CINXE.COM

Cornell Learning Machines Seminar

<!DOCTYPE html> <html> <head> <title> Cornell Learning Machines Seminar </title> <!-— facebook open graph tags --> <meta property="og:type" content="website" /> <meta property="og:url" content="https://lmss.tech.cornell.edu/" /> <meta property="og:title" content="Cornell Learning Machines Seminar" /> <meta property="og:description" content="Cornell Learning Machines Seminar" /> <meta property="og:image" content="https://lmss.tech.cornell.edu/images/cornell-logo-large.png" /> <!-— twitter card tags additive with the og: tags --> <meta name="twitter:card" content="summary_large_image"> <meta name="twitter:domain" value="lmss.tech.cornell.edu" /> <meta name="twitter:title" value="Cornell Learning Machines Seminar" /> <meta name="twitter:description" value="Cornell Learning Machines Seminar" /> <meta name="twitter:image" content="https://lmss.tech.cornell.edu/images/banner.jpg" /> <meta name="twitter:url" value="https://lmss.tech.cornell.edu/" /> <!-- Fav icon --> <link rel="shortcut icon" href="/favicon.ico" type="image/x-icon" /> <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0-beta/css/bootstrap.min.css" integrity="sha384-/Y6pD6FV/Vv2HJnA6t+vslU6fwYXjCFtcEpHbNJ0lyAFsXTsjBbfaDjzALeQsN6M" crossorigin="anonymous"> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha384-KJ3o2DKtIkvYIK3UENzmM7KCkRr/rE9/Qpg6aAZGJwFDMVNA/GpGFF93hXpG5KkN" crossorigin="anonymous"></script> <script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.11.0/umd/popper.min.js" integrity="sha384-b/U6ypiBEHpOf/4+1nzFpr53nxSS+GLCkfwBdFNTxtclqqenISfwAzpKaMNFNmj4" crossorigin="anonymous"></script> <script src="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0-beta/js/bootstrap.min.js" integrity="sha384-h0AbiXch4ZDo7tp9hKZ4TsHbi047NrKGLO3SEJAg45jXxnGIfYzk4Si90RDIqNm1" crossorigin="anonymous"></script> <style type="text/css"> .jumbotron { /*position: relative;*/ background-color: #B31B1B; color: white; background: #000 url("images/banner.jpg") center center; width: 100%; height: 600px; background-size: cover; background-repeat: no-repeat; background-position: bottom; } .jumbotron h1 { font-variant: small-caps; font-size: 50px; /*font-weight: 700;*/ text-shadow: 0 3px 0 rgba(0, 0, 0, .8); margin-bottom: 20px; } </style> </head> <body> <div class="jumbotron"> <!-- <br/> <br/> <br/> <br/> <br/> <br/> <br/> <br/> <br/> <img src="images/cornell-logo.png" height="100px"> <img src="images/tech-logo.png" height="100px"> <br/> <br/> <h1> Cornell Learning Machines Seminar</h1> --> </div> <div class="container"> <!-- <h1>About</h1> --> <h1>Cornell Learning Machines Seminar</h1> <br /> <div class="row"> <div class="col-md-7 col-sm-12 col-xs-12"> <p>The Cornell Learning Machines Seminar is a semi-monthly seminar held at the <a href="https://tech.cornell.edu/">Cornell Tech campus</a> in New York City. The seminar focuses on machine learning and related areas, including Natural Language Processing, Vision, and Robotics. </p> <p><strong>To receive seminar announcements, please subscribe to our mailing list by emailing <a href="mailto:cornell-lmss-l-request@cornell.edu?subject=join">cornell-lmss-l-request@cornell.edu</a> with the subject "join".</strong></p> <p>The talks take place on the Cornell Tech campus. The room and time are specified for each talk. Attending requires to RSVP in advance. If coming from outside, please arrive a few minutes in advance to check into the building. Directions to campus are provided <a href="https://tech.cornell.edu/visit-us/">here</a>.