CINXE.COM
parameterized homotopy theory in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> parameterized homotopy theory in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> parameterized homotopy theory </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/10481/#Item_10" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="homotopy_theory">Homotopy theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/homotopy+theory">homotopy theory</a>, <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category+theory">(∞,1)-category theory</a>, <a class="existingWikiWord" href="/nlab/show/homotopy+type+theory">homotopy type theory</a></strong></p> <p>flavors: <a class="existingWikiWord" href="/nlab/show/stable+homotopy+theory">stable</a>, <a class="existingWikiWord" href="/nlab/show/equivariant+homotopy+theory">equivariant</a>, <a class="existingWikiWord" href="/nlab/show/rational+homotopy+theory">rational</a>, <a class="existingWikiWord" href="/nlab/show/p-adic+homotopy+theory">p-adic</a>, <a class="existingWikiWord" href="/nlab/show/proper+homotopy+theory">proper</a>, <a class="existingWikiWord" href="/nlab/show/geometric+homotopy+theory">geometric</a>, <a class="existingWikiWord" href="/nlab/show/cohesive+homotopy+theory">cohesive</a>, <a class="existingWikiWord" href="/nlab/show/directed+homotopy+theory">directed</a>…</p> <p>models: <a class="existingWikiWord" href="/nlab/show/topological+homotopy+theory">topological</a>, <a class="existingWikiWord" href="/nlab/show/simplicial+homotopy+theory">simplicial</a>, <a class="existingWikiWord" href="/nlab/show/localic+homotopy+theory">localic</a>, …</p> <p>see also <strong><a class="existingWikiWord" href="/nlab/show/algebraic+topology">algebraic topology</a></strong></p> <p><strong>Introductions</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Introduction+to+Topology+--+2">Introduction to Basic Homotopy Theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Introduction+to+Homotopy+Theory">Introduction to Abstract Homotopy Theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/geometry+of+physics+--+homotopy+types">geometry of physics – homotopy types</a></p> </li> </ul> <p><strong>Definitions</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy">homotopy</a>, <a class="existingWikiWord" href="/nlab/show/higher+homotopy">higher homotopy</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+type">homotopy type</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Pi-algebra">Pi-algebra</a>, <a class="existingWikiWord" href="/nlab/show/spherical+object+and+Pi%28A%29-algebra">spherical object and Pi(A)-algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+coherent+category+theory">homotopy coherent category theory</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopical+category">homotopical category</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/model+category">model category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/category+of+fibrant+objects">category of fibrant objects</a>, <a class="existingWikiWord" href="/nlab/show/cofibration+category">cofibration category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Waldhausen+category">Waldhausen category</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+category">homotopy category</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Ho%28Top%29">Ho(Top)</a></li> </ul> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category">(∞,1)-category</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/homotopy+category+of+an+%28%E2%88%9E%2C1%29-category">homotopy category of an (∞,1)-category</a></li> </ul> </li> </ul> <p><strong>Paths and cylinders</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/left+homotopy">left homotopy</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/cylinder+object">cylinder object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/mapping+cone">mapping cone</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/right+homotopy">right homotopy</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/path+object">path object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/mapping+cocone">mapping cocone</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/generalized+universal+bundle">universal bundle</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/interval+object">interval object</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+localization">homotopy localization</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/infinitesimal+interval+object">infinitesimal interval object</a></p> </li> </ul> </li> </ul> <p><strong>Homotopy groups</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+group">homotopy group</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/fundamental+group">fundamental group</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/fundamental+group+of+a+topos">fundamental group of a topos</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Brown-Grossman+homotopy+group">Brown-Grossman homotopy group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/categorical+homotopy+groups+in+an+%28%E2%88%9E%2C1%29-topos">categorical homotopy groups in an (∞,1)-topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/geometric+homotopy+groups+in+an+%28%E2%88%9E%2C1%29-topos">geometric homotopy groups in an (∞,1)-topos</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fundamental+%E2%88%9E-groupoid">fundamental ∞-groupoid</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/fundamental+groupoid">fundamental groupoid</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/path+groupoid">path groupoid</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fundamental+%E2%88%9E-groupoid+in+a+locally+%E2%88%9E-connected+%28%E2%88%9E%2C1%29-topos">fundamental ∞-groupoid in a locally ∞-connected (∞,1)-topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fundamental+%E2%88%9E-groupoid+of+a+locally+%E2%88%9E-connected+%28%E2%88%9E%2C1%29-topos">fundamental ∞-groupoid of a locally ∞-connected (∞,1)-topos</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fundamental+%28%E2%88%9E%2C1%29-category">fundamental (∞,1)-category</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/fundamental+category">fundamental category</a></li> </ul> </li> </ul> <p><strong>Basic facts</strong></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/fundamental+group+of+the+circle+is+the+integers">fundamental group of the circle is the integers</a></li> </ul> <p><strong>Theorems</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/fundamental+theorem+of+covering+spaces">fundamental theorem of covering spaces</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Freudenthal+suspension+theorem">Freudenthal suspension theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Blakers-Massey+theorem">Blakers-Massey theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/higher+homotopy+van+Kampen+theorem">higher homotopy van Kampen theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/nerve+theorem">nerve theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Whitehead%27s+theorem">Whitehead's theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hurewicz+theorem">Hurewicz theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Galois+theory">Galois theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+hypothesis">homotopy hypothesis</a>-theorem</p> </li> </ul> </div></div> <h4 id="bundles">Bundles</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/bundles">bundles</a></strong></p> <ul> <li> <p>(<a class="existingWikiWord" href="/nlab/show/parameterized+stable+homotopy+theory">stable</a>) <a class="existingWikiWord" href="/nlab/show/parameterized+homotopy+theory">parameterized homotopy theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fiber+bundles+in+physics">fiber bundles in physics</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Chern-Weil+theory">Chern-Weil theory</a></p> </li> </ul> <h2 id="sidebar_context">Context</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/slice+topos">slice topos</a>, <a class="existingWikiWord" href="/nlab/show/slice+%28%E2%88%9E%2C1%29-topos">slice (∞,1)-topos</a></p> </li> <li> <p>(<a class="existingWikiWord" href="/nlab/show/dependent+linear+type+theory">linear</a>) <a class="existingWikiWord" href="/nlab/show/dependent+type+theory">dependent type theory</a></p> </li> </ul> <h2 id="sidebar_classes_of_bundles">Classes of bundles</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/covering+space">covering space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/retractive+space">retractive space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fiber+bundle">fiber bundle</a>, <a class="existingWikiWord" href="/nlab/show/fiber+%E2%88%9E-bundle">fiber ∞-bundle</a></p> <p><a class="existingWikiWord" href="/nlab/show/numerable+bundle">numerable bundle</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/sphere+bundle">sphere bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/projective+bundle">projective bundle</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/principal+bundle">principal bundle</a>, <a class="existingWikiWord" href="/nlab/show/principal+%E2%88%9E-bundle">principal ∞-bundle</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/principal+2-bundle">principal 2-bundle</a>, <a class="existingWikiWord" href="/nlab/show/principal+3-bundle">principal 3-bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/circle+bundle">circle bundle</a>, <a class="existingWikiWord" href="/nlab/show/circle+n-bundle+with+connection">circle n-bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/orientation+bundle">orientation bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/spinor+bundle">spinor bundle</a>, <a class="existingWikiWord" href="/nlab/show/stringor+bundle">stringor bundle</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/associated+bundle">associated bundle</a>, <a class="existingWikiWord" href="/nlab/show/associated+%E2%88%9E-bundle">associated ∞-bundle</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/gerbe">gerbe</a>, <a class="existingWikiWord" href="/nlab/show/2-gerbe">2-gerbe</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-gerbe">∞-gerbe</a>,</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/local+coefficient+bundle">local coefficient bundle</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/vector+bundle">vector bundle</a>, <a class="existingWikiWord" href="/nlab/show/2-vector+bundle">2-vector bundle</a>, <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-vector+bundle">(∞,1)-vector bundle</a></p> <p><a class="existingWikiWord" href="/nlab/show/real+vector+bundle">real</a>, <a class="existingWikiWord" href="/nlab/show/complex+vector+bundle">complex</a>/<a class="existingWikiWord" href="/nlab/show/holomorphic+vector+bundle">holomorphic</a>, <a class="existingWikiWord" href="/nlab/show/quaternionic+vector+bundle">quaternionic</a></p> <p><a class="existingWikiWord" href="/nlab/show/topological+vector+bundle">topological</a>, <a class="existingWikiWord" href="/nlab/show/differentiable+vector+bundle">differentiable</a>, <a class="existingWikiWord" href="/nlab/show/algebraic+vector+bundle">algebraic</a></p> <p><a class="existingWikiWord" href="/nlab/show/connection+on+a+vector+bundle">with connection</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/line+bundle">line bundle</a></p> <p><a class="existingWikiWord" href="/nlab/show/complex+line+bundle">complex</a>, <a class="existingWikiWord" href="/nlab/show/holomorphic+line+bundle">holomorphic</a>, <a class="existingWikiWord" href="/nlab/show/algebraic+line+bundle">algebraic</a></p> <p><a class="existingWikiWord" href="/nlab/show/cubical+structure+on+a+line+bundle">cubical structure</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Chern-Weil+theory">Chern-Weil theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+K-theory">topological K-theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/tensor+category">tensor category</a><a class="existingWikiWord" href="/nlab/show/Vect%28X%29">of vector bundles</a></p> <p>(<a class="existingWikiWord" href="/nlab/show/VectBund">VectBund</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/direct+sum+of+vector+bundles">direct sum</a>, <a class="existingWikiWord" href="/nlab/show/tensor+product+of+vector+bundles">tensor product</a>, <a class="existingWikiWord" href="/nlab/show/external+tensor+product+of+vector+bundles">external tensor product</a>, <a class="existingWikiWord" href="/nlab/show/inner+product+of+vector+bundles">inner product</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/dual+vector+bundle">dual vector bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/stable+vector+bundle">stable vector bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/virtual+vector+bundle">virtual vector bundle</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/bundle+of+spectra">bundle of spectra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/natural+bundle">natural bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/equivariant+bundle">equivariant bundle</a></p> </li> </ul> <h2 id="sidebar_universal_bundles">Universal bundles</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/universal+principal+bundle">universal principal bundle</a>, <a class="existingWikiWord" href="/nlab/show/universal+principal+%E2%88%9E-bundle">universal principal ∞-bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/universal+vector+bundle">universal vector bundle</a>, <a class="existingWikiWord" href="/nlab/show/universal+complex+line+bundle">universal complex line bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/subobject+classifier">subobject classifier</a>, <a class="existingWikiWord" href="/nlab/show/object+classifier">object classifier</a></p> </li> </ul> <h2 id="sidebar_presentations">Presentations</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/bundle+gerbe">bundle gerbe</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/groupal+model+for+universal+principal+%E2%88%9E-bundles">groupal model for universal principal ∞-bundles</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/microbundle">microbundle</a></p> </li> </ul> <h2 id="sidebar_examples">Examples</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/empty+bundle">empty bundle</a>, <a class="existingWikiWord" href="/nlab/show/zero+bundle">zero bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/trivial+vector+bundle">trivial vector bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/tangent+bundle">tangent bundle</a>, <a class="existingWikiWord" href="/nlab/show/normal+bundle">normal bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/tautological+line+bundle">tautological line bundle</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/basic+line+bundle+on+the+2-sphere">basic line bundle on the 2-sphere</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hopf+fibration">Hopf fibration</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/canonical+line+bundle">canonical line bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/prequantum+circle+bundle">prequantum circle bundle</a>, <a class="existingWikiWord" href="/nlab/show/prequantum+circle+n-bundle">prequantum circle n-bundle</a></p> </li> </ul> <h2 id="sidebar_constructions">Constructions</h2> <ul> <li><a class="existingWikiWord" href="/nlab/show/clutching+construction">clutching construction</a></li> </ul> </div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#parameterized_pointset_topology'>Parameterized point-set topology</a></li> <ul> <li><a href='#FiberwiseMappingSpaces'>Fiberwise mapping spaces</a></li> <li><a href='#homotopy_theory_of_the_fiberwise_mapping_space'>Homotopy theory of the fiberwise mapping space</a></li> </ul> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#references'>References</a></li> <ul> <li><a href='#ParameterizedTopology'>Exponential law for parameterized topological spaces</a></li> <li><a href='#parameterized_fiberwise_homotopy_theory'>Parameterized (“fiberwise”) homotopy theory</a></li> </ul> </ul> </div> <h2 id="idea">Idea</h2> <p>Parameterized (<a class="existingWikiWord" href="/nlab/show/stable+homotopy+theory">stable</a>) <a class="existingWikiWord" href="/nlab/show/homotopy+theory">homotopy theory</a> is (<a class="existingWikiWord" href="/nlab/show/stable+homotopy+theory">stable</a>) <a class="existingWikiWord" href="/nlab/show/homotopy+theory">homotopy theory</a> of <a class="existingWikiWord" href="/nlab/show/bundles">bundles</a> of <a class="existingWikiWord" href="/nlab/show/homotopy+types">homotopy types</a>/<a class="existingWikiWord" href="/nlab/show/stable+homotopy+types">stable homotopy types</a> over a given base space.