CINXE.COM

Search results for: Hyperspectral

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Hyperspectral</title> <meta name="description" content="Search results for: Hyperspectral"> <meta name="keywords" content="Hyperspectral"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Hyperspectral" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Hyperspectral"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 19</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Hyperspectral</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Sparse Unmixing of Hyperspectral Data by Exploiting Joint-Sparsity and Rank-Deficiency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Fanqiang%20Kong">Fanqiang Kong</a>, <a href="https://publications.waset.org/search?q=Chending%20Bian"> Chending Bian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we exploit two assumed properties of the abundances of the observed signatures (endmembers) in order to reconstruct the abundances from hyperspectral data. Joint-sparsity is the first property of the abundances, which assumes the adjacent pixels can be expressed as different linear combinations of same materials. The second property is rank-deficiency where the number of endmembers participating in hyperspectral data is very small compared with the dimensionality of spectral library, which means that the abundances matrix of the endmembers is a low-rank matrix. These assumptions lead to an optimization problem for the sparse unmixing model that requires minimizing a combined <em>l<sub>2,p</sub>-</em>norm and nuclear norm. We propose a variable splitting and augmented Lagrangian algorithm to solve the optimization problem. Experimental evaluation carried out on synthetic and real hyperspectral data shows that the proposed method outperforms the state-of-the-art algorithms with a better spectral unmixing accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Hyperspectral%20unmixing" title="Hyperspectral unmixing">Hyperspectral unmixing</a>, <a href="https://publications.waset.org/search?q=joint-sparse" title=" joint-sparse"> joint-sparse</a>, <a href="https://publications.waset.org/search?q=low-rank%20representation" title=" low-rank representation"> low-rank representation</a>, <a href="https://publications.waset.org/search?q=abundance%20estimation." title=" abundance estimation. "> abundance estimation. </a> </p> <a href="https://publications.waset.org/10007535/sparse-unmixing-of-hyperspectral-data-by-exploiting-joint-sparsity-and-rank-deficiency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007535/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007535/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007535/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007535/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007535/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007535/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007535/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007535/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007535/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007535/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007535.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">770</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Approach Based on Fuzzy C-Means for Band Selection in Hyperspectral Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Diego%20Saqui">Diego Saqui</a>, <a href="https://publications.waset.org/search?q=Jos%C3%A9%20H.%20Saito"> José H. Saito</a>, <a href="https://publications.waset.org/search?q=Jos%C3%A9%20R.%20Campos"> José R. Campos</a>, <a href="https://publications.waset.org/search?q=L%C3%BAcio%20A.%20de%20C.%20Jorge"> Lúcio A. de C. Jorge</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Hyperspectral images and remote sensing are important for many applications. A problem in the use of these images is the high volume of data to be processed, stored and transferred. Dimensionality reduction techniques can be used to reduce the volume of data. In this paper, an approach to band selection based on clustering algorithms is presented. This approach allows to reduce the volume of data. The proposed structure is based on Fuzzy C-Means (or K-Means) and NWHFC algorithms. New attributes in relation to other studies in the literature, such as kurtosis and low correlation, are also considered. A comparison of the results of the approach using the Fuzzy C-Means and K-Means with different attributes is performed. The use of both algorithms show similar good results but, particularly when used attributes variance and kurtosis in the clustering process, however applicable in hyperspectral images.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Band%20selection" title="Band selection">Band selection</a>, <a href="https://publications.waset.org/search?q=fuzzy%20C-means" title=" fuzzy C-means"> fuzzy C-means</a>, <a href="https://publications.waset.org/search?q=K-means" title=" K-means"> K-means</a>, <a href="https://publications.waset.org/search?q=hyperspectral%20image." title=" hyperspectral image. "> hyperspectral image. </a> </p> <a href="https://publications.waset.org/10004410/approach-based-on-fuzzy-c-means-for-band-selection-in-hyperspectral-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10004410/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10004410/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10004410/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10004410/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10004410/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10004410/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10004410/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10004410/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10004410/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10004410/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10004410.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1815</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Water Depth and Optical Attenuation Characteristics of Natural Water Reservoirs nearby Kolkata City Assessed from Hyperion Hyperspectral and LISS-3 Multispectral Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Barun%20Raychaudhuri">Barun Raychaudhuri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A methodology is proposed for estimating the optical attenuation and proportional depth variation of shallow inland water. The process is demonstrated with EO-1 Hyperion hyperspectral and IRS-P6 LISS-3 multispectral images of Kolkata city nearby area centered around 22&ordm;33&prime; N 88&ordm;26&prime; E. The attenuation coefficient of water was found to change with fine resolution of wavebands and in presence of suspended organic matter in water.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Hyperion" title="Hyperion">Hyperion</a>, <a href="https://publications.waset.org/search?q=hyperspectral" title=" hyperspectral"> hyperspectral</a>, <a href="https://publications.waset.org/search?q=Kolkata" title=" Kolkata"> Kolkata</a>, <a href="https://publications.waset.org/search?q=water%20depth." title=" water depth."> water depth.