CINXE.COM
Search results for: in-homogeneous
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: in-homogeneous</title> <meta name="description" content="Search results for: in-homogeneous"> <meta name="keywords" content="in-homogeneous"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="in-homogeneous" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="in-homogeneous"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 58</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: in-homogeneous</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> Divergence Regularization Method for Solving Ill-Posed Cauchy Problem for the Helmholtz Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benedict%20Barnes">Benedict Barnes</a>, <a href="https://publications.waset.org/abstracts/search?q=Anthony%20Y.%20Aidoo"> Anthony Y. Aidoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Divergence Regularization Method (DRM) is used to regularize the ill-posed Helmholtz equation where the boundary deflection is inhomogeneous in a Hilbert space H. The DRM incorporates a positive integer scaler which homogenizes the inhomogeneous boundary deflection in Cauchy problem of the Helmholtz equation. This ensures the existence, as well as, uniqueness of solution for the equation. The DRM restores all the three conditions of well-posedness in the sense of Hadamard. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=divergence%20regularization%20method" title="divergence regularization method">divergence regularization method</a>, <a href="https://publications.waset.org/abstracts/search?q=Helmholtz%20equation" title=" Helmholtz equation"> Helmholtz equation</a>, <a href="https://publications.waset.org/abstracts/search?q=ill-posed%20inhomogeneous%20Cauchy%20boundary%20conditions" title=" ill-posed inhomogeneous Cauchy boundary conditions"> ill-posed inhomogeneous Cauchy boundary conditions</a> </p> <a href="https://publications.waset.org/abstracts/137727/divergence-regularization-method-for-solving-ill-posed-cauchy-problem-for-the-helmholtz-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> Magnetic Field Generation in Inhomogeneous Plasma via Ponderomotive Force</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Shahi">Fatemeh Shahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Sharifian"> Mehdi Sharifian</a>, <a href="https://publications.waset.org/abstracts/search?q=Laia%20Shahrassai"> Laia Shahrassai</a>, <a href="https://publications.waset.org/abstracts/search?q=Elham%20Eskandari%20A."> Elham Eskandari A.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new mechanism is reported here for magnetic field generation in laser-plasma interaction by means of nonlinear ponderomotive force. The plasma considered here is unmagnetized inhomogeneous plasma with an exponentially decreasing profile. A damped periodic magnetic field with a relatively lower frequency is obtained using the ponderomotive force exerted on plasma electrons. Finally, with an electric field and by using Faraday’s law, the magnetic field profile in the plasma has been obtained. Because of the negative exponential density profile, the generated magnetic field is relatively slowly oscillating and damped through the plasma. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field%20generation" title="magnetic field generation">magnetic field generation</a>, <a href="https://publications.waset.org/abstracts/search?q=laser-plasma%20interaction" title=" laser-plasma interaction"> laser-plasma interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=ponderomotive%20force" title=" ponderomotive force"> ponderomotive force</a>, <a href="https://publications.waset.org/abstracts/search?q=inhomogeneous%20plasma" title=" inhomogeneous plasma"> inhomogeneous plasma</a> </p> <a href="https://publications.waset.org/abstracts/134152/magnetic-field-generation-in-inhomogeneous-plasma-via-ponderomotive-force" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> FEM Investigation of Inhomogeneous Wall Thickness Backward Extrusion for Aerosol Can Manufacturing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jemal%20Ebrahim%20Dessie">Jemal Ebrahim Dessie</a>, <a href="https://publications.waset.org/abstracts/search?q=Zsolt%20Lukacs"> Zsolt Lukacs</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The wall of the aerosol can is extruded from the backward extrusion process. Necking is another forming process stage developed on the can shoulder after the backward extrusion process. Due to the thinner thickness of the wall, buckling is the critical challenge for current pure aluminum aerosol can industries. Design and investigation of extrusion with inhomogeneous wall thickness could be the best solution for reducing and optimization of neck retraction numbers. FEM simulation of inhomogeneous wall thickness has been simulated through this investigation. From axisymmetric Deform-2D backward extrusion, an aerosol can with a thickness of 0.4 mm at the top and 0.33 mm at the bottom of the aerosol can have been developed. As the result, it can optimize the number of retractions of the necking process and manufacture defect-free aerosol can shoulder due to the necking process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerosol%20can" title="aerosol can">aerosol can</a>, <a href="https://publications.waset.org/abstracts/search?q=backward%20extrusion" title=" backward extrusion"> backward extrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=Deform-2D" title=" Deform-2D"> Deform-2D</a>, <a href="https://publications.waset.org/abstracts/search?q=necking" title=" necking"> necking</a> </p> <a href="https://publications.waset.org/abstracts/135808/fem-investigation-of-inhomogeneous-wall-thickness-backward-extrusion-for-aerosol-can-manufacturing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Dynamic Response around Inclusions in Infinitely Inhomogeneous Media</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinlai%20Bian">Jinlai Bian</a>, <a href="https://publications.waset.org/abstracts/search?q=Zailin%20Yang"> Zailin Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Guanxixi%20Jiang"> Guanxixi Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinzhu%20Li"> Xinzhu Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of elastic wave propagation in inhomogeneous medium has always been a classic problem. Due to the frequent occurrence of earthquakes, many economic losses and casualties have been caused, therefore, to prevent earthquake damage to people and reduce damage, this paper studies the dynamic response around the circular inclusion in the whole space with inhomogeneous modulus, the inhomogeneity of the medium is reflected in the shear modulus of the medium with the spatial position, and the density is constant, this method can be used to solve the problem of the underground buried pipeline. Stress concentration phenomena are common in aerospace and earthquake engineering, and the dynamic stress concentration factor (DSCF) is one of the main factors leading to material damage, one of the important applications of the theory of elastic dynamics is to determine the stress concentration in the body with discontinuities such as cracks, holes, and inclusions. At present, the methods include wave function expansion method, integral transformation method, integral equation method and so on. Based on the complex function method, the Helmholtz equation with variable coefficients is standardized by using conformal transformation method and wave function expansion method, the displacement and stress fields in the whole space with circular inclusions are solved in the complex coordinate system, the unknown coefficients are solved by using boundary conditions, by comparing with the existing results, the correctness of this method is verified, based on the superiority of the complex variable function theory to the conformal transformation, this method can be extended to study the inclusion problem of arbitrary shapes. By solving the dynamic stress concentration factor around the inclusions, the influence of the inhomogeneous parameters of the medium and the wavenumber ratio of the inclusions to the matrix on the dynamic stress concentration factor is analyzed. The research results can provide some reference value for the evaluation of nondestructive testing (NDT), oil exploration, seismic monitoring, and soil-structure interaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circular%20inclusions" title="circular inclusions">circular inclusions</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20variable%20function" title=" complex variable function"> complex variable function</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20stress%20concentration%20factor%20%28DSCF%29" title=" dynamic stress concentration factor (DSCF)"> dynamic stress concentration factor (DSCF)</a>, <a href="https://publications.waset.org/abstracts/search?q=inhomogeneous%20medium" title=" inhomogeneous medium "> inhomogeneous medium </a> </p> <a href="https://publications.waset.org/abstracts/116538/dynamic-response-around-inclusions-in-infinitely-inhomogeneous-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> Comparative Study of Soliton Collisions in Uniform and Nonuniform Magnetized Plasma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Renu%20Tomar">Renu Tomar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hitendra%20K.