height="406" srcset="https://content.wolfram.com/sites/43/2018/12/rhombic-hexecontahedron-composition-icosahedron-icosidodecahedron-dodecahedron.png 620w, https://content.wolfram.com/sites/43/2018/12/rhombic-hexecontahedron-composition-icosahedron-icosidodecahedron-dodecahedron-300x196.png 300w" sizes="(max-width: 620px) 100vw, 620px" /></p> <p>Altogether, the rhombic hexecontahedron has 62 vertices and 120 edges (as well as 120−62+2=60 faces). There are 3 kinds of vertices (“inner”, “middle” and “outer”), corresponding to the 12+30+20 vertices of the icosahedron, icosidodecahedron and dodecahedron. These types of vertices have respectively 3, 4 and 5 edges meeting at them. Each golden rhombus face of the rhombic hexecontahedron has one “inner” vertex where 5 edges meet, one “outer” vertex where 3 edges meet and two “middle” vertices where 4 edges meet. The inner and outer vertices are the acute vertices of the golden rhombuses; the middle ones are the obtuse vertices.</p> <p>The acute vertices of the golden rhombuses have angle 2 tan<sup>−1</sup>(<em>ϕ</em><sup>−1</sup>) ≈ 63.43°, and the obtuse ones 2 tan<sup>−1</sup>(<em>ϕ</em>) ≈ 116.57°. The angles allow the rhombic hexecontahedron to be assembled from <a href="http://www.zometool.com/" target="_blank">Zometool</a> using only red struts (the same as for a dodecahedron):</p> <p><a href="http://www.zometool.com/" target="_blank"><img class="alignnone size-full wp-image-17807" title="A Zometool construction of a rhombic hexecontahedron" src="https://content.wolfram.com/sites/43/2018/12/zometool-rhombic-hexecontahedron.png" alt="A Zometool construction of a rhombic hexecontahedron" width="337" height="328" srcset="https://content.wolfram.com/sites/43/2018/12/zometool-rhombic-hexecontahedron.png 337w, https://content.wolfram.com/sites/43/2018/12/zometool-rhombic-hexecontahedron-300x291.png 300w" sizes="(max-width: 337px) 100vw, 337px" /></a></p> <p>Across the 120 edges of the rhombic hexecontahedron, the 60 &#8220;inward-facing hinges&#8221; have <a href="http://mathworld.wolfram.com/DihedralAngle.html">dihedral angle</a> 4𝜋/5=144°, and the 60 &#8220;outward-facing&#8221; ones have dihedral angle 2𝜋/5=72°. The <a href="http://mathworld.wolfram.com/SolidAngle.html">solid angles</a> subtended by the inner and outer vertices are 𝜋/5 and 3𝜋/5.</p> <p>To actually draw a rhombic hexecontahedron, one needs to know <a href="https://www.wolframalpha.com/input/?i=rhombic+hexecontahedron+vertex+coordinates">3D coordinates for its vertices</a>. A convenient way to get these is to use the fact that the rhombic hexecontahedron is invariant under the <a href="http://mathworld.wolfram.com/IcosahedralGroup.html">icosahedral group</a>, so that one can <a href="http://demonstrations.wolfram.com/ConstructingPolyhedraUsingTheIcosahedralGroup/">start with a single golden rhombus and just apply the 60 matrices</a> that form a 3D representation of the icosahedral group. This gives for example final vertex coordinates {±<em>ϕ</em>,±1,0}, {±1,±<em>ϕ</em>,±(1+<em>ϕ</em>)}, {±2<em>ϕ</em>,0,0}, {±<em>ϕ</em>,±(1+2<em>ϕ</em>),0}, {±(1+<em>ϕ</em>),±(1+<em>ϕ</em>),±(1+<em>ϕ</em>)}, and cyclic permutations of these, with each possible sign being taken.</p> <p>In addition to having faces that are golden rhombuses, the rhombic hexecontahedron can be constructed out of 20 <a href="https://www.wolframalpha.com/input/?i=golden+rhombohedron">golden rhombohedra</a> (whose 6 faces are all golden rhombuses):</p> <p><a href="https://www.wolframalpha.com/input/?i=golden+rhombohedron"><img class="alignnone size-full wp-image-17812" title="A golden rhombohedron, and 20 of them forming a rhombic hexecontahedron" src="https://content.wolfram.com/sites/43/2018/12/rhombic-hexecontahedron-made-of-golden-rhombohedra.png" alt="A golden rhombohedron, and 20 of them forming a rhombic hexecontahedron" width="450" height="270" srcset="https://content.wolfram.com/sites/43/2018/12/rhombic-hexecontahedron-made-of-golden-rhombohedra.png 450w, https://content.wolfram.com/sites/43/2018/12/rhombic-hexecontahedron-made-of-golden-rhombohedra-300x180.png 300w" sizes="(max-width: 450px) 100vw, 450px" /></a></p> <p>There are other ways to build rhombic hexecontahedra out of other polyhedra. <a href="http://mathworld.wolfram.com/Cube5-Compound.html">Five intersecting cubes</a> can do it, as can 182 dodecahedra with touching faces:</p> <p><img class="alignnone size-full wp-image-17816" title="Rhombic hexecontahedra made from five intersecting cubes (left) and 182 face-touching dodecahedra (right)" src="https://content.wolfram.com/sites/43/2018/12/rhombic-hexecontahedra-from-intersecting-cubes-and-from-dodecahedra.png" alt="Rhombic hexecontahedra made from five intersecting cubes (left) and 182 face-touching dodecahedra (right)" width="552" height="266" srcset="https://content.wolfram.com/sites/43/2018/12/rhombic-hexecontahedra-from-intersecting-cubes-and-from-dodecahedra.png 552w, https://content.wolfram.com/sites/43/2018/12/rhombic-hexecontahedra-from-intersecting-cubes-and-from-dodecahedra-300x144.png 300w" sizes="(max-width: 552px) 100vw, 552px" /></p> <p>Rhombic hexecontahedra don’t tessellate space. But they do interlock in a satisfying way (and, yes, I’ve seen tens of paper ones stacked up this way):</p> <p><img class="alignnone size-full wp-image-17817" title="Interlocking rhombic hexecontahedra" src="https://content.wolfram.com/sites/43/2018/12/interlocking-rhombic-hexecontahedra.png" alt="Interlocking rhombic hexecontahedra" width="500" height="192" srcset="https://content.wolfram.com/sites/43/2018/12/interlocking-rhombic-hexecontahedra.png 500w, https://content.wolfram.com/sites/43/2018/12/interlocking-rhombic-hexecontahedra-300x115.png 300w" sizes="(max-width: 500px) 100vw, 500px" /></p> <p>There are also all sorts of ring and other configurations that can be made with them:</p> <p><img class="alignnone size-full wp-image-17819" title="Two of the possible ring configurations for rhombic hexecontahedra" src="https://content.wolfram.com/sites/43/2018/12/rhombic-hexecontahedron-ring-configurations.png" alt="Two of the possible ring configurations for rhombic hexecontahedra" width="570" height="281" srcset="https://content.wolfram.com/sites/43/2018/12/rhombic-hexecontahedron-ring-configurations.png 570w, https://content.wolfram.com/sites/43/2018/12/rhombic-hexecontahedron-ring-configurations-300x147.png 300w" sizes="(max-width: 570px) 100vw, 570px" /></p> <p>Closely related to the rhombic hexecontahedron (“RH”) is the <a href="https://www.wolframalpha.com/input/?i=rhombic+triacontahedron">rhombic triacontahedron</a> (“RT”). Both the RH and the RT have faces that are golden rhombuses. But the RH has 60, while the RT has 30. Here’s what a single RT looks like:</p> <p><a href="https://www.wolframalpha.com/input/?i=rhombic+triacontahedron"><img class="alignnone size-full wp-image-17820" title="A rhombic triacontahedron" src="https://content.wolfram.com/sites/43/2018/12/rhombic-triacontahedron.png" alt="A rhombic triacontahedron" width="167" height="165" /></a></p> <p>RTs fit beautifully into the “pockets” in RHs, leading to forms like this:</p> <p><img class="alignnone size-full wp-image-17821" title="Rhombic triacontahedra in the &quot;pockets&quot; of rhombic hexacontahedra" src="https://content.wolfram.com/sites/43/2018/12/rhombic-triacontahedra-in-pockets-of-rhombic-hexecontahedra.png" alt="Rhombic triacontahedra in the &quot;pockets&quot; of rhombic hexacontahedra" width="312" height="321" srcset="https://content.wolfram.com/sites/43/2018/12/rhombic-triacontahedra-in-pockets-of-rhombic-hexecontahedra.png 312w, https://content.wolfram.com/sites/43/2018/12/rhombic-triacontahedra-in-pockets-of-rhombic-hexecontahedra-291x300.png 291w" sizes="(max-width: 312px) 100vw, 312px" /></p> <p>The aforementioned Sándor Kabai got enthusiastic about the RH and RT around 2002. And after the <a href="https://demonstrations.wolfram.com/">Wolfram Demonstrations Project</a> was started, he and Slovenian mathematician <a href="https://demonstrations.wolfram.com/author.html?author=Izidor+Hafner">Izidor Hafner</a> ended up contributing over a hundred <a href="http://demonstrations.wolfram.com/search.html?query=rhombic+hexecontahedron+triacontahedron">Demonstrations about RH, RT and their many properties</a>:</p> <p><a href="http://demonstrations.wolfram.com/search.html?query=rhombic+hexecontahedron+triacontahedron"><img class="alignnone size-full wp-image-17824" title="Some of the many Demonstrations featuring rhombic hexecontahedra and rhombic tricontahedra" src="https://content.wolfram.com/sites/43/2018/12/rhombic-hexecontahedron-and-rhombic-tricontahedron-demonstrations.png" alt="Some of the many Demonstrations featuring rhombic hexecontahedra and rhombic tricontahedra" width="619" height="412" srcset="https://content.wolfram.com/sites/43/2018/12/rhombic-hexecontahedron-and-rhombic-tricontahedron-demonstrations.png 619w, https://content.wolfram.com/sites/43/2018/12/rhombic-hexecontahedron-and-rhombic-tricontahedron-demonstrations-300x199.png 300w" sizes="(max-width: 619px) 100vw, 619px" /></a></p> <p>&nbsp;</p> <h2 id="paper-spikey-kits" class="section">Paper Spikey Kits</h2> <p>As soon as we’d settled on a rhombic hexecontahedron Spikey, we started making 3D printouts of it. (It’s now very straightforward to do this with <tt><a href="https://reference.wolfram.com/language/ref/Printout3D.html">Printout3D</a>[<a href="https://reference.wolfram.com/language/ref/PolyhedronData.html">PolyhedronData</a>[...]]</tt>, and there are also <a href="https://www.shapeways.com/shops/wolfram" target="_blank">precomputed models</a> available at <a href="https://reference.wolfram.com/language/ref/Printout3D.html#Examples">outside services</a>.)</p> <p>At our <a href="https://www.youtube.com/playlist?list=PLDE75780290D61614" target="_blank">Wolfram|Alpha launch event</a> in May 2009, we had lots of 3D Spikeys to throw around:</p> <p><a href="https://www.youtube.com/playlist?list=PLDE75780290D61614" target="_blank"><img class="alignnone size-full wp-image-17830" title="Spikeys at the Wolfram|Alpha launch" src="https://content.wolfram.com/sites/43/2018/12/spikeys-at-wolfram-alpha-launch.png" alt="Spikeys at the Wolfram|Alpha launch" width="457" height="203" srcset="https://content.wolfram.com/sites/43/2018/12/spikeys-at-wolfram-alpha-launch.png 457w, https://content.wolfram.com/sites/43/2018/12/spikeys-at-wolfram-alpha-launch-300x133.png 300w" sizes="(max-width: 457px) 100vw, 457px" /></a></p> <p>But as we prepared for the first post-Wolfram|Alpha holiday season, we wanted to give everyone a way to make their own 3D Spikey. At first we explored using sets of 20 plastic-covered <a href="http://www.rhombo.com/index.html" target="_blank">golden rhombohedral magnets.</a> But they were expensive, and had a habit of not sticking together well enough at “Spikey scale”.</p> <p>So that led us to the idea of making a Spikey out of paper, or thin cardboard. Our first thought was then to <a href="https://www.wolframalpha.com/input/?t=crmtb01&amp;f=ob&amp;i=spikey+net">create a net</a> that could be folded up to make a Spikey:</p> <p><a href="https://www.wolframalpha.com/input/?t=crmtb01&amp;f=ob&amp;i=spikey+net"><img class="alignnone size-full wp-image-17834" title="Our first net for a rhombic hexecontahedron" src="https://content.wolfram.com/sites/43/2018/12/rhombic-hexecontahedron-spikey-net.png" alt="Our first net for a rhombic hexecontahedron" width="456" height="364" srcset="https://content.wolfram.com/sites/43/2018/12/rhombic-hexecontahedron-spikey-net.png 456w, https://content.wolfram.com/sites/43/2018/12/rhombic-hexecontahedron-spikey-net-300x239.png 300w" sizes="(max-width: 456px) 100vw, 456px" /></a></p> <p>My daughter Catherine was our test folder (and still has the object that was created), but it was clear that there were a lot of awkward hard-to-get-there-from-here situations during the folding process. There are a huge number of possible nets (there are already 43,380 even for the <a href="https://www.wolframalpha.com/input/?i=dodecahedron+number+of+nets">dodecahedron</a> and <a href="https://www.wolframalpha.com/input/?i=icosahedron+number+of+nets">icosahedron</a>)&#8212;and we thought that perhaps one could be found that would work better:</p> <p><img class="alignnone size-full wp-image-17836" title="A couple of other rhombic hexecontahedron nets" src="https://content.wolfram.com/sites/43/2018/12/rhombic-hexecontahedron-alternative-spikey-nets.png" alt="A couple of other rhombic hexecontahedron nets" width="497" height="220" srcset="https://content.wolfram.com/sites/43/2018/12/rhombic-hexecontahedron-alternative-spikey-nets.png 497w, https://content.wolfram.com/sites/43/2018/12/rhombic-hexecontahedron-alternative-spikey-nets-300x132.png 300w" sizes="(max-width: 497px) 100vw, 497px" /></p> <p>But after failing to find any such net, we then had a new (if obvious) idea: since the final structure would be held