</a> </p> <a href="https://publications.waset.org/9999444/water-depth-and-optical-attenuation-characteristics-of-natural-water-reservoirs-nearby-kolkata-city-assessed-from-hyperion-hyperspectral-and-liss-3-multispectral-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999444/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999444/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999444/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999444/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999444/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999444/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999444/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999444/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999444/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999444/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999444.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1993</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Continual Learning Using Data Generation for Hyperspectral Remote Sensing Scene Classification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Samiah%20Alammari">Samiah Alammari</a>, <a href="https://publications.waset.org/search?q=Nassim%20Ammour"> Nassim Ammour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>When providing a massive number of tasks successively to a deep learning process, a good performance of the model requires preserving the previous tasks data to retrain the model for each upcoming classification. Otherwise, the model performs poorly due to the catastrophic forgetting phenomenon. To overcome this shortcoming, we developed a successful continual learning deep model for remote sensing hyperspectral image regions classification. The proposed neural network architecture encapsulates two trainable subnetworks. The first module adapts its weights by minimizing the discrimination error between the land-cover classes during the new task learning, and the second module tries to learn how to replicate the data of the previous tasks by discovering the latent data structure of the new task dataset. We conduct experiments on hyperspectral image (HSI) dataset on Indian Pines. The results confirm the capability of the proposed method. </p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Continual%20learning" title="Continual learning">Continual learning</a>, <a href="https://publications.waset.org/search?q=data%20reconstruction" title=" data reconstruction"> data reconstruction</a>, <a href="https://publications.waset.org/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/search?q=hyperspectral%20image%20segmentation." title=" hyperspectral image segmentation."> hyperspectral image segmentation.</a> </p> <a href="https://publications.waset.org/10013371/continual-learning-using-data-generation-for-hyperspectral-remote-sensing-scene-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10013371/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10013371/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10013371/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10013371/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10013371/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10013371/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10013371/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10013371/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10013371/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10013371/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10013371.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Sparsity-Based Unsupervised Unmixing of Hyperspectral Imaging Data Using Basis Pursuit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ahmed%20Elrewainy">Ahmed Elrewainy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Mixing in the hyperspectral imaging occurs due to the low spatial resolutions of the used cameras. The existing pure materials &ldquo;endmembers&rdquo; in the scene share the spectra pixels with different amounts called &ldquo;abundances&rdquo;. Unmixing of the data cube is an important task to know the present endmembers in the cube for the analysis of these images. Unsupervised unmixing is done with no information about the given data cube. Sparsity is one of the recent approaches used in the source recovery or unmixing techniques. The <em>l<sub>1</sub></em>-norm optimization problem &ldquo;basis pursuit&rdquo; could be used as a sparsity-based approach to solve this unmixing problem where the endmembers is assumed to be sparse in an appropriate domain known as dictionary. This optimization problem is solved using proximal method &ldquo;iterative thresholding&rdquo;. The <em>l<sub>1</sub></em>-norm basis pursuit optimization problem as a sparsity-based unmixing technique was used to unmix real and synthetic hyperspectral data cubes.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Basis%20pursuit" title="Basis pursuit">Basis pursuit</a>, <a href="https://publications.waset.org/search?q=blind%20source%20separation" title=" blind source separation"> blind source separation</a>, <a href="https://publications.waset.org/search?q=hyperspectral%20imaging" title=" hyperspectral imaging"> hyperspectral imaging</a>, <a href="https://publications.waset.org/search?q=spectral%20unmixing" title=" spectral unmixing"> spectral unmixing</a>, <a href="https://publications.waset.org/search?q=wavelets." title=" wavelets."> wavelets.</a> </p> <a href="https://publications.waset.org/10007743/sparsity-based-unsupervised-unmixing-of-hyperspectral-imaging-data-using-basis-pursuit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007743/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007743/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007743/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007743/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007743/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007743/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007743/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007743/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007743/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007743/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007743.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">837</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Near-Infrared Hyperspectral Imaging Spectroscopy to Detect Microplastics and Pieces of Plastic in Almond Flour</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=H.%20Apaza">H. Apaza</a>, <a href="https://publications.waset.org/search?q=L.%20Ch%C3%A9vez"> L. Chévez</a>, <a href="https://publications.waset.org/search?q=H.%20Loro"> H. Loro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Plastic and microplastic pollution in human food chain is a big problem for human health that requires more elaborated techniques that can identify their presences in different kinds of food. Hyperspectral imaging technique is an optical technique than can detect the presence of different elements in an image and can be used to detect plastics and microplastics in a scene. To do this statistical techniques are required that need to be evaluated and compared in order to find the more efficient ones. In this work, two problems related to the presence of plastics are addressed, the first is to detect and identify pieces of plastic immersed in almond seeds, and the second problem is to detect and quantify microplastic in almond flour. To do this we make use of the analysis hyperspectral images taken in the range of 900 to 1700 nm using 4 unmixing techniques of hyperspectral imaging which are: least squares unmixing (LSU), non-negatively constrained least squares unmixing (NCLSU), fully constrained least squares unmixing (FCLSU), and scaled constrained least squares unmixing (SCLSU). NCLSU, FCLSU, SCLSU techniques manage to find the region where the plastic is found and also manage to quantify the amount of microplastic contained in the almond flour. The SCLSU technique estimated a 13.03% abundance of microplastics and 86.97% of almond flour compared to 16.66% of microplastics and 83.33% abundance of almond flour prepared for the experiment. Results show the feasibility of applying near-infrared hyperspectral image analysis for the detection of plastic contaminants in food.