CINXE.COM
Search results for: biodegradability
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: biodegradability</title> <meta name="description" content="Search results for: biodegradability"> <meta name="keywords" content="biodegradability"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="biodegradability" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="biodegradability"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 154</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: biodegradability</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">154</span> Development and Characterization of Biodegradable Films Based on Biopolymer Extracted From Natural Sources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dalila%20Hammiche">Dalila Hammiche</a>, <a href="https://publications.waset.org/abstracts/search?q=Lisa%20Klaai"> Lisa Klaai</a>, <a href="https://publications.waset.org/abstracts/search?q=Sonia%20Imzi"> Sonia Imzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Amar%20Boukerrou"> Amar Boukerrou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fight against plastic pollution implies the development of polymers as alternatives to synthetic polymers. Starch is a natural polymer that can easily be plasticized by means of additives. The objective of this work is to develop and characterize biodegradable biofilms based on starch, plasticized by glycerol (20 and 30%). The elaboration of the biofilms was carried out by the casting method under simple conditions. The samples were characterized by infrared spectroscopy analysis with Fourier transform (FTIR), thermogravimetric analysis, and biodegradability test. Infrared spectral analysis showed that the 30% and 20% glycerol films have the same chemical structure and no functional group changes occurred. Thermogravimetric analysis showed that a 30% glycerol film has higher thermal stability than a 20% glycerol film. Biodegradability test showed that the lower the percentage of glycerol, the more easily the biofilm degrades. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=starch" title="starch">starch</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20sources" title=" natural sources"> natural sources</a>, <a href="https://publications.waset.org/abstracts/search?q=FTIR" title=" FTIR"> FTIR</a>, <a href="https://publications.waset.org/abstracts/search?q=thermogravimetric%20analysis" title=" thermogravimetric analysis"> thermogravimetric analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradability%20test" title=" biodegradability test"> biodegradability test</a> </p> <a href="https://publications.waset.org/abstracts/149369/development-and-characterization-of-biodegradable-films-based-on-biopolymer-extracted-from-natural-sources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149369.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">153</span> Fiber Release from Fabrics with Various Weave Parameters and Finishing Treatments during Washing and Their Marine Biodegradation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seoyoun%20Kim">Seoyoun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Chunghee%20Park"> Chunghee Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microplastics have recently become an issue due to their potentially harmful effects on the marine environment and the human body. The purpose of this study is to investigate the correlation of fiber emissions during the home laundering with the fabric parameters such as yarn density, warp/weft density, and weave structure. Also, the effect of finishing treatments such as reactive dyeing, water-repellent finish, peach skin finish on fiber emissions was evaluated. Furthermore, we studied the biodegradability of fibers in the marine environment compared to those in soil burial and the impact of finishing treatment on the biodegradability. Biodegradability was evaluated by measuring BOD values and tensile strength reduction. The results showed that more fibers were released in the thicker yarn, lower weave density. Also, a weave structure which has less compactness, released more fibers. Peach skin finish with microfibers exposed on the surface caused more fiber release, whereas water-repellent finish reduced the fiber emission. In addition, the biodegradability of the fabrics submerged in the marine environment were lower compared with those buried in the soil. Also, the water-repellent fabric was less biodegradable than the untreated one. Further research is suggested considering the fabrics with various chemical components or geometry and their fouling behavior in the marine environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodegradation" title="biodegradation">biodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=fibers" title=" fibers"> fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=microplastic" title=" microplastic"> microplastic</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a> </p> <a href="https://publications.waset.org/abstracts/131530/fiber-release-from-fabrics-with-various-weave-parameters-and-finishing-treatments-during-washing-and-their-marine-biodegradation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131530.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">152</span> Hybrid Advanced Oxidative Pretreatment of Complex Industrial Effluent for Biodegradability Enhancement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Paradkar">K. Paradkar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Mudliar"> S. N. Mudliar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sharma"> A. Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20Pandit"> A. B. Pandit</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20A.%20Pandey"> R. A. Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study explores the hybrid combination of Hydrodynamic Cavitation (HC) and Subcritical Wet Air Oxidation-based pretreatment of complex industrial effluent to enhance the biodegradability selectively (without major COD destruction) to facilitate subsequent enhanced downstream processing via anaerobic or aerobic biological treatment. Advanced oxidation based techniques can be less efficient as standalone options and a hybrid approach by combining Hydrodynamic Cavitation (HC), and Wet Air Oxidation (WAO) can lead to a synergistic effect since both the options are based on common free radical mechanism. The HC can be used for initial turbulence and generation of hotspots which can begin the free radical attack and this agitating mixture then can be subjected to less intense WAO since initial heat (to raise the activation energy) can be taken care by HC alone. Lab-scale venturi-based hydrodynamic cavitation and wet air oxidation reactor with biomethanated distillery wastewater (BMDWW) as a model effluent was examined for establishing the proof-of-concept. The results indicated that for a desirable biodegradability index (BOD: COD - BI) enhancement (up to 0.4), the Cavitation (standalone) pretreatment condition was: 5 bar and 88 min reaction time with a COD reduction of 36 % and BI enhancement of up to 0.27 (initial BI - 0.17). The optimum WAO condition (standalone) was: 150oC, 6 bar and 30 minutes with 31% COD reduction and 0.33 BI. The hybrid pretreatment (combined Cavitation + WAO) worked out to be 23.18 min HC (at 5 bar) followed by 30 min WAO at 150oC, 6 bar, at which around 50% COD was retained yielding a BI of 0.55. FTIR & NMR analysis of pretreated effluent indicated dissociation and/or reorientation of complex organic compounds in untreated effluent to simpler organic compounds post-pretreatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid" title="hybrid">hybrid</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamic%20cavitation" title=" hydrodynamic cavitation"> hydrodynamic cavitation</a>, <a href="https://publications.waset.org/abstracts/search?q=wet%20air%20oxidation" title=" wet air oxidation"> wet air oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradability%20index" title=" biodegradability index"> biodegradability index</a> </p> <a href="https://publications.waset.org/abstracts/35052/hybrid-advanced-oxidative-pretreatment-of-complex-industrial-effluent-for-biodegradability-enhancement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35052.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">618</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">151</span> Evaluation of Biosurfactant Production by a New Strain Isolated from the Lagoon of Mar Chica Degrading Gasoline</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ikram%20Kamal">Ikram Kamal</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Blaghen"> Mohamed Blaghen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pollution caused by petroleum hydrocarbons in terrestrial and aquatic environment is a common phenomenon that causes significant ecological and social problems. Biosurfactant applications in the environmental industries are promising due to their biodegradability, low toxicity and effectiveness in enhancing biodegradation and solubilization of low solubility compounds. Currently, the main application is for enhancement of oil recovery and hydrocarbon bioremediation due to their biodegradability and low critical micelle concentration (CMC). In this study we have investigated the potential of bacterial strains collected aseptically from the lagoon Marchika (water and soil) in Nador, Morocco; for the production of biosurfactants. This study also aimed to optimize the biosurfactant production process by changing the variables that influence the type and amount of biosurfactant produced by these microorganisms such as: carbon sources and also other physical and chemical parameters such as temperature and pH. Emulsification index, methylene blue test and thin layer chromatography (TLC) revealed the ability of strains used in this study to produce compounds that could emulsify gasoline. In addition a GC/MS was used to separate and identify different biosurfactants purified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=petroleum%20hydrocarbons" title="petroleum hydrocarbons">petroleum hydrocarbons</a>, <a href="https://publications.waset.org/abstracts/search?q=biosurfactant" title=" biosurfactant"> biosurfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradability" title=" biodegradability"> biodegradability</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20micelle%20concentration" title=" critical micelle concentration"> critical micelle concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=lagoon%20Marchika" title=" lagoon Marchika"> lagoon Marchika</a> </p> <a href="https://publications.waset.org/abstracts/46762/evaluation-of-biosurfactant-production-by-a-new-strain-isolated-from-the-lagoon-of-mar-chica-degrading-gasoline" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46762.