CINXE.COM

Search results for: mirnas

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: mirnas</title> <meta name="description" content="Search results for: mirnas"> <meta name="keywords" content="mirnas"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="mirnas" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="mirnas"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 55</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: mirnas</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> miCoRe: Colorectal Cancer miRNAs Database</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahul%20Agarwal">Rahul Agarwal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashutosh%20Singh"> Ashutosh Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Colorectal cancer (CRC) also refers as bowel cancer or colon cancer. It involves the development of abnormal growth of cells in colon or rectum part of the body. This work leads to the development of a miRNA database in colorectal cancer. We named this database- miCoRe. This database comprises of all validated colon-rectal cancer miRNAs information from various published literature with an effectual knowledge based information retrieval system. miRNAs have been collected from various published literature reports. MySQL is used for main-framework of miCoRe while the front-end was developed in PHP script. The aim of developing miCoRe is to create a comprehensive central repository of colorectal carcinoma miRNAs with all germane information of miRNAs and their target genes. The current version of miCoRe consists of 238 miRNAs which are known to be implicated in malignancy of CRC. Alongside with miRNA information, miCoRe also contains the information related to the target genes of these miRNA. miCoRe furnishes the information about the mechanism of incidence and progression of the disease, which would further help the researchers to look for colorectal specific miRNAs therapies and CRC specific targeted drug designing. Moreover, it will also help in development of biomarkers for the better and early detection of CRC and will help in better clinical management of the disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=colorectal%20cancer" title="colorectal cancer">colorectal cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=database" title=" database"> database</a>, <a href="https://publications.waset.org/abstracts/search?q=miCoRe" title=" miCoRe"> miCoRe</a>, <a href="https://publications.waset.org/abstracts/search?q=miRNAs" title=" miRNAs"> miRNAs</a> </p> <a href="https://publications.waset.org/abstracts/72940/micore-colorectal-cancer-mirnas-database" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72940.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> MicroRNA Expression Distinguishes Neutrophil Subtypes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20I.%20You">R. I. You</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20L.%20Ho"> C. L. Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Dai"> M. S. Dai</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Hung"> H. M. Hung</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20F.%20Yen"> S. F. Yen</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20S.%20Chen"> C. S. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Y.%20Chao"> T. Y. Chao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Neutrophils are the most abundant innate immune cells to against invading microorganisms. Numerous data shown neutrophils have plasticity in response to physiological and pathological conditions. Tumor-associated neutrophils (TAN) exist in distinct types of tumor and play an important role in cancer biology. Different transcriptomic profiles of neutrophils in tumor and non-tumor samples have been identified. Several miRNAs have been recognized as regulators of gene expression in neutrophil, which may have key roles in neutrophil activation. However, the miRNAs expression patterns in TAN are not well known. To address this question, magnetic bead isolated neutrophils from tumor-bearing mice were used in this study. We analyzed production of reactive oxygen species (ROS) by luminol-dependent chemiluminescence assay. The expression of miRNAs targeting NADPH oxidase, ROS generation and autophagy was explored using quantitative real-time polymerase chain reaction. Our data suggest that tumor environment influence neutrophil develop to differential states of activation via miRNAs regulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tumor-associated%20neutrophil" title="tumor-associated neutrophil">tumor-associated neutrophil</a>, <a href="https://publications.waset.org/abstracts/search?q=miRNAs" title=" miRNAs"> miRNAs</a>, <a href="https://publications.waset.org/abstracts/search?q=neutrophil" title=" neutrophil"> neutrophil</a>, <a href="https://publications.waset.org/abstracts/search?q=ROS" title=" ROS "> ROS </a> </p> <a href="https://publications.waset.org/abstracts/13682/microrna-expression-distinguishes-neutrophil-subtypes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13682.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> Identification of the Expression of Top Deregulated MiRNAs in Rheumatoid Arthritis and Osteoarthritis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hala%20Raslan">Hala Raslan</a>, <a href="https://publications.waset.org/abstracts/search?q=Noha%20Eltaweel"> Noha Eltaweel</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanaa%20Rasmi"> Hanaa Rasmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Solaf%20Kamel"> Solaf Kamel</a>, <a href="https://publications.waset.org/abstracts/search?q=May%20Magdy"> May Magdy</a>, <a href="https://publications.waset.org/abstracts/search?q=Sherif%20Ismail"> Sherif Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Khalda%20Amr"> Khalda Amr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Rheumatoid arthritis (RA) is an inflammatory, autoimmune disorder with progressive joint damage. Osteoarthritis (OA) is a degenerative disease of the articular cartilage that shows multiple clinical manifestations or symptoms resembling those of RA. Genetic predisposition is believed to be a principal etiological factor for RA and OA. In this study, we aimed to measure the expression of the top deregulated miRNAs that might be the cause of pathogenesis in both diseases, according to our latest NGS analysis. Six of the deregulated miRNAs were selected as they had multiple target genes in the RA pathway, so they are more likely to affect the RA pathogenesis.Methods: Eighty cases were recruited in this study; 45 rheumatoid arthiritis (RA), 30 osteoarthiritis (OA) patients, as well as 20 healthy controls. The selection of the miRNAs from our latest NGS study was done using miRwalk according to the number of their target genes that are members in the KEGG RA pathway. Total RNA was isolated from plasma of all recruited cases. The cDNA was generated by the miRcury RT Kit then used as a template for real-time PCR with miRcury Primer Assays and the miRcury SYBR Green PCR Kit. Fold changes were calculated from CT values using the ΔΔCT method of relative quantification. Results were compared RA vs Controls and OA vs Controls. Target gene prediction and functional annotation of the deregulated miRNAs was done using Mienturnet. Results: Six miRNAs were selected. They were miR-15b-3p, -128-3p, -194-3p, -328-3p, -542-3p and -3180-5p. In RA samples, three of the measured miRNAs were upregulated (miR-194, -542, and -3180; mean Rq= 2.6, 3.8 and 8.05; P-value= 0.07, 0.05 and 0.01; respectively) while the remaining 3 were downregulated (miR-15b, -128 and -328; mean Rq= 0.21, 0.39 and 0.6; P-value= <0.0001, <0.0001 and 0.02; respectively) all with high statistical significance except miR-194. While in OA samples, two of the measured miRNAs were upregulated (miR-194 and -3180; mean Rq= 2.6 and 7.7; P-value= 0.1 and 0.03; respectively) while the remaining 4 were downregulated (miR-15b, -128, -328 and -542; mean Rq= 0.5, 0.03, 0.08 and 0.5; P-value= 0.0008, 0.003, 0.006 and 0.4; respectively) with statistical significance compared to controls except miR-194 and miR-542. The functional enrichment of the selected top deregulated miRNAs revealed the highly enriched KEGG pathways and GO terms. Conclusion: Five of the studied miRNAs were greatly deregulated in RA and OA, they might be highly involved in the disease pathogenesis and so might be future therapeutic targets. Further functional studies are crucial to assess their roles and actual target genes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MiRNAs" title="MiRNAs">MiRNAs</a>, <a href="https://publications.waset.org/abstracts/search?q=expression" title=" expression"> expression</a>, <a href="https://publications.waset.org/abstracts/search?q=rheumatoid%20arthritis" title=" rheumatoid arthritis"> rheumatoid arthritis</a>, <a href="https://publications.waset.org/abstracts/search?q=osteoarthritis" title=" osteoarthritis"> osteoarthritis</a> </p> <a href="https://publications.waset.org/abstracts/172236/identification-of-the-expression-of-top-deregulated-mirnas-in-rheumatoid-arthritis-and-osteoarthritis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172236.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Next Generation Sequencing Analysis of Circulating MiRNAs in Rheumatoid Arthritis and Osteoarthritis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khalda%20Amr">Khalda Amr</a>, <a href="https://publications.waset.org/abstracts/search?q=Noha%20Eltaweel"> Noha Eltaweel</a>, <a href="https://publications.waset.org/abstracts/search?q=Sherif%20Ismail"> Sherif Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Hala%20Raslan"> Hala Raslan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Osteoarthritis is the most common form of arthritis that involves the wearing away of the cartilage that caps the bones in the joints. While rheumatoid arthritis is an autoimmune disease in which the immune system attacks the joints, beginning with the lining of joints. In this study, we aimed to study the top deregulated miRNAs that might be the cause of pathogenesis in both diseases. Methods: Eight cases were recruited in this study: 4 rheumatoid arthritis (RA), 2 osteoarthritis (OA) patients, as well as 2 healthy controls. Total RNA was isolated from plasma to be subjected to miRNA profiling by NGS. Sequencing libraries were constructed and generated using the NEBNextR UltraTM small RNA Sample Prep Kit for Illumina R (NEB, USA), according to the manufacturer’s instructions. The quality of samples were checked using fastqc and multiQC. Results were compared RA vs Controls and OA vs. Controls. Target gene prediction and functional annotation of the deregulated miRNAs were done using Mienturnet. The top deregulated miRNAs in each disease were selected for further validation using qRT-PCR. Results: The average number of sequencing reads per sample exceeded 2.2 million, of which approximately 57% were mapped to the human reference genome. The top DEMs in RA vs controls were miR-6724-5p, miR-1469, miR-194-3p (up), miR-1468-5p, miR-486-3p (down). In comparison, the top DEMs in OA vs controls were miR-1908-3p, miR-122b-3p, miR-3960 (up), miR-1468-5p, miR-15b-3p (down). The functional enrichment of the selected top deregulated miRNAs revealed the highly enriched KEGG pathways and GO terms. Six of the deregulated miRNAs (miR-15b, -128, -194, -328, -542 and -3180) had multiple target genes in the RA pathway, so they are more likely to affect the RA pathogenesis. Conclusion: Six of our studied deregulated miRNAs (miR-15b, -128, -194, -328, -542 and -3180) might be highly involved in the disease pathogenesis. Further functional studies are crucial to assess their functions and actual target genes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=next%20generation%20sequencing" title="next generation sequencing">next generation sequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=mirnas" title=" mirnas"> mirnas</a>, <a href="https://publications.waset.org/abstracts/search?q=rheumatoid%20arthritis" title=" rheumatoid arthritis"> rheumatoid arthritis</a>, <a