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Food" title="Food">Food</a>, <a href="https://publications.waset.org/search?q=plastic" title=" plastic"> plastic</a>, <a href="https://publications.waset.org/search?q=microplastic" title=" microplastic"> microplastic</a>, <a href="https://publications.waset.org/search?q=NIR%20hyperspectral%20imaging" title=" NIR hyperspectral imaging"> NIR hyperspectral imaging</a>, <a href="https://publications.waset.org/search?q=unmixing." title=" unmixing."> unmixing.</a> </p> <a href="https://publications.waset.org/10011799/near-infrared-hyperspectral-imaging-spectroscopy-to-detect-microplastics-and-pieces-of-plastic-in-almond-flour" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10011799/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10011799/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10011799/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10011799/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10011799/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10011799/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10011799/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10011799/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10011799/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10011799/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10011799.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1188</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Application of Advanced Remote Sensing Data in Mineral Exploration in the Vicinity of Heavy Dense Forest Cover Area of Jharkhand and Odisha State Mining Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Hemant%20Kumar">Hemant Kumar</a>, <a href="https://publications.waset.org/search?q=R.%20N.%20K.%20Sharma"> R. N. K. Sharma</a>, <a href="https://publications.waset.org/search?q=A.%20P.%20Krishna"> A. P. Krishna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The study has been carried out on the Saranda in Jharkhand and a part of Odisha state. Geospatial data of Hyperion, a remote sensing satellite, have been used. This study has used a wide variety of patterns related to image processing to enhance and extract the mining class of Fe and Mn ores.Landsat-8, OLI sensor data have also been used to correctly explore related minerals. In this way, various processes have been applied to increase the mineralogy class and comparative evaluation with related frequency done. The Hyperion dataset for hyperspectral remote sensing has been specifically verified as an effective tool for mineral or rock information extraction within the band range of shortwave infrared used. The abundant spatial and spectral information contained in hyperspectral images enables the differentiation of different objects of any object into targeted applications for exploration such as exploration detection, mining.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Hyperion" title="Hyperion">Hyperion</a>, <a href="https://publications.waset.org/search?q=hyperspectral" title=" hyperspectral"> hyperspectral</a>, <a href="https://publications.waset.org/search?q=sensor" title=" sensor"> sensor</a>, <a href="https://publications.waset.org/search?q=Landsat-8." title=" Landsat-8."> Landsat-8.</a> </p> <a href="https://publications.waset.org/10011426/application-of-advanced-remote-sensing-data-in-mineral-exploration-in-the-vicinity-of-heavy-dense-forest-cover-area-of-jharkhand-and-odisha-state-mining-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10011426/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10011426/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10011426/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10011426/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10011426/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10011426/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10011426/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10011426/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10011426/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10011426/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10011426.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">622</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Hyperspectral Mapping Methods for Differentiating Mangrove Species along Karachi Coast </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Sher%20Muhammad">Sher Muhammad</a>, <a href="https://publications.waset.org/search?q=Mirza%20Muhammad%20Waqar"> Mirza Muhammad Waqar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>It is necessary to monitor and identify mangroves types and spatial extent near coastal areas because it plays an important role in coastal ecosystem and environmental protection. This research aims at identifying and mapping mangroves types along Karachi coast ranging from 24.79<sup>0</sup> to 24.85<sup>0</sup> in latitude and 66.91<sup>0</sup> to 66.97<sup>0</sup> in longitude using hyperspectral remote sensing data and techniques. Image acquired during February, 2012 through Hyperion sensor have been used for this research. Image pre processing includes geometric and radiometric correction followed by Minimum Noise Fraction (MNF) and Pixel Purity Index (PPI). The output of MNF and PPI has been analyzed by visualizing it in n-dimensions for end member extraction. Well distributed clusters on the n-dimensional scatter plot have been selected with the region of interest (ROI) tool as end members. These end members have been used as an input for classification techniques applied to identify and map mangroves species including Spectral Angle Mapper (SAM), Spectral Feature Fitting (SFF) and Spectral Information Diversion (SID). Only two types of mangroves namely Avicennia Marina (White Mangroves) and <em>Avicennia germinans</em> (Black Mangroves) have been observed throughout the study area.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Mangrove" title="Mangrove">Mangrove</a>, <a href="https://publications.waset.org/search?q=Hyperspectral" title=" Hyperspectral"> Hyperspectral</a>, <a href="https://publications.waset.org/search?q=SAM" title=" SAM"> SAM</a>, <a href="https://publications.waset.org/search?q=SFF" title=" SFF"> SFF</a>, <a href="https://publications.waset.org/search?q=SID." title=" SID."> SID.