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">150</span> Treatment of Pharmaceutical Industrial Effluent by Catalytic Ozonation in a Semi-Batch Reactor: Kinetics, Mass Transfer and Improved Biodegradability Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sameena%20Malik">Sameena Malik</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghosh%20Prakash"> Ghosh Prakash</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20%20Mudliar"> Sandeep Mudliar</a>, <a href="https://publications.waset.org/abstracts/search?q=Vishal%20Waindeskar"> Vishal Waindeskar</a>, <a href="https://publications.waset.org/abstracts/search?q=Atul%20Vaidya"> Atul Vaidya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the biodegradability enhancement along with COD color and toxicity removal of pharmaceutical effluent by O₃, O₃/Fe²⁺, O₃/nZVI processes has been evaluated. The nZVI particles were synthesized and characterized by XRD and SEM analysis. Kinetic model was reasonably developed to select the ozone doses to be applied based on the ozonation kinetic and mass transfer coefficient values. Nano catalytic ozonation process (O₃/nZVI) effectively enhanced the biodegradability (BI=BOD₅/COD) of pharmaceutical effluent up to 0.63 from 0.18 of control with a COD, color and toxicity removal of 62.3%, 93%, and 75% respectively compared to O₃, O₃/Fe²⁺ pretreatment processes. From the GC-MS analysis, 8 foremost organic compounds were predominantly detected in the pharmaceutical effluent. The disappearance of the corresponding GC-MS spectral peaks during catalyzed ozonation process indicated the degradation of the effluent. The changes in the FTIR spectra confirms the transformation/destruction of the organic compounds present in the effluent to new compounds. Subsequent aerobic biodegradation of pretreated effluent resulted in biodegradation rate enhancement by 5.31, 2.97, and 1.22 times for O₃, O₃/Fe²⁺ and O₃/nZVI processes respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=iron%20nanoparticles" title="iron nanoparticles">iron nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmaceutical%20effluent" title=" pharmaceutical effluent"> pharmaceutical effluent</a>, <a href="https://publications.waset.org/abstracts/search?q=ozonation" title=" ozonation"> ozonation</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20transfer" title=" mass transfer"> mass transfer</a> </p> <a href="https://publications.waset.org/abstracts/82976/treatment-of-pharmaceutical-industrial-effluent-by-catalytic-ozonation-in-a-semi-batch-reactor-kinetics-mass-transfer-and-improved-biodegradability-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">149</span> Electrical Analysis of Corn Oil as an Alternative to Mineral Oil in Power Transformers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Taslak">E. Taslak</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20%20Kocatepe"> C. Kocatepe</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Ar%C4%B1kan"> O. Arıkan</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20F.%20Kumru"> C. F. Kumru</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In insulation and cooling of power transformers various liquids are used. Mineral oils have wide availability and low cost. However, they have a poor biodegradability potential and lower fire point in comparison with other insulating liquids. Use of a liquid having high biodegradability is important due to environmental consideration. This paper investigates edible corn oil as an alternative to mineral oil. Various properties of mineral and corn oil like breakdown voltage, dissipation factor, relative dielectric constant, power loss and resistivity were measured according to different standards. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breakdown%20voltage" title="breakdown voltage">breakdown voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=corn%20oil" title=" corn oil"> corn oil</a>, <a href="https://publications.waset.org/abstracts/search?q=dissipation%20factor" title=" dissipation factor"> dissipation factor</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20oil" title=" mineral oil"> mineral oil</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20loss" title=" power loss"> power loss</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20dielectric%20constant" title=" relative dielectric constant"> relative dielectric constant</a>, <a href="https://publications.waset.org/abstracts/search?q=resistivity" title=" resistivity"> resistivity</a> </p> <a href="https://publications.waset.org/abstracts/29825/electrical-analysis-of-corn-oil-as-an-alternative-to-mineral-oil-in-power-transformers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29825.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">578</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">148</span> Toxicity and Biodegradability of Veterinary Antibiotic Tiamulin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gabriela%20Kalcikova">Gabriela Kalcikova</a>, <a href="https://publications.waset.org/abstracts/search?q=Igor%20Bosevski"> Igor Bosevski</a>, <a href="https://publications.waset.org/abstracts/search?q=Ula%20Rozman"> Ula Rozman</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreja%20Zgajnar%20Gotvajn"> Andreja Zgajnar Gotvajn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Antibiotics are extensively used in human medicine and also in animal husbandry to prevent or control infections. Recently, a lot of attention has been put on veterinary antibiotics, because their global consumption is increasing and it is expected to be 106.600 tons in 2030. Most of veterinary antibiotics are introduced into the environment via animal manure, which is used as fertilizer. One of such veterinary antibiotics is tiamulin. It is used the form of fumarate for treatment of pig and poultry. It is used against prophylaxis of dysentery, pneumonia and mycroplasmal infections, but its environmental impact is practically unknown. Tiamulin has been found very persistent in animal manure and thus it is expected that can be, during rainfalls, transported into the aquatic environment and affect various organisms. For assessment of its environmental impact, it is necessary to evaluate its biodegradability and toxicity to various organisms from different levels of a food chain. Therefore, the aim of our study was to evaluate ready biodegradability and toxicity of tiamulin fumarate to various organisms. Bioassay used included luminescent bacterium Vibrio fischeri heterotrophic and nitrifying microorganisms of activated sludge, water flea Daphnia magna and duckweed Lemna minor. For each species, EC₅₀ values were calculated. Biodegradability test was used for determination of ready biodegradability and it provides information about biodegradability of tiamulin under the most common environmental conditions. Results of our study showed that tiamulin differently affects selected organisms. The most sensitive organisms were water fleas with 48hEC₅₀ = 14.2 ± 4.8 mg/L and duckweed with 168hEC₅₀ = 22.6 ± 0.8 mg/L. Higher concentrations of tiamulin (from 10 mg/L) significantly affected photosynthetic pigments content in duckweed and concentrations above 80 mg/L cause visible chlorosis. It is in agreement with previous studies showing significant effect of tiamulin on green algae and cyanobacteria. Tiamuline has a low effect on microorganisms. The lower toxicity was observed for heterotrophic microorganisms (30minEC₅₀ = 1656 ± 296 mg/L), than Vibrio fisheri (30minEC₅₀ = 492 ± 21) and the most sensitive organisms were nitrifying microorganisms (30minEC₅₀ = 183 ± 127 mg/L). The reason is most probably the mode of action of tiamulin being effective to gram-positive bacteria while gram-negative (e.g., Vibrio fisheri) are more tolerant to tiamulin. Biodegradation of tiamulin was very slow with a long lag-phase being 20 days. The maximal degradation reached 40 ± 2 % in 43 days of the test and tiamulin as other antibiotics (e.g. ciprofloxacin) are not easily biodegradable. Tiamulin is widely used antibiotic in veterinary medicine and thus present in the environment. According to our results, tiamulin can have negative effect on water fleas and duckweeds, but the concentrations are several magnitudes higher than that found in any environmental compartment. Tiamulin is low toxic to tested microorganisms, but it is very low biodegradable and thus possibly persistent in the environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibiotics" title="antibiotics">antibiotics</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradability" title=" biodegradability"> biodegradability</a>, <a href="https://publications.waset.org/abstracts/search?q=tiamulin" title=" tiamulin"> tiamulin</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity"> toxicity</a> </p> <a href="https://publications.waset.org/abstracts/81001/toxicity-and-biodegradability-of-veterinary-antibiotic-tiamulin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81001.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">147</span> Biodegradability and Thermal Properties of Polycaprolactone/Starch Nanocomposite as a Biopolymer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emad%20A.