href="https://publications.waset.org/abstracts/search?q=osteoarthritis" title=" osteoarthritis"> osteoarthritis</a> </p> <a href="https://publications.waset.org/abstracts/172228/next-generation-sequencing-analysis-of-circulating-mirnas-in-rheumatoid-arthritis-and-osteoarthritis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> Identification of miRNA-miRNA Interactions between Virus and Host in Human Cytomegalovirus Infection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kai-Yao%20Huang">Kai-Yao Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Tzong-Yi%20Lee"> Tzong-Yi Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Pin-Hao%20Ho"> Pin-Hao Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Tzu-Hao%20Chang"> Tzu-Hao Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng-Wei%20Chang"> Cheng-Wei Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Human cytomegalovirus (HCMV) infects much people around the world, and there were many researches mention that many diseases were caused by HCMV. To understand the mechanism of HCMV lead to diseases during infection. We observe a microRNA (miRNA) – miRNA interaction between HCMV and host during infection. We found HCMV miRNA sequence component complementary with host miRNA precursors, and we also found that the host miRNA abundances were decrease in HCMV infection. Hence, we focus on the host miRNA which may target by the other HCMV miRNA to find theirs target mRNAs expression and analysis these mRNAs affect what kind of signaling pathway. Interestingly, we found the affected mRNA play an important role in some diseases related pathways, and these diseases had been annotated by HCMV infection. Results: From our analysis procedure, we found 464 human miRNAs might be targeted by 26 HCMV miRNAs and there were 291 human miRNAs shows the concordant decrease trend during HCMV infection. For case study, we found hcmv-miR-US22-5p may regulate hsa-mir-877 and we analysis the KEGG pathway which built by hsa-mir-877 validate target mRNA. Additionally, through survey KEGG Disease database found that these mRNA co-regulate some disease related pathway for instance cancer, nerve disease. However, there were studies annotated that HCMV infection casuse cancer and Alzheimer. Conclusions: This work supply a different scenario of miRNA target interactions(MTIs). In previous study assume miRNA only target to other mRNA. Here we wonder there is possibility that miRNAs might regulate non-mRNA targets, like other miRNAs. In this study, we not only consider the sequence similarity with HCMV miRNAs and human miRNA precursors but also the expression trend of these miRNAs. Then we analysis the human miRNAs validate target mRNAs and its associated KEGG pathway. Finally, we survey related works to validate our investigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=human%20cytomegalovirus" title="human cytomegalovirus">human cytomegalovirus</a>, <a href="https://publications.waset.org/abstracts/search?q=HCMV" title=" HCMV"> HCMV</a>, <a href="https://publications.waset.org/abstracts/search?q=microRNA" title=" microRNA"> microRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=miRNA" title=" miRNA"> miRNA</a> </p> <a href="https://publications.waset.org/abstracts/43139/identification-of-mirna-mirna-interactions-between-virus-and-host-in-human-cytomegalovirus-infection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43139.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> Prediction of Solanum Lycopersicum Genome Encoded microRNAs Targeting Tomato Spotted Wilt Virus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Shahzad%20Iqbal">Muhammad Shahzad Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Zobia%20Sarwar"> Zobia Sarwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Salah-ud-Din"> Salah-ud-Din</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tomato spotted wilt virus (TSWV) belongs to the genus Tospoviruses (family Bunyaviridae). It is one of the most devastating pathogens of tomato (Solanum Lycopersicum) and heavily damages the crop yield each year around the globe. In this study, we retrieved 329 mature miRNA sequences from two microRNA databases (miRBase and miRSoldb) and checked the putative target sites in the downloaded-genome sequence of TSWV. A consensus of three miRNA target prediction tools (RNA22, miRanda and psRNATarget) was used to screen the false-positive microRNAs targeting sites in the TSWV genome. These tools calculated different target sites by calculating minimum free energy (mfe), site-complementarity, minimum folding energy and other microRNA-mRNA binding factors. R language was used to plot the predicted target-site data. All the genes having possible target sites for different miRNAs were screened by building a consensus table. Out of these 329 mature miRNAs predicted by three algorithms, only eight miRNAs met all the criteria/threshold specifications. MC-Fold and MC-Sym were used to predict three-dimensional structures of miRNAs and further analyzed in USCF chimera to visualize the structural and conformational changes before and after microRNA-mRNA interactions. The results of the current study show that the predicted eight miRNAs could further be evaluated by in vitro experiments to develop TSWV-resistant transgenic tomato plants in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tomato%20spotted%20wild%20virus%20%28TSWV%29" title="tomato spotted wild virus (TSWV)">tomato spotted wild virus (TSWV)</a>, <a href="https://publications.waset.org/abstracts/search?q=Solanum%20lycopersicum" title=" Solanum lycopersicum"> Solanum lycopersicum</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20virus" title=" plant virus"> plant virus</a>, <a href="https://publications.waset.org/abstracts/search?q=miRNAs" title=" miRNAs"> miRNAs</a>, <a href="https://publications.waset.org/abstracts/search?q=microRNA%20target%20prediction" title=" microRNA target prediction"> microRNA target prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=mRNA" title=" mRNA"> mRNA</a> </p> <a href="https://publications.waset.org/abstracts/145943/prediction-of-solanum-lycopersicum-genome-encoded-micrornas-targeting-tomato-spotted-wilt-virus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145943.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> MicroRNA in Bovine Corpus Luteum during Early Pregnancy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rreze%20Gecaj">Rreze Gecaj</a>, <a href="https://publications.waset.org/abstracts/search?q=Corina%20Schanzenbach"> Corina Schanzenbach</a>, <a href="https://publications.waset.org/abstracts/search?q=Benedikt%20Kirchner"> Benedikt Kirchner</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Pfaffl"> Michael Pfaffl</a>, <a href="https://publications.waset.org/abstracts/search?q=Bajram%20Berisha"> Bajram Berisha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The maintenance of corpus lutem (CL) during early pregnancy in cattle is a critical and multifarious process. A luteotrophic mechanism originating from the embryo is widely accepted as the triggering signal for the CL maintenance. In the cattle, it is the interferon-tau (IFNT) secretion form conceptus that prevents CL regression and ensures progesterone production for the establishment of pregnancy. In addition to endocrine and paracrine signals, microRNA (miRNA) can also support CL sustainability during early pregnancy. MiRNA are small non-coding nucleic acids that regulate gene expression post-transcriptionally and are shown to be involved in the modulation of CL function. However, the examination of miRNAs in corpus luteum function at the early pregnancy still remains largely uncovered. This study aims at profiling the expression of miRNA in CL during the early pregnancy in cattle by comparing it with the CL form late cycle and with the regressed CL. Corpora lutea were assigned in two different groups during the cycle (C13 group, late CL: days 13-18 and C18, regressed CL group: day >18) and during the early pregnancy (group P: 1-2 month). The estrous cycle was determined by macroscopic examination and to age the fetus crown-rump length measurement was applied. A total of 9 corpora lutea from individual animals were included in the study, three corpora lutea for each group. MiRNAs population was profiled using small RNA next-generation sequencing and biologically significant miRNAs were evaluated for their differential expression using the DESeq2-methodology. We show that 6 differentially expressed miRNAs (bta-mir-2890, -2332, -2441-3p, -148b, -1248 and -29c) are common to both comparisons, P vs C13 and P vs C18. While for each stage individually we have identified unique miRNAs differentially expressed only for the given comparison. bta-miR-23a and -769 were unique miRNAs differentially expressed in P vs C13, whereas forty-four unique miRNAs were identified as differentially expressed in P vs C18. These data confirm that miRNAs are highly abundant in luteal tissue during early pregnancy and potentially regulate the CL maintenance at this stage of fetus development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bovine" title="bovine">bovine</a>, <a href="https://publications.waset.org/abstracts/search?q=corpus%20luteum" title=" corpus luteum"> corpus luteum</a>, <a href="https://publications.waset.org/abstracts/search?q=microRNA" title=" microRNA"> microRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=pregnancy" title=" pregnancy"> pregnancy</a>, <a href="https://publications.waset.org/abstracts/search?q=RNA-Seq" title=" RNA-Seq"> RNA-Seq</a> </p> <a href="https://publications.waset.org/abstracts/61115/microrna-in-bovine-corpus-luteum-during-early-pregnancy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61115.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> Modeling the Intricate Relationship between miRNA Dysregulation and Breast Cancer Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sajed%20Sarabandi">Sajed Sarabandi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Rostampour%20Vajari"> Mostafa Rostampour Vajari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Breast cancer is the most frequent form of cancer among women and the fifth-leading cause of cancer-related deaths. A common feature of cancer cells is their ability to survive and evade apoptosis. Understanding the mechanisms of these pathways and their regulatory factors can lead to the development of effective treatment strategies. In this study, we aim to model the effect of key miRNAs, which are significant regulatory factors in breast cancer. We designed a Petri net focusing on two crucial pathways, proliferation, and apoptosis, and identified the role of miRNAs in these pathways. Our analysis indicates that the upregulation of miRNAs 99a and 372 can effectively increase apoptosis and decrease proliferation. Moreover, we demonstrate that miRNA-600, previously reported as a potential candidate for treatment, may not be a suitable target due to its dual activity in proliferation. Therefore, further research is required to investigate the potential of this miRNA in cancer treatment. Our model shows that a combination of miRNA upregulation and knockdown can efficiently influence key genes such as MDM2 and PTEN, leading to the activation of apoptosis in cancer cells. Ultimately, our model successfully simulates the connection between regulatory miRNAs and key genes in breast cancer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title="breast cancer">breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=microRNAs" title=" microRNAs"> microRNAs</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-modeling" title=" bio-modeling"> bio-modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=Petri%20net" title=" Petri net"> Petri net</a> </p> <a href="https://publications.waset.org/abstracts/192992/modeling-the-intricate-relationship-between-mirna-dysregulation-and-breast-cancer-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">29</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> In Vivo Investigation of microRNA Expression and Function at the Mammalian Synapse by AGO-APP</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surbhi%20Surbhi">Surbhi Surbhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrea%20Erni"> Andrea Erni</a>, <a href="https://publications.waset.org/abstracts/search?q=Gunter%20Meister"> Gunter Meister</a>, <a href="https://publications.waset.org/abstracts/search?q=Harold%20Cremer"> Harold Cremer</a>, <a href="https://publications.waset.org/abstracts/search?q=Christophe%20Beclin"> Christophe Beclin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> MicroRNAs (miRNAs) are short 20-23 nucleotide long non-coding RNAs; there are 2605 miRNA in humans and 1936 miRNA in mouse in total (miRBase). The nervous system expresses the most abundant miRNA and most diverse. MiRNAs play a role in many steps during neurogenesis, like cell proliferation, differentiation, neural patterning, axon pathfinding, etc. Moreover, in vitro studies suggested a role in the regulation of local translation at the synapse, thus controlling neuronal plasticity. However, due to the specific structure of miRNA molecules, an in-vivo confirmation of the general role of miRNAs in the control of neuronal plasticity is still pending. For example, their small size and their high level of sequence homology make difficult the analysis of their cellular and sub-cellular localization in-vivo by in-situ hybridization. Moreover, it was found that only 40% of the expressed miRNA molecules in a cell are included in RNA-Induced Silencing Complexes (RISC) and, therefore, involved in inhibitory interactions while the rest is silent. Definitively, the development of new tools is needed to have a better understanding of the cellular function of miRNAs, in particular their role in neuronal plasticity. Here we describe a new technique called in-vivo AGO-APP designed to investigate miRNA expression and function in-vivo. This technique is based on the expression of a small peptide derived from the human RISC-complex protein TNRC6B, called T6B, which binds all known Argonaute (Ago) proteins with high affinity allowing the efficient immunoprecipitation of AGO-bound miRNAs. We have generated two transgenic mouse lines conditionally expressing T6B either ubiquitously in the cell or targeted at the synapse. A comparison of the repertoire of miRNAs immuno-precipitated from mature neurons of both mouse lines will provide us with a list of miRNAs showing a specific activity at the synapse. The physiological role of these miRNAs will be subsequently addressed through gain and loss of function experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RNA-induced%20silencing%20complexes" title="RNA-induced silencing complexes">RNA-induced silencing complexes</a>, <a href="https://publications.waset.org/abstracts/search?q=TNRC6B" title=" TNRC6B"> TNRC6B</a>, <a href="https://publications.waset.org/abstracts/search?q=miRNA" title=" miRNA"> miRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=argonaute" title=" argonaute"> argonaute</a>, <a href="https://publications.waset.org/abstracts/search?q=synapse" title=" synapse"> synapse</a>, <a href="https://publications.waset.org/abstracts/search?q=neuronal%20plasticity" title=" neuronal plasticity"> neuronal plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=neurogenesis" title=" neurogenesis"> neurogenesis</a> </p> <a href="https://publications.waset.org/abstracts/155817/in-vivo-investigation-of-microrna-expression-and-function-at-the-mammalian-synapse-by-ago-app" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155817.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> MicroRNA Profiling Reveals Novel Circulating Biomarkers in Acute Phase of Myocardial Infarction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Maciejak">A. Maciejak</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kiliszek"> M. Kiliszek</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Opolski"> G. Opolski</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Tulacz"> D. Tulacz</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Segiet"> A. Segiet</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Matlak"> K. Matlak</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Dobrzycki"> S. Dobrzycki</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Sygitowicz"> G. Sygitowicz</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Burzynska"> B. Burzynska</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Gora"> M. Gora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction and aims: Acute myocardial infarction (AMI) is one of the most severe cardiovascular diseases affecting millions of patients each year worldwide. An early and accurate diagnosis of AMI is essential for optimal treatment. Therefore, new approaches that can complement and improve current strategies for AMI diagnosis are urgently needed. Recent studies have revealed the presence of stable circulating myocardial-derived microRNAs (miRNAs) in human peripheral blood, suggesting that such miRNAs could serve as potential biomarkers of infarction. The present study aimed to identify differentially expressed circulating miRNAs in ST-segment elevation myocardial infarction (STEMI) patients. Materials and methods: miRNA expression profile analysis was performed using Exiqon Serum/Plasma Focus microRNA PCR panel in plasma samples of n=16 patients on the first day of AMI (admission) and in samples from the same patients collected six months after AMI. Selected miRNAs were validated by RT-qPCR using serum samples from an independent set of n=14 AMI patients. Results: The profiling study identified 46 species of plasma miRNAs that were differentially expressed (p < 0.05) on admission compared to six months after AMI. The validation in the independent group of patients confirmed that miR-133b and miR-22-5p were significantly up-regulated upon AMI. Conclusions: Our results suggest that miRNA expression profiling provides better understanding of the changes that occur in the acute phase of MI in the myocardium and could be useful in determination of the potential role of extracellular miRNAs as paracrine signaling molecules. miR-22-5p represents a novel promising biomarker for the diagnosis of acute myocardial infarction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acute%20myocardial%20infarction" title="acute myocardial infarction">acute myocardial infarction</a>, <a href="https://publications.waset.org/abstracts/search?q=circulating%20microRNAs" title=" circulating microRNAs"> circulating microRNAs</a>, <a href="https://publications.waset.org/abstracts/search?q=microRNA%20expression%20profiling" title=" microRNA expression profiling"> microRNA expression profiling</a>, <a href="https://publications.waset.org/abstracts/search?q=miR-22-5p" title=" miR-22-5p"> miR-22-5p</a> </p> <a href="https://publications.waset.org/abstracts/40104/microrna-profiling-reveals-novel-circulating-biomarkers-in-acute-phase-of-myocardial-infarction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> Micro RNAs (194 and 135a) as Biomarkers and Therapeutic Targets in Type 2 Diabetic Rats </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Haseena%20Banu">H. Haseena Banu</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Karthick"> D. Karthick</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Stalin"> R. Stalin</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Nandha%20Kumar"> E. Nandha Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20P.%20Sachidanandam"> T. P. Sachidanandam</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Shanthi"> P. Shanthi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background of the study: Type 2 diabetes is emerging as the predominant metabolic disorder in the world among adults characterized mainly by the resistance of the insulin sensitive tissues towards insulin followed by the decrease in the insulin secretion. The treatment for this disease usually involves treatment with oral synthetic drugs which are known to cause several side effects. Therefore, identification of new biomarkers as therapeutic target is the need of the hour. miRNAs are small, non–protein-coding RNAs that negatively regulate gene expression by promoting degradation and/or inhibit the translation of target mRNAs and have emerged as biomarkers in predicting diabetes mellitus. Objective of the study: To elucidate the therapeutic role of gallic acid in modulating the alterations in glucose metabolism induced by miRNAs 194 and 135a in Type 2 diabetic rats. Materials and Methods: T2D was induced in rats by feeding them with a high fat diet for 2 weeks followed by intraperitoneal injection of 35 mg/kg/body weight (b.wt.) of streptozotocin. Microarrays were used to assess the expression of miRNAs in control, diabetic and gallic acid treated rats. Gene expression studies were carried out by RT PCR analysis. Results: Forty one miRNAs were differentially expressed in Type 2 diabetic rats. Among these, the expression of miRNA 194 was significantly decreased whereas miRNA 135a was significantly increased in Type 2 diabetic rats. The glucose metabolism was also altered significantly in skeletal muscle of Type 2 diabetic rats. Conclusion: T2D is associated with alterations in the expression of miRNAs in skeletal muscle. Both these miRNAs 194 and 135a play an important role in glucose metabolism in skeletal muscle of diabetic rats. Gallic acid effectively ameliorated the alterations in glucose metabolism. Hence, both these miRNAs can serve as biomarkers and therapeutic targets in diabetes mellitus. The study also establishes the role of gallic acid as therapeutic agent. Acknowledgment: The financial assistance provided in the form of ICMR women scientist by ICMR DHR INDIA is gratefully acknowledged here. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gallic%20acid" title="gallic acid">gallic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20fat%20diet" title=" high fat diet"> high fat diet</a>, <a href="https://publications.waset.org/abstracts/search?q=type%202%20diabetes%20mellitus" title=" type 2 diabetes mellitus"> type 2 diabetes mellitus</a>, <a href="https://publications.waset.org/abstracts/search?q=miRNAs" title=" miRNAs"> miRNAs</a> </p> <a href="https://publications.waset.org/abstracts/64261/micro-rnas-194-and-135a-as-biomarkers-and-therapeutic-targets-in-type-2-diabetic-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> Let-7 Mirnas Regulate Inflammatory Cytokine Production in Bovine Endometrial Cells after Lipopolysaccharide Challenge by Targeting TNFα</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Ibrahim">S. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Salilew-Wondim"> D. Salilew-Wondim</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hoelker"> M. Hoelker</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Looft"> C. Looft</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Tholen"> E. Tholen</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Grosse-Brinkhaus"> C. Grosse-Brinkhaus</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Schellander"> K. Schellander</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Neuhoff"> C. Neuhoff</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Tesfaye"> D. Tesfaye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bovine endometrial cells appear to have a key role in innate immune defense of the female genital tract. A better understanding of molecular changes in microRNAs (miRNAs) and their target genes expression may identify reliable prognostic indicators for cows that will resolve inflammation and resume cyclicity. In the current study, we hypothesized that let-7 miRNAs family has a primary role in the innate immune defence of the endometrium tissue against bacterial infection, which is partly achieved via regulating mRNA stability of pro-inflammatory cytokines at the post-transcriptional level. Therefore, we conducted two experiments. In the first experiment, primary bovine endometrial cells were challenged with clinical (3.0 μg/ml) and sub-clinical (0.5 μg/ml) doses of lipopolysaccharide (LPS) for 24h. In the 2nd experiment, we have investigated the potential role of let-7 miRNAs (let-7a and let-7f) using gain and loss of function approaches. Additionally, tumor necrosis factor alpha (TNFα), transforming growth factor beta 1 induced transcript 1 (TGFB1I1) and serum deprivation response (SDPR) genes were validated using reporter assay. Here we addressed for the first time that let-7 miRNAs have a precise role in bovine endometrium, where LPS dysregulated let-7 miRNAs family expression was associated with an increased pro-inflammatory cytokine level by directly/indirectly targeting the TNFα, interleukin 6 (IL6), nuclear factor kappa-light-chain enhancer of activated B cells (NFκB), TGFβ1I1 and SDPR genes. To our knowledge, this is the first study showing that TNFα, TGFβ1I1 and SDPR were identified and validated as novel let-7 miRNAs targets and could have a distinct role in inflammatory immune response of LPS challenged bovine endometrial cells. Our data represent a new finding by which uterine homeostasis is maintained through functional regulation of let-7a by down-regulation of pro-inflammatory cytokines expression (TNFα and IL6) at the mRNA and protein levels. These findings suggest that LPS serves as a negative regulator of let-7 miRNAs expression and provides a mechanism for the persistent pro-inflammatory phenotype, which is a hallmark of bovine subclinical endometritis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bovine%20endometrial%20cells" title="bovine endometrial cells">bovine endometrial cells</a>, <a href="https://publications.waset.org/abstracts/search?q=let-7" title=" let-7"> let-7</a>, <a href="https://publications.waset.org/abstracts/search?q=lipopolysaccharide" title=" lipopolysaccharide"> lipopolysaccharide</a>, <a href="https://publications.waset.org/abstracts/search?q=pro-inflammatory%20cytokines" title=" pro-inflammatory cytokines"> pro-inflammatory cytokines</a> </p> <a href="https://publications.waset.org/abstracts/38494/let-7-mirnas-regulate-inflammatory-cytokine-production-in-bovine-endometrial-cells-after-lipopolysaccharide-challenge-by-targeting-tnfa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> Breast Cancer: The Potential of miRNA for Diagnosis and Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Pourreza">Abbas Pourreza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> MicroRNAs (miRNAs) are small single-stranded non-coding RNAs. They are almost 18-25 nucleotides long and very conservative through evolution. They are involved in adjusting the expression of numerous genes due to the existence of a complementary region, generally in the 3' untranslated regions (UTR) of target genes, against particular mRNAs in the cell. Also, miRNAs have been proven to be involved in cell development, differentiation, proliferation, and apoptosis. More than 2000 miRNAs have been recognized in human cells, and these miRNAs adjust approximately one-third of all genes in human cells. Dysregulation of miRNA originated from abnormal DNA methylation patterns of the locus, cause to down-regulated or overexpression of miRNAs, and it may affect tumor formation or development of it. Breast cancer (BC) is the most commonly identified cancer, the most prevalent cancer (23%), and the second-leading (14%) mortality in all types of cancer in females. BC can be classified based on the status (+/−) of the hormone receptors, including estrogen receptor (ER), progesterone receptor (PR), and the Receptor tyrosine-protein kinase erbB-2 (ERBB2 or HER2). Currently, there are four main molecular subtypes of BC: luminal A, approximately 50–60 % of BCs; luminal B, 10–20 %; HER2 positive, 15–20 %, and 10–20 % considered Basal (triple-negative breast cancer (TNBC)) subtype. Aberrant expression of miR-145, miR-21, miR-10b, miR-125a, and miR-206 was detected by Stem-loop real-time RT-PCR in BC cases. Breast tumor formation and development may result from down-regulation of a tumor suppressor miRNA such as miR-145, miR-125a, and miR-206 and/or overexpression of an oncogenic miRNA such as miR-21 and miR-10b. MiR-125a, miR-206, miR-145, miR-21, and miR-10b are hugely predicted to be new tumor markers for the diagnosis and prognosis of BC. MiR-21 and miR-125a could play a part in the treatment of HER-2-positive breast cancer cells, while miR-145 and miR-206 could speed up the evolution of cure techniques for TNBC. To conclude, miRNAs will be presented as hopeful molecules to be used in the primary diagnosis, prognosis, and treatment of BC and battle as opposed to its developed drug resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title="breast cancer">breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=HER2%20positive" title=" HER2 positive"> HER2 positive</a>, <a href="https://publications.waset.org/abstracts/search?q=miRNA" title=" miRNA"> miRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=TNBC" title=" TNBC"> TNBC</a> </p> <a href="https://publications.waset.org/abstracts/145673/breast-cancer-the-potential-of-mirna-for-diagnosis-and-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145673.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> MicroRNA-1246 Expression Associated with Resistance to Oncogenic BRAF Inhibitors in Mutant BRAF Melanoma Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jae-Hyeon%20Kim">Jae-Hyeon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Lee"> Michael Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Intrinsic and acquired resistance limits the therapeutic benefits of oncogenic BRAF inhibitors in melanoma. MicroRNAs (miRNA) regulate the expression of target mRNAs by repressing their translation. Thus, we investigated miRNA expression patterns in melanoma cell lines to identify candidate biomarkers for acquired resistance to BRAF inhibitor. Here, we used Affymetrix miRNA V3.0 microarray profiling platform to compare miRNA expression levels in three cell lines containing BRAF inhibitor-sensitive A375P BRAF V600E cells, their BRAF inhibitor-resistant counterparts (A375P/Mdr), and SK-MEL-2 BRAF-WT cells with intrinsic resistance to BRAF inhibitor. The miRNAs with at least a two-fold change in expression between BRAF inhibitor-sensitive and –resistant cell lines, were identified as differentially expressed. Averaged intensity measurements identified 138 and 217 miRNAs that were differentially expressed by 2 fold or more between: 1) A375P and A375P/Mdr; 2) A375P and SK-MEL-2, respectively. The hierarchical clustering revealed differences in miRNA expression profiles between BRAF inhibitor-sensitive and –resistant cell lines for miRNAs involved in intrinsic and acquired resistance to BRAF inhibitor. In particular, 43 miRNAs were identified whose expression was consistently altered in two BRAF inhibitor-resistant cell lines, regardless of intrinsic and acquired resistance. Twenty five miRNAs were consistently upregulated and 18 downregulated more than 2-fold. Although some discrepancies were detected when miRNA microarray data were compared with qPCR-measured expression levels, qRT-PCR for five miRNAs (miR-3617, miR-92a1, miR-1246, miR-1936-3p, and miR-17-3p) results showed excellent agreement with microarray experiments. To further investigate cellular functions of miRNAs, we examined effects on cell proliferation. Synthetic oligonucleotide miRNA mimics were transfected into three cell lines, and proliferation was quantified using a colorimetric assay. Of the 5 miRNAs tested, only miR-1246 altered cell proliferation of A375P/Mdr cells. The transfection of miR-1246 mimic strongly conferred PLX-4720 resistance to A375P/Mdr cells, implying that miR-1246 upregulation confers acquired resistance to BRAF inhibition. We also found that PLX-4720 caused much greater G2/M arrest in A375P/Mdr cells transfected with miR-1246mimic than that seen in scrambled RNA-transfected cells. Additionally, miR-1246 mimic partially caused a resistance to autophagy induction by PLX-4720. These results indicate that autophagy does play an essential death-promoting role inPLX-4720-induced cell death. Taken together, these results suggest that miRNA expression profiling in melanoma cells can provide valuable information for a network of BRAF inhibitor resistance-associated miRNAs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microRNA" title="microRNA">microRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=BRAF%20inhibitor" title=" BRAF inhibitor"> BRAF inhibitor</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20resistance" title=" drug resistance"> drug resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=autophagy" title=" autophagy"> autophagy</a> </p> <a href="https://publications.waset.org/abstracts/50223/microrna-1246-expression-associated-with-resistance-to-oncogenic-braf-inhibitors-in-mutant-braf-melanoma-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50223.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> Expression of DNMT Enzymes-Regulated miRNAs Involving in Epigenetic Event of Tumor and Margin Tissues in Patients with Breast Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Zeinali%20Sehrig">Fatemeh Zeinali Sehrig</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: miRNAs play an important role in the post-transcriptional regulation of genes, including genes involved in DNA methylation (DNMTs), and are also important regulators of oncogenic pathways. The study of microRNAs and DNMTs in breast cancer allows the development of targeted treatments and early detection of this cancer. Methods and Materials: Clinical Patients and Samples: Institutional guidelines, including ethical approval and informed consent, were followed by the Ethics Committee (Ethics code: IR.IAU.TABRIZ.REC.1401.063) of Tabriz Azad University, Tabriz, Iran. In this study, tissues of 100 patients with breast cancer and tissues of 100 healthy women were collected from Noor Nejat Hospital in Tabriz. The basic characteristics of the patients with breast cancer included: 1)Tumor grade(Grade 3 = 5%, Grade 2 = 87.5%, Grade 1 = 7.5%), 2)Lymph node(Yes = 87.5%, No = 12.5%), 3)Family cancer history(Yes = 47.5%, No = 41.3%, Unknown = 11.2%), 4) Abortion history(Yes = 36.2%).In silico methods (data gathering, process, and build networks): Gene Expression Omnibus (GEO), a high-throughput genomic database, was queried for miRNAs expression profiles in breast cancer. For Experimental protocol Tissue Processing, Total RNA isolation, complementary DNA(cDNA) synthesis, and quantitative real time PCR (QRT-PCR) analysis were performed. Results: In the present study, we found significant (p.value<0.05) changes in the expression level of miRNAs and DNMTs in patients with breast cancer. In bioinformatics studies, the GEO microarray data set, similar to qPCR results, showed a decreased expression of miRNAs and increased expression of DNMTs in breast cancer. Conclusion: According to the results of the present study, which showed a decrease in the expression of miRNAs and DNMTs in breast cancer, it can be said that these genes can be used as important diagnostic and therapeutic biomarkers in breast cancer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gene%20expression%20omnibus" title="gene expression omnibus">gene expression omnibus</a>, <a href="https://publications.waset.org/abstracts/search?q=microarray%20dataset" title=" microarray dataset"> microarray dataset</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title=" breast cancer"> breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=miRNA" title=" miRNA"> miRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=DNMT%20%28DNA%20methyltransferases%29" title=" DNMT (DNA methyltransferases)"> DNMT (DNA methyltransferases)</a> </p> <a href="https://publications.waset.org/abstracts/188481/expression-of-dnmt-enzymes-regulated-mirnas-involving-in-epigenetic-event-of-tumor-and-margin-tissues-in-patients-with-breast-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188481.