%20Malik"> Hitendra K. Malik</a>, <a href="https://publications.waset.org/abstracts/search?q=Raj%20P.%20Dahiya"> Raj P. Dahiya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Similar to the sound waves in air, plasmas support the propagation of ion waves, which evolve into the solitary structures when the effect of non linearity and dispersion are balanced. The ion acoustic solitary waves have been investigated in details in homogeneous plasmas, inhomogeneous plasmas, and magnetized plasmas. The ion acoustic solitary waves are also found to reflect from a density gradient or boundary present in the plasma after propagating. Another interesting feature of the solitary waves is their collision. In the present work, we carry out analytical calculations for the head-on collision of solitary waves in a magnetized plasma which has dust grains in addition to the ions and electrons. For this, we employ Poincar´e-Lighthill-Kuo (PLK) method. To lowest nonlinear order, the problem of colliding solitary waves leads to KdV (modified KdV) equations and also yields the phase shifts that occur in the interaction. These calculations are accomplished for the uniform and nonuniform plasmas, and the results on the soliton properties are discussed in detail. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inhomogeneous%20magnetized%20plasma" title="inhomogeneous magnetized plasma">inhomogeneous magnetized plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=dust%20charging" title=" dust charging"> dust charging</a>, <a href="https://publications.waset.org/abstracts/search?q=soliton%20collisions" title=" soliton collisions"> soliton collisions</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetized%20plasma" title=" magnetized plasma"> magnetized plasma</a> </p> <a href="https://publications.waset.org/abstracts/14740/comparative-study-of-soliton-collisions-in-uniform-and-nonuniform-magnetized-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14740.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> Home Range and Spatial Interaction Modelling of Black Bears</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fekadu%20L.%20Bayisa">Fekadu L. Bayisa</a>, <a href="https://publications.waset.org/abstracts/search?q=Elvan%20Ceyhan"> Elvan Ceyhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Todd%20D.%20Steury"> Todd D. Steury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Interaction between individuals within the same species is an important component of population dynamics. An interaction can be either static (based on spatial overlap) or dynamic (based on movement interactions). Using GPS collar data, we can quantify both static and dynamic interactions between black bears. The goal of this work is to determine the level of black bear interactions using the 95% and 50% home ranges, as well as to model black bear spatial interactions, which could be attraction, avoidance/repulsion, or a lack of interaction at all, to gain new insights and improve our understanding of ecological processes. Recent methodological developments in home range estimation, inhomogeneous multitype/cross-type summary statistics, and envelope testing methods are explored to study the nature of black bear interactions. Our findings, in general, indicate that the black bears of one type in our data set tend to cluster around another type. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autocorrelated%20kernel%20density%20estimator" title="autocorrelated kernel density estimator">autocorrelated kernel density estimator</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-type%20summary%20function" title=" cross-type summary function"> cross-type summary function</a>, <a href="https://publications.waset.org/abstracts/search?q=inhomogeneous%20multitype%20Poisson%20process" title=" inhomogeneous multitype Poisson process"> inhomogeneous multitype Poisson process</a>, <a href="https://publications.waset.org/abstracts/search?q=kernel%20density%20estimator" title=" kernel density estimator"> kernel density estimator</a>, <a href="https://publications.waset.org/abstracts/search?q=minimum%20convex%20polygon" title=" minimum convex polygon"> minimum convex polygon</a>, <a href="https://publications.waset.org/abstracts/search?q=pointwise%20and%20global%20envelope%20tests" title=" pointwise and global envelope tests"> pointwise and global envelope tests</a> </p> <a href="https://publications.waset.org/abstracts/164437/home-range-and-spatial-interaction-modelling-of-black-bears" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Microstructural Evidences for Exhaustion Theory of Low Temperature Creep in Martensitic Steels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nagarjuna%20Remalli">Nagarjuna Remalli</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Brandt"> Robert Brandt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Down-sizing of combustion engines in automobiles are prevailed owing to required increase in efficiency. This leads to a stress increment on valve springs, which affects their intended function due to an increase in relaxation. High strength martensitic steels are used for valve spring applications. Recent investigations unveiled that low temperature creep (LTC) in martensitic steels obey a logarithmic creep law. The exhaustion theory links the logarithmic creep behavior to an activation energy which is characteristic for any given time during creep. This activation energy increases with creep strain due to barriers of low activation energies exhausted during creep. The assumption of the exhaustion theory is that the material is inhomogeneous in microscopic scale. According to these assumptions it is anticipated that small obstacles (e. g. ε–carbides) having a wide range of size distribution are non-uniformly distributed in the materials. X-ray diffraction studies revealed the presence of ε–carbides in high strength martensitic steels. In this study, high strength martensitic steels that are crept in the temperature range of 75 – 150 °C were investigated with the aid of a transmission electron microscope for the evidence of an inhomogeneous distribution of obstacles having different size to examine the validation of exhaustion theory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=creep%20mechanisms" title="creep mechanisms">creep mechanisms</a>, <a href="https://publications.waset.org/abstracts/search?q=exhaustion%20theory" title=" exhaustion theory"> exhaustion theory</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20temperature%20creep" title=" low temperature creep"> low temperature creep</a>, <a href="https://publications.waset.org/abstracts/search?q=martensitic%20steels" title=" martensitic steels"> martensitic steels</a> </p> <a href="https://publications.waset.org/abstracts/85665/microstructural-evidences-for-exhaustion-theory-of-low-temperature-creep-in-martensitic-steels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85665.