%20Jaffar%20Al-Mulla">Emad A. Jaffar Al-Mulla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a biopolymer-based nanocomposite was successfully prepared through melt blending technique. Two biodegradable polymers, polycaprolactone and starch, environmental friendly and obtained from renewable, easily available raw materials, have been chosen. Fatty hydrazide, synthesized from palm oil, has been used as a surfactant to modify montmorillonite (natural clay) for preparation of polycaprolactone/starch nanocomposite. X-ray diffraction and transmission electron microscopy were used to characterize nanocomposite formation. Compatibility of the blend was improved by adding 3% weight modified clay. Higher biodegradability and thermal stability of nanocomopeite were also observed compared to those of the polycaprolactone/starch blend. This product will solve the problem of plastic waste, especially disposable packaging, and reduce the dependence on petroleum-based polymers and surfactants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polycaprolactone" title="polycaprolactone">polycaprolactone</a>, <a href="https://publications.waset.org/abstracts/search?q=starch" title=" starch"> starch</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradable" title=" biodegradable"> biodegradable</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a> </p> <a href="https://publications.waset.org/abstracts/6713/biodegradability-and-thermal-properties-of-polycaprolactonestarch-nanocomposite-as-a-biopolymer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6713.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">146</span> Characterization of Biosurfactants Produced by Bacteria Degrading Gasoline</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ikram%20Kamal">Ikram Kamal</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Blaghen"> Mohamed Blaghen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biosurfactants are amphiphilic biological compounds consisting of hydrophobic and hydrophilic domains produced extracellularly or as part of the cell membrane by a variety of yeast, bacteria and filamentous fungi. Biosurfactant applications in the environmental industries are promising due to their biodegradability, low toxicity, and effectiveness in enhancing biodegradation and solubilization of low solubility compounds. Currently, the main application is for enhancement of oil recovery and hydrocarbon bioremediation due to their biodegradability and low critical micelle concentration (CMC). The use of biosurfactants has also been proposed for various industrial applications, such as in food additives, cosmetics, detergent formulations and in combinations with enzymes for wastewater treatment. In this study, we have investigated the potential of bacterial strains: Mannheimia haemolytica, Burkholderia cepacia and Serratia ficaria were collected aseptically from the lagoon Marchika (water and soil) in Nador, Morocco; for the production of biosurfactants. This study also aimed to optimize the biosurfactant production process by changing the variables that influence the type and amount of biosurfactant produced by these microorganisms such as: carbon sources and also other physical and chemical parameters such as temperature and pH. Emulsification index, methylene blue test, and thin layer chromatography (TLC) revealed the ability of strains used in this study to produce compounds that could emulsify gasoline. In addition, a GC/MS was used to separate and identify different biosurfactants purified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosurfactants" title="biosurfactants">biosurfactants</a>, <a href="https://publications.waset.org/abstracts/search?q=Mannheimia%20haemolytica" title=" Mannheimia haemolytica"> Mannheimia haemolytica</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradability" title=" biodegradability"> biodegradability</a>, <a href="https://publications.waset.org/abstracts/search?q=Burkholderia%20cepacia" title=" Burkholderia cepacia"> Burkholderia cepacia</a>, <a href="https://publications.waset.org/abstracts/search?q=Serratia%20ficaria" title=" Serratia ficaria"> Serratia ficaria</a> </p> <a href="https://publications.waset.org/abstracts/42419/characterization-of-biosurfactants-produced-by-bacteria-degrading-gasoline" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">145</span> Biogas Production Improve From Waste Activated Sludge Using Fenton Oxidation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Hassiba%20Zemmouri">A. Hassiba Zemmouri</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Nabil%20Mameri"> B. Nabil Mameri</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Hakim%20Lounici"> C. Hakim Lounici</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the effect of Fenton technology pretreatment on the anaerobic digestion of excess waste activated sludge (WAS) was investigated. The variation of physicochemical characteristics (TOC, DS, VSS, VS) and biogas volume (as form of value added products) were also evaluated. The preselected operator conditions of Fenton pretreatment were 0.01ml H2O2/g SS, 150 [H2O2]/[Fe2+], 25g/l TS, at 25 °C and 30, 60 and120 min as treatment duration. The main results show a Maximum solubilization and biodegradability (70%) obtained at 120 min of Fenton pretreatment duration. An increasing of TOC in soluble phase related obviously by releasing organic substances of sludge flocs was contested. Improving in biogas volume was also, increased. Fenton oxidation pretreatment may be a promising chemical pre-treatment for a benefic digestion, stabilization and volume reduction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=waste%20activated%20sludge" title="waste activated sludge">waste activated sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=fenton%20pre-treatment" title=" fenton pre-treatment"> fenton pre-treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradability" title=" biodegradability"> biodegradability</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas" title=" biogas"> biogas</a> </p> <a href="https://publications.waset.org/abstracts/28090/biogas-production-improve-from-waste-activated-sludge-using-fenton-oxidation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28090.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">640</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">144</span> Anticorrosive Performances of “Methyl Ester Sulfonates” Biodegradable Anionic Synthetized Surfactants on Carbon Steel X 70 in Oilfields</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asselah%20Amel">Asselah Amel</a>, <a href="https://publications.waset.org/abstracts/search?q=Affif%20Chaouche%20M%27yassa"> Affif Chaouche M'yassa</a>, <a href="https://publications.waset.org/abstracts/search?q=Toudji%20Amira"> Toudji Amira</a>, <a href="https://publications.waset.org/abstracts/search?q=Tazerouti%20Amel"> Tazerouti Amel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study covers two aspects ; the biodegradability and the performances in corrosion inhibition of a series of synthetized surfactants namely Φ- sodium methyl ester sulfonates (Φ-MES: C₁₂-MES, C₁₄-MES and C₁₆-MES. The biodegradability of these organic compounds was studied using the respirometric method, ‘the standard ISO 9408’. Degradation was followed by analysis of dissolved oxygen using the dissolved oxygen meter over 28 days and the results were compared with that of sodium dodecyl sulphate (SDS). The inoculum used consists of activated sludge taken from the aeration basin of the biological wastewater treatment plant in the city of Boumerdes-Algeria. In addition, the anticorrosive performances of Φ-MES surfactants on a carbon steel "X70" were evaluated in an injection water from a well of Hassi R'mel region- Algeria, known as Baremian water, and are compared to sodium dodecyl sulphate. Two technics, the weight loss and the linear polarization resistance corrosion rate (LPR) are used allowing to investigate the relationships between the concentrations of these synthetized surfactants and their surface properties, surface coverage and inhibition efficiency. Various adsorption isotherm models were used to characterize the nature of adsorption and explain their mechanism. The results show that the MES anionic surfactants was readily biodegradable, degrading faster than SDS, about 88% for C₁₂-MES compared to 66% for the SDS. The length of their carbon chain affects their biodegradability; the longer the chain, the lower the biodegradability. The inhibition efficiency of these surfactants is around 78.4% for C₁₂-MES, 76.60% for C₁₄-MES and 98.19% for C₁₆-MES and increases with their concentration and reaches a maximum value around their critical micelle concentrations ( CMCs). Scanning electron microscopy coupled to energy dispersive X-ray spectroscopy allowed to the visualization of a good adhesion of the protective film formed by the surfactants to the surface of the steel. The studied surfactants show the Langmuirian behavior from which the thermodynamic parameters as adsorption constant (Kads), standard free energy of adsorption (〖∆G〗_ads^0 ) are determined. Interaction of the surfactants with steel surface have involved physisorptions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion" title="corrosion">corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactants" title=" surfactants"> surfactants</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption%20isotherems" title=" adsorption isotherems"> adsorption isotherems</a> </p> <a href="https://publications.waset.org/abstracts/158303/anticorrosive-performances-of-methyl-ester-sulfonates-biodegradable-anionic-synthetized-surfactants-on-carbon-steel-x-70-in-oilfields" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158303.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">143</span> Non-Adiabatic Silica Microfibre Sensor for BOD/COD Ratio Measurement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Chong">S. S. Chong</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Abdul%20Aziz"> A. R. Abdul Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20W.