together by tabs anyway, why not just make it out of multiple pieces? We quickly realized that the pieces could be 12 identical copies of this:</p> <p><img class="alignnone size-full wp-image-17839" title="Twelve of these pieces can form a rhombic hexecontahedron, our Spikey " src="https://content.wolfram.com/sites/43/2018/12/wolfram-alpha-paper-spikey-piece.png" alt="Twelve of these pieces can form a rhombic hexecontahedron, our Spikey" width="306" height="285" srcset="https://content.wolfram.com/sites/43/2018/12/wolfram-alpha-paper-spikey-piece.png 306w, https://content.wolfram.com/sites/43/2018/12/wolfram-alpha-paper-spikey-piece-300x279.png 300w" sizes="(max-width: 306px) 100vw, 306px" /></p> <p>And with this we were able to create our “<a href="http://store.wolfram.com/view/misc/">Paper Sculpture Kits</a>”:</p> <p><a href="http://store.wolfram.com/view/misc/"><img class="alignnone size-full wp-image-17841" title="The Wolfram Paper Sculpture Kit and its completed paper Spikey" src="https://content.wolfram.com/sites/43/2018/12/wolfram-paper-sculpture-kit.png" alt="The Wolfram Paper Sculpture Kit and its completed paper Spikey" width="550" height="328" srcset="https://content.wolfram.com/sites/43/2018/12/wolfram-paper-sculpture-kit.png 550w, https://content.wolfram.com/sites/43/2018/12/wolfram-paper-sculpture-kit-300x178.png 300w" sizes="(max-width: 550px) 100vw, 550px" /></a></p> <p>Making the instructions easy to understand was an interesting challenge, but after a few iterations they’re now well debugged, and easy for anyone to follow:</p> <p><img class="alignnone size-full wp-image-17843" title="Evolution of instructions for the Wolfram Paper Sculpture Kit" src="https://content.wolfram.com/sites/43/2018/12/wolfram-paper-spikey-kit-instruction-evolution.png" alt="Evolution of instructions for the Wolfram Paper Sculpture Kit" width="620" height="418" srcset="https://content.wolfram.com/sites/43/2018/12/wolfram-paper-spikey-kit-instruction-evolution.png 620w, https://content.wolfram.com/sites/43/2018/12/wolfram-paper-spikey-kit-instruction-evolution-300x202.png 300w" sizes="(max-width: 620px) 100vw, 620px" /></p> <p>And with paper Spikeys in circulation, our users started sending us all sorts of pictures of Spikeys “on location”:</p> <p><img class="alignnone size-full wp-image-17847" title="Some photos from people of the Spikeys they made with their Wolfram Paper Sculpture Kits" src="https://content.wolfram.com/sites/43/2018/12/wolfram-paper-spikeys-on-location.png" alt="Some photos from people of the Spikeys they made with their Wolfram Paper Sculpture Kits" width="620" height="169" srcset="https://content.wolfram.com/sites/43/2018/12/wolfram-paper-spikeys-on-location.png 620w, https://content.wolfram.com/sites/43/2018/12/wolfram-paper-spikeys-on-location-300x81.png 300w" sizes="(max-width: 620px) 100vw, 620px" /><br /> <a name="pathtorhombichexecontahedron"></a></p> <h2 id="the-path-to-the-rhombic-hexecontahedron" class="section">The Path to the Rhombic Hexecontahedron</h2> <p><a href="https://www.metmuseum.org/art/collection/search/551072" target="_blank"><img class="alignright size-full wp-image-17848" style="float: right; margin-top: 30px;" title="A polyhedral die from ancient Egypt" src="https://content.wolfram.com/sites/43/2018/12/polyhedral-die-from-ancient-egypt.png" alt="A polyhedral die from ancient Egypt" width="221" height="144" /></a>It’s not clear who first identified the Platonic solids. Perhaps it was the <a href="https://en.wikipedia.org/wiki/Pythagoreanism" target="_blank">Pythagoreans</a> (particularly living near so many polyhedrally shaped <a href="https://www.wolframalpha.com/input/?i=pyrite+crystals">pyrite crystals</a>). Perhaps it was someone long before them. Or perhaps it was a contemporary of <a href="https://www.wolframalpha.com/input/?i=plato">Plato</a>’s named <a href="https://en.wikipedia.org/wiki/Theaetetus_(mathematician)" target="_blank">Theaetetus</a>. But in any case, by the time of Plato (≈400 BC), it was known that there are five Platonic solids. And when Euclid wrote his <span style="font-style: Italic;">Elements</span> (around 300 BC) perhaps the pinnacle of it was the proof that these five are all there can be. (This proof is notably the one that <a href="https://www.wolframscience.com/nks/notes-12-9--empirical-metamathematics/">takes the most steps</a>&#8212;<a href="https://datarepository.wolframcloud.com/resources/Theorem-Network-from-Euclids-Elements">32</a>&#8212;from the original axioms of the <span style="font-style: Italic;">Elements</span>.)</p> <p>Platonic solids were used for dice and ornaments. But they were also given a central role in thinking about nature, with Plato for example suggesting that perhaps everything could in some sense be made of them: earth of cubes, air of octahedra, water of icosahedra, fire of tetrahedra, and the heavens (“ether”) of dodecahedra.</p> <p>But what about other polyhedra? In the 4th century AD, <a href="https://www.wolframalpha.com/input/?i=pappus">Pappus</a> wrote that a couple of centuries earlier, <a href="https://www.wolframalpha.com/input/?i=archimedes">Archimedes</a> had discovered 13 other &#8220;regular polyhedra&#8221;&#8212;presumably what are now called the <a href="https://www.wolframalpha.com/input/?i=archimedean+solids">Archimedean solids</a>&#8212;though the details were lost. And for a thousand years little more seems to have been done with polyhedra. But in the 1400s, with the Renaissance starting up, polyhedra were suddenly in vogue again. People like <a href="https://www.wolframalpha.com/input/?i=leonardo+da+vinci">Leonardo da Vinci</a> and <a href="https://www.wolframalpha.com/input/?i=Albrecht+D%C3%BCrer">Albrecht Dürer</a> <a href="https://www.georgehart.com/virtual-polyhedra/durer.html" target="_blank">routinely used them</a> in art and design, rediscovering some of the Archimedean solids&#8212;as well as finding some entirely new polyhedra, like the <a href="https://www.wolframalpha.com/input/?i=icosidodecahedron">icosidodecahedron</a>.</p> <p>But the biggest step forward for polyhedra came with <a href="https://www.wolframalpha.com/input/?i=johannes+kepler">Johannes Kepler</a> at the beginning of the 1600s. It all started with an elegant, if utterly wrong, theory. Theologically convinced that the universe must be constructed with mathematical perfection, Kepler <a href="https://www.e-rara.ch/doi/10.3931/e-rara-445" target="_&quot;blank&quot;">suggested</a> that the six planets known at the time might move on nested spheres geometrically arranged so as to just fit the suitably ordered five Platonic solids between them:</p> <p><a href="https://www.e-rara.ch/doi/10.3931/e-rara-445" target="_blank"><img class="alignnone size-full wp-image-17852" title="Kepler drew his planetary-motion concept, nested spheres and Platonic solids, for his book &quot;Mysterium cosmographicum&quot;" src="https://content.wolfram.com/sites/43/2018/12/kepler-mysterium-cosmographicum-planetary-spheres-platonic-solids.png" alt="Kepler drew his planetary-motion concept, nested spheres and Platonic solids, for his book &quot;Mysterium cosmographicum&quot;" width="537" height="507" srcset="https://content.wolfram.com/sites/43/2018/12/kepler-mysterium-cosmographicum-planetary-spheres-platonic-solids.png 537w, https://content.wolfram.com/sites/43/2018/12/kepler-mysterium-cosmographicum-planetary-spheres-platonic-solids-300x283.png 300w" sizes="(max-width: 537px) 100vw, 537px" /></a></p> <p>In his 1619 book <span style="font-style: Italic;"><a href="https://archive.org/details/ioanniskepplerih00kepl/page/n9" target="_blank">Harmonices mundi</a></span> (“Harmony of the World”) Kepler argued that many features of music, planets and souls operate according to similar geometric ratios and principles. And to provide raw material for his arguments, Kepler studied polygons and polyhedra, being particularly interested in finding objects that somehow formed complete sets, like the Platonic solids.</p> <p>He studied possible &#8220;sociable polygons&#8221;, that together could tile the plane&#8212;finding, for example, his &#8220;<a href="http://mathworld.wolfram.com/KeplersMonsters.html">monster tiling</a>&#8221; (with pentagons, pentagrams and decagons). He studied &#8220;<a href="https://www.wolframalpha.com/input/?i=star+polyhedron">star polyhedra</a>&#8221; and found various stellations of the Platonic solids (and in effect the <a href="https://www.wolframalpha.com/input/?i=kepler-poinsot+polyhedra">Kepler–Poinsot polyhedra</a>). In 1611 he had published a <a href="https://www.amazon.com/Six-Cornered-Snowflake-Johannes-Kepler/dp/1589880536" target="_blank">small book</a> about the hexagonal structure of snowflakes, written as a New Year&#8217;s gift for a sometime patron of his. And in this book he discussed <a href="https://www.wolframscience.com/nks/notes-7-8--sphere-packings/">3D packings of spheres</a> (and spherical atoms), suggesting that what&#8217;s now called the <a href="http://mathworld.wolfram.com/KeplerConjecture.html">Kepler packing</a> (and routinely seen in the packing of fruit in grocery stores) is the densest possible packing (a fact that wasn&#8217;t <a href="https://github.com/flyspeck/kepler98" target="_blank">formally proved</a> until into the 2000s&#8212;as it happens, with the help of Mathematica).</p> <p>There are polyhedra lurking in Kepler&#8217;s various packings. Start from any sphere, then look at its neighbors, and join their centers to make the vertices of a polyhedron. For Kepler&#8217;s densest packing, there are 12 spheres touching any given sphere, and the polyhedron one gets is the <a href="https://www.wolframalpha.com/input/?i=cuboctahedron">cuboctahedron</a>, with 12 vertices and 14 faces. But Kepler also discussed another packing, 8% less dense, in which 8 spheres touch a given sphere, and 6 are close to doing so. Joining the centers of these spheres gives a polyhedron called the <a href="https://www.wolframalpha.com/input/?i=rhombic+dodecahedron">rhombic dodecahedron</a>, with 14 vertices and 12 faces:</p> <p><a href="https://www.wolframalpha.com/input/?i=rhombic+dodecahedron"><img class="alignnone size-full wp-image-17858" title="A rhombic dodecahedron lurking in a Kepler packing" src="https://content.wolfram.com/sites/43/2018/12/kepler-packing-rhombic-dodecahedron.png" alt="A rhombic dodecahedron lurking in a Kepler packing" width="186" height="181" /></a></p> <p>Having discovered this, Kepler started looking for other “rhombic polyhedra”. The rhombic dodecahedron he found has rhombuses composed of pairs of equilateral triangles. But by 1619 Kepler had also looked at golden rhombuses&#8212;and had found the rhombic triacontahedron, and drew a nice picture of it in his <a href="https://archive.org/details/ioanniskepplerih00kepl/page/n83" target="_blank">book</a>, right next to the rhombic dodecahedron:</p> <p><a href="https://archive.org/details/ioanniskepplerih00kepl/page/n83" target="_blank"><img class="alignnone size-full wp-image-17864" title="The rhombic triacontahedron and other polyhedra, as drawn by Kepler for his book &quot;Harmonices mundi&quot;" src="https://content.wolfram.com/sites/43/2018/12/kepler-harmonices-mundi-polyhedra.png" alt="The rhombic triacontahedron and other polyhedra, as drawn by Kepler for his book &quot;Harmonices mundi&quot;" width="620" height="516" srcset="https://content.wolfram.com/sites/43/2018/12/kepler-harmonices-mundi-polyhedra.png 620w, https://content.wolfram.com/sites/43/2018/12/kepler-harmonices-mundi-polyhedra-300x249.png 300w" sizes="(max-width: 620px) 100vw, 620px" /></a></p> <p>Kepler actually had an immediate application for these rhombic polyhedra: he wanted to use them, along with the cube, to make a nested-spheres model that would fit the orbital periods of the <a href="https://www.wolframalpha.com/input/?i=moons+of+jupiter">four moons of Jupiter that Galileo had discovered in 1610</a>.</p> <p>Why didn&#8217;t Kepler discover the rhombic hexecontahedron? I think he was quite close. He looked at non-convex &#8220;star&#8221; polyhedra. He looked at rhombic polyhedra. But I guess for his astronomical theories he was satisfied with the rhombic triacontahedron, and looked no further.</p> <p>In the end, of course, it was <a href="https://www.wolframalpha.com/input/?i=kepler%27s+laws">Kepler&#8217;s laws</a>&#8212;which have nothing to do with polyhedra&#8212;that were Kepler&#8217;s main surviving contribution to astronomy. But Kepler&#8217;s work on polyhedra&#8212;albeit done in the service of a misguided physical theory&#8212;stands as a timeless contribution to mathematics.