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> Mechanical Characterization of Porcine Skin with the Finite Element Method Based Inverse Optimization Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Djamel%20Remache">Djamel Remache</a>, <a href="https://publications.waset.org/abstracts/search?q=Serge%20Dos%20Santos"> Serge Dos Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Cliez"> Michael Cliez</a>, <a href="https://publications.waset.org/abstracts/search?q=Michel%20Gratton"> Michel Gratton</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrick%20Chabrand"> Patrick Chabrand</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Marie%20Rossi"> Jean-Marie Rossi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Louis%20Milan"> Jean-Louis Milan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Skin tissue is an inhomogeneous and anisotropic material. Uniaxial tensile testing is one of the primary testing techniques for the mechanical characterization of skin at large scales. In order to predict the mechanical behavior of materials, the direct or inverse analytical approaches are often used. However, in case of an inhomogeneous and anisotropic material as skin tissue, analytical approaches are not able to provide solutions. The numerical simulation is thus necessary. In this work, the uniaxial tensile test and the FEM (finite element method) based inverse method were used to identify the anisotropic mechanical properties of porcine skin tissue. The uniaxial tensile experiments were performed using Instron 8800 tensile machine®. The uniaxial tensile test was simulated with FEM, and then the inverse optimization approach (or the inverse calibration) was used for the identification of mechanical properties of the samples. Experimentally results were compared to finite element solutions. The results showed that the finite element model predictions of the mechanical behavior of the tested skin samples were well correlated with experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanical%20skin%20tissue%20behavior" title="mechanical skin tissue behavior">mechanical skin tissue behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=uniaxial%20tensile%20test" title=" uniaxial tensile test"> uniaxial tensile test</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20optimization%20approach" title=" inverse optimization approach"> inverse optimization approach</a> </p> <a href="https://publications.waset.org/abstracts/65920/mechanical-characterization-of-porcine-skin-with-the-finite-element-method-based-inverse-optimization-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> Research on Structural Changes in Plastic Deformation during Rolling and Crimping of Tubes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hein%20Win%20Zaw">Hein Win Zaw</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today, the advanced strategies for aircraft production technology potentially need the higher performance, and on the other hand, those strategies and engineering technologies should meet considerable process and reduce of production costs. Thus, professionals who are working in these scopes are attempting to develop new materials to improve the manufacturability of designs, the creation of new technological processes, tools and equipment. This paper discusses about the research on structural changes in plastic deformation during rotary expansion and crimp of pipes. Pipelines are experiencing high pressure and pulsating load. That is why, it is high demands on the mechanical properties of the material, the quality of the external and internal surfaces, preserve cross-sectional shape and the minimum thickness of the pipe wall are taking into counts. In the manufacture of pipes, various operations: distribution, crimping, bending, etc. are used. The most widely used at various semi-products, connecting elements found the process of rotary expansion and crimp of pipes. In connection with the use of high strength materials and less-plastic, these conventional techniques do not allow obtaining high-quality parts, and also have a low economic efficiency. Therefore, research in this field is relevantly considerable to develop in advanced. Rotary expansion and crimp of pipes are accompanied by inhomogeneous plastic deformation, which leads to structural changes in the material, causes its deformation hardening, by this result changes the operational reliability of the product. Parts of the tube obtained by rotary expansion and crimp differ by multiplicity of form and characterized by various diameter in the various section, which formed in the result of inhomogeneous plastic deformation. The reliability of the coupling, obtained by rotary expansion and crimp, is determined by the structural arrangement of material formed by the formation process; there is maximum value of deformation, the excess of which is unacceptable. The structural state of material in this condition is determined by technological mode of formation in the rotary expansion and crimp. Considering the above, objective of the present study is to investigate the structural changes at different levels of plastic deformation, accompanying rotary expansion and crimp, and the analysis of stress concentrators of different scale levels, responsible for the formation of the primary zone of destruction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plastic%20deformation" title="plastic deformation">plastic deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=rolling%20of%20tubes" title=" rolling of tubes"> rolling of tubes</a>, <a href="https://publications.waset.org/abstracts/search?q=crimping%20of%20tubes" title=" crimping of tubes"> crimping of tubes</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20changes" title=" structural changes"> structural changes</a> </p> <a href="https://publications.waset.org/abstracts/44251/research-on-structural-changes-in-plastic-deformation-during-rolling-and-crimping-of-tubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> Study of Motion of Impurity Ions in Poly(Vinylidene Fluoride) from View Point of Microstructure of Polymer Solid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuichi%20Anada">Yuichi Anada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrical properties of polymer solid is characterized by dielectric relaxation phenomenon. Complex permittivity shows a high dependence on frequency of external stimulation in the broad frequency range from 0.1mHz to 10GHz. The complex-permittivity dispersion gives us a lot of useful information about the molecular motion of polymers and the structure of polymer aggregates. However, the large dispersion of permittivity at low frequencies due to DC conduction of impurity ions often covers the dielectric relaxation in polymer solid. In experimental investigation, many researchers have tried to remove the DC conduction experimentally or analytically for a long time. On the other hand, our laboratory chose another way of research for this problem from the point of view of a reversal in thinking. The way of our research is to use the impurity ions in the DC conduction as a probe to detect the motion of polymer molecules and to investigate the structure of polymer aggregates. In addition to the complex permittivity, the electric modulus and the conductivity relaxation time are strong tools for investigating the ionic motion in DC conduction. In a non-crystalline part of melt-crystallized polymers, free spaces with inhomogeneous size exist between crystallites. As the impurity ions exist in the non-crystalline part and move through these inhomogeneous free spaces, the motion of ions reflects the microstructure of non-crystalline part. The ionic motion of impurity ions in poly(vinylidene fluoride) (PVDF) is investigated in this study. Frequency dependence of the loss permittivity of PVDF shows a characteristic of the direct current (DC) conduction below 1 kHz of frequency at 435 K. The electric modulus-frequency curve shows a characteristic of the dispersion with the single conductivity relaxation time. Namely, it is the Debye-type dispersion. The conductivity relaxation time analyzed from this curve is 0.00003 s at 435 K. From the plot of conductivity relaxation time of PVDF together with the other polymers against permittivity, it was found that there are two group of polymers; one of the group is characterized by small conductivity relaxation time and large permittivity, and another is characterized by large conductivity relaxation time and small permittivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conductivity%20relaxation%20time" title="conductivity relaxation time">conductivity relaxation time</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20modulus" title=" electric modulus"> electric modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20motion" title=" ionic motion"> ionic motion</a>, <a href="https://publications.waset.org/abstracts/search?q=permittivity" title=" permittivity"> permittivity</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28vinylidene%20fluoride%29" title=" poly(vinylidene fluoride)"> poly(vinylidene fluoride)</a>, <a href="https://publications.waset.org/abstracts/search?q=DC%20conduction" title=" DC conduction"> DC conduction</a> </p> <a href="https://publications.waset.org/abstracts/87232/study-of-motion-of-impurity-ions-in-polyvinylidene-fluoride-from-view-point-of-microstructure-of-polymer-solid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87232.