</p> <p>For formalizations see also at</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/ex-space">ex-space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/parameterized+spectrum">parameterized spectrum</a>, <a class="existingWikiWord" href="/nlab/show/excisive+functor">excisive functor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28infinity%2C1%29-module+bundle">(infinity,1)-module bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/tangent+%28infinity%2C1%29-topos">tangent (infinity,1)-topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/twisted+cohomology">twisted cohomology</a></p> </li> </ul> <h2 id="parameterized_pointset_topology">Parameterized point-set topology</h2> <blockquote> <p>The <a class="existingWikiWord" href="/nlab/show/point-set+topology">point-set topology</a> of parametrized spaces is surprisingly subtle. [<a href="#MaySigurdsson06">May & Sigurdsson 2006, p. 15</a>]</p> </blockquote> <p>Write:</p> <ul> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>kTop</mi></mrow><annotation encoding="application/x-tex">kTop</annotation></semantics></math> for the <a class="existingWikiWord" href="/nlab/show/convenient+category+of+topological+spaces">convenient category</a> of <a class="existingWikiWord" href="/nlab/show/compactly+generated+topological+spaces">compactly generated topological spaces</a> (k-spaces)</p> </li> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>kwHaus</mi><mo>⊂</mo><msub><mi>Top</mi> <mi>k</mi></msub></mrow><annotation encoding="application/x-tex">kwHaus \subset Top_k</annotation></semantics></math> for that of <a class="existingWikiWord" href="/nlab/show/compactly+generated+weak+Hausdorff+spaces">compactly generated weak Hausdorff spaces</a>.</p> </li> </ul> <p>For <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi><mspace width="thinmathspace"></mspace><mo>∈</mo><mspace width="thinmathspace"></mspace><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">B \,\in\, \mathcal{C}</annotation></semantics></math> an <a class="existingWikiWord" href="/nlab/show/object">object</a> in any <a class="existingWikiWord" href="/nlab/show/category">category</a>, write <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>𝒞</mi> <mrow><mo stretchy="false">/</mo><mi>B</mi></mrow></msub></mrow><annotation encoding="application/x-tex">\mathcal{C}_{/B}</annotation></semantics></math> for the <a class="existingWikiWord" href="/nlab/show/slice+category">slice category</a> over it.</p> <p>In the following all bases spaces are assumed (as in <a href="#MaySigurdsson06">MaSi06, p. 19</a>) to be <a class="existingWikiWord" href="/nlab/show/compactly+generated+weak+Hausdorff+spaces">compactly generated weak Hausdorff spaces</a> regarded among k-spaces:</p> <div class="maruku-equation" id="eq:kwHausBaseSpace"><span class="maruku-eq-number">(1)</span><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>B</mi><mspace width="thickmathspace"></mspace><mo>∈</mo><mspace width="thickmathspace"></mspace><mi>kwHaus</mi><mover><mo>↪</mo><mspace width="thickmathspace"></mspace></mover><mi>kTop</mi><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> B \;\in\; kwHaus \xhookrightarrow{\;} kTop \,. </annotation></semantics></math></div> <p>Notice that for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><msub><mi>p</mi> <mi>X</mi></msub><mo stretchy="false">)</mo><mo>,</mo><mo stretchy="false">(</mo><mi>Y</mi><mo>,</mo><msub><mi>p</mi> <mi>Y</mi></msub><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>∈</mo><mspace width="thinmathspace"></mspace><msub><mi>kTop</mi> <mrow><mo stretchy="false">/</mo><mi>B</mi></mrow></msub></mrow><annotation encoding="application/x-tex">(X,p_X), (Y,p_Y) \,\in\, kTop_{/B}</annotation></semantics></math>, their <a class="existingWikiWord" href="/nlab/show/Cartesian+product">Cartesian product</a> in the <a class="existingWikiWord" href="/nlab/show/slice+category">slice category</a> is given by the <a class="existingWikiWord" href="/nlab/show/fiber+product">fiber product</a> in <a class="existingWikiWord" href="/nlab/show/compactly+generated+topological+space"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"> <semantics> <mrow> <mi>kTop</mi> </mrow> <annotation encoding="application/x-tex">kTop</annotation> </semantics> </math></a>:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><msub><mi>p</mi> <mi>X</mi></msub><mo stretchy="false">)</mo><mo>×</mo><mo stretchy="false">(</mo><mi>Y</mi><mo>,</mo><msub><mi>p</mi> <mi>Y</mi></msub><mo stretchy="false">)</mo><mspace width="thickmathspace"></mspace><mo>≃</mo><mspace width="thickmathspace"></mspace><mo maxsize="1.2em" minsize="1.2em">(</mo><mi>X</mi><msub><mo>×</mo> <mi>B</mi></msub><mi>Y</mi><mo>,</mo><mspace width="thinmathspace"></mspace><msub><mi>p</mi> <mi>X</mi></msub><mo>∘</mo><msub><mi>pr</mi> <mi>X</mi></msub><mo>=</mo><msub><mi>p</mi> <mi>Y</mi></msub><mo>∘</mo><msub><mi>pr</mi> <mi>Y</mi></msub><mo maxsize="1.2em" minsize="1.2em">)</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mo>∈</mo><mspace width="thickmathspace"></mspace><msub><mi>kTop</mi> <mrow><mo stretchy="false">/</mo><mi>B</mi></mrow></msub></mrow><annotation encoding="application/x-tex"> (X,p_X) \times (Y, p_Y) \;\simeq\; \big( X \times_B Y ,\, p_X \circ pr_X = p_Y \circ pr_Y \big) \;\;\; \in \; kTop_{/B} </annotation></semantics></math></div> <p>For <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mspace width="thinmathspace"></mspace><mo lspace="verythinmathspace">:</mo><mspace width="thinmathspace"></mspace><msub><mi>B</mi> <mn>1</mn></msub><mover><mo>→</mo><mrow><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace></mrow></mover><msub><mi>B</mi> <mn>2</mn></msub></mrow><annotation encoding="application/x-tex">f \,\colon\, B_1 \xrightarrow{\;\;} B_2</annotation></semantics></math> a <a class="existingWikiWord" href="/nlab/show/continuous+map">continuous map</a> between such base spaces, notice the usal <a class="existingWikiWord" href="/nlab/show/base+change">base change</a> <a class="existingWikiWord" href="/nlab/show/adjoint+triple">adjoint triple</a>:</p> <div class="maruku-equation" id="eq:BaseChangeAdjointTriple"><span class="maruku-eq-number">(2)</span><code class="maruku-mathml"></code></div><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="247.879pt" height="55.14pt" viewBox="0 0 247.879 55.14" version="1.1"> <defs> <g> <symbol overflow="visible" id="2_7r0-yNYVvI1uLtdVZGawmPnyo=-glyph0-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="2_7r0-yNYVvI1uLtdVZGawmPnyo=-glyph0-1"> <path style="stroke:none;" d="M 4.1875 -3.953125 C 4.1875 -3.96875 4.078125 -4.09375 4.078125 -4.109375 C 4.078125 -4.15625 5.015625 -4.953125 5.140625 -5.078125 C 6.171875 -5.96875 6.828125 -5.984375 7.140625 -6 L 7.140625 -6.4375 C 6.84375 -6.40625 6.453125 -6.40625 6 -6.40625 C 5.609375 -6.40625 4.859375 -6.40625 4.515625 -6.4375 L 4.515625 -6 C 4.765625 -5.984375 4.9375 -5.859375 4.9375 -5.609375 C 4.9375 -5.3125 4.640625 -5.046875 4.625 -5.046875 L 2.5 -3.171875 L 2.5 -10.359375 L 0.421875 -10.203125 L 0.421875 -9.765625 C 1.4375 -9.765625 1.546875 -9.671875 1.546875 -8.9375 L 1.546875 -1.109375 C 1.546875 -0.4375 1.390625 -0.4375 0.421875 -0.4375 L 0.421875 0 C 0.84375 -0.03125 1.546875 -0.03125 2 -0.03125 C 2.453125 -0.03125 3.171875 -0.03125 3.578125 0 L 3.578125 -0.4375 C 2.625 -0.4375 2.453125 -0.4375 2.453125 -1.109375 L 2.453125 -2.6875 L 3.40625 -3.53125 L 4.84375 -1.46875 C 5.0625 -1.15625 5.171875 -0.984375 5.171875 -0.78125 C 5.171875 -0.515625 4.953125 -0.4375 4.640625 -0.4375 L 4.640625 0 C 5.015625 -0.03125 5.75 -0.03125 6.15625 -0.03125 C 6.796875 -0.03125 6.828125 -0.03125 7.46875 0 L 7.46875 -0.4375 C 7.0625 -0.4375 6.609375 -0.4375 6.1875 -1.046875 Z M 4.1875 -3.953125 "></path> </symbol> <symbol overflow="visible" id="2_7r0-yNYVvI1uLtdVZGawmPnyo=-glyph0-2"> <path style="stroke:none;" d="M 9.75 -10.125 L 0.796875 -10.125 L 0.515625 -6.796875 L 0.84375 -6.796875 C 1.0625 -9.15625 1.1875 -9.6875 3.5625 -9.6875 C 3.828125 -9.6875 4.25 -9.6875 4.359375 -9.671875 C 4.65625 -9.625 4.671875 -9.4375 4.671875 -9.09375 L 4.671875 -1.15625 C 4.671875 -0.640625 4.671875 -0.4375 3.21875 -0.4375 L 2.671875 -0.4375 L 2.671875 0 C 3.15625 -0.03125 4.6875 -0.03125 5.265625 -0.03125 C 5.859375 -0.03125 7.40625 -0.03125 7.890625 0 L 7.890625 -0.4375 L 7.34375 -0.4375 C 5.890625 -0.4375 5.890625 -0.640625 5.890625 -1.15625 L 5.890625 -9.09375 C 5.890625 -9.46875 5.921875 -9.609375 6.15625 -9.671875 C 6.28125 -9.6875 6.703125 -9.6875 6.984375 -9.6875 C 9.34375 -9.6875 9.484375 -9.15625 9.6875 -6.796875 L 10.015625 -6.796875 Z M 9.75 -10.125 "></path> </symbol> <symbol overflow="visible" id="2_7r0-yNYVvI1uLtdVZGawmPnyo=-glyph0-3"> <path style="stroke:none;" d="M 6.859375 -3.203125 C 6.859375 -5.125 5.390625 -6.65625 3.65625 -6.65625 C 1.859375 -6.65625 0.453125 -5.078125 0.453125 -3.203125 C 0.453125 -1.28125 1.9375 0.15625 3.640625 0.15625 C 5.40625 0.15625 6.859375 -1.3125 6.859375 -3.203125 Z M 3.65625 -0.171875 C 3.109375 -0.171875 2.4375 -0.421875 2 -1.15625 C 1.59375 -1.828125 1.578125 -2.703125 1.578125 -3.328125 C 1.578125 -3.90625 1.578125 -4.8125 2.046875 -5.484375 C 2.46875 -6.125 3.125 -6.359375 3.640625 -6.359375 C 4.234375 -6.359375 4.859375 -6.09375 5.265625 -5.515625 C 5.71875 -4.828125 5.71875 -3.890625 5.71875 -3.328125 C 5.71875 -2.8125 5.71875 -1.875 5.328125 -1.1875 C 4.921875 -0.46875 4.234375 -0.171875 3.65625 -0.171875 Z M 3.65625 -0.171875 "></path> </symbol> <symbol overflow="visible" id="2_7r0-yNYVvI1uLtdVZGawmPnyo=-glyph0-4"> <path style="stroke:none;" d="M 3.65625 2.46875 C 2.703125 2.46875 2.53125 2.46875 2.53125 1.796875 L 2.53125 -0.8125 C 2.796875 -0.4375 3.40625 0.15625 4.359375 0.15625 C 6.078125 0.15625 7.59375 -1.296875 7.59375 -3.21875 C 7.59375 -5.125 6.1875 -6.59375 4.5625 -6.59375 C 3.234375 -6.59375 2.546875 -5.640625 2.5 -5.59375 L 2.5 -6.59375 L 0.421875 -6.421875 L 0.421875 -5.984375 C 1.46875 -5.984375 1.546875 -5.890625 1.546875 -5.234375 L 1.546875 1.796875 C 1.546875 2.46875 1.390625 2.46875 0.421875 2.46875 L 0.421875 2.890625 C 0.8125 2.875 1.609375 2.875 2.03125 2.875 C 2.46875 2.875 3.265625 2.875 3.65625 2.890625 Z M 2.53125 -4.765625 C 2.53125 -5.046875 2.53125 -5.0625 2.6875 -5.296875 C 3.140625 -5.96875 3.875 -6.265625 4.4375 -6.265625 C 5.5625 -6.265625 6.453125 -4.90625 6.453125 -3.21875 C 6.453125 -1.453125 5.4375 -0.15625 4.28125 -0.15625 C 3.828125 -0.15625 3.390625 -0.34375 3.09375 -0.625 C 2.75 -0.96875 2.53125 -1.265625 2.53125 -1.6875 Z M 2.53125 -4.765625 "></path> </symbol> <symbol overflow="visible" id="2_7r0-yNYVvI1uLtdVZGawmPnyo=-glyph1-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="2_7r0-yNYVvI1uLtdVZGawmPnyo=-glyph1-1"> <path style="stroke:none;" d="M 4.640625 -7.0625 C 4.6875 -7.203125 4.6875 -7.21875 4.6875 -7.25 C 4.6875 -7.375 4.59375 -7.484375 4.46875 -7.484375 C 4.3125 -7.484375 4.265625 -7.359375 4.234375 -7.25 L 0.640625 2.078125 C 0.59375 2.21875 0.59375 2.234375 0.59375 2.265625 C 0.59375 2.390625 0.6875 2.5 0.8125 2.5 C 0.984375 2.5 1.015625 2.375 1.0625 2.265625 Z M 4.640625 -7.0625 "></path> </symbol> <symbol overflow="visible" id="2_7r0-yNYVvI1uLtdVZGawmPnyo=-glyph1-2"> <path style="stroke:none;" d="M 1.6875 -0.78125 C 1.59375 -0.40625 1.578125 -0.328125 0.84375 -0.328125 C 0.640625 -0.328125 0.53125 -0.328125 0.53125 -0.140625 C 0.53125 0 0.65625 0 0.828125 0 L 4.53125 0 C 6.171875 0 7.390625 -1.171875 7.390625 -2.140625 C 7.390625 -2.859375 6.765625 -3.453125 5.765625 -3.5625 C 6.921875 -3.78125 7.921875 -4.53125 7.921875 -5.40625 C 7.921875 -6.15625 7.203125 -6.8125 5.9375 -6.8125 L 2.46875 -6.8125 C 2.28125 -6.8125 2.15625 -6.8125 2.15625 -6.625 C 2.15625 -6.484375 2.265625 -6.484375 2.4375 -6.484375 C 2.765625 -6.484375 3.0625 -6.484375 3.0625 -6.3125 C 3.0625 -6.28125 3.046875 -6.265625 3.015625 -6.140625 Z M 3.234375 -3.671875 L 3.84375 -6.109375 C 3.9375 -6.453125 3.953125 -6.484375 4.359375 -6.484375 L 5.796875 -6.484375 C 6.765625 -6.484375 6.984375 -5.84375 6.984375 -5.4375 C 6.984375 -4.578125 6.078125 -3.671875 4.8125 -3.671875 Z M 2.546875 -0.328125 C 2.46875 -0.34375 2.4375 -0.34375 2.4375 -0.421875 C 2.4375 -0.5 2.453125 -0.578125 2.46875 -0.640625 L 3.171875 -3.40625 L 5.1875 -3.40625 C 6.125 -3.40625 6.4375 -2.765625 6.4375 -2.21875 C 6.4375 -1.234375 5.46875 -0.328125 4.28125 -0.328125 Z M 2.546875 -0.328125 "></path> </symbol> <symbol overflow="visible" id="2_7r0-yNYVvI1uLtdVZGawmPnyo=-glyph1-3"> <path style="stroke:none;" d="M 3.8125 -3.96875 L 4.75 -3.96875 C 4.9375 -3.96875 5.0625 -3.96875 5.0625 -4.15625 C 5.0625 -4.296875 4.9375 -4.296875 4.765625 -4.296875 L 3.875 -4.296875 C 4.03125 -5.1875 4.140625 -5.765625 4.234375 -6.203125 C 4.28125 -6.375 4.3125 -6.484375 4.453125 -6.609375 C 4.578125 -6.71875 4.671875 -6.734375 4.78125 -6.734375 C 4.921875 -6.734375 5.078125 -6.703125 5.21875 -6.625 C 5.15625 -6.609375 5.109375 -6.578125 5.046875 -6.546875 C 4.890625 -6.453125 4.765625 -6.28125 4.765625 -6.078125 C 4.765625 -5.859375 4.9375 -5.71875 5.15625 -5.71875 C 5.453125 -5.71875 5.71875 -5.96875 5.71875 -6.3125 C 5.71875 -6.78125 5.25 -7.015625 4.765625 -7.015625 C 4.421875 -7.015625 3.796875 -6.859375 3.484375 -5.9375 C 3.390625 -5.71875 3.390625 -5.6875 3.125 -4.296875 L 2.375 -4.296875 C 2.171875 -4.296875 2.046875 -4.296875 2.046875 -4.109375 C 2.046875 -3.96875 2.1875 -3.96875 2.359375 -3.96875 L 3.0625 -3.96875 L 2.34375 -0.09375 C 2.15625 0.90625 2 1.75 1.46875 1.75 C 1.453125 1.75 1.234375 1.75 1.046875 1.640625 C 1.5 1.53125 1.5 1.109375 1.5 1.09375 C 1.5 0.875 1.328125 0.734375 1.109375 0.734375 C 0.84375 0.734375 0.546875 0.953125 0.546875 1.328125 C 0.546875 1.75 0.984375 2.03125 1.46875 2.03125 C 2.078125 2.03125 2.5 1.390625 2.625 1.140625 C 2.984375 0.484375 3.21875 -0.75 3.234375 -0.859375 Z M 3.8125 -3.96875 "></path> </symbol> <symbol overflow="visible" id="2_7r0-yNYVvI1uLtdVZGawmPnyo=-glyph2-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="2_7r0-yNYVvI1uLtdVZGawmPnyo=-glyph2-1"> <path style="stroke:none;" d="M 2.6875 -4.75 C 2.6875 -4.96875 2.65625 -4.96875 2.421875 -4.96875 C 1.9375 -4.484375 1.171875 -4.484375 0.90625 -4.484375 L 0.90625 -4.203125 C 1.09375 -4.203125 1.59375 -4.203125 2.03125 -4.40625 L 2.03125 -0.640625 C 2.03125 -0.390625 2.03125 -0.296875 1.265625 -0.296875 L 0.953125 -0.296875 L 0.953125 0 C 1.359375 -0.03125 1.9375 -0.03125 2.359375 -0.03125 C 2.78125 -0.03125 3.359375 -0.03125 3.765625 0 L 3.765625 -0.296875 L 3.453125 -0.296875 C 2.6875 -0.296875 2.6875 -0.390625 2.6875 -0.640625 Z M 2.6875 -4.75 "></path> </symbol> <symbol overflow="visible" id="2_7r0-yNYVvI1uLtdVZGawmPnyo=-glyph2-2"> <path style="stroke:none;" d="M 4.015625 -1.390625 L 3.734375 -1.390625 C 3.734375 -1.296875 3.65625 -0.796875 3.546875 -0.71875 C 3.484375 -0.671875 2.890625 -0.671875 2.78125 -0.671875 L 1.375 -0.671875 L 2.34375 -1.453125 C 2.59375 -1.65625 3.25 -2.125 3.484375 -2.359375 C 3.71875 -2.578125 4.015625 -2.953125 4.015625 -3.484375 C 4.015625 -4.421875 3.171875 -4.96875 2.171875 -4.96875 C 1.203125 -4.96875 0.53125 -4.328125 0.53125 -3.625 C 0.53125 -3.25 0.859375 -3.203125 0.9375 -3.203125 C 1.125 -3.203125 1.34375 -3.34375 1.34375 -3.609375 C 1.34375 -3.765625 1.25 -4.015625 0.921875 -4.015625 C 1.09375 -4.390625 1.546875 -4.671875 2.0625 -4.671875 C 2.84375 -4.671875 3.265625 -4.09375 3.265625 -3.484375 C 3.265625 -2.953125 2.90625 -2.40625 2.390625 -1.9375 L 0.625 -0.3125 C 0.546875 -0.234375 0.53125 -0.234375 0.53125 0 L 3.78125 0 Z M 4.015625 -1.390625 "></path> </symbol> <symbol overflow="visible" id="2_7r0-yNYVvI1uLtdVZGawmPnyo=-glyph2-3"> <path style="stroke:none;" d="M 1.765625 -4.921875 C 1.765625 -5.1875 1.53125 -5.34375 1.3125 -5.34375 C 1.09375 -5.34375 0.859375 -5.1875 0.859375 -4.921875 L 1.171875 -1.65625 C 1.171875 -1.53125 1.1875 -1.46875 1.3125 -1.46875 C 1.4375 -1.46875 1.453125 -1.53125 1.46875 -1.65625 Z M 1.765625 -0.453125 C 1.765625 -0.6875 1.5625 -0.890625 1.3125 -0.890625 C 1.0625 -0.890625 0.859375 -0.6875 0.859375 -0.453125 C 0.859375 -0.203125 1.0625 0 1.3125 0 C 1.5625 0 1.765625 -0.203125 1.765625 -0.453125 Z M 1.765625 -0.453125 "></path> </symbol> <symbol overflow="visible" id="2_7r0-yNYVvI1uLtdVZGawmPnyo=-glyph3-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="2_7r0-yNYVvI1uLtdVZGawmPnyo=-glyph3-1"> <path style="stroke:none;" d="M 2.90625 0.0625 C 2.90625 -0.8125 2.625 -1.453125 2.015625 -1.453125 C 1.53125 -1.453125 1.296875 -1.0625 1.296875 -0.734375 C 1.296875 -0.40625 1.53125 0 2.03125 0 C 2.21875 0 2.390625 -0.0625 2.53125 -0.1875 C 2.546875 -0.21875 2.5625 -0.21875 2.578125 -0.21875 C 2.609375 -0.21875 2.609375 -0.015625 2.609375 0.0625 C 2.609375 0.546875 2.53125 1.53125 1.65625 2.5 C 1.5 2.671875 1.5 2.703125 1.5 2.734375 C 1.5 2.8125 1.5625 2.890625 1.640625 2.890625 C 1.765625 2.890625 2.90625 1.78125 2.90625 0.0625 Z M 2.90625 0.0625 "></path> </symbol> <symbol overflow="visible" id="2_7r0-yNYVvI1uLtdVZGawmPnyo=-glyph4-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="2_7r0-yNYVvI1uLtdVZGawmPnyo=-glyph4-1"> <path style="stroke:none;" d="M 3.46875 -1.046875 C 3.671875 -0.921875 3.6875 -0.921875 3.734375 -0.921875 C 3.859375 -0.921875 3.984375 -1.03125 3.984375 -1.1875 C 3.984375 -1.328125 3.875 -1.375 3.8125 -1.40625 C 3.421875 -1.5625 3.046875 -1.71875 2.65625 -1.859375 C 3.421875 -2.171875 3.625 -2.25 3.765625 -2.3125 C 3.875 -2.359375 3.984375 -2.390625 3.984375 -2.546875 C 3.984375 -2.703125 3.859375 -2.8125 3.734375 -2.8125 C 3.671875 -2.8125 3.625 -2.78125 3.5625 -2.734375 L 2.515625 -2.0625 C 2.515625 -2.171875 2.546875 -2.4375 2.546875 -2.53125 C 2.5625 -2.671875 2.625 -3.125 2.625 -3.25 C 2.625 -3.375 2.515625 -3.46875 2.375 -3.46875 C 2.25 -3.46875 2.140625 -3.375 2.140625 -3.25 C 2.140625 -3.234375 2.203125 -2.5625 2.203125 -2.53125 C 2.21875 -2.453125 2.25 -2.171875 2.25 -2.0625 L 1.1875 -2.734375 C 1.140625 -2.78125 1.09375 -2.8125 1.03125 -2.8125 C 0.90625 -2.8125 0.78125 -2.703125 0.78125 -2.546875 C 0.78125 -2.390625 0.890625 -2.359375 0.953125 -2.328125 C 1.34375 -2.171875 1.71875 -2.015625 2.109375 -1.859375 C 1.34375 -1.546875 1.140625 -1.484375 1 -1.421875 C 0.890625 -1.359375 0.78125 -1.328125 0.78125 -1.1875 C 0.78125 -1.03125 0.90625 -0.921875 1.03125 -0.921875 C 1.09375 -0.921875 1.21875 -1 1.3125 -1.0625 C 1.40625 -1.125 1.671875 -1.28125 1.765625 -1.359375 C 2.015625 -1.515625 2.09375 -1.5625 2.25 -1.65625 C 2.25 -1.546875 2.21875 -1.296875 2.203125 -1.203125 L 2.140625 -0.484375 C 2.140625 -0.34375 2.25 -0.25 2.375 -0.25 C 2.515625 -0.25 2.625 -0.34375 2.625 -0.484375 C 2.625 -0.484375 2.5625 -1.15625 2.546875 -1.1875 C 2.546875 -1.28125 2.515625 -1.5625 2.515625 -1.65625 Z M 3.46875 -1.046875 "></path> </symbol> <symbol overflow="visible" id="2_7r0-yNYVvI1uLtdVZGawmPnyo=-glyph5-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="2_7r0-yNYVvI1uLtdVZGawmPnyo=-glyph5-1"> <path style="stroke:none;" d="M 3.671875 -5.671875 C 3.671875 -5.828125 3.671875 -5.984375 3.484375 -5.984375 C 3.3125 -5.984375 3.3125 -5.796875 3.3125 -5.671875 L 3.3125 -0.359375 L 0.8125 -0.359375 C 0.6875 -0.359375 0.5 -0.359375 0.5 -0.171875 C 0.5 0 0.6875 0 0.8125 0 L 6.171875 0 C 6.328125 0 6.484375 0 6.484375 -0.171875 C 6.484375 -0.359375 6.328125 -0.359375 6.171875 -0.359375 L 3.671875 -0.359375 Z M 3.671875 -5.671875 "></path> </symbol> </g> <clipPath id="2_7r0-yNYVvI1uLtdVZGawmPnyo=-clip1"> <path d="M 112 39 L 130 39 L 130 55.140625 L 112 55.140625 Z M 112 39 "></path> </clipPath> </defs> <g id="2_7r0-yNYVvI1uLtdVZGawmPnyo=-surface1"> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#2_7r0-yNYVvI1uLtdVZGawmPnyo=-glyph0-1" x="6.434" y="31.306"></use> <use xlink:href="#2_7r0-yNYVvI1uLtdVZGawmPnyo=-glyph0-2" x="14.157059" y="31.306"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#2_7r0-yNYVvI1uLtdVZGawmPnyo=-glyph0-3" x="23.500048" y="31.306"></use> <use xlink:href="#2_7r0-yNYVvI1uLtdVZGawmPnyo=-glyph0-4" x="30.81663" y="31.306"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#2_7r0-yNYVvI1uLtdVZGawmPnyo=-glyph1-1" x="38.95025" y="34.8335"></use> <use xlink:href="#2_7r0-yNYVvI1uLtdVZGawmPnyo=-glyph1-2" x="44.243393" y="34.8335"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#2_7r0-yNYVvI1uLtdVZGawmPnyo=-glyph2-1" x="52.22775" y="36.21725"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#2_7r0-yNYVvI1uLtdVZGawmPnyo=-glyph0-1" x="183.285" y="31.306"></use> <use xlink:href="#2_7r0-yNYVvI1uLtdVZGawmPnyo=-glyph0-2" x="191.008059" y="31.306"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#2_7r0-yNYVvI1uLtdVZGawmPnyo=-glyph0-3" x="200.351048" y="31.306"></use> <use xlink:href="#2_7r0-yNYVvI1uLtdVZGawmPnyo=-glyph0-4" x="207.66763" y="31.306"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#2_7r0-yNYVvI1uLtdVZGawmPnyo=-glyph1-1" x="215.80125" y="34.8335"></use> <use xlink:href="#2_7r0-yNYVvI1uLtdVZGawmPnyo=-glyph1-2" x="221.094393" y="34.8335"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#2_7r0-yNYVvI1uLtdVZGawmPnyo=-glyph2-2" x="229.07875" y="36.21725"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#2_7r0-yNYVvI1uLtdVZGawmPnyo=-glyph3-1" x="237.38" y="31.306"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -59.217344 21.481469 L 52.185 21.481469 " transform="matrix(1,0,0,-1,123.94,29.126)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.484744 2.870353 C -2.031619 1.147696 -1.0199 0.335196 -0.00036875 -0.00074125 C -1.0199 -0.336679 -2.031619 -1.149179 -2.484744 -2.867929 " transform="matrix(1,0,0,-1,176.36365,7.64379)"></path> <path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,100%,100%);fill-opacity:1;" d="M 128.046875 0 L 113.277344 0 L 113.277344 15.289062 L 128.046875 15.289062 Z M 128.046875 0 "></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#2_7r0-yNYVvI1uLtdVZGawmPnyo=-glyph1-3" x="116.494" y="10.135"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#2_7r0-yNYVvI1uLtdVZGawmPnyo=-glyph2-3" x="121.579" y="11.8925"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 52.661562 1.555687 L -58.740781 1.555687 " transform="matrix(1,0,0,-1,123.94,29.126)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.488149 2.86817 C -2.031117 1.14942 -1.019399 0.333014 0.0001325 0.0009825 C -1.019399 -0.334955 -2.031117 -1.147455 -2.488149 -2.870111 " transform="matrix(-1,0,0,1,64.96107,27.56933)"></path> <path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,100%,100%);fill-opacity:1;" d="M 129.667969 19.886719 L 111.65625 19.886719 L 111.65625 35.25 L 129.667969 35.25 Z M 129.667969 19.886719 "></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#2_7r0-yNYVvI1uLtdVZGawmPnyo=-glyph1-3" x="114.872" y="30.097"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#2_7r0-yNYVvI1uLtdVZGawmPnyo=-glyph4-1" x="121.05575" y="26.582"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -59.217344 -18.370094 L 52.185 -18.370094 " transform="matrix(1,0,0,-1,123.94,29.126)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.484744 2.86985 C -2.031619 1.147194 -1.0199 0.334694 -0.00036875 -0.00124375 C -1.0199 -0.333275 -2.031619 -1.145775 -2.484744 -2.868431 " transform="matrix(1,0,0,-1,176.36365,47.49485)"></path> <g clip-path="url(#2_7r0-yNYVvI1uLtdVZGawmPnyo=-clip1)" clip-rule="nonzero"> <path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,100%,100%);fill-opacity:1;" d="M 129.121094 39.851562 L 112.203125 39.851562 L 112.203125 55.140625 L 129.121094 55.140625 Z M 129.121094 39.851562 "></path> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#2_7r0-yNYVvI1uLtdVZGawmPnyo=-glyph1-3" x="115.421" y="49.986"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#2_7r0-yNYVvI1uLtdVZGawmPnyo=-glyph4-1" x="120.506" y="51.231"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#2_7r0-yNYVvI1uLtdVZGawmPnyo=-glyph5-1" x="117.175" y="20.72"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#2_7r0-yNYVvI1uLtdVZGawmPnyo=-glyph5-1" x="117.175" y="40.646"></use> </g> </g> </svg> <p>where</p> <ol> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>f</mi> <mo>*</mo></msup></mrow><annotation encoding="application/x-tex">f^\ast</annotation></semantics></math> is <a class="existingWikiWord" href="/nlab/show/pullback">pullback</a> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>kTop</mi></mrow><annotation encoding="application/x-tex">kTop</annotation></semantics></math> along <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math>;</p> </li> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>f</mi> <mo>!</mo></msub></mrow><annotation encoding="application/x-tex">f_!</annotation></semantics></math> is post-<a class="existingWikiWord" href="/nlab/show/composition">composition</a> with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math>;</p> </li> </ol> <p>Notice the “<a class="existingWikiWord" href="/nlab/show/Frobenius+reciprocity">Frobenius reciprocity</a> law” (in its <a class="existingWikiWord" href="/nlab/show/cartesian+monoidal+category">cartesian</a> version <a href="Frobenius+reciprocity#InCategoryTheory">here</a>) which follows immediately by the <a class="existingWikiWord" href="/nlab/show/pasting+law">pasting law</a> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>kTop</mi></mrow><annotation encoding="application/x-tex">kTop</annotation></semantics></math>, namely the following <a class="existingWikiWord" href="/nlab/show/natural+isomorphism">natural isomorphism</a>:</p> <div class="maruku-equation" id="eq:CartesianFrobeniusReciprocity"><span class="maruku-eq-number">(3)</span><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>f</mi> <mo>!</mo></msub><mo maxsize="1.2em" minsize="1.2em">(</mo><mo stretchy="false">(</mo><mi>U</mi><mo>,</mo><msub><mi>p</mi> <mi>U</mi></msub><mo stretchy="false">)</mo><mo>×</mo><msup><mi>f</mi> <mo>*</mo></msup><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><msub><mi>p</mi> <mi>X</mi></msub><mo stretchy="false">)</mo><mo maxsize="1.2em" minsize="1.2em">)</mo><mspace width="thickmathspace"></mspace><mo>≃</mo><mspace width="thickmathspace"></mspace><mo maxsize="1.2em" minsize="1.2em">(</mo><msub><mi>f</mi> <mo>!</mo></msub><mo stretchy="false">(</mo><mi>U</mi><mo>,</mo><msub><mi>p</mi> <mi>U</mi></msub><mo stretchy="false">)</mo><mo maxsize="1.2em" minsize="1.2em">)</mo><mo>×</mo><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><msub><mi>p</mi> <mi>X</mi></msub><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> f_! \big( (U,p_U) \times f^\ast (X,p_X) \big) \;\simeq\; \big( f_!