CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 155 results for author: <span class="mathjax">Yuan, Z</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Yuan%2C+Z">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Yuan, Z"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Yuan%2C+Z&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Yuan, Z"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Yuan%2C+Z&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Yuan%2C+Z&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yuan%2C+Z&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yuan%2C+Z&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yuan%2C+Z&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.15443">arXiv:2411.15443</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.15443">pdf</a>, <a href="https://arxiv.org/format/2411.15443">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> String breaking mechanism in a lattice Schwinger model simulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Ying Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Wei-Yong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zi-Hang Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+M">Ming-Gen He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zhen-Sheng Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+J">Jian-Wei Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.15443v1-abstract-short" style="display: inline;"> String breaking is a fundamental concept in gauge theories, describing the decay of a flux string connecting two charges through the production of particle-antiparticle pairs. This phenomenon is particularly important in particle physics, notably in Quantum Chromodynamics, and plays a crucial role in condensed matter physics. However, achieving a theoretical understanding of this non-perturbative&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15443v1-abstract-full').style.display = 'inline'; document.getElementById('2411.15443v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.15443v1-abstract-full" style="display: none;"> String breaking is a fundamental concept in gauge theories, describing the decay of a flux string connecting two charges through the production of particle-antiparticle pairs. This phenomenon is particularly important in particle physics, notably in Quantum Chromodynamics, and plays a crucial role in condensed matter physics. However, achieving a theoretical understanding of this non-perturbative effect is challenging, as conventional numerical approaches often fall short and require substantial computational resources. On the experimental side, studying these effects necessitates advanced setups, such as high-energy colliders, which makes direct observation difficult. Here, we report an experimental investigation of the string breaking mechanism in a one-dimensional U(1) lattice gauge theory using an optical lattice quantum simulator. By deterministically preparing initial states of varying lengths with fixed charges at each end, and adiabatically tuning the mass and string tension, we observed in situ microscopic confined phases that exhibit either string or brokenstring states. Further analysis reveals that string breaking occurs under a resonance condition, leading to the creation of new particle-antiparticle pairs. These findings offer compelling evidence of string breaking and provide valuable insights into the intricate dynamics of lattice gauge theories. Our work underscores the potential of optical lattices as controllable quantum simulators, enabling the exploration of complex gauge theories and their associated phenomena. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15443v1-abstract-full').style.display = 'none'; document.getElementById('2411.15443v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, (5+3) figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12565">arXiv:2411.12565</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.12565">pdf</a>, <a href="https://arxiv.org/format/2411.12565">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Probing false vacuum decay on a cold-atom gauge-theory quantum simulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zi-Hang Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Ying Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lagnese%2C+G">Gianluca Lagnese</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Surace%2C+F+M">Federica Maria Surace</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Wei-Yong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+M">Ming-Gen He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Halimeh%2C+J+C">Jad C. Halimeh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dalmonte%2C+M">Marcello Dalmonte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morampudi%2C+S+C">Siddhardh C. Morampudi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wilczek%2C+F">Frank Wilczek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zhen-Sheng Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+J">Jian-Wei Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12565v1-abstract-short" style="display: inline;"> In the context of quantum electrodynamics, the decay of false vacuum leads to the production of electron-positron pair, a phenomenon known as the Schwinger effect. In practical experimental scenarios, producing a pair requires an extremely strong electric field, thus suppressing the production rate and making this process very challenging to observe. Here we report an experimental investigation, i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12565v1-abstract-full').style.display = 'inline'; document.getElementById('2411.12565v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12565v1-abstract-full" style="display: none;"> In the context of quantum electrodynamics, the decay of false vacuum leads to the production of electron-positron pair, a phenomenon known as the Schwinger effect. In practical experimental scenarios, producing a pair requires an extremely strong electric field, thus suppressing the production rate and making this process very challenging to observe. Here we report an experimental investigation, in a cold-atom quantum simulator, of the effect of the background field on pair production from the infinite-mass vacuum in a $1+1$D $\mathrm{U}(1)$ lattice gauge theory. The ability to tune the background field allows us to study pair production in a large production rate regime. Furthermore, we find that the energy spectrum of the time-evolved observables in the zero mass limit displays excitation peaks analogous to bosonic modes in the Schwinger model. Our work opens the door to quantum-simulation experiments that can controllably tune the production of pairs and manipulate their far-from-equilibrium dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12565v1-abstract-full').style.display = 'none'; document.getElementById('2411.12565v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12544">arXiv:2411.12544</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.12544">pdf</a>, <a href="https://arxiv.org/format/2411.12544">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Vanishing conductivity-like Gilbert damping in mirror-symmetric van der Waals ferromagnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+W">Weizhao Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zhe Yuan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12544v1-abstract-short" style="display: inline;"> The identification of two-dimensional van der Waals ferromagnetic materials has significantly expanded the realm of magnetic materials and enabled innovative control techniques such as gating and stacking. The dynamical behavior of magnetization is profoundly influenced by the Gilbert damping parameter, a crucial factor for enhancing the speed of magnetic switching and reducing the energy consumpt&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12544v1-abstract-full').style.display = 'inline'; document.getElementById('2411.12544v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12544v1-abstract-full" style="display: none;"> The identification of two-dimensional van der Waals ferromagnetic materials has significantly expanded the realm of magnetic materials and enabled innovative control techniques such as gating and stacking. The dynamical behavior of magnetization is profoundly influenced by the Gilbert damping parameter, a crucial factor for enhancing the speed of magnetic switching and reducing the energy consumption of magnetic devices. Despite its importance, the understanding of Gilbert damping in van der Waals ferromagnets remains limited, impeding their technological applications. Here we present a theoretical calculation of Gilbert damping in two-dimensional van der Waals metals, focusing on Fe3GaTe2 and Fe3GeTe2 as model systems. We discover that mirror symmetry prohibits intraband contributions, resulting in disappearance of conductivity-like damping. Consequently, at low temperatures, the Gilbert damping in single-layer Fe3GaTe2 and Fe3GeTe2 is remarkably low when the magnetization is perpendicular to the atomic layer, but it increases substantially when the magnetization is reoriented into the atomic plane. Furthermore, topological nodal lines, also protected by mirror symmetry, contribute significantly to damping mediated by interband transitions and can be effectively modulated by adjusting the Fermi level. Our findings elucidate the distinctive characteristics of Gilbert damping in two-dimensional van der Waals ferromagnets, providing valuable insights for the design and optimization of low-dimensional spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12544v1-abstract-full').style.display = 'none'; document.getElementById('2411.12544v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures, van der Waals ferromagnet, Gilbert damping, mirror symmetry, first-principles calculation</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10264">arXiv:2411.10264</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.10264">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.174422">10.1103/PhysRevB.110.174422 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological geometric frustration in a cube-surface artificial spin ice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zixiong Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yue%2C+W">Wen-Cheng Yue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+P">Peiyuan Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lyu%2C+Y">Yang-Yang Lyu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+S">Sining Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+Y">Ying Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Huabing Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+P">Peiheng Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yong-Lei Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10264v1-abstract-short" style="display: inline;"> Artificial spin ices provide a controlled platform for investigating diverse physical phenomena, such as geometric frustration, magnetic monopoles, and phase transitions, via deliberate design. Here, we introduce a novel approach by developing artificial spin ice on the surfaces of a three-dimensional cube, which leads to emergent geometric frustration mediated by topologically protected domain wa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10264v1-abstract-full').style.display = 'inline'; document.getElementById('2411.10264v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10264v1-abstract-full" style="display: none;"> Artificial spin ices provide a controlled platform for investigating diverse physical phenomena, such as geometric frustration, magnetic monopoles, and phase transitions, via deliberate design. Here, we introduce a novel approach by developing artificial spin ice on the surfaces of a three-dimensional cube, which leads to emergent geometric frustration mediated by topologically protected domain walls, distinct from its flat counterparts. These domain walls connect vertices at the corners of cube that acting as intrinsic topological defects. Utilizing Monte Carlo simulations, we observe robust, topologically protected correlations among the intrinsic topological defects, regardless of their spatial separation. Our findings demonstrate that three-dimensional surfaces can unveil emergent properties absent in flat architectures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10264v1-abstract-full').style.display = 'none'; document.getElementById('2411.10264v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 110, 174422 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06321">arXiv:2411.06321</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.06321">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jmmm.2024.172614">10.1016/j.jmmm.2024.172614 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anomalous switching pattern in the ferrimagnetic memory cell </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zhuo Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zhengping Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xue Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zhengde Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiao%2C+Y">Yixiao Qiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yumeng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zhifeng Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06321v1-abstract-short" style="display: inline;"> Replacing the ferromagnet with ferrimagnet (FiM) in the magnetic tunnel junction (MTJ) allows faster magnetization switching in picoseconds. The operation of a memory cell that consists of the MTJ and a transistor requires reversable magnetization switching. When a constant voltage is applied, we find that the spin-transfer torque can only switch the FiM-MTJ from parallel to antiparallel state. Th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06321v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06321v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06321v1-abstract-full" style="display: none;"> Replacing the ferromagnet with ferrimagnet (FiM) in the magnetic tunnel junction (MTJ) allows faster magnetization switching in picoseconds. The operation of a memory cell that consists of the MTJ and a transistor requires reversable magnetization switching. When a constant voltage is applied, we find that the spin-transfer torque can only switch the FiM-MTJ from parallel to antiparallel state. This stems from the small switching window of FiM and the dynamic resistance variation during the magnetization switching. We find the resulting current variation can be suppressed by reducing the magnetoresistance ratio. Furthermore, we demonstrate that the switching window can be expanded by adjusting the amount of Gd in FiM. We predict that the polarity of both switching current (Jc,switch) and oscillation current (Jc,osc) reverses at the angular momentum compensation point but not the magnetization compensation point. This anomalous dynamic behavior is attributed to the different physical nature of magnetization switching and oscillation in FiM, which must be considered when designing FiM-based MRAM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06321v1-abstract-full').style.display = 'none'; document.getElementById('2411.06321v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Magnetism and Magnetic Materials 611 (2024) 172614 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.07644">arXiv:2410.07644</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.07644">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Mechanics of soft-body rolling motion without external torque </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+X">Xudong Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+Y">Yimiao Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zihao Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+J">Junqi Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+Z">Zongling Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fei%2C+P">Peng Fei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yixuan Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+G">Guoying Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+Z">Zheng Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+F">Feifei Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Si%2C+G">Guangwei Si</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gong%2C+Z">Zhefeng Gong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.07644v1-abstract-short" style="display: inline;"> The Drosophila larva, a soft-body animal, can bend its body and roll efficiently to escape danger. However, contrary to common belief, this rolling motion is not driven by the imbalance of gravity and ground reaction forces. Through functional imaging and ablation experiments, we demonstrate that the sequential actuation of axial muscles within an appropriate range of angles is critical for genera&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07644v1-abstract-full').style.display = 'inline'; document.getElementById('2410.07644v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.07644v1-abstract-full" style="display: none;"> The Drosophila larva, a soft-body animal, can bend its body and roll efficiently to escape danger. However, contrary to common belief, this rolling motion is not driven by the imbalance of gravity and ground reaction forces. Through functional imaging and ablation experiments, we demonstrate that the sequential actuation of axial muscles within an appropriate range of angles is critical for generating rolling. We model the interplay between muscle contraction, hydrostatic skeleton deformation, and body-environment interactions, and systematically explain how sequential muscle actuation generates the rolling motion. Additionally, we constructed a pneumatic soft robot to mimic the larval rolling strategy, successfully validating our model. This mechanics model of soft-body rolling motion not only advances the study of related neural circuits, but also holds potential for applications in soft robotics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07644v1-abstract-full').style.display = 'none'; document.getElementById('2410.07644v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.02993">arXiv:2410.02993</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.02993">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Resolving and routing the magnetic polymorphs in 2D layered antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zeyuan Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+C">Canyu Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yi Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sheng%2C+Z">Zhiyuan Sheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+S">Shuang Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhanshan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+B">Bokai Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+W">Wei-Tao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zhe Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yizheng Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mi%2C+Q">Qixi Mi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhongkai Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+J">Jian Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+S">Shiwei Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.02993v1-abstract-short" style="display: inline;"> Polymorphism, commonly denoting the variety of molecular or crystal structures, is a vital element in many natural science disciplines. In van der Waals layered antiferromagnets, a new type of magnetic polymorphism is allowed by having multiple layer-selective magnetic structures with the same total magnetization. However, resolving and manipulating such magnetic polymorphs remain a great challeng&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02993v1-abstract-full').style.display = 'inline'; document.getElementById('2410.02993v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.02993v1-abstract-full" style="display: none;"> Polymorphism, commonly denoting the variety of molecular or crystal structures, is a vital element in many natural science disciplines. In van der Waals layered antiferromagnets, a