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> Size Distribution Effect of InAs/InP Self–Organized Quantum Dots on Optical Properties </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelkader%20Nouri">Abdelkader Nouri</a>, <a href="https://publications.waset.org/abstracts/search?q=M%E2%80%99hamed%20Bouslama"> M’hamed Bouslama</a>, <a href="https://publications.waset.org/abstracts/search?q=Faouzi%20Saidi"> Faouzi Saidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Maaref"> Hassan Maaref</a>, <a href="https://publications.waset.org/abstracts/search?q=Michel%20Gendry"> Michel Gendry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Self-organized InAs quantum dots (QDs) have been grown on 3,1% InP (110) lattice mismatched substrate by Solid Source Molecular Beam Epitaxy (SSMBE). Stranski-Krastanov mode growth has been used to create self-assembled 3D islands on InAs wetting layer (WL). The optical quality depending on the temperature and power is evaluated. In addition, Atomic Force Microscopy (AFM) images shows inhomogeneous island dots size distribution due to temperature coalescence. The quantum size effect was clearly observed through the spectra photoluminescence (PL) shape. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AFM" title="AFM">AFM</a>, <a href="https://publications.waset.org/abstracts/search?q=InAs%20QDs" title=" InAs QDs"> InAs QDs</a>, <a href="https://publications.waset.org/abstracts/search?q=PL" title=" PL"> PL</a>, <a href="https://publications.waset.org/abstracts/search?q=SSMBE" title=" SSMBE"> SSMBE</a> </p> <a href="https://publications.waset.org/abstracts/20670/size-distribution-effect-of-inasinp-self-organized-quantum-dots-on-optical-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20670.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">686</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> DFT Study of Secondary Phase of Cu2ZnSnS4 in Solar Cell: Cu2SnS3</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mouna%20Mesbahi">Mouna Mesbahi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Loutfi%20Benkhedir"> M. Loutfi Benkhedir </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In CZTS films solar cell, the preferable reaction between Cu and sulfur vapor was likely to be induced by out diffusion of the bottom Cu component to the surface; this would lead to inhomogeneous distribution of the Cu component to form the Cu2SnS3 secondary phase and formation of many voids and crevices in the resulting CZTS film; which is also the cause of the decline in performance. In this work we study the electronic and optical properties of Cu2SnS3. For this purpose we used the Wien2k code based on the theory of density functional theory (DFT) with the modified Becke-Johnson exchange potential mBJ and the Hubbard potential individually or combined. We have found an energy gap 0.92 eV. The results are in good agreement with experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cu2SnS3" title="Cu2SnS3">Cu2SnS3</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20and%20optical%20properties" title=" electronic and optical properties"> electronic and optical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=mBJ%2BU" title=" mBJ+U"> mBJ+U</a>, <a href="https://publications.waset.org/abstracts/search?q=WIEN2K" title=" WIEN2K"> WIEN2K</a> </p> <a href="https://publications.waset.org/abstracts/18915/dft-study-of-secondary-phase-of-cu2znsns4-in-solar-cell-cu2sns3" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18915.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">559</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> Temperature-Dependent Barrier Characteristics of Inhomogeneous Pd/n-GaN Schottky Barrier Diodes Surface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Al-Heuseen">K. Al-Heuseen</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Hashim"> M. R. Hashim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current-voltage (I-V) characteristics of Pd/n-GaN Schottky barrier were studied at temperatures over room temperature (300-470K). The values of ideality factor (n), zero-bias barrier height (φB0), flat barrier height (φBF) and series resistance (Rs) obtained from I-V-T measurements were found to be strongly temperature dependent while (φBo) increase, (n), (φBF) and (Rs) decrease with increasing temperature. The apparent Richardson constant was found to be 2.1x10-9 Acm-2K-2 and mean barrier height of 0.19 eV. After barrier height inhomogeneities correction, by assuming a Gaussian distribution (GD) of the barrier heights, the Richardson constant and the mean barrier height were obtained as 23 Acm-2K-2 and 1.78eV, respectively. The corrected Richardson constant was very closer to theoretical value of 26 Acm-2K-2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20properties" title="electrical properties">electrical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20distribution" title=" Gaussian distribution"> Gaussian distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=Pd-GaN%20Schottky%20diodes" title=" Pd-GaN Schottky diodes"> Pd-GaN Schottky diodes</a>, <a href="https://publications.waset.org/abstracts/search?q=thermionic%20emission" title=" thermionic emission"> thermionic emission</a> </p> <a href="https://publications.waset.org/abstracts/7401/temperature-dependent-barrier-characteristics-of-inhomogeneous-pdn-gan-schottky-barrier-diodes-surface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7401.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> Field Scale Simulation Study of Miscible Water Alternating CO2 Injection Process in Fractured Reservoirs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hooman%20Fallah">Hooman Fallah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vast amounts of world oil reservoirs are in natural fractured reservoirs. There are different methods for increasing recovery from fractured reservoirs. Miscible injection of water alternating CO2 is a good choice among this methods. In this method, water and CO2 slugs are injected alternatively in reservoir as miscible agent into reservoir. This paper studies water injection scenario and miscible injection of water and CO2 in a two dimensional, inhomogeneous fractured reservoir. The results show that miscible water alternating CO2¬ gas injection leads to 3.95% increase in final oil recovery and total water production decrease of 3.89% comparing to water injection scenario. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=simulation%20study" title="simulation study">simulation study</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2" title=" CO2"> CO2</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20alternating%20gas%20injection" title=" water alternating gas injection"> water alternating gas injection</a>, <a href="https://publications.waset.org/abstracts/search?q=fractured%20reservoirs" title=" fractured reservoirs"> fractured reservoirs</a> </p> <a href="https://publications.waset.org/abstracts/27168/field-scale-simulation-study-of-miscible-water-alternating-co2-injection-process-in-fractured-reservoirs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27168.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> Optimal Relaxation Parameters for Obtaining Efficient Iterative Methods for the Solution of Electromagnetic Scattering Problems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadaniela%20Egidi">Nadaniela Egidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Pierluigi%20Maponi"> Pierluigi Maponi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The approximate solution of a time-harmonic electromagnetic scattering problem for inhomogeneous media is required in several application contexts, and its two-dimensional formulation is a Fredholm integral equation of the second kind. This integral equation provides a formulation for the direct scattering problem, but it has to be solved several times also in the numerical solution of the corresponding inverse scattering problem. The discretization of this Fredholm equation produces large and dense linear systems that are usually solved by iterative methods. In order to improve the efficiency of these iterative methods, we use the Symmetric SOR preconditioning, and we propose an algorithm for the evaluation of the associated relaxation parameter. We show the efficiency of the proposed algorithm by several numerical experiments, where we use two Krylov subspace methods, i.e., Bi-CGSTAB and GMRES. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fredholm%20integral%20equation" title="Fredholm integral equation">Fredholm integral equation</a>, <a href="https://publications.waset.org/abstracts/search?q=iterative%20method" title=" iterative method"> iterative method</a>, <a href="https://publications.waset.org/abstracts/search?q=preconditioning" title=" preconditioning"> preconditioning</a>, <a href="https://publications.waset.org/abstracts/search?q=scattering%20problem" title=" scattering problem"> scattering problem</a> </p> <a href="https://publications.waset.org/abstracts/142902/optimal-relaxation-parameters-for-obtaining-efficient-iterative-methods-for-the-solution-of-electromagnetic-scattering-problems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142902.