%20Harun"> S. W. Harun</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Arof"> H. Arof</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A miniaturized non-adiabatic silica microfiber is proposed for biological oxygen demand (BOD) ratio chemical oxygen demand (COD) sensing for the first time. BOD and COD are two main parameters to justify quality of wastewater. A ratio, BOD:COD can usually be established between the two analytical methods once COD and BOD value has been gathered. This ratio plays a vital role to determine appropriate strategy in wastewater treatment. A non-adiabatic microfiber sensor was formed by tapering the SMF to generate evanescent field where sensitive to perturbation of sensing medium. Because difference ratio BOD and COD contain in solution, this may induced changes of effective refractive index between microfiber and sensing medium. Attenuation wavelength shift to right with 0.5 nm and 3.5 nm while BOD:COD equal to 0.09 and 0.18 respectively. Significance difference wavelength shift may relate with the biodegradability of analyte. This proposed sensor is compact, reliable and feasible to determine the BOD:COD. Further research and investigation should be proceeded to enhance sensitivity and precision of the sensor for several of wastewater online monitoring. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-adiabatic%20fiber%20sensor" title="non-adiabatic fiber sensor">non-adiabatic fiber sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20sensing" title=" environmental sensing"> environmental sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradability" title=" biodegradability"> biodegradability</a>, <a href="https://publications.waset.org/abstracts/search?q=evanescent%20field" title=" evanescent field"> evanescent field</a> </p> <a href="https://publications.waset.org/abstracts/11703/non-adiabatic-silica-microfibre-sensor-for-bodcod-ratio-measurement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11703.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">661</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">142</span> Biological Treatment of a Mixture of Iodine-Containing Aromatic Compounds from Industrial Wastewaster</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Elain">A. Elain</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Le%20Fellic"> M. Le Fellic</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Le%20Pemp"> A. Le Pemp</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Hachet"> N. Hachet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Iodinated Compounds (IC) are widely detected contaminants in most aquatic environments including sewage treatment plant, surface water, ground water and even drinking water, up to the µg.L-1 range. As IC contribute in the adsorbable organic halides (AOX) level, their removal or dehalogenation is expected. We report here on the biodegradability of a mixture of IC from an industrial effluent using a microbial consortium adapted to grow on IC as well as the native microorganisms. Both aerobic and anaerobic treatments were studied during batch experiments in 500-mL flasks. The degree of mineralization and recovery of iodide were monitored by HPLC-UV, TOC analysis and potentiometric titration. Providing ethanol as an electron acceptor was found to stimulate anaerobic reductive deiodination of IC while sodium chloride even at high concentration (22 g.l-1) had no influence on the degradation rates nor on the microbial viability. Phylogenetic analysis of 16S RNA gene sequence (MicroSeq®) was applied to provide a better understanding of the degradative microbial community. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=iodinated%20compounds" title="iodinated compounds">iodinated compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradability" title=" biodegradability"> biodegradability</a>, <a href="https://publications.waset.org/abstracts/search?q=deiodination" title=" deiodination"> deiodination</a>, <a href="https://publications.waset.org/abstracts/search?q=electron-accepting%20conditions" title=" electron-accepting conditions"> electron-accepting conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20consortium" title=" microbial consortium"> microbial consortium</a> </p> <a href="https://publications.waset.org/abstracts/18611/biological-treatment-of-a-mixture-of-iodine-containing-aromatic-compounds-from-industrial-wastewaster" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18611.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">141</span> Development of Simple-To-Apply Biogas Kinetic Models for the Co-Digestion of Food Waste and Maize Husk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Owamah%20Hilary">Owamah Hilary</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20C.%20Izinyon"> O. C. Izinyon </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many existing biogas kinetic models are difficult to apply to substrates they were not developed for, as they are substrate specific. Biodegradability kinetic (BIK) model and maximum biogas production potential and stability assessment (MBPPSA) model were therefore developed in this study for the anaerobic co-digestion of food waste and maize husk. Biodegradability constant (k) was estimated as 0.11d-1 using the BIK model. The results of maximum biogas production potential (A) obtained using the MBPPSA model corresponded well with the results obtained using the popular but complex modified Gompertz model for digesters B-1, B-2, B-3, B-4, and B-5. The (If) value of MBPPSA model also showed that digesters B-3, B-4, and B-5 were stable, while B-1 and B-2 were unstable. Similar stability observation was also obtained using the modified Gompertz model. The MBPPSA model can therefore be used as alternative model for anaerobic digestion feasibility studies and plant design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biogas" title="biogas">biogas</a>, <a href="https://publications.waset.org/abstracts/search?q=inoculum" title=" inoculum"> inoculum</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20development" title=" model development"> model development</a>, <a href="https://publications.waset.org/abstracts/search?q=stability%20assessment" title=" stability assessment "> stability assessment </a> </p> <a href="https://publications.waset.org/abstracts/28007/development-of-simple-to-apply-biogas-kinetic-models-for-the-co-digestion-of-food-waste-and-maize-husk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28007.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">140</span> Catalytic Wet Air Oxidation as a Pretreatment Option for Biodegradability Enhancement of Industrial Effluent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sushma%20Yadav">Sushma Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Anil%20K.%20Saroha"> Anil K. Saroha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Complex industrial effluent generated from chemical industry is contaminated with toxic and hazardous organic compounds and not amenable to direct biological treatment. To effectively remove many toxic organic pollutants has made it evident that new, compact and more efficient systems are needed. Catalytic Wet Air Oxidation (CWAO) is a promising treatment technology for the abatement of organic pollutants in wastewater. A lot of information is available on using CWAO for the treatment of synthetic solution containing single organic pollutant. But the real industrial effluents containing multi-component mixture of organic compounds were less studied. The main objective of this study is to use the CWAO process for converting the organics into compounds more amenable to biological treatment; complete oxidation may be too expensive. Therefore efforts were made in the present study to explore the potential of alumina based Platinum (Pt) catalyst for the treatment of industrial organic raffinate containing toxic constituents like ammoniacal nitrogen, pyridine etc. The catalysts were prepared by incipient wetness impregnation method and characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and BET (Brunauer, Emmett, and Teller) surface area. CWAO experiments were performed at atmospheric pressure and (30 °C - 70 °C) temperature conditions and the results were evaluated in terms of COD removal efficiency. The biodegradability test was performed by BOD/COD ratio for checking the toxicity of the industrial wastewater as well as for the treated water. The BOD/COD ratio of treated water was significantly increased and signified that the toxicity of the organics was decreased while the biodegradability was increased, indicating the more amenability towards biological treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alumina%20based%20pt%20catalyst" title="alumina based pt catalyst">alumina based pt catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=BOD%2FCOD%20ratio" title=" BOD/COD ratio"> BOD/COD ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=catalytic%20wet%20air%20oxidation" title=" catalytic wet air oxidation"> catalytic wet air oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=COD%20removal%20efficiency" title=" COD removal efficiency"> COD removal efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20organic%20raffinate" title=" industrial organic raffinate"> industrial organic raffinate</a> </p> <a href="https://publications.waset.org/abstracts/35192/catalytic-wet-air-oxidation-as-a-pretreatment-option-for-biodegradability-enhancement-of-industrial-effluent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35192.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">139</span> The Impact of Ultrasonic Field to Increase the Biodegradability of Leachate from The Landfill</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kwarciak-Kozlowska%20A.">Kwarciak-Kozlowska A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Slawik-Dembiczak%20L."> Slawik-Dembiczak L.</a>, <a href="https://publications.waset.org/abstracts/search?q=Galwa-Widera%20M."> Galwa-Widera M.