</a> </p> <a href="https://publications.waset.org/9997270/hyperspectral-mapping-methods-for-differentiating-mangrove-species-along-karachi-coast" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9997270/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9997270/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9997270/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9997270/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9997270/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9997270/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9997270/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9997270/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9997270/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9997270/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9997270.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2907</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Classification of Germinatable Mung Bean by Near Infrared Hyperspectral Imaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Kaewkarn%20Phuangsombat">Kaewkarn Phuangsombat</a>, <a href="https://publications.waset.org/search?q=Arthit%20Phuangsombat"> Arthit Phuangsombat</a>, <a href="https://publications.waset.org/search?q=Anupun%20Terdwongworakul"> Anupun Terdwongworakul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Hard seeds will not grow and can cause mold in sprouting process. Thus, the hard seeds need to be separated from the normal seeds. Near infrared hyperspectral imaging in a range of 900 to 1700 nm was implemented to develop a model by partial least squares discriminant analysis to discriminate the hard seeds from the normal seeds. The orientation of the seeds was also studied to compare the performance of the models. The model based on hilum-up orientation achieved the best result giving the coefficient of determination of 0.98, and root mean square error of prediction of 0.07 with classification accuracy was equal to 100%.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Mung%20bean" title="Mung bean">Mung bean</a>, <a href="https://publications.waset.org/search?q=near%20infrared" title=" near infrared"> near infrared</a>, <a href="https://publications.waset.org/search?q=germinatability" title=" germinatability"> germinatability</a>, <a href="https://publications.waset.org/search?q=hard%20seed." title=" hard seed."> hard seed.</a> </p> <a href="https://publications.waset.org/10007400/classification-of-germinatable-mung-bean-by-near-infrared-hyperspectral-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007400/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007400/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007400/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007400/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007400/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007400/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007400/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007400/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007400/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007400/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1162</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Reflectance Imaging Spectroscopy Data (Hyperspectral) for Mineral Mapping in the Orientale Basin Region on the Moon Surface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=V.%20Sivakumar">V. Sivakumar</a>, <a href="https://publications.waset.org/search?q=R.%20Neelakantan"> R. Neelakantan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mineral mapping on the Moon surface provides the clue to understand the origin, evolution, stratigraphy and geological history of the Moon. Recently, reflectance imaging spectroscopy plays a significant role in identifying minerals on the planetary surface in the Visible to NIR region of the electromagnetic spectrum. The Moon Mineralogy Mapper (M<sup>3</sup>) onboard Chandrayaan-1 provides unprecedented spectral data of lunar surface to study about the Moon surface. Here we used the M<sup>3 </sup>sensor data (hyperspectral imaging spectroscopy) for analysing mineralogy of Orientale basin region on the Moon surface. Reflectance spectrums were sampled from different locations of the basin and continuum was removed using ENvironment for Visualizing Images (ENVI) software. Reflectance spectra of unknown mineral composition were compared with known Reflectance Experiment Laboratory (RELAB) spectra for discriminating mineralogy. Minerals like olivine, Low-Ca Pyroxene (LCP), High-Ca Pyroxene (HCP) and plagioclase were identified. In addition to these minerals, an unusual type of spectral signature was identified, which indicates the probable Fe-Mg-spinel lithology in the basin region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Chandrayaan-1" title="Chandrayaan-1">Chandrayaan-1</a>, <a href="https://publications.waset.org/search?q=moon%20mineralogy%20mapper" title=" moon mineralogy mapper"> moon mineralogy mapper</a>, <a href="https://publications.waset.org/search?q=orientale%20basin" title=" orientale basin"> orientale basin</a>, <a href="https://publications.waset.org/search?q=moon" title=" moon"> moon</a>, <a href="https://publications.waset.org/search?q=spectroscopy" title=" spectroscopy"> spectroscopy</a>, <a href="https://publications.waset.org/search?q=hyperspectral." title=" hyperspectral."> hyperspectral.</a> </p> <a href="https://publications.waset.org/10003751/reflectance-imaging-spectroscopy-data-hyperspectral-for-mineral-mapping-in-the-orientale-basin-region-on-the-moon-surface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10003751/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10003751/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10003751/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10003751/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10003751/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10003751/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10003751/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10003751/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10003751/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10003751/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10003751.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2854</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> An Adaptive Dimensionality Reduction Approach for Hyperspectral Imagery Semantic Interpretation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Akrem%20Sellami">Akrem Sellami</a>, <a href="https://publications.waset.org/search?q=Imed%20Riadh%20Farah"> Imed Riadh Farah</a>, <a href="https://publications.waset.org/search?q=Basel%20Solaiman"> Basel Solaiman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the development of HyperSpectral Imagery (HSI) technology, the spectral resolution of HSI became denser, which resulted in large number of spectral bands, high correlation between neighboring, and high data redundancy. However, the semantic interpretation is a challenging task for HSI analysis due to the high dimensionality and the high correlation of the different spectral bands. In fact, this work presents a dimensionality reduction approach that allows to overcome the different issues improving the semantic interpretation of HSI. Therefore, in order to preserve the spatial information, the Tensor Locality Preserving Projection (TLPP) has been applied to transform the original HSI. In the second step, knowledge has been extracted based on the adjacency graph to describe the different pixels. Based on the transformation matrix using TLPP, a weighted matrix has been constructed to rank the different spectral bands based on their contribution score. Thus, the relevant bands have been adaptively selected based on the weighted matrix. The performance of the presented approach has been validated by implementing several experiments, and the obtained results demonstrate the efficiency of this approach compared to various existing dimensionality reduction techniques. Also, according to the experimental results, we can conclude that this approach can adaptively select the relevant spectral improving the semantic interpretation of HSI. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Band%20selection" title="Band selection">Band selection</a>, <a href="https://publications.waset.org/search?q=dimensionality%20reduction" title=" dimensionality reduction"> dimensionality reduction</a>, <a href="https://publications.waset.org/search?q=feature%0D%0Aextraction" title=" feature extraction"> feature extraction</a>, <a href="https://publications.waset.org/search?q=hyperspectral%20imagery" title=" hyperspectral imagery"> hyperspectral imagery</a>, <a href="https://publications.waset.org/search?q=semantic%20interpretation." title=" semantic interpretation."> semantic interpretation.</a> </p> <a href="https://publications.waset.org/10006420/an-adaptive-dimensionality-reduction-approach-for-hyperspectral-imagery-semantic-interpretation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10006420/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10006420/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10006420/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10006420/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10006420/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10006420/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10006420/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10006420/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10006420/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10006420/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10006420.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1171</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Hyperspectral Imaging and Nonlinear Fukunaga-Koontz Transform Based Food Inspection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Hamidullah%20Binol">Hamidullah Binol</a>, <a href="https://publications.waset.org/search?q=Abdullah%20Bal"> Abdullah Bal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, food safety is a great public concern; therefore, robust and effective techniques are required for detecting the safety situation of goods. Hyperspectral Imaging (HSI) is an attractive material for researchers to inspect food quality and safety estimation such as meat quality assessment, automated poultry carcass inspection, quality evaluation of fish, bruise detection of apples, quality analysis and grading of citrus fruits, bruise detection of strawberry, visualization of sugar distribution of melons, measuring ripening of tomatoes, defect detection of pickling cucumber, and classification of wheat kernels. HSI can be used to concurrently collect large amounts of spatial and spectral data on the objects being observed. This technique yields with exceptional detection skills, which otherwise cannot be achieved with either imaging or spectroscopy alone. This paper presents a nonlinear technique based on kernel Fukunaga-Koontz transform (KFKT) for detection of fat content in ground meat using HSI. The KFKT which is the nonlinear version of FKT is one of the most effective techniques for solving problems involving two-pattern nature. The conventional FKT method has been improved with kernel machines for increasing the nonlinear discrimination ability and capturing higher order of statistics of data. The proposed approach in this paper aims to segment the fat content of the ground meat by regarding the fat as target class which is tried to be separated from the remaining classes (as clutter). We have applied the KFKT on visible and nearinfrared (VNIR) hyperspectral images of ground meat to determine fat percentage. The experimental studies indicate that the proposed technique produces high detection performance for fat ratio in ground meat. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Food%20%28Ground%20meat%29%20inspection" title="Food (Ground meat) inspection">Food (Ground meat) inspection</a>, <a href="https://publications.waset.org/search?q=Fukunaga-Koontz%0D%0Atransform" title=" Fukunaga-Koontz transform"> Fukunaga-Koontz transform</a>, <a href="https://publications.waset.org/search?q=hyperspectral%20imaging" title=" hyperspectral imaging"> hyperspectral imaging</a>, <a href="https://publications.waset.org/search?q=kernel%20methods." title=" kernel methods."> kernel methods.</a> </p> <a href="https://publications.waset.org/10003454/hyperspectral-imaging-and-nonlinear-fukunaga-koontz-transform-based-food-inspection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10003454/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10003454/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10003454/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10003454/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10003454/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10003454/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10003454/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10003454/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10003454/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10003454/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10003454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1500</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> A Spatial Hypergraph Based Semi-Supervised Band Selection Method for Hyperspectral Imagery Semantic Interpretation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Akrem%20Sellami">Akrem Sellami</a>, <a href="https://publications.waset.org/search?q=Imed%20Riadh%20Farah"> Imed Riadh Farah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hyperspectral imagery (HSI) typically provides a wealth of information captured in a wide range of the electromagnetic spectrum for each pixel in the image. Hence, a pixel in HSI is a high-dimensional vector of intensities with a large spectral range and a high spectral resolution. Therefore, the semantic interpretation is a challenging task of HSI analysis. We focused in this paper on object classification as HSI semantic interpretation. However, HSI classification still faces some issues, among which are the following: The spatial variability of spectral signatures, the high number of spectral bands, and the high cost of true sample labeling. Therefore, the high number of spectral bands and the low number of training samples pose the problem of the curse of dimensionality. In order to resolve this problem, we propose to introduce the process of dimensionality reduction trying to improve the classification of HSI. The presented approach is a semi-supervised band selection method based on spatial hypergraph embedding model to represent higher order relationships with different weights of the spatial neighbors corresponding to the centroid of pixel. This semi-supervised band selection has been developed to select useful bands for object classification. The presented approach is evaluated on AVIRIS and ROSIS HSIs and compared to other dimensionality reduction methods. The experimental results demonstrate the efficacy of our approach compared to many existing dimensionality reduction methods for HSI classification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Hyperspectral%20image" title="Hyperspectral image">Hyperspectral image</a>, <a href="https://publications.waset.org/search?q=spatial%20hypergraph" title=" spatial hypergraph"> spatial hypergraph</a>, <a href="https://publications.waset.org/search?q=dimensionality%20reduction" title=" dimensionality reduction"> dimensionality reduction</a>, <a href="https://publications.waset.org/search?q=semantic%20interpretation" title=" semantic interpretation"> semantic interpretation</a>, <a href="https://publications.waset.org/search?q=band%20selection" title=" band selection"> band selection</a>, <a href="https://publications.waset.org/search?q=feature%20extraction." title=" feature extraction."