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> Optical Switching Based On Bragg Solitons in A Nonuniform Fiber Bragg Grating</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulatif%20Abdusalam">Abdulatif Abdusalam</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Shaban"> Mohamed Shaban</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we consider the nonlinear pulse propagation through a nonuniform birefringent fiber Bragg grating (FBG) whose index modulation depth varies along the propagation direction. Here, the pulse propagation is governed by the nonlinear birefringent coupled mode (NLBCM) equations. To form the Bragg soliton outside the photonic bandgap (PBG), the NLBCM equations are reduced to the well known NLS type equation by multiple scale analysis. As we consider the pulse propagation in a nonuniform FBG, the pulse propagation outside the PBG is governed by inhomogeneous NLS (INLS) rather than NLS. We, then, discuss the formation of soliton in the FBG known as Bragg soliton whose central frequency lies outside but close to the PBG of the grating structure. Further, we discuss Bragg soliton compression due to a delicate balance between the SPM and the varying grating induced dispersion. In addition, Bragg soliton collision, Bragg soliton switching and possible logic gates have also been discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bragg%20%20grating" title="Bragg grating">Bragg grating</a>, <a href="https://publications.waset.org/abstracts/search?q=non%20uniform%20%20fiber" title=" non uniform fiber"> non uniform fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=non%20linear%20pulse" title=" non linear pulse"> non linear pulse</a> </p> <a href="https://publications.waset.org/abstracts/2177/optical-switching-based-on-bragg-solitons-in-a-nonuniform-fiber-bragg-grating" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2177.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> A Large-Strain Thermoviscoplastic Damage Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jo%C3%A3o%20Paulo%20Pascon">João Paulo Pascon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A constitutive model accounting for large strains, thermoviscoplasticity, and ductile damage evolution is proposed in the present work. To this end, a fully Lagrangian framework is employed, considering plane stress conditions and multiplicative split of the deformation gradient. The full model includes Gurson’s void growth, nucleation and coalescence, plastic work heating, strain and strain-rate hardening, thermal softening, and heat conductivity. The contribution of the work is the combination of all the above-mentioned features within the finite-strain setting. The model is implemented in a computer code using triangular finite elements and nonlinear analysis. Two mechanical examples involving ductile damage and finite strain levels are analyzed: an inhomogeneous tension specimen and the necking problem. Results demonstrate the capabilities of the developed formulation regarding ductile fracture and large deformations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ductile%20damage%20model" title="ductile damage model">ductile damage model</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20strains" title=" large strains"> large strains</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoviscoplasticity" title=" thermoviscoplasticity"> thermoviscoplasticity</a> </p> <a href="https://publications.waset.org/abstracts/170649/a-large-strain-thermoviscoplastic-damage-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> Continuous-Time and Discrete-Time Singular Value Decomposition of an Impulse Response Function</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rogelio%20Luck">Rogelio Luck</a>, <a href="https://publications.waset.org/abstracts/search?q=Yucheng%20Liu"> Yucheng Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes the continuous-time singular value decomposition (SVD) for the impulse response function, a special kind of Green’s functions e⁻⁽ᵗ⁻ ᵀ⁾, in order to find a set of singular functions and singular values so that the convolutions of such function with the set of singular functions on a specified domain are the solutions to the inhomogeneous differential equations for those singular functions. A numerical example was illustrated to verify the proposed method. Besides the continuous-time SVD, a discrete-time SVD is also presented for the impulse response function, which is modeled using a Toeplitz matrix in the discrete system. The proposed method has broad applications in signal processing, dynamic system analysis, acoustic analysis, thermal analysis, as well as macroeconomic modeling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=singular%20value%20decomposition" title="singular value decomposition">singular value decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=impulse%20response%20function" title=" impulse response function"> impulse response function</a>, <a href="https://publications.waset.org/abstracts/search?q=Green%E2%80%99s%20function" title=" Green’s function "> Green’s function </a>, <a href="https://publications.waset.org/abstracts/search?q=Toeplitz%20matrix" title=" Toeplitz matrix "> Toeplitz matrix </a>, <a href="https://publications.waset.org/abstracts/search?q=Hankel%20matrix" title=" Hankel matrix"> Hankel matrix</a> </p> <a href="https://publications.waset.org/abstracts/127083/continuous-time-and-discrete-time-singular-value-decomposition-of-an-impulse-response-function" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127083.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Graded Orientation of the Linear Polymers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Levan%20Nadareishvili">Levan Nadareishvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Roland%20Bakuradze"> Roland Bakuradze</a>, <a href="https://publications.waset.org/abstracts/search?q=Barbara%20Kilosanidze"> Barbara Kilosanidze</a>, <a href="https://publications.waset.org/abstracts/search?q=Nona%20Topuridze"> Nona Topuridze</a>, <a href="https://publications.waset.org/abstracts/search?q=Liana%20Sharashidze"> Liana Sharashidze</a>, <a href="https://publications.waset.org/abstracts/search?q=Ineza%20Pavlenishvili"> Ineza Pavlenishvili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Some regularities of formation of a new structural state of the thermoplastic polymers-gradually oriented (stretched) state (GOS) are discussed. Transition into GOS is realized by the graded oriented stretching-by action of inhomogeneous mechanical field on the isotropic linear polymers or by zonal stretching that is implemented on a standard tensile-testing machine with using a specially designed zone stretching device (ZSD). Both technical approaches (especially zonal stretching method) allows to manage the such quantitative parameters of gradually oriented polymers as a range of change in relative elongation/orientation degree, length of this change and profile (linear, hyperbolic, parabolic, logarithmic, etc.). Uniaxial graded stretching method should be considered as an effective technological solution to create polymer materials with a predetermined gradient of physical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=controlled%20graded%20stretching" title="controlled graded stretching">controlled graded stretching</a>, <a href="https://publications.waset.org/abstracts/search?q=gradually%20oriented%20state" title=" gradually oriented state"> gradually oriented state</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20polymers" title=" linear polymers"> linear polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=zone%20stretching%20device" title=" zone stretching device"> zone stretching device</a> </p> <a href="https://publications.waset.org/abstracts/15320/graded-orientation-of-the-linear-polymers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15320.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> Recrystallization Microstructure Studies of Cold-Rolled Ta0.5Nb0.5Hf0.5ZrTi1.5 Non-Equiatomic Refractory High Entropy Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Veeresham%20Mokali">Veeresham Mokali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recrystallization microstructure and grain growth studies of Ta₀.₅Nb₀.₅Hf₀.₅ZrTi₁.₅ refractory high entropy alloy have been explored in the present work. The as-cast Ta₀.₅Nb₀.₅Hf₀.₅ZrTi₁.