</p> <p>Organized by <a href="https://yoavartzi.com">Yoav Artzi</a></p> <a href="https://www.cornell.edu/"><img src="images/cornell-logo-large.png" height="80px"></a> &nbsp;&nbsp;&nbsp; <a href="https://tech.cornell.edu/"><img src="images/tech-logo.png" height="80px"></a> </div> <div class="col-md-5 col-sm-12 col-xs-12"> <iframe src="https://www.google.com/maps/embed?pb=!1m18!1m12!1m3!1d3022.959621756146!2d-74.00218100000001!3d40.740914!2m3!1f0!2f0!3f0!3m2!1i1024!2i768!4f13.1!3m3!1m2!1s0x89c259ba857dd7a7%3A0xa9377b1a9772ce08!2sCornell+Tech!5e0!3m2!1sen!2sus!4v1437851876349" width="100%" height="200px" frameborder="0" style="border:0" allowfullscreen></iframe> <p><strong>This seminar is sponsored by</strong></p><a href="https://www.techatbloomberg.com/"><img src="images/bloomberg-logo.png" width="300px" /></a> </div> </div> <br /> <h1>Upcoming Talks</h1> <script type="text/javascript" src="https://events.cornell.edu/widget/view?schools=cornell&days=365&num=50&tags=CornellTechLMSS&template=list-modern-with-end-time"></script> <div id="lclst_widget_footer"></div> <br /> <h1>Past Talks</h1> <ul> <li>Jonathan Berant (Tel Aviv University / Google DeepMind) / Towards Robust Language Model Post-training / Nov 21, 2024 [<a href="https://youtu.be/2AthqCX3h8U">video</a>]</li> <li>Sherry Tongshuang Wu (CMU) / Practical AI Systems: From General-Purpose AI to (the Right) Specific Use Cases / Oct 31, 2024 [video coming soon]</li> <li>Andrew Owens (University of Michigan) / Generating Multi-View Visual Illusions / Oct 24, 2024 [video coming soon]</li> <li>Himabindu Lakkaraju (Harvard) / Towards Regulatable AI: Algorithmic Challenges and Opportunities / Oct 17, 2024 [video coming soon]</li> <li>Xiaolong Wang (UC San Diego) / Learning Humanoid Robots / Sep 19 2024 [video coming soon]</li> <li>Raymond Mooney (UT Austin) / Using Natural Language to Help Train Robots / Mar 8, 2024 [video coming soon]</li> <li>Amir Globerson (Tel Aviv University) / Knowledge in Large Language Models: Quantification, Validation and Dissection / Feb 2, 2024 [video coming soon]</li> <li>Eunsol Choi (UT Austin) / Knowledge Augmentation for Language Models / Nov 17, 2023 [video coming soon]</li> <li>Yoon Kim (MIT) / Large Language Models & Symbolic Structures / Nov 10, 2023 [video coming soon]</li> <li>Mark Yatskar (UPenn) / Inherent Interpretability via Language Model Guided Bottleneck Design / Oct 27, 2023 [video coming soon]</li> <li>Jacob Andreas (MIT) / Language Models as World Models? / Oct 13, 2023 [video coming soon]</li> <li>Yejin Choi (UW) / Common Sense: the Darker Matter of Language and Intelligence / Sep 8, 2023 [video coming soon]</li> <li>David Blei (Columbia) / Scaling and generalizing approximate Bayesian inference / April 28, 2023 [<a href="https://youtu.be/W7tlkq4rTRc">video</a>]</li> <li>Yiling Chen (Harvard) / Forecast Aggregation: Sample Complexity and Peer-Assessment-Based Improvements / April 21, 2023 [<a href="https://youtu.be/tGjmW-ydZgU">video</a>]</li> <li>Phebe Vayanos (University of Southern California) / Learning Optimal Policies for Online Allocation of Scarce Housing Resources from Data Collected in Deployment / April 14, 2023 [<a href="https://youtu.be/LF9SLDFdlgA">video</a>]</li> <li>Ruth Misener (Imperial College London) / Between formulations or: How I Learned to Stop Worrying and Love Parameters / February 17, 2023 [<a href="https://youtu.be/bC4PDG9EZA8">video</a>]</li> <li>Petar Durdevic (Aalborg University) / Waste Deep – Using Deep Learning methods to improve Wastewater Treatment / December 2, 2022 [<a href="https://youtu.be/9VHrun3y6vY">video</a>]</li> <li>Yoshua Bengio (Université de Montreal) / Reusable Modular and Causal Knowledge Representation for Lifelong Learning / November 4, 2022 [<a href="https://youtu.be/K8LNtTUsiMI">video</a>]</li> <li>Vivek Farias (MIT) / Markovian Interference and the Differences-in-Qs Estimator / October 28, 2022 [<a href="https://youtu.be/JYpWtUkuW_Y">video</a>]</li> <li>Wei Xu (Georgia Tech) / Importance of Data and Controllability in Neural Language Generation / September 23, 2022 [<a href="https://youtu.be/OTR94_8vSWQ">video</a>]</li> <li>Shuran