</p> <p>Over the next three centuries, more polyhedra, with various forms of regularity, were gradually found&#8212;and by the early 1900s there were <a href="https://archive.org/details/vieleckeundviel00brgoog/page/n254" target="_blank">many known to mathematicians</a>:</p> <p><a href="https://archive.org/details/vieleckeundviel00brgoog/page/n254" target="_blank"><img class="alignnone size-full wp-image-17865" title="Polhedra from Max Brückner's 1900 book &quot;Vielecke und vielflache&quot;" src="https://content.wolfram.com/sites/43/2018/12/bruckner-vielecke-und-vielflache-polyhedra.png" alt="Polhedra from Max Brückner's 1900 book &quot;Vielecke und vielflache&quot;" width="620" height="416" srcset="https://content.wolfram.com/sites/43/2018/12/bruckner-vielecke-und-vielflache-polyhedra.png 620w, https://content.wolfram.com/sites/43/2018/12/bruckner-vielecke-und-vielflache-polyhedra-300x201.png 300w" sizes="(max-width: 620px) 100vw, 620px" /></a></p> <p>But, so far as I can tell, the rhombic hexecontahedron was not among them. And instead its discovery had to await the work of a certain <a href="http://www.genealogy.ams.org/id.php?id=48530" target="_blank">Helmut Unkelbach</a>. Born in 1910, he got a PhD in math at the University of Munich in 1937 (after initially studying physics). He wrote several papers about conformal mapping, and&#8212;perhaps through studying mappings of polyhedral domains&#8212;was led in 1940 to publish a <a href="https://mathscinet-ams-org.proxy2.library.illinois.edu/mathscinet-getitem?mr=13516" target="_blank">paper</a> (in German) about “The Edge-Symmetric Polyhedra”.</p> <p>His goal, he explains, is to exhaustively study all possible polyhedra that satisfy a specific, though new, definition of regularity: that their edges are all the same length, and these edges all lie in some symmetry plane of the polyhedron. The main result of his paper is a table containing 20 distinct polyhedra with that property:</p> <div class="colorbox-container"><a class="colorbox" title="Unkelbach's polyhedron table" href="https://content.wolfram.com/sites/43/2018/12/unkelbach-polyhedron-table-large.png"><img title="Unkelbach's polyhedron table—click to enlarge" src="https://content.wolfram.com/sites/43/2018/12/unkelbach-polyhedron-table.png" alt="Unkelbach's polyhedron table—click to enlarge" width="620" /></a></div> <p>&nbsp;</p> <p>Most of these polyhedra Unkelbach knew to already be known. But Unkelbach singles out three types that he thinks are new: two hexakisoctahedra (or <a href="https://www.wolframalpha.com/input/?i=disdyakis+dodecahedron">disdyakis dodecahedra</a>), two hexakisicosahedra (or <a href="https://www.wolframalpha.com/input/?t=crmtb01&amp;f=ob&amp;i=disdyakis+triacontahedron">dysdyakis triacontahedra</a>), and what he calls the Rhombenhexekontaeder, or in English, the rhombic hexecontahedron. He clearly considers the rhombic hexecontahedron his prize specimen, including a photograph of a model he made of it:</p> <p><img class="alignnone size-full wp-image-17875" title="Unkelbach's model of a rhombic hexecontahedron, &quot;Das Rhombenhexekontaeder&quot;" src="https://content.wolfram.com/sites/43/2018/12/unkelbach-rhombic-hexecontahedron.png" alt="Unkelbach's model of a rhombic hexecontahedron, &quot;Das Rhombenhexekontaeder&quot;" width="350" height="436" srcset="https://content.wolfram.com/sites/43/2018/12/unkelbach-rhombic-hexecontahedron.png 350w, https://content.wolfram.com/sites/43/2018/12/unkelbach-rhombic-hexecontahedron-240x300.png 240w" sizes="(max-width: 350px) 100vw, 350px" /></p> <p>How did he actually “derive” the rhombic hexecontahedron? Basically, he started from a dodecahedron, and identified its two types of symmetry planes:</p> <p><img class="alignnone size-full wp-image-17877" title="The two types of symmetry planes in a dodecahedron" src="https://content.wolfram.com/sites/43/2018/12/dodecahedron-symmetry-rhombic-hexecontahedron-derivation.png" alt="The two types of symmetry planes in a dodecahedron" width="188" height="253" /></p> <p>Then he subdivided each face of the dodecahedron:</p> <p><img class="alignnone size-full wp-image-17878" title="Subdivision of a dodecahedron face" src="https://content.wolfram.com/sites/43/2018/12/dodecahedron-face-division-rhombic-hexecontahedron-derivation.png" alt="Subdivision of a dodecahedron face" width="168" height="144" /></p> <p>Then he essentially considered pushing the centers of each face in or out to a specified multiple <em>α</em> of their usual distance from the center of the dodecahedron:</p> <p><img class="alignnone size-full wp-image-17879" title="Dodecahedra with their faces pushed in or out by different specific multiples—which, at a multiple of 0.5, results in an exact rhombic hexecontahedron" src="https://content.wolfram.com/sites/43/2018/12/rhombic-hexecontahedron-derivation.png" alt="Dodecahedra with their faces pushed in or out by different specific multiples—which, at a multiple of 0.5, results in exact rhombic hexecontahedron" width="620" height="234" srcset="https://content.wolfram.com/sites/43/2018/12/rhombic-hexecontahedron-derivation.png 620w, https://content.wolfram.com/sites/43/2018/12/rhombic-hexecontahedron-derivation-300x113.png 300w" sizes="(max-width: 620px) 100vw, 620px" /></p> <p>For <em>α</em> &lt; 1, the resulting faces don’t intersect. But for most values of <em>α</em>, they don’t have equal-length sides. That only happens for the specific case <span class="InlineFormula"><img src="https://content.wolfram.com/sites/43/2018/12/img6.png" align="absmiddle" /></span>&#8212;and in that case the resulting polyhedron is exactly the rhombic hexecontahedron.</p> <p>Unkelbach actually viewed his 1940 paper as a kind of warmup for a study of more general &#8220;<span style="font-style: Italic;">k</span>-symmetric polyhedra&#8221; with looser symmetry requirements. But it was already remarkable enough that a mathematics journal was being published at all in Germany after the beginning of World War II, and soon after the paper, Unkelbach was pulled into the war effort, spending the next few years designing acoustic-homing torpedoes for the German navy.</p> <p>Unkelbach never published on polyhedra again, and died in 1968. After the war he returned to conformal mapping, but also started publishing on the idea that mathematical voting theory was the key to setting up a well-functioning democracy, and that mathematicians had a responsibility to make sure it was used.</p> <p>But even though the rhombic hexecontahedron appeared in Unkelbach&#8217;s 1940 paper, it might well have languished there forever, were it not for the fact that in 1946 a certain <a href="https://www.wolframalpha.com/input/?i=hsm+coxeter">H. S. M. (&#8220;Donald&#8221;) Coxeter</a> wrote a short review of the paper for the (fairly new) American <span style="font-style: Italic;"><a href="http://www.ams.org/publications/math-reviews/mrpastandpresent" target="_blank">Mathematical Reviews</a></span>. His review catalogs the polyhedra mentioned in the paper, much as a naturalist might catalog new species seen on an expedition. The high point is what he describes as &#8220;a remarkable rhombic hexecontahedron&#8221;, for which he reports that &#8220;its faces have the same shape as those of the triacontahedron, of which it is <a href="http://demonstrations.wolfram.com/TriacontahedronStellations/">actually a stellation</a>”.</p> <p>Polyhedra were not exactly a hot topic in the mathematics of the mid-1900s, but Coxeter was their leading proponent&#8212;and was connected in one way or another to pretty much everyone who was working on them. In 1948 he published his book <span style="font-style: Italic;"><a href="https://www.amazon.com/Regular-Polytopes-H-S-Coxeter/dp/0486614808" target="_blank">Regular Polytopes</a></span>. It describes in a systematic way a variety of families of regular polyhedra, in particular showing the great stellated triacontahedron (or <a href="http://mathworld.wolfram.com/GreatRhombicTriacontahedron.html">great rhombic triacontahedron</a>)&#8212;which effectively contains a rhombic hexecontahedron:</p> <p><a href="http://mathworld.wolfram.com/GreatRhombicTriacontahedron.html"><img class="alignnone size-full wp-image-17880" title="Great stellated triacontahedron (or great rhombic triacontahedron)" src="https://content.wolfram.com/sites/43/2018/12/coxeter-great-stellated-triacontahedron-or-great-rhombic-triacontahedron.png" alt="Great stellated triacontahedron (or great rhombic triacontahedron)" width="275" height="277" srcset="https://content.wolfram.com/sites/43/2018/12/coxeter-great-stellated-triacontahedron-or-great-rhombic-triacontahedron.png 275w, https://content.wolfram.com/sites/43/2018/12/coxeter-great-stellated-triacontahedron-or-great-rhombic-triacontahedron-150x150.png 150w" sizes="(max-width: 275px) 100vw, 275px" /></a></p> <p>But Coxeter didn&#8217;t explicitly mention the rhombic hexecontahedron in his book, and while it picked up a few mentions from polyhedron aficionados, the rhombic hexecontahedron remained a basically obscure (and sometimes misspelled) polyhedron.</p> <p>&nbsp;</p> <h2 id="quasicrystals" class="section">Quasicrystals</h2> <p>Crystals had always provided important examples of polyhedra. But by the 1800s, with atomic theory increasingly established, there began to be serious investigation of <a href="https://www.wolframscience.com/nks/notes-8-2--history-of-crystal-growth/">crystallography</a>, and of how atoms are arranged in crystals. Polyhedra made a frequent appearance, in particular in representing the geometries of repeating blocks of atoms (“unit cells”) in crystals.</p> <p>By 1850 it was known that there were basically only <a href="http://demonstrations.wolfram.com/The143DBravaisLattices/">14 possible such geometries</a>; among them is one based on the rhombic dodecahedron. A notable feature of these geometries is that they all have specific two-, three-, four- or six-fold symmetries&#8212;essentially a consequence of the fact that only <a href="https://www.wolframscience.com/nks/notes-5-2--other-geometries-for-cellular-automata/">certain polyhedra</a> can tessellate space, much as in 2D the only regular polygons that can tile the plane are squares, triangles and hexagons.</p> <p>But what about for non-crystalline materials, like liquids or glasses? People had wondered since before the 1930s whether at least approximate five-fold symmetries could exist there. You can&#8217;t tessellate space with regular icosahedra (which have five-fold symmetry), but maybe you could at least have icosahedral regions with little gaps in between.</p> <p>None of this was settled when in the early 1980s electron diffraction crystallography on a rapidly cooled <a href="https://www.wolframalpha.com/input/?i=Al6Mn">aluminum-manganese material</a> effectively showed five-fold symmetry. There were <a href="https://www.amazon.com/Second-Kind-Impossible-Extraordinary-Matter/dp/1476729921" target="_blank">already theories</a> about how this could be achieved, and within a few years there were also electron microscope pictures of grains that were shaped like rhombic triacontahedra:</p> <p><a href="https://www.nature.com/articles/324048a0" target="_blank"><img class="alignnone size-full wp-image-17881" title="Quasicrystals showing a rhombic triacontahedral structure" src="https://content.wolfram.com/sites/43/2018/12/quasicrystals-rhombic-triacontahedra-1.png" alt="Quasicrystals showing a rhombic triacontahedral structure" width="285" height="243" /></a><a href="https://www.researchgate.net/figure/An-SEM-image-for-an-isolated-single-icosahedral-quasicrystal-with-a-rhombic_fig27_282597023" target="_blank"><img class="alignnone size-full wp-image-17882" title="Quasicrystal showing rhombic triacontahedral structure" src="https://content.wolfram.com/sites/43/2018/12/quasicrystals-rhombic-triacontahedra-2.png" alt="Quasicrystal showing rhombic triacontahedral structure" width="231" height="243" /></a></p> <p>And as people imagined how these triacontahedra could pack together, the rhombic hexecontahedron soon <a href="https://www.nature.com/articles/326640a0" target="_blank">made its appearance</a>&#8212;as a “hole” in a cluster of 12 rhombic triacontahedra:</p> <p><a href="https://www.nature.com/articles/326640a0" target="_blank"><img class="alignnone size-full wp-image-17883" title="Rhombic hexecontahedron as a &quot;hole&quot; in a quasicrystal aggregate of AlLiCu" src="https://content.wolfram.com/sites/43/2018/12/quasicrystal-aggregate-rhombic-hexecontahedron.png" alt="Rhombic hexecontahedron as a &quot;hole&quot; in a quasicrystal aggregate of AlLiCu" width="487" height="225" srcset="https://content.wolfram.com/sites/43/2018/12/quasicrystal-aggregate-rhombic-hexecontahedron.png 487w, https://content.wolfram.com/sites/43/2018/12/quasicrystal-aggregate-rhombic-hexecontahedron-300x138.png 300w" sizes="(max-width: 487px) 100vw, 487px" /></a></p> <p>At first it was referred to as a “20-branched star”. But soon the connection with the polyhedron literature was made, and it was identified as a rhombic hexecontahedron.