₅ alloy was cold-rolled to 90% in several passes at room temperature and further subjected to annealing treatment for recrystallization at 800°C, 1000°C, 1250°C, and 1400°C temperatures for one hour. However, the characterization of heavily cold-rolled and annealed condition specimens was done using scanning electron microscopy (SEM-EBSD). The cold-rolled specimens showed the development of an inhomogeneous microstructure. Upon annealing, recrystallized microstructures were achieved; in addition to that, the coarsening of microstructure with raising annealing temperature noticed in the range of 800°C – 1400°C annealed temperatures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=refractory%20high%20entropy%20alloys" title="refractory high entropy alloys">refractory high entropy alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=cold-rolling" title=" cold-rolling"> cold-rolling</a>, <a href="https://publications.waset.org/abstracts/search?q=recrystallization" title=" recrystallization"> recrystallization</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/138947/recrystallization-microstructure-studies-of-cold-rolled-ta05nb05hf05zrti15-non-equiatomic-refractory-high-entropy-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Modeling of Radiofrequency Nerve Lesioning in Inhomogeneous Media</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nour%20Ismail">Nour Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahar%20El%20Kardawy"> Sahar El Kardawy</a>, <a href="https://publications.waset.org/abstracts/search?q=Bassant%20Badwy"> Bassant Badwy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radiofrequency (RF) lesioning of nerves have been commonly used to alleviate chronic pain, where RF current preventing transmission of pain signals through the nerve by heating the nerve causing the pain. There are some factors that affect the temperature distribution and the nerve lesion size, one of these factors is the inhomogeneities in the tissue medium. Our objective is to calculate the temperature distribution and the nerve lesion size in a nonhomogenous medium surrounding the RF electrode. A two 3-D finite element models are used to compare the temperature distribution in the homogeneous and nonhomogeneous medium. Also the effect of temperature-dependent electric conductivity on maximum temperature and lesion size is observed. Results show that the presence of a nonhomogeneous medium around the RF electrode has a valuable effect on the temperature distribution and lesion size. The dependency of electric conductivity on tissue temperature increased lesion size. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20model" title="finite element model">finite element model</a>, <a href="https://publications.waset.org/abstracts/search?q=nerve%20lesioning" title=" nerve lesioning"> nerve lesioning</a>, <a href="https://publications.waset.org/abstracts/search?q=pain%20relief" title=" pain relief"> pain relief</a>, <a href="https://publications.waset.org/abstracts/search?q=radiofrequency%20lesion" title=" radiofrequency lesion"> radiofrequency lesion</a> </p> <a href="https://publications.waset.org/abstracts/1842/modeling-of-radiofrequency-nerve-lesioning-in-inhomogeneous-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1842.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> Finding the Elastic Field in an Arbitrary Anisotropic Media by Implementing Accurate Generalized Gaussian Quadrature Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Kabir">Hossein Kabir</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Hossein%20Hassanpour%20Mati-Kolaie"> Amir Hossein Hassanpour Mati-Kolaie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current study, the elastic field in an anisotropic elastic media is determined by implementing a general semi-analytical method. In this specific methodology, the displacement field is computed as a sum of finite functions with unknown coefficients. These aforementioned functions satisfy exactly both the homogeneous and inhomogeneous boundary conditions in the proposed media. It is worth mentioning that the unknown coefficients are determined by implementing the principle of minimum potential energy. The numerical integration is implemented by employing the Generalized Gaussian Quadrature solution. Furthermore, with the aid of the calculated unknown coefficients, the displacement field, as well as the other parameters of the elastic field, are obtainable as well. Finally, the comparison of the previous analytical method with the current semi-analytical method proposes the efficacy of the present methodology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anisotropic%20elastic%20media" title="anisotropic elastic media">anisotropic elastic media</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-analytical%20method" title=" semi-analytical method"> semi-analytical method</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20field" title=" elastic field"> elastic field</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20gaussian%20quadrature%20solution" title=" generalized gaussian quadrature solution"> generalized gaussian quadrature solution</a> </p> <a href="https://publications.waset.org/abstracts/74780/finding-the-elastic-field-in-an-arbitrary-anisotropic-media-by-implementing-accurate-generalized-gaussian-quadrature-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74780.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> Spatial Scale of Clustering of Residential Burglary and Its Dependence on Temporal Scale</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20A.%20Alazawi">Mohammed A. Alazawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shiguo%20Jiang"> Shiguo Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Steven%20F.%20Messner"> Steven F. Messner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Research has long focused on two main spatial aspects of crime: spatial patterns and spatial processes. When analyzing these patterns and processes, a key issue has been to determine the proper spatial scale. In addition, it is important to consider the possibility that these patterns and processes might differ appreciably for different temporal scales and might vary across geographic units of analysis. We examine the spatial-temporal dependence of residential burglary. This dependence is tested at varying geographical scales and temporal aggregations. The analyses are based on recorded incidents of crime in Columbus, Ohio during the 1994-2002 period. We implement point pattern analysis on the crime points using Ripley’s K function. The results indicate that spatial point patterns of residential burglary reveal spatial scales of clustering relatively larger than the average size of census tracts of the study area. Also, spatial scale is independent of temporal scale. The results of our analyses concerning the geographic scale of spatial patterns and processes can inform the development of effective policies for crime control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inhomogeneous%20K%20function" title="inhomogeneous K function">inhomogeneous K function</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20burglary" title=" residential burglary"> residential burglary</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20point%20pattern" title=" spatial point pattern"> spatial point pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20scale" title=" spatial scale"> spatial scale</a>, <a href="https://publications.waset.org/abstracts/search?q=temporal%20scale" title=" temporal scale"> temporal scale</a> </p> <a href="https://publications.waset.org/abstracts/92371/spatial-scale-of-clustering-of-residential-burglary-and-its-dependence-on-temporal-scale" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92371.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> A New Complex Method for Integrated Warehouse Design in Aspect of Dynamic and Static Capacity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tamas%20Hartvanyi">Tamas Hartvanyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zoltan%20Andras%20Nagy"> Zoltan Andras Nagy</a>, <a href="https://publications.waset.org/abstracts/search?q=Miklos%20Szabo"> Miklos Szabo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The dynamic and static capacity are two opposing aspect of warehouse design. Static capacity optimization aims to maximize the space-usage for goods storing, while dynamic capacity needs more free place to handling them. They are opposing by the building structure and the area utilization. According to Pareto principle: the 80% of the goods are the 20% of the variety. From the origin of this statement, it worth to store the big amount of same products by fulfill the space with minimal corridors, meanwhile the rest 20% of goods have the 80% variety of the whole range, so there is more important to be fast-reachable instead of the space utilizing, what makes the space fulfillment numbers worse. The warehouse design decisions made in present practice by intuitive and empiric impressions, the planning method is formed to one selected technology, making this way the structure of the warehouse homogeny. Of course the result can’t be optimal for the inhomogeneous demands. A new innovative model based on our research will be introduced in this paper to describe the technic capacities, what makes possible to define optimal cluster of technology. It is able to optimize the space fulfillment and the dynamic operation together with this cluster application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=warehouse" title="warehouse">warehouse</a>, <a href="https://publications.waset.org/abstracts/search?q=warehouse%20capacity" title=" warehouse capacity"> warehouse capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=warehouse%20design%20method" title=" warehouse design method"> warehouse design method</a>, <a href="https://publications.waset.org/abstracts/search?q=warehouse%20optimization" title=" warehouse optimization"> warehouse optimization</a> </p> <a href="https://publications.waset.org/abstracts/127517/a-new-complex-method-for-integrated-warehouse-design-in-aspect-of-dynamic-and-static-capacity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127517.