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">35</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> A Kernel-Based Method for MicroRNA Precursor Identification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bin%20Liu">Bin Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> MicroRNAs (miRNAs) are small non-coding RNA molecules, functioning in transcriptional and post-transcriptional regulation of gene expression. The discrimination of the real pre-miRNAs from the false ones (such as hairpin sequences with similar stem-loops) is necessary for the understanding of miRNAs’ role in the control of cell life and death. Since both their small size and sequence specificity, it cannot be based on sequence information alone but requires structure information about the miRNA precursor to get satisfactory performance. Kmers are convenient and widely used features for modeling the properties of miRNAs and other biological sequences. However, Kmers suffer from the inherent limitation that if the parameter K is increased to incorporate long range effects, some certain Kmer will appear rarely or even not appear, as a consequence, most Kmers absent and a few present once. Thus, the statistical learning approaches using Kmers as features become susceptible to noisy data once K becomes large. In this study, we proposed a Gapped k-mer approach to overcome the disadvantages of Kmers, and applied this method to the field of miRNA prediction. Combined with the structure status composition, a classifier called imiRNA-GSSC was proposed. We show that compared to the original imiRNA-kmer and alternative approaches. Trained on human miRNA precursors, this predictor can achieve an accuracy of 82.34 for predicting 4022 pre-miRNA precursors from eleven species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gapped%20k-mer" title="gapped k-mer">gapped k-mer</a>, <a href="https://publications.waset.org/abstracts/search?q=imiRNA-GSSC" title=" imiRNA-GSSC"> imiRNA-GSSC</a>, <a href="https://publications.waset.org/abstracts/search?q=microRNA%20precursor" title=" microRNA precursor"> microRNA precursor</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a> </p> <a href="https://publications.waset.org/abstracts/77955/a-kernel-based-method-for-microrna-precursor-identification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77955.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> In Silico Analysis of Salivary miRNAs to Identify the Diagnostic Biomarkers for Oral Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andleeb%20Zahra">Andleeb Zahra</a>, <a href="https://publications.waset.org/abstracts/search?q=Itrat%20Rubab"> Itrat Rubab</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumaira%20Malik"> Sumaira Malik</a>, <a href="https://publications.waset.org/abstracts/search?q=Amina%20Khan"> Amina Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Jawad%20Khan"> Muhammad Jawad Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Qaiser%20Fatmi"> M. Qaiser Fatmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oral squamous cell carcinoma (OSCC) is one of the most common cancers worldwide. Recent studies have highlighted the role of miRNA in disease pathology, indicating its potential use in an early diagnostic tool. miRNAs are small, double stranded, non-coding RNAs that regulate gene expression by deregulating mRNAs. miRNAs play important roles in modifying various cellular processes such as cell growth, differentiation, apoptosis, and immune response. Dis-regulated expression of miRNAs is known to affect the cell growth, and this may function as tumor suppressors or oncogenes in various cancers. Objectives: The main objectives of this study were to characterize the extracellular miRNAs involved in oral cancer (OC) to assist early detection of cancer as well as to propose a list of genes that can potentially be used as biomarkers of OC. We used gene expression data by microarrays already available in literature. Materials and Methods: In the first step, a total of 318 miRNAs involved in oral carcinoma were shortlisted followed by the prediction of their target genes. Simultaneously, the differentially expressed genes (DEGs) of oral carcinoma from all experiments were identified. The common genes between lists of DEGs of OC based on experimentally proven data and target genes of each miRNA were identified. These common genes are the targets of specific miRNA, which is involved in OC. Finally, a list of genes was generated which may be used as biomarker of OC. Results and Conclusion: In results, we included some of pathways in cancer to show the change in gene expression under the control of specific miRNA. Ingenuity pathway analysis (IPA) provided a list of major biomarkers like CDH2, CDK7 and functional enrichment analysis identified the role of miRNA in major pathways like cell adhesion molecules pathway affected by cancer. We observed that at least 25 genes are regulated by maximum number of miRNAs, and thereby, they can be used as biomarkers of OC. To better understand the role of miRNA with respect to their target genes further experiments are required, and our study provides a platform to better understand the miRNA-OC relationship at genomics level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomarkers" title="biomarkers">biomarkers</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20expression" title=" gene expression"> gene expression</a>, <a href="https://publications.waset.org/abstracts/search?q=miRNA" title=" miRNA"> miRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=oral%20carcinoma" title=" oral carcinoma"> oral carcinoma</a> </p> <a href="https://publications.waset.org/abstracts/39983/in-silico-analysis-of-salivary-mirnas-to-identify-the-diagnostic-biomarkers-for-oral-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39983.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Coronin 1C and miR-128A as Potential Diagnostic Biomarkers for Glioblastoma Multiform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Denis%20Mustafov">Denis Mustafov</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanouil%20Karteris"> Emmanouil Karteris</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Braoudaki"> Maria Braoudaki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glioblastoma multiform (GBM) is a heterogenous primary brain tumour that kills most affected patients. To the authors best knowledge, despite all research efforts there is no early diagnostic biomarker for GBM. MicroRNAs (miRNAs) are short non-coding RNA molecules which are deregulated in many cancers. The aim of this research was to determine miRNAs with a diagnostic impact and to potentially identify promising therapeutic targets for glioblastoma multiform. In silico analysis was performed to identify deregulated miRNAs with diagnostic relevance for glioblastoma. The expression profiles of the chosen miRNAs were then validated in vitro in the human glioblastoma cell lines A172 and U-87MG. Briefly, RNA extraction was carried out using the Trizol method, whilst miRNA extraction was performed using the mirVANA miRNA isolation kit. Quantitative Real-Time Polymerase Chain Reaction was performed to verify their expression. The presence of five target proteins within the A172 cell line was evaluated by Western blotting. The expression of the CORO1C protein within 32 GBM cases was examined via immunohistochemistry. The miRNAs identified in silico included miR-21-5p, miR-34a and miR-128a. These miRNAs were shown to target deregulated GBM genes, such as CDK6, E2F3, BMI1, JAG1, and CORO1C. miR-34a and miR-128a showed low expression profiles in comparison to a control miR-RNU-44 in both GBM cell lines suggesting tumour suppressor properties. Opposing, miR-21-5p demonstrated greater expression indicating that it could potentially function as an oncomiR. Western blotting revealed expression of all five proteins within the A172 cell line. In silico analysis also suggested that CORO1C is a target of miR-128a and miR-34a. Immunohistochemistry demonstrated that 75% of the GBM cases showed moderate to high expression of CORO1C protein. Greater understanding of the deregulated expression of miR-128a and the upregulation of CORO1C in GBM could potentially lead to the identification of a promising diagnostic biomarker signature for glioblastomas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-coding%20RNAs" title="non-coding RNAs">non-coding RNAs</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20expression" title=" gene expression"> gene expression</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20tumours" title=" brain tumours"> brain tumours</a>, <a href="https://publications.waset.org/abstracts/search?q=immunohistochemistry" title=" immunohistochemistry"> immunohistochemistry</a> </p> <a href="https://publications.waset.org/abstracts/158923/coronin-1c-and-mir-128a-as-potential-diagnostic-biomarkers-for-glioblastoma-multiform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> Expression of Micro RNAs in the Liver Tissue of Mice Generated through in vitro Embryo Culture and Embryo Transfer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G%C3%B6ksel%20Do%C4%9Fan">Göksel Doğan</a>, <a href="https://publications.waset.org/abstracts/search?q=Murat%20%C3%96zt%C3%BCrk"> Murat Öztürk</a>, <a href="https://publications.waset.org/abstracts/search?q=Didar%20Tu%C4%9F%C3%A7e%20Karakulak"> Didar Tuğçe Karakulak</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Nurullah%20Orman"> Mehmet Nurullah Orman</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicolas%20Sylvius"> Nicolas Sylvius</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthew%20Blades"> Matthew Blades</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Sand%C4%B1k%C3%A7%C4%B1"> Mustafa Sandıkçı</a>, <a href="https://publications.waset.org/abstracts/search?q=Cengiz%20%C3%9Cnsal"> Cengiz Ünsal</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehtap%20K%C4%B1l%C4%B1%C3%A7%20Eren"> Mehtap Kılıç Eren</a>, <a href="https://publications.waset.org/abstracts/search?q=Funda%20K%C4%B1ral"> Funda Kıral</a>, <a href="https://publications.waset.org/abstracts/search?q=Levent%20Karagen%C3%A7"> Levent Karagenç</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Assisted reproduction is associated with impaired glucose metabolism in adulthood. miRNAs are key regulators of glucose metabolism. Whether embryo culture and/or transfer alters the expression of miRNAs and to what extent this process affects glucose metabolism remain largely unknown. The purpose of the present study was to examine the expression of miRNAs in the liver in mice obtained by the transfer of blastocysts. The study was comprised of an experimental (EG) and a control group (CG). EG was generated by embryo transfer to pseudo-pregnant females. Mice born from naturally ovulating females were used as the CG. Differential expression of miRNAs, blood glucose, plasma insulin, liver glycogen, and activities of some of the rate-limiting enzymes involved in glucose metabolism were determined at ten weeks of age. Blood glucose, plasma insulin, and glycogen concentrations were similar between the groups in both sexes. Activities of enzymes were similar among females. EG males had significantly less glucokinase and phosphofructokinase activity compared to CG males. None of the miRNAs were differentially expressed in males. On the other hand, miR-143-3p expression was upregulated in EG females. Expression of none of the genes targeted by miR143-3p differed between the groups. These results demonstrate that miR143-3p, a novel regulator of type 2 diabetes, is upregulated in mice generated by assisted reproduction in a sexually-dimorphic manner with no apparent effect on glucose and insulin levels at ten weeks of age. It remains to be determined if this process is associated with impaired glucose homeostasis in the long term. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assisted%20reproduction" title="assisted reproduction">assisted reproduction</a>, <a href="https://publications.waset.org/abstracts/search?q=blastocyst" title=" blastocyst"> blastocyst</a>, <a href="https://publications.waset.org/abstracts/search?q=embryo%20culture" title=" embryo culture"> embryo culture</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose%20metabolism" title=" glucose metabolism"> glucose metabolism</a>, <a href="https://publications.waset.org/abstracts/search?q=miR143-3p" title=" miR143-3p"> miR143-3p</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen" title=" oxygen"> oxygen</a> </p> <a href="https://publications.waset.org/abstracts/158072/expression-of-micro-rnas-in-the-liver-tissue-of-mice-generated-through-in-vitro-embryo-culture-and-embryo-transfer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158072.