(U,p_U) \big) \times (X,p_X) \,. </annotation></semantics></math></div> <p>In the special case where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/terminal+object">terminal</a> map to the <a class="existingWikiWord" href="/nlab/show/point+space">point space</a>, which we denote</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>p</mi> <mi>B</mi></msub><mspace width="thinmathspace"></mspace><mo lspace="verythinmathspace">:</mo><mspace width="thinmathspace"></mspace><mi>B</mi><mover><mo>→</mo><mspace width="thickmathspace"></mspace></mover><mo>*</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> p_B \,\colon\, B \xrightarrow{\;} \ast \,. </annotation></semantics></math></div> <p>we have <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>kTop</mi> <mrow><mo stretchy="false">/</mo><mo>*</mo></mrow></msub><mspace width="thinmathspace"></mspace><mo>≃</mo><mspace width="thinmathspace"></mspace><mi>kTop</mi></mrow><annotation encoding="application/x-tex">kTop_{/\ast} \,\simeq\, kTop</annotation></semantics></math> and the above <a class="existingWikiWord" href="/nlab/show/base+change">base change</a> <a class="existingWikiWord" href="/nlab/show/adjoint+triple">adjoint triple</a> becomes</p> <div class="maruku-equation" id="eq:TerminalBaseChange"><span class="maruku-eq-number">(4)</span><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mspace width="thickmathspace"></mspace></mrow><annotation encoding="application/x-tex">\;</annotation></semantics></math></div><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="224.093pt" height="56.247pt" viewBox="0 0 224.093 56.247" version="1.1"> <defs> <g> <symbol overflow="visible" id="i2Ju496_HLEQMyPzwfv76FGoBvA=-glyph0-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="i2Ju496_HLEQMyPzwfv76FGoBvA=-glyph0-1"> <path style="stroke:none;" d="M 4.1875 -3.953125 C 4.1875 -3.96875 4.078125 -4.09375 4.078125 -4.109375 C 4.078125 -4.15625 5.015625 -4.953125 5.140625 -5.078125 C 6.171875 -5.96875 6.828125 -5.984375 7.140625 -6 L 7.140625 -6.4375 C 6.84375 -6.40625 6.453125 -6.40625 6 -6.40625 C 5.609375 -6.40625 4.859375 -6.40625 4.515625 -6.4375 L 4.515625 -6 C 4.765625 -5.984375 4.9375 -5.859375 4.9375 -5.609375 C 4.9375 -5.3125 4.640625 -5.046875 4.625 -5.046875 L 2.5 -3.171875 L 2.5 -10.359375 L 0.421875 -10.203125 L 0.421875 -9.765625 C 1.4375 -9.765625 1.546875 -9.671875 1.546875 -8.9375 L 1.546875 -1.109375 C 1.546875 -0.4375 1.390625 -0.4375 0.421875 -0.4375 L 0.421875 0 C 0.84375 -0.03125 1.546875 -0.03125 2 -0.03125 C 2.453125 -0.03125 3.171875 -0.03125 3.578125 0 L 3.578125 -0.4375 C 2.625 -0.4375 2.453125 -0.4375 2.453125 -1.109375 L 2.453125 -2.6875 L 3.40625 -3.53125 L 4.84375 -1.46875 C 5.0625 -1.15625 5.171875 -0.984375 5.171875 -0.78125 C 5.171875 -0.515625 4.953125 -0.4375 4.640625 -0.4375 L 4.640625 0 C 5.015625 -0.03125 5.75 -0.03125 6.15625 -0.03125 C 6.796875 -0.03125 6.828125 -0.03125 7.46875 0 L 7.46875 -0.4375 C 7.0625 -0.4375 6.609375 -0.4375 6.1875 -1.046875 Z M 4.1875 -3.953125 "></path> </symbol> <symbol overflow="visible" id="i2Ju496_HLEQMyPzwfv76FGoBvA=-glyph0-2"> <path style="stroke:none;" d="M 9.75 -10.125 L 0.796875 -10.125 L 0.515625 -6.796875 L 0.84375 -6.796875 C 1.0625 -9.15625 1.1875 -9.6875 3.5625 -9.6875 C 3.828125 -9.6875 4.25 -9.6875 4.359375 -9.671875 C 4.65625 -9.625 4.671875 -9.4375 4.671875 -9.09375 L 4.671875 -1.15625 C 4.671875 -0.640625 4.671875 -0.4375 3.21875 -0.4375 L 2.671875 -0.4375 L 2.671875 0 C 3.15625 -0.03125 4.6875 -0.03125 5.265625 -0.03125 C 5.859375 -0.03125 7.40625 -0.03125 7.890625 0 L 7.890625 -0.4375 L 7.34375 -0.4375 C 5.890625 -0.4375 5.890625 -0.640625 5.890625 -1.15625 L 5.890625 -9.09375 C 5.890625 -9.46875 5.921875 -9.609375 6.15625 -9.671875 C 6.28125 -9.6875 6.703125 -9.6875 6.984375 -9.6875 C 9.34375 -9.6875 9.484375 -9.15625 9.6875 -6.796875 L 10.015625 -6.796875 Z M 9.75 -10.125 "></path> </symbol> <symbol overflow="visible" id="i2Ju496_HLEQMyPzwfv76FGoBvA=-glyph0-3"> <path style="stroke:none;" d="M 6.859375 -3.203125 C 6.859375 -5.125 5.390625 -6.65625 3.65625 -6.65625 C 1.859375 -6.65625 0.453125 -5.078125 0.453125 -3.203125 C 0.453125 -1.28125 1.9375 0.15625 3.640625 0.15625 C 5.40625 0.15625 6.859375 -1.3125 6.859375 -3.203125 Z M 3.65625 -0.171875 C 3.109375 -0.171875 2.4375 -0.421875 2 -1.15625 C 1.59375 -1.828125 1.578125 -2.703125 1.578125 -3.328125 C 1.578125 -3.90625 1.578125 -4.8125 2.046875 -5.484375 C 2.46875 -6.125 3.125 -6.359375 3.640625 -6.359375 C 4.234375 -6.359375 4.859375 -6.09375 5.265625 -5.515625 C 5.71875 -4.828125 5.71875 -3.890625 5.71875 -3.328125 C 5.71875 -2.8125 5.71875 -1.875 5.328125 -1.1875 C 4.921875 -0.46875 4.234375 -0.171875 3.65625 -0.171875 Z M 3.65625 -0.171875 "></path> </symbol> <symbol overflow="visible" id="i2Ju496_HLEQMyPzwfv76FGoBvA=-glyph0-4"> <path style="stroke:none;" d="M 3.65625 2.46875 C 2.703125 2.46875 2.53125 2.46875 2.53125 1.796875 L 2.53125 -0.8125 C 2.796875 -0.4375 3.40625 0.15625 4.359375 0.15625 C 6.078125 0.15625 7.59375 -1.296875 7.59375 -3.21875 C 7.59375 -5.125 6.1875 -6.59375 4.5625 -6.59375 C 3.234375 -6.59375 2.546875 -5.640625 2.5 -5.59375 L 2.5 -6.59375 L 0.421875 -6.421875 L 0.421875 -5.984375 C 1.46875 -5.984375 1.546875 -5.890625 1.546875 -5.234375 L 1.546875 1.796875 C 1.546875 2.46875 1.390625 2.46875 0.421875 2.46875 L 0.421875 2.890625 C 0.8125 2.875 1.609375 2.875 2.03125 2.875 C 2.46875 2.875 3.265625 2.875 3.65625 2.890625 Z M 2.53125 -4.765625 C 2.53125 -5.046875 2.53125 -5.0625 2.6875 -5.296875 C 3.140625 -5.96875 3.875 -6.265625 4.4375 -6.265625 C 5.5625 -6.265625 6.453125 -4.90625 6.453125 -3.21875 C 6.453125 -1.453125 5.4375 -0.15625 4.28125 -0.15625 C 3.828125 -0.15625 3.390625 -0.34375 3.09375 -0.625 C 2.75 -0.96875 2.53125 -1.265625 2.53125 -1.6875 Z M 2.53125 -4.765625 "></path> </symbol> <symbol overflow="visible" id="i2Ju496_HLEQMyPzwfv76FGoBvA=-glyph1-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="i2Ju496_HLEQMyPzwfv76FGoBvA=-glyph1-1"> <path style="stroke:none;" d="M 4.640625 -7.0625 C 4.6875 -7.203125 4.6875 -7.21875 4.6875 -7.25 C 4.6875 -7.375 4.59375 -7.484375 4.46875 -7.484375 C 4.3125 -7.484375 4.265625 -7.359375 4.234375 -7.25 L 0.640625 2.078125 C 0.59375 2.21875 0.59375 2.234375 0.59375 2.265625 C 0.59375 2.390625 0.6875 2.5 0.8125 2.5 C 0.984375 2.5 1.015625 2.375 1.0625 2.265625 Z M 4.640625 -7.0625 "></path> </symbol> <symbol overflow="visible" id="i2Ju496_HLEQMyPzwfv76FGoBvA=-glyph1-2"> <path style="stroke:none;" d="M 1.6875 -0.78125 C 1.59375 -0.40625 1.578125 -0.328125 0.84375 -0.328125 C 0.640625 -0.328125 0.53125 -0.328125 0.53125 -0.140625 C 0.53125 0 0.65625 0 0.828125 0 L 4.53125 0 C 6.171875 0 7.390625 -1.171875 7.390625 -2.140625 C 7.390625 -2.859375 6.765625 -3.453125 5.765625 -3.5625 C 6.921875 -3.78125 7.921875 -4.53125 7.921875 -5.40625 C 7.921875 -6.15625 7.203125 -6.8125 5.9375 -6.8125 L 2.46875 -6.8125 C 2.28125 -6.8125 2.15625 -6.8125 2.15625 -6.625 C 2.15625 -6.484375 2.265625 -6.484375 2.4375 -6.484375 C 2.765625 -6.484375 3.0625 -6.484375 3.0625 -6.3125 C 3.0625 -6.28125 3.046875 -6.265625 3.015625 -6.140625 Z M 3.234375 -3.671875 L 3.84375 -6.109375 C 3.9375 -6.453125 3.953125 -6.484375 4.359375 -6.484375 L 5.796875 -6.484375 C 6.765625 -6.484375 6.984375 -5.84375 6.984375 -5.4375 C 6.984375 -4.578125 6.078125 -3.671875 4.8125 -3.671875 Z M 2.546875 -0.328125 C 2.46875 -0.34375 2.4375 -0.34375 2.4375 -0.421875 C 2.4375 -0.5 2.453125 -0.578125 2.46875 -0.640625 L 3.171875 -3.40625 L 5.1875 -3.40625 C 6.125 -3.40625 6.4375 -2.765625 6.4375 -2.21875 C 6.4375 -1.234375 5.46875 -0.328125 4.28125 -0.328125 Z M 2.546875 -0.328125 "></path> </symbol> <symbol overflow="visible" id="i2Ju496_HLEQMyPzwfv76FGoBvA=-glyph1-3"> <path style="stroke:none;" d="M 0.515625 1.203125 C 0.4375 1.53125 0.421875 1.609375 0.015625 1.609375 C -0.125 1.609375 -0.234375 1.609375 -0.234375 1.796875 C -0.234375 1.890625 -0.15625 1.9375 -0.09375 1.9375 C 0 1.9375 0.046875 1.90625 0.78125 1.90625 C 1.5 1.90625 1.703125 1.9375 1.78125 1.9375 C 1.8125 1.9375 1.96875 1.9375 1.96875 1.75 C 1.96875 1.609375 1.828125 1.609375 1.703125 1.609375 C 1.21875 1.609375 1.21875 1.546875 1.21875 1.453125 C 1.21875 1.390625 1.40625 0.671875 1.703125 -0.484375 C 1.828125 -0.265625 2.140625 0.09375 2.6875 0.09375 C 3.90625 0.09375 5.1875 -1.3125 5.1875 -2.765625 C 5.1875 -3.75 4.546875 -4.390625 3.75 -4.390625 C 3.15625 -4.390625 2.671875 -3.984375 2.375 -3.6875 C 2.171875 -4.390625 1.5 -4.390625 1.40625 -4.390625 C 1.046875 -4.390625 0.796875 -4.171875 0.640625 -3.859375 C 0.40625 -3.40625 0.296875 -2.90625 0.296875 -2.875 C 0.296875 -2.78125 0.375 -2.734375 0.453125 -2.734375 C 0.578125 -2.734375 0.59375 -2.78125 0.65625 -3.046875 C 0.78125 -3.546875 0.96875 -4.109375 1.375 -4.109375 C 1.625 -4.109375 1.6875 -3.890625 1.6875 -3.65625 C 1.6875 -3.546875 1.65625 -3.3125 1.640625 -3.234375 Z M 2.359375 -3.078125 C 2.40625 -3.234375 2.40625 -3.265625 2.546875 -3.4375 C 2.9375 -3.890625 3.359375 -4.109375 3.71875 -4.109375 C 4.21875 -4.109375 4.40625 -3.625 4.40625 -3.1875 C 4.40625 -2.8125 4.1875 -1.75 3.890625 -1.15625 C 3.625 -0.625 3.15625 -0.171875 2.6875 -0.171875 C 2 -0.171875 1.84375 -0.953125 1.84375 -1.03125 C 1.84375 -1.046875 1.859375 -1.15625 1.875 -1.1875 Z M 2.359375 -3.078125 "></path> </symbol> <symbol overflow="visible" id="i2Ju496_HLEQMyPzwfv76FGoBvA=-glyph2-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="i2Ju496_HLEQMyPzwfv76FGoBvA=-glyph2-1"> <path style="stroke:none;" d="M 2.90625 0.0625 C 2.90625 -0.8125 2.625 -1.453125 2.015625 -1.453125 C 1.53125 -1.453125 1.296875 -1.0625 1.296875 -0.734375 C 1.296875 -0.40625 1.53125 0 2.03125 0 C 2.21875 0 2.390625 -0.0625 2.53125 -0.1875 C 2.546875 -0.21875 2.5625 -0.21875 2.578125 -0.21875 C 2.609375 -0.21875 2.609375 -0.015625 2.609375 0.0625 C 2.609375 0.546875 2.53125 1.53125 1.65625 2.5 C 1.5 2.671875 1.5 2.703125 1.5 2.734375 C 1.5 2.8125 1.5625 2.890625 1.640625 2.890625 C 1.765625 2.890625 2.90625 1.78125 2.90625 0.0625 Z M 2.90625 0.0625 "></path> </symbol> <symbol overflow="visible" id="i2Ju496_HLEQMyPzwfv76FGoBvA=-glyph3-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="i2Ju496_HLEQMyPzwfv76FGoBvA=-glyph3-1"> <path style="stroke:none;" d="M 3.3125 2.5 C 3.40625 2.5 3.515625 2.5 3.515625 2.375 C 3.515625 2.328125 3.515625 2.328125 3.375 2.1875 C 2.015625 0.90625 1.671875 -0.953125 1.671875 -2.5 C 1.671875 -5.359375 2.859375 -6.703125 3.375 -7.171875 C 3.515625 -7.296875 3.515625 -7.3125 3.515625 -7.359375 C 3.515625 -7.40625 3.484375 -7.484375 3.375 -7.484375 C 3.21875 -7.484375 2.71875 -6.96875 2.640625 -6.875 C 1.3125 -5.484375 1.03125 -3.6875 1.03125 -2.5 C 1.03125 -0.265625 1.96875 1.53125 3.3125 2.5 Z M 3.3125 2.5 "></path> </symbol> <symbol overflow="visible" id="i2Ju496_HLEQMyPzwfv76FGoBvA=-glyph3-2"> <path style="stroke:none;" d="M 3.078125 -2.5 C 3.078125 -3.4375 2.921875 -4.578125 2.296875 -5.75 C 1.8125 -6.671875 0.90625 -7.484375 0.734375 -7.484375 C 0.625 -7.484375 0.59375 -7.40625 0.59375 -7.359375 C 0.59375 -7.3125 0.59375 -7.296875 0.71875 -7.171875 C 2.109375 -5.859375 2.4375 -4.03125 2.4375 -2.5 C 2.4375 0.375 1.25 1.71875 0.734375 2.1875 C 0.609375 2.3125 0.59375 2.328125 0.59375 2.375 C 0.59375 2.421875 0.625 2.5 0.734375 2.5 C 0.890625 2.5 1.390625 1.984375 1.46875 1.890625 C 2.796875 0.5 3.078125 -1.296875 3.078125 -2.5 Z M 3.078125 -2.5 "></path> </symbol> <symbol overflow="visible" id="i2Ju496_HLEQMyPzwfv76FGoBvA=-glyph4-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="i2Ju496_HLEQMyPzwfv76FGoBvA=-glyph4-1"> <path style="stroke:none;" d="M 1.5625 -0.625 C 1.5 -0.34375 1.484375 -0.296875 0.921875 -0.296875 C 0.765625 -0.296875 0.75 -0.296875 0.71875 -0.28125 C 0.671875 -0.25 0.65625 -0.15625 0.65625 -0.109375 C 0.671875 0 0.734375 0 0.890625 0 L 3.921875 0 C 5.21875 0 6.234375 -0.84375 6.234375 -1.59375 C 6.234375 -2.046875 5.828125 -2.546875 4.90625 -2.671875 C 5.765625 -2.8125 6.609375 -3.359375 6.609375 -4.03125 C 6.609375 -4.578125 6.015625 -5.09375 4.96875 -5.09375 L 2.109375 -5.09375 C 1.96875 -5.09375 1.859375 -5.09375 1.859375 -4.921875 C 1.859375 -4.796875 1.96875 -4.796875 2.09375 -4.796875 C 2.234375 -4.796875 2.421875 -4.796875 2.578125 -4.75 C 2.578125 -4.671875 2.578125 -4.625 2.546875 -4.515625 Z M 2.796875 -2.78125 L 3.234375 -4.546875 C 3.296875 -4.78125 3.296875 -4.796875 3.609375 -4.796875 L 4.84375 -4.796875 C 5.625 -4.796875 5.84375 -4.328125 5.84375 -4.015625 C 5.84375 -3.40625 5.078125 -2.78125 4.15625 -2.78125 Z M 2.4375 -0.296875 C 2.296875 -0.296875 2.28125 -0.296875 2.1875 -0.328125 L 2.71875 -2.53125 L 4.359375 -2.53125 C 5.296875 -2.53125 5.453125 -1.921875 5.453125 -1.625 C 5.453125 -0.90625 4.65625 -0.296875 3.734375 -0.296875 Z M 2.4375 -0.296875 "></path> </symbol> <symbol overflow="visible" id="i2Ju496_HLEQMyPzwfv76FGoBvA=-glyph5-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="i2Ju496_HLEQMyPzwfv76FGoBvA=-glyph5-1"> <path style="stroke:none;" d="M 1.765625 -4.921875 C 1.765625 -5.1875 1.53125 -5.34375 1.3125 -5.34375 C 1.09375 -5.34375 0.859375 -5.1875 0.859375 -4.921875 L 1.171875 -1.65625 C 1.171875 -1.53125 1.1875 -1.46875 1.3125 -1.46875 C 1.4375 -1.46875 1.453125 -1.53125 1.46875 -1.65625 Z M 1.765625 -0.453125 C 1.765625 -0.6875 1.5625 -0.890625 1.3125 -0.890625 C 1.0625 -0.890625 0.859375 -0.6875 0.859375 -0.453125 C 0.859375 -0.203125 1.0625 0 1.3125 0 C 1.5625 0 1.765625 -0.203125 1.765625 -0.453125 Z M 1.765625 -0.453125 "></path> </symbol> <symbol overflow="visible" id="i2Ju496_HLEQMyPzwfv76FGoBvA=-glyph6-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="i2Ju496_HLEQMyPzwfv76FGoBvA=-glyph6-1"> <path style="stroke:none;" d="M 3.46875 -1.046875 C 3.671875 -0.921875 3.6875 -0.921875 3.734375 -0.921875 C 3.859375 -0.921875 3.984375 -1.03125 3.984375 -1.1875 C 3.984375 -1.328125 3.875 -1.375 3.8125 -1.40625 C 3.421875 -1.5625 3.046875 -1.71875 2.65625 -1.859375 C 3.421875 -2.171875 3.625 -2.25 3.765625 -2.3125 C 3.875 -2.359375 3.984375 -2.390625 3.984375 -2.546875 C 3.984375 -2.703125 3.859375 -2.8125 3.734375 -2.8125 C 3.671875 -2.8125 3.625 -2.78125 3.5625 -2.734375 L 2.515625 -2.0625 C 2.515625 -2.171875 2.546875 -2.4375 2.546875 -2.53125 C 2.5625 -2.671875 2.625 -3.125 2.625 -3.25 C 2.625 -3.375 2.515625 -3.46875 2.375 -3.46875 C 2.25 -3.46875 2.140625 -3.375 2.140625 -3.25 C 2.140625 -3.234375 2.203125 -2.5625 2.203125 -2.53125 C 2.21875 -2.453125 2.25 -2.171875 2.25 -2.0625 L 1.1875 -2.734375 C 1.140625 -2.78125 1.09375 -2.8125 1.03125 -2.8125 C 0.90625 -2.8125 0.78125 -2.703125 0.78125 -2.546875 C 0.78125 -2.390625 0.890625 -2.359375 0.953125 -2.328125 C 1.34375 -2.171875 1.71875 -2.015625 2.109375 -1.859375 C 1.34375 -1.546875 1.140625 -1.484375 1 -1.421875 C 0.890625 -1.359375 0.78125 -1.328125 0.78125 -1.1875 C 0.78125 -1.03125 0.90625 -0.921875 1.03125 -0.921875 C 1.09375 -0.921875 1.21875 -1 1.3125 -1.0625 C 1.40625 -1.125 1.671875 -1.28125 1.765625 -1.359375 C 2.015625 -1.515625 2.09375 -1.5625 2.25 -1.65625 C 2.25 -1.546875 2.21875 -1.296875 2.203125 -1.203125 L 2.140625 -0.484375 C 2.140625 -0.34375 2.25 -0.25 2.375 -0.25 C 2.515625 -0.25 2.625 -0.34375 2.625 -0.484375 C 2.625 -0.484375 2.5625 -1.15625 2.546875 -1.1875 C 2.546875 -1.28125 2.515625 -1.5625 2.515625 -1.65625 Z M 3.46875 -1.046875 "></path> </symbol> <symbol overflow="visible" id="i2Ju496_HLEQMyPzwfv76FGoBvA=-glyph7-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="i2Ju496_HLEQMyPzwfv76FGoBvA=-glyph7-1"> <path style="stroke:none;" d="M 3.671875 -5.671875 C 3.671875 -5.828125 3.671875 -5.984375 3.484375 -5.984375 C 3.3125 -5.984375 3.3125 -5.796875 3.3125 -5.671875 L 3.3125 -0.359375 L 0.8125 -0.359375 C 0.6875 -0.359375 0.5 -0.359375 0.5 -0.171875 C 0.5 0 0.6875 0 0.8125 0 L 6.171875 0 C 6.328125 0 6.484375 0 6.484375 -0.171875 C 6.484375 -0.359375 6.328125 -0.359375 6.171875 -0.359375 L 3.671875 -0.359375 Z M 3.671875 -5.671875 "></path> </symbol> </g> <clipPath id="i2Ju496_HLEQMyPzwfv76FGoBvA=-clip1"> <path d="M 99 39 L 133 39 L 133 56.246094 L 99 56.246094 Z M 99 39 "></path> </clipPath> </defs> <g id="i2Ju496_HLEQMyPzwfv76FGoBvA=-surface1"> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#i2Ju496_HLEQMyPzwfv76FGoBvA=-glyph0-1" x="6.434" y="31.859"></use> <use xlink:href="#i2Ju496_HLEQMyPzwfv76FGoBvA=-glyph0-2" x="14.157059" y="31.859"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#i2Ju496_HLEQMyPzwfv76FGoBvA=-glyph0-3" x="23.500048" y="31.859"></use> <use