</p> <p>Meanwhile, the whole idea of making things out of rhombic elements was gaining attention. <a href="https://en.wikipedia.org/wiki/Michael_S._Longuet-Higgins" target="_blank">Michael Longuet-Higgins</a>, longtime oceanographer and expert on how wind makes water waves, jumped on the bandwagon, in 1987 filing <a href="https://patents.google.com/patent/US5009625A/en" target="_blank">a patent</a> for a toy based on magnetic rhombohedral blocks, that could make a &#8220;Kepler Star&#8221; (rhombic hexecontahedron) or a &#8220;Kepler Ball&#8221; (rhombic triacontahedron):</p> <p><a href="https://patents.google.com/patent/US5009625A/en" target="_blank"><img class="alignnone size-full wp-image-17884" title="Longuet-Higgens filed a patent for a toy of magnetic rhombohedral blocks" src="https://content.wolfram.com/sites/43/2018/12/longuet-higgens-patent-toy-rhombohedral-blocks-dextro-rhombo.png" alt="Longuet-Higgens filed a patent for a toy of magnetic rhombohedral blocks" width="582" height="405" srcset="https://content.wolfram.com/sites/43/2018/12/longuet-higgens-patent-toy-rhombohedral-blocks-dextro-rhombo.png 582w, https://content.wolfram.com/sites/43/2018/12/longuet-higgens-patent-toy-rhombohedral-blocks-dextro-rhombo-300x208.png 300w" sizes="(max-width: 582px) 100vw, 582px" /></a></p> <p>And&#8212;although I only just found this out&#8212;the rhombohedral blocks that we considered in 2009 for widespread “Spikey making” were actually produced by <a href="http://rhombo.com/" target="_blank">Dextro Mathematical Toys</a> (aka <a href="http://rhombo.com/" target="_blank">Rhombo.com</a>), operating out of Longuet-Higgins’s house in San Diego.</p> <p>The whole question of what can successfully tessellate space&#8212;or even tile the plane&#8212;<a href="https://www.wolframscience.com/nks/chap-5--two-dimensions-and-beyond/#sect-5-7--systems-based-on-constraints">is a complicated one</a>. In fact, the general problem of whether a particular set of shapes can be arranged to tile the plane <a href="https://www.wolframscience.com/nks/notes-5-7--tiling-problems/">has been known</a> since the early 1960s to be formally undecidable. (One might verify that 1000 of these shapes can fit together, but it can take arbitrarily more computational effort to figure out the answer for more and more of the shapes.)</p> <p>People like Kepler presumably assumed if a set of shapes was going to tile the plane, they must be able to do so in a purely repetitive pattern. But following the realization that the general tiling problem is undecidable, <a href="https://www.wolframalpha.com/input/?i=Roger+Penrose">Roger Penrose</a> in 1974 came up with two shapes that could successfully tile the plane, but not in a repetitive way. By 1976 Penrose (as well as <a href="https://en.wikipedia.org/wiki/Robert_Ammann" target="_blank">Robert Ammann</a>) had come up with a <a href="https://www.wolframscience.com/nks/notes-5-4--penrose-tilings/">slightly simpler version</a>:</p> <p><a href="https://www.wolframscience.com/nks/notes-5-4--penrose-tilings/"><img class="alignnone size-full wp-image-17895" title="Penrose and Ammann's simpler rhombic tiling" src="https://content.wolfram.com/sites/43/2018/12/penrose-ammann-tiling-pattern.png" alt="Penrose and Ammann's simpler rhombic tiling" width="364" height="350" srcset="https://content.wolfram.com/sites/43/2018/12/penrose-ammann-tiling-pattern.png 364w, https://content.wolfram.com/sites/43/2018/12/penrose-ammann-tiling-pattern-300x288.png 300w" sizes="(max-width: 364px) 100vw, 364px" /></a></p> <p>And, yes, the shapes here are rhombuses, though not golden rhombuses. But with angles 36°,144° and 72°,108°, they arrange with 5- and 10-fold symmetry.</p> <p>By construction, these rhombuses (or, more strictly, shapes made from them) <a href="https://www.wolframscience.com/nks/notes-5-7--tiling-problems/">can&#8217;t form a repetitive pattern</a>. But it turns out they can form a pattern that can be built up in a systematic, nested way:</p> <p><img class="alignnone size-full wp-image-17886" title="Rhombuses forming a systematic, nested pattern" src="https://content.wolfram.com/sites/43/2018/12/rhombuses-in-nested-systematic-pattern.png" alt="Rhombuses forming a systematic, nested pattern" width="684" height="167" srcset="https://content.wolfram.com/sites/43/2018/12/rhombuses-in-nested-systematic-pattern.png 684w, https://content.wolfram.com/sites/43/2018/12/rhombuses-in-nested-systematic-pattern-300x73.png 300w" sizes="(max-width: 684px) 100vw, 684px" /></p> <p>And, yes, the middle of step 3 in this sequence looks rather like our flattened Spikey. But it’s not exactly right; the aspect ratios of the outer rhombuses are off.</p> <p>But actually, there is still a close connection. Instead of operating in the plane, imagine <a href="https://demonstrations.wolfram.com/PenroseTilingsAndWieringaRoofs/">starting from half a rhombic triacontahedron</a>, made from golden rhombuses in 3D:</p> <p><a href="https://demonstrations.wolfram.com/PenroseTilingsAndWieringaRoofs/"><img class="alignnone size-full wp-image-17888" title="Half a rhombic triacontahedron" src="https://content.wolfram.com/sites/43/2018/12/half-a-rhombic-triacontahedron.png" alt="Half a rhombic triacontahedron" width="422" height="231" srcset="https://content.wolfram.com/sites/43/2018/12/half-a-rhombic-triacontahedron.png 422w, https://content.wolfram.com/sites/43/2018/12/half-a-rhombic-triacontahedron-300x164.png 300w" sizes="(max-width: 422px) 100vw, 422px" /></a></p> <p>Looking at it from above, it looks exactly like the beginning of the nested construction of the Penrose tiling. If one keeps going, one gets the Penrose tiling:</p> <p><a href="https://demonstrations.wolfram.com/PenroseTilingsAndWieringaRoofs/"><img class="alignnone size-full wp-image-17890" title="3D version of Penrose tiling—a Wieringa roof—starting from half a rhombic triacontahedron (top view)" src="https://content.wolfram.com/sites/43/2018/12/penrose-tiling-from-half-a-rhombic-triacontahedron-top-view.png" alt="3D version of Penrose tiling—a Wieringa roof—starting from half a rhombic triacontahedron (top view)" width="620" height="209" srcset="https://content.wolfram.com/sites/43/2018/12/penrose-tiling-from-half-a-rhombic-triacontahedron-top-view.png 620w, https://content.wolfram.com/sites/43/2018/12/penrose-tiling-from-half-a-rhombic-triacontahedron-top-view-300x101.png 300w" sizes="(max-width: 620px) 100vw, 620px" /></a></p> <p>Looked at “from the side” in 3D, one can tell it’s still just identical golden rhombuses:</p> <p><a href="https://demonstrations.wolfram.com/PenroseTilingsAndWieringaRoofs/"><img class="alignnone size-full wp-image-17893" title="3D version of Penrose tiling—a Wieringa roof—starting from half a rhombic triacontahedron (side view)" src="https://content.wolfram.com/sites/43/2018/12/penrose-tiling-from-half-a-rhombic-triacontahedron-side-view.png" alt="3D version of Penrose tiling—a Wieringa roof—starting from half a rhombic triacontahedron (side view)" width="620" height="146" srcset="https://content.wolfram.com/sites/43/2018/12/penrose-tiling-from-half-a-rhombic-triacontahedron-side-view.png 620w, https://content.wolfram.com/sites/43/2018/12/penrose-tiling-from-half-a-rhombic-triacontahedron-side-view-300x70.png 300w" sizes="(max-width: 620px) 100vw, 620px" /></a></p> <p>Putting four of these “Wieringa roofs” together one can form exactly the rhombic hexecontahedron:</p> <p><a href="https://demonstrations.wolfram.com/PenroseTilingsAndWieringaRoofs/"><img class="alignnone size-full wp-image-17896" title="Four of these Wieringa roofs together exactly form the rhombic hexecontahedron" src="https://content.wolfram.com/sites/43/2018/12/wieringa-roofs-rhombic-hexecontahedron.png" alt="Four of these Wieringa roofs together exactly form the rhombic hexecontahedron" width="364" height="350" srcset="https://content.wolfram.com/sites/43/2018/12/wieringa-roofs-rhombic-hexecontahedron.png 364w, https://content.wolfram.com/sites/43/2018/12/wieringa-roofs-rhombic-hexecontahedron-300x288.png 300w" sizes="(max-width: 364px) 100vw, 364px" /></a></p> <p>But what’s the relation between these nested constructions and the actual way physical quasicrystals form? It’s not yet clear. But it’s still neat to see even hints of rhombic hexecontahedra showing up in nature.</p> <p>And historically it was through their discussion in quasicrystals that Sándor Kabai came to start studying rhombic hexecontahedra with Mathematica, which in turn led Eric Weisstein to find out about them, which in turn led them to be in Mathematica and the Wolfram Language, which in turn led me to pick one for our logo. And in recognition of this, we print the nestedly constructed Penrose tiling on the inside of our <a href="http://store.wolfram.com/view/misc/">paper Spikey</a>:</p> <p><a href="http://store.wolfram.com/view/misc/"><img class="alignnone size-full wp-image-17897" title="Nestedly constructed Penrose tiling on the back of each piece in the Wolfram Paper Sculpture Kit" src="https://content.wolfram.com/sites/43/2018/12/penrose-tiling-on-back-of-wolfram-paper-spikey-kit.png" alt="Nestedly constructed Penrose tiling on the back of each piece in the Wolfram Paper Sculpture Kit" width="620" height="349" srcset="https://content.wolfram.com/sites/43/2018/12/penrose-tiling-on-back-of-wolfram-paper-spikey-kit.png 620w, https://content.wolfram.com/sites/43/2018/12/penrose-tiling-on-back-of-wolfram-paper-spikey-kit-300x168.png 300w" sizes="(max-width: 620px) 100vw, 620px" /></a></p> <p>&nbsp;</p> <h2 id="flattening-spikey" class="section">Flattening Spikey</h2> <p>Our Wolfram|Alpha Spikey burst onto the scene in 2009 with the release of Wolfram|Alpha. But we still had our long-running and progressively evolving Mathematica Spikey too. So when we built a new European headquarters in 2011 we had not just one, but two Spikeys vying to be on it.</p> <p>Our longtime art director Jeremy Davis came up with a solution: take one Spikey, but &#8220;idealize&#8221; it, using just its &#8220;skeleton&#8221;. It wasn&#8217;t hard to decide to start from the rhombic hexecontahedron. But then we flattened it (with the best ratios, of course)&#8212;and finally ended up with the first implementation of our now-familiar logo:</p> <p><img class="alignnone size-full wp-image-17898" title="Flattened Spikey on the Wolfram Research Europe Ltd. headquarters" src="https://content.wolfram.com/sites/43/2018/12/wolfram-research-europe-ltd-flat-spikey.png" alt="Flattened Spikey on the Wolfram Research Europe Ltd. headquarters" width="616" height="309" srcset="https://content.wolfram.com/sites/43/2018/12/wolfram-research-europe-ltd-flat-spikey.png 616w, https://content.wolfram.com/sites/43/2018/12/wolfram-research-europe-ltd-flat-spikey-300x150.png 300w" sizes="(max-width: 616px) 100vw, 616px" /></p> <p>&nbsp;</p> <h2 id="the-brazilian-surprise" class="section">The Brazilian Surprise</h2> <p>When I started writing this piece, I thought the story would basically end here. After all, I’ve now described how we picked the rhombic hexecontahedron, and how mathematicians came up with it in the first place. But before finishing the piece, I thought, “I’d better look through all the correspondence I’ve received about Spikey over the years, just to make sure I’m not missing anything.”</p> <p>And that&#8217;s when I noticed an email from June 2009, from an artist in Brazil named <a href="https://giramundos.wordpress.com/" target="_blank">Yolanda Cipriano</a>. She said she&#8217;d seen an <a href="http://revistaepoca.globo.com/Revista/Epoca/0,,EMI74004-15215,00-STEPHEN+WOLFRAM+O+GENIO+VIROU+SITE+DE+BUSCA.html" target="_blank">article</a> about Wolfram|Alpha in a Brazilian news magazine&#8212;and had noticed the Spikey&#8212;and wanted to point me to <a href="https://sites.google.com/site/giramundos/" target="_blank">her website</a>. It was now more than nine years later, but I followed the link anyway, and was amazed to find this:</p> <p><a href="https://sites.google.com/site/giramundos/" target="_blank"><img class="alignnone size-full wp-image-17899" title="Yolanda Cipriano's website—with rhombic hexecontahedra, there called &quot;giramundos&quot;" src="https://content.wolfram.com/sites/43/2018/12/yolanda-cipriano-website-rhombic-hexecontahedron-spikey-giramundo.png" alt="Yolanda Cipriano's website—with rhombic hexecontahedra, there called &quot;giramundos&quot;" width="497" height="314" srcset="https://content.wolfram.com/sites/43/2018/12/yolanda-cipriano-website-rhombic-hexecontahedron-spikey-giramundo.png 497w, https://content.wolfram.com/sites/43/2018/12/yolanda-cipriano-website-rhombic-hexecontahedron-spikey-giramundo-300x189.png 300w" sizes="(max-width: 497px) 100vw, 497px" /></a></p> <p>I read more of her email: “Here in Brazil this object is called ‘Giramundo’ or ‘Flor Mandacarú’ (Mandacaru Flower) and it is an artistic ornament made with [tissue paper]”.