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> Ring FingerPortein 2 (RNF2) Targeting by miRNAs in Breast Cancer Cell Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ceyda%20Okudu">Ceyda Okudu</a>, <a href="https://publications.waset.org/abstracts/search?q=Secil%20Eroglu"> Secil Eroglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Khandakar%20A.%20S.%20M.%20Saadat"> Khandakar A. S. M. Saadat</a>, <a href="https://publications.waset.org/abstracts/search?q=Sibel%20O.%20Balci"> Sibel O. Balci</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ring Finger Protein 2 (RNF2) is a member of polycomb repressive complex 1 (PRC1), which is one of the epigenetic regulators in the genome. When RNF2 combines with other PRC1 members, it mediates the mono-ubiquitination of Histon2A (H2A). In breast cancer, RNF2 is commonly overexpressed, and also it promotes metastasis and invasion in other aggressive tumors like melanoma, prostate, and hepatocarcinoma. The role of RNF2 in the metastasis and invasion of breast cancer has not yet been elucidated. Our aim is to observe the role of RNF2 in metastasis and invasion in this study by miRNA mediated RNF2 gene silencing in breast cancer cell lines. We selected miRNAs, targeting to RNF2 by searching online databases. miR-17-5p, miR20a-5p, and miR-106b-5p were transfected to breast cancer cell lines (MCF-7, MDA-MB-231, SK-BR-3, and ZR-75-1), and also we used normal breast epithelial cell line (hTERT-HME1) to compare RNF2 gene expression level. After 48-72 hours post-transfection, mRNAs were isolated from the cells, and gene expressions were measured by RT-qPCR after from cDNA syntheses. We observed that RNF2 was highly expressed in SK-BR-3 and MDA-MB-231 cell lines opposite to MCF-7 and ZR-75-1 cell lines. RNF2 was downregulated 5, 5 and 7 fold by miR17-5p, miR20a-5p and miR106b-5p respectively in MCF-7. However, in SK-BR-3 and ZR-75-1 cell lines, miRNAs did not affect significantly RNF2 gene expression level. miR20a-5p decreased RNF2 3 fold and miR17-5p and miR106b-5p did not affect MDA-MB-231. After gene expression analysis, we performed metastasis and invasion assay in MCF-7 cells. For metastasis, we used both wound healing assay and Transwell Cell Migration Assay, and we used Transwell Cell Invasion Assay for invasion. The data of this assay showed that miR17-5p and miR20a-5p decreased both invasion and metastasis level, but miR106b-5p has no effect. We would like to conclude that RNF2 can be targeted by miR17-5p, miR20a-5p and miR106b-5p in MCF-7 cells and also RNF2, which is one of the upregulated genes in aggressive tumor, can be decreased by using these miRNAs. In future, we would like to confirm these results at the protein level and also whether these miRNAs are direct target of RNF2 or not. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title="breast cancer">breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=epigenetic" title=" epigenetic"> epigenetic</a>, <a href="https://publications.waset.org/abstracts/search?q=microRNAs" title=" microRNAs"> microRNAs</a>, <a href="https://publications.waset.org/abstracts/search?q=RNF2" title=" RNF2"> RNF2</a> </p> <a href="https://publications.waset.org/abstracts/88136/ring-fingerportein-2-rnf2-targeting-by-mirnas-in-breast-cancer-cell-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88136.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Expression of Selected miRNAs in Placenta of the Intrauterine Restricted Growth Fetuses in Cattle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karolina%20Rutkowska">Karolina Rutkowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Hubert%20Pausch"> Hubert Pausch</a>, <a href="https://publications.waset.org/abstracts/search?q=Jolanta%20Oprzadek"> Jolanta Oprzadek</a>, <a href="https://publications.waset.org/abstracts/search?q=Krzysztof%20Flisikowski"> Krzysztof Flisikowski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The placenta is one of the most important organs that plays a crucial role in the fetal growth and development. Placenta dysfunction is one of the primary cause of the intrauterine growth restriction (IUGR). Cattle have the cotyledonary placenta which consists of two anatomical parts: fetal and maternal. In the case of cattle during the first months of pregnancy, it is very easy to separate maternal caruncle from fetal cotyledon tissue, easier in fact than removing an ordinary glove from one's hand. Which in fact make easier to conduct tissue-specific molecular studies. Typically, animal models for the study of IUGR are created using surgical methods and malnutrition of the pregnant mother or in the case of mice by genetic modifications. However, proposed cattle model with MIMT1Del/WT deletion is unique because it was created without any surgical methods what significantly distinguish it from the other animal models. The primary objective of the study was to identify differential expression of selected miRNAs in the placenta from normal and intrauterine growth restricted fetuses. There was examined the expression of miRNA in the fetal and maternal part of the placenta from 24 fetuses (12 samples from the fetal part of the placenta and 12 samples from maternal part of the placenta). In the study, there was done miRNAs sequencing in the placenta of MIMT1Del/WT fetuses and MIMT1WT/WT fetuses. Then, there were selected miRNAs that are involved in fetal growth and development. Analysis of miRNAs expression was conducted on ABI7500 machine. miRNAs expression was analyzed by reverse-transcription polymerase chain reaction (RT-PCR). As the reference gene was used SNORD47. The results were expressed as 2ΔΔCt: ΔΔCt = (Ctij − CtSNORD47j) − (Cti1 − CtSNORD471). Where Ctij and CtSNORD47j are the Ct values for gene i and for SNORD47 in a sample (named j); Cti1 and CtSNORD471 are the Ct values in sample 1. Differences between groups were evaluated with analysis of variance by using One-Way ANOVA. Bonferroni’s tests were used for interpretation of the data. All normalised miRNA expression values are expressed on a value of natural logarithm. The data were expressed as least squares mean with standard errors. Significance was declared when P < 0.05. The study shows that miRNAs expression depends on the part of the placenta where they origin (fetal or maternal) and on the genotype of the animal. miRNAs offer a particularly new approach to study IUGR. Corresponding tissue samples were collected according to the standard veterinary protocols according to the European Union Normative for Care and Use of Experimental Animals. All animal experiments were approved by the Animal Ethics Committee of the State Provincial Office of Southern Finland (ESAVI-2010-08583/YM-23). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=placenta" title="placenta">placenta</a>, <a href="https://publications.waset.org/abstracts/search?q=intrauterine%20growth%20restriction" title=" intrauterine growth restriction"> intrauterine growth restriction</a>, <a href="https://publications.waset.org/abstracts/search?q=miRNA" title=" miRNA"> miRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=cattle" title=" cattle"> cattle</a> </p> <a href="https://publications.waset.org/abstracts/64272/expression-of-selected-mirnas-in-placenta-of-the-intrauterine-restricted-growth-fetuses-in-cattle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Real-Time Quantitative Polymerase Chain Reaction Assay for the Detection of microRNAs Using Bi-Directional Extension Sequences</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyung%20Jin%20Kim">Kyung Jin Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiwon%20Kwak"> Jiwon Kwak</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Hoon%20Lee"> Jae-Hoon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Soo%20Suk%20Lee"> Soo Suk Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> MicroRNAs (miRNA) are a class of endogenous, single-stranded, small, and non-protein coding RNA molecules typically 20-25 nucleotides long. They are thought to regulate the expression of other genes in a broad range by binding to 3’- untranslated regions (3’-UTRs) of specific mRNAs. The detection of miRNAs is very important for understanding of the function of these molecules and in the diagnosis of variety of human diseases. However, detection of miRNAs is very challenging because of their short length and high sequence similarities within miRNA families. So, a simple-to-use, low-cost, and highly sensitive method for the detection of miRNAs is desirable. In this study, we demonstrate a novel bi-directional extension (BDE) assay. In the first step, a specific linear RT primer is hybridized to 6-10 base pairs from the 3’-end of a target miRNA molecule and then reverse transcribed to generate a cDNA strand. After reverse transcription, the cDNA was hybridized to the 3’-end which is BDE sequence; it played role as the PCR template. The PCR template was amplified in an SYBR green-based quantitative real-time PCR. To prove the concept, we used human brain total RNA. It could be detected quantitatively in the range of seven orders of magnitude with excellent linearity and reproducibility. To evaluate the performance of BDE assay, we contrasted sensitivity and specificity of the BDE assay against a commercially available poly (A) tailing method using miRNAs for let-7e extracted from A549 human epithelial lung cancer cells. The BDE assay displayed good performance compared with a poly (A) tailing method in terms of specificity and sensitivity; the CT values differed by 2.5 and the melting curve showed a sharper than poly (A) tailing methods. We have demonstrated an innovative, cost-effective BDE assay that allows improved sensitivity and specificity in detection of miRNAs. Dynamic range of the SYBR green-based RT-qPCR for miR-145 could be represented quantitatively over a range of 7 orders of magnitude from 0.1 pg to 1.0 μg of human brain total RNA. Finally, the BDE assay for detection of miRNA species such as let-7e shows good performance compared with a poly (A) tailing method in terms of specificity and sensitivity. Thus BDE proves a simple, low cost, and highly sensitive assay for various miRNAs and should provide significant contributions in research on miRNA biology and application of disease diagnostics with miRNAs as targets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bi-directional%20extension%20%28BDE%29" title="bi-directional extension (BDE)">bi-directional extension (BDE)</a>, <a href="https://publications.waset.org/abstracts/search?q=microRNA%20%28miRNA%29" title=" microRNA (miRNA)"> microRNA (miRNA)</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%20%28A%29%20tailing%20assay" title=" poly (A) tailing assay"> poly (A) tailing assay</a>, <a href="https://publications.waset.org/abstracts/search?q=reverse%20transcription" title=" reverse transcription"> reverse transcription</a>, <a href="https://publications.waset.org/abstracts/search?q=RT-qPCR" title=" RT-qPCR"> RT-qPCR</a> </p> <a href="https://publications.waset.org/abstracts/84518/real-time-quantitative-polymerase-chain-reaction-assay-for-the-detection-of-micrornas-using-bi-directional-extension-sequences" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84518.