> feature extraction.</a> </p> <a href="https://publications.waset.org/10005618/a-spatial-hypergraph-based-semi-supervised-band-selection-method-for-hyperspectral-imagery-semantic-interpretation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10005618/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10005618/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10005618/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10005618/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10005618/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10005618/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10005618/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10005618/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10005618/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10005618/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10005618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1220</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Combined Feature Based Hyperspectral Image Classification Technique Using Support Vector Machines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mrs.K.Kavitha">Mrs.K.Kavitha</a>, <a href="https://publications.waset.org/search?q=S.Arivazhagan"> S.Arivazhagan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A spatial classification technique incorporating a State of Art Feature Extraction algorithm is proposed in this paper for classifying a heterogeneous classes present in hyper spectral images. The classification accuracy can be improved if and only if both the feature extraction and classifier selection are proper. As the classes in the hyper spectral images are assumed to have different textures, textural classification is entertained. Run Length feature extraction is entailed along with the Principal Components and Independent Components. A Hyperspectral Image of Indiana Site taken by AVIRIS is inducted for the experiment. Among the original 220 bands, a subset of 120 bands is selected. Gray Level Run Length Matrix (GLRLM) is calculated for the selected forty bands. From GLRLMs the Run Length features for individual pixels are calculated. The Principle Components are calculated for other forty bands. Independent Components are calculated for next forty bands. As Principal &amp; Independent Components have the ability to represent the textural content of pixels, they are treated as features. The summation of Run Length features, Principal Components, and Independent Components forms the Combined Features which are used for classification. SVM with Binary Hierarchical Tree is used to classify the hyper spectral image. Results are validated with ground truth and accuracies are calculated.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Multi-class" title="Multi-class">Multi-class</a>, <a href="https://publications.waset.org/search?q=Run%20Length%20features" title=" Run Length features"> Run Length features</a>, <a href="https://publications.waset.org/search?q=PCA" title=" PCA"> PCA</a>, <a href="https://publications.waset.org/search?q=ICA" title=" ICA"> ICA</a>, <a href="https://publications.waset.org/search?q=classification%20and%20Support%20Vector%20Machines." title=" classification and Support Vector Machines."> classification and Support Vector Machines.</a> </p> <a href="https://publications.waset.org/11395/combined-feature-based-hyperspectral-image-classification-technique-using-support-vector-machines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/11395/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/11395/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/11395/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/11395/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/11395/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/11395/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/11395/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/11395/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/11395/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/11395/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/11395.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1523</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Assessing the Theoretical Suitability of Sentinel-2 and WorldView-3 Data for Hydrocarbon Mapping of Spill Events, Using HYSS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=K.%20Tunde%20Olagunju">K. Tunde Olagunju</a>, <a href="https://publications.waset.org/search?q=C.%20Scott%20Allen"> C. Scott Allen</a>, <a href="https://publications.waset.org/search?q=F.D.%20%28Freek%29%20van%20der%20Meer"> F.D. (Freek) van der Meer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Identification of hydrocarbon oil in remote sensing images is often the first step in monitoring oil during spill events. Most remote sensing methods adopt techniques for hydrocarbon identification to achieve detection in order to model an appropriate cleanup program. Identification on optical sensors does not only allow for detection but also for characterization and quantification. Until recently, in optical remote sensing, quantification and characterization were only potentially possible using high-resolution laboratory and airborne imaging spectrometers (hyperspectral data). Unlike multispectral, hyperspectral data are not freely available, as this data category is mainly obtained via airborne survey at present. In this research, two operational high-resolution multispectral satellites (WorldView-3 and Sentinel-2) are theoretically assessed for their suitability for hydrocarbon characterization, using the Hydrocarbon Spectra Slope model (HYSS). This method utilized the two most persistent hydrocarbon diagnostic/absorption features at 1.73 µm and 2.30 µm for hydrocarbon mapping on multispectral data. In this research, spectra measurement of seven different hydrocarbon oils (crude and refined oil) taken on 10 different substrates with the use of laboratory ASD Fieldspec were convolved to Sentinel-2 and WorldView-3 resolution, using their full width half maximum (FWHM) parameter. The resulting hydrocarbon slope values obtained from the studied samples enable clear qualitative discrimination of most hydrocarbons, despite the presence of different background substrates, particularly on WorldView-3. Due to close conformity of central wavelengths and narrow bandwidths to key hydrocarbon bands used in HYSS, the statistical significance for qualitative analysis on WorldView-3 sensors for all studied hydrocarbon oil returned with 95% confidence level (P-value ˂ 0.01), except for Diesel. Using multifactor analysis of variance (MANOVA), the discriminating power of HYSS is statistically significant for most hydrocarbon-substrate combinations on Sentinel-2 and WorldView-3 FWHM, revealing the potential of these two operational multispectral sensors as rapid response tools for hydrocarbon mapping. One notable exception is highly transmissive hydrocarbons on Sentinel-2 data due to the non-conformity of spectral bands with key hydrocarbon absorptions and the relatively coarse bandwidth (&gt; 100 nm).