</p> <p>What?! There was a Spikey tradition in Brazil, and all these years we&#8217;d never heard about it? I soon found other pictures on the web. Only a few of the Spikeys were made with paper; most were fabric&#8212;but there were lots of them:</p> <p><a href="http://estrelagira.blogspot.com/" target="_blank"><img class="alignnone size-full wp-image-17901" title="Lots of fabric rhombic hexacontahedra" src="https://content.wolfram.com/sites/43/2018/12/fabric-rhombic-hexecontahedra.png" alt="Lots of fabric rhombic hexacontahedra" width="613" height="345" srcset="https://content.wolfram.com/sites/43/2018/12/fabric-rhombic-hexecontahedra.png 613w, https://content.wolfram.com/sites/43/2018/12/fabric-rhombic-hexecontahedra-300x168.png 300w" sizes="(max-width: 613px) 100vw, 613px" /></a></p> <p>I emailed a Brazilian friend who’d worked on the original development of Wolfram|Alpha. He quickly responded “These are indeed familiar objects&#8230; and to my shame I was never inquisitive enough to connect the dots”&#8212;then sent me pictures from a local arts and crafts catalog:</p> <p><img class="alignnone size-full wp-image-17902" title="Fabric Spikeys in a Brazilian arts-and-crafts catalog" src="https://content.wolfram.com/sites/43/2018/12/spikey-in-brazilian-arts-and-crafts-catalog.png" alt="Fabric Spikeys in a Brazilian arts-and-crafts catalog" width="609" height="422" srcset="https://content.wolfram.com/sites/43/2018/12/spikey-in-brazilian-arts-and-crafts-catalog.png 609w, https://content.wolfram.com/sites/43/2018/12/spikey-in-brazilian-arts-and-crafts-catalog-300x207.png 300w" sizes="(max-width: 609px) 100vw, 609px" /></p> <p>But now the hunt was on: what were these things, and where had they come from? Someone at our company volunteered that actually her great-grandmother in Chile had made such things out of crochet&#8212;and always with a tail. We started contacting people who had put up pictures of “folk Spikeys” on the web. Quite often all they knew was that they got theirs from a thrift shop. But sometimes people would say that they knew how to make them. And the story always seemed to be the same: they’d learned how to do it from their grandmothers.</p> <p>The typical way to build a folk Spikey&#8212;at least in modern times&#8212;seems to be to start off by cutting out 60 cardboard rhombuses. The next step is to wrap each rhombus in fabric&#8212;and finally to stitch them all together:</p> <p><a href="http://estrelagira.blogspot.com/" target="_blank"><img class="alignnone size-full wp-image-17903" title="Building a folk Spikey" src="https://content.wolfram.com/sites/43/2018/12/building-a-folk-spikey.png" alt="Building a folk Spikey" width="620" height="173" srcset="https://content.wolfram.com/sites/43/2018/12/building-a-folk-spikey.png 620w, https://content.wolfram.com/sites/43/2018/12/building-a-folk-spikey-300x83.png 300w" sizes="(max-width: 620px) 100vw, 620px" /></a></p> <p>OK, but there&#8217;s an immediate math issue here. Are these people really correctly measuring out 63° golden rhombuses? The answer is typically no. Instead, they&#8217;re making 60° rhombuses out of pairs of equilateral triangles&#8212;just like the standard diamond shapes used in quilts. So how then does the Spikey fit together? Well, 60° is not far from 63°, and if you&#8217;re sewing the faces together, there&#8217;s enough wiggle room that it&#8217;s easy to make the polyhedron close even without the angles being precisely right. (There are also “quasi-Spikeys” that&#8212;as in Unkelbach’s construction&#8212;don’t have rhombuses for faces, but instead have pointier “outside triangles”.)</p> <p>Folk Spikeys on the web are labeled in all sorts of ways. The most common is as &#8220;Giramundos&#8221;. But quite often they are called &#8220;Estrelas da Felicidade&#8221; (&#8220;stars of happiness&#8221;). Confusingly, some of them are also labeled &#8220;Moravian stars&#8221;&#8212;but actually, <a href="https://en.wikipedia.org/wiki/Moravian_star" target="_blank">Moravian stars</a> are different and much pointier polyhedra (most often heavily augmented <a href="https://www.wolframalpha.com/input/?i=rhombicuboctahedron">rhombicuboctahedra</a>) that happen to have recently become popular, particularly for <a href="https://www.amazon.com/slp/moravian-star-light/8xfkt84o2dkg3xy" target="_blank">light fixtures</a>.</p> <p>Despite quite a bit of investigation, I still don&#8217;t know what the full history of the &#8220;folk Spikey&#8221; is. But here&#8217;s what I&#8217;ve found out so far. First, at least what survives of the folk Spikey tradition is centered around Brazil (even though we have a few stories of other appearances). Second, the tradition seems to be fairly old, definitely dating from well before 1900 and quite possibly several centuries earlier. So far as I can tell&#8212;as is common with folk art&#8212;it’s a purely oral tradition, and so far I haven&#8217;t found any real historical documentation about it.</p> <p>My best information has come from a certain <a href="http://estrelagira.blogspot.com/" target="_blank">Paula Guerra</a>, who sold folk Spikeys at a tourist-oriented cafe she operated a decade ago in the historic town of <a href="https://en.wikipedia.org/wiki/S%C3%A3o_Luiz_do_Paraitinga" target="_blank">São Luíz do Paraitinga</a>. She said people would come into her cafe from all over Brazil, see the folk Spikeys and say, &#8220;I haven&#8217;t seen one of those in 50 years&#8230;&#8221;</p> <p>Paula herself learned about folk Spikeys (she calls them &#8220;stars&#8221;) from an older woman living on a multigenerational local family farm, who&#8217;d been making them since she was a little girl, and had been taught how to do it by her mother. Her procedure&#8212;which seems to have been typical&#8212;was to get cardboard from anywhere (originally, things like hat boxes), then to cover it with fabric scraps, usually from clothes, then to sew the whole perhaps-6&#8243;-across object together.</p> <p>How old is the folk Spikey? Well, we only have oral tradition to go by. But we&#8217;ve tracked down several people who saw folk Spikeys being made by relatives who were born around 1900. Paula said that a decade ago she&#8217;d met an 80-year-old woman who told her that when she was growing up on a 200-year-old coffee farm there was a shelf of folk Spikeys from four generations of women.</p> <p>At least part of the folk Spikey story seems to center around a mother-daughter tradition. Mothers, it is said, often made folk Spikeys as wedding presents when their daughters went off to get married. Typically the Spikeys were made from scraps of clothes and other things that would remind the daughters of their childhood&#8212;a bit like how quilts are sometimes made for modern kids going to college.</p> <p>But for folk Spikeys there was apparently another twist: it was common that before a Spikey was sewn up, a mother would put money inside it, for her daughter&#8217;s use in an emergency. The daughter would then keep her Spikey with her sewing supplies, where her husband would be unlikely to pick it up. (Some Spikeys seem to have been used as pincushions&#8212;perhaps providing an additional disincentive for them to be picked up.)</p> <p>What kinds of families had the folk Spikey tradition? Starting around 1750 there were many coffee and sugar plantations in rural Brazil, far from towns. And until perhaps 1900 it was common for farmers from these plantations to get brides&#8212;often as young as 13&#8212;from distant towns. And perhaps these brides&#8212;who were typically from well-off families of Portuguese descent, and were often comparatively well educated&#8212;came with folk Spikeys.</p> <p>In time the tradition seems to have spread to poorer families, and to have been preserved mainly there. But around the 1950s&#8212;presumably with the advent of roads and urbanization and the move away from living on remote farms&#8212;the tradition seems to have all but died out. (In rural schools in southern Brazil there were however apparently girls in the 1950s being taught in art classes how to make folk Spikeys with openings in them&#8212;to serve as piggy banks.)</p> <p>Folk Spikeys seem to have shown up with different stories in different places around Brazil. In the southern border region (near Argentina and Uruguay) there&#8217;s apparently a tradition that the &#8220;Star of St. Miguel&#8221; (aka folk Spikey) was made in villages by healer women (aka &#8220;witches&#8221;), who were supposed to think about the health of the person being healed while they were sewing their Spikeys.</p> <p>In other parts of Brazil, folk Spikeys sometimes seem to be referred to by the names of flowers and fruits that look vaguely similar. In the northeast, &#8220;Flor Mandacarú&#8221; (after flowers on a <a href="https://en.wikipedia.org/wiki/Cereus_jamacaru" target="_blank">cactus</a>). In <a href="https://en.wikipedia.org/wiki/Pantanal" target="_blank">tropical wetland areas</a>, &#8220;Carambola&#8221; (after <a href="https://www.wolframalpha.com/input/?i=star+fruit">star fruit</a>). And in central forest areas &#8220;Pindaíva&#8221; (after a <a href="https://www.wolframalpha.com/input/?i=Duguetia+lanceolata">spiky red fruit</a>).</p> <p><img class="alignnone size-full wp-image-17904" title="Some of the flora from which folk Spikeys get their local names: flowers on a mandacaru cactus, star fruit and pindaiva fruit" src="https://content.wolfram.com/sites/43/2018/12/folk-spikey-flora-name-sources-mandacaru-flowers-star-fruit-pindaiva-fruit.png" alt="Some of the flora from which folk Spikeys get their local names: flowers on a mandacaru cactus, star fruit and pindaiva fruit" width="620" height="211" srcset="https://content.wolfram.com/sites/43/2018/12/folk-spikey-flora-name-sources-mandacaru-flowers-star-fruit-pindaiva-fruit.png 620w, https://content.wolfram.com/sites/43/2018/12/folk-spikey-flora-name-sources-mandacaru-flowers-star-fruit-pindaiva-fruit-300x102.png 300w" sizes="(max-width: 620px) 100vw, 620px" /></p> <p>But the most common current name for a folk Spikey seems to be &#8220;Giramundo&#8221;&#8212;an apparently not-very-recent Portuguese constructed word meaning essentially &#8220;whirling world&#8221;. The folk Spikey, it seems, was used like a charm, and was supposed to bring good luck as it twirled in the wind. The addition of tails seems to be recent, but apparently it was common to hang up folk Spikeys in houses, perhaps particularly on festive occasions.</p> <p>It&#8217;s often not clear what&#8217;s original, and what&#8217;s a more recent tradition that happens to have &#8220;entrained&#8221; folk Spikeys. In the Three Kings&#8217; Day parade (as in the three kings from the Bible) in <a href="https://en.wikipedia.org/wiki/S%C3%A3o_Luiz_do_Paraitinga" target="_blank">São Luiz do Paraitinga</a>, folk Spikeys are apparently used to signify the Star of Bethlehem&#8212;but this seems to just be a recent thing, definitely not indicative of some ancient religious connection.</p> <p>We&#8217;ve found a couple of examples of folk Spikeys showing up in art exhibitions. One was in a <a href="http://icaadocs.mfah.org/icaadocs/THEARCHIVE/FullRecord/tabid/88/doc/1110902/language/en-US/Default.aspx" target="_blank">1963 exhibition</a> about folk art from northeastern Brazil organized by architect <a href="https://en.wikipedia.org/wiki/Lina_Bo_Bardi" target="_blank">Lina Bo Bardi</a>. The other, which happens to be the largest 3D Spikey I&#8217;ve ever seen, was in a <a href="https://www.sescsp.org.br/online/artigo/145_EXPOSICAOFLAVIO+IMPERIO+EM+CENA" target="_blank">1997 exhibition</a> of work by architect and set designer <a href="https://pt.wikipedia.org/wiki/Fl%C3%A1vio_Imp%C3%A9rio" target="_blank">Flávio Império</a>:</p> <p><a href="https://www.flickr.com/photos/kongsangsit/3529689736" target="_blank"><img class="alignnone size-full wp-image-17912" title="A huge 3D spikey at a Flávio Império exhibition" src="https://content.wolfram.com/sites/43/2018/12/huge-3D-spikey-at-flavio-imperio-exhibition.png" alt="A huge 3D spikey at a Flávio Império exhibition" width="421" height="349" srcset="https://content.wolfram.com/sites/43/2018/12/huge-3D-spikey-at-flavio-imperio-exhibition.png 421w, https://content.wolfram.com/sites/43/2018/12/huge-3D-spikey-at-flavio-imperio-exhibition-300x248.png 300w" sizes="(max-width: 421px) 100vw, 421px" /></a></p> <p>So&#8230; where did the folk Spikey come from? I still don&#8217;t know. It may have originated in Brazil; it may have come from Portugal or elsewhere in Europe. The central use of fabrics and sewing needed to make a &#8220;60° Spikey&#8221; work might argue against an Amerindian or African origin.</p> <p>One modern Spikey artisan did say that her great grandmother&#8212;who made folk Spikeys and was born in the late 1800s&#8212;came from the <a href="https://en.wikipedia.org/wiki/Romagna" target="_blank">Romagna region</a> of Italy. (<a href="https://pennyrugsandmore.blogspot.com/2011/02/woolie-moravian-star-tutorial.html" target="_blank">One</a> also said she learned about folk Spikeys from her French-Canadian grandmother.) And I suppose it&#8217;s conceivable that at one time there were folk Spikeys all over Europe, but they died out enough generations ago that no oral tradition about them survives. Still, while a decent number of polyhedra appear, for example, in European paintings from earlier centuries, I don&#8217;t know of a single Spikey among them. (I also don&#8217;t know of any Spikeys in <a href="https://www.wolframscience.com/nks/p43--why-these-discoveries-were-not-made-before/">historical Islamic art</a>.)