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Mirna Expression Profile is Different in Human Amniotic Mesenchymal Stem Cells Isolated from Obese Respect to Normal Weight Women</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carmela%20Nardelli">Carmela Nardelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20Iaffaldano"> Laura Iaffaldano</a>, <a href="https://publications.waset.org/abstracts/search?q=Valentina%20Capobianco"> Valentina Capobianco</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonietta%20Tafuto"> Antonietta Tafuto</a>, <a href="https://publications.waset.org/abstracts/search?q=Maddalena%20Ferrigno"> Maddalena Ferrigno</a>, <a href="https://publications.waset.org/abstracts/search?q=Angela%20Capone"> Angela Capone</a>, <a href="https://publications.waset.org/abstracts/search?q=Giuseppe%20Maria%20Maruotti"> Giuseppe Maria Maruotti</a>, <a href="https://publications.waset.org/abstracts/search?q=Maddalena%20Raia"> Maddalena Raia</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosa%20Di%20Noto"> Rosa Di Noto</a>, <a href="https://publications.waset.org/abstracts/search?q=Luigi%20Del%20Vecchio"> Luigi Del Vecchio</a>, <a href="https://publications.waset.org/abstracts/search?q=Pasquale%20Martinelli"> Pasquale Martinelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucio%20Pastore"> Lucio Pastore</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucia%20Sacchetti"> Lucia Sacchetti </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Maternal obesity and nutrient excess in utero increase the risk of future metabolic diseases in the adult life. The mechanisms underlying this process are probably based on genetic, epigenetic alterations and changes in foetal nutrient supply. In mammals, the placenta is the main interface between foetus and mother, it regulates intrauterine development, modulates adaptive responses to sub optimal in uterus conditions and it is also an important source of human amniotic mesenchymal stem cells (hA-MSCs). We previously highlighted a specific microRNA (miRNA) profiling in amnion from obese (Ob) pregnant women, here we compared the miRNA expression profile of hA-MSCs isolated from (Ob) and control (Co) women, aimed to search for any alterations in metabolic pathways that could predispose the new-born to the obese phenotype. Methods: We isolated, at delivery, hA-MSCs from amnion of 16 Ob- and 7 Co-women with pre-pregnancy body mass index (mean/SEM) 40.3/1.8 and 22.4/1.0 kg/m2, respectively. hA-MSCs were phenotyped by flow cytometry. Globally, 384 miRNAs were evaluated by the TaqMan Array Human MicroRNA Panel v 1.0 (Applied Biosystems). By the TargetScan program we selected the target genes of the miRNAs differently expressed in Ob- vs Co-hA-MSCs; further, by KEGG database, we selected the statistical significant biological pathways. Results: The immunophenotype characterization confirmed the mesenchymal origin of the isolated hA-MSCs. A large percentage of the tested miRNAs, about 61.4% (232/378), was expressed in hA-MSCs, whereas 38.6% (146/378) was not. Most of the expressed miRNAs (89.2%, 207/232) did not differ between Ob- and Co-hA-MSCs and were not further investigated. Conversely, 4.8% of miRNAs (11/232) was higher and 6.0% (14/232) was lower in Ob- vs Co-hA-MSCs. Interestingly, 7/232 miRNAs were obesity-specific, being expressed only in hA-MSCs isolated from obese women. Bioinformatics showed that these miRNAs significantly regulated (P<0.001) genes belonging to several metabolic pathways, i.e. MAPK signalling, actin cytoskeleton, focal adhesion, axon guidance, insulin signaling, etc. Conclusions: Our preliminary data highlight an altered miRNA profile in Ob- vs Co-hA-MSCs and suggest that an epigenetic miRNA-based mechanism of gene regulation could affect pathways involved in placental growth and function, thereby potentially increasing the newborn’s risk of metabolic diseases in the adult life. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hA-MSCs" title="hA-MSCs">hA-MSCs</a>, <a href="https://publications.waset.org/abstracts/search?q=obesity" title=" obesity"> obesity</a>, <a href="https://publications.waset.org/abstracts/search?q=miRNA" title=" miRNA"> miRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=biosystem" title=" biosystem "> biosystem </a> </p> <a href="https://publications.waset.org/abstracts/23471/mirna-expression-profile-is-different-in-human-amniotic-mesenchymal-stem-cells-isolated-from-obese-respect-to-normal-weight-women" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">528</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Prediction of MicroRNA-Target Gene by Machine Learning Algorithms in Lung Cancer Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nilubon%20Kurubanjerdjit">Nilubon Kurubanjerdjit</a>, <a href="https://publications.waset.org/abstracts/search?q=Nattakarn%20Iam-On"> Nattakarn Iam-On</a>, <a href="https://publications.waset.org/abstracts/search?q=Ka-Lok%20Ng"> Ka-Lok Ng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> MicroRNAs are small non-coding RNA found in many different species. They play crucial roles in cancer such as biological processes of apoptosis and proliferation. The identification of microRNA-target genes can be an essential first step towards to reveal the role of microRNA in various cancer types. In this paper, we predict miRNA-target genes for lung cancer by integrating prediction scores from miRanda and PITA algorithms used as a feature vector of miRNA-target interaction. Then, machine-learning algorithms were implemented for making a final prediction. The approach developed in this study should be of value for future studies into understanding the role of miRNAs in molecular mechanisms enabling lung cancer formation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microRNA" title="microRNA">microRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=miRNAs" title=" miRNAs"> miRNAs</a>, <a href="https://publications.waset.org/abstracts/search?q=lung%20cancer" title=" lung cancer"> lung cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=Na%C3%AFve%20Bayes" title=" Naïve Bayes"> Naïve Bayes</a>, <a href="https://publications.waset.org/abstracts/search?q=SVM" title=" SVM"> SVM</a> </p> <a href="https://publications.waset.org/abstracts/41904/prediction-of-microrna-target-gene-by-machine-learning-algorithms-in-lung-cancer-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41904.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Urinary Exosome miR-30c-5p as a Biomarker for Early-Stage Clear Cell Renal Cell Carcinoma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shangqing%20Song">Shangqing Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Bin%20Xu"> Bin Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yajun%20Cheng"> Yajun Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhong%20Wang"> Zhong Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> miRNAs derived from exosomes exist in a body fluid such as urine were regarded as potential biomarkers for various human cancers diagnosis and prognosis, as mature miRNAs can be steadily preserved by exosomes. However, its potential value in clear cell renal cell carcinoma (ccRCC) diagnosis and prognosis remains unclear. In the present study, differentially expressed miRNAs from urinal exosomes were identified by next-generation sequencing (NGS) technology. The 16 differentially expressed miRNAs were identified between ccRCC patients and healthy donors. To explore the specific diagnosis biomarker of ccRCC, we validated these urinary exosomes from 70 early-stage renal cancer patients, 30 healthy people and other urinary system cancers, including 30 early-stage prostate cancer patients and 30 early-stage bladder cancer patients by qRT-PCR. The results showed that urinary exosome miR-30c-5p could be stably amplified and meanwhile the expression of miR-30c-5p has no significant difference between other urinary system cancers and healthy control, however, expression level of miR-30c-5p in urinary exosomal of ccRCC patients was lower than healthy people and receiver operation characterization (ROC) curve showed that the area under the curve (AUC) values was 0.8192 (95% confidence interval was 0.7388-0.8996, P= 0.0000). In addition, up-regulating miR-30c-5p expression could inhibit renal cell carcinoma cells growth. Lastly, HSP5A was found as a direct target gene of miR-30c-5p. HSP5A depletion reversed the promoting effect of ccRCC growth casued by miR-30c-5p inhibitor, respectively. In conclusion, this study demonstrated that urinary exosomal miR-30c-5p is readily accessible as diagnosis biomarker of early-stage ccRCC, and miR-30c-5p might modulate the expression of HSPA5, which correlated with the progression of ccRCC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clear%20cell%20renal%20cell%20carcinoma" title="clear cell renal cell carcinoma">clear cell renal cell carcinoma</a>, <a href="https://publications.waset.org/abstracts/search?q=exosome" title=" exosome"> exosome</a>, <a href="https://publications.waset.org/abstracts/search?q=HSP5A" title=" HSP5A"> HSP5A</a>, <a href="https://publications.waset.org/abstracts/search?q=miR-30c-5p" title=" miR-30c-5p"> miR-30c-5p</a> </p> <a href="https://publications.waset.org/abstracts/93777/urinary-exosome-mir-30c-5p-as-a-biomarker-for-early-stage-clear-cell-renal-cell-carcinoma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93777.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> LncRNA-miRNA-mRNA Networks Associated with BCR-ABL T315I Mutation in Chronic Myeloid Leukemia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adenike%20Adesanya">Adenike Adesanya</a>, <a href="https://publications.waset.org/abstracts/search?q=Nonthaphat%20Wong"> Nonthaphat Wong</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiang-Yun%20Lan"> Xiang-Yun Lan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shea%20Ping%20Yip"> Shea Ping Yip</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Ling%20Huang"> Chien-Ling Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The most challenging mutation of the oncokinase BCR-ABL protein T315I, which is commonly known as the “gatekeeper” mutation and is notorious for its strong resistance to almost all tyrosine kinase inhibitors (TKIs), especially imatinib. Therefore, this study aims to identify T315I-dependent downstream microRNA (miRNA) pathways associated with drug resistance in chronic myeloid leukemia (CML) for prognostic and therapeutic purposes. Methods: T315I-carrying K562 cell clones (K562-T315I) were generated by the CRISPR-Cas9 system. Imatinib-treated K562-T315I cells were subjected to small RNA library preparation and next-generation sequencing. Putative lncRNA-miRNA-mRNA networks were analyzed with (i) DESeq2 to extract differentially expressed miRNAs, using Padj value of 0.05 as cut-off, (ii) STarMir to obtain potential miRNA response element (MRE) binding sites of selected miRNAs on lncRNA H19, (iii) miRDB, miRTarbase, and TargetScan to predict mRNA targets of selected miRNAs, (iv) IntaRNA to obtain putative interactions between H19 and the predicted mRNAs, (v) Cytoscape to visualize putative networks, and (vi) several pathway analysis platforms – Enrichr, PANTHER and ShinyGO for pathway enrichment analysis. Moreover, mitochondria isolation and transcript quantification were adopted to determine the new mechanism involved in T315I-mediated resistance of CML treatment. Results: Verification of the CRISPR-mediated mutagenesis with digital droplet PCR detected the mutation abundance of ≥80%. Further validation showed the viability of ≥90% by cell viability assay, and intense phosphorylated CRKL protein band being detected with no observable change for BCR-ABL and c-ABL protein expressions by Western blot. As reported by several investigations into hematological malignancies, we determined a 7-fold increase of H19 expression in K562-T315I cells. After imatinib treatment, a 9-fold increment was observed. DESeq2 revealed 171 miRNAs were differentially expressed K562-T315I, 112 out of these miRNAs were identified to have MRE binding regions on H19, and 26 out of the 112 miRNAs were significantly downregulated. Adopting the seed-sequence analysis of these identified miRNAs, we obtained 167 mRNAs. 