xlink:href="#i2Ju496_HLEQMyPzwfv76FGoBvA=-glyph0-4" x="30.81663" y="31.859"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#i2Ju496_HLEQMyPzwfv76FGoBvA=-glyph1-1" x="38.95025" y="35.38775"></use> <use xlink:href="#i2Ju496_HLEQMyPzwfv76FGoBvA=-glyph1-2" x="44.243393" y="35.38775"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#i2Ju496_HLEQMyPzwfv76FGoBvA=-glyph0-1" x="178.587" y="31.859"></use> <use xlink:href="#i2Ju496_HLEQMyPzwfv76FGoBvA=-glyph0-2" x="186.310059" y="31.859"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#i2Ju496_HLEQMyPzwfv76FGoBvA=-glyph0-3" x="195.653048" y="31.859"></use> <use xlink:href="#i2Ju496_HLEQMyPzwfv76FGoBvA=-glyph0-4" x="202.96963" y="31.859"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#i2Ju496_HLEQMyPzwfv76FGoBvA=-glyph2-1" x="213.5945" y="31.859"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -52.023563 21.480781 L 59.378781 21.480781 " transform="matrix(1,0,0,-1,112.047,29.68)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.486373 2.869665 C -2.033248 1.147009 -1.021529 0.334509 0.00190875 -0.00142875 C -1.021529 -0.33346 -2.033248 -1.14596 -2.486373 -2.868616 " transform="matrix(1,0,0,-1,171.66606,8.19779)"></path> <path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,100%,100%);fill-opacity:1;" d="M 131.539062 0 L 100.390625 0 L 100.390625 16.394531 L 131.539062 16.394531 Z M 131.539062 0 "></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#i2Ju496_HLEQMyPzwfv76FGoBvA=-glyph3-1" x="103.606" y="10.689"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#i2Ju496_HLEQMyPzwfv76FGoBvA=-glyph1-3" x="107.72225" y="10.689"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#i2Ju496_HLEQMyPzwfv76FGoBvA=-glyph4-1" x="113.051" y="12.36275"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#i2Ju496_HLEQMyPzwfv76FGoBvA=-glyph3-2" x="120.95475" y="10.689"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#i2Ju496_HLEQMyPzwfv76FGoBvA=-glyph5-1" x="125.071" y="12.4465"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 59.85925 1.555 L -51.543094 1.555 " transform="matrix(1,0,0,-1,112.047,29.68)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.48651 2.868858 C -2.033385 1.146201 -1.021666 0.333701 0.00177125 0.00167 C -1.021666 -0.334267 -2.033385 -1.146767 -2.48651 -2.869424 " transform="matrix(-1,0,0,1,60.26349,28.12333)"></path> <path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,100%,100%);fill-opacity:1;" d="M 132.613281 19.925781 L 99.316406 19.925781 L 99.316406 36.320312 L 132.613281 36.320312 Z M 132.613281 19.925781 "></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#i2Ju496_HLEQMyPzwfv76FGoBvA=-glyph3-1" x="102.534" y="30.614"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#i2Ju496_HLEQMyPzwfv76FGoBvA=-glyph1-3" x="106.65025" y="30.614"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#i2Ju496_HLEQMyPzwfv76FGoBvA=-glyph4-1" x="111.979" y="32.28775"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#i2Ju496_HLEQMyPzwfv76FGoBvA=-glyph3-2" x="119.8815" y="30.614"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#i2Ju496_HLEQMyPzwfv76FGoBvA=-glyph6-1" x="123.999" y="27.09775"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -52.023563 -18.370781 L 59.378781 -18.370781 " transform="matrix(1,0,0,-1,112.047,29.68)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.486373 2.869163 C -2.033248 1.146506 -1.021529 0.334006 0.00190875 -0.00193125 C -1.021529 -0.333962 -2.033248 -1.146462 -2.486373 -2.869119 " transform="matrix(1,0,0,-1,171.66606,48.04885)"></path> <g clip-path="url(#i2Ju496_HLEQMyPzwfv76FGoBvA=-clip1)" clip-rule="nonzero"> <path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,100%,100%);fill-opacity:1;" d="M 132.613281 39.851562 L 99.316406 39.851562 L 99.316406 56.246094 L 132.613281 56.246094 Z M 132.613281 39.851562 "></path> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#i2Ju496_HLEQMyPzwfv76FGoBvA=-glyph3-1" x="102.534" y="50.539"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#i2Ju496_HLEQMyPzwfv76FGoBvA=-glyph1-3" x="106.65025" y="50.539"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#i2Ju496_HLEQMyPzwfv76FGoBvA=-glyph4-1" x="111.979" y="52.214"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#i2Ju496_HLEQMyPzwfv76FGoBvA=-glyph3-2" x="119.88275" y="50.539"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#i2Ju496_HLEQMyPzwfv76FGoBvA=-glyph6-1" x="123.999" y="51.78525"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#i2Ju496_HLEQMyPzwfv76FGoBvA=-glyph7-1" x="112.477" y="21.274"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#i2Ju496_HLEQMyPzwfv76FGoBvA=-glyph7-1" x="112.477" y="41.199"></use> </g> </g> </svg> <p>In this case</p> <ol> <li> <p>the functor <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>p</mi> <mi>B</mi></msub><msup><mo stretchy="false">)</mo> <mo>*</mo></msup></mrow><annotation encoding="application/x-tex">(p_B)^\ast</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/Cartesian+product">Cartesian product</a> with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math>, regarded as the trivial fibration:</p> <div class="maruku-equation" id="eq:TrivialFibration"><span class="maruku-eq-number">(5)</span><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><msubsup><mi>p</mi> <mi>B</mi> <mo>*</mo></msubsup><mo stretchy="false">)</mo><msub><mi>X</mi> <mn>0</mn></msub><mspace width="thickmathspace"></mspace><mo>=</mo><mspace width="thickmathspace"></mspace><mi>B</mi><mo>×</mo><msub><mi>X</mi> <mn>0</mn></msub><mover><mo>→</mo><mrow><mspace width="thickmathspace"></mspace><msub><mi>pr</mi> <mi>B</mi></msub><mspace width="thickmathspace"></mspace></mrow></mover><mi>B</mi><mspace width="thinmathspace"></mspace><mo>,</mo></mrow><annotation encoding="application/x-tex"> (p_B^\ast) X_0 \;=\; B \times X_0 \xrightarrow{\; pr_B \;} B \,, </annotation></semantics></math></div></li> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>p</mi> <mi>B</mi></msub><msub><mo stretchy="false">)</mo> <mo>!</mo></msub></mrow><annotation encoding="application/x-tex">(p_B)_!</annotation></semantics></math> gives the total space of a fibration:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>p</mi> <mi>B</mi></msub><msub><mo stretchy="false">)</mo> <mo>!</mo></msub><mo maxsize="1.2em" minsize="1.2em">(</mo><mi>X</mi><mo>→</mo><mi>B</mi><mo maxsize="1.2em" minsize="1.2em">)</mo><mspace width="thickmathspace"></mspace><mo>=</mo><mspace width="thickmathspace"></mspace><mi>X</mi></mrow><annotation encoding="application/x-tex"> (p_B)_! \big( X \to B\big) \;=\; X </annotation></semantics></math></div></li> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>p</mi> <mi>B</mi></msub><msub><mo stretchy="false">)</mo> <mo>*</mo></msub></mrow><annotation encoding="application/x-tex">(p_B)_*</annotation></semantics></math> gives the <a class="existingWikiWord" href="/nlab/show/space+of+sections">space of sections</a> of a fibration.</p> </li> </ol> <p>Eventually we consider <a class="existingWikiWord" href="/nlab/show/pointed+objects">pointed objects</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><msub><mi>p</mi> <mi>X</mi></msub><mo>,</mo><msub><mi>σ</mi> <mi>X</mi></msub><mo stretchy="false">)</mo><mspace width="thickmathspace"></mspace><mo>∈</mo><mspace width="thickmathspace"></mspace><mo maxsize="1.2em" minsize="1.2em">(</mo><msub><mi>kTop</mi> <mrow><mo stretchy="false">/</mo><mi>B</mi></mrow></msub><msup><mo maxsize="1.2em" minsize="1.2em">)</mo> <mrow><mi>B</mi><mo stretchy="false">/</mo></mrow></msup><mspace width="thickmathspace"></mspace><mo>=</mo><mspace width="thickmathspace"></mspace><msubsup><mi>kTop</mi> <mrow><mo stretchy="false">/</mo><mi>B</mi></mrow> <mrow><mi>B</mi><mo stretchy="false">/</mo></mrow></msubsup></mrow><annotation encoding="application/x-tex"> (X, p_X, \sigma_X) \;\in\; \big( kTop_{/B}\big)^{B/} \;=\; kTop_{/B}^{B/} </annotation></semantics></math></div> <p>in the <a class="existingWikiWord" href="/nlab/show/slice+category">slice category</a> of such a base space – hence topological “<a class="existingWikiWord" href="/nlab/show/bundles">bundles</a>” <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mover><mo>→</mo><mrow><msub><mi>p</mi> <mi>X</mi></msub></mrow></mover><mi>B</mi></mrow><annotation encoding="application/x-tex">X \xrightarrow{p_X} B</annotation></semantics></math> (in the most general sense, without any condition on the bundle projection, except <a class="existingWikiWord" href="/nlab/show/continuous+function">continuity</a>) equipped with a fixed <a class="existingWikiWord" href="/nlab/show/section">section</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>σ</mi> <mi>X</mi></msub></mrow><annotation encoding="application/x-tex">\sigma_X</annotation></semantics></math> (sometimes called “ex-spaces”, see [<a href="#MaySigurdsson06">May & Sigurdsson 2006, p. 19, footnote 1</a>]).</p> <h3 id="FiberwiseMappingSpaces">Fiberwise mapping spaces</h3> <blockquote> <p>Parametrized mapping spaces are especially delicate [<a href="#MaySigurdsson06">May & Sigurdsson 2006, p. 15</a>, see Rem. <a class="maruku-ref" href="#FibMapSpaceDoesNotPreserveWeakHausdorffness"></a> below]</p> </blockquote> <p> <div class='num_defn' id='PartialMapClassifierSpace'> <h6>Definition</h6> <p><strong>(partial map classifier space)</strong> <br /> For <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mspace width="thinmathspace"></mspace><mo>∈</mo><mspace width="thinmathspace"></mspace><mi>kTop</mi></mrow><annotation encoding="application/x-tex">X \,\in\, kTop</annotation></semantics></math>, write <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mover><mi>X</mi><mo>˜</mo></mover><mspace width="thinmathspace"></mspace><mo>∈</mo><mspace width="thinmathspace"></mspace><mi>kTop</mi></mrow><annotation encoding="application/x-tex">\widetilde X \,\in\, kTop</annotation></semantics></math> for its continuous <a class="existingWikiWord" href="/nlab/show/partial+map+classifier">partial map classifier</a>: The result of forming the <a class="existingWikiWord" href="/nlab/show/disjoint+union">disjoint union</a> of the <a class="existingWikiWord" href="/nlab/show/underlying">underlying</a> <a class="existingWikiWord" href="/nlab/show/set">set</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> with a <a class="existingWikiWord" href="/nlab/show/singleton+set">singleton set</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">{</mo><mo>⊥</mo><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">\{\bot\}</annotation></semantics></math> and declaring the <a class="existingWikiWord" href="/nlab/show/closed+subsets">closed subsets</a> on the result to be those of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> under the defining <a class="existingWikiWord" href="/nlab/show/injection">injection</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>X</mi><mover><mo>↪</mo><mrow><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><msub><mi>ι</mi> <mi>X</mi></msub><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace></mrow></mover><mover><mi>X</mi><mo>˜</mo></mover></mrow><annotation encoding="application/x-tex"> X \xhookrightarrow{\;\; \iota_X \;\;} \widetilde{X} </annotation></semantics></math></div> <p>together with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mover><mi>X</mi><mo>˜</mo></mover></mrow><annotation encoding="application/x-tex">\widetilde{X}</annotation></semantics></math> itself.</p> <p></p> </div> </p> <p>(<a href="#MaySigurdsson06">MaSi06, Def. 1.3.6</a>)</p> <p> <div class='num_defn' id='FiberwiseMappingSpace'> <h6>Definition</h6> <p><strong>(fiberwise mapping space)</strong> <br /> For</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><msub><mi>p</mi> <mi>X</mi></msub><mo stretchy="false">)</mo><mo>,</mo><mspace width="thinmathspace"></mspace><mo stretchy="false">(</mo><mi>A</mi><mo>,</mo><msub><mi>p</mi> <mi>A</mi></msub><mo stretchy="false">)</mo><mspace width="thickmathspace"></mspace><mo>∈</mo><mspace width="thickmathspace"></mspace><msub><mi>kTop</mi> <mi>B</mi></msub></mrow><annotation encoding="application/x-tex"> (X, p_X), \, (A,p_A) \;\in\; kTop_{B} </annotation></semantics></math></div> <p>a <a class="existingWikiWord" href="/nlab/show/pair">pair</a> of <a class="existingWikiWord" href="/nlab/show/k-spaces">k-spaces</a> over <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math> <a class="maruku-eqref" href="#eq:kwHausBaseSpace">(1)</a> their <em>fiberwise mapping space</em> is the <a class="existingWikiWord" href="/nlab/show/pullback">pullback</a> (in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>kTop</mi></mrow><annotation encoding="application/x-tex">kTop</annotation></semantics></math>):</p> <div class="maruku-equation" id="eq:FiberwiseMappingSpaceAsPullback"><span class="maruku-eq-number">(6)</span><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mphantom><mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>−</mo><mo lspace="verythinmathspace" rspace="0em">−</mo></mrow></mphantom><mpadded width="0" lspace="-50%width"><mrow><mi>Map</mi><mo maxsize="1.2em" minsize="1.2em">(</mo><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><msub><mi>p</mi> <mi>X</mi></msub><mo stretchy="false">)</mo><mo>,</mo><mspace width="thinmathspace"></mspace><mo stretchy="false">(</mo><mi>A</mi><mo>,</mo><msub><mi>p</mi> <mi>A</mi></msub><mo stretchy="false">)</mo><mo maxsize="1.2em" minsize="1.2em">)</mo></mrow></mpadded><mphantom><mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>−</mo><mo lspace="verythinmathspace" rspace="0em">−</mo></mrow></mphantom></mtd> <mtd><mover><mo>→</mo><mphantom><mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>−</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>−</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>−</mo><mo lspace="verythinmathspace" rspace="0em">−</mo></mrow></mphantom></mover></mtd> <mtd><mi>Map</mi><mo maxsize="1.2em" minsize="1.2em">(</mo><mi>X</mi><mo>,</mo><mover><mi>A</mi><mo>˜</mo></mover><mo maxsize="1.2em" minsize="1.2em">)</mo></mtd></mtr> <mtr><mtd><mo maxsize="1.2em" minsize="1.2em">↓</mo></mtd> <mtd><msub><mrow></mrow> <mrow><msup><mrow></mrow> <mrow><mo stretchy="false">(</mo><mi>pb</mi><mo stretchy="false">)</mo></mrow></msup></mrow></msub></mtd> <mtd><mo maxsize="1.2em" minsize="1.2em">↓</mo><msup><mrow></mrow> <mpadded width="0"><mrow><mi>Map</mi><mo maxsize="1.2em" minsize="1.2em">(</mo><mi>X</mi><mo>,</mo><mover><mrow><msub><mi>p</mi> <mi>A</mi></msub></mrow><mo>˜</mo></mover><mo maxsize="1.2em" minsize="1.2em">)</mo></mrow></mpadded></msup></mtd></mtr> <mtr><mtd><mi>B</mi></mtd> <mtd><munder><mo>⟶</mo><mrow><mi>b</mi><mo>↦</mo><mrow><mo>(</mo><mi>x</mi><mo>↦</mo><mrow><mo>{</mo><mtable displaystyle="false" rowspacing="0.5ex" columnalign="left left"><mtr><mtd><mi>b</mi></mtd> <mtd><mi>if</mi><mspace width="thinmathspace"></mspace><mi>x</mi><mo>∈</mo><msub><mi>X</mi> <mi>b</mi></msub></mtd></mtr> <mtr><mtd><mo>⊥</mo></mtd> <mtd><mi>otherwise</mi></mtd></mtr></mtable></mrow><mo>)</mo></mrow></mrow></munder></mtd> <mtd><mi>Map</mi><mo maxsize="1.2em" minsize="1.2em">(</mo><mi>X</mi><mo>,</mo><mover><mi>B</mi><mo>˜</mo></mover><mo maxsize="1.2em" minsize="1.2em">)</mo><mspace width="thinmathspace"></mspace><mo>,</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ \phantom{---} \mathclap{ Map \big( (X,p_X) ,\, (A,p_A) \big) } \phantom{---} &\xrightarrow{\phantom{-------}}& Map \big( X, \widetilde{A} \big) \\ \big\downarrow &{}_{{}^{(pb)}}& \big\downarrow{}^{\mathrlap{ Map \big( X, \widetilde{p_A} \big) }} \\ B & \underset{ b \mapsto \left( x \mapsto \left\{ \begin{array}{ll} b & if\, x \in X_b \\ \bot & otherwise \end{array} \right. \right) }{\longrightarrow} & Map \big( X, \widetilde{B} \big) \,, } </annotation></semantics></math></div> <p>regarded as an object of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>kTop</mi> <mrow><mo stretchy="false">/</mo><mi>B</mi></mrow></msub></mrow><annotation encoding="application/x-tex">kTop_{/B}</annotation></semantics></math>.