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Complex and variable during operation of the landfill leachate composition prevents the use of a single universal method of their purification. Due to the presence of difficult biodegradable these substances in the wastewater, cleaning of them often requires the use of biological methods (activated sludge or anaerobic digestion), also often supporting by physicochemical processes. Currently, more attention is paid to the development of unconventional methods of disposal of sewage m.in ultleniania advanced methods including the use of ultrasonic waves. It was assumed that the ultrasonic waves induce change in the structure of organic compounds and contribute to the acceleration of biodegradability, including refractive substances in the leachate, so that will increase the effectiveness of their treatment in biological processes. We observed a marked increase in BOD leachate when subjected to the action of utradźwięowego. Ratio BOD / COD was 27% higher compared to the value of this ratio for leachate nienadźwiękawianych. It was found that the process of sonification leachate clearly influenced the formation and release of aliphatic compounds. These changes suggest a possible violation of the chemical structure of organic compounds in the leachate thereby give compounds of the chemical structure more susceptible to biodegradation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IR%20spectra" title="IR spectra">IR spectra</a>, <a href="https://publications.waset.org/abstracts/search?q=landfill%20leachate" title=" landfill leachate"> landfill leachate</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20pollutants" title=" organic pollutants"> organic pollutants</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a> </p> <a href="https://publications.waset.org/abstracts/17313/the-impact-of-ultrasonic-field-to-increase-the-biodegradability-of-leachate-from-the-landfill" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">138</span> Hemostasis Poly Vinyl Alcohol Gauze Coated with Chitosan Encapsulated with Polymer and Drug</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhishekkumar%20Ramasamy">Abhishekkumar Ramasamy</a>, <a href="https://publications.waset.org/abstracts/search?q=Parameshwari"> Parameshwari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chitosan is the deacyelitated derivative of chitin, the second most abundant biopolymer just after cellulose. Without doubt, its biomedical usages have gained more importance among the vast variety of chitosan applications owing to its good biocompatibility and biodegradability. In recent years, particular interest has been devoted to chitosan hydrogels as a promising alternative in competition with conventional sutures or bioadhesives. Different parameters such as acid type and concentration, and degree of deacetylation (DD%) of chitosan, were altered to modify hydrogel properties including viscosity, pH, cohesive strength, and tissue bioadhesiveness. In the current work, we have investigated the effectiveness of chitosan hydrogel encapsulated with tanexamic acid to stop bleeding. Chitosan film was obtained with solubilization of chitosan powder in aqueous acidic media. In vivo experiments have been conducted on rat and rabbit models that provide a convenient way to evaluate the efficacy of prepared samples. The arteries vein was punctured on the hind limb of the rat and the gauze was been applied on the punchered area. Bioadhesive strength as well as irritant effects were discussed. Samples with higher degree of deacetylation, including Chs-16 and Chs-19 that were dissolved in lactic media showed best sealing effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitosan" title="chitosan">chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=biocomaptibility" title=" biocomaptibility"> biocomaptibility</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradability" title=" biodegradability"> biodegradability</a>, <a href="https://publications.waset.org/abstracts/search?q=bioadhersive" title=" bioadhersive"> bioadhersive</a>, <a href="https://publications.waset.org/abstracts/search?q=deacetylation" title=" deacetylation"> deacetylation</a> </p> <a href="https://publications.waset.org/abstracts/41700/hemostasis-poly-vinyl-alcohol-gauze-coated-with-chitosan-encapsulated-with-polymer-and-drug" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41700.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">137</span> Biodegradability Evaluation of Polylactic Acid Composite with Natural Fiber (Sisal)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20B%C3%A1rbara%20Cattozatto%20Fortunato">A. Bárbara Cattozatto Fortunato</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20de%20Lucca%20Soave"> D. de Lucca Soave</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Pinheiro%20de%20Mello"> E. Pinheiro de Mello</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Piasentini%20Oliva"> M. Piasentini Oliva</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Tavares%20de%20Moraes"> V. Tavares de Moraes</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Wolf%20Lebr%C3%A3o"> G. Wolf Lebrão</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Fernandes%20Parra"> D. Fernandes Parra</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Marraccini%20Giampietri%20Lebr%C3%A3o"> S. Marraccini Giampietri Lebrão</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to increasing environmental pressure for biodegradable products, especially in polymeric materials, in order to meet the demands of the biological cycles of the circular economy, new materials have been developed as a sustainability strategy. This study proposes a composite material developed from the biodegradable polymer PLA Ecovio® (polylactic acid - PLA) with natural sisal fibers, where the soybean ester was used as a plasticizer, which can aid in adhesion between the materials and fibers, making the most attractive final composite from an environmental point of view. The composites were obtained by extrusion. The materials tests were produced and submitted to biodegradation tests. Through the biodegradation tests, it can be seen that the biodegradable polymer composition with 5% sisal fiber presented about 12.4% more biodegradability compared to the polymer without fiber addition. It has also been found that the plasticizer was not a compatible with fibers and the polymer. Finally, fibers help to anticipate the decomposition process of the material when subjected to conditions of a landfill. Therefore, its intrinsic properties are not affected during its use, only the biodegradation process begins after its exposure to landfill conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocomposites" title="biocomposites">biocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=sisal" title=" sisal"> sisal</a>, <a href="https://publications.waset.org/abstracts/search?q=polilactic%20acid" title=" polilactic acid"> polilactic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=Polylactic%20Acid%20%28PLA%29" title=" Polylactic Acid (PLA)"> Polylactic Acid (PLA)</a> </p> <a href="https://publications.waset.org/abstracts/87364/biodegradability-evaluation-of-polylactic-acid-composite-with-natural-fiber-sisal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87364.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">136</span> Polyacrylates in Poly (Lactic Acid) Matrix, New Biobased Polymer Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Irena%20Vukovi%C4%87-Kwiatkowska">Irena Vuković-Kwiatkowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Halina%20Kaczmarek"> Halina Kaczmarek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Poly (lactic acid) is well known polymer, often called green material because of its origin (renewable resources) and biodegradability. This biopolymer can be used in the packaging industry very often. Poor resistance to permeation of gases is the disadvantage of poly (lactic acid). The permeability of gases and vapor through the films applied for packages and bottles generally should be very low to prolong products shelf-life. We propose innovation method of PLA gas barrier modification using electromagnetic radiation in ultraviolet range. Poly (lactic acid) (PLA) and multifunctional acrylate monomers were mixed in different composition. Final films were obtained by photochemical reaction (photocrosslinking). We tested permeability to water vapor and carbon dioxide through these films. Also their resistance to UV radiation was also studied. The samples were conditioned in the activated sludge and in the natural soil to test their biodegradability. An innovative method of PLA modification allows to expand its usage, and can reduce the future costs of waste management what is the result of consuming such materials like PET and HDPE. Implementation of our material for packaging will contribute to the protection of the environment from the harmful effects of extremely difficult to biodegrade materials made from PET or other plastic <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interpenetrating%20polymer%20network" title="interpenetrating polymer network">interpenetrating polymer network</a>, <a href="https://publications.waset.org/abstracts/search?q=packaging%20films" title=" packaging films"> packaging films</a>, <a href="https://publications.waset.org/abstracts/search?q=photocrosslinking" title=" photocrosslinking"> photocrosslinking</a>, <a href="https://publications.waset.org/abstracts/search?q=polyacrylates%20dipentaerythritol%20pentaacrylate%20DPEPA" title=" polyacrylates dipentaerythritol pentaacrylate DPEPA"> polyacrylates dipentaerythritol pentaacrylate DPEPA</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%20%28lactic%20acid%29" title=" poly (lactic acid)"> poly (lactic acid)</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20biodegradation" title=" polymer biodegradation "> polymer biodegradation </a> </p> <a href="https://publications.waset.org/abstracts/24623/polyacrylates-in-poly-lactic-acid-matrix-new-biobased-polymer-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24623.