6 hub miRNAs (hsa-let-7b-5p, hsa-let-7e-5p, hsa-miR-125a-5p, hsa-miR-129-5p, and hsa-miR-372-3p) and 25 predicted genes were identified after constructing hub miRNA-target gene network. These targets demonstrated putative interactions with H19 lncRNA and were mostly enriched in pathways related to cell proliferation, senescence, gene silencing, and pluripotency of stem cells. Further experimental findings have also shown the up-regulation of mitochondrial transcript and lncRNA MALAT1 contributing to the lncRNA-miRNA-mRNA networks induced by BCR-ABL T315I mutation. Conclusions: Our results have indicated that lncRNA-miRNA regulators play a crucial role not only in leukemogenesis but also in drug resistance, considering the significant dysregulation and interactions in the K562-T315I cell model generated by CRISPR-Cas9. In silico analysis has further shown that lncRNAs H19 and MALAT1 bear several complementary miRNA sites. This implies that they could serve as a sponge, hence sequestering the activity of the target miRNAs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chronic%20myeloid%20leukemia" title="chronic myeloid leukemia">chronic myeloid leukemia</a>, <a href="https://publications.waset.org/abstracts/search?q=imatinib%20resistance" title=" imatinib resistance"> imatinib resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=lncRNA-miRNA-mRNA" title=" lncRNA-miRNA-mRNA"> lncRNA-miRNA-mRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=T315I%20mutation" title=" T315I mutation"> T315I mutation</a> </p> <a href="https://publications.waset.org/abstracts/148805/lncrna-mirna-mrna-networks-associated-with-bcr-abl-t315i-mutation-in-chronic-myeloid-leukemia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148805.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> The Role of Micro-Ribonucleic Acid-182 and Micro-Ribonucleic Acid-214 in Cisplatin Resistance of Triple-Negative Breast Cancer Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bahadir%20Batar">Bahadir Batar</a>, <a href="https://publications.waset.org/abstracts/search?q=Elif%20Serdal"> Elif Serdal</a>, <a href="https://publications.waset.org/abstracts/search?q=Berna%20Erdal"> Berna Erdal</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Ogul"> Hasan Ogul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Micro-ribonucleic acids (miRNAs) are small short non-coding ribonucleic acid molecules about 22 nucleotides long. miRNAs play a key role in response to chemotherapeutic agents. WW domain-containing oxidoreductase (WWOX) gene encodes a tumor suppressor protein. Loss or reduction of Wwox protein is observed in many breast cancer cases. WWOX protein deficiency is increased in triple-negative breast cancer (TNBC). TNBC is a heterogeneous, highly aggressive, and difficult to treat tumor type. WWOX loss contributes to resistance to cisplatin therapy in patients with TNBC. Here, the aim of the study was to investigate the potential role of miRNAs in cisplatin therapy resistance of WWOX-deficient TNBC cells. This was a cell culture study. miRNA expression profiling was analyzed by LightCycler 480 system. miRNA Set Enrichment Analysis tool was used to integrate experimental data with literature-based biological knowledge to infer a new hypothesis. Increased miR-182 and decreased miR-214 were significantly correlated with cisplatin resistance in WWOX-deficient TNBC cells. miR-182 and miR-214 may involve in cisplatin resistance of WWOX-deficient TNBC cells by deregulating the DNA repair, apoptosis, or protein kinase B signaling pathways. These data highlight the mechanism by which WWOX regulates cisplatin resistance of TNBC and the potential use of WWOX as a predictor biomarker for cisplatin resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cisplatin" title="cisplatin">cisplatin</a>, <a href="https://publications.waset.org/abstracts/search?q=microRNA" title=" microRNA"> microRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=triple-negative%20breast%20cancer" title=" triple-negative breast cancer"> triple-negative breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=WWOX" title=" WWOX"> WWOX</a> </p> <a href="https://publications.waset.org/abstracts/127663/the-role-of-micro-ribonucleic-acid-182-and-micro-ribonucleic-acid-214-in-cisplatin-resistance-of-triple-negative-breast-cancer-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127663.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Ensemble-Based SVM Classification Approach for miRNA Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sondos%20M.%20Hammad">Sondos M. Hammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Sherin%20M.%20ElGokhy"> Sherin M. ElGokhy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20M.%20Fahmy"> Mahmoud M. Fahmy</a>, <a href="https://publications.waset.org/abstracts/search?q=Elsayed%20A.%20Sallam"> Elsayed A. Sallam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, an ensemble-based Support Vector Machine (SVM) classification approach is proposed. It is used for miRNA prediction. Three problems, commonly associated with previous approaches, are alleviated. These problems arise due to impose assumptions on the secondary structural of premiRNA, imbalance between the numbers of the laboratory checked miRNAs and the pseudo-hairpins, and finally using a training data set that does not consider all the varieties of samples in different species. We aggregate the predicted outputs of three well-known SVM classifiers; namely, Triplet-SVM, Virgo and Mirident, weighted by their variant features without any structural assumptions. An additional SVM layer is used in aggregating the final output. The proposed approach is trained and then tested with balanced data sets. The results of the proposed approach outperform the three base classifiers. Improved values for the metrics of 88.88% f-score, 92.73% accuracy, 90.64% precision, 96.64% specificity, 87.2% sensitivity, and the area under the ROC curve is 0.91 are achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MiRNAs" title="MiRNAs">MiRNAs</a>, <a href="https://publications.waset.org/abstracts/search?q=SVM%20classification" title=" SVM classification"> SVM classification</a>, <a href="https://publications.waset.org/abstracts/search?q=ensemble%20algorithm" title=" ensemble algorithm"> ensemble algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=assumption%20problem" title=" assumption problem"> assumption problem</a>, <a href="https://publications.waset.org/abstracts/search?q=imbalance%20data" title=" imbalance data"> imbalance data</a> </p> <a href="https://publications.waset.org/abstracts/32331/ensemble-based-svm-classification-approach-for-mirna-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> hsa-miR-1204 and hsa-miR-639 Prominent Role in Tamoxifen&#039;s Molecular Mechanisms on the EMT Phenomenon in Breast Cancer Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahsa%20Taghavi">Mahsa Taghavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the treatment of breast cancer, tamoxifen is a regularly prescribed medication. The effect of tamoxifen on breast cancer patients' EMT pathways was studied. In this study to see if it had any effect on the cancer cells' resistance to tamoxifen and to look for specific miRNAs associated with EMT. In this work, we used continuous and integrated bioinformatics analysis to choose the optimal GEO datasets. Once we had sorted the gene expression profile, we looked at the mechanism of signaling, the ontology of genes, and the protein interaction of each gene. In the end, we used the GEPIA database to confirm the candidate genes. after that, I investigated critical miRNAs related to candidate genes. There were two gene expression profiles that were categorized into two distinct groups. Using the expression profile of genes that were lowered in the EMT pathway, the first group was examined. The second group represented the polar opposite of the first. A total of 253 genes from the first group and 302 genes from the second group were found to be common. Several genes in the first category were linked to cell death, focal adhesion, and cellular aging. Two genes in the second group were linked to cell death, focal adhesion, and cellular aging. distinct cell cycle stages were observed. Finally, proteins such as MYLK, SOCS3, and STAT5B from the first group and BIRC5, PLK1, and RAPGAP1 from the second group were selected as potential candidates linked to tamoxifen's influence on the EMT pathway. hsa-miR-1204 and hsa-miR-639 have a very close relationship with the candidates genes according to the node degrees and betweenness index. With this, the action of tamoxifen on the EMT pathway was better understood. It's important to learn more about how tamoxifen's target genes and proteins work so that we can better understand the drug. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tamoxifen" title="tamoxifen">tamoxifen</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title=" breast cancer"> breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=bioinformatics%20analysis" title=" bioinformatics analysis"> bioinformatics analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=EMT" title=" EMT"> EMT</a>, <a href="https://publications.waset.org/abstracts/search?q=miRNAs" title=" miRNAs"> miRNAs</a> </p> <a href="https://publications.waset.org/abstracts/149734/hsa-mir-1204-and-hsa-mir-639-prominent-role-in-tamoxifens-molecular-mechanisms-on-the-emt-phenomenon-in-breast-cancer-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149734.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Identification of microRNAs in Early and Late Onset of Parkinson’s Disease Patient</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Rasyadan%20Arshad">Ahmad Rasyadan Arshad</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Rahman%20A.%20Jamal"> A. Rahman A. Jamal</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Mohamed%20Ibrahim"> N. Mohamed Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Nor%20Azian%20Abdul%20Murad"> Nor Azian Abdul Murad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Parkinson’s disease (PD) is a complex and asymptomatic disease where patients are usually diagnosed at late stage where about 70% of the dopaminergic neurons are lost. Therefore, identification of molecular biomarkers is crucial for early diagnosis of PD. MicroRNA (miRNA) is a short nucleotide non-coding small RNA which regulates the gene expression in post-translational process. The involvement of these miRNAs in neurodegenerative diseases includes maintenance of neuronal development, necrosis, mitochondrial dysfunction and oxidative stress. Thus, miRNA could be a potential biomarkers for diagnosis of PD. Objective: This study aim to identify the miRNA involved in Late Onset PD (LOPD) and Early Onset PD (EOPD) compared to the controls. Methods: This is a case-control study involved PD patients in the Chancellor Tunku Muhriz Hospital at the UKM Medical Centre. miRNA samples were extracted using miRNeasy serum/plasma kit from Qiagen. The quality of miRNA extracted was determined using Agilent RNA 6000 Nano kit in the Bioanalyzer. miRNA expression was performed using GeneChip miRNA 4.0 chip from Affymetrix. Microarray was performed in EOPD (n= 7), LOPD (n=9) and healthy control (n=11). Expression Console and Transcriptomic Analyses Console were used to analyze the microarray data. Result: miR-129-5p was significantly downregulated in EOPD compared to LOPD with -4.2 fold change (p = <0.050. miR-301a-3p was upregulated in EOPD compared to healthy control (fold = 10.3, p = <0.05). In LOPD versus healthy control, miR-486-3p (fold = 15.28, p = <0.05), miR-29c-3p (fold = 12.21, p = <0.05) and miR-301a-3p (fold = 10.01, p =< 0.05) were upregulated. Conclusion: Several miRNA have been identified to be differentially expressed in EOPD compared to LOPD and PD versus control. These miRNAs could serve as the potential biomarkers for early diagnosis of PD. However, these miRNAs need to be validated in a larger sample size. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=early%20onset%20PD" title="early onset PD">early onset PD</a>, <a href="https://publications.waset.org/abstracts/search?q=late%20onset%20PD" title=" late onset PD"> late onset PD</a>, <a href="https://publications.waset.org/abstracts/search?q=microRNA%20%28miRNA%29" title=" microRNA (miRNA)"> microRNA (miRNA)</a>, <a href="https://publications.waset.org/abstracts/search?q=microarray" title=" microarray"> microarray</a> </p> <a href="https://publications.waset.org/abstracts/58919/identification-of-micrornas-in-early-and-late-onset-of-parkinsons-disease-patient" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58919.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mirnas&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mirnas&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10