</p> <p>Here <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Map</mi><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mover><mi>A</mi><mo>˜</mo></mover><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Map(X,\widetilde{A})</annotation></semantics></math> denotes the ordinary <a class="existingWikiWord" href="/nlab/show/compact-open+topology">mapping space</a> into the continuous partial map classifier from Def. <a class="maruku-ref" href="#PartialMapClassifierSpace"></a>.</p> </div> </p> <p>(This is <a href="#MaySigurdsson06">May & Sigurdsson 2006, Def. 1.3.7</a>, following <a href="#BoothBrown78a">Booth & Brown 1978a</a>).</p> <p> <div class='num_remark'> <h6>Remark</h6> <p><strong>(on notation)</strong> <br /> Contrary to most references, Def. <a class="maruku-ref" href="#FiberwiseMappingSpace"></a> is intentionally not using a subsript “<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mrow></mrow> <mi>B</mi></msub></mrow><annotation encoding="application/x-tex">{}_B</annotation></semantics></math>” in the notation for the fiberwise mapping space: This is because “<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Map</mi><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>A</mi><msub><mo stretchy="false">)</mo> <mi>B</mi></msub></mrow><annotation encoding="application/x-tex">Map(X,A)_B</annotation></semantics></math>” is also standard notation for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Map</mi><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>A</mi><mo stretchy="false">)</mo><munder><mo>×</mo><mrow><mi>Map</mi><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>B</mi><mo stretchy="false">)</mo></mrow></munder><mo stretchy="false">{</mo><msub><mi>p</mi> <mi>B</mi></msub><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">Map(X,A) \underset{Map(X,B)}{\times} \{p_B\}</annotation></semantics></math> (see e.g. at <em><a class="existingWikiWord" href="/nlab/show/space+of+sections">space of sections</a></em>), which is crucially different. Instead, with the above notation, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Map</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Map(-,-)</annotation></semantics></math> is always of the same <a class="existingWikiWord" href="/nlab/show/type">type</a> as its arguments, as befits an <a class="existingWikiWord" href="/nlab/show/internal+hom">internal hom</a>.</p> </div> </p> <p> <div class='num_prop' id='FiberwiseMappingSpaceSatisfiesExponentialLaw'> <h6>Proposition</h6> <p><strong>(fiberwise mapping space satisfies the exponential law)</strong> <br /> With <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math> as above <a class="maruku-eqref" href="#eq:kwHausBaseSpace">(1)</a>, the fiberwise mapping space (Def. <a class="maruku-ref" href="#FiberwiseMappingSpace"></a>) is an <a class="existingWikiWord" href="/nlab/show/exponential+object">exponential object</a> (satisfies the <a class="existingWikiWord" href="/nlab/show/exponential+law+for+spaces">exponential law</a>) in that there is a <a class="existingWikiWord" href="/nlab/show/natural+isomorphism">natural isomorphism</a> of <a class="existingWikiWord" href="/nlab/show/hom-sets">hom-sets</a></p> <div class="maruku-equation" id="eq:ExponentialLawForFiberwiseMappingSpace"><span class="maruku-eq-number">(7)</span><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>kTop</mi> <mrow><mo stretchy="false">/</mo><mi>B</mi></mrow></msub><mo maxsize="1.8em" minsize="1.8em">(</mo><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><msub><mi>p</mi> <mi>X</mi></msub><mo stretchy="false">)</mo><mo>,</mo><mspace width="thinmathspace"></mspace><mi>Map</mi><mo maxsize="1.2em" minsize="1.2em">(</mo><mo stretchy="false">(</mo><mi>Y</mi><mo>,</mo><msub><mi>p</mi> <mi>Y</mi></msub><mo stretchy="false">)</mo><mo>,</mo><mspace width="thinmathspace"></mspace><mo stretchy="false">(</mo><mi>A</mi><mo>,</mo><msub><mi>p</mi> <mi>A</mi></msub><mo stretchy="false">)</mo><mo maxsize="1.2em" minsize="1.2em">)</mo><mo maxsize="1.8em" minsize="1.8em">)</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mo>≃</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><msub><mi>kTop</mi> <mrow><mo stretchy="false">/</mo><mi>B</mi></mrow></msub><mo maxsize="1.2em" minsize="1.2em">(</mo><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><msub><mi>p</mi> <mi>X</mi></msub><mo stretchy="false">)</mo><mo>×</mo><mo stretchy="false">(</mo><mi>Y</mi><mo>,</mo><msub><mi>p</mi> <mi>Y</mi></msub><mo stretchy="false">)</mo><mo>,</mo><mspace width="thinmathspace"></mspace><mo stretchy="false">(</mo><mi>A</mi><mo>,</mo><msub><mi>p</mi> <mi>A</mi></msub><mo stretchy="false">)</mo><mo maxsize="1.2em" minsize="1.2em">)</mo></mrow><annotation encoding="application/x-tex"> kTop_{/B} \Big( (X,p_X) ,\, Map \big( (Y,p_Y) ,\, (A,p_A) \big) \Big) \;\; \simeq \;\; kTop_{/B} \big( (X,p_X) \times (Y,p_Y) ,\, (A,p_A) \big) </annotation></semantics></math></div> <p>(where on the right we have the <a class="existingWikiWord" href="/nlab/show/Cartesian+product">Cartesian product</a> in the <a class="existingWikiWord" href="/nlab/show/slice+category">slice</a>, given by the <a class="existingWikiWord" href="/nlab/show/fiber+product">fiber product</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><msub><mo>×</mo> <mi>B</mi></msub><mi>Y</mi></mrow><annotation encoding="application/x-tex">X \times_B Y</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>kTop</mi></mrow><annotation encoding="application/x-tex">kTop</annotation></semantics></math>).</p> </div> (<a href="#BoothBrown78a">Booth & Brown 1978a, Thm. 3.5</a>, see <a href="#MaySigurdsson06">May & Sigurdsson 2006, (1.3.9)</a>)</p> <p> <div class='num_remark' id='FiberwiseMappingSpaceBetweenTrivialFibrations'> <h6>Example</h6> <p><strong>(fiberwise mapping space between trivial fibrations)</strong> <br /> The fiberwise mapping space (Def. <a class="maruku-ref" href="#FiberwiseMappingSpace"></a>) between trivial fibrations <a class="maruku-eqref" href="#eq:TrivialFibration">(5)</a> is the trivial fibration with fiber the ordinary <a class="existingWikiWord" href="/nlab/show/compact-open+topology">mapping space</a> between the fibers:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>Map</mi><mo maxsize="1.2em" minsize="1.2em">(</mo><msubsup><mi>p</mi> <mi>B</mi> <mo>*</mo></msubsup><msub><mi>X</mi> <mn>0</mn></msub><mo>,</mo><mspace width="thinmathspace"></mspace><msubsup><mi>p</mi> <mi>B</mi> <mo>*</mo></msubsup><msub><mi>A</mi> <mn>0</mn></msub><mo maxsize="1.2em" minsize="1.2em">)</mo><mspace width="thickmathspace"></mspace><mo>≃</mo><mspace width="thickmathspace"></mspace><msubsup><mi>p</mi> <mi>B</mi> <mo>*</mo></msubsup><mi>Map</mi><mo maxsize="1.2em" minsize="1.2em">(</mo><msub><mi>X</mi> <mn>0</mn></msub><mo>,</mo><mspace width="thinmathspace"></mspace><msub><mi>A</mi> <mn>0</mn></msub><mo maxsize="1.2em" minsize="1.2em">)</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> Map \big( p_B^\ast X_0 ,\, p_B^\ast A_0 \big) \;\simeq\; p_B^\ast Map\big(X_0,\, A_0\big) \,. </annotation></semantics></math></div> <p></p> </div> <div class='proof'> <h6>Proof</h6> <p>This may be gleaned concretely from <a class="existingWikiWord" href="/nlab/show/point-set+topology">point-set</a>-analysis of the defining pullback diagram <a class="maruku-eqref" href="#eq:FiberwiseMappingSpaceAsPullback">(6)</a>, but it also follows abstractly by <a class="existingWikiWord" href="/nlab/show/adjunction">adjointness</a> from the <a class="existingWikiWord" href="/nlab/show/exponential+law">exponential law</a> (Prop. <a class="maruku-ref" href="#FiberwiseMappingSpaceSatisfiesExponentialLaw"></a>):</p> <p>For any <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>U</mi><mo>,</mo><msub><mi>p</mi> <mi>U</mi></msub><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>∈</mo><mspace width="thinmathspace"></mspace><msub><mi>kTop</mi> <mrow><mo stretchy="false">/</mo><mi>B</mi></mrow></msub></mrow><annotation encoding="application/x-tex">(U, p_U) \,\in\, kTop_{/B}</annotation></semantics></math> we have the following sequence of <a class="existingWikiWord" href="/nlab/show/natural+isomorphisms">natural isomorphisms</a>:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable displaystyle="true" columnalign="right left right left right left right left right left" columnspacing="0em"><mtr><mtd></mtd> <mtd><msub><mi>kTop</mi> <mrow><mo stretchy="false">/</mo><mi>B</mi></mrow></msub><mo maxsize="1.8em" minsize="1.8em">(</mo><mo stretchy="false">(</mo><mi>U</mi><mo>,</mo><msub><mi>p</mi> <mi>U</mi></msub><mo stretchy="false">)</mo><mo>,</mo><mspace width="thinmathspace"></mspace><mo lspace="0em" rspace="thinmathspace">Map</mo><mo maxsize="1.2em" minsize="1.2em">(</mo><msubsup><mi>p</mi> <mi>B</mi> <mo>*</mo></msubsup><msub><mi>X</mi> <mn>0</mn></msub><mo>,</mo><mspace width="thinmathspace"></mspace><msubsup><mi>p</mi> <mi>B</mi> <mo>*</mo></msubsup><msub><mi>A</mi> <mn>0</mn></msub><mo maxsize="1.2em" minsize="1.2em">)</mo><mo maxsize="1.8em" minsize="1.8em">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mspace width="thickmathspace"></mspace><mo>≃</mo><mspace width="thickmathspace"></mspace><msub><mi>kTop</mi> <mrow><mo stretchy="false">/</mo><mi>B</mi></mrow></msub><mo maxsize="1.2em" minsize="1.2em">(</mo><mo stretchy="false">(</mo><mi>U</mi><mo>,</mo><msub><mi>p</mi> <mi>U</mi></msub><mo stretchy="false">)</mo><mo>×</mo><mo stretchy="false">(</mo><mi>B</mi><mo>×</mo><msub><mi>X</mi> <mn>0</mn></msub><mo>,</mo><msub><mi>pr</mi> <mi>B</mi></msub><mo stretchy="false">)</mo><mo>,</mo><mspace width="thinmathspace"></mspace><msubsup><mi>p</mi> <mi>B</mi> <mo>*</mo></msubsup><msub><mi>A</mi> <mn>0</mn></msub><mo maxsize="1.2em" minsize="1.2em">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mspace width="thickmathspace"></mspace><mo>≃</mo><mspace width="thickmathspace"></mspace><msub><mi>kTop</mi> <mrow><mo stretchy="false">/</mo><mi>B</mi></mrow></msub><mo maxsize="1.2em" minsize="1.2em">(</mo><mo stretchy="false">(</mo><mi>U</mi><mo>×</mo><msub><mi>X</mi> <mn>0</mn></msub><mo>,</mo><msub><mi>p</mi> <mi>U</mi></msub><mo>∘</mo><msub><mi>pr</mi> <mi>U</mi></msub><mo stretchy="false">)</mo><mo>,</mo><mspace width="thinmathspace"></mspace><msubsup><mi>p</mi> <mi>B</mi> <mo>*</mo></msubsup><msub><mi>A</mi> <mn>0</mn></msub><mo maxsize="1.2em" minsize="1.2em">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mspace width="thickmathspace"></mspace><mo>≃</mo><mspace width="thickmathspace"></mspace><mi>kTop</mi><mo maxsize="1.8em" minsize="1.8em">(</mo><mi>U</mi><mo>×</mo><msub><mi>X</mi> <mn>0</mn></msub><mo>,</mo><mspace width="thinmathspace"></mspace><msub><mi>A</mi> <mn>0</mn></msub><mo maxsize="1.2em" minsize="1.2em">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mspace width="thickmathspace"></mspace><mo>≃</mo><mspace width="thickmathspace"></mspace><mi>kTop</mi><mo maxsize="1.8em" minsize="1.8em">(</mo><mi>U</mi><mo>,</mo><mspace width="thinmathspace"></mspace><mi>Map</mi><mo maxsize="1.2em" minsize="1.2em">(</mo><msub><mi>X</mi> <mn>0</mn></msub><mo>,</mo><mspace width="thinmathspace"></mspace><msub><mi>A</mi> <mn>0</mn></msub><mo maxsize="1.2em" minsize="1.2em">)</mo><mo maxsize="1.8em" minsize="1.8em">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mspace width="thickmathspace"></mspace><mo>≃</mo><mspace width="thickmathspace"></mspace><mi>kTop</mi><mo maxsize="1.8em" minsize="1.8em">(</mo><mo stretchy="false">(</mo><msub><mi>p</mi> <mi>B</mi></msub><msub><mo stretchy="false">)</mo> <mo>!</mo></msub><mo stretchy="false">(</mo><mi>U</mi><mo>,</mo><msub><mi>p</mi> <mi>U</mi></msub><mo stretchy="false">)</mo><mo>,</mo><mspace width="thinmathspace"></mspace><mi>Map</mi><mo maxsize="1.2em" minsize="1.2em">(</mo><msub><mi>X</mi> <mn>0</mn></msub><mo>,</mo><mspace width="thinmathspace"></mspace><msub><mi>A</mi> <mn>0</mn></msub><mo maxsize="1.2em" minsize="1.2em">)</mo><mo maxsize="1.8em" minsize="1.8em">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mspace width="thickmathspace"></mspace><mo>≃</mo><mspace width="thickmathspace"></mspace><msub><mi>kTop</mi> <mrow><mo stretchy="false">/</mo><mi>B</mi></mrow></msub><mo maxsize="1.8em" minsize="1.8em">(</mo><mo stretchy="false">(</mo><mi>U</mi><mo>,</mo><msub><mi>p</mi> <mi>U</mi></msub><mo stretchy="false">)</mo><mo>,</mo><mspace width="thinmathspace"></mspace><msubsup><mi>p</mi> <mi>B</mi> <mo>*</mo></msubsup><mi>Map</mi><mo maxsize="1.2em" minsize="1.2em">(</mo><msub><mi>X</mi> <mn>0</mn></msub><mo>,</mo><mspace width="thinmathspace"></mspace><msub><mi>A</mi> <mn>0</mn></msub><mo maxsize="1.2em" minsize="1.2em">)</mo><mo maxsize="1.8em" minsize="1.8em">)</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \begin{aligned} & kTop_{/B} \Big( (U, p_U) ,\, \Map \big( p_B^\ast X_0 ,\, p_B^\ast A_0 \big) \Big) \\ & \;\simeq\; kTop_{/B} \big( (U, p_U) \times (B \times X_0, pr_{B}) ,\, p_B^\ast A_0 \big) \\ & \;\simeq\; kTop_{/B} \big( (U \times X_0, p_U \circ pr_U) ,\, p_B^\ast A_0 \big) \\ & \;\simeq\; kTop \Big( U \times X_0 ,\, A_0 \big) \\ & \;\simeq\; kTop \Big( U ,\, Map \big( X_0 ,\, A_0 \big) \Big) \\ & \;\simeq\; kTop \Big( (p_B)_! (U,p_U) ,\, Map \big( X_0 ,\, A_0 \big) \Big) \\ & \;\simeq\; kTop_{/B} \Big( (U,p_U) ,\, p_B^\ast Map \big( X_0 ,\, A_0 \big) \Big) \end{aligned} </annotation></semantics></math></div> <p>Here most steps are <a href="adjoint+functor#InTermsOfHomIsomorphism">Hom-isomorphisms</a> of the various <a class="existingWikiWord" href="/nlab/show/adjoint+functors">adjoint functors</a>: <a class="maruku-eqref" href="#eq:TerminalBaseChange">(4)</a> and <a class="maruku-eqref" href="#eq:ExponentialLawForFiberwiseMappingSpace">(7)</a>. Since this holds naturally for all <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>U</mi><mo>,</mo><msub><mi>p</mi> <mi>U</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(U, p_U)</annotation></semantics></math>, the claim follows by the <a class="existingWikiWord" href="/nlab/show/Yoneda+lemma">Yoneda lemma</a> (over the <a class="existingWikiWord" href="/nlab/show/large+category">large category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo maxsize="1.2em" minsize="1.2em">(</mo><msub><mi>kTop</mi> <mrow><mo stretchy="false">/</mo><mi>B</mi></mrow></msub><msup><mo maxsize="1.2em" minsize="1.2em">)</mo> <mi>op</mi></msup></mrow><annotation encoding="application/x-tex">\big(kTop_{/B}\big)^{op}</annotation></semantics></math>).