</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=hydrocarbon" title="hydrocarbon">hydrocarbon</a>, <a href="https://publications.waset.org/search?q=oil%20spill" title=" oil spill"> oil spill</a>, <a href="https://publications.waset.org/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/search?q=hyperspectral" title=" hyperspectral"> hyperspectral</a>, <a href="https://publications.waset.org/search?q=multispectral" title=" multispectral"> multispectral</a>, <a href="https://publications.waset.org/search?q=hydrocarbon%20%E2%80%93%20substrate%20combination" title=" hydrocarbon – substrate combination"> hydrocarbon – substrate combination</a>, <a href="https://publications.waset.org/search?q=Sentinel-2" title=" Sentinel-2"> Sentinel-2</a>, <a href="https://publications.waset.org/search?q=WorldView-3" title=" WorldView-3"> WorldView-3</a> </p> <a href="https://publications.waset.org/10012243/assessing-the-theoretical-suitability-of-sentinel-2-and-worldview-3-data-for-hydrocarbon-mapping-of-spill-events-using-hyss" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10012243/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10012243/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10012243/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10012243/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10012243/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10012243/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10012243/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10012243/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10012243/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10012243/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10012243.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">705</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Heavy Metals Estimation in Coastal Areas Using Remote Sensing, Field Sampling and Classical and Robust Statistic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Elena%20Castillo-L%C3%B3pez">Elena Castillo-López</a>, <a href="https://publications.waset.org/search?q=Ra%C3%BAl%20Pereda"> Raúl Pereda</a>, <a href="https://publications.waset.org/search?q=Julio%20Manuel%20de%20Luis"> Julio Manuel de Luis</a>, <a href="https://publications.waset.org/search?q=Rub%C3%A9n%20P%C3%A9rez"> Rubén Pérez</a>, <a href="https://publications.waset.org/search?q=Felipe%20Pi%C3%B1a"> Felipe Piña</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Sediments are an important source of accumulation of toxic contaminants within the aquatic environment. Bioassays are a powerful tool for the study of sediments in relation to their toxicity, but they can be expensive. This article presents a methodology to estimate the main physical property of intertidal sediments in coastal zones: heavy metals concentration. This study, which was developed in the Bay of Santander (Spain), applies classical and robust statistic to CASI-2 hyperspectral images to estimate heavy metals presence and ecotoxicity (TOC). Simultaneous fieldwork (radiometric and chemical sampling) allowed an appropriate atmospheric correction to CASI-2 images.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Remote%20sensing" title="Remote sensing">Remote sensing</a>, <a href="https://publications.waset.org/search?q=intertidal%20sediment" title=" intertidal sediment"> intertidal sediment</a>, <a href="https://publications.waset.org/search?q=airborne%20sensors" title=" airborne sensors"> airborne sensors</a>, <a href="https://publications.waset.org/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/search?q=ecotoxicity" title=" ecotoxicity"> ecotoxicity</a>, <a href="https://publications.waset.org/search?q=robust%20statistic" title=" robust statistic"> robust statistic</a>, <a href="https://publications.waset.org/search?q=estimation." title=" estimation."> estimation.</a> </p> <a href="https://publications.waset.org/10007955/heavy-metals-estimation-in-coastal-areas-using-remote-sensing-field-sampling-and-classical-and-robust-statistic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007955/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007955/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007955/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007955/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007955/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007955/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007955/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007955/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007955/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007955/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007955.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1253</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Enhancement of m-FISH Images using Spectral Unmixing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Martin%20De%20Biasio">Martin De Biasio</a>, <a href="https://publications.waset.org/search?q=Raimund%20Leitner"> Raimund Leitner</a>, <a href="https://publications.waset.org/search?q=Franz%20G.%20Wuertz"> Franz G. Wuertz</a>, <a href="https://publications.waset.org/search?q=Sergey%20Verzakov"> Sergey Verzakov</a>, <a href="https://publications.waset.org/search?q=Pierre%20J.%20Elbischger"> Pierre J. Elbischger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Breast carcinoma is the most common form of cancer in women. Multicolour fluorescent in-situ hybridisation (m-FISH) is a common method for staging breast carcinoma. The interpretation of m-FISH images is complicated due to two effects: (i) Spectral overlap in the emission spectra of fluorochrome marked DNA probes and (ii) tissue autofluorescence. In this paper hyper-spectral images of m-FISH samples are used and spectral unmixing is applied to produce false colour images with higher contrast and better information content than standard RGB images. The spectral unmixing is realised by combinations of: Orthogonal Projection Analysis (OPA), Alterating Least Squares (ALS), Simple-to-use Interactive Self-Modeling Mixture Analysis (SIMPLISMA) and VARIMAX. These are applied on the data to reduce tissue autofluorescence and resolve the spectral overlap in the emission spectra. The results show that spectral unmixing methods reduce the intensity caused by tissue autofluorescence by up to 78% and enhance image contrast by algorithmically reducing the overlap of the emission spectra. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=breast%20carcinoma" title="breast carcinoma">breast carcinoma</a>, <a href="https://publications.waset.org/search?q=hyperspectral%20imaging" title=" hyperspectral imaging"> hyperspectral imaging</a>, <a href="https://publications.waset.org/search?q=m-FISH" title=" m-FISH"> m-FISH</a>, <a href="https://publications.waset.org/search?q=spectral%20unmixing" title="spectral unmixing">spectral unmixing</a> </p> <a href="https://publications.waset.org/6018/enhancement-of-m-fish-images-using-spectral-unmixing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/6018/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/6018/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/6018/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/6018/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/6018/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/6018/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/6018/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/6018/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/6018/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/6018/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/6018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1771</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Spatial Variability of Brahmaputra River Flow Characteristics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Hemant%20Kumar">Hemant Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Brahmaputra River is known according to the Hindu mythology the son of the Lord Brahma. According to this name, the river Brahmaputra creates mass destruction during the monsoon season in Assam, India. It is a state situated in North-East part of India. This is one of the essential states out of the seven countries of eastern India, where almost all entire Brahmaputra flow carried out. The other states carry their tributaries. In the present case study, the spatial analysis performed in this specific case the number of MODIS data are acquired. In the method of detecting the change, the spray content was found during heavy rainfall and in the flooded monsoon season. By this method, particularly the analysis over the Brahmaputra outflow determines the flooded season. The charged particle-associated in aerosol content genuinely verifies the heavy water content below the ground surface, which is validated by trend analysis through rainfall spectrum data. This is confirmed by in-situ sampled view data from a different position of Brahmaputra River. Further, a Hyperion Hyperspectral 30 m resolution data were used to scan the sediment deposits, which is also confirmed by in-situ sampled view data from a different position.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Spatial%20analysis" title="Spatial analysis">Spatial analysis</a>, <a href="https://publications.waset.org/search?q=change%20detection" title=" change detection"> change detection</a>, <a href="https://publications.waset.org/search?q=aerosol" title=" aerosol"> aerosol</a>, <a href="https://publications.waset.org/search?q=trend%20analysis." title=" trend analysis."> trend analysis.</a> </p> <a href="https://publications.waset.org/10011490/spatial-variability-of-brahmaputra-river-flow-characteristics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10011490/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10011490/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10011490/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10011490/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10011490/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10011490/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10011490/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10011490/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10011490/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10011490/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10011490.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">543</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Mapping of Alteration Zones in Mineral Rich Belt of South-East Rajasthan Using Remote Sensing Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mrinmoy%20Dhara">Mrinmoy Dhara</a>, <a href="https://publications.waset.org/search?q=Vivek%20K.%20Sengar"> Vivek K. Sengar</a>, <a href="https://publications.waset.org/search?q=Shovan%20L.%20Chattoraj"> Shovan L. Chattoraj</a>, <a href="https://publications.waset.org/search?q=Soumiya%20Bhattacharjee"> Soumiya Bhattacharjee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Remote sensing techniques have emerged as an asset for various geological studies. Satellite images obtained by different sensors contain plenty of information related to the terrain. Digital image processing further helps in customized ways for the prospecting of minerals. In this study, an attempt has been made to map the hydrothermally altered zones using multispectral and hyperspectral datasets of South East Rajasthan. Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER) and Hyperion (Level1R) dataset have been processed to generate different Band Ratio Composites (BRCs). For this study, ASTER derived BRCs were generated to delineate the alteration zones, gossans, abundant clays and host rocks. ASTER and Hyperion images were further processed to extract mineral end members and classified mineral maps have been produced using Spectral Angle Mapper (SAM) method. Results were validated with the geological map of the area which shows positive agreement with the image processing outputs. Thus, this study concludes that the band ratios and image processing in combination play significant role in demarcation of alteration zones which may provide pathfinders for mineral prospecting studies.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Advanced%20space-borne%20thermal%20emission%20and%20reflection%20radiometer" title="Advanced space-borne thermal emission and reflection radiometer">Advanced space-borne thermal emission and reflection radiometer</a>, <a href="https://publications.waset.org/search?q=ASTER" title=" ASTER"> ASTER</a>, <a href="https://publications.waset.org/search?q=Hyperion" title=" Hyperion"> Hyperion</a>, <a href="https://publications.waset.org/search?q=Band%20ratios" title=" Band ratios"> Band ratios</a>, <a href="https://publications.waset.org/search?q=Alteration%20zones" title=" Alteration zones"> Alteration zones</a>, <a href="https://publications.waset.org/search?q=spectral%20angle%20mapper." title=" spectral angle mapper."> spectral angle mapper.</a> </p> <a href="https://publications.waset.org/10006403/mapping-of-alteration-zones-in-mineral-rich-belt-of-south-east-rajasthan-using-remote-sensing-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10006403/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10006403/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10006403/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10006403/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10006403/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10006403/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10006403/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10006403/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10006403/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10006403/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10006403.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1486</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10