</p> <p>But ultimately I&#8217;m pretty sure that somewhere there&#8217;s a single origin for the folk Spikey. It&#8217;s not something that I suspect was invented more than once.</p> <p>I have to say that I&#8217;ve gone on &#8220;art origin hunts&#8221; before. One of the more successful was looking for the first <a href="https://www.wolframscience.com/nks/p187--substitution-systems-and-fractals/">nested (Sierpiński) pattern</a>&#8212;which <a href="https://www.wolframscience.com/nks/notes-2-3--ornamental-art/">eventually led me to a crypt in a church in Italy</a>, where I could see the pattern being progressively discovered, in signed stone mosaics from just after the year 1200.</p> <p>So far the Spikey has proved more elusive&#8212;and it certainly doesn&#8217;t help that the primary medium in which it appears to have been explored involved fabric, which doesn&#8217;t keep the way stone does.</p> <p>&nbsp;</p> <h2 id="spikeys-come-to-life" class="section">Spikeys Come to Life</h2> <p>Whatever its ultimate origins, Spikey serves us very well as a strong and dignified icon. But sometimes it’s fun to have Spikey “come to life”&#8212;and over the years we’ve made various “personified Spikeys” for various purposes:</p> <p><a href="https://twitter.com/alpha_lives" target="_blank"><img class="alignnone size-full wp-image-17907" title="Spikeys come to life" src="https://content.wolfram.com/sites/43/2018/12/spikeys-come-to-life.png" alt="Spikeys come to life" width="620" height="231" srcset="https://content.wolfram.com/sites/43/2018/12/spikeys-come-to-life.png 620w, https://content.wolfram.com/sites/43/2018/12/spikeys-come-to-life-300x111.png 300w" sizes="(max-width: 620px) 100vw, 620px" /></a></p> <p>When you use <a href="https://www.wolframalpha.com/">Wolfram|Alpha</a>, it’ll usually show its normal, geometrical Spikey. But just sometimes your query will make the Spikey “come to life”&#8212;as it does for pi queries on <a href="https://writings.stephenwolfram.com/2015/03/pi-or-pie-celebrating-pi-day-of-the-centuryand-how-to-get-your-very-own-piece-of-pi/">Pi Day</a>:</p> <p><video title="Spikey lives. Happy Pi Day!" src="https://content.wolfram.com/sites/43/2018/12/spikey-lives-happy-pi-day-video.mp4" autoplay="autoplay" loop="loop" muted="" width="600" height="150"><br /> </video></p> <p>&nbsp;</p> <h2 id="spikeys-forever" class="section">Spikeys Forever</h2> <p>Polyhedra are timeless. You see a polyhedron in a picture from 500 years ago and it’ll look just as clean and modern as a polyhedron from my computer today.</p> <p>I&#8217;ve spent a fair fraction of my life finding abstract, computational things (think <a href="https://www.wolframscience.com/nks/chap-2--the-crucial-experiment/">cellular automaton patterns</a>). And they too have a timelessness to them. But&#8212;try as I might&#8212;I have not found much of a thread of history for them. As abstract objects <a href="https://www.wolframscience.com/nks/p42--why-these-discoveries-were-not-made-before/">they could have been created at any time</a>. But in fact they are modern, created because of the <a href="https://www.wolframscience.com/nks/">conceptual framework</a> we now have, and with the <a href="https://www.wolfram.com/language/">tools</a> we have today&#8212;and never seen before.</p> <p>Polyhedra have both timelessness and a rich history that goes back thousands of years. In their appearance, polyhedra remind us of gems. And finding a certain kind of regular polyhedron is a bit like finding a gem out in the geometrical universe of all possible shapes.</p> <p>The rhombic hexecontahedron is a wonderful such gem, and as I have explored its properties, I have come to have even more appreciation for it. But it is also a gem with a human story&#8212;<img class="alignleft size-full wp-image-17911" title="Stephen Wolfram and Spikey" src="https://content.wolfram.com/sites/43/2018/12/stephen-wolfram-and-spikey.png" alt="Stephen Wolfram and Spikey" width="145" height="175" style="padding-right: 20px" />and it is so interesting to see how something as abstract as a polyhedron can connect people across the world with such diverse backgrounds and objectives.</p> <p>Who first came up with the rhombic hexecontahedron? We don&#8217;t know, and perhaps we never will. But now that it is here, it&#8217;s forever. My favorite polyhedron.</p> <div style="font-style: Italic;"> <hr /> <p>Help spread Spikeyism! <a href="https://store.wolfram.com/view/misc/">Spikey Paper Sculpture kits</a> are available from the Wolfram store. Assemble yours and send us a picture (<a href="https://twitter.com/WolframResearch" target="_blank">Twitter</a>, <a href="https://www.facebook.com/wolframresearch/" target="_blank">Facebook</a>, <a href="mailto:outreach@wolfram.com" target="_blank">email</a>)!</p> <hr /> </div> </div> <div class="post_foot single"> <div class="category"> <div class="citingsOuterWrapper"> <div class="citingsInnerWrapper"> <button type="button" class="citingsOpenButton"> <span class="citingsOpenButtonText">Cite this as</span> </button> <button type="button" class="citingsCloseButton"> <div class="citingsCloseButtonIcon"></div> </button><span class="citingClosedPlainText citingText wolfram-c2c-wrapper" data-C2C-Inline="Stephen Wolfram (2018), &quot;The Story of Spikey,&quot; Stephen Wolfram Writings. writings.stephenwolfram.com/2018/12/the-story-of-spikey." data-C2C-type="text/plain">Stephen Wolfram (2018), &quot;The Story of Spikey,&quot; Stephen Wolfram Writings. writings.stephenwolfram.com/2018/12/the-story-of-spikey.</span><div class="citing"><div class="citingType">Text</div><div class="citingText wolfram-c2c-wrapper" data-C2C-Inline="Stephen Wolfram (2018), &quot;The Story of Spikey,&quot; Stephen Wolfram Writings. writings.stephenwolfram.com/2018/12/the-story-of-spikey." data-C2C-type="text/plain">Stephen Wolfram (2018), &quot;The Story of Spikey,&quot; Stephen Wolfram Writings. writings.stephenwolfram.com/2018/12/the-story-of-spikey.</div></div><div class="citing"><div class="citingType">CMS</div><div class="citingText wolfram-c2c-wrapper" data-C2C-Inline="Wolfram, Stephen. &quot;The Story of Spikey.&quot; Stephen Wolfram Writings. December 28, 2018. writings.stephenwolfram.com/2018/12/the-story-of-spikey." data-C2C-type="text/plain">Wolfram, Stephen. &quot;The Story of Spikey.&quot; Stephen Wolfram Writings. December 28, 2018. writings.stephenwolfram.com/2018/12/the-story-of-spikey.</div></div><div class="citing"><div class="citingType">APA</div><div class="citingText wolfram-c2c-wrapper" data-C2C-Inline="Wolfram, S. (2018, December 28). The story of Spikey. Stephen Wolfram Writings. writings.stephenwolfram.com/2018/12/the-story-of-spikey." data-C2C-type="text/plain">Wolfram, S. (2018, December 28). The story of Spikey. Stephen Wolfram Writings. writings.stephenwolfram.com/2018/12/the-story-of-spikey.</div></div> </div> <div class="citingsShowSpacer"></div></div> <p>Posted in: <a href="https://writings.stephenwolfram.com/category/historical-perspectives/" rel="category tag">Historical Perspectives</a>, <a href="https://writings.stephenwolfram.com/category/mathematics/" rel="category tag">Mathematics</a>, <a href="https://writings.stephenwolfram.com/category/other/" rel="category tag">Other</a>, <a href="https://writings.stephenwolfram.com/category/wolfram-alpha/" rel="category tag">Wolfram|Alpha</a></p> </div> </div> <div id="comments_wrapper"> <span id="comments"></span> <div id="respond"> <!-- <h3 class="comments-heading"><div class="cancel-comment-reply"><a rel="nofollow" id="cancel-comment-reply-link" href="/2018/12/the-story-of-spikey/#respond" style="display:none;">cancel [x]</a></div></h3> --> <div id="join-small"> <input type="text" id="fakeComment" placeholder="Join the discussion"> </div> <form action="https://writings.stephenwolfram.com/wp-comments-post.php" method="post" id="commentform"> <div id="join-big"> <div id="exit-button"><div id="exit-image"></div><div style="clear: both;"></div></div> <div id="comment-area"> <textarea name="comment" id="comment" tabindex="1"></textarea> <p><span id="commentError" style="display:none">Please enter your comment (at least 5 characters).</span></p> </div> <div class="level"> <div class="half-length"><label for="author">Name (required)</label></div> <div class="half-length "><div class="pad-left"><label for="email">Email (will not be published; required)</label></div></div> <div style="clear:both;"></div> </div> <div> <div class="half-length"><input type="text" name="author" id="author" value="" size="22" tabindex="2" aria-required='true' /><p><span id="nameError" style="display:none">Please enter your name.</span></p></div> <div class="half-length "><div class="pad-left"><input type="text" name="email" id="email" value="" size="22" tabindex="3" aria-required='true' /></div> <p><span id="emailError" style="margin-left: 10px; display:none">Please&nbsp;enter&nbsp;a&nbsp;valid&nbsp;email&nbsp;address.</span></p></div> <div style="clear:both;"></div> </div> <div class="level"> <div class="half-length"><label for="url">Website</label></div> <div style="clear:both;"></div> <div class="half-length"><input type="text" name="url" id="url" value="" size="22" tabindex="4" /></div> <div style="clear:both;"></div> <p><input name="submit" type="submit" id="submit" class="button" tabindex="5" value="Submit comment &raquo;" onclick="return checkCommentFields()" /></p> <div style="clear:both;"></div> </div> <div class="post_separator_no_margin"></div> </div> <h3 id="comments-heading"> <span class="expand-collapse expand"></span> 6 comments </h3> <div id="comment-section"> <div class="comment-nav"> <div class="nav-left"></div> <div class="nav-right"></div> </div> <ol class="commentlist"> <li class="comment even thread-even depth-1" id="li-comment-1697730"> <div id="comment-1697730" class="comment-content"> <div class="comment-content-body"> <p>When will the version 12 be released?</p> </div> <div class="comment-meta comment-byline">when</div> <div class="comment-meta comment-date"><a class="comment-permlink" href="https://writings.stephenwolfram.com/2018/12/the-story-of-spikey/#comment-1697730">January 1, 2019 at 1:18 pm</a></div> </div> <ul class="children"> <li class="comment byuser comment-author-andre-kuzniarek odd alt depth-2" id="li-comment-1697974"> <div id="comment-1697974" class="comment-content"> <div class="comment-content-body"> <p>Version 12 is currently in testing. Our goal is to release it within the next couple of months.</p> </div> <div class="comment-meta comment-byline">Administrator</div> <div class="comment-meta comment-date"><a class="comment-permlink" href="https://writings.stephenwolfram.com/2018/12/the-story-of-spikey/#comment-1697974">January 3, 2019 at 2:29 pm</a></div> </div> </li><!-- #comment-## --> </ul><!-- .children --> </li><!-- #comment-## --> <li class="comment even thread-odd thread-alt depth-1" id="li-comment-1697735"> <div id="comment-1697735" class="comment-content"> <div class="comment-content-body"> <p>This was an excellent read!</p> <p>Great story,</p> <p>Thanks</p> </div> <div class="comment-meta comment-byline">Will</div> <div class="comment-meta comment-date"><a class="comment-permlink" href="https://writings.stephenwolfram.com/2018/12/the-story-of-spikey/#comment-1697735">January 1, 2019 at 1:45 pm</a></div> </div> </li><!-- #comment-## --> <li class="comment odd alt thread-even depth-1" id="li-comment-1697821"> <div id="comment-1697821" class="comment-content"> <div class="comment-content-body"> <p>Just amazing story again. Thank you for sharing.</p> </div> <div class="comment-meta comment-byline">Marek</div> <div class="comment-meta comment-date"><a class="comment-permlink" href="https://writings.stephenwolfram.com/2018/12/the-story-of-spikey/#comment-1697821">January 2, 2019 at 8:36 am</a></div> </div> </li><!-- #comment-## --> <li class="comment even thread-odd thread-alt depth-1" id="li-comment-1699411"> <div id="comment-1699411" class="comment-content"> <div class="comment-content-body"> <p>good luck on a way to HAL we need such wisdom to make art, poetry, music and to learn talk with each other for example 🙂</p> </div> <div class="comment-meta comment-byline"><a href='http://n/a' rel='external nofollow' class='url'>kokos</a></div> <div class="comment-meta comment-date"><a class="comment-permlink" href="https://writings.stephenwolfram.com/2018/12/the-story-of-spikey/#comment-1699411">January 18, 2019 at 2:36 pm</a></div> </div> </li><!