new type of magnetic polymorphism is allowed by having multiple layer-selective magnetic structures with the same total magnetization. However, resolving and manipulating such magnetic polymorphs remain a great challenge. Here we use the phase-resolved magnetic second-harmonic generation microscopy to elucidate such magnetic polymorphism in the 2D semiconducting layered antiferromagnet chromium sulfur bromide (CrSBr), and demonstrate how the magnetic polymorphs can be deterministically switched in an unprecedented layer-selective manner. With the nonlinear magneto-optical technique unveiling the magnetic symmetry information through the amplitude and phase of light, we could unambiguously resolve the polymorphic spin-flip transitions in CrSBr bilayers and tetralayers. Remarkably, the deterministic routing of polymorphic transitions originates from the breaking of energy degeneracy via a magnetic layer-sharing effect: the spin-flip transitions in a tetralayer are governed by the laterally extended bilayer, which acts as a control bit. We envision such controllable magnetic polymorphism to be ubiquitous for van der Waals layered antiferromagnets, and could lead to conceptually new design and construction of spintronic and opto-spintronic devices for probabilistic computation and neuromorphic engineering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02993v1-abstract-full').style.display = 'none'; document.getElementById('2410.02993v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.12556">arXiv:2409.12556</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.12556">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Increased resistance to photooxidation in Dion-Jacobson lead halide perovskites -- implication for perovskite device stability </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+Z">Zhilin Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ov%C4%8Dar%2C+J">Juraj Ov膷ar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leung%2C+T+L">Tik Lun Leung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+Y">Yanling He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+D">Dongyang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qin%2C+X">Xinshun Qin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mo%2C+H">Hongbo Mo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zhengtian Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bing%2C+J">Jueming Bing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bucknall%2C+M+P">Martin P. Bucknall</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grisanti%2C+L">Luca Grisanti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ali%2C+M+U">Muhammad Umair Ali</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bai%2C+P">Peng Bai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+T">Tao Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Syed%2C+A+A">Ali Ashger Syed</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+J">Jingyang Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jingbo Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abdul-Khaleed"> Abdul-Khaleed</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+W">Wenting Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+G">Gangyue Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+G">Gang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ng%2C+A+M+C">Alan Man Ching Ng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ho-Baillie%2C+A+W+Y">Anita W. Y. Ho-Baillie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lon%C4%8Dari%C4%87%2C+I">Ivor Lon膷ari膰</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.12556v1-abstract-short" style="display: inline;"> 2D metal halide perovskites have enabled significant stability improvements in perovskite devices, particularly in resistance to moisture. However, some 2D perovskites are even more susceptible to photooxidation compared to 3D perovskites. This is particularly true for more commonly investigated Ruddlesden-Popper (RP) perovskites that exhibit increased susceptibility to photoinduced degradation co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12556v1-abstract-full').style.display = 'inline'; document.getElementById('2409.12556v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.12556v1-abstract-full" style="display: none;"> 2D metal halide perovskites have enabled significant stability improvements in perovskite devices, particularly in resistance to moisture. However, some 2D perovskites are even more susceptible to photooxidation compared to 3D perovskites. This is particularly true for more commonly investigated Ruddlesden-Popper (RP) perovskites that exhibit increased susceptibility to photoinduced degradation compared to Dion-Jacobson (DJ) perovskites. Comparisons between different RP and DJ perovskites reveal that this phenomenon cannot be explained by commonly proposed differences in superoxide ion generation, interlayer distance and lattice structural rigidity differences. Instead, the resistance to photooxidation of DJ perovskites can be attributed to decreased likelihood of double deprotonation events (compared to single deprotonation events in RP perovskites) required for the loss of organic cations and the perovskite decomposition. Consequently, DJ perovskites are less susceptible to oxidative degradation (both photo- and electrochemically induced), which leads to improved operational stability of solar cells based on these materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12556v1-abstract-full').style.display = 'none'; document.getElementById('2409.12556v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text: 19 pages, 6 figures, supplementary information: 62 pages, 47 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.09417">arXiv:2408.09417</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.09417">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Discovery of terahertz-frequency orbitally-coupled magnons in a kagome ferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Che%2C+M">Mengqian Che</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+W">Weizhao Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+M">Maoyuan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bartram%2C+F+M">F. Michael Bartram</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+L">Liangyang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+X">Xuebin Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jinjin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yidian Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H">Hao Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhiwei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+E">Enke Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yugui Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zhe Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+G">Guang-Ming Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Luyi Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.09417v1-abstract-short" style="display: inline;"> In ferromagnetic materials, magnons - quanta of spin waves - typically resonate in the gigahertz range. Beyond conventional magnons, while theoretical studies have predicted magnons associated with orbital magnetic moments, their direct observation has remained challenging. Here, we present the discovery of two distinct terahertz orbitally-coupled magnon resonances in the topological kagome ferrom&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09417v1-abstract-full').style.display = 'inline'; document.getElementById('2408.09417v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.09417v1-abstract-full" style="display: none;"> In ferromagnetic materials, magnons - quanta of spin waves - typically resonate in the gigahertz range. Beyond conventional magnons, while theoretical studies have predicted magnons associated with orbital magnetic moments, their direct observation has remained challenging. Here, we present the discovery of two distinct terahertz orbitally-coupled magnon resonances in the topological kagome ferromagnet Co3Sn2S2. Using time-resolved Kerr rotation spectroscopy, we pinpoint two magnon resonances at 0.61 and 0.49 THz at 6 K, surpassing all previously reported magnon resonances in ferromagnets due to strong magnetocrystalline anisotropy. These dual modes originate from the strong coupling of localized spin and orbital magnetic moments. These findings unveil a novel category of magnons stemming from orbital magnetic moments, and position Co3Sn2S2 as a promising candidate for high-speed terahertz spintronic applications <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09417v1-abstract-full').style.display = 'none'; document.getElementById('2408.09417v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.08612">arXiv:2408.08612</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.08612">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Atomic-Scale Imaging of Fractional Spinon Quasiparticles in Open-Shell Triangulene Spin-$\frac{1}{2}$ Chains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zhangyu Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xin-Yu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yashi Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+X">Xiangjian Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Ying Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yufeng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+L">Liang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaoxue Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guan%2C+D">Dandan Guan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yaoyi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+H">Hao Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Canhua Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+J">Jinfeng Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qin%2C+M">Mingpu Qin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+P">Pei-Nian Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+D">Deng-Yuan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shiyong Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.08612v1-abstract-short" style="display: inline;"> The emergence of spinon quasiparticles, which carry spin but lack charge, is a hallmark of collective quantum phenomena in low-dimensional quantum spin systems. While the existence of spinons has been demonstrated through scattering spectroscopy in ensemble samples, real-space imaging of these quasiparticles within individual spin chains has remained elusive. In this study, we construct individual&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08612v1-abstract-full').style.display = 'inline'; document.getElementById('2408.08612v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.08612v1-abstract-full" style="display: none;"> The emergence of spinon quasiparticles, which carry spin but lack charge, is a hallmark of collective quantum phenomena in low-dimensional quantum spin systems. While the existence of spinons has been demonstrated through scattering spectroscopy in ensemble samples, real-space imaging of these quasiparticles within individual spin chains has remained elusive. In this study, we construct individual Heisenberg antiferromagnetic spin-$\frac{1}{2}$ chains using open-shell [2]triangulene molecules as building blocks. Each [2]triangulene unit, owing to its sublattice imbalance, hosts a net spin-$\frac{1}{2}$ in accordance with Lieb&#39;s theorem, and these spins are antiferromagnetically coupled within covalent chains with a coupling strength of $J = 45$ meV. Through scanning tunneling microscopy and spectroscopy, we probe the spin states, excitation gaps, and their spatial excitation weights within covalent spin chains of varying lengths with atomic precision. Our investigation reveals that the excitation gap decreases as the chain length increases, extrapolating to zero for long chains, consistent with Haldane&#39;s gapless prediction. Moreover, inelastic tunneling spectroscopy reveals an m-shaped energy dispersion characteristic of confined spinon quasiparticles in a one-dimensional quantum box. These findings establish a promising strategy for exploring the unique properties of excitation quasiparticles and their broad implications for quantum information. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08612v1-abstract-full').style.display = 'none'; document.getElementById('2408.08612v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.14379">arXiv:2407.14379</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.14379">pdf</a>, <a href="https://arxiv.org/format/2407.14379">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Deep learning density functional theory Hamiltonian in real space </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zilong Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+Z">Zechen Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tao%2C+H">Honggeng Tao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gong%2C+X">Xiaoxun Gong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zezhou Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yuxiang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">He Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zhiming Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+M">Minghui Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+B">Boheng Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+C">Chong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duan%2C+W">Wenhui Duan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yong Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.14379v1-abstract-short" style="display: inline;"> Deep learning electronic structures from ab initio calculations holds great potential to revolutionize computational materials studies. While existing methods proved success in deep-learning density functional theory (DFT) Hamiltonian matrices, they are limited to DFT programs using localized atomic-like bases and heavily depend on the form of the bases. Here, we propose the DeepH-r method for dee&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.14379v1-abstract-full').style.display = 'inline'; document.getElementById('2407.14379v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.14379v1-abstract-full" style="display: none;"> Deep learning electronic structures from ab initio calculations holds great potential to revolutionize computational materials studies. While existing methods proved success in deep-learning density functional theory (DFT) Hamiltonian matrices, they are limited to DFT programs using localized atomic-like bases and heavily depend on the form of the bases. Here, we propose the DeepH-r method for deep-learning DFT Hamiltonians in real space, facilitating the prediction of DFT Hamiltonian in a basis-independent manner. An equivariant neural network architecture for modeling the real-space DFT potential is developed, targeting a more fundamental quantity in DFT. The real-space potential exhibits simplified principles of equivariance and enhanced nearsightedness, further boosting the performance of deep learning. When applied to evaluate the Hamiltonian matrix, this method significantly improved in accuracy, as exemplified in multiple case studies. Given the abundance of data in the real-space potential, this work may pave a novel pathway for establishing a ``large materials model&#34; with increased accuracy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.14379v1-abstract-full').style.display = 'none'; document.getElementById('2407.14379v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.05614">arXiv:2407.05614</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.05614">pdf</a>, <a href="https://arxiv.org/format/2407.05614">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum Noise Spectroscopy of Criticality in an Atomically Thin Magnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ziffer%2C+M+E">Mark E. Ziffer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Machado%2C+F">Francisco Machado</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ursprung%2C+B">Benedikt Ursprung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lozovoi%2C+A">Artur Lozovoi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tazi%2C+A+B">Aya Batoul Tazi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zhiyang Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ziebel%2C+M+E">Michael E. Ziebel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Delord%2C+T">Tom Delord</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+N">Nanyu Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Telford%2C+E">Evan Telford</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chica%2C+D+G">Daniel G. Chica</a>, <a href="/search/cond-mat?searchtype=author&amp;query=deQuilettes%2C+D+W">Dane W. deQuilettes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+X">Xiaoyang Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hone%2C+J+C">James C. Hone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shepard%2C+K+L">Kenneth L. Shepard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roy%2C+X">Xavier Roy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Leon%2C+N+P">Nathalie P. de Leon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Davis%2C+E+J">Emily J. Davis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chatterjee%2C+S">Shubhayu Chatterjee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meriles%2C+C+A">Carlos A. Meriles</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Owen%2C+J+S">Jonathan S. Owen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schuck%2C+P+J">P. James Schuck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pasupathy%2C+A+N">Abhay N. Pasupathy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.05614v2-abstract-short" style="display: inline;"> Dynamic critical fluctuations in magnetic materials encode important information about magnetic ordering in the associated critical exponents. Using nitrogen-vacancy centers in diamond, we implement $T_2$ (spin-decoherence) noise magnetometry to study critical dynamics in a 2D Van der Waals magnet CrSBr. By analyzing NV decoherence on time scales approaching the characteristic correlation time&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.05614v2-abstract-full').style.display = 'inline'; document.getElementById('2407.05614v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.05614v2-abstract-full" style="display: none;"> Dynamic critical fluctuations in magnetic materials encode important information about magnetic ordering in the associated critical exponents. Using nitrogen-vacancy centers in diamond, we implement $T_2$ (spin-decoherence) noise magnetometry to study critical dynamics in a 2D Van der Waals magnet CrSBr. By analyzing NV decoherence on time scales approaching the characteristic correlation time $蟿_c$ of critical fluctuations, we extract the critical exponent $谓$ for the correlation length. Our result deviates from the Ising prediction and highlights the role of long-range dipolar interactions in 2D CrSBr. Furthermore, analyzing the divergence of the correlation length suggests the possibility of 2D-XY criticality in CrSBr in a temperature window near $T_C$ where static magnetic domains are absent. Our work provides a first demonstration of $T_2$ noise magnetometry to quantitatively analyze critical scaling behavior in 2D materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.05614v2-abstract-full').style.display = 'none'; document.getElementById('2407.05614v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages main text, 4 main text figures, 26 pages Supplementary Materials, 13 Supplementary figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.17561">arXiv:2406.17561</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.17561">pdf</a>, <a href="https://arxiv.org/format/2406.17561">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Improving density matrix electronic structure method by deep learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+Z">Zechen Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+N">Nianlong Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">He Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yuxiang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zilong Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tao%2C+H">Honggeng Tao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zezhou Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+B">Boheng Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+M">Minghui Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+H">Hong Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duan%2C+W">Wenhui Duan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yong Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.17561v1-abstract-short" style="display: inline;"> The combination of deep learning and ab initio materials calculations is emerging as a trending frontier of materials science research, with deep-learning density functional theory (DFT) electronic structure being particularly promising. In this work, we introduce a neural-network method for modeling the DFT density matrix, a fundamental yet previously unexplored quantity in deep-learning electron&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17561v1-abstract-full').style.display = 'inline'; document.getElementById('2406.17561v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.17561v1-abstract-full" style="display: none;"> The combination of deep learning and ab initio materials calculations is emerging as a trending frontier of materials science research, with deep-learning density functional theory (DFT) electronic structure being particularly promising. In this work, we introduce a neural-network method for modeling the DFT density matrix, a fundamental yet previously unexplored quantity in deep-learning electronic structure. Utilizing an advanced neural network framework that leverages the nearsightedness and equivariance properties of the density matrix, the method demonstrates high accuracy and excellent generalizability in multiple example studies, as well as capability to precisely predict charge density and reproduce other electronic structure properties. Given the pivotal role of the density matrix in DFT as well as other computational methods, the current research introduces a novel approach to the deep-learning study of electronic structure properties, opening up new opportunities for deep-learning enhanced computational materials study. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17561v1-abstract-full').style.display = 'none'; document.getElementById('2406.17561v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.15637">arXiv:2406.15637</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.15637">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Low-Temperature Synthesis of Stable CaZn$_2$P$_2$ Zintl Phosphide Thin Films as Candidate Top Absorbers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Quadir%2C+S">Shaham Quadir</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zhenkun Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Esparza%2C+G">Guillermo Esparza</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dugu%2C+S">Sita Dugu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mangum%2C+J">John Mangum</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pike%2C+A">Andrew Pike</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasan%2C+M+R">Muhammad Rubaiat Hasan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kassa%2C+G">Gideon Kassa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoxin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Coban%2C+Y">Yagmur Coban</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jifeng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kovnir%2C+K">Kirill Kovnir</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fenning%2C+D+P">David P. Fenning</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reid%2C+O+G">Obadiah G. Reid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zakutayev%2C+A">Andriy Zakutayev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hautier%2C+G">Geoffroy Hautier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bauers%2C+S+R">Sage R. Bauers</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.15637v1-abstract-short" style="display: inline;"> The development of tandem photovoltaics and photoelectrochemical solar cells requires new absorber materials with band gaps in the range of ~1.5-2.3 eV, for use in the top cell paired with a narrower-gap bottom cell. An outstanding challenge is finding materials with suitable optoelectronic and defect properties, good operational stability, and synthesis conditions that preserve underlying device&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.15637v1-abstract-full').style.display = 'inline'; document.getElementById('2406.15637v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.15637v1-abstract-full" style="display: none;"> The development of tandem photovoltaics and photoelectrochemical solar cells requires new absorber materials with band gaps in the range of ~1.5-2.3 eV, for use in the top cell paired with a narrower-gap bottom cell. An outstanding challenge is finding materials with suitable optoelectronic and defect properties, good operational stability, and synthesis conditions that preserve underlying device layers. This study demonstrates the Zintl phosphide compound CaZn$_2$P$_2$ as a compelling candidate semiconductor for these applications. We prepare phase pure, 500 nm-thick CaZn$_2$P$_2$ thin films using a scalable reactive sputter deposition process at growth temperatures as low as 100 掳C, which is desirable for device integration. UV-vis spectroscopy shows that CaZn$_2$P$_2$ films exhibit an optical absorptivity of ~10$^4$ cm$^-$$^1$ at ~1.95 eV direct band gap. Room-temperature photoluminescence (PL) measurements show near-band-edge optical emission, and time-resolved microwave conductivity (TRMC) measurements indicate a photoexcited carrier lifetime of ~30 ns. CaZn$_2$P$_2$ is highly stable in both ambient conditions and moisture, as evidenced by PL and TRMC measurements. Experimental data are supported by first-principles calculations, which indicate the absence of low-formation-energy, deep intrinsic defects. Overall, our study should motivate future work integrating this potential top cell absorber material into tandem solar cells. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.15637v1-abstract-full').style.display = 'none'; document.getElementById('2406.15637v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.10536">arXiv:2406.10536</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.10536">pdf</a>, <a href="https://arxiv.org/format/2406.10536">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.scib.2024.06.011">10.1016/j.scib.2024.06.011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Universal materials model of deep-learning density functional theory Hamiltonian </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yuxiang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+Z">Zechen Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">He Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zilong Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tao%2C+H">Honggeng Tao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+N">Nianlong Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+T">Ting Bao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+X">Xinghao Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zezhou Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Shanghua Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bian%2C+C">Ce Bian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zhiming Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+C">Chong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Si%2C+C">Chen Si</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duan%2C+W">Wenhui Duan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yong Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.10536v1-abstract-short" style="display: inline;"> Realizing large materials models has emerged as a critical endeavor for materials research in the new era of artificial intelligence, but how to achieve this fantastic and challenging objective remains elusive. Here, we propose a feasible pathway to address this paramount pursuit by developing universal materials models of deep-learning density functional theory Hamiltonian (DeepH), enabling compu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.10536v1-abstract-full').style.display = 'inline'; document.getElementById('2406.10536v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.10536v1-abstract-full" style="display: none;"> Realizing large materials models has emerged as a critical endeavor for materials research in the new era of artificial intelligence, but how to achieve this fantastic and challenging objective remains elusive. Here, we propose a feasible pathway to address this paramount pursuit by developing universal materials models of deep-learning density functional theory Hamiltonian (DeepH), enabling computational modeling of the complicated structure-property relationship of materials in general. By constructing a large materials database and substantially improving the DeepH method, we obtain a universal materials model of DeepH capable of handling diverse elemental compositions and material structures, achieving remarkable accuracy in predicting material properties. We further showcase a promising application of fine-tuning universal materials models for enhancing specific materials models. This work not only demonstrates the concept of DeepH&#39;s universal materials model but also lays the groundwork for developing large materials models, opening up significant opportunities for advancing artificial intelligence-driven materials discovery. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.10536v1-abstract-full').style.display = 'none'; document.getElementById('2406.10536v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.19777">arXiv:2405.19777</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.19777">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0256-307X/41/6/067402">10.1088/0256-307X/41/6/067402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic nonreciprocity in a hybrid device of asymmetric artificial spin-ice-superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+C">Chong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+P">Peiyuan Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+C">Chen-Guang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Haojie Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lyu%2C+Y">Yang-Yang Lyu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yue%2C+W">Wen-Cheng Yue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zixiong Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+T">Tianyu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tu%2C+X">Xuecou Tu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tao%2C+T">Tao Tao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+S">Sining Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+L">Liang He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+X">Xiaoqing Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+G">Guozhu Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+L">Lin Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Huabing Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+P">Peiheng Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yong-Lei Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.19777v1-abstract-short" style="display: inline;"> Controlling the size and distribution of potential barriers within a medium of interacting particles can unveil unique collective behaviors and innovative functionalities. In this study, we introduce a unique superconducting hybrid device using a novel artificial spin ice structure composed of asymmetric nanomagnets. This structure forms a distinctive superconducting pinning potential that steers&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.19777v1-abstract-full').style.display = 'inline'; document.getElementById('2405.19777v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.19777v1-abstract-full" style="display: none;"> Controlling the size and distribution of potential barriers within a medium of interacting particles can unveil unique collective behaviors and innovative functionalities. In this study, we introduce a unique superconducting hybrid device using a novel artificial spin ice structure composed of asymmetric nanomagnets. This structure forms a distinctive superconducting pinning potential that steers unconventional motion of superconducting vortices, thereby inducing a magnetic nonreciprocal effect, in contrast to the electric nonreciprocal effect commonly observed in superconducting diodes. Furthermore, the polarity of the magnetic nonreciprocity is in-situ reversible through the tunable magnetic patterns of artificial spin ice. Our findings demonstrate that artificial spin ice not only precisely modulates superconducting characteristics but also opens the door to novel functionalities, offering a groundbreaking paradigm for superconducting electronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.19777v1-abstract-full').style.display = 'none'; document.getElementById('2405.19777v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chinese Physics Letters 41, 067402 (2024) Express Letter </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.09793">arXiv:2405.09793</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.09793">pdf</a>, <a href="https://arxiv.org/format/2405.09793">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PRXEnergy.3.033008">10.1103/PRXEnergy.3.033008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Assessing carrier mobility, dopability, and defect tolerance in the chalcogenide perovskite BaZrS$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zhenkun Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dahliah%2C+D">Diana Dahliah</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Claes%2C+R">Romain Claes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pike%2C+A">Andrew Pike</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fenning%2C+D+P">David P. Fenning</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rignanese%2C+G">Gian-Marco Rignanese</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hautier%2C+G">Geoffroy Hautier</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.09793v2-abstract-short" style="display: inline;"> The chalcogenide perovskite BaZrS$_3$ has attracted much attention as a promising solar absorber for thin-film photovoltaics. Here, we use first-principles calculations to evaluate its carrier transport and defect properties. We find that BaZrS$_3$ has a phonon-limited electron mobility of 37 cm$^2$/Vs comparable to that in halide perovskites but lower hole mobility of 11 cm$^2$/Vs. The defect com&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09793v2-abstract-full').style.display = 'inline'; document.getElementById('2405.09793v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.09793v2-abstract-full" style="display: none;"> The chalcogenide perovskite BaZrS$_3$ has attracted much attention as a promising solar absorber for thin-film photovoltaics. Here, we use first-principles calculations to evaluate its carrier transport and defect properties. We find that BaZrS$_3$ has a phonon-limited electron mobility of 37 cm$^2$/Vs comparable to that in halide perovskites but lower hole mobility of 11 cm$^2$/Vs. The defect computations indicate that BaZrS$_3$ is intrinsically n-type due to shallow sulfur vacancies, but that strong compensation by sulfur vacancies will prevent attempts to make it p-type. We also establish that BaZrS$_3$ shows some degree of defect tolerance, presenting only few low formation energy, deep intrinsic defects. Among the deep defects, sulfur interstitials are the dominant nonradiative recombination centers but exhibit a moderate capture coefficient. Our work highlights the material&#39;s intrinsic limitations in carrier mobility and p-type doping and suggests focusing on suppressing the formation of sulfur interstitials to reach longer carrier lifetime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09793v2-abstract-full').style.display = 'none'; document.getElementById('2405.09793v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PRX Energy 3 (2024) 033008 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.19377">arXiv:2404.19377</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.19377">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41565-024-01666-6">10.1038/s41565-024-01666-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Toroidic phase transitions in a direct-kagome artificial spin ice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yue%2C+W">Wen-Cheng Yue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zixiong Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+P">Peiyuan Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yizhe Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+T">Tan Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lyu%2C+Y">Yang-Yang Lyu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tu%2C+X">Xuecou Tu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+S">Sining Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+L">Liang He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+Y">Ying Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+X">Xun Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+L">Lin Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Huabing Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+P">Peiheng Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nisoli%2C+C">Cristiano Nisoli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yong-Lei Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.19377v1-abstract-short" style="display: inline;"> Ferrotoroidicity, the fourth form of primary ferroic order, breaks both space and time inversion symmetry. So far, direct observation of ferrotoroidicity in natural materials remains elusive, which impedes the exploration of ferrotoroidic phase transitions. Here, we overcome the limitations of natural materials using an artificial nanomagnet system that can be characterized at the constituent leve&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.19377v1-abstract-full').style.display = 'inline'; document.getElementById('2404.19377v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.19377v1-abstract-full" style="display: none;"> Ferrotoroidicity, the fourth form of primary ferroic order, breaks both space and time inversion symmetry. So far, direct observation of ferrotoroidicity in natural materials remains elusive, which impedes the exploration of ferrotoroidic phase transitions. Here, we overcome the limitations of natural materials using an artificial nanomagnet system that can be characterized at the constituent level and at different effective temperatures. We design a nanomagnet array as to realize a direct-kagome spin ice. This artificial spin ice exhibits robust toroidal moments and a quasi-degenerate ground state with two distinct low-temperature toroidal phases: ferrotoroidicity and paratoroidicity. Using magnetic force microscopy and Monte Carlo simulation, we demonstrate a phase transition between ferrotoroidicity and paratoroidicity, along with a crossover to a non-toroidal paramagnetic phase. Our quasi-degenerate artificial spin ice in a direct-kagome structure provides a model system for the investigation of magnetic states and phase transitions that are inaccessible in natural materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.19377v1-abstract-full').style.display = 'none'; document.getElementById('2404.19377v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Nanotechnology (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.08405">arXiv:2404.08405</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.08405">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.3c05008">10.1021/acs.nanolett.3c05008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unconventional superconducting diode effects via antisymmetry and antisymmetry breaking </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+C">Chong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lyu%2C+Y">Yang-Yang Lyu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yue%2C+W">Wen-Cheng