</p> </div> </p> <p>Similarly:</p> <p> <div class='num_prop' id='PullbackOfFiberwiseMappingSpace'> <h6>Proposition</h6> <p><strong>(pullback of fiberwise mapping space)</strong> <br /> For <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mspace width="thinmathspace"></mspace><mo lspace="verythinmathspace">:</mo><mspace width="thinmathspace"></mspace><mi>B</mi><mo>′</mo><mo>⟶</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">f \,\colon\, B' \longrightarrow B</annotation></semantics></math> a <a class="existingWikiWord" href="/nlab/show/map">map</a> of base spaces <a class="maruku-eqref" href="#eq:kwHausBaseSpace">(1)</a>, the <a class="existingWikiWord" href="/nlab/show/pullback">pullback</a> <a class="maruku-eqref" href="#eq:BaseChangeAdjointTriple">(2)</a> along <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math> of the fiberwise mapping space (Def. <a class="maruku-ref" href="#FiberwiseMappingSpace"></a>) is the fiberwise mapping space of the pullback of the arguments:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msup><mi>f</mi> <mo>*</mo></msup><mi>Map</mi><mo maxsize="1.2em" minsize="1.2em">(</mo><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><msub><mi>p</mi> <mi>X</mi></msub><mo stretchy="false">)</mo><mo>,</mo><mspace width="thinmathspace"></mspace><mo stretchy="false">(</mo><mi>A</mi><mo>,</mo><msub><mi>p</mi> <mi>A</mi></msub><mo stretchy="false">)</mo><mo maxsize="1.2em" minsize="1.2em">)</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mo>≃</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mi>Map</mi><mo maxsize="1.2em" minsize="1.2em">(</mo><msup><mi>f</mi> <mo>*</mo></msup><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><msub><mi>p</mi> <mi>X</mi></msub><mo stretchy="false">)</mo><mo>,</mo><mspace width="thinmathspace"></mspace><msup><mi>f</mi> <mo>*</mo></msup><mo stretchy="false">(</mo><mi>A</mi><mo>,</mo><msub><mi>p</mi> <mi>A</mi></msub><mo stretchy="false">)</mo><mo maxsize="1.2em" minsize="1.2em">)</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> f^\ast Map \big( (X,p_X) ,\, (A, p_A) \big) \;\; \simeq \;\; Map \big( f^\ast (X,p_X) ,\, f^\ast (A, p_A) \big) \,. </annotation></semantics></math></div> <p>In other words: Pullback <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>f</mi> <mo>*</mo></msup></mrow><annotation encoding="application/x-tex">f^\ast</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/closed+functor">closed functor</a> with respect to fiberwise mapping spaces.</p> </div> <div class='proof'> <h6>Proof</h6> <p>For any <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>U</mi><mo>,</mo><msub><mi>p</mi> <mi>U</mi></msub><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>∈</mo><mspace width="thinmathspace"></mspace><msub><mi>kTop</mi> <mrow><mo stretchy="false">/</mo><mi>B</mi><mo>′</mo></mrow></msub></mrow><annotation encoding="application/x-tex">(U, p_U) \,\in\, kTop_{/B'}</annotation></semantics></math> we have the following sequence of <a class="existingWikiWord" href="/nlab/show/natural+isomorphisms">natural isomorphisms</a>:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable displaystyle="true" columnalign="right left right left right left right left right left" columnspacing="0em"><mtr><mtd></mtd> <mtd><msub><mi>kTop</mi> <mrow><mo stretchy="false">/</mo><mi>B</mi><mo>′</mo></mrow></msub><mo maxsize="1.8em" minsize="1.8em">(</mo><mo stretchy="false">(</mo><mi>U</mi><mo>,</mo><msub><mi>p</mi> <mi>U</mi></msub><mo stretchy="false">)</mo><mo>,</mo><mspace width="thinmathspace"></mspace><msup><mi>f</mi> <mo>*</mo></msup><mi>Map</mi><mo maxsize="1.2em" minsize="1.2em">(</mo><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><msub><mi>p</mi> <mi>X</mi></msub><mo stretchy="false">)</mo><mo>,</mo><mspace width="thinmathspace"></mspace><mo stretchy="false">(</mo><mi>A</mi><mo>,</mo><msub><mi>p</mi> <mi>A</mi></msub><mo stretchy="false">)</mo><mo maxsize="1.2em" minsize="1.2em">)</mo><mo maxsize="1.8em" minsize="1.8em">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mspace width="thickmathspace"></mspace><mo>≃</mo><mspace width="thickmathspace"></mspace><msub><mi>kTop</mi> <mrow><mo stretchy="false">/</mo><mi>B</mi></mrow></msub><mo maxsize="1.8em" minsize="1.8em">(</mo><msub><mi>f</mi> <mo>!</mo></msub><mo stretchy="false">(</mo><mi>U</mi><mo>,</mo><msub><mi>p</mi> <mi>U</mi></msub><mo stretchy="false">)</mo><mo>,</mo><mspace width="thinmathspace"></mspace><mi>Map</mi><mo maxsize="1.2em" minsize="1.2em">(</mo><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><msub><mi>p</mi> <mi>X</mi></msub><mo stretchy="false">)</mo><mo>,</mo><mspace width="thinmathspace"></mspace><mo stretchy="false">(</mo><mi>A</mi><mo>,</mo><msub><mi>p</mi> <mi>A</mi></msub><mo stretchy="false">)</mo><mo maxsize="1.2em" minsize="1.2em">)</mo><mo maxsize="1.8em" minsize="1.8em">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mspace width="thickmathspace"></mspace><mo>≃</mo><mspace width="thickmathspace"></mspace><msub><mi>kTop</mi> <mrow><mo stretchy="false">/</mo><mi>B</mi></mrow></msub><mo maxsize="1.8em" minsize="1.8em">(</mo><mo maxsize="1.2em" minsize="1.2em">(</mo><msub><mi>f</mi> <mo>!</mo></msub><mo stretchy="false">(</mo><mi>U</mi><mo>,</mo><msub><mi>p</mi> <mi>U</mi></msub><mo stretchy="false">)</mo><mo maxsize="1.2em" minsize="1.2em">)</mo><mo>×</mo><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><msub><mi>p</mi> <mi>X</mi></msub><mo stretchy="false">)</mo><mo>,</mo><mspace width="thinmathspace"></mspace><mo stretchy="false">(</mo><mi>A</mi><mo>,</mo><msub><mi>p</mi> <mi>A</mi></msub><mo stretchy="false">)</mo><mo maxsize="1.8em" minsize="1.8em">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mspace width="thickmathspace"></mspace><mo>≃</mo><mspace width="thickmathspace"></mspace><msub><mi>kTop</mi> <mrow><mo stretchy="false">/</mo><mi>B</mi></mrow></msub><mo maxsize="1.8em" minsize="1.8em">(</mo><msub><mi>f</mi> <mo>!</mo></msub><mo maxsize="1.2em" minsize="1.2em">(</mo><mo stretchy="false">(</mo><mi>U</mi><mo>,</mo><msub><mi>p</mi> <mi>U</mi></msub><mo stretchy="false">)</mo><mo>×</mo><msup><mi>f</mi> <mo>*</mo></msup><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><msub><mi>p</mi> <mi>X</mi></msub><mo stretchy="false">)</mo><mo maxsize="1.2em" minsize="1.2em">)</mo><mo>,</mo><mspace width="thinmathspace"></mspace><mo stretchy="false">(</mo><mi>A</mi><mo>,</mo><msub><mi>p</mi> <mi>A</mi></msub><mo stretchy="false">)</mo><mo maxsize="1.8em" minsize="1.8em">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mspace width="thickmathspace"></mspace><mo>≃</mo><mspace width="thickmathspace"></mspace><msub><mi>kTop</mi> <mrow><mo stretchy="false">/</mo><mi>B</mi><mo>′</mo></mrow></msub><mo maxsize="1.8em" minsize="1.8em">(</mo><mo stretchy="false">(</mo><mi>U</mi><mo>,</mo><msub><mi>p</mi> <mi>U</mi></msub><mo stretchy="false">)</mo><mo>×</mo><msup><mi>f</mi> <mo>*</mo></msup><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><msub><mi>p</mi> <mi>X</mi></msub><mo stretchy="false">)</mo><mo>,</mo><mspace width="thinmathspace"></mspace><msup><mi>f</mi> <mo>*</mo></msup><mo stretchy="false">(</mo><mi>A</mi><mo>,</mo><msub><mi>p</mi> <mi>A</mi></msub><mo stretchy="false">)</mo><mo maxsize="1.8em" minsize="1.8em">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mspace width="thickmathspace"></mspace><mo>≃</mo><mspace width="thickmathspace"></mspace><msub><mi>kTop</mi> <mrow><mo stretchy="false">/</mo><mi>B</mi><mo>′</mo></mrow></msub><mo maxsize="1.8em" minsize="1.8em">(</mo><mo stretchy="false">(</mo><mi>U</mi><mo>,</mo><msub><mi>p</mi> <mi>U</mi></msub><mo stretchy="false">)</mo><mo>,</mo><mspace width="thinmathspace"></mspace><mi>Map</mi><mo maxsize="1.2em" minsize="1.2em">(</mo><msup><mi>f</mi> <mo>*</mo></msup><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><msub><mi>p</mi> <mi>X</mi></msub><mo stretchy="false">)</mo><mo>,</mo><mspace width="thinmathspace"></mspace><msup><mi>f</mi> <mo>*</mo></msup><mo stretchy="false">(</mo><mi>A</mi><mo>,</mo><msub><mi>p</mi> <mi>A</mi></msub><mo stretchy="false">)</mo><mo maxsize="1.2em" minsize="1.2em">)</mo><mo maxsize="1.8em" minsize="1.8em">)</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \begin{aligned} & kTop_{/B'} \Big( (U,p_U) ,\, f^\ast Map \big( (X,p_X) ,\, (A,p_A) \big) \Big) \\ & \;\simeq\; kTop_{/B} \Big( f_! (U,p_U) ,\, Map \big( (X,p_X) ,\, (A,p_A) \big) \Big) \\ & \;\simeq\; kTop_{/B} \Big( \big( f_!(U, p_U) \big) \times (X, p_X) ,\, (A,p_A) \Big) \\ & \;\simeq\; kTop_{/B} \Big( f_! \big( (U, p_U) \times f^\ast (X, p_X) \big) ,\, (A,p_A) \Big) \\ & \;\simeq\; kTop_{/B'} \Big( (U, p_U) \times f^\ast (X, p_X) ,\, f^\ast (A,p_A) \Big) \\ & \;\simeq\; kTop_{/B'} \Big( (U, p_U) ,\, Map \big( f^\ast (X, p_X) ,\, f^\ast (A,p_A) \big) \Big) \end{aligned} </annotation></semantics></math></div> <p>Here the crucial step, besides various <a href="adjoint+functor#InTermsOfHomIsomorphism">Hom-isomorphisms</a>, is the use of Cartesian “<a class="existingWikiWord" href="/nlab/show/Frobenius+reciprocity">Frobenius reciprocity</a>” <a class="maruku-eqref" href="#eq:CartesianFrobeniusReciprocity">(3)</a>.</p> <p>Since these isomorphism are <a class="existingWikiWord" href="/nlab/show/natural+isomorphism">natural</a> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>U</mi><mo>,</mo><msub><mi>p</mi> <mi>U</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(U,p_U)</annotation></semantics></math>, the claim follows by the <a class="existingWikiWord" href="/nlab/show/Yoneda+embedding">Yoneda embedding</a> (for the <a class="existingWikiWord" href="/nlab/show/large+category">large category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo maxsize="1.2em" minsize="1.2em">(</mo><msub><mi>kTop</mi> <mrow><mo stretchy="false">/</mo><mi>B</mi><mo>′</mo></mrow></msub><msup><mo maxsize="1.2em" minsize="1.2em">)</mo> <mi>op</mi></msup></mrow><annotation encoding="application/x-tex">\big( kTop_{/B'}\big)^{op}</annotation></semantics></math>).</p> </div> ,</p> <p> <div class='num_remark' id='FiberOfFiberwiseMappingSpace'> <h6>Example</h6> <p><strong>(fiber of fiberwise mapping space is mapping space of fibers)</strong> <br /> For <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>b</mi><mo>∈</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">b \in B</annotation></semantics></math>, the <a class="existingWikiWord" href="/nlab/show/fiber">fiber</a> of the fiberwise mapping space fibration (Def. <a class="maruku-ref" href="#FiberwiseMappingSpace"></a>) is <a class="existingWikiWord" href="/nlab/show/homeomorphism">homemorphic</a> to the ordinary <a class="existingWikiWord" href="/nlab/show/compact-open+topology">mapping space</a> betwee the <a class="existingWikiWord" href="/nlab/show/fibers">fibers</a>:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>Map</mi><mo maxsize="1.2em" minsize="1.2em">(</mo><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><msub><mi>p</mi> <mi>x</mi></msub><mo stretchy="false">)</mo><mo>,</mo><mspace width="thinmathspace"></mspace><mo stretchy="false">(</mo><mi>A</mi><mo>,</mo><msub><mi>p</mi> <mi>A</mi></msub><mo stretchy="false">)</mo><msub><mo maxsize="1.2em" minsize="1.2em">)</mo> <mi>b</mi></msub><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mo>≃</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mi>Map</mi><mo maxsize="1.2em" minsize="1.2em">(</mo><msub><mi>X</mi> <mi>b</mi></msub><mo>,</mo><mspace width="thinmathspace"></mspace><msub><mi>A</mi> <mi>b</mi></msub><mo maxsize="1.2em" minsize="1.2em">)</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> Map \big( (X,p_x) ,\, (A,p_A) \big)_b \;\; \simeq \;\; Map \big( X_b ,\, A_b \big) \,. </annotation></semantics></math></div> <p></p> </div> (e.g. <a href="#MaySigurdsson06">May & Sigurdsson 2006, p. 21</a>) <div class='proof'> <h6>Proof</h6> <p>This is immediate from concrete analysis of the defining <a class="existingWikiWord" href="/nlab/show/pullback">pullback</a>-diagram <a class="maruku-eqref" href="#eq:FiberwiseMappingSpaceAsPullback">(6)</a> in Def. <a class="maruku-ref" href="#FiberwiseMappingSpace"></a>, but it is also the special case of Prop. <a class="maruku-ref" href="#PullbackOfFiberwiseMappingSpace"></a> for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi><mo>=</mo><mo stretchy="false">{</mo><mi>b</mi><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">B = \{b\}</annotation></semantics></math>.</p> </div> </p> <h3 id="homotopy_theory_of_the_fiberwise_mapping_space">Homotopy theory of the fiberwise mapping space</h3> <p> <div class='num_prop' id='FiberwiseMappingSpacePreservesHFibrations'> <h6>Proposition</h6> <p><strong>(fiberwise mapping space preserves h-fibrations)</strong> <br /> If <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>p</mi> <mi>X</mi></msub><mo lspace="verythinmathspace">:</mo><mi>X</mi><mo>→</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">p_X \colon X \to B</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>p</mi> <mi>A</mi></msub><mo lspace="verythinmathspace">:</mo><mi>A</mi><mo>→</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">p_A \colon A \to B</annotation></semantics></math> are <a class="existingWikiWord" href="/nlab/show/Hurewicz+fibrations">Hurewicz fibrations</a>, then so is the map <a class="maruku-eqref" href="#eq:FiberwiseMappingSpaceAsPullback">(6)</a> out of their fiberwise mapping space (Def. <a class="maruku-ref" href="#FiberwiseMappingSpace"></a>):</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>p</mi> <mi>X</mi></msub><mo>,</mo><msub><mi>p</mi> <mi>A</mi></msub><mspace width="thinmathspace"></mspace><mo>∈</mo><mspace width="thinmathspace"></mspace><mi>hFib</mi><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mo>⇒</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><msub><mi>p</mi> <mrow><mi>Map</mi><mo maxsize="1.2em" minsize="1.2em">(</mo><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><msub><mi>p</mi> <mi>X</mi></msub><mo stretchy="false">)</mo><mo>,</mo><mo stretchy="false">(</mo><mi>A</mi><mo>,</mo><msub><mi>p</mi> <mi>A</mi></msub><mo stretchy="false">)</mo><mo maxsize="1.2em" minsize="1.2em">)</mo></mrow></msub><mspace width="thickmathspace"></mspace><mo>∈</mo><mspace width="thickmathspace"></mspace><mi>hFib</mi><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> p_X, p_A \,\in\, hFib \;\;\;\;\;\; \Rightarrow \;\;\;\;\;\; p_{ Map\big( (X,p_X) , (A,p_A)\big) } \;\in\; hFib \,. </annotation></semantics></math></div> <p></p> </div> (This is due to <a href="#Booth70">Booth 1970, §6.1</a>, see <a href="#MaySigurdsson06">MaSi06, Prop. 1.3.11</a>.)