-- #comment-## --> <li class="comment odd alt thread-even depth-1" id="li-comment-1740902"> <div id="comment-1740902" class="comment-content"> <div class="comment-content-body"> <p>Dear SW,<br /> I found your post informative and Spikey background history most inspirational as well.<br /> I used some of it for a project I am involved in and having to do with the geometry of Nature @https://52flowers.wordpress.com/2019/09/29/spikey-mandacaru-estrelas-da-felicidade/<br /> Thanks again for sharing and giving a personal touch to the amazing work the Mathematica team is doing<br /> Best,<br /> Jean Constant</p> </div> <div class="comment-meta comment-byline"><a href='https://52flowers.wordpress.com/2019/09/29/spikey-mandacaru-estrelas-da-felicidade/' rel='external nofollow' class='url'>Jean Constant</a></div> <div class="comment-meta comment-date"><a class="comment-permlink" href="https://writings.stephenwolfram.com/2018/12/the-story-of-spikey/#comment-1740902">September 29, 2019 at 3:18 am</a></div> </div> </li><!-- #comment-## --> </ol> <div class="comment-nav"> <div class="nav-left"></div> <div class="nav-right"></div> </div> </div> <input type='hidden' name='comment_post_ID' value='17568' id='comment_post_ID' /> <input type='hidden' name='comment_parent' id='comment_parent' value='0' /> <p style="display: none;"><input type="hidden" id="akismet_comment_nonce" name="akismet_comment_nonce" value="3ce5e1628d" /></p><p style="display: none;"><input type="hidden" id="ak_js" name="ak_js" value="248"/></p> </form> </div><!-- respond --> </div><!-- wrapper --> <script type="text/javascript"> function checkCommentFields() { if($(".socialLoggedIn").is(":visible")) return true; var ret = true; if($("#author").val().trim().length < 2) { $("#nameError").fadeIn(); ret = false; } else { $("#nameError").fadeOut(); } if(!validEmail($("#email").val().trim())) { $("#emailError").fadeIn(); ret = false; } else { $("#emailError").fadeOut(); } if($("#comment").val().trim().length < 5) { $("#commentError").fadeIn(); ret = false; } else { $("#commentError").fadeOut(); } return ret; } $(document).ready(function(){ $('.comment-author a').attr("target", "_blank"); if(window.location.href.indexOf("comment-page-1") > -1) { $('#comment-section').removeClass('hide'); } $("#author").keyup(function() { if($("#nameError").is(":visible") && $("#author").val().trim().length >= 2) $("#nameError").fadeOut(); }); $("#email").keyup(function() { if($("#emailError").is(":visible") && validEmail($("#email").val().trim())) $("#emailError").fadeOut(); }); $("#comment").keyup(function() { if($("#commentError").is(":visible") && $("#comment").val().trim().length >= 5) $("#commentError").fadeOut(); }); }); function validEmail(email) { signPos = email.indexOf("@"); dotPos = email.lastIndexOf("."); if (email.length < 6 || signPos == -1 || dotPos == -1 || (dotPos < signPos) || (dotPos - signPos == 1) || dotPos == email.length-1 ) { return false; } return true; } </script> <div id="footer_recent_posts"> <p class="sidebar-heading">Related Writings</p> <div class="sidebar_post_wrapper"> <div class="sidebar_thumbnail"> <a href="https://writings.stephenwolfram.com/2024/09/nestedly-recursive-functions/" rel="bookmark" title="Permanent Link to Nestedly Recursive Functions" > <img width="128" height="108" src="https://content.wolfram.com/sites/43/2024/09/swblog-recursive-icon.png" class="lazy wp-post-image" alt="" title="" /> </a> </div> <div class="sidebar_post"> <p><a href="https://writings.stephenwolfram.com/2024/09/nestedly-recursive-functions/" rel="bookmark" title="Permanent Link to Nestedly Recursive Functions" >Nestedly Recursive Functions</a></p> <p><time datetime="2024-09-27">September 27, 2024</time></p> </div> </div> <div class="sidebar_post_wrapper"> <div class="sidebar_thumbnail"> <a href="https://writings.stephenwolfram.com/2024/08/five-most-productive-years-what-happened-and-whats-next/" rel="bookmark" title="Permanent Link to Five Most Productive Years: What Happened and What&#8217;s Next" > <img width="128" height="108" src="https://content.wolfram.com/sites/43/2024/08/swblog-5years-icon.png" class="lazy wp-post-image" alt="" title="" /> </a> </div> <div class="sidebar_post"> <p><a href="https://writings.stephenwolfram.com/2024/08/five-most-productive-years-what-happened-and-whats-next/" rel="bookmark" title="Permanent Link to Five Most Productive Years: What Happened and What&#8217;s Next" >Five Most Productive Years: What Happened and What&#8217;s Next</a></p> <p><time datetime="2024-08-29">August 29, 2024</time></p> </div> </div> <div class="sidebar_post_wrapper"> <div class="sidebar_thumbnail"> <a href="https://writings.stephenwolfram.com/2024/06/ruliology-of-the-forgotten-code-10/" rel="bookmark" title="Permanent Link to Ruliology of the &#8220;Forgotten&#8221; Code 10" > <img width="128" height="108" src="https://content.wolfram.com/sites/43/2024/05/tile-Code10-v1.png" class="lazy wp-post-image" alt="" title="" /> </a> </div> <div class="sidebar_post"> <p><a href="https://writings.stephenwolfram.com/2024/06/ruliology-of-the-forgotten-code-10/" rel="bookmark" title="Permanent Link to Ruliology of the &#8220;Forgotten&#8221; Code 10" >Ruliology of the &#8220;Forgotten&#8221; Code 10</a></p> <p><time datetime="2024-06-01">June 1, 2024</time></p> </div> </div> <div class="sidebar_post_wrapper"> <div class="sidebar_thumbnail"> <a href="https://writings.stephenwolfram.com/2024/03/when-exactly-will-the-eclipse-happen-a-multimillennium-tale-of-computation/" rel="bookmark" title="Permanent Link to When Exactly Will the Eclipse Happen? A Multimillennium Tale of Computation" > <img width="128" height="108" src="https://content.wolfram.com/sites/43/2024/03/eclipse-history-tile-v2.png" class="lazy wp-post-image" alt="" title="" /> </a> </div> <div class="sidebar_post"> <p><a href="https://writings.stephenwolfram.com/2024/03/when-exactly-will-the-eclipse-happen-a-multimillennium-tale-of-computation/" rel="bookmark" title="Permanent Link to When Exactly Will the Eclipse Happen? A Multimillennium Tale of Computation" >When Exactly Will the Eclipse Happen? A Multimillennium Tale of Computation</a></p> <p><time datetime="2024-03-29">March 29, 2024</time></p> </div> </div> </div> </article> </div> <div id="sidebar"> <form class="headerSearchBox" method="get" action="https://writings.stephenwolfram.com/" id="search"> <input class="searchboxsub" type="text" value="" name="s" id="query_1" placeholder="Search Writings" /> <input type="submit" class="headerSearchSubmit" value="" title="Search"> </form> <div class="sidebar-pod related-writings"></div> <div class="sidebar-pod recent-writings"> <p class="sidebar-heading">Recent Writings</p> <div class="sidebar-inner"> <div id="postContainer"> <div class="sidebar_post_wrapper"> <div class="sidebar_thumbnail"><a href="https://writings.stephenwolfram.com/2024/10/on-the-nature-of-time/" rel="bookmark" title="Permanent Link to On the Nature of Time" ><img src="https://content.wolfram.com/sites/43/2024/10/swblog-time-icon-v2.png" alt=""></a></div> <div class="sidebar_post"> <p><a href="https://writings.stephenwolfram.com/2024/10/on-the-nature-of-time/" rel="bookmark" title="Permanent Link to On the Nature of Time" >On the Nature of Time</a></p> <p><time datetime="2024-10-08">October 8, 2024</time></p> </div> </div> <div class="sidebar_post_wrapper"> <div class="sidebar_thumbnail"><a href="https://writings.stephenwolfram.com/2024/09/nestedly-recursive-functions/" rel="bookmark" title="Permanent Link to Nestedly Recursive Functions" ><img src="https://content.wolfram.com/sites/43/2024/09/swblog-recursive-icon.png" alt=""></a></div> <div class="sidebar_post"> <p><a href="https://writings.stephenwolfram.com/2024/09/nestedly-recursive-functions/" rel="bookmark" title="Permanent Link to Nestedly Recursive Functions" >Nestedly Recursive Functions</a></p> <p><time datetime="2024-09-27">September 27, 2024</time></p> </div> </div> <div class="sidebar_post_wrapper"> <div class="sidebar_thumbnail"><a href="https://writings.stephenwolfram.com/2024/08/five-most-productive-years-what-happened-and-whats-next/" rel="bookmark" title="Permanent Link to Five Most Productive Years: What Happened and What&#8217;s Next" ><img src="https://content.wolfram.com/sites/43/2024/08/swblog-5years-icon.png" alt=""></a></div> <div class="sidebar_post"> <p><a href="https://writings.stephenwolfram.com/2024/08/five-most-productive-years-what-happened-and-whats-next/" rel="bookmark" title="Permanent Link to Five Most Productive Years: What Happened and What&#8217;s Next" >Five Most Productive Years: What Happened and What&#8217;s Next</a></p> <p><time datetime="2024-08-29">August 29, 2024</time></p> </div> </div> <div class="sidebar_post_wrapper"> <div class="sidebar_thumbnail"><a href="https://writings.stephenwolfram.com/2024/08/whats-really-going-on-in-machine-learning-some-minimal-models/" rel="bookmark" title="Permanent Link to What&#8217;s Really Going On in Machine Learning? Some Minimal Models" ><img src="https://content.wolfram.com/sites/43/2024/08/swblog-ml-icon-v2.png" alt=""></a></div> <div class="sidebar_post"> <p><a href="https://writings.stephenwolfram.com/2024/08/whats-really-going-on-in-machine-learning-some-minimal-models/" rel="bookmark" title="Permanent Link to What&#8217;s Really Going On in Machine Learning? Some Minimal Models" >What&#8217;s Really Going On in Machine Learning? Some Minimal Models</a></p> <p><time datetime="2024-08-22">August 22, 2024</time></p> </div> </div> <div class="sidebar_post_wrapper"> <div class="sidebar_thumbnail"><a href="https://writings.stephenwolfram.com/2024/07/yet-more-new-ideas-and-new-functions-launching-version-14-1-of-wolfram-language-mathematica/" rel="bookmark" title="Permanent Link to Yet More New Ideas and New Functions: Launching Version 14.1 of Wolfram Language &#038; Mathematica" ><img src="https://content.wolfram.com/sites/43/2024/07/swblog-v14.1-icon.png" alt=""></a></div> <div class="sidebar_post"> <p><a href="https://writings.stephenwolfram.com/2024/07/yet-more-new-ideas-and-new-functions-launching-version-14-1-of-wolfram-language-mathematica/" rel="bookmark" title="Permanent Link to Yet More New Ideas and New Functions: Launching Version 14.1 of Wolfram Language &#038; Mathematica" >Yet More New Ideas and New Functions: Launching Version 14.1 of Wolfram Language &#038; Mathematica</a></p> <p><time datetime="2024-07-31">July 31, 2024</time></p> </div> </div> </div> </div> <a href="/all-by-date" class="all-by-date chevron-after">All by date</a> </div> <div class="sidebar-pod popular-categories"> <p class="sidebar-heading">Popular Categories</p> <div class="categories-list-row sidebar-inner"> <ul class="categories-list"> <li><a href="/category/artificial-intelligence">Artificial Intelligence</a></li><li><a href="/category/big-picture">Big Picture</a></li><li><a href="/category/companies-and-business">Companies &amp; Business</a></li><li><a href="/category/computational-science">Computational Science</a></li><li><a href="/category/computational-thinking">Computational Thinking</a></li><li><a href="/category/data-science">Data Science</a></li><li><a href="/category/education">Education</a></li><li><a href="/category/future-perspectives">Future Perspectives</a></li><li><a href="/category/historical-perspectives">Historical Perspectives</a></li><li><a href="/category/language-and-communication">Language &amp; Communication</a></li><li><a href="/category/life-and-times">Life &amp; Times</a></li><li><a href="/category/life-science">Life Science</a></li><li><a href="/category/mathematica">Mathematica</a></li><li><a href="/category/mathematics">Mathematics</a></li><li><a href="/category/new-kind-of-science">New Kind of Science</a></li><li><a href="/category/new-technology">New Technology</a></li><li><a href="/category/personal-analytics">Personal Analytics</a></li><li><a href="/category/philosophy">Philosophy</a></li><li><a href="/category/physics">Physics</a></li><li><a href="/category/ruliology">Ruliology</a></li><li><a href="/category/software-design">Software Design</a></li><li><a href="/category/wolfram-alpha">Wolfram|Alpha</a></li><li><a href="/category/wolfram-language">Wolfram Language</a></li><li><a href="/category/other">Other</a></li> </ul> </div> </div> <div class="sidebar-pod writings-by-year"> <p class="sidebar-heading">Writings by Year</p> <div class="sidebar-archive sidebar-inner"> <ul> <li><a href="/all-by-date/#2024">2024</a></li><li><a href="/all-by-date/#2023">2023</a></li><li><a href="/all-by-date/#2022">2022</a></li><li><a href="/all-by-date/#2021">2021</a></li><li><a href="/all-by-date/#2020">2020</a></li><li><a href="/all-by-date/#2019">2019</a></li><li><a href="/all-by-date/#2018">2018</a></li><li><a href="/all-by-date/#2017">2017</a></li><li><a href="/all-by-date/#2016">2016</a></li><li><a href="/all-by-date/#2015">2015</a></li><li><a href="/all-by-date/#2014">2014</a></li><li><a href="/all-by-date/#2013">2013</a></li><li><a href="/all-by-date/#2012">2012</a></li><li><a href="/all-by-date/#2011">2011</a></li><li><a href="/all-by-date/#2010">2010</a></li><li><a href="/all-by-date/#2009">2009</a></li><li><a href="/all-by-date/#2008">2008</a></li><li><a href="/all-by-date/#2007">2007</a></li><li><a href="/all-by-date/#2006">2006</a></li><li><a href="/all-by-date/#2004">2004</a></li><li><a href="/all-by-date/#2003">2003</a></li> <li><a href="/all-by-date/">All</a></li> </ul> </div> </div> <span id="side-images"> <a href="https://www.wolfram.com/language/elementary-introduction/3rd-ed/"><img src="https://content.wolfram.com/sites/43/2023/05/eiwl3-swblog.png" width="254" height="" alt=""/></a> </span> </div> </div><!