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">135</span> Comparative Study on Hydrothermal Carbonization as Pre- and Post-treatment of Anaerobic Digestion of Dairy Sludge: Focus on Energy Recovery, Resources Transformation and Hydrochar Utilization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmood%20Al%20Ramahi">Mahmood Al Ramahi</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Keszthelyi-Szabo"> G. Keszthelyi-Szabo</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Beszedes"> S. Beszedes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrothermal carbonization (HTC) is a thermochemical reaction that utilizes saturated water and vapor pressure to convert waste biomass to C-rich products This work evaluated the effect of HTC as a pre- and post-treatment technique to anaerobic digestion (AD) of dairy sludge, as information in this field is still in its infancy, with many research and methodological gaps. HTC effect was evaluated based on energy recovery, nutrients transformation, and sludge biodegradability. The first treatment approach was executed by applying hydrothermal carbonization (HTC) under a range of temperatures, prior to mesophilic anaerobic digestion (AD) of dairy sludge. Results suggested an optimal pretreatment temperature at 210 °C for 30 min. HTC pretreatment increased methane yield and chemical oxygen demand removal. The theoretical model based on Boyle’s equation had a very close match with the experimental results. On the other hand, applying HTC subsequent to AD increased total energy production, as additional energy yield was obtained by the solid fuel (hydrochar) beside the produced biogas. Furthermore, hydrothermal carbonization of AD digestate generated liquid products (HTC digestate) with improved chemical characteristics suggesting their use as liquid fertilizers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrothermal%20carbonization" title="hydrothermal carbonization">hydrothermal carbonization</a>, <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title=" anaerobic digestion"> anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20balance" title=" energy balance"> energy balance</a>, <a href="https://publications.waset.org/abstracts/search?q=sludge%20biodegradability" title=" sludge biodegradability"> sludge biodegradability</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas" title=" biogas"> biogas</a> </p> <a href="https://publications.waset.org/abstracts/129006/comparative-study-on-hydrothermal-carbonization-as-pre-and-post-treatment-of-anaerobic-digestion-of-dairy-sludge-focus-on-energy-recovery-resources-transformation-and-hydrochar-utilization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129006.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">134</span> Antioxidant Face Mask from Purple Sweet Potato (Ipomea Batatas) with Oleum Cytrus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lilis%20Kistriyani">Lilis Kistriyani</a>, <a href="https://publications.waset.org/abstracts/search?q=Dine%20Olisvia"> Dine Olisvia</a>, <a href="https://publications.waset.org/abstracts/search?q=Lutfa%20Rahmawati"> Lutfa Rahmawati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Facial mask is an important part of every beauty treatment because it will give a smooth and gentle effect on the face. This research is done to make edible film that will be applied for face mask. The main ingredient in making this edible film is purple sweet potato powder with the addition of glycerol as plasticizer. One of the ingredients in purple sweet potato is a flavonoid compound. The purpose of this study was to determine the effect of increasing the amount of glycerol to flavonoids release and the effect on the physical properties and biological properties of edible film produced. The stages of this research are the making of edible film, then perform some analysis, among others, spectrophotometer UV-vis analysis to find out how many flavonoids can be released into facial skin, tensile strength and elongation of break analysis, biodegradability analysis, and microbiological analysis. The variation of edible film is the volume of glycerol that is 1 ml, 2 ml, 3 ml. The results of spectrophotometer UV-vis analysis showed that the most flavonoid release concentration is 20.33 ppm in the 2 ml glycerol variation. The best tensile strength value is 8,502 N, and the greatest elongation of break value is 14% in 1 ml glycerol variation. In the biodegradability test, the more volume of glycerol added the faster the edible film is degraded. The results of microbiological analysis showed that purple sweet potato extract has the ability to inhibit the growth of Propionibacterium acnes seen in the presence of inhibiting zone which is 18.9 mm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=face%20mask" title="face mask">face mask</a>, <a href="https://publications.waset.org/abstracts/search?q=edible%20film" title=" edible film"> edible film</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticizer" title=" plasticizer"> plasticizer</a>, <a href="https://publications.waset.org/abstracts/search?q=flavonoid" title=" flavonoid"> flavonoid</a> </p> <a href="https://publications.waset.org/abstracts/89490/antioxidant-face-mask-from-purple-sweet-potato-ipomea-batatas-with-oleum-cytrus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89490.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">133</span> Development of 3D Printed, Conductive, Biodegradable Nerve Conduits for Neural Regeneration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wei-Chia%20Huang">Wei-Chia Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jane%20Wang"> Jane Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Damage to nerves is considered one of the most irreversible injuries. The regeneration of nerves has always been an important topic in regenerative medicine. In general, damage to human tissue will naturally repair overtime. However, when the nerves are damaged, healed flesh wound cannot guarantee full restoration to its original function, as truncated nerves are often irreversible. Therefore, the development of treatment methods to successfully guide and accelerate the regeneration of nerves has been highly sought after. In order to induce nerve tissue growth, nerve conduits are commonly used to help reconnect broken nerve bundles to provide protection to the location of the fracture while guiding the growth of the nerve bundles. To prevent the protected tissue from becoming necrotic and to ensure the growth rate, the conduits used are often modified with microstructures or blended with neuron growth factors that may facilitate nerve regeneration. Electrical stimulation is another attempted treatment for medical rehabilitation. With appropriate range of voltages and stimulation frequencies, it has been demonstrated to promote cell proliferation and migration. Biodegradability are critical for medical devices like nerve conduits, while conductive polymers pose great potential toward the differentiation and growth of nerve cells. In this work, biodegradability and conductivity were combined into a novel biodegradable, photocurable, conductive polymer composite materials by embedding conductive nanoparticles in poly(glycerol sebacate) acrylate (PGSA) and 3D-printed into nerve conduits. Rat pheochromocytoma cells and rat neuronal Schwann cells were chosen for the in vitro tests of the conduits and had demonstrate selective growth upon culture in the conductive conduits with built-in microchannels and electrical stimulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodegradable%20polymer" title="biodegradable polymer">biodegradable polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=3d%20printing" title=" 3d printing"> 3d printing</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20regeneration" title=" neural regeneration"> neural regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20stimulation" title=" electrical stimulation"> electrical stimulation</a> </p> <a href="https://publications.waset.org/abstracts/170754/development-of-3d-printed-conductive-biodegradable-nerve-conduits-for-neural-regeneration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170754.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">132</span> Preparation and Characterization of Poly(L-Lactic Acid)/Oligo(D-Lactic Acid) Grafted Cellulose Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Hafezur%20Rahaman">Md. Hafezur Rahaman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd.%20Maniruzzaman"> Mohd. Maniruzzaman</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Shadiqul%20Islam"> Md. Shadiqul Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Masud%20Rana"> Md. Masud Rana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the growth of environmental awareness, enormous researches are running to develop the next generation materials based on sustainability, eco-competence, and green chemistry to preserve and protect the environment. Due to biodegradability and biocompatibility, poly (L-lactic acid) (PLLA) has a great interest in ecological and medical applications. Also, cellulose is one of the most abundant biodegradable, renewable polymers found in nature. It has several advantages such as low cost, high mechanical strength, biodegradability and so on. Recently, an immense deal of attention has been paid for the scientific and technological development of α-cellulose based composite material. PLLA could be used for grafting of cellulose to improve the compatibility prior to the composite preparation. Here it is quite difficult to form a bond between lower hydrophilic molecules like PLLA and α-cellulose. Dimmers and oligomers can easily be grafted onto the surface of the cellulose by ring opening or polycondensation method due to their low molecular weight. In this research, α-cellulose extracted from jute fiber is grafted with oligo(D-lactic acid) (ODLA) via graft polycondensation reaction in presence of para-toluene sulphonic acid and potassium persulphate in toluene at 130°C for 9 hours under 380 mmHg. Here ODLA is synthesized by ring opening polymerization of D-lactides in the presence of stannous octoate (0.03 wt% of lactide) and D-lactic acids at 140°C for 10 hours. Composites of PLLA with ODLA grafted α-cellulose are prepared by solution mixing and film casting method. Confirmation of grafting was carried out through FTIR spectroscopy and SEM analysis. A strongest carbonyl peak of FTIR spectroscopy at 1728 cm⁻¹ of ODLA grafted α-cellulose confirms the grafting of ODLA onto α-cellulose which is absent in α-cellulose. It is also observed from SEM photographs that there are some white areas (spot) on ODLA grafted α-cellulose as compared to α-cellulose may indicate the grafting of ODLA and consistent with FTIR results. Analysis of the composites is carried out by FTIR, SEM, WAXD and thermal gravimetric analyzer. Most of the FTIR characteristic absorption peak of the composites shifted to higher wave number with increasing peak area may provide a confirmation that PLLA and grafted cellulose have better compatibility in composites via intermolecular hydrogen bonding and this supports previously published results. Grafted α-cellulose distributions in composites are uniform which is observed by SEM analysis. WAXD studied show that only homo-crystalline structures of PLLA present in the composites. Thermal stability of the composites is enhanced with increasing the percentages of ODLA grafted α-cellulose in composites. As a consequence, the resultant composites have a resistance toward the thermal degradation. The effects of length of the grafted chain and biodegradability of the composites will be studied in further research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-cellulose" title="α-cellulose">α-cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=graft%20polycondensation" title=" graft polycondensation"> graft polycondensation</a>, <a href="https://publications.waset.org/abstracts/search?q=oligo%28D-lactic%20acid%29" title=" oligo(D-lactic acid)"> oligo(D-lactic acid)</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28L-lactic%20acid%29" title=" poly(L-lactic acid)"> poly(L-lactic acid)</a> </p> <a href="https://publications.waset.org/abstracts/104854/preparation-and-characterization-of-polyl-lactic-acidoligod-lactic-acid-grafted-cellulose-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104854.