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Particle and Photon Trajectories near the Black Hole Immersed in the Nonstatic Cosmological Background</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elena%20M.%20Kopteva">Elena M. Kopteva</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavlina%20Jaluvkova"> Pavlina Jaluvkova</a>, <a href="https://publications.waset.org/abstracts/search?q=Zdenek%20Stuchlik"> Zdenek Stuchlik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The question of constructing a consistent model of the cosmological black hole remains to be unsolved and still attracts the interest of cosmologists as far as it is important in a wide set of research problems including the problem of the black hole horizon dynamics, the problem of interplay between cosmological expansion and local gravity, the problem of structure formation in the early universe etc. In this work, the model of the cosmological black hole is built on the basis of the exact solution of the Einstein equations for the spherically symmetric inhomogeneous dust distribution in the approach of the mass function use. Possible trajectories for massive particles and photons near the black hole immersed in the nonstatic dust cosmological background are investigated in frame of the obtained model. The reference system of distant galaxy comoving to cosmological expansion combined with curvature coordinates is used, so that the resulting metric becomes nondiagonal and involves both proper ‘cosmological’ time and curvature spatial coordinates. For this metric the geodesic equations are analyzed for the test particles and photons, and the respective trajectories are built. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exact%20solutions%20for%20Einstein%20equations" title="exact solutions for Einstein equations">exact solutions for Einstein equations</a>, <a href="https://publications.waset.org/abstracts/search?q=Lemaitre-Tolman-Bondi%20solution" title=" Lemaitre-Tolman-Bondi solution"> Lemaitre-Tolman-Bondi solution</a>, <a href="https://publications.waset.org/abstracts/search?q=cosmological%20black%20holes" title=" cosmological black holes"> cosmological black holes</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20and%20photon%20trajectories" title=" particle and photon trajectories"> particle and photon trajectories</a> </p> <a href="https://publications.waset.org/abstracts/63353/particle-and-photon-trajectories-near-the-black-hole-immersed-in-the-nonstatic-cosmological-background" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63353.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Case-Wise Investigation of Body-Wave Propagation in a Cross-Anisotropic Soil Exhibiting Inhomogeneity along Depth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sumit%20Kumar%20Vishawakarma">Sumit Kumar Vishawakarma</a>, <a href="https://publications.waset.org/abstracts/search?q=Tapas%20Ranjan%20%20Panihari"> Tapas Ranjan Panihari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article investigates the propagation behavior of SV-wave, SH-wave, and P-wave in a continuously inhomogeneous cross-anisotropic material, where the material properties such as Young's moduli, shear modulus, and density vary as an arbitrary continuous function of depth. In the considered model, Hook's law, strain-displacement relations along with equilibrium equations have been used to derive the governing equation. The mathematical formulation of this physical problem gives rise to an eigenvalue problem with displacement components as fundamental variables. This leads to achieving the closed-form expressions for quasi-wave velocities of SV-wave, SH-wave, and P-wave in the considered framework. These characteristics of wave propagation along with the above-stated variation have been scrutinized based on their numerical results. This parametric study reveals that wave velocity remarkably fluctuates as the magnitude of inhomogeneity parameters increases and decreases. The prominent effect has been shown depicting the dependence of wave velocity on the degree of material anisotropy. The influence of phase angle and depth of the medium has been remarkably established. The present study may facilitate the theoretical foundation and practical application in the field of earthquake source mechanisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cross-anisotropic" title="cross-anisotropic">cross-anisotropic</a>, <a href="https://publications.waset.org/abstracts/search?q=inhomogeneity" title=" inhomogeneity"> inhomogeneity</a>, <a href="https://publications.waset.org/abstracts/search?q=P-wave" title=" P-wave"> P-wave</a>, <a href="https://publications.waset.org/abstracts/search?q=SH-wave" title=" SH-wave"> SH-wave</a>, <a href="https://publications.waset.org/abstracts/search?q=SV-wave" title=" SV-wave"> SV-wave</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20modulus" title=" shear modulus"> shear modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%E2%80%99s%20modulus" title=" Young’s modulus"> Young’s modulus</a> </p> <a href="https://publications.waset.org/abstracts/121335/case-wise-investigation-of-body-wave-propagation-in-a-cross-anisotropic-soil-exhibiting-inhomogeneity-along-depth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Influence of Boron and Germanium Doping on Physical-Mechanical Properties of Monocrystalline Silicon </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ia%20Kurashvili">Ia Kurashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Giorgi%20Darsavelidze"> Giorgi Darsavelidze</a>, <a href="https://publications.waset.org/abstracts/search?q=Giorgi%20%20Chubinidze"> Giorgi Chubinidze</a>, <a href="https://publications.waset.org/abstracts/search?q=Marina%20Kadaria"> Marina Kadaria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Boron-doped Czochralski (CZ) silicon of p-type, widely used in the photovoltaic industry is suffering from the light-induced-degradation (LID) of bulk electrophysical characteristics. This is caused by specific metastable B-O defects, which are characterized by strong recombination activity. In this regard, it is actual to suppress B-O defects in CZ silicon. One of the methods is doping of silicon by different isovalent elements (Ge, C, Sn). The present work deals with the investigations of the influence of germanium doping on the internal friction and shear modulus amplitude dependences in the temperature interval of 600-800⁰C and 0.5-5 Hz frequency range in boron-containing monocrystalline silicon. Experimental specimens were grown by Czochralski method (CZ) in [111] direction. Four different specimens were investigated: Si+0,5at%Ge:B (5.1015cm-3), Si+0,5at%Ge:B (1.1019cm-3), Si+2at%Ge:B (5.1015cm-3) and Si+2at%Ge:B (1.1019cm-3). Increasing tendency of dislocation density and inhomogeneous distribution in silicon crystals with high content of boron and germanium were revealed by metallographic studies on the optical microscope of NMM-80RF/TRF. Weak increase of current carriers-holes concentration and slight decrease of their mobility were observed by Van der Pauw method on Ecopia HMS-3000 device. Non-monotonous changes of dislocation origin defects mobility and microplastic deformation characteristics influenced by measuring temperatures and boron and germanium concentrations were revealed. Possible mechanisms of changes of mechanical characteristics in Si-Ge experimental specimens were discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dislocation" title="dislocation">dislocation</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20friction" title=" internal