</p> <p> <div class='num_remark' id='FibMapSpaceDoesNotPreserveWeakHausdorffness'> <h6>Remark</h6> <p><strong>(fiberwise mapping space does not preserve weak Hausdorffness)</strong> <br /> Even if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> are <a class="existingWikiWord" href="/nlab/show/weak+Hausdorff+spaces">weak Hausdorff spaces</a> over the weak Hausdorff space <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math> <a class="maruku-eqref" href="#eq:kwHausBaseSpace">(1)</a>, their fiberwise mapping space (Def. <a class="maruku-ref" href="#FiberwiseMappingSpace"></a>) need not be weak Hausdorff (<a href="#BoothBrown74a">Booth & Brown 1974a</a>). Sufficient conditions for this to be the case are given in <a href="#Lewis85">Lewis 1985, Prop. 1.5</a></p> <p>On the other hand, the suitable <a class="existingWikiWord" href="/nlab/show/cofibrant+resolution">cofibrant resolution</a> of the fiberwise mapping space will again be weak Hausdorff (see <a href="#MaySigurdsson06">MaSi06, p. 19</a>).</p> </div> </p> <h2 id="related_concepts">Related concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/retractive+space">retractive space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/parameterized+spectrum">parameterized spectrum</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/model+structure+for+parameterized+spectra">model structure for parameterized spectra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/rational+parametrized+homotopy+theory">rational parametrized homotopy theory</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/rational+fibration+lemma">rational fibration lemma</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/rational+parameterized+stable+homotopy+theory">rational parameterized stable homotopy theory</a></p> </li> </ul> <h2 id="references">References</h2> <div> <h3 id="ParameterizedTopology">Exponential law for parameterized topological spaces</h3> <p>On <a class="existingWikiWord" href="/nlab/show/exponential+law+for+spaces">exponential objects</a> (<a class="existingWikiWord" href="/nlab/show/internal+homs">internal homs</a>) in <a class="existingWikiWord" href="/nlab/show/slice+categories">slice categories</a> of (<a class="existingWikiWord" href="/nlab/show/compactly+generated+topological+spaces">compactly generated</a>) <a class="existingWikiWord" href="/nlab/show/topological+spaces">topological spaces</a> – see at <em><a class="existingWikiWord" href="/nlab/show/parameterized+homotopy+theory">parameterized homotopy theory</a></em>):</p> <ul> <li id="Booth70"> <p><a class="existingWikiWord" href="/nlab/show/Peter+I.+Booth">Peter I. Booth</a>, <em>The Exponential Law of Maps I</em>, Proceedings of the London Mathematical Society <strong>s3-20</strong> 1 (1970) 179-192 <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo></mrow><annotation encoding="application/x-tex">[</annotation></semantics></math><a href="https://doi.org/10.1112/plms/s3-20.1.179">doi:10.1112/plms/s3-20.1.179</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">]</annotation></semantics></math></p> </li> <li id="Booth71"> <p><a class="existingWikiWord" href="/nlab/show/Peter+I.+Booth">Peter I. Booth</a>, <em>The exponential law of maps. II</em>, Mathematische Zeitschrift <strong>121</strong> (1971) 311–319 <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo></mrow><annotation encoding="application/x-tex">[</annotation></semantics></math><a href="https://doi.org/10.1007/BF01109977">doi:10.1007/BF01109977</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">]</annotation></semantics></math></p> </li> <li id="BoothBrown78a"> <p><a class="existingWikiWord" href="/nlab/show/Peter+I.+Booth">Peter I. Booth</a>, <a class="existingWikiWord" href="/nlab/show/Ronnie+Brown">Ronnie Brown</a>, <em>Spaces of partial maps, fibred mapping spaces and the compact-open topology</em>, General Topology and its Applications <strong>8</strong> 2 (1978) 181-195 <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo></mrow><annotation encoding="application/x-tex">[</annotation></semantics></math><a href="https://doi.org/10.1016/0016-660X(78)90049-1">doi:10.1016/0016-660X(78)90049-1</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">]</annotation></semantics></math></p> </li> <li id="BoothBrown78b"> <p><a class="existingWikiWord" href="/nlab/show/Peter+I.+Booth">Peter I. Booth</a>, <a class="existingWikiWord" href="/nlab/show/Ronnie+Brown">Ronnie Brown</a>, <em>On the application of fibred mapping spaces to exponential laws for bundles, ex-spaces and other categories of maps</em>, General Topology and its Applications <strong>8</strong> 2 (1978) 165-179 <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo></mrow><annotation encoding="application/x-tex">[</annotation></semantics></math><a href="https://doi.org/10.1016/0016-660X(78)90048-X">doi:10.1016/0016-660X(78)90048-X</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">]</annotation></semantics></math></p> </li> <li id="Lewis85"> <p><a class="existingWikiWord" href="/nlab/show/L.+Gaunce+Lewis%2C+Jr.">L. Gaunce Lewis, Jr.</a>, §1 of: <em>Open maps, colimits, and a convenient category of fibre spaces</em>, Topology and its Applications <strong>19</strong> 1 (1985) 75-89 <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo></mrow><annotation encoding="application/x-tex">[</annotation></semantics></math><a href="https://doi.org/10.1016/0166-8641(85)90087-2">doi.org/10.1016/0166-8641(85)90087-2</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">]</annotation></semantics></math></p> </li> </ul> <p>And with an eye towards <a class="existingWikiWord" href="/nlab/show/parameterized+homotopy+theory">parameterized homotopy theory</a>:</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Ioan+Mackenzie+James">Ioan Mackenzie James</a>: §II.9 in: <em>Fibrewise topology</em>, Cambridge Tracts in Mathematics, Cambridge University Press (1989) <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo></mrow><annotation encoding="application/x-tex">[</annotation></semantics></math>ISBN:9780521360906<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">]</annotation></semantics></math></p> </li> <li id="MaySigurdsson06"> <p><a class="existingWikiWord" href="/nlab/show/Peter+May">Peter May</a>, <a class="existingWikiWord" href="/nlab/show/Johann+Sigurdsson">Johann Sigurdsson</a>, §1.3.7-§1.3.9 in: <em><a class="existingWikiWord" href="/nlab/show/Parametrized+Homotopy+Theory">Parametrized Homotopy Theory</a></em>, Mathematical Surveys and Monographs, vol. 132, AMS 2006 (<a href="https://bookstore.ams.org/surv-132">ISBN:978-0-8218-3922-5</a>, <a href="https://arxiv.org/abs/math/0411656">arXiv:math/0411656</a>, <a href="http://www.math.uchicago.edu/~may/EXTHEORY/MaySig.pdf">pdf</a>)</p> </li> </ul> </div> <h3 id="parameterized_fiberwise_homotopy_theory">Parameterized (“fiberwise”) homotopy theory</h3> <p>On the <a class="existingWikiWord" href="/nlab/show/homotopy+theory">homotopy theory</a> of such parameterized topological spaces:</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Ioan+Mackenzie+James">Ioan Mackenzie James</a>, §IV of: <em>Fibrewise topology</em>, Cambridge Tracts in Mathematics, Cambridge University Press (1989) [ISBN:9780521360906]</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Ioan+Mackenzie+James">Ioan Mackenzie James</a>, <em><a class="existingWikiWord" href="/nlab/show/Introduction+to+fibrewise+homotopy+theory">Introduction to fibrewise homotopy theory</a></em>, in <a class="existingWikiWord" href="/nlab/show/Ioan+Mackenzie+James">Ioan Mackenzie James</a> (ed.), <em><a class="existingWikiWord" href="/nlab/show/Handbook+of+Algebraic+Topology">Handbook of Algebraic Topology</a></em> (1995)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Michael+C.+Crabb">Michael C. Crabb</a>, <a class="existingWikiWord" href="/nlab/show/Ioan+Mackenzie+James">Ioan Mackenzie James</a>: <em>Fiberwise homotopy theory</em>, Springer Monographs in Mathematics, Springer (1998) [<a href="https://doi.org/10.1007/978-1-4471-1265-5">doi:10.1007/978-1-4471-1265-5</a>, <a href="https://www.maths.ed.ac.uk/~v1ranick/papers/crabbjames.pdf">pdf</a> ,<a href="https://www.gbv.de/dms/ilmenau/toc/243540361.PDF">pdf</a>]</p> </li> </ul> <p>On <a class="existingWikiWord" href="/nlab/show/model+structures+for+parameterized+spectra">model structures for parameterized spectra</a>:</p> <ul> <li id="MaySigurdsson06"> <p><a class="existingWikiWord" href="/nlab/show/Peter+May">Peter May</a>, <a class="existingWikiWord" href="/nlab/show/Johann+Sigurdsson">Johann Sigurdsson</a>, <em><a class="existingWikiWord" href="/nlab/show/Parametrized+Homotopy+Theory">Parametrized Homotopy Theory</a></em>, Mathematical Surveys and Monographs, vol. 132, AMS 2006 (<a href="https://bookstore.ams.org/surv-132">ISBN:978-0-8218-3922-5</a>, <a href="https://arxiv.org/abs/math/0411656">arXiv:math/0411656</a>, <a href="http://www.math.uchicago.edu/~may/EXTHEORY/MaySig.pdf">pdf</a>)</p> </li> <li id="BraunackMayer19"> <p><a class="existingWikiWord" href="/nlab/show/Vincent+Braunack-Mayer">Vincent Braunack-Mayer</a>, <em>Combinatorial parametrised spectra</em>, Algebr. Geom. Topol. <strong>21</strong> (2021) 801-891 [<a href="https://arxiv.org/abs/1907.08496">arXiv:1907.08496</a>, <a href="https://doi.org/10.2140/agt.2021.21.801">doi:10.2140/agt.2021.21.801</a>]</p> <blockquote> <p>(based on the <a class="existingWikiWord" href="/schreiber/show/thesis+Braunack-Mayer">PhD thesis</a>)</p> </blockquote> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Fabian+Hebestreit">Fabian Hebestreit</a>, <a class="existingWikiWord" href="/nlab/show/Steffen+Sagave">Steffen Sagave</a>, <a class="existingWikiWord" href="/nlab/show/Christian+Schlichtkrull">Christian Schlichtkrull</a>, <em>Multiplicative parametrized homotopy theory via symmetric spectra in retractive spaces</em>, Forum of Mathematics, Sigma <strong>8</strong> (2020) e16 [<a href="https://arxiv.org/abs/1904.01824">arXiv:1904.01824</a>, <a href="https://doi.org/10.1017/fms.2020.11">doi:10.1017/fms.2020.11</a>]</p> </li> <li id="Malkiewich19"> <p><a class="existingWikiWord" href="/nlab/show/Cary+Malkiewich">Cary Malkiewich</a>, <em>Parametrized spectra, a low-tech approach</em> [<a href="https://arxiv.org/abs/1906.04773">arXiv:1906.04773</a>, user guide: <a href="https://people.math.binghamton.edu/malkiewich/users_guide_parametrized.pdf">pdf</a>, <a class="existingWikiWord" href="/nlab/files/Malkiewich-ParametrizedSpectraUserGuide.pdf" title="pdf">pdf</a>]</p> </li> <li id="Malkiewich23"> <p><a class="existingWikiWord" href="/nlab/show/Cary+Malkiewich">Cary Malkiewich</a>, <em>A convenient category of parametrized spectra</em> [<a href="https://arxiv.org/abs/2305.15327">arXiv:2305.15327</a>]</p> </li> </ul> <p>Discussion in <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category+theory">(∞,1)-category theory</a>:</p> <ul> <li id="AndoBlumbergGepner11"><a class="existingWikiWord" href="/nlab/show/Matthew+Ando">Matthew Ando</a>, <a class="existingWikiWord" href="/nlab/show/Andrew+Blumberg">Andrew Blumberg</a>, <a class="existingWikiWord" href="/nlab/show/David+Gepner">David Gepner</a>, <em>Parametrized spectra, multiplicative Thom spectra, and the twisted Umkehr map</em>, Geom. Topol. 22 (2018) 3761-3825 (<a href="http://arxiv.org/abs/1112.2203">arXiv:1112.2203</a>)</li> </ul> <p>Discussion as a <a class="existingWikiWord" href="/nlab/show/linear+homotopy+type+theory">linear homotopy type theory</a>:</p> <ul> <li id="Schreiber14"> <p><a class="existingWikiWord" href="/nlab/show/Urs+Schreiber">Urs Schreiber</a>, <em><a class="existingWikiWord" href="/schreiber/show/Quantization+via+Linear+homotopy+types">Quantization via Linear homotopy types</a></em> [<a href="http://arxiv.org/abs/1402.7041">arXiv:1402.7041</a>]</p> <blockquote> <p>(intended <a class="existingWikiWord" href="/nlab/show/categorical+semantics">categorical semantics</a>)</p> </blockquote> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Mitchell+Riley">Mitchell Riley</a>, <a class="existingWikiWord" href="/nlab/show/Eric+Finster">Eric Finster</a>, <a class="existingWikiWord" href="/nlab/show/Daniel+R.+Licata">Daniel R. Licata</a>, <em>Synthetic Spectra via a Monadic and Comonadic Modality</em> [<a href="https://arxiv.org/abs/2102.04099">arXiv:2102.04099</a>]</p> <blockquote> <p>(<a class="existingWikiWord" href="/nlab/show/inference+rules">inference rules</a> for the <a class="existingWikiWord" href="/nlab/show/classical+modality">classical modality</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>♮</mo></mrow><annotation encoding="application/x-tex">\natural</annotation></semantics></math>)</p> </blockquote> </li> <li id="Riley22Thesis"> <p><a class="existingWikiWord" href="/nlab/show/Mitchell+Riley">Mitchell Riley</a>, <em>A Bunched Homotopy Type Theory for Synthetic Stable Homotopy Theory</em>, PhD Thesis (2022) [<a href="https://doi.org/10.14418/wes01.3.139">doi:10.14418/wes01.3.139</a>, <a href="https://digitalcollections.wesleyan.edu/object/ir%3A3269">ir:3269</a>, <a href="https://mvr.hosting.nyu.edu/pubs/thesis.pdf">pdf</a>]</p> <blockquote> <p>(including <a class="existingWikiWord" href="/nlab/show/inference+rules">inference rules</a> for the <a class="existingWikiWord" href="/nlab/show/multiplicative+conjunction">multiplicative conjunction</a> by bringing in the required <a class="existingWikiWord" href="/nlab/show/bunched+logic">bunched logic</a>)</p> </blockquote> </li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on May 25, 2023 at 09:40:08. See the <a href="/nlab/history/parameterized+homotopy+theory" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/parameterized+homotopy+theory" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/10481/#Item_10">Discuss</a><span class="backintime"><a href="/nlab/revision/parameterized+homotopy+theory/23" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/parameterized+homotopy+theory" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/parameterized+homotopy+theory" accesskey="S" class="navlink" id="history" rel="nofollow">History (23 revisions)</a> <a href="/nlab/show/parameterized+homotopy+theory/cite" style="color: black">Cite</a> <a href="/nlab/print/parameterized+homotopy+theory" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/parameterized+homotopy+theory" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>