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">131</span> Poly(L-Lactic Acid) Scaffolds for Bone Tissue Engineering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aleksandra%20Bu%C5%BEArovska">Aleksandra BužArovska</a>, <a href="https://publications.waset.org/abstracts/search?q=Gordana%20Bogoeva%20Gaceva"> Gordana Bogoeva Gaceva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biodegradable polymers have received significant scientific attention in tissue engineering (TE) application, in particular their composites consisting of inorganic nanoparticles. In the last 15 years, they are subject of intensive research by many groups, aiming to develop polymer scaffolds with defined biodegradability, porosity and adequate mechanical stability. The most important characteristic making these materials attractive for TE is their biodegradability, a process that could be time controlled and long enough to enable generation of a new tissue as a replacement for the degraded polymer scaffold. In this work poly(L-lactic acid) scaffolds, filled with TiO2 nanoparticles functionalized with oleic acid, have been prepared by thermally induced phase separation method (TIPS). The functionalization of TiO2 nanoparticles with oleic acid was performed in order to improve the nanoparticles dispersibility within the polymer matrix and at the same time to inhibit the cytotoxicity of the nanofiller. The oleic acid was chosen as amphiphilic molecule belonging to the fatty acid family because of its non-toxicity and possibility for mediation between the hydrophilic TiO2 nanoparticles and hydrophobic PLA matrix. The produced scaffolds were characterized with thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and mechanical compression measurements. The bioactivity for bone tissue engineering application was tested in supersaturated simulated body fluid. The degradation process was followed by Fourier transform infrared spectroscopy (FTIR). The results showed anisotropic morphology with elongated open pores (100 µm), high porosity (around 92%) and perfectly dispersed nanofiller. The compression moduli up to 10 MPa were identified independent on the nanofiller content. Functionalized TiO2 nanoparticles induced formation of hydroxyapatite clusters as much as unfunctionalized TiO2. The prepared scaffolds showed properties ideal for scaffold vascularization, cell attachment, growth and proliferation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodegradation" title="biodegradation">biodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20tissue%20engineering" title=" bone tissue engineering"> bone tissue engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=mineralization" title=" mineralization"> mineralization</a>, <a href="https://publications.waset.org/abstracts/search?q=PLA%20scaffolds" title=" PLA scaffolds"> PLA scaffolds</a> </p> <a href="https://publications.waset.org/abstracts/67418/polyl-lactic-acid-scaffolds-for-bone-tissue-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67418.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">130</span> Removal of Chloro-Compounds from Pulp and Paper Industry Wastewater Using Electrocoagulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chhaya%20Sharma">Chhaya Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Dushyant%20Kumar"> Dushyant Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work deals with the treatment of wastewater generated by paper industry by using aluminium as anode material. The quantitative and qualitative analyses of chloropenolics have been carried out by using primary clarifier effluent with the help of gas chromatography mass spectrometry. Sixteen chlorophenolics compounds have been identified and estimated. Results indicated that among 16 identified compounds, 7 are 100% removed and overall 66% reduction in chorophenolics compounds have been detected. Moreover, during the treatment, the biodegradability index of wastewater significantly increases, along with 70 % reduction in chemical oxygen demand and 99 % in color. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminium%20anode" title="aluminium anode">aluminium anode</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorophenolics" title=" chlorophenolics"> chlorophenolics</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocoagulation" title=" electrocoagulation"> electrocoagulation</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution%20load" title=" pollution load"> pollution load</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/71014/removal-of-chloro-compounds-from-pulp-and-paper-industry-wastewater-using-electrocoagulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">129</span> Polymeric Sustained Biodegradable Patch Formulation for Wound Healing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhay%20Asthana">Abhay Asthana</a>, <a href="https://publications.waset.org/abstracts/search?q=Gyati%20Shilakari%20Asthana"> Gyati Shilakari Asthana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It’s the patient compliance and stability in combination with controlled drug delivery and biocompatibility that forms the core feature in present research and development of sustained biodegradable patch formulation intended for wound healing. The aim was to impart sustained degradation, sterile formulation, significant folding endurance, elasticity, biodegradability, bio-acceptability and strength. The optimized formulation was developed using component including polymers including Hydroxypropyl methyl cellulose, Ethylcellulose, and Gelatin, and Citric Acid PEG Citric acid (CPEGC) triblock dendrimers and active Curcumin. Polymeric mixture dissolved in geometric order in suitable medium through continuous stirring under ambient conditions. With continued stirring Curcumin was added with aid of DCM and Methanol in optimized ratio to get homogenous dispersion. The dispersion was sonicated with optimum frequency and for given time and later casted to form a patch form. All steps were carried out under under strict aseptic conditions. The formulations obtained in the acceptable working range were decided based on thickness, uniformity of drug content, smooth texture and flexibility and brittleness. The patch kept on stability using butter paper in sterile pack displayed folding endurance in range of 20 to 23 times without any evidence of crack in an optimized formulation at room temperature (RT) (24 ± 2°C). The patch displayed acceptable parameters after stability study conducted in refrigerated conditions (8±0.2°C) and at RT (24 ± 2°C) upto 90 days. Further, no significant changes were observed in critical parameters such as elasticity, biodegradability, drug release and drug content during stability study conducted at RT 24±2°C for 45 and 90 days. The drug content was in range 95 to 102%, moisture content didn’t exceeded 19.2% and patch passed the content uniformity test. Percentage cumulative drug release was found to be 80% in 12h and matched the biodegradation rate as drug release with correlation factor R2>0.9. The biodegradable patch based formulation developed shows promising results in terms of stability and release profiles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustained%20biodegradation" title="sustained biodegradation">sustained biodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=wound%20healing" title=" wound healing"> wound healing</a>, <a href="https://publications.waset.org/abstracts/search?q=polymers" title=" polymers"> polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/32576/polymeric-sustained-biodegradable-patch-formulation-for-wound-healing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32576.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">128</span> Eco-Friendly Silicone/Graphene-Based Nanocomposites as Superhydrophobic Antifouling Coatings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20S.%20Selim">Mohamed S. Selim</a>, <a href="https://publications.waset.org/abstracts/search?q=Nesreen%20A.%20Fatthallah"> Nesreen A. Fatthallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Shimaa%20A.%20Higazy"> Shimaa A. Higazy</a>, <a href="https://publications.waset.org/abstracts/search?q=Hekmat%20R.%20Madian"> Hekmat R. Madian</a>, <a href="https://publications.waset.org/abstracts/search?q=Sherif%20A.