CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 69 results for author: <span class="mathjax">Sutarto, R</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Sutarto%2C+R">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Sutarto, R"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Sutarto%2C+R&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Sutarto, R"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Sutarto%2C+R&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Sutarto%2C+R&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Sutarto%2C+R&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.21774">arXiv:2410.21774</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.21774">pdf</a>, <a href="https://arxiv.org/format/2410.21774">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/jacs.4c05951">10.1021/jacs.4c05951 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Impact of synthesis method on the structure and function of high entropy oxides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gonz%C3%A1lez-Rivas%2C+M+U">Mario U. Gonz谩lez-Rivas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aamlid%2C+S+S">Solveig S. Aamlid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rutherford%2C+M+R">Megan R. Rutherford</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Freese%2C+J">Jessica Freese</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">Ronny Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+N">Ning Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Villalobos-Portillo%2C+E+E">Edgar E. Villalobos-Portillo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Castillo-Michel%2C+H">Hiram Castillo-Michel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+M">Minu Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takagi%2C+H">Hidenori Takagi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Green%2C+R+J">Robert J. Green</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hallas%2C+A+M">Alannah M. Hallas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.21774v1-abstract-short" style="display: inline;"> The term sample dependence describes the troublesome tendency of nominally equivalent samples to exhibit different physical properties. High entropy oxides (HEOs) are a class of materials where sample dependence has the potential to be particularly profound due to their inherent chemical complexity. In this work, we prepare a spinel HEO of identical nominal composition by five distinct methods, sp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21774v1-abstract-full').style.display = 'inline'; document.getElementById('2410.21774v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.21774v1-abstract-full" style="display: none;"> The term sample dependence describes the troublesome tendency of nominally equivalent samples to exhibit different physical properties. High entropy oxides (HEOs) are a class of materials where sample dependence has the potential to be particularly profound due to their inherent chemical complexity. In this work, we prepare a spinel HEO of identical nominal composition by five distinct methods, spanning a range of thermodynamic and kinetic conditions: solid state, high pressure, hydrothermal, molten salt, and combustion syntheses. By structurally characterizing these five samples across all length scales with a variety of x-ray methods, we find that while the average structure is unaltered, the samples vary significantly in their local structures and their microstructures. The most profound differences are observed at intermediate length scales, both in terms of crystallite morphology and cation homogeneity. As revealed by x-ray fluorescence microscopy ideal cation homogeneity is achieved only in the case of combustion synthesis. These structural differences in turn significantly alter the observed functional properties, which we demonstrate via characterization of their magnetic response. While ferrimagnetic order is retained across all five samples, the sharpness of the transition, the size of the saturated moment, and the coercivity all show marked variations with synthesis method. We conclude that the chemical flexibility inherent to HEOs is complemented by strong synthesis method dependence, providing another axis along which to optimize these materials for a wide range of applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21774v1-abstract-full').style.display = 'none'; document.getElementById('2410.21774v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of the American Chemical Society 146, 38, 26048-26059 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.02007">arXiv:2410.02007</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.02007">pdf</a>, <a href="https://arxiv.org/ps/2410.02007">ps</a>, <a href="https://arxiv.org/format/2410.02007">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Superconductivity in the parent infinite-layer nickelate NdNiO$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Parzyck%2C+C+T">C. T. Parzyck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Y. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bhatt%2C+L">L. Bhatt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+M">M. Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arthur%2C+Z">Z. Arthur</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pedersen%2C+T+M">T. M. Pedersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">R. Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+S">S. Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">J. Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisogni%2C+V">V. Bisogni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Herranz%2C+G">G. Herranz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Georgescu%2C+A+B">A. B. Georgescu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hawthorn%2C+D+G">D. G. Hawthorn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kourkoutis%2C+L+F">L. F. Kourkoutis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Muller%2C+D+A">D. A. Muller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlom%2C+D+G">D. G. Schlom</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+K+M">K. M. Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.02007v1-abstract-short" style="display: inline;"> We report evidence for superconductivity with onset temperatures up to 11 K in thin films of the infinite-layer nickelate parent compound NdNiO$_2$. A combination of oxide molecular-beam epitaxy and atomic hydrogen reduction yields samples with high crystallinity and low residual resistivities, a substantial fraction of which exhibit superconducting transitions. We survey a large series of samples&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02007v1-abstract-full').style.display = 'inline'; document.getElementById('2410.02007v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.02007v1-abstract-full" style="display: none;"> We report evidence for superconductivity with onset temperatures up to 11 K in thin films of the infinite-layer nickelate parent compound NdNiO$_2$. A combination of oxide molecular-beam epitaxy and atomic hydrogen reduction yields samples with high crystallinity and low residual resistivities, a substantial fraction of which exhibit superconducting transitions. We survey a large series of samples with a variety of techniques, including electrical transport, scanning transmission electron microscopy, x-ray absorption spectroscopy, and resonant inelastic x-ray scattering, to investigate the possible origins of superconductivity. We propose that superconductivity could be intrinsic to the undoped infinite-layer nickelates but suppressed by disorder due to its nodal order parameter, a finding which would necessitate a reconsideration of the nickelate phase diagram. Another possible hypothesis is that the parent materials can be hole doped from randomly dispersed apical oxygen atoms, which would suggest an alternative pathway for achieving superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02007v1-abstract-full').style.display = 'none'; document.getElementById('2410.02007v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main: 10 pages, 6 figures. Supplementary: 9 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.04121">arXiv:2409.04121</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.04121">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Resolving the Electronic Ground State of La3Ni2O7-未 Films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+X">Xiaolin Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">Ronny Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X">Xianxin Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jianfeng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+H">Hai Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+T">Tao Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jiangping Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Comin%2C+R">Riccardo Comin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X+J">X. J. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zhihai Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.04121v1-abstract-short" style="display: inline;"> The recent discovery of a superconductivity signature in La3Ni2O7-未 under a pressure of 14 GPa, with a superconducting transition temperature of around 80 K, has attracted considerable attention. An important aspect of investigating electronic structures is discerning the extent to which the electronic ground state of La3Ni2O7-未 resembles the parent state of the cuprate superconductor, a charge tr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04121v1-abstract-full').style.display = 'inline'; document.getElementById('2409.04121v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.04121v1-abstract-full" style="display: none;"> The recent discovery of a superconductivity signature in La3Ni2O7-未 under a pressure of 14 GPa, with a superconducting transition temperature of around 80 K, has attracted considerable attention. An important aspect of investigating electronic structures is discerning the extent to which the electronic ground state of La3Ni2O7-未 resembles the parent state of the cuprate superconductor, a charge transfer insulator with long-range antiferromagnetism. Through X-ray absorption spectroscopy, we have uncovered the crucial influence of oxygen ligands on the electronic ground states of the Ni ions, displaying a charge transfer nature akin to cuprate but with distinct orbital configurations. Both in-plane and out-of-plane Zhang-Rice singlets associated with Ni d_(x^2-y^2 ) and d_(z^2) orbitals are identified, together with a strong interlayer coupling through inner apical oxygen. Additionally, in La3Ni2O7-未 films, we have detected a superlattice reflection (1/4, 1/4, L) at the Ni L absorption edge using resonant X-ray scattering measurements. Further examination of the resonance profile indicates that the reflection originates from the Ni d orbitals. By evaluating the reflection&#39;s azimuthal angle dependence, we have confirmed the presence of collinear antiferromagnetic spin ordering and charge-like anisotropy ordered with the same periodicity. Notably, our findings reveal a microscopic relationship between these two components in the temperature dependence of the scattering intensity of the reflection. This investigation enriches our understanding of high-temperature superconductivity in La3Ni2O7-未 under high pressure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04121v1-abstract-full').style.display = 'none'; document.getElementById('2409.04121v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.03210">arXiv:2409.03210</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.03210">pdf</a>, <a href="https://arxiv.org/format/2409.03210">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Anisotropic Spin Stripe Domains in Bilayer La$_3$Ni$_2$O$_7$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gupta%2C+N+K">N. K Gupta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gong%2C+R">R. Gong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Y. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+M">M. Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parzyck%2C+C+T">C. T. Parzyck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gregory%2C+B+Z">B. Z. Gregory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Costa%2C+N">N. Costa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">R. Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sarker%2C+S">S. Sarker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singer%2C+A">A. Singer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlom%2C+D+G">D. G. Schlom</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+K+M">K. M. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hawthorn%2C+D+G">D. G. Hawthorn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.03210v1-abstract-short" style="display: inline;"> The discovery of superconductivity in La$_3$Ni$_2$O$_7$ under pressure has motivated the investigation of a parent spin density wave (SDW) state which could provide the underlying pairing interaction. Here, we employ resonant soft x-ray scattering and polarimetry on thin films of bilayer La$_3$Ni$_2$O$_7$ to determine that the magnetic structure of the SDW forms unidirectional diagonal spin stripe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03210v1-abstract-full').style.display = 'inline'; document.getElementById('2409.03210v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.03210v1-abstract-full" style="display: none;"> The discovery of superconductivity in La$_3$Ni$_2$O$_7$ under pressure has motivated the investigation of a parent spin density wave (SDW) state which could provide the underlying pairing interaction. Here, we employ resonant soft x-ray scattering and polarimetry on thin films of bilayer La$_3$Ni$_2$O$_7$ to determine that the magnetic structure of the SDW forms unidirectional diagonal spin stripes with moments lying within the NiO$_2$ plane and perpendicular to $\mathbf{Q}_{SDW}$, but without the strong charge disproportionation typically associated with other nickelates. These stripes form anisotropic domains with shorter correlation lengths perpendicular versus parallel to $\mathbf{Q}_{SDW}$, revealing nanoscale rotational and translational symmetry breaking analogous to the cuprate and Fe-based superconductors, with Bloch-like antiferromagnetic domain walls separating orthogonal domains. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03210v1-abstract-full').style.display = 'none'; document.getElementById('2409.03210v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages including supplementary, 4 figures + 9 supplementary figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.17450">arXiv:2408.17450</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.17450">pdf</a>, <a href="https://arxiv.org/format/2408.17450">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-51576-3">10.1038/s41467-024-51576-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Signatures of polarized chiral spin disproportionation in rare earth nickelates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiarui Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Green%2C+R+J">Robert J. Green</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dom%C3%ADnguez%2C+C">Claribel Dom铆nguez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Levitan%2C+A">Abraham Levitan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tseng%2C+Y">Yi Tseng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Catalano%2C+S">Sara Catalano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fowlie%2C+J">Jennifer Fowlie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">Ronny Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rodolakis%2C+F">Fanny Rodolakis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Korol%2C+L">Lucas Korol</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McChesney%2C+J+L">Jessica L. McChesney</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Freeland%2C+J+W">John W. Freeland</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Van+der+Marel%2C+D">Dirk Van der Marel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gibert%2C+M">Marta Gibert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Comin%2C+R">Riccardo Comin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.17450v2-abstract-short" style="display: inline;"> In rare earth nickelates (RENiO$_3$), electron-lattice coupling drives a concurrent metal-to-insulator and bond disproportionation phase transition whose microscopic origin has long been the subject of active debate. Of several proposed mechanisms, here we test the hypothesis that pairs of self-doped ligand holes spatially condense to provide local spin moments that are antiferromagnetically coupl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.17450v2-abstract-full').style.display = 'inline'; document.getElementById('2408.17450v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.17450v2-abstract-full" style="display: none;"> In rare earth nickelates (RENiO$_3$), electron-lattice coupling drives a concurrent metal-to-insulator and bond disproportionation phase transition whose microscopic origin has long been the subject of active debate. Of several proposed mechanisms, here we test the hypothesis that pairs of self-doped ligand holes spatially condense to provide local spin moments that are antiferromagnetically coupled to Ni spins. These singlet-like states provide a basis for long-range bond and spiral spin order. Using magnetic resonant X-ray scattering on NdNiO$_3$ thin films, we observe the chiral nature of the spin-disproportionated state, with spin spirals propagating along the crystallographic (101)$_\mathrm{ortho}$ direction. These spin spirals are found to preferentially couple to X-ray helicity, establishing the presence of a hitherto-unobserved macroscopic chirality. The presence of this chiral magnetic configuration suggests a potential multiferroic coupling between the noncollinear magnetic arrangement and improper ferroelectric behavior as observed in prior studies on NdNiO$_3$ (101)$_\mathrm{ortho}$ films and RENiO$_3$ single crystals. Experimentally constrained theoretical double-cluster calculations confirm the presence of an energetically stable spin-disproportionated state with Zhang-Rice singlet-like combinations of Ni and ligand moments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.17450v2-abstract-full').style.display = 'none'; document.getElementById('2408.17450v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.03170">arXiv:2310.03170</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.03170">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Critical Role of Disorder for Superconductivity in the Series of Epitaxial Ti(O,N) Films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+F">Fengmiao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dicks%2C+O">Oliver Dicks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+M">Myung-Geun Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aamlid%2C+S">Solveig Aamlid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Levy%2C+G">Giorgio Levy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">Ronny Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Chong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kung%2C+H">Hsiang-Hsi Kung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Foyevstov%2C+O">Oleksandr Foyevstov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Godin%2C+S">Simon Godin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Davidson%2C+B+A">Bruce A. Davidson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damascelli%2C+A">Andrea Damascelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y">Yimei Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heil%2C+C">Christoph Heil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Elfimov%2C+I">Ilya Elfimov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sawatzky%2C+G+A">George A. Sawatzky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+K">Ke Zou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.03170v2-abstract-short" style="display: inline;"> Realizing experimental control of superconductivity is of paramount importance to advancing both basic research and technological applications. Disorder, generally existing in most superconductors, intricately interacts with Cooper pairs and also impacts the performance of quantum devices. In this paper, we report the study of a series of Ti(O,N) crystalline films prepared via molecular beam epita&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.03170v2-abstract-full').style.display = 'inline'; document.getElementById('2310.03170v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.03170v2-abstract-full" style="display: none;"> Realizing experimental control of superconductivity is of paramount importance to advancing both basic research and technological applications. Disorder, generally existing in most superconductors, intricately interacts with Cooper pairs and also impacts the performance of quantum devices. In this paper, we report the study of a series of Ti(O,N) crystalline films prepared via molecular beam epitaxy (MBE). We discover that substituting nitrogen (N) for oxygen (O) in TiO, namely TiO(N), considerably increases the normal-state conductivity and the superconducting transition temperature Tc. The Tc of TiO(N) falling between those of TiO (about 0.5 K) and TiN (about 6 K) is contrary to their comparable Tc predicted by the Migdal Eliasberg theory. It is found that their resistivity vs temperature obeys the Mooij rule, known as the characteristic of metallic glasses. Density functional theory (DFT) calculations demonstrate that strong disorder severely scatters the Bloch electron waves at nonzero momenta, which consequently weakens electron-phonon coupling in TiO(N). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.03170v2-abstract-full').style.display = 'none'; document.getElementById('2310.03170v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.06486">arXiv:2307.06486</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.06486">pdf</a>, <a href="https://arxiv.org/ps/2307.06486">ps</a>, <a href="https://arxiv.org/format/2307.06486">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41563-024-01797-0">10.1038/s41563-024-01797-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Absence of $3a_0$ Charge Density Wave Order in the Infinite Layer Nickelates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Parzyck%2C+C+T">C. T. Parzyck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gupta%2C+N+K">N. K. Gupta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Y. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Anil%2C+V">V. Anil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bhatt%2C+L">L. Bhatt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bouliane%2C+M">M. Bouliane</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gong%2C+R">R. Gong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gregory%2C+B+Z">B. Z. Gregory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+A">A. Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">R. Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+F">F. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chuang%2C+Y+-">Y. -D. Chuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+T">T. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Herranz%2C+G">G. Herranz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kourkoutis%2C+L+F">L. F. Kourkoutis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singer%2C+A">A. Singer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlom%2C+D+G">D. G. Schlom</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hawthorn%2C+D+G">D. G. Hawthorn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+K+M">K. M. Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.06486v1-abstract-short" style="display: inline;"> A hallmark of many unconventional superconductors is the presence of many-body interactions which give rise to broken symmetry states intertwined with superconductivity. Recent resonant soft x-ray scattering experiments report commensurate $3a_0$ charge density wave order in the infinite layer nickelates, which has important implications regarding the universal interplay between charge order and s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.06486v1-abstract-full').style.display = 'inline'; document.getElementById('2307.06486v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.06486v1-abstract-full" style="display: none;"> A hallmark of many unconventional superconductors is the presence of many-body interactions which give rise to broken symmetry states intertwined with superconductivity. Recent resonant soft x-ray scattering experiments report commensurate $3a_0$ charge density wave order in the infinite layer nickelates, which has important implications regarding the universal interplay between charge order and superconductivity in both the cuprates and nickelates. Here, we present x-ray scattering and spectroscopy measurements on a series of NdNiO$_{2+x}$ samples which reveal that the signatures of charge density wave order are absent in fully reduced, single-phase NdNiO$_2$. The $3a_0$ superlattice peak instead originates from a partially reduced impurity phase where excess apical oxygens form ordered rows with 3 unit cell periodicity. The absence of any observable charge density wave order in NdNiO$_2$ highlights a crucial difference between the phase diagrams of the cuprate and nickelate superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.06486v1-abstract-full').style.display = 'none'; document.getElementById('2307.06486v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main Text: 8 pages, 4 figures. Supplemental: 12 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.16499">arXiv:2305.16499</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.16499">pdf</a>, <a href="https://arxiv.org/format/2305.16499">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.L121113">10.1103/PhysRevB.108.L121113 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tuning charge density wave order and structure via uniaxial stress in a stripe-ordered cuprate superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gupta%2C+N+K">Naman K. Gupta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">Ronny Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gong%2C+R">Rantong Gong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Idziak%2C+S">Stefan Idziak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hale%2C+H">Hiruy Hale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+Y">Young-June Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hawthorn%2C+D+G">David G. Hawthorn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.16499v2-abstract-short" style="display: inline;"> Unidirectional spin and charge density wave order in the cuprates is known to compete with superconductivity. In the stripe order (La,M)$_2$CuO$_4$ family of cuprates, spin and charge order occur as unidirectional order that can be stabilized by symmetry breaking structural distortions, such as the low temperature tetragonal (LTT) phase. Here we examine the interplay between structure and the form&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.16499v2-abstract-full').style.display = 'inline'; document.getElementById('2305.16499v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.16499v2-abstract-full" style="display: none;"> Unidirectional spin and charge density wave order in the cuprates is known to compete with superconductivity. In the stripe order (La,M)$_2$CuO$_4$ family of cuprates, spin and charge order occur as unidirectional order that can be stabilized by symmetry breaking structural distortions, such as the low temperature tetragonal (LTT) phase. Here we examine the interplay between structure and the formation of charge density wave (CDW) order in the LTT phase of La$_{1.475}$Nd$_{0.4}$Sr$_{0.125}$CuO$_4$ by applying uniaxial stress to distort the structure and influence the formation of CDW order. Using resonant soft x-ray scattering to measure both the CDW order and (0 0 1) structural-nematic Bragg peaks, we find that the application of uniaxial stress along the Cu-O bond direction suppresses the (0 0 1) peak and has the net effect of reducing CDW order, but does so only for CDW order propagating parallel to the applied stress. We connect these observations to previous work showing an enhanced superconducting transition temperature under uniaxial stress; providing insight into how CDW, superconductivity, nematicity, and structure are related and can be tuned relative to one another in cuprates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.16499v2-abstract-full').style.display = 'none'; document.getElementById('2305.16499v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text: 7 pages and 4 multi-panel figures. Supplemental material: 3 pages and 2 multi-panel figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 108, L121113 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.02865">arXiv:2303.02865</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.02865">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0256-307X/41/11/117404">10.1088/0256-307X/41/11/117404 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two Distinct Charge Orders in Infinite-layer PrNiO2+未 revealed by Resonant X-ray Diffraction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+X">Xiaolin Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">Ronny Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Qiang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qisi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiarui Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+T">Tao Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jiangping Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+J">J. Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Comin%2C+R">Riccardo Comin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X+J">X. J. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zhihai Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.02865v2-abstract-short" style="display: inline;"> A broken translation symmetry has recently been revealed in infinite-layer nickelates, which has piqued considerable interest in its origin and relation to superconductivity, as well as in its comparison to charge order in cuprates. Here, by performing resonant x-ray scattering measurements in thin films of infinite-layer PrNiO2+未, we find that the superlattice reflection at the Ni L3 absorption e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.02865v2-abstract-full').style.display = 'inline'; document.getElementById('2303.02865v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.02865v2-abstract-full" style="display: none;"> A broken translation symmetry has recently been revealed in infinite-layer nickelates, which has piqued considerable interest in its origin and relation to superconductivity, as well as in its comparison to charge order in cuprates. Here, by performing resonant x-ray scattering measurements in thin films of infinite-layer PrNiO2+未, we find that the superlattice reflection at the Ni L3 absorption edge differs considerably from that at the Pr M5 resonance in their dependence on energy, temperature, and local symmetry, indicating they are two distinct charge orders despite the same in-plane wavevectors. These dissimilarities might be related to the excess oxygen dopants, considering that the resonant reflections were observed in an incompletely reduced PrNiO2+未 film. In addition, our azimuthal analysis suggests that the oxygen ligands should play a pivotal role in the charge modulation revealed at the Ni L3 resonance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.02865v2-abstract-full').style.display = 'none'; document.getElementById('2303.02865v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chin. Phys. Lett. 41 117404 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.15798">arXiv:2211.15798</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.15798">pdf</a>, <a href="https://arxiv.org/format/2211.15798">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/jacs.2c06768">10.1021/jacs.2c06768 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Entropy engineering and tunable magnetic order in the spinel high entropy oxide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Johnstone%2C+G+H+J">Graham H. J. Johnstone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gonz%C3%A1lez-Rivas%2C+M+U">Mario U. Gonz谩lez-Rivas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taddei%2C+K+M">Keith M. Taddei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">Ronny Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sawatzky%2C+G+A">George A. Sawatzky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Green%2C+R+J">Robert J. Green</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oudah%2C+M">Mohamed Oudah</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hallas%2C+A+M">Alannah M. Hallas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.15798v1-abstract-short" style="display: inline;"> Spinel oxides are an ideal setting to explore the interplay between configurational entropy, site selectivity, and magnetism in high entropy oxides. In this work we characterize the magnetic properties of the spinel (Cr,Mn,Fe,Co,Ni)$_3$O$_4$ and study the evolution of its magnetism as a function of non-magnetic gallium substitution. Across the range of compositions studied here, from 0% to 40% Ga,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.15798v1-abstract-full').style.display = 'inline'; document.getElementById('2211.15798v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.15798v1-abstract-full" style="display: none;"> Spinel oxides are an ideal setting to explore the interplay between configurational entropy, site selectivity, and magnetism in high entropy oxides. In this work we characterize the magnetic properties of the spinel (Cr,Mn,Fe,Co,Ni)$_3$O$_4$ and study the evolution of its magnetism as a function of non-magnetic gallium substitution. Across the range of compositions studied here, from 0% to 40% Ga, magnetic susceptibility and powder neutron diffraction measurements show that ferrimagnetic order is robust in the spinel HEO. However, we also find that the ferrimagnetic order is highly tunable, with the ordering temperature, saturated and sublattice moments, and magnetic hardness all varying significantly as a function of Ga concentration. Through x-ray absorption and magnetic circular dichroism, we are able to correlate this magnetic tunability with strong site selectivity between the various cations and the tetrahedral and octahedral sites in the spinel structure. In particular, we find that while Ni and Cr are largely unaffected by the substitution with Ga, the occupancies of Mn, Co, and Fe are each significantly redistributed. Ga substitution also requires an overall reduction in the transition metal valence, and this is entirely accommodated by Mn. Finally, we show that while site selectivity has an overall suppressing effect on the configurational entropy, over a certain range of compositions, Ga substitution yields a striking increase in the configurational entropy and may confer additional stabilization. Spinel oxides can be tuned seamlessly from the low-entropy to the high-entropy regime, making this an ideal platform for entropy engineering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.15798v1-abstract-full').style.display = 'none'; document.getElementById('2211.15798v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures, 1 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of the American Chemical Society 144, 45, 20590-20600 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.09047">arXiv:2211.09047</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.09047">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Temperature-Dependent Dynamic Disproportionation in LiNiO$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Poletayev%2C+A+D">Andrey D. Poletayev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Green%2C+R+J">Robert J. Green</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Swallow%2C+J+E+N">Jack E. N. Swallow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=An%2C+L">Lijin An</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jones%2C+L">Leanne Jones</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Harris%2C+G">Grant Harris</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bencok%2C+P">Peter Bencok</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">Ronny Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cottom%2C+J+P">Jonathon P. Cottom</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morgan%2C+B+J">Benjamin J. Morgan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=House%2C+R+A">Robert A. House</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weatherup%2C+R+S">Robert S. Weatherup</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Islam%2C+M+S">M. Saiful Islam</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.09047v3-abstract-short" style="display: inline;"> Nickelate materials offer diverse functionalities for energy and computing applications. Lithium nickel oxide (LiNiO$_2$) is an archetypal layered nickelate, but the electronic structure of this correlated material is not yet fully understood. Here we investigate the temperature-dependent speciation and spin dynamics of Ni ions in LiNiO$_2$. Our ab initio simulations predict that Ni ions dispropor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.09047v3-abstract-full').style.display = 'inline'; document.getElementById('2211.09047v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.09047v3-abstract-full" style="display: none;"> Nickelate materials offer diverse functionalities for energy and computing applications. Lithium nickel oxide (LiNiO$_2$) is an archetypal layered nickelate, but the electronic structure of this correlated material is not yet fully understood. Here we investigate the temperature-dependent speciation and spin dynamics of Ni ions in LiNiO$_2$. Our ab initio simulations predict that Ni ions disproportionate into three states, which dynamically interconvert and whose populations vary with temperature. These predictions are verified using x-ray absorption spectroscopy, x-ray magnetic circular dichroism, and resonant inelastic x-ray scattering at the Ni L$_{3,2}$-edge. Charge-transfer multiplet calculations consistent with disproportionation reproduce all experimental features. Together, our experimental and computational results support a model of dynamic disproportionation that explains diverse physical observations of LiNiO$_2$, including magnetometry, thermally activated electronic conduction, diffractometry, core-level spectroscopies, and the stability of ubiquitous antisite defects. This unified understanding of the fundamental material properties of LiNiO$_2$ is important for applications of nickelate materials as battery cathodes, catalysts, and superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.09047v3-abstract-full').style.display = 'none'; document.getElementById('2211.09047v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 16 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.11528">arXiv:2209.11528</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.11528">pdf</a>, <a href="https://arxiv.org/format/2209.11528">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.2400727121">10.1073/pnas.2400727121 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Orbital-selective time-domain signature of nematicity dynamics in the charge-density-wave phase of La$_{1.65}$Eu$_{0.2}$Sr$_{0.15}$CuO$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bluschke%2C+M">Martin Bluschke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gupta%2C+N+K">Naman K. Gupta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jang%2C+H">Hoyoung Jang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Husain%2C+A+A">Ali A. Husain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+B">Byungjune Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Na%2C+M">MengXing Na</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Remedios%2C+B+D">Brandon Dos Remedios</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smit%2C+S">Steef Smit</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moen%2C+P">Peter Moen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+S">Sang-Youn Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+M">Minseok Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jang%2C+D">Dogeun Jang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+H">Hyeongi Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">Ronny Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reid%2C+A+H">Alexander H. Reid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dakovski%2C+G+L">Georgi L. Dakovski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Coslovich%2C+G">Giacomo Coslovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nguyen%2C+Q+L">Quynh L. Nguyen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Burdet%2C+N+G">Nicolas G. Burdet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+M">Ming-Fu Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Revcolevschi%2C+A">Alexandre Revcolevschi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+J">Jae-Hoon Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geck%2C+J">Jochen Geck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Turner%2C+J+J">Joshua J. Turner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damascelli%2C+A">Andrea Damascelli</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.11528v3-abstract-short" style="display: inline;"> Understanding the interplay between charge, nematic, and structural ordering tendencies in cuprate superconductors is critical to unraveling their complex phase diagram. Using pump-probe time-resolved resonant x-ray scattering on the (0 0 1) Bragg peak at the Cu $L_3$ and O $K$ resonances, we investigate non-equilibrium dynamics of $Q_a = Q_b = 0$ nematic order and its association with both charge&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.11528v3-abstract-full').style.display = 'inline'; document.getElementById('2209.11528v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.11528v3-abstract-full" style="display: none;"> Understanding the interplay between charge, nematic, and structural ordering tendencies in cuprate superconductors is critical to unraveling their complex phase diagram. Using pump-probe time-resolved resonant x-ray scattering on the (0 0 1) Bragg peak at the Cu $L_3$ and O $K$ resonances, we investigate non-equilibrium dynamics of $Q_a = Q_b = 0$ nematic order and its association with both charge density wave (CDW) order and lattice dynamics in La$_{1.65}$Eu$_{0.2}$Sr$_{0.15}$CuO$_4$. The orbital selectivity of the resonant x-ray scattering cross-section allows nematicity dynamics associated with the planar O 2$p$ and Cu 3$d$ states to be distinguished from the response of anisotropic lattice distortions. A direct time-domain comparison of CDW translational-symmetry breaking and nematic rotational-symmetry breaking reveals that these broken symmetries remain closely linked in the photoexcited state, consistent with the stability of CDW topological defects in the investigated pump fluence regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.11528v3-abstract-full').style.display = 'none'; document.getElementById('2209.11528v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.08872">arXiv:2203.08872</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.08872">pdf</a>, <a href="https://arxiv.org/format/2203.08872">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Discovery of an electronic crystal in a cuprate Mott insulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+M">Mingu Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Charles Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schierle%2C+E">Enrico Schierle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McCoy%2C+S">Stephen McCoy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiarui Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">Ronny Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+F">Feizhou He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suter%2C+A">Andreas Suter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prokscha%2C+T">Thomas Prokscha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Salman%2C+Z">Zaher Salman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weschke%2C+E">Eugen Weschke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cybart%2C+S">Shane Cybart</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+J+Y+T">John Y. T. Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Comin%2C+R">Riccardo Comin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.08872v1-abstract-short" style="display: inline;"> Copper oxide high temperature superconductors universally exhibit multiple forms of electronically ordered phases that break the native translational symmetry of the CuO2 planes. The interplay between these orders and the superconducting ground state, as well as how they arise through doping a Mott insulator, is essential to decode the mechanisms of high-temperature superconductivity. Over the yea&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.08872v1-abstract-full').style.display = 'inline'; document.getElementById('2203.08872v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.08872v1-abstract-full" style="display: none;"> Copper oxide high temperature superconductors universally exhibit multiple forms of electronically ordered phases that break the native translational symmetry of the CuO2 planes. The interplay between these orders and the superconducting ground state, as well as how they arise through doping a Mott insulator, is essential to decode the mechanisms of high-temperature superconductivity. Over the years, various forms of electronic liquid crystal phases including charge/spin stripes and incommensurate charge-density-waves (CDWs) were found to emerge out of a correlated metallic ground state in underdoped cuprates. Early theoretical studies also predicted the emergence of a Coulomb-frustrated &#39;charge crystal&#39; phase in the very lightly-doped, insulating limit of the CuO2 planes. Here, we use resonant X-ray scattering, electron transport, and muon spin rotation measurements to fully resolve the electronic and magnetic ground state and search for signatures of charge order in very lightly hole-doped cuprates from the RBa2Cu3O7-d family (RBCO; R: Y or rare earth). X-ray scattering data from RBCO films reveal a breaking of translational symmetry more pervasive than was previously known, extending down to the Mott limit. The ordering vector of this charge crystal state is linearly connected to the charge-density-waves of underdoped RBCO, suggesting that the former phase is a precursor to the latter as hole doping is increased. Most importantly, the coexistence of charge and spin order in RBCO suggests that this electronic symmetry-breaking state is common to the CuO2 planes in the very lightly-doped regime. These findings bridge the gap between the Mott insulating state and the underdoped metallic state and underscore the prominent role of Coulomb-frustrated electronic phase separation among all cuprates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.08872v1-abstract-full').style.display = 'none'; document.getElementById('2203.08872v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.12061">arXiv:2106.12061</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.12061">pdf</a>, <a href="https://arxiv.org/format/2106.12061">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Intrinsic versus extrinsic orbital and electronic reconstructions at complex oxide interfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Green%2C+R+J">R. J. Green</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zabolotnyy%2C+V">V. Zabolotnyy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zwiebler%2C+M">M. Zwiebler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liao%2C+Z">Z. Liao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Macke%2C+S">S. Macke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">R. Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+F">F. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huijben%2C+M">M. Huijben</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rijnders%2C+G">G. Rijnders</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koster%2C+G">G. Koster</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geck%2C+J">J. Geck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hinkov%2C+V">V. Hinkov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sawatzky%2C+G+A">G. A. Sawatzky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.12061v1-abstract-short" style="display: inline;"> The interface between the insulators LaAlO$_3$ and SrTiO$_3$ accommodates a two-dimensional electron liquid (2DEL) -- a high mobility electron system exhibiting superconductivity as well as indications of magnetism and correlations. While this flagship oxide heterostructure shows promise for electronics applications, the origin and microscopic properties of the 2DEL remain unclear. The uncertainty&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.12061v1-abstract-full').style.display = 'inline'; document.getElementById('2106.12061v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.12061v1-abstract-full" style="display: none;"> The interface between the insulators LaAlO$_3$ and SrTiO$_3$ accommodates a two-dimensional electron liquid (2DEL) -- a high mobility electron system exhibiting superconductivity as well as indications of magnetism and correlations. While this flagship oxide heterostructure shows promise for electronics applications, the origin and microscopic properties of the 2DEL remain unclear. The uncertainty remains in part because the electronic structures of such nanoscale buried interfaces are difficult to probe, and is compounded by the variable presence of oxygen vacancies and coexistence of both localized and delocalized charges. These various complications have precluded decisive tests of intrinsic electronic and orbital reconstruction at this interface. Here we overcome prior difficulties by developing an interface analysis based on the inherently interface-sensitive resonant x-ray reflectometry. We discover a high charge density of 0.5 electrons per interfacial unit cell for samples above the critical LaAlO$_3$ thickness, and extract the depth dependence of both the orbital and electronic reconstructions near the buried interface. We find that the majority of the reconstruction phenomena are confined to within 2 unit cells of the interface, and we quantify how oxygen vacancies significantly affect the electronic system. Our results provide strong support for the existence of polarity induced electronic reconstruction, clearly separating its effects from those of oxygen vacancies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.12061v1-abstract-full').style.display = 'none'; document.getElementById('2106.12061v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in Physical Review Materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.00016">arXiv:2102.00016</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.00016">pdf</a>, <a href="https://arxiv.org/format/2102.00016">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-020-20824-7">10.1038/s41467-020-20824-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamic electron correlations with charge order wavelength along all directions in the copper oxide plane </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Boschini%2C+F">F. Boschini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Minola%2C+M">M. Minola</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">R. Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schierle%2C+E">E. Schierle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bluschke%2C+M">M. Bluschke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Das%2C+S">S. Das</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Y. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Michiardi%2C+M">M. Michiardi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+Y+C">Y. C. Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+X">X. Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ono%2C+S">S. Ono</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+R+D">R. D. Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneeloch%2C+J">J. Schneeloch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+G+D">G. D. Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weschke%2C+E">E. Weschke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+F">F. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chuang%2C+Y+D">Y. D. Chuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keimer%2C+B">B. Keimer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damascelli%2C+A">A. Damascelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Frano%2C+A">A. Frano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neto%2C+E+H+d+S">E. H. da Silva Neto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.00016v1-abstract-short" style="display: inline;"> In strongly correlated systems the strength of Coulomb interactions between electrons, relative to their kinetic energy, plays a central role in determining their emergent quantum mechanical phases. We perform resonant x-ray scattering on Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$, a prototypical cuprate superconductor, to probe electronic correlations within the CuO$_2$ plane. We discover a dynamic quasi-circ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.00016v1-abstract-full').style.display = 'inline'; document.getElementById('2102.00016v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.00016v1-abstract-full" style="display: none;"> In strongly correlated systems the strength of Coulomb interactions between electrons, relative to their kinetic energy, plays a central role in determining their emergent quantum mechanical phases. We perform resonant x-ray scattering on Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$, a prototypical cuprate superconductor, to probe electronic correlations within the CuO$_2$ plane. We discover a dynamic quasi-circular pattern in the $x$-$y$ scattering plane with a radius that matches the wave vector magnitude of the well-known static charge order. Along with doping- and temperature-dependent measurements, our experiments reveal a picture of charge order competing with superconductivity where short-range domains along $x$ and $y$ can dynamically rotate into any other in-plane direction. This quasi-circular spectrum, a hallmark of Brazovskii-type fluctuations, has immediate consequences to our understanding of rotational and translational symmetry breaking in the cuprates. We discuss how the combination of short- and long-range Coulomb interactions results in an effective non-monotonic potential that may determine the quasi-circular pattern. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.00016v1-abstract-full').style.display = 'none'; document.getElementById('2102.00016v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This is a post-peer-review, pre-copyedit version of an article published in Nature Communications. The final authenticated version is available online at: https://doi.org/10.1038/s41467-020-20824-7. Supplementary materials are available through the published version in Nature Communications</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 12, 597 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.09665">arXiv:2012.09665</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.09665">pdf</a>, <a href="https://arxiv.org/format/2012.09665">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.3.L022004">10.1103/PhysRevResearch.3.L022004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Large response of charge stripes to uniaxial stress in $\textrm{La}_{1.475}\textrm{Nd}_{0.4}\textrm{Sr}_{0.125}\textrm{Cu}\textrm{O}_{4}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Boyle%2C+T+J">T. J. Boyle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walker%2C+M">M. Walker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ruiz%2C+A">A. Ruiz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schierle%2C+E">E. Schierle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Z">Z. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boschini%2C+F">F. Boschini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">R. Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boyko%2C+T+D">T. D. Boyko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moore%2C+W">W. Moore</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tamura%2C+N">N. Tamura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+F">F. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weschke%2C+E">E. Weschke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gozar%2C+A">A. Gozar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+W">W. Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Komarek%2C+A+C">A. C. Komarek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damascelli%2C+A">A. Damascelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sch%C3%BC%C3%9Fler-Langeheine%2C+C">C. Sch眉脽ler-Langeheine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Frano%2C+A">A. Frano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neto%2C+E+H+d+S">E. H. da Silva Neto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blanco-Canosa%2C+S">S. Blanco-Canosa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.09665v1-abstract-short" style="display: inline;"> The La-based &#39;214&#39; cuprates host several symmetry breaking phases including superconductivity, charge and spin order in the form of stripes, and a structural othorhombic-to-tetragonal phase transition. Therefore, these materials are an ideal system to study the effects of uniaxial stress onto the various correlations that pervade the cuprate phase diagram. We report resonant x-ray scattering exper&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.09665v1-abstract-full').style.display = 'inline'; document.getElementById('2012.09665v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.09665v1-abstract-full" style="display: none;"> The La-based &#39;214&#39; cuprates host several symmetry breaking phases including superconductivity, charge and spin order in the form of stripes, and a structural othorhombic-to-tetragonal phase transition. Therefore, these materials are an ideal system to study the effects of uniaxial stress onto the various correlations that pervade the cuprate phase diagram. We report resonant x-ray scattering experiments on $\textrm{La}_{1.475}\textrm{Nd}_{0.4}\textrm{Sr}_{0.125}\textrm{Cu}\textrm{O}_{4}$ (LNSCO-125) that reveal a significant response of charge stripes to uniaxial tensile-stress of $\sim$ 0.1 GPa. These effects include a reduction of the onset temperature of stripes by $\sim$ 50 K, a 29 K reduction of the low-temperature orthorhombic-to-tetragonal transition, competition between charge order and superconductivity, and a preference for stripes to form along the direction of applied stress. Altogether, we observe a dramatic response of the electronic properties of LNSCO-125 to a modest amount of uniaxial stress. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.09665v1-abstract-full').style.display = 'none'; document.getElementById('2012.09665v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures, Supplemental material available upon request</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 3, 022004 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.08781">arXiv:2012.08781</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.08781">pdf</a>, <a href="https://arxiv.org/format/2012.08781">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.L180404">10.1103/PhysRevB.103.L180404 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin-orbit phase behaviors of Na2Co2TeO6 at low temperatures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+W">Wenjie Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xintong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Z">Zhenhai Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Z">Ze Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yue%2C+L">Li Yue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">Ronny Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+F">Feizhou He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Iida%2C+K">Kazuki Iida</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kamazawa%2C+K">Kazuya Kamazawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+W">Weiqiang Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+X">Xi Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yuan Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.08781v1-abstract-short" style="display: inline;"> We present a comprehensive study of single crystals of Na2Co2TeO6, a putative Kitaev honeycomb magnet, focusing on its low-temperature phase behaviors. A new thermal phase transition is identified at 31.0 K, below which the system develops a two-dimensional (2D) long-range magnetic order. This order precedes the well-known 3D order below 26.7 K, and is likely driven by strongly anisotropic interac&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.08781v1-abstract-full').style.display = 'inline'; document.getElementById('2012.08781v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.08781v1-abstract-full" style="display: none;"> We present a comprehensive study of single crystals of Na2Co2TeO6, a putative Kitaev honeycomb magnet, focusing on its low-temperature phase behaviors. A new thermal phase transition is identified at 31.0 K, below which the system develops a two-dimensional (2D) long-range magnetic order. This order precedes the well-known 3D order below 26.7 K, and is likely driven by strongly anisotropic interactions. Surprisingly, excitations from the 3D order do not support the order&#39;s commonly accepted &#34;zigzag&#34; nature, and are instead consistent with a &#34;triple-q&#34; description. The 3D order exerts a fundamental feedback on high-energy excitations that likely involve orbital degrees of freedom, and it remains highly frustrated until a much lower temperature is reached. These findings render Na2Co2TeO6 a spin-orbit entangled frustrated magnet that hosts very rich physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.08781v1-abstract-full').style.display = 'none'; document.getElementById('2012.08781v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures, and Supplemental Materials</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 180404 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.08450">arXiv:2012.08450</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.08450">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.2106881118">10.1073/pnas.2106881118 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Vanishing nematic order beyond the pseudogap phase in overdoped cuprate superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gupta%2C+N+K">Naman K. Gupta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMahon%2C+C">C. McMahon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">R. Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+T">T. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gong%2C+R">R. Gong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+H+I">Haofei I. Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+K+M">K. M. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+F">F. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+Q">Q. Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dragomir%2C+M">M. Dragomir</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gaulin%2C+B+D">B. D. Gaulin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hawthorn%2C+D+G">D. G. Hawthorn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.08450v2-abstract-short" style="display: inline;"> During the last decade, translational and rotational symmetry-breaking phases -- density wave order and electronic nematicity -- have been established as generic and distinct features of many correlated electron systems, including pnictide and cuprate superconductors. However, in cuprates, the relationship between these electronic symmetry-breaking phases and the enigmatic pseudogap phase remains&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.08450v2-abstract-full').style.display = 'inline'; document.getElementById('2012.08450v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.08450v2-abstract-full" style="display: none;"> During the last decade, translational and rotational symmetry-breaking phases -- density wave order and electronic nematicity -- have been established as generic and distinct features of many correlated electron systems, including pnictide and cuprate superconductors. However, in cuprates, the relationship between these electronic symmetry-breaking phases and the enigmatic pseudogap phase remains unclear. Here, we employ resonant x-ray scattering in a cuprate high-temperature superconductor La$_{1.6-x}$Nd$_{0.4}$Sr$_{x}$CuO$_{4}$ (Nd-LSCO) to navigate the cuprate phase diagram, probing the relationship between electronic nematicity of the Cu 3$d$ orbitals, charge order, and the pseudogap phase as a function of doping. We find evidence for a considerable decrease in electronic nematicity beyond the pseudogap phase, either by raising the temperature through the pseudogap onset temperature $T^{*}$ or increasing doping through the pseudogap critical point, $p^{*}$. These results establish a clear link between electronic nematicity, the pseudogap, and its associated quantum criticality in overdoped cuprates. Our findings anticipate that electronic nematicity may play a larger role in understanding the cuprate phase diagram than previously recognized, possibly having a crucial role in the phenomenology of the pseudogap phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.08450v2-abstract-full').style.display = 'none'; document.getElementById('2012.08450v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 9 figures, Main text and Supplementary material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PNAS 118(34), e2106881118 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.07108">arXiv:2011.07108</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.07108">pdf</a>, <a href="https://arxiv.org/format/2011.07108">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Strain induced stabilization of a static Jahn-Teller distortion in the O$^*$-phase of La$_{7/8}$Sr$_{1/8}$MnO$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Dettbarn%2C+M">Michael Dettbarn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zabolotnyy%2C+V+B">Volodymyr B. Zabolotnyy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tcakaev%2C+A+V">Abdul V. Tcakaev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">Ronny Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+F">Feizhou He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yunzhong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Green%2C+R+J">Robert J. Green</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hinkov%2C+V">Vladimir Hinkov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.07108v1-abstract-short" style="display: inline;"> At room temperature, bulk La$_{7/8}$Sr$_{1/8}$MnO$_3$ is in the dynamic Jahn--Teller O$^*$ phase, but undergoes a transition to a static, magnetically ordered Jahn--Teller phase at lower temperatures. Here we study a $6$ unit cells thin film of this compound grown on SrTiO$_3$, resulting in small compressive strain due to a lattice mismatch of $\lesssim 0.2\%$. We combine X-ray absorption spectros&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.07108v1-abstract-full').style.display = 'inline'; document.getElementById('2011.07108v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.07108v1-abstract-full" style="display: none;"> At room temperature, bulk La$_{7/8}$Sr$_{1/8}$MnO$_3$ is in the dynamic Jahn--Teller O$^*$ phase, but undergoes a transition to a static, magnetically ordered Jahn--Teller phase at lower temperatures. Here we study a $6$ unit cells thin film of this compound grown on SrTiO$_3$, resulting in small compressive strain due to a lattice mismatch of $\lesssim 0.2\%$. We combine X-ray absorption spectroscopy with multiplet ligand field theory to study the local electronic and magnetic properties of Mn in the film. We determine the Mn $d_{3z^2-r^2}$ orbital to be $0.13\;\text{eV}$ lower in energy than the $d_{x^2-y^2}$, which is a disproportionately large splitting given the small degree of compressive strain. We interpret this as resulting from the strain providing a preferential orientation for the MnO$_6$ octahedra, which are strongly susceptible to such a deformation in the vicinity of the phase transition. Hence, they collectively elongate along the $c$ axis into a static Jahn--Teller arrangement. Furthermore, we demonstrate the strongly covalent character of La$_{7/8}$Sr$_{1/8}$MnO$_3$, with a contribution of nearly $50\%$ of the one-ligand-hole configuration $d^{5} \underline{L}^1$ to the ground state wavefunction. Finally, we find the system to be in a high-spin configuration, with the projection of the local magnetic moment on the quantization axis being about $3.7\;渭_{\text{B}}/\text{Mn}$. We show, however, that the system is close to a high-spin--low-spin transition, which might be triggered by crystal field effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.07108v1-abstract-full').style.display = 'none'; document.getElementById('2011.07108v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.08545">arXiv:2010.08545</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.08545">pdf</a>, <a href="https://arxiv.org/format/2010.08545">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.126.187602">10.1103/PhysRevLett.126.187602 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sudden collapse of magnetic order in oxygen deficient nickelate films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiarui Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Green%2C+R+J">Robert J. Green</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zhen Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">Ronny Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sadowski%2C+J+T">Jerzy T. Sadowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zhihai Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+G">Grace Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+D">Da Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yifei Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+F">Feizhou He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ramanathan%2C+S">Shriram Ramanathan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Comin%2C+R">Riccardo Comin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.08545v1-abstract-short" style="display: inline;"> Oxygen vacancies play a crucial role in the control of the electronic, magnetic, ionic, and transport properties of functional oxide perovskites. Rare earth nickelates (RENiO$_{3-x}$) have emerged over the years as a rich platform to study the interplay between the lattice, the electronic structure, and ordered magnetism. In this study, we investigate the evolution of the electronic and magnetic s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.08545v1-abstract-full').style.display = 'inline'; document.getElementById('2010.08545v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.08545v1-abstract-full" style="display: none;"> Oxygen vacancies play a crucial role in the control of the electronic, magnetic, ionic, and transport properties of functional oxide perovskites. Rare earth nickelates (RENiO$_{3-x}$) have emerged over the years as a rich platform to study the interplay between the lattice, the electronic structure, and ordered magnetism. In this study, we investigate the evolution of the electronic and magnetic structure in thin films of RENiO$_{3-x}$, using a combination of X-ray absorption spectroscopy and imaging, resonant X-ray scattering, and extended multiplet ligand field theory modeling. We find that oxygen vacancies modify the electronic configuration within the Ni-O orbital manifolds, leading to a dramatic evolution of long-range electronic transport pathways despite the absence of nanoscale phase separation. Remarkably, magnetism is robust to substantial levels of carrier doping, and only a moderate weakening of the $(1/4, 1/4, 1/4)_{pc}$ antiferromagnetic order parameter is observed, whereas the magnetic transition temperature is largely unchanged. Only at a certain point long-range magnetism is abruptly erased without an accompanying structural transition. We propose the progressive disruption of the 3D magnetic superexchange pathways upon introduction of point defects as the mechanism behind the sudden collapse of magnetic order in oxygen-deficient nickelates. Our work demonstrates that, unlike most other oxides, ordered magnetism in RENiO$_{3-x}$ is mostly insensitive to carrier doping. The sudden collapse of ordered magnetism upon oxygen removal may provide a new mechanism for solid-state magneto-ionic switching and new applications in antiferromagnetic spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.08545v1-abstract-full').style.display = 'none'; document.getElementById('2010.08545v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 126, 187602 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.08534">arXiv:2006.08534</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.08534">pdf</a>, <a href="https://arxiv.org/format/2006.08534">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.104432">10.1103/PhysRevB.102.104432 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anomalous helimagnetic domain shrinkage due to the weakening of Dzyaloshinskii-Moriya interaction in CrAs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+B+Y">B. Y. Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+H+C">H. C. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Y. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">R. Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+F">F. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Y">Y. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hao%2C+Y+Q">Y. Q. Hao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">J. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Harriger%2C+L">Leland Harriger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+D+L">D. L. Feng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.08534v1-abstract-short" style="display: inline;"> CrAs is a well-known helimagnet with the double-helix structure originating from the competition between the Dzyaloshinskii-Moriya interaction (DMI) and antiferromagnetic exchange interaction $J$. By resonant soft X-ray scattering (RSXS), we observe the magnetic peak (0~0~$q_m$) that emerges at the helical transition with $T_S$ $\approx$ 267.5 K. Intriguingly, the helimagnetic domains significantl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.08534v1-abstract-full').style.display = 'inline'; document.getElementById('2006.08534v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.08534v1-abstract-full" style="display: none;"> CrAs is a well-known helimagnet with the double-helix structure originating from the competition between the Dzyaloshinskii-Moriya interaction (DMI) and antiferromagnetic exchange interaction $J$. By resonant soft X-ray scattering (RSXS), we observe the magnetic peak (0~0~$q_m$) that emerges at the helical transition with $T_S$ $\approx$ 267.5 K. Intriguingly, the helimagnetic domains significantly shrink on cooling below $\sim$255 K, opposite to the conventional thermal effect. The weakening of DMI on cooling is found to play a critical role here. It causes the helical wave vector to vary, ordered spins to rotate, and extra helimagnetic domain boundaries to form at local defects, thus leading to the anomalous shrinkage of helimagnetic domains. Our results indicate that the size of magnetic helical domains can be controlled by tuning DMI in certain helimagnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.08534v1-abstract-full').style.display = 'none'; document.getElementById('2006.08534v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 104432 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.09581">arXiv:2005.09581</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.09581">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.214105">10.1103/PhysRevB.101.214105 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Controlling the electrical and magnetic ground states by doping in the complete phase diagram of titanate Eu1-xLaxTiO3 thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shin%2C+H">Hyungki Shin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Chong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+F">Fengmiao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">Ronny Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Davidson%2C+B+A">Bruce A. Davidson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+K">Ke Zou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.09581v1-abstract-short" style="display: inline;"> EuTiO3, a band insulator, and LaTiO3, a Mott insulator, are both antiferromagnetic with transition temperatures ~ 5.5 K and ~ 160 K, respectively. Here, we report the synthesis of Eu1-xLaxTiO3 thin films with x = 0 to 1 by oxide molecular beam epitaxy. The films in the full range have high crystalline quality and show no phase segregation, allowing us carry out transport measurements to study thei&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.09581v1-abstract-full').style.display = 'inline'; document.getElementById('2005.09581v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.09581v1-abstract-full" style="display: none;"> EuTiO3, a band insulator, and LaTiO3, a Mott insulator, are both antiferromagnetic with transition temperatures ~ 5.5 K and ~ 160 K, respectively. Here, we report the synthesis of Eu1-xLaxTiO3 thin films with x = 0 to 1 by oxide molecular beam epitaxy. The films in the full range have high crystalline quality and show no phase segregation, allowing us carry out transport measurements to study their electrical and magnetic properties. From x = 0.03 to 0.95, Eu1-xLaxTiO3 films show conduction by electrons as charge carriers, with differences in carrier densities and mobilities, contrary to the insulating nature of pure EuTiO3 and LaTiO3. Following a rich phase diagram, the magnetic ground states of the films vary with increasing La-doping level, changing Eu1-xLaxTiO3 from an antiferromagnetic insulator to an antiferromagnetic metal, a ferromagnetic metal, a paramagnetic metal, and back to an antiferromagnetic insulator. These emergent properties reflect the evolutions of the band structure, mainly at the Ti t2g bands near the Fermi level, when Eu2+ are gradually replaced by La3+. This work sheds light on this method for designing the electrical and magnetic properties in strongly-correlated oxides and completes the phase diagram of the titanate Eu1-xLaxTiO3. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.09581v1-abstract-full').style.display = 'none'; document.getElementById('2005.09581v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B, 2020 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.04224">arXiv:2003.04224</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.04224">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.abd7213">10.1126/science.abd7213 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Enhanced charge density wave coherence in a light-quenched, high-temperature superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wandel%2C+S">S. Wandel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boschini%2C+F">F. Boschini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neto%2C+E+H+d+S">E. H. da Silva Neto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+L">L. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Na%2C+M+X">M. X. Na</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zohar%2C+S">S. Zohar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Y. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Welch%2C+S+B">S. B. Welch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seaberg%2C+M+H">M. H. Seaberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koralek%2C+J+D">J. D. Koralek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dakovski%2C+G+L">G. L. Dakovski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hettel%2C+W">W. Hettel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+M">M-F. Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moeller%2C+S+P">S. P. Moeller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlotter%2C+W+F">W. F. Schlotter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reid%2C+A+H">A. H. Reid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Minitti%2C+M+P">M. P. Minitti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boyle%2C+T">T. Boyle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+F">F. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">R. Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">R. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D">D. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W">W. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaindl%2C+R+A">R. A. Kaindl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hawthorn%2C+D+G">D. G. Hawthorn</a> , et al. (6 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.04224v3-abstract-short" style="display: inline;"> Superconductivity and charge density waves (CDW) are competitive, yet coexisting orders in cuprate superconductors. To understand their microscopic interdependence, a probe capable of discerning their interaction on its natural length and time scales is necessary. We use ultrafast resonant soft x-ray scattering to track the transient evolution of CDW correlations in YBa$_{2}$Cu$_{3}$O$_{6+x}$ foll&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.04224v3-abstract-full').style.display = 'inline'; document.getElementById('2003.04224v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.04224v3-abstract-full" style="display: none;"> Superconductivity and charge density waves (CDW) are competitive, yet coexisting orders in cuprate superconductors. To understand their microscopic interdependence, a probe capable of discerning their interaction on its natural length and time scales is necessary. We use ultrafast resonant soft x-ray scattering to track the transient evolution of CDW correlations in YBa$_{2}$Cu$_{3}$O$_{6+x}$ following the quench of superconductivity by an infrared laser pulse. We observe a non-thermal response of the CDW order characterized by a near doubling of the correlation length within $\approx$ 1 picosecond of the superconducting quench. Our results are consistent with a model in which the interaction between superconductivity and CDW manifests inhomogeneously through disruption of spatial coherence, with superconductivity playing the dominant role in stabilizing CDW topological defects, such as discommensurations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.04224v3-abstract-full').style.display = 'none'; document.getElementById('2003.04224v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted version. 34 pages, 11 figures, Main text and Supplementary Materials</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 376, 860 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.00337">arXiv:2002.00337</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.00337">pdf</a>, <a href="https://arxiv.org/ps/2002.00337">ps</a>, <a href="https://arxiv.org/format/2002.00337">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.245106">10.1103/PhysRevB.101.245106 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> V 3$d$ charge and orbital states in V$_2$OPO$_4$ probed by x-ray absorption spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Murota%2C+K">Kota Murota</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pachoud%2C+E">Elise Pachoud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Attfield%2C+J+P">J. Paul Attfield</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Glaum%2C+R">Robert Glaum</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">Ronny Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takubo%2C+K">Kou Takubo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khomskii%2C+D+I">Daniel I. Khomskii</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mizokawa%2C+T">Takashi Mizokawa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.00337v2-abstract-short" style="display: inline;"> V 3$d$ charge and orbital states in V$_2$OPO$_4$ have been investigated by means of x-ray absorption spectroscopy (XAS). The electronic structure of V$_2$OPO$_4$ is very unique in that the charge transfer between V$^{2+}$ and V$^{3+}$ in face sharing VO$_6$ chains provides negative thermal expansion as reported by Pachoud {\it et al.} [J. Am. Chem. Soc. {\bf 140}, 636 (2018).] The near edge region&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.00337v2-abstract-full').style.display = 'inline'; document.getElementById('2002.00337v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.00337v2-abstract-full" style="display: none;"> V 3$d$ charge and orbital states in V$_2$OPO$_4$ have been investigated by means of x-ray absorption spectroscopy (XAS). The electronic structure of V$_2$OPO$_4$ is very unique in that the charge transfer between V$^{2+}$ and V$^{3+}$ in face sharing VO$_6$ chains provides negative thermal expansion as reported by Pachoud {\it et al.} [J. Am. Chem. Soc. {\bf 140}, 636 (2018).] The near edge region of O 1$s$ XAS exhibits the three features which can be assigned to transitions to O 2$p$ mixed into the unoccupied V 3$d$ $t_{2g}$ and $e_{g}$ orbitals of V$^{2+}$ and V$^{3+}$. The V 2$p$ XAS line shape can be reproduced by multiplet calculations for a mixed valence state with V$^{2+}$ and V$^{3+}$. The polarization dependence of the O 1$s$ and V 2$p$ XAS spectra indicates V 3$d$ orbital order in which $xy$ and $yz$ (or $zx$) orbitals are occupied at the V$^{3+}$ site in the face sharing chains. The occupied $xy$ orbital is essential for the antiferromagnetic coupling between the V$^{2+}$ and V$^{3+}$ sites along the chains while the occupied $yz$ (or $zx$) orbital provides the antiferromagnetic coupling between the V$^{2+}$ and V$^{3+}$ sites between the chains. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.00337v2-abstract-full').style.display = 'none'; document.getElementById('2002.00337v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 101, 245106 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.08254">arXiv:1910.08254</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.08254">pdf</a>, <a href="https://arxiv.org/format/1910.08254">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.220509">10.1103/PhysRevB.101.220509 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Doping-dependent phonon anomaly and charge-order phenomena in the HgBa$_{2}$CuO$_{4+未}$ and HgBa$_{2}$CaCu$_{2}$O$_{6+未}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lichen Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+B">Biqiong Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jing%2C+R">Ran Jing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+X">Xiangpeng Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+J">Junbang Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiarui Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bialo%2C+I">Izabela Bialo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bluschke%2C+M">Martin Bluschke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+Y">Yang Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Freyermuth%2C+J">Jacob Freyermuth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+G">Guichuan Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">Ronny Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+F">Feizhou He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weschke%2C+E">Eugen Weschke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tabis%2C+W">Wojciech Tabis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greven%2C+M">Martin Greven</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yuan Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.08254v1-abstract-short" style="display: inline;"> Using resonant X-ray diffraction and Raman spectroscopy, we study charge correlations and lattice dynamics in two model cuprates, HgBa$_{2}$CuO$_{4+未}$ and HgBa$_{2}$CaCu$_{2}$O$_{6+未}$. We observe a maximum of the characteristic charge order temperature around the same hole concentration ($p \approx 0.09$) in both compounds, and concomitant pronounced anomalies in the lattice dynamics that involv&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.08254v1-abstract-full').style.display = 'inline'; document.getElementById('1910.08254v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.08254v1-abstract-full" style="display: none;"> Using resonant X-ray diffraction and Raman spectroscopy, we study charge correlations and lattice dynamics in two model cuprates, HgBa$_{2}$CuO$_{4+未}$ and HgBa$_{2}$CaCu$_{2}$O$_{6+未}$. We observe a maximum of the characteristic charge order temperature around the same hole concentration ($p \approx 0.09$) in both compounds, and concomitant pronounced anomalies in the lattice dynamics that involve the motion of atoms in and/or adjacent to the CuO$_2$ layers. These anomalies are already present at room temperature, and therefore precede the formation of the static charge correlations, and we attribute them to an instability of the CuO$_2$ layers. Our finding implies that the charge order in the cuprates is an emergent phenomenon, driven by a fundamental variation in both lattice and electronic properties as a function of doping. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.08254v1-abstract-full').style.display = 'none'; document.getElementById('1910.08254v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 3 figures, supplemental material available upon request</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 101, 220509 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.02619">arXiv:1910.02619</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.02619">pdf</a>, <a href="https://arxiv.org/format/1910.02619">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.3.100802">10.1103/PhysRevMaterials.3.100802 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Epitaxial Growth of Perovskite SrBiO$_3$ Film on SrTiO$_3$ by Oxide Molecular Beam Epitaxy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+F">Fengmiao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Davidson%2C+B+A">Bruce A. Davidson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">Ronny Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shin%2C+H">Hyungki Shin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Chong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Elfimov%2C+I">Ilya Elfimov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Foyevtsova%2C+K">Kateryna Foyevtsova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+F">Feizhou He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sawatzky%2C+G+A">George A. Sawatzky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+K">Ke Zou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.02619v1-abstract-short" style="display: inline;"> Hole-doped perovskite bismuthates such as Ba$_{1-x}$K$_x$BiO$_3$ and Sr$_{1-x}$K$_x$BiO$_3$ are well-known bismuth-based oxide high-transition-temperature superconductors. Reported thin bismuthate films show relatively low quality, likely due to their large lattice mismatch with the substrate and a low sticking coefficient of Bi at high temperatures. Here, we report the successful epitaxial thin f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.02619v1-abstract-full').style.display = 'inline'; document.getElementById('1910.02619v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.02619v1-abstract-full" style="display: none;"> Hole-doped perovskite bismuthates such as Ba$_{1-x}$K$_x$BiO$_3$ and Sr$_{1-x}$K$_x$BiO$_3$ are well-known bismuth-based oxide high-transition-temperature superconductors. Reported thin bismuthate films show relatively low quality, likely due to their large lattice mismatch with the substrate and a low sticking coefficient of Bi at high temperatures. Here, we report the successful epitaxial thin film growth of the parent compound strontium bismuthate SrBiO$_3$ on SrO-terminated SrTiO$_3$ (001) substrates by molecular beam epitaxy. Two different growth methods, high-temperature co-deposition or recrystallization cycles of low-temperature deposition plus high-temperature annealing, are developed to improve the epitaxial growth. SrBiO$_3$ has a pseudocubic lattice constant $\sim$4.25 脜, an $\sim$8.8\% lattice mismatch on SrTiO$_3$ substrate, leading to a large strain in the first few unit cells. Films thicker than 6 unit cells prepared by both methods are fully relaxed to bulk lattice constant and have similar quality. Compared to high-temperature co-deposition, the recrystallization method can produce higher quality 1-6 unit cell films that are coherently or partially strained. Photoemission experiments reveal the bonding and antibonding states close to the Fermi level due to Bi and O hybridization, in good agreement with density functional theory calculations. This work provides general guidance to the synthesis of high-quality perovskite bismuthate films. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.02619v1-abstract-full').style.display = 'none'; document.getElementById('1910.02619v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 3, 100802(R), (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.09998">arXiv:1906.09998</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.09998">pdf</a>, <a href="https://arxiv.org/ps/1906.09998">ps</a>, <a href="https://arxiv.org/format/1906.09998">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.3.084404">10.1103/PhysRevMaterials.3.084404 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Itinerancy-dependent non-collinear spin textures in SrFeO3, CaFeO3, and CaFeO3/SrFeO3 heterostructures probed via resonant x-ray scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Rogge%2C+P+C">Paul C. Rogge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Green%2C+R+J">Robert J. Green</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">Ronny Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=May%2C+S+J">Steven J. May</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.09998v1-abstract-short" style="display: inline;"> Non-collinear, multi-q spin textures can give rise to exotic, topologically protected spin structures such as skyrmions, but the reason for their formation over simple single-q structures is not well understood. While lattice frustration and the Dzyaloshinskii-Moriya interaction are known to produce non-collinear spin textures, the role of electron itinerancy in multi-q formation is much less stud&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.09998v1-abstract-full').style.display = 'inline'; document.getElementById('1906.09998v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.09998v1-abstract-full" style="display: none;"> Non-collinear, multi-q spin textures can give rise to exotic, topologically protected spin structures such as skyrmions, but the reason for their formation over simple single-q structures is not well understood. While lattice frustration and the Dzyaloshinskii-Moriya interaction are known to produce non-collinear spin textures, the role of electron itinerancy in multi-q formation is much less studied. Here we investigated the non-collinear, helical spin structures in epitaxial films of the perovskite oxides SrFeO3 and CaFeO3 using magnetotransport and resonant soft x-ray magnetic diffraction. Metallic SrFeO3 exhibits features in its magnetoresistance that are consistent with its recently proposed multi-q structure. Additionally, the magnetic Bragg peak of SrFeO3 measured at the Fe L edge resonance energy asymmetrically broadens with decreasing temperature in its multi-q state. In contrast, insulating CaFeO3 has a symmetric scattering peak with an intensity 10x weaker than SrFeO3. Enhanced magnetic scattering at O K edge prepeak energies demonstrates the role of a negative charge transfer energy and the resulting oxygen ligand holes in the magnetic ordering of these ferrates. By measuring magnetic diffraction of CaFeO3/SrFeO3 superlattices with thick CaFeO3 layers, we find that the CaFeO3 helical ordering is coherent across 1 unit cell-thick SrFeO3 layers but not 6 unit cell-thick layers. We conclude that insulating CaFeO3 supports only a simple single-q helical structure in contrast to metallic SrFeO3 that hosts multi-q structures. Our results provide important insight into the role of electron itinerancy in the formation of multi-q spin structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.09998v1-abstract-full').style.display = 'none'; document.getElementById('1906.09998v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 3, 084404 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.04160">arXiv:1905.04160</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.04160">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-018-0218-5">10.1038/s41567-018-0218-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Complex magnetic order in nickelate slabs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hepting%2C+M">Matthias Hepting</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Green%2C+R+J">Robert J. Green</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+Z">Zhicheng Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bluschke%2C+M">Martin Bluschke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suyolcu%2C+Y+E">Y. Eren Suyolcu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Macke%2C+S">Sebastian Macke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Frano%2C+A">Alex Frano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Catalano%2C+S">Sara Catalano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gibert%2C+M">Marta Gibert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">Ronny Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+F">Feizhou He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cristani%2C+G">Georg Cristani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Logvenov%2C+G">Gennady Logvenov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+Aken%2C+P+A">Peter A. van Aken</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hansmann%2C+P">Philipp Hansmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tacon%2C+M+L">Matthieu Le Tacon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Triscone%2C+J">Jean-Marc Triscone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sawatzky%2C+G+A">George A. Sawatzky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keimer%2C+B">Bernhard Keimer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Benckiser%2C+E">Eva Benckiser</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.04160v1-abstract-short" style="display: inline;"> Magnetic ordering phenomena have a profound influence on the macroscopic properties of correlated-electron materials, but their realistic prediction remains a formidable challenge. An archetypical example is the ternary nickel oxide system RNiO3 (R = rare earth), where the period-four magnetic order with proposals of collinear and non-collinear structures and the amplitude of magnetic moments on d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.04160v1-abstract-full').style.display = 'inline'; document.getElementById('1905.04160v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.04160v1-abstract-full" style="display: none;"> Magnetic ordering phenomena have a profound influence on the macroscopic properties of correlated-electron materials, but their realistic prediction remains a formidable challenge. An archetypical example is the ternary nickel oxide system RNiO3 (R = rare earth), where the period-four magnetic order with proposals of collinear and non-collinear structures and the amplitude of magnetic moments on different Ni sublattices have been subjects of debate for decades. Here we introduce an elementary model system - NdNiO3 slabs embedded in a non-magnetic NdGaO3 matrix - and use polarized resonant x-ray scattering (RXS) to show that both collinear and non-collinear magnetic structures can be realized, depending on the slab thickness. The crossover between both spin structures is correctly predicted by density functional theory and can be qualitatively understood in a low-energy spin model. We further demonstrate that the amplitude ratio of magnetic moments in neighboring NiO6 octahedra can be accurately determined by RXS in combination with a correlated double cluster model. Targeted synthesis of model systems with controlled thickness and synergistic application of polarized RXS and ab-initio theory thus provide new perspectives for research on complex magnetism, in analogy to two-dimensional materials created by exfoliation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.04160v1-abstract-full').style.display = 'none'; document.getElementById('1905.04160v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This is the accepted version of the manuscript. The revised manuscript according to peer reviews was published online in Nature Physics on July 23, 2018</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Phys. 14, 1097-1102 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.12929">arXiv:1904.12929</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.12929">pdf</a>, <a href="https://arxiv.org/format/1904.12929">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.aay0345">10.1126/sciadv.aay0345 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Orbital Symmetries of Charge Density Wave Order in YBa2Cu3O6+x </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=McMahon%2C+C">Christopher McMahon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Achkar%2C+A+J">A. J. Achkar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neto%2C+E+H+d+S">E. H. da Silva Neto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Djianto%2C+I">I. Djianto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Menard%2C+J">J. Menard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+F">F. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">R. Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Comin%2C+R">R. Comin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">Ruixing Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damascelli%2C+A">A. Damascelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hawthorn%2C+D+G">D. G. Hawthorn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.12929v2-abstract-short" style="display: inline;"> Charge density wave (CDW) order has been shown to compete and coexist with superconductivity in underdoped cuprates. Theoretical proposals for the CDW order include an unconventional $d$-symmetry form factor CDW, evidence for which has emerged from measurements, including resonant soft x-ray scattering (RSXS) in YBa$_2$Cu$_3$O$_{6+x}$ (YBCO). Here, we revisit RSXS measurements of the CDW symmetry&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.12929v2-abstract-full').style.display = 'inline'; document.getElementById('1904.12929v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.12929v2-abstract-full" style="display: none;"> Charge density wave (CDW) order has been shown to compete and coexist with superconductivity in underdoped cuprates. Theoretical proposals for the CDW order include an unconventional $d$-symmetry form factor CDW, evidence for which has emerged from measurements, including resonant soft x-ray scattering (RSXS) in YBa$_2$Cu$_3$O$_{6+x}$ (YBCO). Here, we revisit RSXS measurements of the CDW symmetry in YBCO, using a variation in the measurement geometry to provide enhanced sensitivity to orbital symmetry. We show that the $(0\ 0.31\ L)$ CDW peak measured at the Cu $L$ edge is dominated by an $s$ form factor rather than a $d$ form factor as was reported previously. In addition, by measuring both $(0.31\ 0\ L)$ and $(0\ 0.31\ L)$ peaks, we identify a pronounced difference in the orbital symmetry of the CDW order along the $a$ and $b$ axes, with the CDW along the $a$ axis exhibiting orbital order in addition to charge order. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.12929v2-abstract-full').style.display = 'none'; document.getElementById('1904.12929v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 figures + supplementary information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science Advances, 6 (45), eaay0345 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.06406">arXiv:1901.06406</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.06406">pdf</a>, <a href="https://arxiv.org/format/1901.06406">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-018-0401-8">10.1038/s41567-018-0401-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evolution of charge order topology across a magnetic phase transition in cuprate superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+M">Mingu Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">Jonathan Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Frano%2C+A">Alex Frano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Breznay%2C+N">Nicholas Breznay</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schierle%2C+E">Enrico Schierle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weschke%2C+E">Eugen Weschke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">Ronny Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+F">Feizhou He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shafer%2C+P">Padraic Shafer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arenholz%2C+E">Elke Arenholz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+M">Mo Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+K">Keto Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ruiz%2C+A">Alejandro Ruiz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hao%2C+Z">Zeyu Hao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lewin%2C+S">Sylvia Lewin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Analytis%2C+J">James Analytis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krockenberger%2C+Y">Yoshiharu Krockenberger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamamoto%2C+H">Hideki Yamamoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Das%2C+T">Tanmoy Das</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Comin%2C+R">R. Comin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.06406v2-abstract-short" style="display: inline;"> Charge order is now accepted as an integral constituent of cuprate high-temperature superconductors, one that is intimately related to other instabilities in the phase diagram including antiferromagnetism and superconductivity. Unlike nesting-induced Peierls-like density waves, the charge correlations in the CuO2 planes have been predicted to display a rich momentum space topology depending on the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.06406v2-abstract-full').style.display = 'inline'; document.getElementById('1901.06406v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.06406v2-abstract-full" style="display: none;"> Charge order is now accepted as an integral constituent of cuprate high-temperature superconductors, one that is intimately related to other instabilities in the phase diagram including antiferromagnetism and superconductivity. Unlike nesting-induced Peierls-like density waves, the charge correlations in the CuO2 planes have been predicted to display a rich momentum space topology depending on the detailed fermiology of the system. However, to date charge order has only been observed along the high-symmetry Cu-O bond directions. Here, using resonant soft X-ray scattering, we investigate the evolution of the full momentum space topology of charge correlations in Ln2CuO4 (Ln=Nd, Pr) as a function of intrinsic electron doping. We report that, upon electron doping the parent Mott insulator, charge correlations first emerge in a hitherto-unobserved form, with full (Cinf) rotational symmetry in momentum-space. At higher doping levels, the orientation of charge correlations is sharply locked to the Cu-O bond high-symmetry directions, restoring a more conventional bidirectional charge order with enhanced correlation lengths. Through charge susceptibility calculations, we closely reproduce the drastic evolution in the topology of charge correlations across an antiferromagnetic quantum phase transition, highlighting the interplay between spin and charge degrees of freedom in electron-doped cuprates. Finally, using the established link between charge correlations and the underlying fermiology, we propose a revised phase diagram of Ln2CuO4 with a superconducting region extending toward the Mott limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.06406v2-abstract-full').style.display = 'none'; document.getElementById('1901.06406v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Nature Physics on April 20th, 2018. A revised version will appear in Nature Physics at 10.1038/s41567-018-0401-8</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics 15, 335-450 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.08562">arXiv:1808.08562</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.08562">pdf</a>, <a href="https://arxiv.org/format/1808.08562">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.9.021055">10.1103/PhysRevX.9.021055 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Intertwined Spin and Orbital Density Waves in MnP Uncovered by Resonant Soft X-ray Scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+B">Bingying Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jang%2C+H">Hoyoung Jang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+J">Jun-Sik Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">Ronny Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+F">Feizhou He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+J+F">J. F. Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xiaowen Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+Y">Yu Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hao%2C+Y">Yiqing Hao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">Jun Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+H+C">H. C. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z+H">Z. H. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jiangping Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+D">Donglai Feng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.08562v1-abstract-short" style="display: inline;"> Unconventional superconductors are often characterized by numerous competing and even intertwined orders in their phase diagrams. In particular, the electronic nematic phases, which spontaneously break rotational symmetry and often simultaneously involve spin, charge and/or orbital orders, appear conspicuously in both the cuprate and iron-based superconductors. The fluctuations associated with the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.08562v1-abstract-full').style.display = 'inline'; document.getElementById('1808.08562v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.08562v1-abstract-full" style="display: none;"> Unconventional superconductors are often characterized by numerous competing and even intertwined orders in their phase diagrams. In particular, the electronic nematic phases, which spontaneously break rotational symmetry and often simultaneously involve spin, charge and/or orbital orders, appear conspicuously in both the cuprate and iron-based superconductors. The fluctuations associated with these phases may provide the exotic pairing glue that underlies their high-temperature superconductivity. Helimagnet MnP, the first Mn-based superconductor under pressure, lacks high rotational symmetry. However our resonant soft X-ray scattering (RSXS) experiment discovers novel helical orbital density wave (ODW) orders in this three-dimensional, low-symmetry system, and reveals intertwined ordering phenomena in unprecedented detail. In particular, a ODW forms with half the period of the spin order and fully develops slightly above the spin ordering temperature, their domains develop simultaneously, yet the spin order domains are larger than those of the ODW, and they cooperatively produce another ODW with 1/3 the period of the spin order. These observations provide a comprehensive picture of the intricate interplay between spin and orbital orders in correlated materials, and they suggest that nematic-like physics ubiquitously exists beyond two-dimensional and high-symmetry systems, and the superconducting mechanism of MnP is likely analogous to those of cuprate and iron-based superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.08562v1-abstract-full').style.display = 'none'; document.getElementById('1808.08562v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 9, 021055 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.04775">arXiv:1806.04775</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1806.04775">pdf</a>, <a href="https://arxiv.org/format/1806.04775">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.98.180401">10.1103/PhysRevB.98.180401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emergent c-axis magnetic helix in manganite-nickelate superlattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fabbris%2C+G">G. Fabbris</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jaouen%2C+N">N. Jaouen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meyers%2C+D">D. Meyers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">J. Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoffman%2C+J+D">J. D. Hoffman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">R. Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chiuzbaian%2C+S+G">S. G. Chiuzbaian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bhattacharya%2C+A">A. Bhattacharya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dean%2C+M+P+M">M. P. M. Dean</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.04775v1-abstract-short" style="display: inline;"> The nature of the magnetic order in (La2/3Sr1/3MnO3)9/(LaNiO3)3 superlattices is investigated using x-ray resonant magnetic reflectometry. We observe a new c-axis magnetic helix state in the (LaNiO3)3 layers that had never been reported in nickelates, and which mediates the ~130deg magnetic coupling between the ferromagnetic (La2/3Sr1/3MnO3)9 layers, illustrating the power of x-rays for discoverin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.04775v1-abstract-full').style.display = 'inline'; document.getElementById('1806.04775v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.04775v1-abstract-full" style="display: none;"> The nature of the magnetic order in (La2/3Sr1/3MnO3)9/(LaNiO3)3 superlattices is investigated using x-ray resonant magnetic reflectometry. We observe a new c-axis magnetic helix state in the (LaNiO3)3 layers that had never been reported in nickelates, and which mediates the ~130deg magnetic coupling between the ferromagnetic (La2/3Sr1/3MnO3)9 layers, illustrating the power of x-rays for discovering the magnetic state of complex oxide interfaces. Resonant inelastic x-ray scattering and x-ray absorption spectroscopy show that Ni-O ligand hole states from bulk LaNiO3 are mostly filled due to interfacial electron transfer from Mn, driving the Ni orbitals closer to an atomic-like 3d8 configuration. We discuss the constraints imposed by this electronic configuration to the microscopic origin of the observed magnetic structure. The presence of a magnetic helix in (La2/3Sr1/3MnO3)9/(LaNiO3)3 is crucial for modeling the potential spintronic functionality of this system and may be important for designing emergent magnetism in novel devices in general. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.04775v1-abstract-full').style.display = 'none'; document.getElementById('1806.04775v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 98, 180401 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.05547">arXiv:1805.05547</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.05547">pdf</a>, <a href="https://arxiv.org/format/1805.05547">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.97.205142">10.1103/PhysRevB.97.205142 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Commensurate vs incommensurate charge ordering near the superconducting dome in Ir$_{1-x}$Pt$_x$Te$_2$ revealed by resonant x-ray scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Takubo%2C+K">K. Takubo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamamoto%2C+K">K. Yamamoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hirata%2C+Y">Y. Hirata</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wadati%2C+H">H. Wadati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mizokawa%2C+T">T. Mizokawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">R. Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+F">F. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ishii%2C+K">K. Ishii</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamasaki%2C+Y">Y. Yamasaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nakao%2C+H">H. Nakao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Murakami%2C+Y">Y. Murakami</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matsuo%2C+G">G. Matsuo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ishii%2C+H">H. Ishii</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kobayashi%2C+M">M. Kobayashi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kudo%2C+K">K. Kudo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nohara%2C+M">M. Nohara</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.05547v1-abstract-short" style="display: inline;"> The electronic-structural modulations of Ir$_{1-x}$Pt$_x$Te$_2$ (0 $\leqq x\leqq$ 0.12) have been examined by resonant elastic x-ray scattering (REXS) and resonant inelastic x-ray scattering (RIXS) techniques at both the Ir and Te edges. Charge-density-wave-like superstructure with wave vectors of $\mathbf{Q}$=(1/5 0 $-$1/5), (1/8 0 $-$1/8), and (1/6 0 $-$1/6) are observed on the same sample of Ir&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.05547v1-abstract-full').style.display = 'inline'; document.getElementById('1805.05547v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.05547v1-abstract-full" style="display: none;"> The electronic-structural modulations of Ir$_{1-x}$Pt$_x$Te$_2$ (0 $\leqq x\leqq$ 0.12) have been examined by resonant elastic x-ray scattering (REXS) and resonant inelastic x-ray scattering (RIXS) techniques at both the Ir and Te edges. Charge-density-wave-like superstructure with wave vectors of $\mathbf{Q}$=(1/5 0 $-$1/5), (1/8 0 $-$1/8), and (1/6 0 $-$1/6) are observed on the same sample of IrTe$_2$ at the lowest temperature, the patterns of which are controlled by the cooling speeds. In contrast, superstructures around $\mathbf{Q}$=(1/5 0 $-$1/5) are observed for doped samples (0.02 $\leqq x\leqq$ 0.05). The superstructure reflections persist to higher Pt substitution than previously assumed, demonstrating that a charge density wave (CDW) can coexists with superconductivity. The analysis of the energy-dependent REXS and RIXS lineshape reveals the importance of the Te 5$p$ state rather than the Ir 5$d$ states in the formation of the spatial modulation of these systems. The phase diagram re-examined in this work suggests that the CDW incommensurability may correlate the emergence of superconducting states as-like Cu$_x$TiSe$_2$ and Li$_x$TaS$_2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.05547v1-abstract-full').style.display = 'none'; document.getElementById('1805.05547v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages ,9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.03315">arXiv:1801.03315</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1801.03315">pdf</a>, <a href="https://arxiv.org/format/1801.03315">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.97.205416">10.1103/PhysRevB.97.205416 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chemical and valence reconstruction at the surface of SmB6 revealed with resonant soft x-ray reflectometry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zabolotnyy%2C+V+B">V. B. Zabolotnyy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=F%C3%BCrsich%2C+K">K. F眉rsich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Green%2C+R+J">R. J. Green</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lutz%2C+P">P. Lutz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Treiber%2C+K">K. Treiber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Min%2C+C">Chul-Hee Min</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dukhnenko%2C+A+V">A. V. Dukhnenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shitsevalova%2C+N+Y">N. Y. Shitsevalova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Filipov%2C+V+B">V. B. Filipov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+B+Y">B. Y. Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+B+K">B. K. Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">R. Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+F">Feizhou He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reinert%2C+F">F. Reinert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hinkov%2C+D+S+I+V">D. S. Inosov V. Hinkov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.03315v1-abstract-short" style="display: inline;"> Samarium hexaboride (SmB$_6$), a Kondo insulator with mixed valence, has recently attracted much attention as a possible host for correlated topological surface states. Here, we use a combination of x-ray absorption and reflectometry techniques, backed up with a theoretical model for the resonant $M_{4,5}$ absorption edge of Sm and photoemission data, to establish laterally averaged chemical and v&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.03315v1-abstract-full').style.display = 'inline'; document.getElementById('1801.03315v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.03315v1-abstract-full" style="display: none;"> Samarium hexaboride (SmB$_6$), a Kondo insulator with mixed valence, has recently attracted much attention as a possible host for correlated topological surface states. Here, we use a combination of x-ray absorption and reflectometry techniques, backed up with a theoretical model for the resonant $M_{4,5}$ absorption edge of Sm and photoemission data, to establish laterally averaged chemical and valence depth profiles at the surface of SmB$_6$. We show that upon cleaving, the highly polar (001) surface of SmB$_6$ undergoes substantial chemical and valence reconstruction, resulting in boron termination and a Sm$^{3+}$ dominated sub-surface region. Whereas at room temperature, the reconstruction occurs on a time scale of less than two hours, it takes about 24 hours below 50 K. The boron termination is eventually established, irrespective of the initial termination. Our findings reconcile earlier depth resolved photoemission and scanning tunneling spectroscopy studies performed at different temperatures and are important for better control of polarity and, as a consequence, surface states in this system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.03315v1-abstract-full').style.display = 'none'; document.getElementById('1801.03315v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 97, 205416 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.08121">arXiv:1710.08121</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.08121">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.7b03744">10.1021/acs.nanolett.7b03744 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tuning the two-dimensional electron liquid at oxide interfaces by buffer-layer-engineered redox reactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y+Z">Y. Z. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Green%2C+R+J">R. J. Green</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">R. Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+F">F. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Linderoth%2C+S">S. Linderoth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sawatzky%2C+G+A">G. A. Sawatzky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pryds%2C+N">N. Pryds</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.08121v1-abstract-short" style="display: inline;"> Polar discontinuities and redox reactions provide alternative paths to create two-dimensional electron liquids (2DELs) at oxide interfaces. Herein, we report high mobility 2DELs at interfaces involving SrTiO3 (STO) achieved using polar La7/8Sr1/8MnO3 (LSMO) buffer layers to manipulate both polarities and redox reactions from disordered overlayers grown at room temperature. Using resonant x-ray ref&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.08121v1-abstract-full').style.display = 'inline'; document.getElementById('1710.08121v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.08121v1-abstract-full" style="display: none;"> Polar discontinuities and redox reactions provide alternative paths to create two-dimensional electron liquids (2DELs) at oxide interfaces. Herein, we report high mobility 2DELs at interfaces involving SrTiO3 (STO) achieved using polar La7/8Sr1/8MnO3 (LSMO) buffer layers to manipulate both polarities and redox reactions from disordered overlayers grown at room temperature. Using resonant x-ray reflectometry experiments, we quantify redox reactions from oxide overlayers on STO as well as polarity induced electronic reconstruction at epitaxial LSMO/STO interfaces. The analysis reveals how these effects can be combined in a STO/LSMO/disordered film trilayer system to yield high mobility modulation doped 2DELs, where the buffer layer undergoes a partial transformation from perovskite to brownmillerite structure. This uncovered interplay between polar discontinuities and redox reactions via buffer layers provides a new approach for the design of functional oxide interfaces. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.08121v1-abstract-full').style.display = 'none'; document.getElementById('1710.08121v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Nano Letters, 2017</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.04367">arXiv:1707.04367</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.04367">pdf</a>, <a href="https://arxiv.org/format/1707.04367">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.121.067602">10.1103/PhysRevLett.121.067602 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On Nematicity and Charge Order in Superoxygenated La$_{2-x}$Sr$_x$CuO$_{4+y}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zhiwei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">R. Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+F">F. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chou%2C+F+C">F. C. Chou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Udby%2C+L">L. Udby</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Holm%2C+S+L">S. L. Holm</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z+H">Z. H. Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hines%2C+W+A">W. A. Hines</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Budnick%2C+J+I">J. I. Budnick</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wells%2C+B+O">B. O. Wells</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.04367v2-abstract-short" style="display: inline;"> A nematic order in stripe-ordered cuprates was recently identified with (001) reflection at resonant energies associated with the in-plane states. However, whether this resonant reflection is ubiquitous among all 214 cuprates is still unknown. Here we report a Resonant soft X-ray Scattering (RXS) measurement on two La$_{2-x}$Sr$_x$CuO$_{4+y}$ crystals. Charge order was found in La$_2$CuO$_{4+y}$ w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.04367v2-abstract-full').style.display = 'inline'; document.getElementById('1707.04367v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.04367v2-abstract-full" style="display: none;"> A nematic order in stripe-ordered cuprates was recently identified with (001) reflection at resonant energies associated with the in-plane states. However, whether this resonant reflection is ubiquitous among all 214 cuprates is still unknown. Here we report a Resonant soft X-ray Scattering (RXS) measurement on two La$_{2-x}$Sr$_x$CuO$_{4+y}$ crystals. Charge order was found in La$_2$CuO$_{4+y}$ with a total hole concentration near 0.125/Cu but no measurable (001) peak at any resonance, while in a La$_{1.94}$Sr$_{0.06}$CuO$_{4+y}$ sample near 0.16/Cu a (001) peak resonant was identified to be consistent with the presence of LTT tilting. The lack of such a (001) peak in a compound with stripe-like charge order raises questions about nematicity and the origin of the scattering feature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.04367v2-abstract-full').style.display = 'none'; document.getElementById('1707.04367v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 121, 067602 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1704.04864">arXiv:1704.04864</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1704.04864">pdf</a>, <a href="https://arxiv.org/format/1704.04864">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.96.115157">10.1103/PhysRevB.96.115157 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Orbital order and fluctuations in the two-leg ladder materials BaFe$_2X_3$ ($X$ = S and Se) and CsFe$_2$Se$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Takubo%2C+K">Kou Takubo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yokoyama%2C+Y">Yuichi Yokoyama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wadati%2C+H">Hiroki Wadati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Iwasaki%2C+S">Shun Iwasaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mizokawa%2C+T">Takashi Mizokawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boyko%2C+T">Teak Boyko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">Ronny Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+F">Feizhou He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hashizume%2C+K">Kazuki Hashizume</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Imaizumi%2C+S">Satoshi Imaizumi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aoyama%2C+T">Takuya Aoyama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Imai%2C+Y">Yoshinori Imai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ohgushi%2C+K">Kenya Ohgushi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1704.04864v2-abstract-short" style="display: inline;"> The electronic structure of BaFe$_2X_3$ ($X$ = S and Se) and CsFe$_2$Se$_3$ in which two-leg ladders are formed by the Fe sites are studied by means of x-ray absorption and resonant inelastic x-ray scattering spectroscopy. The x-ray absorption spectra at the Fe L edges for BaFe$_2X_3$ exhibit two components, indicating that itinerant and localized Fe 3$d$ sites coexist. Substantial x-ray linear di&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.04864v2-abstract-full').style.display = 'inline'; document.getElementById('1704.04864v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1704.04864v2-abstract-full" style="display: none;"> The electronic structure of BaFe$_2X_3$ ($X$ = S and Se) and CsFe$_2$Se$_3$ in which two-leg ladders are formed by the Fe sites are studied by means of x-ray absorption and resonant inelastic x-ray scattering spectroscopy. The x-ray absorption spectra at the Fe L edges for BaFe$_2X_3$ exhibit two components, indicating that itinerant and localized Fe 3$d$ sites coexist. Substantial x-ray linear dichroism (XLD) is observed in polarization dependent spectra, indicating the existence of orbital order or fluctuation in the Fe-ladder even above the N茅el temperature $T_N$. Direct exchange interaction along the legs of the Fe-ladder stabilizes the orbital and antiferromagnetic orders in BaFe$_2$S$_3$, while the ferromagnetic molecular orbitals are realized between the rungs in CsFe$_2$Se$_3$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.04864v2-abstract-full').style.display = 'none'; document.getElementById('1704.04864v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages,5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 96, 115157 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.03348">arXiv:1702.03348</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1702.03348">pdf</a>, <a href="https://arxiv.org/format/1702.03348">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.96.134510">10.1103/PhysRevB.96.134510 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Synchrotron x-ray scattering study of charge-density-wave order in HgBa$_2$CuO$_{4+未}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tabis%2C+W">W. Tabis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+B">B. Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bialo%2C+I">I. Bialo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bluschke%2C+M">M. Bluschke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kolodziej%2C+T">T. Kolodziej</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kozlowski%2C+A">A. Kozlowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blackburn%2C+E">E. Blackburn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sen%2C+K">K. Sen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Forgan%2C+E+M">E. M. Forgan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zimmermann%2C+M+v">M. v. Zimmermann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+Y">Y. Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weschke%2C+E">E. Weschke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vignolle%2C+B">B. Vignolle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hepting%2C+M">M. Hepting</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gretarsson%2C+H">H. Gretarsson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">R. Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+F">F. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tacon%2C+M+L">M. Le Tacon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bari%C5%A1i%C4%87%2C+N">N. Bari拧i膰</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+G">G. Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greven%2C+M">M. Greven</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.03348v3-abstract-short" style="display: inline;"> We present a detailed synchrotron x-ray scattering study of the charge-density-wave (CDW) order in simple tetragonal HgBa$_2$CuO$_{4+未}$ (Hg1201). Resonant soft x-ray scattering measurements reveal that short-range order appears at a temperature that is distinctly lower than the pseudogap temperature and in excellent agreement with a prior transient reflectivity result. Despite considerable struct&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.03348v3-abstract-full').style.display = 'inline'; document.getElementById('1702.03348v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.03348v3-abstract-full" style="display: none;"> We present a detailed synchrotron x-ray scattering study of the charge-density-wave (CDW) order in simple tetragonal HgBa$_2$CuO$_{4+未}$ (Hg1201). Resonant soft x-ray scattering measurements reveal that short-range order appears at a temperature that is distinctly lower than the pseudogap temperature and in excellent agreement with a prior transient reflectivity result. Despite considerable structural differences between Hg1201 and YBa$_2$Cu$_3$O$_{6+未}$, the CDW correlations exhibit similar doping dependencies, and we demonstrate a universal relationship between the CDW wave vector and the size of the reconstructed Fermi pocket observed in quantum oscillation experiments. The CDW correlations in Hg1201 vanish already below optimal doping, once the correlation length is comparable to the CDW modulation period, and they appear to be limited by the disorder potential from unit cells hosting two interstitial oxygen atoms. A complementary hard x-ray diffraction measurement, performed on an underdoped Hg1201 sample in magnetic fields along the crystallographic $c$ axis of up to 16 T, provides information about the form factor of the CDW order. As expected from the single-CuO$_2$-layer structure of Hg1201, the CDW correlations vanish at half-integer values of $L$ and appear to be peaked at integer $L$. We conclude that the atomic displacements associated with the short-range CDW order are mainly planar, within the CuO$_2$ layers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.03348v3-abstract-full').style.display = 'none'; document.getElementById('1702.03348v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 96, 134510 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.05900">arXiv:1609.05900</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1609.05900">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.1601086">10.1126/sciadv.1601086 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quasiparticle interference of heavy fermions in resonant X-ray scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gyenis%2C+A">Andras Gyenis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neto%2C+E+H+d+S">Eduardo H. da Silva Neto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">Ronny Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schierle%2C+E">Enrico Schierle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+F">Feizhou He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weschke%2C+E">Eugen Weschke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kavai%2C+M">Mariam Kavai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baumbach%2C+R+E">Ryan E. Baumbach</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thompson%2C+J+D">Joe D. Thompson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bauer%2C+E+D">Eric D. Bauer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fisk%2C+Z">Zachary Fisk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damascelli%2C+A">Andrea Damascelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yazdani%2C+A">Ali Yazdani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aynajian%2C+P">Pegor Aynajian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.05900v1-abstract-short" style="display: inline;"> Resonant X-ray scattering (RXS) has recently become an increasingly important tool for the study of ordering phenomena in correlated electron systems. Yet, the interpretation of the RXS experiments remains theoretically challenging due to the complexity of the RXS cross-section. Central to this debate is the recent proposal that impurity-induced Friedel oscillations, akin to quasiparticle interfer&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.05900v1-abstract-full').style.display = 'inline'; document.getElementById('1609.05900v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.05900v1-abstract-full" style="display: none;"> Resonant X-ray scattering (RXS) has recently become an increasingly important tool for the study of ordering phenomena in correlated electron systems. Yet, the interpretation of the RXS experiments remains theoretically challenging due to the complexity of the RXS cross-section. Central to this debate is the recent proposal that impurity-induced Friedel oscillations, akin to quasiparticle interference signals observed with the scanning tunneling microscope (STM), can lead to scattering peaks in the RXS experiments. The possibility that quasiparticle properties can be probed in RXS measurements opens up a new avenue to study the bulk band structure of materials with the orbital and element selectivity provided by RXS. Here, we test these ideas by combining RXS and STM measurements of the heavy fermion compound CeMIn$_5$ (M = Co, Rh). Temperature and doping dependent RXS measurements at the Ce-M$_4$ edge show a broad scattering enhancement that correlates with the appearance of heavy f-electron bands in these compounds. The scattering enhancement is consistent with the measured quasiparticle interference signal in the STM measurements, indicating that quasiparticle interference can be probed through the momentum distribution of RXS signals. Overall, our experiments demonstrate new opportunities for studies of correlated electronic systems using the RXS technique. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.05900v1-abstract-full').style.display = 'none'; document.getElementById('1609.05900v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted to Science Advances</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. Adv. 2, e1601086 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.03855">arXiv:1609.03855</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1609.03855">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Dynamic atomic reconstruction: how Fe3O4 thin films evade polar catastrophe for epitaxy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+C+F">C. F. Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Z">Z. Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klein%2C+S">S. Klein</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X+H">X. H. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">R. Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tanaka%2C+A">A. Tanaka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cezar%2C+J+C">J. C. Cezar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brookes%2C+N+B">N. B. Brookes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H+-">H. -J. Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hsieh%2C+H+H">H. H. Hsieh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C+T">C. T. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rata%2C+A+D">A. D. Rata</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tjeng%2C+L+H">L. H. Tjeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.03855v1-abstract-short" style="display: inline;"> Polar catastrophe at the interface of oxide materials with strongly correlated electrons has triggered a flurry of new research activities. The expectations are that the design of such advanced interfaces will become a powerful route to engineer devices with novel functionalities. Here we investigate the initial stages of growth and the electronic structure of the spintronic Fe3O4/MgO (001) interf&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.03855v1-abstract-full').style.display = 'inline'; document.getElementById('1609.03855v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.03855v1-abstract-full" style="display: none;"> Polar catastrophe at the interface of oxide materials with strongly correlated electrons has triggered a flurry of new research activities. The expectations are that the design of such advanced interfaces will become a powerful route to engineer devices with novel functionalities. Here we investigate the initial stages of growth and the electronic structure of the spintronic Fe3O4/MgO (001) interface. Using soft x-ray absorption spectroscopy we have discovered that the so-called A-sites are completely missing in the first Fe3O4 monolayer. This allows us to develop an unexpected but elegant growth principle in which during deposition the Fe atoms are constantly on the move to solve the divergent electrostatic potential problem, thereby ensuring epitaxy and stoichiometry at the same time. This growth principle provides a new perspective for the design of interfaces. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.03855v1-abstract-full').style.display = 'none'; document.getElementById('1609.03855v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.06094">arXiv:1607.06094</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1607.06094">pdf</a>, <a href="https://arxiv.org/format/1607.06094">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.1600782">10.1126/sciadv.1600782 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Doping dependent charge order correlations in electron-doped cuprates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Neto%2C+E+H+d+S">E. H. da Silva Neto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+B">B. Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Minola%2C+M">M. Minola</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">R. Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schierle%2C+E">E. Schierle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boschini%2C+F">F. Boschini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zonno%2C+M">M. Zonno</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bluschke%2C+M">M. Bluschke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Higgins%2C+J">J. Higgins</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Y. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+G">G. Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weschke%2C+E">E. Weschke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+F">F. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tacon%2C+M+L">M. Le Tacon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greene%2C+R+L">R. L. Greene</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greven%2C+M">M. Greven</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sawatzky%2C+G+A">G. A. Sawatzky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keimer%2C+B">B. Keimer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damascelli%2C+A">A. Damascelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.06094v1-abstract-short" style="display: inline;"> Understanding the interplay between charge order (CO) and other phenomena (e.g. pseudogap, antiferromagnetism, and superconductivity) is one of the central questions in the cuprate high-temperature superconductors. The discovery that similar forms of CO exist in both hole- and electron-doped cuprates opened a path to determine what subset of the CO phenomenology is universal to all the cuprates. H&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.06094v1-abstract-full').style.display = 'inline'; document.getElementById('1607.06094v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.06094v1-abstract-full" style="display: none;"> Understanding the interplay between charge order (CO) and other phenomena (e.g. pseudogap, antiferromagnetism, and superconductivity) is one of the central questions in the cuprate high-temperature superconductors. The discovery that similar forms of CO exist in both hole- and electron-doped cuprates opened a path to determine what subset of the CO phenomenology is universal to all the cuprates. Here, we use resonant x-ray scattering to measure the charge order correlations in electron-doped cuprates (La2-xCexCuO4 and Nd2-xCexCuO4) and their relationship to antiferromagnetism, pseudogap, and superconductivity. Detailed measurements of Nd2-xCexCuO4 show that CO is present in the x = 0.059 to 0.166 range, and that its doping dependent wavevector is consistent with the separation between straight segments of the Fermi surface. The CO onset temperature is highest between x = 0.106 and 0.166, but decreases at lower doping levels, indicating that it is not tied to the appearance of antiferromagnetic correlations or the pseudogap. Near optimal doping, where the CO wavevector is also consistent with a previously observed phonon anomaly, measurements of the CO below and above the superconducting transition temperature, or in a magnetic field, show that the CO is insensitive to superconductivity. Overall these findings indicate that, while verified in the electron-doped cuprates, material-dependent details determine whether the CO correlations acquire sufficient strength to compete for the ground state of the cuprates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.06094v1-abstract-full').style.display = 'none'; document.getElementById('1607.06094v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Supplementary information available upon request</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science Advances 2, e1600782 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1602.02171">arXiv:1602.02171</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1602.02171">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.aad1824">10.1126/science.aad1824 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nematicity in stripe ordered cuprates probed via resonant x-ray scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Achkar%2C+A+J">A. J. Achkar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zwiebler%2C+M">M. Zwiebler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMahon%2C+C">Christopher McMahon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+F">F. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">R. Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Djianto%2C+I">Isaiah Djianto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hao%2C+Z">Zhihao Hao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gingras%2C+M+J+P">M. J. P. Gingras</a>, <a href="/search/cond-mat?searchtype=author&amp;query=H%C3%BCcker%2C+M">M. H眉cker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+G+D">G. D. Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Revcolevschi%2C+A">A. Revcolevschi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">H. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+Y+-">Y. -J. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geck%2C+J">J. Geck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hawthorn%2C+D+G">D. G. Hawthorn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1602.02171v1-abstract-short" style="display: inline;"> In underdoped cuprate superconductors, a rich competition occurs between superconductivity and charge density wave (CDW) order. Whether rotational symmetry breaking (nematicity) occurs intrinsically and generically or as a consequence of other orders is under debate. Here we employ resonant x-ray scattering in stripe-ordered (La,M)_2CuO_4 to probe the relationship between electronic nematicity of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.02171v1-abstract-full').style.display = 'inline'; document.getElementById('1602.02171v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1602.02171v1-abstract-full" style="display: none;"> In underdoped cuprate superconductors, a rich competition occurs between superconductivity and charge density wave (CDW) order. Whether rotational symmetry breaking (nematicity) occurs intrinsically and generically or as a consequence of other orders is under debate. Here we employ resonant x-ray scattering in stripe-ordered (La,M)_2CuO_4 to probe the relationship between electronic nematicity of the Cu 3d orbitals, structure of the (La,M)_2O_2 layers, and CDW order. We find distinct temperature dependences for the structure of the (La,M)_2O_2 layers and the electronic nematicity of the CuO_2 planes, with only the latter being enhanced by the onset of CDW order. These results identify electronic nematicity as an order parameter that is distinct from a purely structural order parameter in underdoped striped cuprates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.02171v1-abstract-full').style.display = 'none'; document.getElementById('1602.02171v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages including supplementary information, 3 main figures, 4 supplementary figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 351, 576 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1602.01471">arXiv:1602.01471</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1602.01471">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.aac4778">10.1126/science.aac4778 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Response to comment on &#34;Broken translational and rotational symmetry via charge stripe order in underdoped YBa2Cu3O6+y&#34; </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Comin%2C+R">R. Comin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">R. Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neto%2C+E+H+d+S">E. H. da Silva Neto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chauviere%2C+L">L. Chauviere</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">R. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+F">F. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sawatzky%2C+G+A">G. A. Sawatzky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damascelli%2C+A">A. Damascelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1602.01471v1-abstract-short" style="display: inline;"> Fine questions our interpretation of unidirectional-stripes over bidirectional-checkerboard, and illustrates his criticism by simulating a momentum space structure consistent with our data and corresponding to a checkerboard-looking real space density. Here we use a local rotational-symmetry analysis to demonstrate that the simulated image is in actuality composed of locally unidirectional modulat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.01471v1-abstract-full').style.display = 'inline'; document.getElementById('1602.01471v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1602.01471v1-abstract-full" style="display: none;"> Fine questions our interpretation of unidirectional-stripes over bidirectional-checkerboard, and illustrates his criticism by simulating a momentum space structure consistent with our data and corresponding to a checkerboard-looking real space density. Here we use a local rotational-symmetry analysis to demonstrate that the simulated image is in actuality composed of locally unidirectional modulations of the charge density, consistent with our original conclusions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.01471v1-abstract-full').style.display = 'none'; document.getElementById('1602.01471v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Response to original comment: B.V. Fine, Science 351, 235 (2016) (arxiv version at http://arxiv.org/abs/1602.00888)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 351, 235 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1505.00652">arXiv:1505.00652</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1505.00652">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4919803">10.1063/1.4919803 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tailoring the electronic transitions of NdNiO_3 films through (111)_pc oriented interfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Catalano%2C+S">S. Catalano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gibert%2C+M">M. Gibert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisogni%2C+V">V. Bisogni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+F">F. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">R. Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Viret%2C+M">M. Viret</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zubko%2C+P">P. Zubko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scherwitzl%2C+R">R. Scherwitzl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sawatzky%2C+G+A">G. A. Sawatzky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">T. Schmitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Triscone%2C+J+-">J. -M. Triscone</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1505.00652v1-abstract-short" style="display: inline;"> Bulk NdNiO_3 and thin films grown along the pseudocubic (001)_pc axis display a 1st order metal to insulator transition (MIT) together with a N茅el transition at T=200K. Here, we show that for NdNiO3 films deposited on (111)_pc NdGaO_3 the MIT occurs at T=335K and the N茅el transition at T=230 K. By comparing transport and magnetic properties of layers grown on substrates with different symmetries a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.00652v1-abstract-full').style.display = 'inline'; document.getElementById('1505.00652v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1505.00652v1-abstract-full" style="display: none;"> Bulk NdNiO_3 and thin films grown along the pseudocubic (001)_pc axis display a 1st order metal to insulator transition (MIT) together with a N茅el transition at T=200K. Here, we show that for NdNiO3 films deposited on (111)_pc NdGaO_3 the MIT occurs at T=335K and the N茅el transition at T=230 K. By comparing transport and magnetic properties of layers grown on substrates with different symmetries and lattice parameters, we demonstrate a particularly large tuning when the epitaxy is realized on (111)_pc surfaces. We attribute this effect to the specific lattice matching conditions imposed along this direction when using orthorhombic substrates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.00652v1-abstract-full').style.display = 'none'; document.getElementById('1505.00652v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> APL Materials 3, 062506 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1504.05986">arXiv:1504.05986</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1504.05986">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Extreme mobility enhancement of two-dimensional electron gases at oxide interfaces via charge transfer induced modulation doping </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y+Z">Y. Z. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Trier%2C+F">F. Trier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wijnands%2C+T">T. Wijnands</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Green%2C+R+J">R. J. Green</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gauquelin%2C+N">N. Gauquelin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Egoavil%2C+R">R. Egoavil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Christensen%2C+D+V">D. V. Christensen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koster%2C+G">G. Koster</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huijben%2C+M">M. Huijben</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bovet%2C+N">N. Bovet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Macke%2C+S">S. Macke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+F">F. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">R. Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Andersen%2C+N+H">N. H. Andersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prawiroatmodjo%2C+G+E+D+K">G. E. D. K. Prawiroatmodjo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jespersen%2C+T+S">T. S. Jespersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sulpizio%2C+J+A">J. A. Sulpizio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Honig%2C+M">M. Honig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Linderoth%2C+S">S. Linderoth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ilani%2C+S">S. Ilani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Verbeeck%2C+J">J. Verbeeck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Van+Tendeloo%2C+G">G. Van Tendeloo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rijnders%2C+G">G. Rijnders</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sawatzky%2C+G+A">G. A. Sawatzky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pryds%2C+N">N. Pryds</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1504.05986v1-abstract-short" style="display: inline;"> The discovery of two-dimensional electron gases (2DEGs) at the interface between two insulating complex oxides, such as LaAlO3 (LAO) or gamma-Al2O3 (GAO) epitaxially grown on SrTiO3 (STO) 1,2, provides an opportunity for developing all-oxide electronic devices3,4. These 2DEGs at complex oxide interfaces involve many-body interactions and give rise to a rich set of phenomena5, for example, supercon&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.05986v1-abstract-full').style.display = 'inline'; document.getElementById('1504.05986v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1504.05986v1-abstract-full" style="display: none;"> The discovery of two-dimensional electron gases (2DEGs) at the interface between two insulating complex oxides, such as LaAlO3 (LAO) or gamma-Al2O3 (GAO) epitaxially grown on SrTiO3 (STO) 1,2, provides an opportunity for developing all-oxide electronic devices3,4. These 2DEGs at complex oxide interfaces involve many-body interactions and give rise to a rich set of phenomena5, for example, superconductivity6, magnetism7,8, tunable metal-insulator transitions9, and phase separation10. However, large enhancement of the interfacial electron mobility remains a major and long-standing challenge for fundamental as well as applied research of complex oxides11-15. Here, we inserted a single unit cell insulating layer of polar La1-xSrxMnO3 (x=0, 1/8, and 1/3) at the interface between disordered LaAlO3 and crystalline SrTiO3 created at room temperature. We find that the electron mobility of the interfacial 2DEG is enhanced by more than two orders of magnitude. Our in-situ and resonant x-ray spectroscopic in addition to transmission electron microscopy results indicate that the manganite layer undergoes unambiguous electronic reconstruction and leads to modulation doping of such atomically engineered complex oxide heterointerfaces. At low temperatures, the modulation-doped 2DEG exhibits clear Shubnikov-de Haas oscillations and the initial manifestation of the quantum Hall effect, demonstrating an unprecedented high-mobility and low electron density oxide 2DEG system. These findings open new avenues for oxide electronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.05986v1-abstract-full').style.display = 'none'; document.getElementById('1504.05986v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 April, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 5 figures, Accepted for publication in Nature Materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1504.05005">arXiv:1504.05005</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1504.05005">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4902138">10.1063/1.4902138 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4902138">10.1063/1.4902138 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4902138">10.1063/1.4902138 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic Transitions in Strained SmNiO_3 Thin Films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Catalano%2C+S">S. Catalano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gibert%2C+M">M. Gibert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisogni%2C+V">V. Bisogni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peil%2C+O">O. Peil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+F">F. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">R. Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Viret%2C+M">M. Viret</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zubko%2C+P">P. Zubko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scherwitzl%2C+R">R. Scherwitzl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Georges%2C+A">A. Georges</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sawatzky%2C+G+A">G. A. Sawatzky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">T. Schmitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Triscone%2C+J+-">J. -M. Triscone</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1504.05005v1-abstract-short" style="display: inline;"> Nickelates are known for their metal to insulator transition (MIT) and an unusual magnetic ordering, occurring at T=T_N茅el. Here, we investigate thin films of SmNiO_3 subjected to different levels of epitaxial strain. We find that the original bulk behavior (T_N茅el&lt;T_MI) is strongly affected by applying compressive strain to the films. For small compressive strains, a regime where T_N茅el=T_MI is a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.05005v1-abstract-full').style.display = 'inline'; document.getElementById('1504.05005v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1504.05005v1-abstract-full" style="display: none;"> Nickelates are known for their metal to insulator transition (MIT) and an unusual magnetic ordering, occurring at T=T_N茅el. Here, we investigate thin films of SmNiO_3 subjected to different levels of epitaxial strain. We find that the original bulk behavior (T_N茅el&lt;T_MI) is strongly affected by applying compressive strain to the films. For small compressive strains, a regime where T_N茅el=T_MI is achieved, the paramagnetic insulating phase characteristic of the bulk compound is suppressed and the MIT becomes 1st order. Further increasing the in-plane compression of the SmNiO_3 lattice leads to the stabilization of a single metallic paramagnetic phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.05005v1-abstract-full').style.display = 'none'; document.getElementById('1504.05005v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 April, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> APL Materials 2, 116110 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.08209">arXiv:1503.08209</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1503.08209">pdf</a>, <a href="https://arxiv.org/format/1503.08209">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.1258399">10.1126/science.1258399 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Broken translational and rotational symmetry via charge stripe order in underdoped YBCO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Comin%2C+R">R. Comin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">R. Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neto%2C+E+H+d+S">E. H. da Silva Neto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chauviere%2C+L">L. Chauviere</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">R. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+F">F. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sawatzky%2C+G+A">G. A. Sawatzky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damascelli%2C+A">A. Damascelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.08209v1-abstract-short" style="display: inline;"> Following the early discovery of stripe-like order in La-based copper-oxide superconductors, charge ordering instabilities were observed in all cuprate families. However, it has proven difficult to distinguish between uni- (stripes) and bi-directional (checkerboard) charge order in Y- and Bi-based materials. Here we use resonant x-ray scattering (RXS) to measure the two-dimensional structure facto&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.08209v1-abstract-full').style.display = 'inline'; document.getElementById('1503.08209v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.08209v1-abstract-full" style="display: none;"> Following the early discovery of stripe-like order in La-based copper-oxide superconductors, charge ordering instabilities were observed in all cuprate families. However, it has proven difficult to distinguish between uni- (stripes) and bi-directional (checkerboard) charge order in Y- and Bi-based materials. Here we use resonant x-ray scattering (RXS) to measure the two-dimensional structure factor in YBCO, in reciprocal space. Our data reveal the presence of charge stripe order, i.e. locally unidirectional density waves, suggesting it as the true microscopic nature of charge modulations in cuprates. At the same time, we find that the well-established competition between charge order and superconductivity is stronger for charge correlations across than along the stripes, which provides additional evidence for the intrinsic unidirectional nature of the charge order. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.08209v1-abstract-full').style.display = 'none'; document.getElementById('1503.08209v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 347, 1335-1339 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1501.03388">arXiv:1501.03388</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1501.03388">pdf</a>, <a href="https://arxiv.org/format/1501.03388">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/17/8/083046">10.1088/1367-2630/17/8/083046 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic depth profiles with atomic layer resolution from resonant soft x-ray reflectivity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zwiebler%2C+M">M. Zwiebler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hamann-Borrero%2C+J+E">J. E. Hamann-Borrero</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vafaee%2C+M">M. Vafaee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Komissinskiy%2C+P">P. Komissinskiy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Macke%2C+S">S. Macke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">R. Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+F">F. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">B. B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sawatzky%2C+G+A">G. A. Sawatzky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alff%2C+L">L. Alff</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geck%2C+J">J. Geck</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1501.03388v3-abstract-short" style="display: inline;"> The analysis of x-ray reflectivity data from artificial heterostructures usually relies on the homogeneity of optical properties of the constituent materials. However, when the x-ray energy is tuned to an absorption edge, this homogeneity no longer exists. Within the same material, spatial regions containing elements at resonance will have optical properties very different from regions without res&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.03388v3-abstract-full').style.display = 'inline'; document.getElementById('1501.03388v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1501.03388v3-abstract-full" style="display: none;"> The analysis of x-ray reflectivity data from artificial heterostructures usually relies on the homogeneity of optical properties of the constituent materials. However, when the x-ray energy is tuned to an absorption edge, this homogeneity no longer exists. Within the same material, spatial regions containing elements at resonance will have optical properties very different from regions without resonating sites. In this situation, models assuming homogeneous optical properties throughout the material can fail to describe the reflectivity adequately. As we show here, resonant soft x-ray reflectivity is sensitive to these variations, even though the wavelength is typically large as compared to the atomic distances over which the optical properties vary. We have therefore developed a scheme for analyzing resonant soft x-ray reflectivity data, which takes the atomic structure of a material into account by &#34;slicing&#34; it into atomic planes with characteristic optical properties. Using LaSrMnO4 as an example, we discuss both the theoretical and experimental implications of this approach. Our analysis not only allows to determine important structural information such as interface terminations and stacking of atomic layers, but also enables to extract depth-resolved spectroscopic information with atomic resolution, thus enhancing the capability of the technique to study emergent phenomena at surfaces and interfaces. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.03388v3-abstract-full').style.display = 'none'; document.getElementById('1501.03388v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 April, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 January, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Completely overhauled with respect to the previous version due to peer review</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1410.2967">arXiv:1410.2967</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1410.2967">pdf</a>, <a href="https://arxiv.org/ps/1410.2967">ps</a>, <a href="https://arxiv.org/format/1410.2967">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.90.144515">10.1103/PhysRevB.90.144515 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effect of Pt substitution on the electronic structure of AuTe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ootsuki%2C+D">D. Ootsuki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takubo%2C+K">K. Takubo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kudo%2C+K">K. Kudo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ishii%2C+H">H. Ishii</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nohara%2C+M">M. Nohara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saini%2C+N+L">N. L. Saini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">R. Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+F">F. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Regier%2C+T+Z">T. Z. Regier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zonno%2C+M">M. Zonno</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+M">M. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Levy%2C+G">G. Levy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sawatzky%2C+G+A">G. A. Sawatzky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damascelli%2C+A">A. Damascelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mizokawa%2C+T">T. Mizokawa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1410.2967v1-abstract-short" style="display: inline;"> We report a photoemission and x-ray absorption study on Au1-xPtxTe2 (x = 0 and 0.35) triangular lattice in which superconductivity is induced by Pt substitution for Au. Au 4f and Te 3d core-level spectra of AuTe2 suggests a valence state of Au2+(Te2)2-, which is consistent with its distorted crystal structure with Te-Te dimers and compressed AuTe6 otahedra. On the other hand, valence-band photoemi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.2967v1-abstract-full').style.display = 'inline'; document.getElementById('1410.2967v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1410.2967v1-abstract-full" style="display: none;"> We report a photoemission and x-ray absorption study on Au1-xPtxTe2 (x = 0 and 0.35) triangular lattice in which superconductivity is induced by Pt substitution for Au. Au 4f and Te 3d core-level spectra of AuTe2 suggests a valence state of Au2+(Te2)2-, which is consistent with its distorted crystal structure with Te-Te dimers and compressed AuTe6 otahedra. On the other hand, valence-band photoemission spectra and pre-edge peaks of Te 3d absorption edge indicate that Au 5d bands are almost fully occupied and that Te 5p holes govern the transport properties and the lattice distortion. The two apparently conflicting pictures can be reconciled by strong Au 5d/Au 6s-Te 5p hybridization. Absence of a core-level energy shift with Pt substitution is inconsistent with the simple rigid band picture for hole doping. The Au 4f core-level spectrum gets slightly narrow with Pt substitution, indicating that the small Au 5d charge modulation in distorted AuTe2 is partially suppressed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.2967v1-abstract-full').style.display = 'none'; document.getElementById('1410.2967v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 4 figures, accepted by Physical Review B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B, 90,144515 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1410.2253">arXiv:1410.2253</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1410.2253">pdf</a>, <a href="https://arxiv.org/format/1410.2253">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.1256441">10.1126/science.1256441 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charge ordering in the electron-doped superconductor Nd2-xCexCuO4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Neto%2C+E+H+d+S">Eduardo H. da Silva Neto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Comin%2C+R">Riccardo Comin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+F">Feizhou He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">Ronny Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yeping Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greene%2C+R+L">Richard L. Greene</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sawatzky%2C+G+A">George A. Sawatzky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damascelli%2C+A">Andrea Damascelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1410.2253v1-abstract-short" style="display: inline;"> In cuprate high-temperature superconductors, an antiferromagnetic Mott insulating state can be destabilized toward unconventional superconductivity by either hole- or electron-doping. In addition to these two electronic phases there is now a copious amount of evidence that supports the presence of a charge ordering (CO) instability competing with superconductivity inside the pseudogap state of the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.2253v1-abstract-full').style.display = 'inline'; document.getElementById('1410.2253v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1410.2253v1-abstract-full" style="display: none;"> In cuprate high-temperature superconductors, an antiferromagnetic Mott insulating state can be destabilized toward unconventional superconductivity by either hole- or electron-doping. In addition to these two electronic phases there is now a copious amount of evidence that supports the presence of a charge ordering (CO) instability competing with superconductivity inside the pseudogap state of the hole-doped (p-type) cuprates, but so far there has been no evidence of a similar CO in their electron-doped (n-type) counterparts. Here we report resonant x-ray scattering (RXS) measurements which demonstrate the presence of charge ordering in the n-type cuprate Nd2-xCexCuO4 near optimal doping. Remarkably we find that the CO in Nd2-xCexCuO4 occurs with similar periodicity, and along the same direction, as the CO in p-type cuprates. However, in contrast to the latter, the CO onset in Nd2-xCexCuO4 is higher than the pseudogap temperature, and is actually in the same temperature range where antiferromagnetic fluctuations are first detected -- thereby showing that CO and antiferromagnetic fluctuations are likely coupled in n-type cuprates. Overall our discovery uncovers a missing piece of the cuprate phase diagram and opens a parallel path to the study of CO and its relationship to other phenomena, such as antiferromagnetism (AF) and high-temperature superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.2253v1-abstract-full').style.display = 'none'; document.getElementById('1410.2253v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">A high-resolution version with supplementary material can be found at: http://www.phas.ubc.ca/~quantmat/ARPES/PUBLICATIONS/Articles/NCCO_RXS.pdf</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 347, 282-285 (2015) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Sutarto%2C+R&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Sutarto%2C+R&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Sutarto%2C+R&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10