friction"> internal friction</a>, <a href="https://publications.waset.org/abstracts/search?q=microplastic%20deformation" title=" microplastic deformation"> microplastic deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20modulus" title=" shear modulus"> shear modulus</a> </p> <a href="https://publications.waset.org/abstracts/76280/influence-of-boron-and-germanium-doping-on-physical-mechanical-properties-of-monocrystalline-silicon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Theoretical Modeling of Self-Healing Polymers Crosslinked by Dynamic Bonds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qiming%20Wang">Qiming Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dynamic polymer networks (DPNs) crosslinked by dynamic bonds have received intensive attention because of their special crack-healing capability. Diverse DPNs have been synthesized using a number of dynamic bonds, including dynamic covalent bond, hydrogen bond, ionic bond, metal-ligand coordination, hydrophobic interaction, and others. Despite the promising success in the polymer synthesis, the fundamental understanding of their self-healing mechanics is still at the very beginning. Especially, a general analytical model to understand the interfacial self-healing behaviors of DPNs has not been established. Here, we develop polymer-network based analytical theories that can mechanistically model the constitutive behaviors and interfacial self-healing behaviors of DPNs. We consider that the DPN is composed of interpenetrating networks crosslinked by dynamic bonds. bonds obey a force-dependent chemical kinetics. During the self-healing process, we consider the The network chains follow inhomogeneous chain-length distributions and the dynamic polymer chains diffuse across the interface to reform the dynamic bonds, being modeled by a diffusion-reaction theory. The theories can predict the stress-stretch behaviors of original and self-healed DPNs, as well as the healing strength in a function of healing time. We show that the theoretically predicted healing behaviors can consistently match the documented experimental results of DPNs with various dynamic bonds, including dynamic covalent bonds (diarylbibenzofuranone and olefin metathesis), hydrogen bonds, and ionic bonds. We expect our model to be a powerful tool for the self-healing community to invent, design, understand, and optimize self-healing DPNs with various dynamic bonds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=self-healing%20polymers" title="self-healing polymers">self-healing polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20covalent%20bonds" title=" dynamic covalent bonds"> dynamic covalent bonds</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20bonds" title=" hydrogen bonds"> hydrogen bonds</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20bonds" title=" ionic bonds"> ionic bonds</a> </p> <a href="https://publications.waset.org/abstracts/93704/theoretical-modeling-of-self-healing-polymers-crosslinked-by-dynamic-bonds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93704.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Modeling of Thermo Acoustic Emission Memory Effect in Rocks of Varying Textures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Vinnikov">Vladimir Vinnikov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper proposes a model of an inhomogeneous rock mass with initially random distribution of microcracks on mineral grain boundaries. It describes the behavior of cracks in a medium under the effect of thermal field, the medium heated instantaneously to a predetermined temperature. Crack growth occurs according to the concept of fracture mechanics provided that the stress intensity factor K exceeds the critical value of Kc. The modeling of thermally induced acoustic emission memory effects is based on the assumption that every event of crack nucleation or crack growth caused by heating is accompanied with a single acoustic emission event. Parameters of the thermally induced acoustic emission memory effect produced by cyclic heating and cooling (with the temperature amplitude increasing from cycle to cycle) were calculated for several rock texture types (massive, banded, and disseminated). The study substantiates the adaptation of the proposed model to humidity interference with the thermally induced acoustic emission memory effect. The influence of humidity on the thermally induced acoustic emission memory effect in quasi-homogeneous and banded rocks is estimated. It is shown that such modeling allows the structure and texture of rocks to be taken into account and the influence of interference factors on the distinctness of the thermally induced acoustic emission memory effect to be estimated. The numerical modeling can be used to obtain information about the thermal impacts on rocks in the past and determine the degree of rock disturbance by means of non-destructive testing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crack%20growth" title="crack growth">crack growth</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20heating%20and%20cooling" title=" cyclic heating and cooling"> cyclic heating and cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=rock%20texture" title=" rock texture"> rock texture</a>, <a href="https://publications.waset.org/abstracts/search?q=thermo%20acoustic%20emission%20memory%20effect" title=" thermo acoustic emission memory effect"> thermo acoustic emission memory effect</a> </p> <a href="https://publications.waset.org/abstracts/61462/modeling-of-thermo-acoustic-emission-memory-effect-in-rocks-of-varying-textures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61462.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Crop Leaf Area Index (LAI) Inversion and Scale Effect Analysis from Unmanned Aerial Vehicle (UAV)-Based Hyperspectral Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaohua%20Zhu">Xiaohua Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Lingling%20Ma"> Lingling Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongguang%20Zhao"> Yongguang Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Leaf Area Index (LAI) is a key structural characteristic of crops and plays a significant role in precision agricultural management and farmland ecosystem modeling. However, LAI retrieved from different resolution data contain a scaling bias due to the spatial heterogeneity and model non-linearity, that is, there is scale effect during multi-scale LAI estimate. In this article, a typical farmland in semi-arid regions of Chinese Inner Mongolia is taken as the study area, based on the combination of PROSPECT model and SAIL model, a multiple dimensional Look-Up-Table (LUT) is generated for multiple crops LAI estimation from unmanned aerial vehicle (UAV) hyperspectral data. Based on Taylor expansion method and computational geometry model, a scale transfer model considering both difference between inter- and intra-class is constructed for scale effect analysis of LAI inversion over inhomogeneous surface. The results indicate that, (1) the LUT method based on classification and parameter sensitive analysis is useful for LAI retrieval of corn, potato, sunflower and melon on the typical farmland, with correlation coefficient R2 of 0.82 and root mean square error RMSE of 0.43m2/m-2. (2) The scale effect of LAI is becoming obvious with the decrease of image resolution, and maximum scale bias is more than 45%. (3) The scale effect of inter-classes is higher than that of intra-class, which can be corrected efficiently by the scale transfer model established based Taylor expansion and Computational geometry. After corrected, the maximum scale bias can be reduced to 1.2%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=leaf%20area%20index%20%28LAI%29" title="leaf area index (LAI)">leaf area index (LAI)</a>, <a href="https://publications.waset.org/abstracts/search?q=scale%20effect" title=" scale effect"> scale effect</a>, <a href="https://publications.waset.org/abstracts/search?q=UAV-based%20hyperspectral%20data" title=" UAV-based hyperspectral data"> UAV-based hyperspectral data</a>, <a href="https://publications.waset.org/abstracts/search?q=look-up-table%20%28LUT%29" title=" look-up-table (LUT)"> look-up-table (LUT)</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a> </p> <a href="https://publications.waset.org/abstracts/63159/crop-leaf-area-index-lai-inversion-and-scale-effect-analysis-from-unmanned-aerial-vehicle-uav-based-hyperspectral-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63159.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=in-homogeneous&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=in-homogeneous&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>