%20El-Safty"> Sherif A. El-Safty</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20Shenashen"> Mohamed A. Shenashen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> After the 2003 prohibition on employing TBT-based antifouling coatings, polysiloxane antifouling nano-coatings have gained in popularity as environmentally friendly and cost-effective replacements. A series of non-toxic polydimethylsiloxane nanocomposites filled with nanosheets of graphene oxide (GO) decorated with magnetite nanospheres (GO-Fe₃O₄ nanospheres) were developed and cured via a catalytic hydrosilation method. Various GO-Fe₃O₄ hybrid concentrations were mixed with the silicone resin via solution casting technique to evaluate the structure–property connection. To generate GO nanosheets, a modified Hummers method was applied. A simple co-precipitation method was used to make spherical magnetite particles under inert nitrogen. Hybrid GO-Fe₃O₄ composite fillers were developed by a simple ultrasonication method. Superhydrophobic PDMS/GO-Fe₃O₄ nanocomposite surface with a micro/nano-roughness, reduced surface-free energy (SFE), high fouling release (FR) efficiency was achieved. The physical, mechanical, and anticorrosive features of the virgin and GO-Fe₃O₄ filled nanocomposites were investigated. The synergistic effects of GO-Fe₃O4 hybrid's well-dispersion on the water-repellency and surface topological roughness of the PDMS/GO-Fe₃O₄ nanopaints were extensively studied. The addition of the GO-Fe₃O₄ hybrid fillers till 1 wt.% could increase the coating's water contact angle (158°±2°), minimize its SFE to 12.06 mN/m, develop outstanding micro/nano-roughness, and improve its bulk mechanical and anticorrosion properties. Several microorganisms were employed for examining the fouling-resistance of the coated specimens for 1 month. Silicone coatings filled with 1 wt.% GO-Fe₃O₄ nanofiller showed the least biodegradability% among all the tested microorganisms. Whereas GO-Fe₃O4 with 5 wt.% nanofiller possessed the highest biodegradability% potency by all the microorganisms. We successfully developed non-toxic and low cost nanostructured FR composite coating with high antifouling-resistance, reproducible superhydrophobic character, and enhanced service-time for maritime navigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=silicone%20antifouling" title="silicone antifouling">silicone antifouling</a>, <a href="https://publications.waset.org/abstracts/search?q=environmentally%20friendly" title=" environmentally friendly"> environmentally friendly</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofillers" title=" nanofillers"> nanofillers</a>, <a href="https://publications.waset.org/abstracts/search?q=fouling%20repellency" title=" fouling repellency"> fouling repellency</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophobicity" title=" hydrophobicity"> hydrophobicity</a> </p> <a href="https://publications.waset.org/abstracts/159063/eco-friendly-siliconegraphene-based-nanocomposites-as-superhydrophobic-antifouling-coatings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159063.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">127</span> Poly(ε-caprolactone)/Halloysite Nanotube Nanocomposites Scaffolds for Tissue Engineering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Terzopoulou">Z. Terzopoulou</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Koliakou"> I. Koliakou</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Bikiaris"> D. Bikiaris</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tissue engineering offers a new approach to regenerate diseased or damaged tissues such as bone. Great effort is devoted to eliminating the need of removing non-degradable implants at the end of their life span, with biodegradable polymers playing a major part. Poly(ε-caprolactone) (PCL) is one of the best candidates for this purpose due to its high permeability, good biodegradability and exceptional biocompatibility, which has stimulated extensive research into its potential application in the biomedical fields. However, PCL degrades much slower than other known biodegradable polymers and has a total degradation of 2-4 years depending on the initial molecular weight of the device. This is due to its relatively hydrophobic character and high crystallinity. Consequently, much attention has been given to the tunable degradation of PCL to meet the diverse requirements of biomedicine. Poly(ε-caprolactone) (PCL) is a biodegradable polyester that lacks bioactivity, so when used in bone tissue engineering, new bone tissue cannot bond tightly on the polymeric surface. Therefore, it is important to incorporate reinforcing fillers into PCL matrix in order to result in a promising combination of bioactivity, biodegradability, and strength. Natural clay halloysite nanotubes (HNTs) were incorporated into PCL polymeric matrix, via in situ ring-opening polymerization of caprolactone, in concentrations 0.5, 1 and 2.5 wt%. Both unmodified and modified with aminopropyltrimethoxysilane (APTES) HNTs were used in this study. The effect of nanofiller concentration and functionalization with end-amino groups on the physicochemical properties of the prepared nanocomposites was studied. Mechanical properties were found enhanced after the incorporation of nanofillers, while the modification increased further the values of tensile and impact strength. Thermal stability of PCL was not affected by the presence of nanofillers, while the crystallization rate that was studied by Differential Scanning Calorimetry (DSC) and Polarized Light Optical Microscopy (POM) increased. All materials were subjected to enzymatic hydrolysis in phosphate buffer in the presence of lipases. Due to the hydrophilic nature of HNTs, the biodegradation rate of nanocomposites was higher compared to neat PCL. In order to confirm the effect of hydrophilicity, contact angle measurements were also performed. In vitro biomineralization test confirmed that all samples were bioactive as mineral deposits were detected by X-ray diffractometry after incubation in SBF. All scaffolds were tested in relevant cell culture using osteoblast-like cells (MG-63) to demonstrate their biocompatibility <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomaterials" title="biomaterials">biomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=scaffolds" title=" scaffolds"> scaffolds</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20engineering" title=" tissue engineering"> tissue engineering</a> </p> <a href="https://publications.waset.org/abstracts/45213/polye-caprolactonehalloysite-nanotube-nanocomposites-scaffolds-for-tissue-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45213.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">126</span> NOx Emission and Computational Analysis of Jatropha Curcus Fuel and Crude Oil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vipan%20Kumar%20Sohpal">Vipan Kumar Sohpal</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20K%20Sharma"> Rajesh K Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diminishing of conventional fuels and hysterical vehicles emission leads to deterioration of the environment, which emphasize the research to work on biofuels. Biofuels from different sources attract the attention of research due to low emission and biodegradability. Emission of carbon monoxide, carbon dioxide and H-C reduced drastically using Biofuels (B-20) combustion. Contrary to the conventional fuel, engine emission results indicated that nitrous oxide emission is higher in Biofuels. So this paper examines and compares the nitrogen oxide emission of Jatropha Curcus (JCO) B-20% blends with the vegetable oil. In addition to that computational analysis of crude non edible oil performed to assess the impact of composition on emission quality. In conclusion, JCO have the potential feedstock for the biodiesel production after the genetic modification in the plant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=jatropha%20curcus" title="jatropha curcus">jatropha curcus</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20analysis" title=" computational analysis"> computational analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=emissions" title=" emissions"> emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=NOx%20biofuels" title=" NOx biofuels"> NOx biofuels</a> </p> <a href="https://publications.waset.org/abstracts/48173/nox-emission-and-computational-analysis-of-jatropha-curcus-fuel-and-crude-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">587</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">125</span> Adsorption of Thionine Dye from its Aqueous Solution over Peanut Hull as a Low Cost Biosorbent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alpana%20Saini">Alpana Saini</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanghamitra%20Barman"> Sanghamitra Barman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Investigations were carried out to determine whether low cost peanut hull as adsorbent hold promise in removal of thionine dyes in the biomedical industries. Pollution of water due to presence of colorants is a severe socio-environmental problem caused by the discharge of industrial wastewater. In view of their toxicity, non-biodegradability and persistent nature, their removal becomes an absolute necessity. For the removal of Thionine Dye using Peanut Hull, the 10mg/L concentration of dyes, 0.5g/l of adsorbent and 200 rpm agitation speed are found to be optimum for the adsorption studies. The Spectrophotometric technique was adopted for the measurement of concentration of dyes before and after adsorption at ʎmax 598nm. The adsorption data has been fitted well to Langmuir isotherm than to Freundlich adsorption isotherm. The adsorbent was characterized by Scanning Electron Microscopy (SEM). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=langmuir%20isotherm" title=" langmuir isotherm"> langmuir isotherm</a>, <a href="https://publications.waset.org/abstracts/search?q=peanut%20hull" title=" peanut hull"> peanut hull</a>, <a href="https://publications.waset.org/abstracts/search?q=thionine" title=" thionine"> thionine</a> </p> <a href="https://publications.waset.org/abstracts/9001/adsorption-of-thionine-dye-from-its-aqueous-solution-over-peanut-hull-as-a-low-cost-biosorbent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9001.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biodegradability&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biodegradability&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biodegradability&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biodegradability&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biodegradability&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biodegradability&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>