Song (Columbia University) / Active Scene Understanding with Robot Interactions / March 5, 2021 [<a href="https://vod.video.cornell.edu/media/3.8.21+AI+Seminar+-+Spring+21+Shuran+Song/1_inv45h3t/180134371">video</a>] </li> <li>Sameer Singh (University of California, Irvine) / Evaluating and Testing Natural Language Processing Models / February 26, 2021 [<a href="https://vod.video.cornell.edu/media/2.26.21+Sameer+Singh,+University+of+California,+Irvine+/1_0otho6qf/180134371">video</a>] </li> <li> Raquel Fernández (University of Amsterdam) / Individual and Social Processes in Image Description Generation / February 19, 2021 [<a href="https://vod.video.cornell.edu/media/2.19.21+AI+Seminar+LMSS-++Raquel+Fern%C3%A1ndez%2C+University+of+Amsterdam/1_nq9tincg">video</a>] </li> <li>Jason Baldridge (Google Research) / Language Lifts Experience / December 4, 2020 [<a href="https://vod.video.cornell.edu/media/12+7+AI+Seminar+-+Fall+2020+Jason+Baldridge%2C+Google/1_1ifg85gd/180134371">video</a>] </li> <li>Yonatan Bisk (CMU) / ALFRED -- A Simulated Playground for Connecting Language, Action, and Perception / October 23, 2020 [<a href="https://vod.video.cornell.edu/media/10.23.20++AI+Seminar+-+Fall+2020A+Yonatan+Bisk/1_cyqbh8k3/180134371">video</a>] </li> <li>Zhou Yu (UC Davis) / Personalized Persuasive Dialog Systems / September 18, 2020</li> <li> Kyunghyun Cho (NYU/Facebook AI Research) / Inconsistency of a Recurrent Language Model: a Question I Forgot to Ask in 2014 / March 6, 2020 [<a href="https://youtu.be/JflBvMKfMiI">video</a>]</li> <li> Tom Kwiatkowski (Google AI) / New Challenges in Question Answering: Natural Questions and Going Beyond Word Matching / February 21, 2020</li> <li>Danqi Chen (Princeton) / Advancing Textual Question Answering / January 31, 2020</li> <li>Sam Bowman (NYU) / Task-Independent Language Understanding / September 27, 2019 [<a href="https://youtu.be/Ei_EKCDPYwQ">video</a>]</li> <li>Kathleen McKeown (Columbia) / Where Natural Language Processing Meets Societal Needs / September 19, 2019 (joint with DLI seminar)</li> <li>Noah Smith (UW/AI2) / Rational Recurrences for Empirical Natural Language Processing / September 13, 2019 [<a href="https://youtu.be/N0MEu2BSJc4">video</a>]</li> <li>Kristen Grauman (UT Austin/Facebook AI Research) / Anticipating the Unseen and Unheard for Embodied Perception / March 8, 2019 [<a href="https://youtu.be/cPeHJXXKFeg">video</a>]</li> <li>Richard Socher (Salesforce) / The Natural Language Decathlon: Multitask Learning as Question Answering / February 22, 2019 [<a href="https://youtu.be/dATBnJtWXOw">video</a>]</li> <li>Percy Liang (Stanford) / Can Language Robustify Learning? / February 8, 2019</li> <li>Bill Freeman (Google/MIT) / Learning from Sight and Sound / February 1, 2019 [<a href="https://youtu.be/hvH_UUNxFCI">video</a>]</li> <li>Igor Labutov (LAER AI) / Teaching Machines like we Teach People / October 26, 2018</li> <li>Dan Roth (U Penn) / Natural Language Understanding with Incidental Supervision / September 21, 2018 [<a href="https://youtu.be/64aS-BAxuYw">video</a>]</li> <li>Byron Boots (Georgia Tech) / Learning Perception and Control for Agile Off-Road Autonomous Driving / March 9, 2018 [<a href="https://youtu.be/1LtvOL6DOHU">video</a>]</li> <li>Olga Russakovsky (Princeton) / The Human Side of Computer Vision / February 23, 2018 [<a href="https://youtu.be/oriT_Sr0830">video</a>]</li> <li>Raymond Mooney (UT Austin) / Robots that Learn Grounded Language Through Interactive Dialog / Oct 6, 2017 [<a href="https://youtu.be/8ZUkF3dNURQ">video</a>]</li> </ul> <!-- <small><strong>Most videos are also available as a <a href="https://www.youtube.com/playlist?list=PLycW2Yy79JuxbQZ9uHEu_NS3cGNomhL2A">playlist</a>.</strong></small> --> <br /> <br /> <br /> </div><!-- /.container --> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10