Yue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+P">Peiyuan Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Haojie Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+T">Tianyu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+C">Chen-Guang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zixiong Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+Y">Ying Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+X">Xiaoyu Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tu%2C+X">Xuecou Tu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tao%2C+T">Tao Tao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+S">Sining Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+L">Liang He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+X">Xiaoqing Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+G">Guozhu Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+L">Lin Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Huabing Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peeters%2C+F+M">Francois M. Peeters</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Milo%C5%A1evi%C4%87%2C+M+V">Milorad V. Milo拧evi膰</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+P">Peiheng Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yong-Lei Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.08405v1-abstract-short" style="display: inline;"> Symmetry-breaking plays a pivotal role in unlocking intriguing properties and functionalities in material systems. For example, the breaking of spatial and temporal symmetries leads to a fascinating phenomenon of superconducting diode effect. However, generating and precisely controlling the superconducting diode effect poses significant challenges. Here, we take a novel route with deliberate mani&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.08405v1-abstract-full').style.display = 'inline'; document.getElementById('2404.08405v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.08405v1-abstract-full" style="display: none;"> Symmetry-breaking plays a pivotal role in unlocking intriguing properties and functionalities in material systems. For example, the breaking of spatial and temporal symmetries leads to a fascinating phenomenon of superconducting diode effect. However, generating and precisely controlling the superconducting diode effect poses significant challenges. Here, we take a novel route with deliberate manipulation of magnetic charge potentials to realize unconventional superconducting flux-quantum diode effects. We achieve this through suitably tailored nanoengineered arrays of nanobar magnets on top of a superconducting thin film. We demonstrate the vital roles of inversion antisymmetry and its breaking in evoking unconventional superconducting effects-a magnetically symmetric diode effect and an odd-parity magnetotransport effect. These effects are non-volatilely controllable through in-situ magnetization switching of the nanobar magnets. Our findings promote the use of antisymmetry (breaking) for initiating unconventional superconducting properties, paving the way for exciting prospects and innovative functionalities in superconducting electronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.08405v1-abstract-full').style.display = 'none'; document.getElementById('2404.08405v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Letters 24, 4108-4116 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.02427">arXiv:2404.02427</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.02427">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0097518">10.1063/5.0097518 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> In-situ tunable giant electrical anisotropy in a grating gated AlGaN/GaN two-dimensional electron gas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Ting-Ting Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+S">Sining Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+C">Chong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yue%2C+W">Wen-Cheng Yue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lyu%2C+Y">Yang-Yang Lyu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+C">Chen-Guang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+C">Chang-Kun Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zixiong Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+W">Wei Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+Z">Zhi-Li Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+X">Xiaoli Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+B">Bin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+H">Hai Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Hua-Bing Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+P">Peiheng Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kwok%2C+W">Wai-Kwong Kwok</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yong-Lei Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.02427v1-abstract-short" style="display: inline;"> Materials with in-plane electrical anisotropy have great potential for designing artificial synaptic devices. However, natural materials with strong intrinsic in-plane electrical anisotropy are rare. We introduce a simple strategy to produce extremely large electrical anisotropy via grating gating of a semiconductor two-dimensional electron gas (2DEG) of AlGaN/GaN. We show that periodically modula&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02427v1-abstract-full').style.display = 'inline'; document.getElementById('2404.02427v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.02427v1-abstract-full" style="display: none;"> Materials with in-plane electrical anisotropy have great potential for designing artificial synaptic devices. However, natural materials with strong intrinsic in-plane electrical anisotropy are rare. We introduce a simple strategy to produce extremely large electrical anisotropy via grating gating of a semiconductor two-dimensional electron gas (2DEG) of AlGaN/GaN. We show that periodically modulated electric potential in the 2DEG induces in-plane electrical anisotropy, which is significantly enhanced in a magnetic field, leading to an ultra large electrical anisotropy. This is induced by a giant positive magnetoresistance and a giant negative magnetoresistance under two orthogonally oriented in-plane current flows, respectively. This giant electrical anisotropy is in-situ tunable by tailoring both the grating gate voltage and the magnetic field. Our semiconductor device with controllable giant electrical anisotropy will stimulate new device applications, such as multi-terminal memtransistors and bionic synapses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02427v1-abstract-full').style.display = 'none'; document.getElementById('2404.02427v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 121, 092101 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.00894">arXiv:2404.00894</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.00894">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> First-principles study of defects and doping limits in CaO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zhenkun Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hautier%2C+G">Geoffroy Hautier</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.00894v1-abstract-short" style="display: inline;"> Calcium oxide (CaO) is a promising host for quantum defects because of its ultrawide band gap and potential for long spin coherence times. Using hybrid functional calculations, we investigate the intrinsic point defects and how they limit Fermi-level positions and doping in CaO. Our results reveal calcium and oxygen vacancies to be the most common intrinsic defects, acting as compensating acceptor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.00894v1-abstract-full').style.display = 'inline'; document.getElementById('2404.00894v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.00894v1-abstract-full" style="display: none;"> Calcium oxide (CaO) is a promising host for quantum defects because of its ultrawide band gap and potential for long spin coherence times. Using hybrid functional calculations, we investigate the intrinsic point defects and how they limit Fermi-level positions and doping in CaO. Our results reveal calcium and oxygen vacancies to be the most common intrinsic defects, acting as compensating acceptors and donors, respectively. Oxygen interstitials are also prevailing under O-rich conditions and act as compensating donors. Due to compensation by these defects, O-poor conditions are required to dope CaO n-type, while O-rich conditions are required for p-type doping. We find that, at room temperature, intrinsic CaO can only achieve Fermi-level positions between 1.76 eV above the valence-band maximum (VBM) and 1.73 eV below the conduction-band minimum (CBM). If suitable shallow dopants can be found, the allowed range of Fermi levels would increase to between VBM+0.53 eV and CBM-0.27 eV and is set by the compensating intrinsic defects. Additionally, we study hydrogen impurities, and show that hydrogen will limit p-type doping but can also act as shallow donor when substituting oxygen ($\mathrm{H}_\mathrm{O}$ defects). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.00894v1-abstract-full').style.display = 'none'; document.getElementById('2404.00894v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.11287">arXiv:2403.11287</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.11287">pdf</a>, <a href="https://arxiv.org/format/2403.11287">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.076401">10.1103/PhysRevLett.133.076401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Neural-network Density Functional Theory Based on Variational Energy Minimization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+Z">Zechen Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zezhou Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+M">Minghui Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+B">Boheng Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">He Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tao%2C+H">Honggeng Tao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zilong Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duan%2C+W">Wenhui Duan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yong Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.11287v3-abstract-short" style="display: inline;"> Deep-learning density functional theory (DFT) shows great promise to significantly accelerate material discovery and potentially revolutionize materials research. However, current research in this field primarily relies on data-driven supervised learning, making the developments of neural networks and DFT isolated from each other. In this work, we present a theoretical framework of neural-network&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.11287v3-abstract-full').style.display = 'inline'; document.getElementById('2403.11287v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.11287v3-abstract-full" style="display: none;"> Deep-learning density functional theory (DFT) shows great promise to significantly accelerate material discovery and potentially revolutionize materials research. However, current research in this field primarily relies on data-driven supervised learning, making the developments of neural networks and DFT isolated from each other. In this work, we present a theoretical framework of neural-network DFT, which unifies the optimization of neural networks with the variational computation of DFT, enabling physics-informed unsupervised learning. Moreover, we develop a differential DFT code incorporated with deep-learning DFT Hamiltonian, and introduce algorithms of automatic differentiation and backpropagation into DFT, demonstrating the capability of neural-network DFT. The physics-informed neural-network architecture not only surpasses conventional approaches in accuracy and efficiency, but also offers a new paradigm for developing deep-learning DFT methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.11287v3-abstract-full').style.display = 'none'; document.getElementById('2403.11287v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 133, 076401 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.09205">arXiv:2403.09205</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.09205">pdf</a>, <a href="https://arxiv.org/format/2403.09205">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.043401">10.1103/PhysRevLett.133.043401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Microscopic Study on Superexchange Dynamics of Composite Spin-1 Bosons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+A">An Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+Y">Yong-Guang Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Wei-Yong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+M">Ming-Gen He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Y">Ying-Chao Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zi-Hang Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zhen-Sheng Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+J">Jian-Wei Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.09205v3-abstract-short" style="display: inline;"> We report on an experimental simulation of the spin-1 Heisenberg model with composite bosons in a one-dimensional chain based on the two-component Bose-Hubbard model. Exploiting our site-and spin-resolved quantum gas microscope, we observed faster superexchange dynamics of the spin-1 system compared to its spin-1/2 counterpart, which is attributed to the enhancement effect of multi-bosons. We furt&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09205v3-abstract-full').style.display = 'inline'; document.getElementById('2403.09205v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.09205v3-abstract-full" style="display: none;"> We report on an experimental simulation of the spin-1 Heisenberg model with composite bosons in a one-dimensional chain based on the two-component Bose-Hubbard model. Exploiting our site-and spin-resolved quantum gas microscope, we observed faster superexchange dynamics of the spin-1 system compared to its spin-1/2 counterpart, which is attributed to the enhancement effect of multi-bosons. We further probed the non-equilibrium spin dynamics driven by the superexchange and single-ion anisotropy terms, unveiling the linear expansion of the spin-spin correlations, which is limited by the Lieb-Robinson bound. Based on the superexchange process, we prepared and verified the entangled qutrits pairs with these composite spin-1 bosons, potentially being applied in qutrit-based quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09205v3-abstract-full').style.display = 'none'; document.getElementById('2403.09205v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 133, 043401 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.03479">arXiv:2403.03479</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.03479">pdf</a>, <a href="https://arxiv.org/format/2403.03479">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Observation of counterflow superfluidity in a two-component Mott insulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+Y">Yong-Guang Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+A">An Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Y">Ying-Chao Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+M">Ming-Gen He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zi-Hang Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Ying Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Wei-Yong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+H">Hui Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+Y">Youjin Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zhen-Sheng Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+J">Jian-Wei Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.03479v1-abstract-short" style="display: inline;"> The counterflow superfluidity (CSF) was predicted two decades ago. Counterintuitively, while both components in the CSF have fluidity, their correlated counterflow currents cancel out leading the overall system to an incompressible Mott insulator. However, realizing and identifying the CSF remain challenging due to the request on extreme experimental capabilities in a single setup. Here, we observ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03479v1-abstract-full').style.display = 'inline'; document.getElementById('2403.03479v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.03479v1-abstract-full" style="display: none;"> The counterflow superfluidity (CSF) was predicted two decades ago. Counterintuitively, while both components in the CSF have fluidity, their correlated counterflow currents cancel out leading the overall system to an incompressible Mott insulator. However, realizing and identifying the CSF remain challenging due to the request on extreme experimental capabilities in a single setup. Here, we observe the CSF in a binary Bose mixture in optical lattices. We prepare a low-entropy spin-Mott state by conveying and merging two spin-1/2 bosonic atoms at every site and drive it adiabatically to the CSF at $\sim$ 1 nK. Antipair correlations of the CSF are probed though a site- and spin-resolved quantum gas microscope in both real and momentum spaces. These techniques and observations provide accessibility to the symmetry-protected topological quantum matters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03479v1-abstract-full').style.display = 'none'; document.getElementById('2403.03479v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.07756">arXiv:2402.07756</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.07756">pdf</a>, <a href="https://arxiv.org/format/2402.07756">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Extrinsic Contribution to Nonlinear Current Induced Spin Polarization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+R">Ruda Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Yue-Xin Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X">Xiaoxin Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+C">Cong Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zhe Yuan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.07756v3-abstract-short" style="display: inline;"> Nonlinear spin polarization occurring in the second order of driving electric current is the dominant source of nonequilibrium magnetization in centrosymmetric or weakly noncentrosymmetric nonmagnetic materials, and induces nonlinear spin-orbit torque in magnets. Up to now, only the intrinsic mechanism based on anomalous spin polarizability dipole, which is the spin counterpart of Berry curvature&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.07756v3-abstract-full').style.display = 'inline'; document.getElementById('2402.07756v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.07756v3-abstract-full" style="display: none;"> Nonlinear spin polarization occurring in the second order of driving electric current is the dominant source of nonequilibrium magnetization in centrosymmetric or weakly noncentrosymmetric nonmagnetic materials, and induces nonlinear spin-orbit torque in magnets. Up to now, only the intrinsic mechanism based on anomalous spin polarizability dipole, which is the spin counterpart of Berry curvature dipole, has been studied, while disorder induced mechanisms are still missing. Here, we derive these contributions, which include not only the anomalous distribution function due to skew scattering and coordinate shift, but also interband coherence effects given by disorder induced spin shift and electric field induced anomalous scattering amplitude. We demonstrate these terms and show their importance in a minimal model. A scaling law for nonlinear current-induced spin polarization is constructed, which may help analyze experimental data in the future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.07756v3-abstract-full').style.display = 'none'; document.getElementById('2402.07756v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.04864">arXiv:2402.04864</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.04864">pdf</a>, <a href="https://arxiv.org/format/2402.04864">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Equivariant Neural Network Force Fields for Magnetic Materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zilong Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zhiming Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">He Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+X">Xinle Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tao%2C+H">Honggeng Tao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+Z">Zechen Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zhiyuan Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duan%2C+W">Wenhui Duan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yong Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.04864v1-abstract-short" style="display: inline;"> Neural network force fields have significantly advanced ab initio atomistic simulations across diverse fields. However, their application in the realm of magnetic materials is still in its early stage due to challenges posed by the subtle magnetic energy landscape and the difficulty of obtaining training data. Here we introduce a data-efficient neural network architecture to represent density func&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.04864v1-abstract-full').style.display = 'inline'; document.getElementById('2402.04864v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.04864v1-abstract-full" style="display: none;"> Neural network force fields have significantly advanced ab initio atomistic simulations across diverse fields. However, their application in the realm of magnetic materials is still in its early stage due to challenges posed by the subtle magnetic energy landscape and the difficulty of obtaining training data. Here we introduce a data-efficient neural network architecture to represent density functional theory total energy, atomic forces, and magnetic forces as functions of atomic and magnetic structures. Our approach incorporates the principle of equivariance under the three-dimensional Euclidean group into the neural network model. Through systematic experiments on various systems, including monolayer magnets, curved nanotube magnets, and moir茅-twisted bilayer magnets of $\text{CrI}_{3}$, we showcase the method&#39;s high efficiency and accuracy, as well as exceptional generalization ability. The work creates opportunities for exploring magnetic phenomena in large-scale materials systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.04864v1-abstract-full').style.display = 'none'; document.getElementById('2402.04864v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.17015">arXiv:2401.17015</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.17015">pdf</a>, <a href="https://arxiv.org/format/2401.17015">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> DeepH-2: Enhancing deep-learning electronic structure via an equivariant local-coordinate transformer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yuxiang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">He Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+Z">Zechen Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tao%2C+H">Honggeng Tao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yanzhen Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zilong Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zezhou Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duan%2C+W">Wenhui Duan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yong Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.17015v1-abstract-short" style="display: inline;"> Deep-learning electronic structure calculations show great potential for revolutionizing the landscape of computational materials research. However, current neural-network architectures are not deemed suitable for widespread general-purpose application. Here we introduce a framework of equivariant local-coordinate transformer, designed to enhance the deep-learning density functional theory Hamilto&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.17015v1-abstract-full').style.display = 'inline'; document.getElementById('2401.17015v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.17015v1-abstract-full" style="display: none;"> Deep-learning electronic structure calculations show great potential for revolutionizing the landscape of computational materials research. However, current neural-network architectures are not deemed suitable for widespread general-purpose application. Here we introduce a framework of equivariant local-coordinate transformer, designed to enhance the deep-learning density functional theory Hamiltonian referred to as DeepH-2. Unlike previous models such as DeepH and DeepH-E3, DeepH-2 seamlessly integrates the simplicity of local-coordinate transformations and the mathematical elegance of equivariant neural networks, effectively overcoming their respective disadvantages. Based on our comprehensive experiments, DeepH-2 demonstrates superiority over its predecessors in both efficiency and accuracy, showcasing state-of-the-art performance. This advancement opens up opportunities for exploring universal neural network models or even large materials models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.17015v1-abstract-full').style.display = 'none'; document.getElementById('2401.17015v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.14455">arXiv:2312.14455</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.14455">pdf</a>, <a href="https://arxiv.org/format/2312.14455">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.14.011046">10.1103/PhysRevX.14.011046 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence for an Excitonic Insulator State in Ta$_2$Pd$_3$Te$_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+J">Jierui Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+B">Bei Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+J">Jingyu Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+D">Dayu Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+X">Xincheng Lei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+J">Jiacheng Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Z">Zhaopeng Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feng Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yupeng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zhenyu Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chai%2C+C">Congcong Chai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sheng%2C+H">Haohao Sheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+M">Mojun Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+F">Famin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Junde Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+S">Shunye Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+G">Gexing Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+B">Bo Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Z">Zhicheng Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhengtai Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+X">Xiaoyan Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+S">Shiming Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Yaobo Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yun%2C+C">Chenxia Yun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qingming Zhang</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.14455v2-abstract-short" style="display: inline;"> The excitonic insulator (EI) is an exotic ground state of narrow-gap semiconductors and semimetals arising from spontaneous condensation of electron-hole pairs bound by attractive Coulomb interaction. Despite research on EIs dating back to half a century ago, their existence in real materials remains a subject of ongoing debate. In this study, through systematic experimental and theoretical invest&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.14455v2-abstract-full').style.display = 'inline'; document.getElementById('2312.14455v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.14455v2-abstract-full" style="display: none;"> The excitonic insulator (EI) is an exotic ground state of narrow-gap semiconductors and semimetals arising from spontaneous condensation of electron-hole pairs bound by attractive Coulomb interaction. Despite research on EIs dating back to half a century ago, their existence in real materials remains a subject of ongoing debate. In this study, through systematic experimental and theoretical investigations, we provide evidence for the existence of an EI ground state in a van der Waals compound Ta$_2$Pd$_3$Te$_5$. Density-functional-theory calculations suggest that it is a semimetal with a small band overlap, whereas various experiments exhibit an insulating ground state with a clear band gap. Upon incorporating electron-hole Coulomb interaction into our calculations, we obtain an EI phase where the electronic symmetry breaking opens a many-body gap. Angle-resolved photoemission spectroscopy measurements exhibit that the band gap is closed with a significant change in the dispersions as the number of thermally excited charge carriers becomes sufficiently large in both equilibrium and nonequilibrium states. Structural measurements reveal a slight breaking of crystal symmetry with exceptionally small lattice distortion in the insulating state, which cannot account for the significant gap opening. Therefore, we attribute the insulating ground state with a gap opening in Ta$_2$Pd$_3$Te$_5$ to exciton condensation, where the coupling to the symmetry-breaking electronic state induces a subtle change in the crystal structure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.14455v2-abstract-full').style.display = 'none'; document.getElementById('2312.14455v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 14, 011046, 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.13743">arXiv:2312.13743</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.13743">pdf</a>, <a href="https://arxiv.org/format/2312.13743">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Coherence in resonance fluorescence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xu-Jie Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+G">Guoqi Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M">Ming-Yang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yuan-Zhuo Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+L">Li Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+B">Bang Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">Hanqing Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ni%2C+H">Haiqiao Ni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Niu%2C+Z">Zhichuan Niu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+W">Weijie Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiao%2C+R">Rongzhen Jiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+H">Hua-Lei Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zhiliang Yuan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.13743v3-abstract-short" style="display: inline;"> Resonance fluorescence (RF) of a two-level emitter displays persistently anti-bunching irrespective of the excitation intensity, but inherits the driving laser&#39;s linewidth under weak excitation. These properties are commonly explained disjoinedly as the emitter&#39;s single photon saturation or passively scattering light, until a recent theory attributes anti-bunching to the laser-like spectrum&#39;s inte&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.13743v3-abstract-full').style.display = 'inline'; document.getElementById('2312.13743v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.13743v3-abstract-full" style="display: none;"> Resonance fluorescence (RF) of a two-level emitter displays persistently anti-bunching irrespective of the excitation intensity, but inherits the driving laser&#39;s linewidth under weak excitation. These properties are commonly explained disjoinedly as the emitter&#39;s single photon saturation or passively scattering light, until a recent theory attributes anti-bunching to the laser-like spectrum&#39;s interference with the incoherently scattered light. However, the theory implies higher-order scattering processes, and led to an experiment purporting to validate an atom&#39;s simultaneous scattering of two photons. If true, it could complicate RF&#39;s prospects in quantum information applications. Here, we propose a unified model that treats all RF photons as spontaneous emission, one at a time, and can explain simultaneously both the RF&#39;s spectral and correlation properties. We theoretically derive the excitation power dependencies, with the strongest effects measurable at the single-photon incidence level, of the first-order coherence of the whole RF and super-bunching of the spectrally filtered, followed by experimental confirmation on a semiconductor quantum dot micro-pillar device. Furthermore, our model explains peculiar coincidence bunching observed in phase-dependent two-photon interference experiments. Our work provides novel understandings of coherent light-matter interaction and may stimulate new applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.13743v3-abstract-full').style.display = 'none'; document.getElementById('2312.13743v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Equation 4 is updated to cover all two-level emitters, with or without a cavity</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.18188">arXiv:2310.18188</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.18188">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.joule.2024.02.017">10.1016/j.joule.2024.02.017 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Discovery of the Zintl-phosphide BaCd$_{2}$P$_{2}$ as a long carrier lifetime and stable solar absorber </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zhenkun Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dahliah%2C+D">Diana Dahliah</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasan%2C+M+R">Muhammad Rubaiat Hasan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kassa%2C+G">Gideon Kassa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pike%2C+A">Andrew Pike</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Quadir%2C+S">Shaham Quadir</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Claes%2C+R">Romain Claes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chandler%2C+C">Cierra Chandler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiong%2C+Y">Yihuang Xiong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kyveryga%2C+V">Victoria Kyveryga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yox%2C+P">Philip Yox</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rignanese%2C+G">Gian-Marco Rignanese</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dabo%2C+I">Ismaila Dabo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zakutayev%2C+A">Andriy Zakutayev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fenning%2C+D+P">David P. Fenning</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reid%2C+O+G">Obadiah G. Reid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bauers%2C+S">Sage Bauers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jifeng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kovnir%2C+K">Kirill Kovnir</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hautier%2C+G">Geoffroy Hautier</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.18188v1-abstract-short" style="display: inline;"> Thin-film photovoltaics offers a path to significantly decarbonize our energy production. Unfortunately, current materials commercialized or under development as thin-film solar cell absorbers are far from optimal as they show either low power conversion efficiency or issues with earth-abundance and stability. Entirely new and disruptive materials platforms are rarely discovered as the search for&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.18188v1-abstract-full').style.display = 'inline'; document.getElementById('2310.18188v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.18188v1-abstract-full" style="display: none;"> Thin-film photovoltaics offers a path to significantly decarbonize our energy production. Unfortunately, current materials commercialized or under development as thin-film solar cell absorbers are far from optimal as they show either low power conversion efficiency or issues with earth-abundance and stability. Entirely new and disruptive materials platforms are rarely discovered as the search for new solar absorbers is traditionally slow and serendipitous. Here, we use first principles high-throughput screening to accelerate this process. We identify new solar absorbers among known inorganic compounds using considerations on band gap, carrier transport, optical absorption but also on intrinsic defects which can strongly limit the carrier lifetime and ultimately the solar cell efficiency. Screening about 40,000 materials, we discover the Zintl-phosphide BaCd$_{2}$P$_{2}$ as a potential high-efficiency solar absorber. Follow-up experimental work confirms the predicted promises of BaCd$_{2}$P$_{2}$ highlighting an optimal band gap for visible absorption, bright photoluminescence, and long carrier lifetime of up to 30 ns even for unoptimized powder samples. Importantly, BaCd$_{2}$P$_{2}$ does not contain any critical elements and is highly stable in air and water. Our work opens an avenue for a new family of stable, earth-abundant, high-performance Zintl-based solar absorbers. It also demonstrates how recent advances in first principles computation can accelerate the search of photovoltaic materials by combining high-throughput screening with experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.18188v1-abstract-full').style.display = 'none'; document.getElementById('2310.18188v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Joule 8 (2024) 1412-1429 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.17841">arXiv:2310.17841</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.17841">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.184403">10.1103/PhysRevB.108.184403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strain-Tunable Magnetic Compensation Temperature of Epitaxial Tb$_3$Fe$_5$O$_{12}$ Thin Films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yufei Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X">Xihui Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bai%2C+H">Hua Bai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+M">Mingzhi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+D">Dashuai Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+C">Cheng Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zhe Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Z">Zhong Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.17841v1-abstract-short" style="display: inline;"> High-quality rare-earth iron garnet (ReIG) Tb$_3$Fe$_5$O$_{12}$ (TbIG) thin films are epitaxially grown on a series of (111)-oriented garnet substrates with various lattice constants. The coherent growth induces a substrate-dependent in-plane tensile or compressive strain in the TbIG film. Measurements of the anomalous Hall-like effect (AHLE) in TbIG/Pt heterostructures show that the compensation&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.17841v1-abstract-full').style.display = 'inline'; document.getElementById('2310.17841v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.17841v1-abstract-full" style="display: none;"> High-quality rare-earth iron garnet (ReIG) Tb$_3$Fe$_5$O$_{12}$ (TbIG) thin films are epitaxially grown on a series of (111)-oriented garnet substrates with various lattice constants. The coherent growth induces a substrate-dependent in-plane tensile or compressive strain in the TbIG film. Measurements of the anomalous Hall-like effect (AHLE) in TbIG/Pt heterostructures show that the compensation temperature of TbIG films monotonically changes with the film strain. The strain results in a variation of the distances between magnetic atoms in the TbIG crystal and therefore the corresponding exchange interactions. The latter is explicitly calculated as a function of the lattice strain based on density functional theory, reproducing the observed experimental results. This work provides a versatile way to optimize ReIG-based spin-orbit torque devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.17841v1-abstract-full').style.display = 'none'; document.getElementById('2310.17841v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.10293">arXiv:2310.10293</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.10293">pdf</a>, <a