-- end of "inner" --> <footer id="footer"> <div class="inner"> © Stephen Wolfram, LLC <span class="footer-sep">|</span> Open content: <a href="//creativecommons.org/licenses/by-sa/4.0/" target="_blank"> <svg id="icon-cc-by-sa" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 110 32"> <g transform="translate(76 0)"> <path d="M15.7,0.9c4.2,0,7.7,1.5,10.7,4.4c2.9,2.9,4.4,6.4,4.4,10.6c0,4.2-1.4,7.7-4.3,10.6c-3,3-6.6,4.4-10.7,4.4 c-4.1,0-7.6-1.5-10.6-4.4C2.2,23.5,0.7,20,0.7,15.9c0-4.1,1.5-7.6,4.4-10.6C8.1,2.3,11.6,0.9,15.7,0.9z M15.8,3.6 c-3.4,0-6.3,1.2-8.7,3.6c-2.4,2.5-3.7,5.4-3.7,8.7c0,3.3,1.2,6.2,3.6,8.6c2.4,2.4,5.3,3.6,8.7,3.6c3.3,0,6.2-1.2,8.7-3.7 c2.4-2.3,3.5-5.2,3.5-8.6c0-3.4-1.2-6.3-3.6-8.7C22.1,4.8,19.2,3.6,15.8,3.6z M9.1,13.8c0.3-1.8,1-3.3,2.2-4.3 c1.2-1,2.7-1.5,4.4-1.5c2.4,0,4.2,0.8,5.6,2.3s2.1,3.5,2.1,5.8c0,2.3-0.7,4.2-2.2,5.7c-1.4,1.5-3.3,2.3-5.6,2.3 c-1.7,0-3.2-0.5-4.4-1.5c-1.2-1-2-2.5-2.2-4.3h3.8c0.1,1.8,1.2,2.7,3.3,2.7c1.1,0,1.9-0.5,2.5-1.4c0.6-0.9,1-2.1,1-3.6 c0-1.6-0.3-2.8-0.9-3.6c-0.6-0.8-1.4-1.2-2.5-1.2c-2,0-3.1,0.9-3.4,2.7h1.1l-3,3l-3-3L9.1,13.8L9.1,13.8z" fill="currentColor"></path> </g> <g transform="translate(5 0)"> <path d="M59.4,5.2c-2.9-2.9-6.4-4.3-10.7-4.3c-4.1,0-7.7,1.4-10.6,4.3c-2.9,3-4.4,6.6-4.4,10.7s1.5,7.6,4.4,10.6 c3,2.9,6.5,4.4,10.6,4.4c4.1,0,7.7-1.5,10.7-4.5c2.9-2.8,4.3-6.3,4.3-10.5C63.7,11.7,62.3,8.1,59.4,5.2z M57.5,24.5 c-2.5,2.4-5.4,3.7-8.7,3.7c-3.4,0-6.2-1.2-8.7-3.6c-2.4-2.4-3.6-5.3-3.6-8.6c0-3.3,1.2-6.2,3.7-8.7c2.4-2.4,5.2-3.6,8.7-3.6 c3.4,0,6.3,1.2,8.7,3.6c2.4,2.4,3.6,5.3,3.6,8.7C61.1,19.3,59.9,22.2,57.5,24.5z" fill="currentColor"></path> <path d="M46.7,8.3c0-1.4,0.7-2.1,2.1-2.1s2.1,0.7,2.1,2.1c0,1.4-0.7,2.1-2.1,2.1C47.3,10.4,46.7,9.7,46.7,8.3z" fill="currentColor"></path> <path d="M52.8,18.3h-1.7v7.3h-4.7v-7.3h-1.7c0,0,0-4.1,0-6.1c0-0.6,0.4-1,1-1c2,0,4,0,6,0c0.6,0,1,0.4,1,1 C52.8,14.2,52.8,18.3,52.8,18.3z" fill="currentColor"></path> </g> <g id="cc-logo"> <path d="M15.7,0.9c4.2,0,7.8,1.5,10.7,4.4c1.4,1.4,2.5,3,3.2,4.8c0.7,1.8,1.1,3.7,1.1,5.8c0,2.1-0.4,4-1.1,5.8 c-0.7,1.8-1.8,3.4-3.2,4.8c-1.4,1.4-3.1,2.6-5,3.3c-1.8,0.8-3.8,1.2-5.8,1.2c-2,0-3.9-0.4-5.7-1.1c-1.8-0.8-3.5-1.9-4.9-3.3 c-1.4-1.4-2.5-3.1-3.3-4.9c-0.8-1.8-1.1-3.7-1.1-5.7c0-2,0.4-3.9,1.1-5.7c0.8-1.8,1.9-3.5,3.3-4.9C8,2.3,11.6,0.9,15.7,0.9z M15.8,3.6c-3.4,0-6.3,1.2-8.7,3.6C6,8.3,5,9.7,4.4,11.2c-0.6,1.5-1,3.1-0.9,4.7c0,1.6,0.3,3.2,0.9,4.6C5,22,6,23.4,7.1,24.5 c1.1,1.1,2.5,2.1,4,2.7c1.5,0.6,3,0.9,4.7,0.9c1.6,0,3.2-0.3,4.7-0.9c1.5-0.6,2.9-1.6,4.1-2.7c2.3-2.3,3.5-5.2,3.5-8.6 c0-1.7-0.3-3.2-0.9-4.7c-0.6-1.5-1.5-2.8-2.7-4C22.1,4.8,19.2,3.6,15.8,3.6z M15.6,13.4l-2,1c-0.2-0.4-0.5-0.8-0.8-0.9 c-0.3-0.2-0.6-0.3-0.9-0.3c-1.3,0-2,0.9-2,2.7c0,0.8,0.2,1.4,0.5,1.9c0.3,0.5,0.8,0.7,1.5,0.7c0.9,0,1.5-0.4,1.9-1.3l1.8,0.9 c-0.4,0.7-0.9,1.3-1.6,1.7c-0.7,0.4-1.5,0.6-2.3,0.6c-1.3,0-2.4-0.4-3.2-1.2c-0.8-0.8-1.2-2-1.2-3.4c0-1.4,0.4-2.6,1.2-3.4 c0.8-0.8,1.9-1.3,3.1-1.3C13.4,11.2,14.8,11.9,15.6,13.4L15.6,13.4z M24.2,13.4l-2,1c-0.2-0.4-0.5-0.8-0.8-0.9 c-0.3-0.2-0.6-0.3-0.9-0.3c-1.3,0-2,0.9-2,2.7c0,0.8,0.2,1.4,0.5,1.9c0.3,0.5,0.8,0.7,1.5,0.7c0.9,0,1.5-0.4,1.8-1.3l1.9,0.9 c-0.4,0.7-1,1.3-1.7,1.7c-0.7,0.4-1.5,0.6-2.3,0.6c-1.4,0-2.4-0.4-3.3-1.2c-0.8-0.8-1.2-2-1.2-3.4c0-1.4,0.4-2.6,1.2-3.4 c0.8-0.8,1.9-1.3,3.1-1.3C22.1,11.2,23.4,11.9,24.2,13.4L24.2,13.4z" fill="currentColor"></path> </g> </svg> </a> (code: <a href="//creativecommons.org/licenses/by-nc-sa/4.0/" target="_blank"> <svg id="icon-cc-by-nc-sa" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 146 32"> <g transform="translate(5 0)"> <path d="M59.4,5.2C56.5,2.3,53,0.9,48.7,0.9c-4.1,0-7.7,1.4-10.6,4.3c-2.9,3-4.4,6.6-4.4,10.7s1.5,7.6,4.4,10.6 c3,2.9,6.5,4.4,10.6,4.4s7.7-1.5,10.7-4.5c2.9-2.8,4.3-6.3,4.3-10.5C63.7,11.7,62.3,8.1,59.4,5.2z M57.5,24.5 c-2.5,2.4-5.4,3.7-8.7,3.7c-3.4,0-6.2-1.2-8.7-3.6c-2.4-2.4-3.6-5.3-3.6-8.6s1.2-6.2,3.7-8.7c2.4-2.4,5.2-3.6,8.7-3.6 c3.4,0,6.3,1.2,8.7,3.6s3.6,5.3,3.6,8.7C61.1,19.3,59.9,22.2,57.5,24.5z" fill="currentColor"></path> <path d="M46.7,8.3c0-1.4,0.7-2.1,2.1-2.1s2.1,0.7,2.1,2.1s-0.7,2.1-2.1,2.1C47.3,10.4,46.7,9.7,46.7,8.3z" fill="currentColor"></path> <path d="M52.8,18.3h-1.7v7.3h-4.7v-7.3h-1.7c0,0,0-4.1,0-6.1c0-0.6,0.4-1,1-1c2,0,4,0,6,0c0.6,0,1,0.4,1,1 C52.8,14.2,52.8,18.3,52.8,18.3z" fill="currentColor"></path> </g> <g transform="translate(76 0)"> <path d="M53.9,0.9c4.2,0,7.7,1.5,10.7,4.4c2.9,2.9,4.4,6.4,4.4,10.6s-1.4,7.7-4.3,10.6c-3,3-6.6,4.4-10.7,4.4s-7.6-1.5-10.6-4.4 c-3-3-4.5-6.5-4.5-10.6s1.5-7.6,4.4-10.6C46.3,2.3,49.8,0.9,53.9,0.9z M54,3.6c-3.4,0-6.3,1.2-8.7,3.6c-2.4,2.5-3.7,5.4-3.7,8.7 s1.2,6.2,3.6,8.6c2.4,2.4,5.3,3.6,8.7,3.6c3.3,0,6.2-1.2,8.7-3.7c2.4-2.3,3.5-5.2,3.5-8.6s-1.2-6.3-3.6-8.7 C60.3,4.8,57.4,3.6,54,3.6z M47.3,13.8c0.3-1.8,1-3.3,2.2-4.3S52.2,8,53.9,8c2.4,0,4.2,0.8,5.6,2.3c1.4,1.5,2.1,3.5,2.1,5.8 s-0.7,4.2-2.2,5.7c-1.4,1.5-3.3,2.3-5.6,2.3c-1.7,0-3.2-0.5-4.4-1.5c-1.2-1-2-2.5-2.2-4.3H51c0.1,1.8,1.2,2.7,3.3,2.7 c1.1,0,1.9-0.5,2.5-1.4c0.6-0.9,1-2.1,1-3.6c0-1.6-0.3-2.8-0.9-3.6c-0.6-0.8-1.4-1.2-2.5-1.2c-2,0-3.1,0.9-3.4,2.7h1.1l-3,3l-3-3 L47.3,13.8L47.3,13.8z" fill="currentColor"></path> </g> <g id="cc-logo"> <path d="M15.7,0.9c4.2,0,7.8,1.5,10.7,4.4c1.4,1.4,2.5,3,3.2,4.8s1.1,3.7,1.1,5.8s-0.4,4-1.1,5.8s-1.8,3.4-3.2,4.8 c-1.4,1.4-3.1,2.6-5,3.3c-1.8,0.8-3.8,1.2-5.8,1.2s-3.9-0.4-5.7-1.1C8.1,29.1,6.4,28,5,26.6s-2.5-3.1-3.3-4.9S0.6,18,0.6,16 s0.4-3.9,1.1-5.7C2.5,8.5,3.6,6.8,5,5.4C8,2.3,11.6,0.9,15.7,0.9z M15.8,3.6c-3.4,0-6.3,1.2-8.7,3.6C6,8.3,5,9.7,4.4,11.2 s-1,3.1-0.9,4.7c0,1.6,0.3,3.2,0.9,4.6C5,22,6,23.4,7.1,24.5s2.5,2.1,4,2.7s3,0.9,4.7,0.9c1.6,0,3.2-0.3,4.7-0.9s2.9-1.6,4.1-2.7 c2.3-2.3,3.5-5.2,3.5-8.6c0-1.7-0.3-3.2-0.9-4.7s-1.5-2.8-2.7-4C22.1,4.8,19.2,3.6,15.8,3.6z M15.6,13.4l-2,1 c-0.2-0.4-0.5-0.8-0.8-0.9c-0.3-0.2-0.6-0.3-0.9-0.3c-1.3,0-2,0.9-2,2.7c0,0.8,0.2,1.4,0.5,1.9s0.8,0.7,1.5,0.7 c0.9,0,1.5-0.4,1.9-1.3l1.8,0.9c-0.4,0.7-0.9,1.3-1.6,1.7c-0.7,0.4-1.5,0.6-2.3,0.6c-1.3,0-2.4-0.4-3.2-1.2c-0.8-0.8-1.2-2-1.2-3.4 s0.4-2.6,1.2-3.4c0.8-0.8,1.9-1.3,3.1-1.3C13.4,11.2,14.8,11.9,15.6,13.4L15.6,13.4z M24.2,13.4l-2,1c-0.2-0.4-0.5-0.8-0.8-0.9 c-0.3-0.2-0.6-0.3-0.9-0.3c-1.3,0-2,0.9-2,2.7c0,0.8,0.2,1.4,0.5,1.9s0.8,0.7,1.5,0.7c0.9,0,1.5-0.4,1.8-1.3l1.9,0.9 c-0.4,0.7-1,1.3-1.7,1.7c-0.7,0.4-1.5,0.6-2.3,0.6c-1.4,0-2.4-0.4-3.3-1.2c-0.8-0.8-1.2-2-1.2-3.4s0.4-2.6,1.2-3.4 c0.8-0.8,1.9-1.3,3.1-1.3C22.1,11.2,23.4,11.9,24.2,13.4L24.2,13.4z" fill="currentColor"></path> </g> <g id="cc-nc"> <path d="M91.7,1c4.2,0,7.8,1.4,10.7,4.3c2.9,2.9,4.4,6.4,4.4,10.7c0,4.2-1.4,7.7-4.3,10.5c-3,3-6.6,4.5-10.7,4.5 c-4.1,0-7.6-1.5-10.6-4.4c-2.9-2.9-4.4-6.5-4.4-10.6c0-4.1,1.5-7.7,4.4-10.7C84.1,2.5,87.6,1,91.7,1z M80.1,12 c-0.4,1.2-0.7,2.6-0.7,4c0,3.3,1.2,6.2,3.6,8.6c2.4,2.4,5.3,3.6,8.7,3.6c3.4,0,6.3-1.2,8.7-3.7c0.9-0.8,1.6-1.7,2.1-2.6l-5.7-2.5 c-0.2,0.9-0.7,1.7-1.4,2.3c-0.8,0.6-1.7,0.9-2.7,1v2.3h-1.7v-2.3c-1.7,0-3.2-0.6-4.6-1.8l2.1-2.1c1,0.9,2.1,1.4,3.3,1.4 c0.5,0,1-0.1,1.3-0.3c0.4-0.2,0.5-0.6,0.5-1.2c0-0.4-0.1-0.7-0.4-0.9l-1.4-0.6l-1.8-0.8l-2.4-1C87.8,15.4,80.1,12,80.1,12z M91.8,3.7c-3.4,0-6.3,1.2-8.7,3.6c-0.6,0.6-1.1,1.3-1.7,2l5.7,2.6c0.2-0.8,0.7-1.4,1.4-1.9c0.7-0.5,1.5-0.7,2.4-0.8V6.9h1.7v2.3 c1.4,0.1,2.6,0.5,3.8,1.4l-2,2c-0.8-0.6-1.7-0.9-2.6-0.9c-0.5,0-0.9,0.1-1.2,0.3c-0.4,0.2-0.6,0.5-0.6,0.9c0,0.1,0,0.2,0.1,0.4 l1.9,0.9l1.3,0.6l2.4,1.1l7.7,3.4c0.2-1.1,0.4-2.1,0.4-3.2c0-3.4-1.2-6.3-3.6-8.7C98.1,4.9,95.2,3.7,91.8,3.7L91.8,3.7z" fill="currentColor"></path> </g> </svg> </a>) <a href="//en.wikipedia.org/wiki/Wikipedia:Citing_sources" target="_blank"> <svg id="icon-wiki" xmlns="http://www.w3.org/2000/svg" viewBox="101 0 44 32"> <g transform="translate(0 0)"> <path id="wikipedia" d="M129.6,4.5l0.3,0h0.5l0.2,0h0.4l0.2,0l0.5,0h0.2l0.1,0.1v0.7c0,0.2-0.1,0.3-0.3,0.3c-1.1,0-1.3,0.2-1.7,0.7 c-0.2,0.3-0.6,1-1.1,1.7l-3.7,7l-0.1,0.2l4.6,9.4l0.3,0.1l7.2-17.1c0.3-0.7,0.2-1.2-0.1-1.5c-0.3-0.3-0.6-0.4-1.4-0.5l-0.7,0 c-0.1,0-0.2,0-0.2-0.1c-0.1,0-0.1-0.1-0.1-0.2V4.6l0.1-0.1h8.1l0.1,0.1v0.7c0,0.2-0.1,0.3-0.3,0.3c-1.1,0-1.9,0.3-2.4,0.7 c-0.5,0.4-0.9,1-1.2,1.7c0,0-2.2,5-4.4,10.1l-0.4,0.9c-1.6,3.6-3.2,7.2-4.1,9.2c-0.9,1.7-1.7,1.5-2.5,0c-0.6-1.2-1.6-3.3-2.5-5.5 l-0.7-1.4c-0.4-0.8-0.8-1.7-1.1-2.4c-1.5,3.2-3.6,7.4-4.7,9.4c-1,1.8-1.8,1.5-2.5,0c-2.3-5.4-7-15-9.3-20.3c-0.4-1-0.7-1.6-1-1.9 c-0.3-0.2-0.9-0.4-1.8-0.4c-0.3,0-0.5-0.1-0.5-0.3V4.6l0.1-0.1l0.8,0h1.4l1.4,0h0.4l2.5,0h0.3l1.3,0h0.8l0.1,0.1v0.7 c0,0.2-0.1,0.3-0.4,0.3l-0.9,0c-0.8,0-1.2,0.3-1.2,0.7c0,0.2,0.1,0.5,0.3,1c1.8,4.3,7.9,17.3,7.9,17.2l0.2,0.1l3.9-7.9 c-0.5-1.1-0.8-1.7-0.8-1.7L119,9.6c0,0-0.5-1.1-0.7-1.4c-1.2-2.4-1.2-2.5-2.4-2.6c-0.3,0-0.5-0.1-0.5-0.3V4.6l0.1-0.1h1l2.1,0h3.9 l0.2,0.1v0.7c0,0.2-0.1,0.3-0.4,0.3l-0.5,0.1c-1.3,0.1-1.1,0.6-0.2,2.3l2.6,5.3l2.9-5.7c0.5-1,0.4-1.3,0.2-1.5l0,0 c-0.1-0.1-0.5-0.4-1.3-0.4l-0.3,0c-0.1,0-0.2,0-0.2-0.1c-0.1,0-0.1-0.1-0.1-0.2V4.6l0.1-0.1l1.2,0H129.6z" fill="currentColor"></path> </g> </svg> </a> <span class="footer-sep">|</span> <a href="/terms" target="_blank">Terms</a> <span class="footer-sep">|</span> <a href="/feed/" target="_blank">RSS</a> </div> </footer></div><!-- end of "outerWrap" --> <script type='text/javascript' src='https://writings.stephenwolfram.com/wp-content/plugins/akismet/_inc/form.js?ver=3.2'></script> <script type='text/javascript' src='https://writings.stephenwolfram.com/wp-includes/js/comment-reply.min.js?ver=4.7.2'></script> <script type='text/javascript' src='https://writings.stephenwolfram.com/wp-includes/js/wp-embed.min.js?ver=4.7.2'></script> <!--noscript.en.html--> <style> #_noscript, #_noscript * { box-sizing: border-box; margin: 0; outline: 0; padding: 0; z-index: 99999999999; } #_noscript { background: #fff6aa; border-bottom: 1px solid #eeca48; bottom: 0; color: #4c4c4c; display: block; font-size: .875rem; font-style: italic; left: 0; min-width: 320px; position: fixed; right: 0; width: 100%; z-index: 99999998 !important; /* place it beneath the global header */ } #_noscript > div { align-items: center; display: grid; gap: .5rem; grid-template-columns: 28px auto; height: 40px; justify-content: center; margin: 0 1rem; } #_noscript svg { display: inline-block; height: 25px; vertical-align: middle; width: 28px; } #_noscript a { color: #222; font-style: normal; text-decoration: none; } #_noscript a:hover { color: #ef621a; } </style> <noscript id="_noscript" class="gl-noscript-standalone remove__ready"> <div> <div><svg class="_noscript-warning"><use href="#_noscript-warning"></use></svg></div> <div>Enable JavaScript to interact with content and submit forms on Wolfram websites. <a href="http://www.enable-javascript.com/" target="_blank" data-walid="GUIFooter">Learn how&nbsp;»</a></div> </div> </noscript> <div style="height: 0; width: 0; position: absolute; visibility: hidden; top: -999999999999px;"> <svg xmlns="http://www.w3.org/2000/svg"> <g id="_noscript-icons"> <symbol id="_noscript-warning" viewBox="0 0 28.21 25"> <path d="M27.91,21.7L16.01,1.1c-.84-1.47-2.96-1.47-3.81,0L.3,21.7c-.85,1.47,.21,3.3,1.9,3.3H26c1.69,0,2.75-1.83,1.91-3.3ZM15.75,7.44l-.46,9.42h-2.37l-.48-9.42h3.31Zm-1.65,14.25c-1.12,0-1.87-.81-1.87-1.89s.77-1.89,1.87-1.89,1.83,.79,1.85,1.89c0,1.08-.73,1.89-1.85,1.89Z" fill="#f47821"/> <polygon points="15.77 7.47 15.31 16.89 12.94 16.89 12.46 7.47 15.77 7.47" fill="#fff"/> <path d="M14.1,21.69c-1.12,0-1.87-.81-1.87-1.89s.77-1.89,1.87-1.89,1.83,.79,1.85,1.89c0,1.08-.73,1.89-1.85,1.89Z" fill="#fff"/> </symbol> </g> </svg> </div> <!--/noscript.en.html--> <script>var baselang = '';</script> <script src="https://writings.stephenwolfram.com/wp-content/themes/sw-writings/clipboard.js"></script> <script src="/common/js/clipboard/2.0/clipboard.js"></script> <script src="/common/js/c2c/1.0/WolframC2C.js"></script> <script src="/common/js/c2c/1.0/WolframC2CGui.js"></script> <script src="/common/js/c2c/1.0/WolframC2CDefault.js"></script> <link rel="stylesheet" href="/common/js/c2c/1.0/WolframC2CGui.css.en"> <script> let c2cWrittings = new WolframC2CDefault({'triggerClass':'writtings-c2c_above', 'uniqueIdPrefix': 'writtings-c2c_above-'}); </script><script type="text/javascript"> if ( location.hash!="" && Number.isInteger( Number( location.hash.substring(1) ) ) ) { var jumplink = Number( location.hash.substring(1) ) - 1; document.getElementsByClassName('InCell')[jumplink].scrollIntoView(true); } </script> <!-- begin framework footer en --> <div id ="IPstripe-wrap"></div> <script src="/common/stripe/stripe.en.js"></script> <!-- end framework footer en --> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10