href="https://arxiv.org/format/2310.10293">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-53323-0">10.1038/s41467-024-53323-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Room-temperature non-volatile optical manipulation of polar order in a charge density wave </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Q">Qiaomei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+D">Dong Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+T">Tianyi Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+S">Shanshan Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yiran Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zhihong Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Y">Yihan Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bohan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+T">Tianchen Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yue%2C+L">Li Yue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Shuxiang Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+R">Ruoxuan Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+M">Ming Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+R">Rongsheng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Sijie Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+B">Baiqing Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zong%2C+A">Alfred Zong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+Y">Yifan Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gedik%2C+N">Nuh Gedik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+Z">Zhiping Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+T">Tao Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Nanlin Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.10293v2-abstract-short" style="display: inline;"> Utilizing ultrafast light-matter interaction to manipulate electronic states of quantum materials is an emerging area of research in condensed matter physics. It has significant implications for the development of future ultrafast electronic devices. However, the ability to induce long-lasting metastable electronic states in a fully reversible manner is a long-standing challenge.Here, by using ult&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.10293v2-abstract-full').style.display = 'inline'; document.getElementById('2310.10293v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.10293v2-abstract-full" style="display: none;"> Utilizing ultrafast light-matter interaction to manipulate electronic states of quantum materials is an emerging area of research in condensed matter physics. It has significant implications for the development of future ultrafast electronic devices. However, the ability to induce long-lasting metastable electronic states in a fully reversible manner is a long-standing challenge.Here, by using ultrafast laser excitations, we demonstrate the capability to manipulate the electronic polar states in the charge-density-wavematerial EuTe4 in a non-volatile manner. The process is completely reversible and is achieved at room temperature with an all-optical approach. Each induced non-volatile state brings about modifications to the electrical resistance and second harmonic generation intensity. The results point to layer-specific phase inversion dynamics by which photoexcitation mediates the stacking polar order of the system. Our findings extend the scope of non-volatile all-optical control of electronic states to ambient conditions, and highlight a distinct role of layerdependent phase manipulation in quasi-two-dimensional systems with inherent sublayer stacking orders. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.10293v2-abstract-full').style.display = 'none'; document.getElementById('2310.10293v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications volume 15, Article number: 8937 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.02805">arXiv:2310.02805</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.02805">pdf</a>, <a href="https://arxiv.org/format/2310.02805">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Van der Waals Spin-Orbit Torque Antiferromagnetic Memory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+L">Lishu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zhengping Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jie Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J">Jun Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yanyan Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hui Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+Y">Yongqing Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+Y+P">Yuan Ping Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zhifeng Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+L">Lei Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.02805v1-abstract-short" style="display: inline;"> The technique of conventional ferromagnet/heavy-metal spin-orbit torque (SOT) offers significant potential for enhancing the efficiency of magnetic memories. However, it faces fundamental physical limitations, including hunting effects from the metallic layer, broken symmetry for enabling antidamping switching, spin scattering caused by interfacial defects, and sensitivity to stray magnetic fields&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.02805v1-abstract-full').style.display = 'inline'; document.getElementById('2310.02805v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.02805v1-abstract-full" style="display: none;"> The technique of conventional ferromagnet/heavy-metal spin-orbit torque (SOT) offers significant potential for enhancing the efficiency of magnetic memories. However, it faces fundamental physical limitations, including hunting effects from the metallic layer, broken symmetry for enabling antidamping switching, spin scattering caused by interfacial defects, and sensitivity to stray magnetic fields. To address these issues, we here propose a van der Waals (vdW) field-free SOT antiferromagnetic memory using a vdW bilayer LaBr$_2$ (an antiferromagnet with perpendicular magnetic anisotropy) and a monolayer T$_d$ phase WTe$_2$ (a Weyl semimetal with broken inversion symmetry). By systematically employing density functional theory in conjunction with non-equilibrium Green&#39;s function methods and macrospin simulations, we demonstrate that the proposed vdW SOT devices exhibit remarkably low critical current density approximately 10 MA/cm$^2$ and rapid field-free magnetization switching in 250 ps. This facilitates excellent write performance with extremely low energy consumption. Furthermore, the device shows a significantly low read error rate, as evidenced by a high tunnel magnetoresistance ratio of up to 4250%. The superior write and read performance originates from the unique strong on-site (insulating phase) and off-site (magnetic phase) Coulomb interactions in electride LaBr$_2$, a large non-zero z-component polarization in WTe$_2$, and the proximity effect between them. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.02805v1-abstract-full').style.display = 'none'; document.getElementById('2310.02805v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.07354">arXiv:2309.07354</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.07354">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.2316032121">10.1073/pnas.2316032121 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Diamond Surface Functionalization via Visible Light-Driven C-H Activation for Nanoscale Quantum Sensing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Rodgers%2C+L+V+H">Lila V. H. Rodgers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nguyen%2C+S+T">Suong T. Nguyen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cox%2C+J+H">James H. Cox</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zervas%2C+K">Kalliope Zervas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zhiyang Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sangtawesin%2C+S">Sorawis Sangtawesin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stacey%2C+A">Alastair Stacey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jaye%2C+C">Cherno Jaye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weiland%2C+C">Conan Weiland</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pershin%2C+A">Anton Pershin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gali%2C+A">Adam Gali</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thomsen%2C+L">Lars Thomsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meynell%2C+S+A">Simon A. Meynell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hughes%2C+L+B">Lillian B. Hughes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jayich%2C+A+C+B">Ania C. Bleszynski Jayich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gui%2C+X">Xin Gui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cava%2C+R+J">Robert J. Cava</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Knowles%2C+R+R">Robert R. Knowles</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Leon%2C+N+P">Nathalie P. de Leon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.07354v1-abstract-short" style="display: inline;"> Nitrogen-vacancy centers in diamond are a promising platform for nanoscale nuclear magnetic resonance sensing. Despite significant progress towards using NV centers to detect and localize nuclear spins down to the single spin level, NV-based spectroscopy of individual, intact, arbitrary target molecules remains elusive. NV molecular sensing requires that target molecules are immobilized within a f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.07354v1-abstract-full').style.display = 'inline'; document.getElementById('2309.07354v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.07354v1-abstract-full" style="display: none;"> Nitrogen-vacancy centers in diamond are a promising platform for nanoscale nuclear magnetic resonance sensing. Despite significant progress towards using NV centers to detect and localize nuclear spins down to the single spin level, NV-based spectroscopy of individual, intact, arbitrary target molecules remains elusive. NV molecular sensing requires that target molecules are immobilized within a few nanometers of NV centers with long spin coherence time. The inert nature of diamond typically requires harsh functionalization techniques such as thermal annealing or plasma processing, limiting the scope of functional groups that can be attached to the surface. Solution-phase chemical methods can be more readily generalized to install diverse functional groups, but they have not been widely explored for single-crystal diamond surfaces. Moreover, realizing shallow NV centers with long spin coherence times requires highly ordered single-crystal surfaces, and solution-phase functionalization has not yet been shown to be compatible with such demanding conditions. In this work, we report a versatile strategy to directly functionalize C-H bonds on single-crystal diamond surfaces under ambient conditions using visible light. This functionalization method is compatible with charge stable NV centers within 10 nm of the surface with spin coherence times comparable to the state of the art. As a proof of principle, we use shallow ensembles of NV centers to detect nuclear spins from functional groups attached to the surface. Our approach to surface functionalization based on visible light-driven C-H bond activation opens the door to deploying NV centers as a broad tool for chemical sensing and single-molecule spectroscopy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.07354v1-abstract-full').style.display = 'none'; document.getElementById('2309.07354v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.06651">arXiv:2308.06651</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.06651">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Antisymmetric Planar Hall Effect in Rutile Oxide Films Induced by the Lorentz Force </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Y">Yongwei Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zhaoqing Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Haoran Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yue Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yunzhuo Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pei%2C+K">Ke Pei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+T">Tong Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+N">Nian Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Che%2C+R">Renchao Che</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xuepeng Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zhe Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yizheng Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.06651v3-abstract-short" style="display: inline;"> The conventional Hall effect is linearly proportional to the field component or magnetization component perpendicular to a film. Despite the increasing theoretical proposals on the Hall effect to the in-plane field or magnetization in various special systems induced by the Berry curvature, such an unconventional Hall effect has only been experimentally reported in Weyl semimetals and in a heterodi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.06651v3-abstract-full').style.display = 'inline'; document.getElementById('2308.06651v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.06651v3-abstract-full" style="display: none;"> The conventional Hall effect is linearly proportional to the field component or magnetization component perpendicular to a film. Despite the increasing theoretical proposals on the Hall effect to the in-plane field or magnetization in various special systems induced by the Berry curvature, such an unconventional Hall effect has only been experimentally reported in Weyl semimetals and in a heterodimensional superlattice. Here, we report an unambiguous experimental observation of the antisymmetric planar Hall effect (APHE) with respect to the in-plane magnetic field in centrosymmetric rutile RuO2 and IrO2 single-crystal films. The measured Hall resistivity is found to be linearly proportional to the component of the applied in-plane magnetic field along a particular crystal axis and to be independent of the current direction or temperature. Both the experimental observations and theoretical calculations confirm that the APHE in rutile oxide films is induced by the Lorentz force. Our findings can be generalized to ferromagnetic materials for the discovery of anomalous Hall effects and quantum anomalous Hall effects induced by in-plane magnetization. In addition to significantly expanding knowledge of the Hall effect, this work opens the door to explore new members in the Hall effect family. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.06651v3-abstract-full').style.display = 'none'; document.getElementById('2308.06651v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.00427">arXiv:2308.00427</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.00427">pdf</a>, <a href="https://arxiv.org/format/2308.00427">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11433-023-2214-9">10.1007/s11433-023-2214-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultrafast magnetization enhancement and spin current injection in magnetic multilayers by exciting the nonmagnetic metal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+W">Wen-Tian Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zhe Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiaohong Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.00427v1-abstract-short" style="display: inline;"> A systematic investigation of spin injection behavior in Au/FM (FM = Fe and Ni) multilayers is performed using the superdiffusive spin transport theory. By exciting the nonmagnetic layer, the laser-induced hot electrons may transfer spin angular momentum into the adjacent ferromagnetic (FM) metals resulting in ultrafast demagnetization or enhancement. We find that these experimental phenomena sens&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.00427v1-abstract-full').style.display = 'inline'; document.getElementById('2308.00427v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.00427v1-abstract-full" style="display: none;"> A systematic investigation of spin injection behavior in Au/FM (FM = Fe and Ni) multilayers is performed using the superdiffusive spin transport theory. By exciting the nonmagnetic layer, the laser-induced hot electrons may transfer spin angular momentum into the adjacent ferromagnetic (FM) metals resulting in ultrafast demagnetization or enhancement. We find that these experimental phenomena sensitively depend on the particular interface reflectivity of hot electrons and may reconcile the different observations in experiment. Stimulated by the ultrafast spin currents carried by the hot electrons, we propose the multilayer structures to generate highly spin polarized currents for development of future ultrafast spintronics devices. The spin polarization of the electric currents carried by the hot electrons can be significantly enhanced by the joint effects of bulk and interfacial spin filtering. Meanwhile the intensity of the generated spin current can be optimized by varying the number of repeated stacking units and the thickness of each metallic layer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.00427v1-abstract-full').style.display = 'none'; document.getElementById('2308.00427v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.13583">arXiv:2306.13583</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.13583">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/D3TA03697A">10.1039/D3TA03697A <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First-principles study of intrinsic and hydrogen point defects in the earth-abundant photovoltaic absorber Zn3P2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zhenkun Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiong%2C+Y">Yihuang Xiong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hautier%2C+G">Geoffroy Hautier</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.13583v1-abstract-short" style="display: inline;"> Zinc phosphide (Zn3P2) has had a long history of scientific interest largely because of its potential for earth-abundant photovoltaics. To realize high-efficiency Zn3P2 solar cells, it is critical to understand and control point defects in this material. Using hybrid functional calculations, we assess the energetics and electronic behavior of intrinsic point defects and hydrogen impurities in Zn3P&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.13583v1-abstract-full').style.display = 'inline'; document.getElementById('2306.13583v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.13583v1-abstract-full" style="display: none;"> Zinc phosphide (Zn3P2) has had a long history of scientific interest largely because of its potential for earth-abundant photovoltaics. To realize high-efficiency Zn3P2 solar cells, it is critical to understand and control point defects in this material. Using hybrid functional calculations, we assess the energetics and electronic behavior of intrinsic point defects and hydrogen impurities in Zn3P2. All intrinsic defects are found to act as compensating centers in p-type Zn3P2 and have deep levels in the band gap, except for zinc vacancies which are shallow acceptors and can act as a source of doping. Our work highlights that zinc vacancies rather than phosphorus interstitials are likely to be the main source of p-type doping in as-grown Zn3P2. We also show that Zn-poor and P-rich growth conditions, which are usually used for enhancing p-type conductivity of Zn3P2, will facilitate the formation of certain deep-level defects (P_Zn and P_i) which might be detrimental to solar cell efficiency. For hydrogen impurities, which are frequently present in the growth environment of Zn3P2, we study interstitial hydrogen and hydrogen complexes with vacancies. The results suggest small but beneficial effects of hydrogen on the electrical properties of Zn3P2. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.13583v1-abstract-full').style.display = 'none'; document.getElementById('2306.13583v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Mater. Chem. A, 2023,11, 20592-20600 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.11794">arXiv:2306.11794</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.11794">pdf</a>, <a href="https://arxiv.org/format/2306.11794">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Observation of microscopic confinement dynamics by a tunable topological $胃$-angle </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Wei-Yong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Ying Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Y">Yanting Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+M">Ming-Gen He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Han-Yi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Tian-Yi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zi-Hang Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+G">Guo-Xian Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zhao-Yu Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+Y">Yong-Guang Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+H">Hui Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+B">Bing Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hauke%2C+P">Philipp Hauke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+W">Wei Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Halimeh%2C+J+C">Jad C. Halimeh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zhen-Sheng Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+J">Jian-Wei Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.11794v1-abstract-short" style="display: inline;"> The topological $胃$-angle is central to the understanding of a plethora of phenomena in condensed matter and high-energy physics such as the strong CP problem, dynamical quantum topological phase transitions, and the confinement--deconfinement transition. Difficulties arise when probing the effects of the topological $胃$-angle using classical methods, in particular through the appearance of a sign&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.11794v1-abstract-full').style.display = 'inline'; document.getElementById('2306.11794v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.11794v1-abstract-full" style="display: none;"> The topological $胃$-angle is central to the understanding of a plethora of phenomena in condensed matter and high-energy physics such as the strong CP problem, dynamical quantum topological phase transitions, and the confinement--deconfinement transition. Difficulties arise when probing the effects of the topological $胃$-angle using classical methods, in particular through the appearance of a sign problem in numerical simulations. Quantum simulators offer a powerful alternate venue for realizing the $胃$-angle, which has hitherto remained an outstanding challenge due to the difficulty of introducing a dynamical electric field in the experiment. Here, we report on the experimental realization of a tunable topological $胃$-angle in a Bose--Hubbard gauge-theory quantum simulator, implemented through a tilted superlattice potential that induces an effective background electric field. We demonstrate the rich physics due to this angle by the direct observation of the confinement--deconfinement transition of $(1+1)$-dimensional quantum electrodynamics. Using an atomic-precision quantum gas microscope, we distinguish between the confined and deconfined phases by monitoring the real-time evolution of particle--antiparticle pairs, which exhibit constrained (ballistic) propagation for a finite (vanishing) deviation of the $胃$-angle from $蟺$. Our work provides a major step forward in the realization of topological terms on modern quantum simulators, and the exploration of rich physics they have been theorized to entail. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.11794v1-abstract-full').style.display = 'none'; document.getElementById('2306.11794v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">$7+7$ pages, $4+7$ figures, $1+0$ table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.17703">arXiv:2305.17703</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.17703">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-43659-4">10.1038/s41467-023-43659-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Local Probe Structure Isomerization in a One-Dimensional Molecular Array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kawai%2C+S">Shigeki Kawai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Silveira%2C+O+J">Orlando J. Silveira</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kurki%2C+L">Lauri Kurki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zhangyu Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nishiuchi%2C+T">Tomohiko Nishiuchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kodama%2C+T">Takuya Kodama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+K">Kewei Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Custance%2C+O">Oscar Custance</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lado%2C+J+L">Jose L. Lado</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kubo%2C+T">Takashi Kubo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Foster%2C+A+S">Adam S. Foster</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.17703v2-abstract-short" style="display: inline;"> Synthesis of one-dimensional molecular arrays with tailored stereoisomers is challenging yet has a great potential for application in molecular opto-, electronic- and magnetic-devices, where the local array structure plays a decisive role in the functional properties. Here, we demonstrate construction and characterization of dehydroazulene isomer and diradical units in three-dimensional organometa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.17703v2-abstract-full').style.display = 'inline'; document.getElementById('2305.17703v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.17703v2-abstract-full" style="display: none;"> Synthesis of one-dimensional molecular arrays with tailored stereoisomers is challenging yet has a great potential for application in molecular opto-, electronic- and magnetic-devices, where the local array structure plays a decisive role in the functional properties. Here, we demonstrate construction and characterization of dehydroazulene isomer and diradical units in three-dimensional organometallic compounds on Ag(111) with a combination of low-temperature scanning tunneling microscopy and density functional theory calculations. Tip-induced voltage pulses firstly result in the formation of a diradical species via successive homolytic fission of two C-Br bonds in the naphthyl groups, which are subsequently transformed into chiral dehydroazulene moieties. The delicate balance of the reaction rates among the diradical and two stereoisomers, arising from an in-line configuration of tip and molecular unit, allows directional azulene-to-azulene and azulene-to-diradical local probe structural isomerization in a controlled manner. Furthermore, our theoretical calculations suggest that the diradical moiety hosts an open-shell singlet with antiferromagnetic coupling between the unpaired electrons, which can undergo an inelastic spin transition of 91 meV to the ferromagnetically coupled triplet state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.17703v2-abstract-full').style.display = 'none'; document.getElementById('2305.17703v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.12719">arXiv:2305.12719</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.12719">pdf</a>, <a href="https://arxiv.org/format/2305.12719">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OPTICA.491565">10.1364/OPTICA.491565 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Mollow triplets under few-photon excitation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+B">Bang Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xu-Jie Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+L">Li Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+G">Guoqi Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Wenyan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">Hanqing Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ni%2C+H">Haiqiao Ni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Niu%2C+Z">Zhichuan Niu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zhiliang Yuan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.12719v1-abstract-short" style="display: inline;"> Resonant excitation is an essential tool in the development of semiconductor quantum dots (QDs) for quantum information processing. One central challenge is to enable a transparent access to the QD signal without post-selection information loss. A viable path is through cavity enhancement, which has successfully lifted the resonantly scattered field strength over the laser background under \emph{w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.12719v1-abstract-full').style.display = 'inline'; document.getElementById('2305.12719v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.12719v1-abstract-full" style="display: none;"> Resonant excitation is an essential tool in the development of semiconductor quantum dots (QDs) for quantum information processing. One central challenge is to enable a transparent access to the QD signal without post-selection information loss. A viable path is through cavity enhancement, which has successfully lifted the resonantly scattered field strength over the laser background under \emph{weak} excitation. Here, we extend this success to the \emph{saturation} regime using a QD-micropillar device with a Purcell factor of 10.9 and an ultra-low background cavity reflectivity of just 0.0089. We achieve a signal to background ratio of 50 and an overall system responsivity of 3~\%, i.e., we detect on average 0.03 resonantly scattered single photons for every incident laser photon. Raising the excitation to the few-photon level, the QD response is brought into saturation where we observe the Mollow triplets as well as the associated cascade single photon emissions, without resort to any laser background rejection technique. Our work offers a new perspective toward QD cavity interface that is not restricted by the laser background. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.12719v1-abstract-full').style.display = 'none'; document.getElementById('2305.12719v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 Figures and 9 Pages. Comments are welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Optica 10, 1118 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.08765">arXiv:2304.08765</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.08765">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0144468">10.1063/5.0144468 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anomalous impact of thermal fluctuations on spintransfer torque induced ferrimagnetic switching </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zhengping Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Long%2C+J">Jingwei Long</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zhengde Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xin%2C+Y">Yue Xin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=An%2C+L">Lihua An</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+J">Jie Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xue Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yumeng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zhifeng Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.08765v1-abstract-short" style="display: inline;"> The dynamics of a spin torque driven ferrimagnetic (FiM) system is investigated using the two-sublattice macrospin model. We demonstrate an ultrafast switching in the picosecond range. However, we find that the excessive current leads to the magnetic oscillation. Therefore, faster switching cannot be achieved by unlimitedly increasing the current. By systematically studying the impact of thermal f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.08765v1-abstract-full').style.display = 'inline'; document.getElementById('2304.08765v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.08765v1-abstract-full" style="display: none;"> The dynamics of a spin torque driven ferrimagnetic (FiM) system is investigated using the two-sublattice macrospin model. We demonstrate an ultrafast switching in the picosecond range. However, we find that the excessive current leads to the magnetic oscillation. Therefore, faster switching cannot be achieved by unlimitedly increasing the current. By systematically studying the impact of thermal fluctuations, we find the dynamics of FiMs can also be distinguished into the precessional region, the thermally activated region, and the cross-over region. However, in the precessional region, there is a significant deviation between FiM and ferromagnet (FM), i.e., the FM is insensitive to thermal fluctuations since its switching is only determined by the amount of net charge. In contrast, we find that the thermal effect is pronounced even a very short current pulse is applied to the FiM. We attribute this anomalous effect to the complex relation between the anisotropy and overdrive current. By controlling the magnetic anisotropy, we demonstrate that the FiM can also be configured to be insensitive to thermal fluctuations. This controllable thermal property makes the FiM promising in many emerging applications such as the implementation of tunable activation functions in the neuromorphic computing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.08765v1-abstract-full').style.display = 'none'; document.getElementById('2304.08765v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Applied Physics 133, 153903 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.11572">arXiv:2303.11572</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.11572">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/acc5a7">10.1088/1367-2630/acc5a7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonuniform magnetic domain-wall synapses enabled by population coding </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Qiao%2C+Y">Ya Qiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yajun Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zhe Yuan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.11572v1-abstract-short" style="display: inline;"> Traditional artificial intelligence implemented in software is usually executed on accurate digital computers. Nevertheless, the nanoscale devices for the implementation of neuromorphic computing may not be ideally identical, and the performance is reduced by nonuniform devices. In biological brains, information is usually encoded by a cluster of neurons such that the variability of nerve cells do&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.11572v1-abstract-full').style.display = 'inline'; document.getElementById('2303.11572v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.11572v1-abstract-full" style="display: none;"> Traditional artificial intelligence implemented in software is usually executed on accurate digital computers. Nevertheless, the nanoscale devices for the implementation of neuromorphic computing may not be ideally identical, and the performance is reduced by nonuniform devices. In biological brains, information is usually encoded by a cluster of neurons such that the variability of nerve cells does not influence the accuracy of human cognition and movement. Here, we introduce the population encoding strategy in neuromorphic computing and demonstrate that this strategy can overcome the problems caused by nonuniform devices. Using magnetic memristor device based on current-induced domain-wall motion as an example, we show that imperfect storage devices can be applied in a hardware network to perform principal component analysis (PCA), and the accuracy of unsupervised classification is comparable to that of conventional PCA using ideally accurate synaptic weights. Our results pave the way for hardware implementation of neuromorphic computing and lower the criteria for the uniformity of nanoscale devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.11572v1-abstract-full').style.display = 'none'; document.getElementById('2303.11572v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.07166">arXiv:2212.07166</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.07166">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Field-free spin-orbit torque switching of an antiferromagnet with perpendicular N茅el vector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zhengde Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+J">Jie Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zhengping Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xin%2C+Y">Yue Xin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xue Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+S">Shuyuan Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yumeng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zhifeng Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.07166v1-abstract-short" style="display: inline;"> The field-free spin-orbit torque induced 180掳 reorientation of perpendicular magnetization is beneficial for the high performance magnetic memory. The antiferromagnetic material (AFM) can provide higher operation speed than the ferromagnetic counterpart. In this paper, we propose a trilayer AFM/Insulator/Heavy Metal structure as the AFM memory device. We show that the field-free switching of the A&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.07166v1-abstract-full').style.display = 'inline'; document.getElementById('2212.07166v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.07166v1-abstract-full" style="display: none;"> The field-free spin-orbit torque induced 180掳 reorientation of perpendicular magnetization is beneficial for the high performance magnetic memory. The antiferromagnetic material (AFM) can provide higher operation speed than the ferromagnetic counterpart. In this paper, we propose a trilayer AFM/Insulator/Heavy Metal structure as the AFM memory device. We show that the field-free switching of the AFM with perpendicular N茅el vector can be achieved by using two orthogonal currents, which provide the uniform damping-like torque and stagger field-like torque, respectively. The reversible switching can be obtained by reversing either current. A current density of 1.79 10^11A/m^2 is sufficient to induce the switching. In addition, the two magnetic moments become noncollinear during the switching. This enables an ultrafast switching within 40 picoseconds. The device and switching mechanism proposed in this work offer a promising approach to deterministically switch the AFM with perpendicular N茅el vector. It can also stimulate the development of ultrafast AFM-based MRAM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.07166v1-abstract-full').style.display = 'none'; document.getElementById('2212.07166v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.12247">arXiv:2211.12247</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.12247">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.184419">10.1103/PhysRevB.106.184419 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spatially Nonuniform Oscillations in Ferrimagnets Based on an Atomistic Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xue Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+B">Baofang Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+J">Jie Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zhengping Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zhengde Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yumeng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+G">Gengchiau Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zhifeng Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.12247v1-abstract-short" style="display: inline;"> The ferrimagnets, such as GdxFeCo(1-x), can produce ultrafast magnetic switching and oscillation due to the strong exchange field. The two-sublattices macrospin model has been widely used to explain the experimental results. However, it fails in describing the spatial nonuniform magnetic dynamics which gives rises to many important phenomenons such as the domain walls and skyrmions. Here we develo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.12247v1-abstract-full').style.display = 'inline'; document.getElementById('2211.12247v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.12247v1-abstract-full" style="display: none;"> The ferrimagnets, such as GdxFeCo(1-x), can produce ultrafast magnetic switching and oscillation due to the strong exchange field. The two-sublattices macrospin model has been widely used to explain the experimental results. However, it fails in describing the spatial nonuniform magnetic dynamics which gives rises to many important phenomenons such as the domain walls and skyrmions. Here we develop the two-dimensional atomistic model and provide a torque analysis method to study the ferrimagnetic oscillation. Under the spin-transfer torque, the magnetization oscillates in the exchange mode or the flipped exchange mode. When the Gd composition is increased, the exchange mode firstly disappears, and then appears again as the magnetization compensation point is reached. We show that these results can only be explained by analyzing the spatial distribution of magnetization and effective fields. In particular, when the sample is small, a spatial nonuniform oscillation is also observed in the square film. Our work reveals the importance of spatial magnetic distributions in understanding the ferrimagnetic dynamics. The method developed in this paper provides an important tool to gain a deeper understanding of ferrimagnets and antiferromagnets. The observed ultrafast dynamics can also stimulate the development of THz oscillators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.12247v1-abstract-full').style.display = 'none'; document.getElementById('2211.12247v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 106,184419(2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.17032">arXiv:2210.17032</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.17032">pdf</a>, <a href="https://arxiv.org/format/2210.17032">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.131.050401">10.1103/PhysRevLett.131.050401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interrelated Thermalization and Quantum Criticality in a Lattice Gauge Simulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Han-Yi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Wei-Yong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Z">Zhi-Yuan Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Ying Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zi-Hang Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+Y">Yong-Guang Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xuan-Kai Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhai%2C+H">Hui Zhai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zhen-Sheng Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+J">Jian-Wei Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.17032v1-abstract-short" style="display: inline;"> Gauge theory and thermalization are both foundations of physics and nowadays are both topics of essential importance for modern quantum science and technology. Simulating lattice gauge theories (LGTs) realized recently with ultracold atoms provides a unique opportunity for carrying out a correlated study of gauge theory and thermalization in the same setting. Theoretical studies have shown that an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.17032v1-abstract-full').style.display = 'inline'; document.getElementById('2210.17032v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.17032v1-abstract-full" style="display: none;"> Gauge theory and thermalization are both foundations of physics and nowadays are both topics of essential importance for modern quantum science and technology. Simulating lattice gauge theories (LGTs) realized recently with ultracold atoms provides a unique opportunity for carrying out a correlated study of gauge theory and thermalization in the same setting. Theoretical studies have shown that an Ising quantum phase transition exists in this implemented LGT, and quantum thermalization can also signal this phase transition. Nevertheless, it remains an experimental challenge to accurately determine the critical point and controllably explore the thermalization dynamics in the quantum critical regime due to the lack of techniques for locally manipulating and detecting matter and gauge fields. Here, we report an experimental investigation of the quantum criticality in the LGT from both equilibrium and non-equilibrium thermalization perspectives by equipping the single-site addressing and atom-number-resolved detection into our LGT simulator. We accurately determine the quantum critical point agreed with the predicted value. We prepare a $|Z_{2}\rangle$ state deterministically and study its thermalization dynamics across the critical point, leading to the observation that this $|Z_{2}\rangle$ state thermalizes only in the critical regime. This result manifests the interplay between quantum many-body scars, quantum criticality, and symmetry breaking. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.17032v1-abstract-full').style.display = 'none'; document.getElementById('2210.17032v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6+4 pages, 4+7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 131, 050401 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.08556">arXiv:2210.08556</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.08556">pdf</a>, <a href="https://arxiv.org/format/2210.08556">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Efficiently Extracting Multi-Point Correlations of a Floquet Thermalized System </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+Y">Yong-Guang Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Wei-Yong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Y">Ying-Chao Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+A">An Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Ying Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+M">Ming-Gen He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Hao-Ran Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+W">Wan Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Han-Yi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zi-Hang Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+M">Ming-Cheng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+C">Chao-Yang Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thanasilp%2C+S">Supanut Thanasilp</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Angelakis%2C+D+G">Dimitris G. Angelakis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zhen-Sheng Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+J">Jian-Wei Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.08556v1-abstract-short" style="display: inline;"> Nonequilibrium dynamics of many-body systems is challenging for classical computing, providing opportunities for demonstrating practical quantum computational advantage with analogue quantum simulators. It is proposed to be classically intractable to sample driven thermalized many-body states of Bose-Hubbard systems, and further extract multi-point correlations for characterizing quantum phases. H&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.08556v1-abstract-full').style.display = 'inline'; document.getElementById('2210.08556v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.08556v1-abstract-full" style="display: none;"> Nonequilibrium dynamics of many-body systems is challenging for classical computing, providing opportunities for demonstrating practical quantum computational advantage with analogue quantum simulators. It is proposed to be classically intractable to sample driven thermalized many-body states of Bose-Hubbard systems, and further extract multi-point correlations for characterizing quantum phases. Here, leveraging dedicated precise manipulations and number-resolved detection through a quantum gas microscope, we implement and sample a 32-site driven Hubbard chain in the thermalized phase. Multi-point correlations of up to 14th-order extracted from experimental samples offer clear distinctions between the thermalized and many-body-localized phases. In terms of estimated computational powers, the quantum simulator is comparable to the fastest supercomputer with currently known best algorithms. Our work paves the way towards practical quantum advantage in simulating Floquet dynamics of many-body systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.08556v1-abstract-full').style.display = 'none'; document.getElementById('2210.08556v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.08429">arXiv:2210.08429</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.08429">pdf</a>, <a href="https://arxiv.org/format/2210.08429">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.134409">10.1103/PhysRevB.106.134409 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic damping anisotropy in the two-dimensional van der Waals material Fe$_3$GeTe$_2$ from first principles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+P">Pengtao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+R+L+Z">Ruixi Liu Zhe Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yi Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.08429v1-abstract-short" style="display: inline;"> Magnetization relaxation in the two-dimensional itinerant ferromagnetic van der Waals material Fe$_3$GeTe$_2$, below the Curie temperature, is fundamentally important for applications to low-dimensional spintronics devices. We use first-principles scattering theory to calculate the temperature-dependent Gilbert damping for bulk and single-layer Fe$_3$GeTe$_2$. The calculated damping frequency of b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.08429v1-abstract-full').style.display = 'inline'; document.getElementById('2210.08429v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.08429v1-abstract-full" style="display: none;"> Magnetization relaxation in the two-dimensional itinerant ferromagnetic van der Waals material Fe$_3$GeTe$_2$, below the Curie temperature, is fundamentally important for applications to low-dimensional spintronics devices. We use first-principles scattering theory to calculate the temperature-dependent Gilbert damping for bulk and single-layer Fe$_3$GeTe$_2$. The calculated damping frequency of bulk Fe$_3$GeTe$_2$ increases monotonically with temperature because of the dominance of resistivitylike behavior. By contrast, a very weak temperature dependence is found for the damping frequency of a single layer, which is attributed to strong surface scattering in this highly confined geometry. A systematic study of the damping anisotropy reveals that orientational anisotropy is present in both bulk and single-layer Fe3GeTe2. Rotational anisotropy is significant at low temperatures for both the bulk and a single layer and is gradually diminished by temperature-induced disorder. The rotational anisotropy can be significantly enhanced by up to 430% in gated single-layer Fe$_3$GeTe$_2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.08429v1-abstract-full').style.display = 'none'; document.getElementById('2210.08429v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 106, 134409 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.07820">arXiv:2210.07820</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.07820">pdf</a>, <a href="https://arxiv.org/format/2210.07820">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0130761">10.1063/5.0130761 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing itinerant carrier dynamics at the diamond surface using single nitrogen vacancy centers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mahdia%2C+M">Marjana Mahdia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Allred%2C+J">James Allred</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zhiyang Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rovny%2C+J">Jared Rovny</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Leon%2C+N+P">Nathalie P. de Leon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.07820v1-abstract-short" style="display: inline;"> Color centers in diamond are widely explored for applications in quantum sensing, computing, and networking. Their optical, spin, and charge properties have been extensively studied, while their interactions with itinerant carriers are relatively unexplored. Here we show that NV centers situated within 10 nm of the diamond surface can be converted to the neutral charge state via hole capture. By m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.07820v1-abstract-full').style.display = 'inline'; document.getElementById('2210.07820v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.07820v1-abstract-full" style="display: none;"> Color centers in diamond are widely explored for applications in quantum sensing, computing, and networking. Their optical, spin, and charge properties have been extensively studied, while their interactions with itinerant carriers are relatively unexplored. Here we show that NV centers situated within 10 nm of the diamond surface can be converted to the neutral charge state via hole capture. By measuring the hole capture rate, we extract the capture cross section, which is suppressed by proximity to the diamond surface. The distance dependence is consistent with a carrier diffusion model, indicating that the itinerant carrier lifetime can be long, even at the diamond surface. Measuring dynamics of near-surface NV centers offers a new tool for characterizing the diamond surface and investigating charge transport in diamond devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.07820v1-abstract-full').style.display = 'none'; document.getElementById('2210.07820v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.02936">arXiv:2210.02936</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.02936">pdf</a>, <a href="https://arxiv.org/format/2210.02936">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.131.073401">10.1103/PhysRevLett.131.073401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Functional building blocks for scalable multipartite entanglement in optical lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Wei-Yong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+M">Ming-Gen He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+H">Hui Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+Y">Yong-Guang Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Ying Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+A">An Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Han-Yi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zi-Hang Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+P">Pei-Yue Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Y">Ying-Chao Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xuan-Kai Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+W">Wan Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+S">Song-Tao Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bin-Chen Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+B">Bo Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M">Meng-Da Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yu-Meng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+H">Han-Ning Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">You Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+X">Xiongfeng Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zhen-Sheng Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+J">Jian-Wei Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.02936v1-abstract-short" style="display: inline;"> Featuring excellent coherence and operated parallelly, ultracold atoms in optical lattices form a competitive candidate for quantum computation. For this, a massive number of parallel entangled atom pairs have been realized in superlattices. However, the more formidable challenge is to scale-up and detect multipartite entanglement due to the lack of manipulations over local atomic spins in retro-r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.02936v1-abstract-full').style.display = 'inline'; document.getElementById('2210.02936v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.02936v1-abstract-full" style="display: none;"> Featuring excellent coherence and operated parallelly, ultracold atoms in optical lattices form a competitive candidate for quantum computation. For this, a massive number of parallel entangled atom pairs have been realized in superlattices. However, the more formidable challenge is to scale-up and detect multipartite entanglement due to the lack of manipulations over local atomic spins in retro-reflected bichromatic superlattices. Here we developed a new architecture based on a cross-angle spin-dependent superlattice for implementing layers of quantum gates over moderately-separated atoms incorporated with a quantum gas microscope for single-atom manipulation. We created and verified functional building blocks for scalable multipartite entanglement by connecting Bell pairs to one-dimensional 10-atom chains and two-dimensional plaquettes of $2\times4$ atoms. This offers a new platform towards scalable quantum computation and simulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.02936v1-abstract-full').style.display = 'none'; document.getElementById('2210.02936v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 131, 073401 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.09885">arXiv:2209.09885</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.09885">pdf</a>, <a href="https://arxiv.org/format/2209.09885">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.115425">10.1103/PhysRevB.106.115425 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Calculating interface transport parameters at finite temperatures: Nonmagnetic interfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gupta%2C+K">Kriti Gupta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+R">Ruixi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wesselink%2C+R+J+H">Rien J. H. Wesselink</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zhe Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kelly%2C+P+J">Paul J. Kelly</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.09885v1-abstract-short" style="display: inline;"> First-principles scattering calculations are used to investigate spin transport through interfaces between diffusive nonmagnetic metals where the symmetry lowering leads to an enhancement of the effect of spin-orbit coupling (SOC) and to a discontinuity of the spin currents passing through the interfaces. From the conductance and local spin currents calculated for nonmagnetic bilayers, we extract&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.09885v1-abstract-full').style.display = 'inline'; document.getElementById('2209.09885v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.09885v1-abstract-full" style="display: none;"> First-principles scattering calculations are used to investigate spin transport through interfaces between diffusive nonmagnetic metals where the symmetry lowering leads to an enhancement of the effect of spin-orbit coupling (SOC) and to a discontinuity of the spin currents passing through the interfaces. From the conductance and local spin currents calculated for nonmagnetic bilayers, we extract values of the room temperature interface resistance $R_{\rm I}$, of the spin memory loss parameter $未$ and of the interface spin Hall angle $螛_{\rm I}$ for nonmagnetic Au$|$Pt and Au$|$Pd interfaces using a frozen thermal disorder scheme to model finite temperatures. Substantial values of all three parameters are found with important consequences for experiments involving nonmagnetic spacer and capping layers. The temperature dependence of the interface parameters is determined for Au$|$Pt. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.09885v1-abstract-full').style.display = 'none'; document.getElementById('2209.09885v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 20 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 106, 115425 (2022) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Yuan%2C+Z&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Yuan%2C+Z&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yuan%2C+Z&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yuan%2C+Z&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yuan%2C+Z&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10