CINXE.COM
Search results for: state of charge estimation
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: state of charge estimation</title> <meta name="description" content="Search results for: state of charge estimation"> <meta name="keywords" content="state of charge estimation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="state of charge estimation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="state of charge estimation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 9801</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: state of charge estimation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9801</span> Lithium-Ion Battery State of Charge Estimation Using One State Hysteresis Model with Nonlinear Estimation Strategies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Farag">Mohammed Farag</a>, <a href="https://publications.waset.org/abstracts/search?q=Mina%20Attari"> Mina Attari</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Andrew%20Gadsden"> S. Andrew Gadsden</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeid%20R.%20Habibi"> Saeid R. Habibi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Battery state of charge (SOC) estimation is an important parameter as it measures the total amount of electrical energy stored at a current time. The SOC percentage acts as a fuel gauge if it is compared with a conventional vehicle. Estimating the SOC is, therefore, essential for monitoring the amount of useful life remaining in the battery system. This paper looks at the implementation of three nonlinear estimation strategies for Li-Ion battery SOC estimation. One of the most common behavioral battery models is the one state hysteresis (OSH) model. The extended Kalman filter (EKF), the smooth variable structure filter (SVSF), and the time-varying smoothing boundary layer SVSF are applied on this model, and the results are compared. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=state%20of%20charge%20estimation" title="state of charge estimation">state of charge estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20modeling" title=" battery modeling"> battery modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=one-state%20hysteresis" title=" one-state hysteresis"> one-state hysteresis</a>, <a href="https://publications.waset.org/abstracts/search?q=filtering%20and%20estimation" title=" filtering and estimation"> filtering and estimation</a> </p> <a href="https://publications.waset.org/abstracts/68017/lithium-ion-battery-state-of-charge-estimation-using-one-state-hysteresis-model-with-nonlinear-estimation-strategies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68017.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9800</span> Estimation of the State of Charge of the Battery Using EFK and Sliding Mode Observer in MATLAB-Arduino/Labview</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mouna%20Abarkan">Mouna Abarkan</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelillah%20Byou"> Abdelillah Byou</a>, <a href="https://publications.waset.org/abstracts/search?q=Nacer%20M%27Sirdi"> Nacer M'Sirdi</a>, <a href="https://publications.waset.org/abstracts/search?q=El%20Hossain%20Abarkan"> El Hossain Abarkan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the estimation of the state of charge of the battery using two types of observers. The battery model used is the combination of a voltage source, which is the open circuit battery voltage of a strength corresponding to the connection of resistors and electrolyte and a series of parallel RC circuits representing charge transfer phenomena and diffusion. An adaptive observer applied to this model is proposed, this observer to estimate the battery state of charge of the battery is based on EFK and sliding mode that is known for their robustness and simplicity implementation. The results are validated by simulation under MATLAB/Simulink and implemented in Arduino-LabView. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=model%20of%20the%20battery" title="model of the battery">model of the battery</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20sliding%20mode%20observer" title=" adaptive sliding mode observer"> adaptive sliding mode observer</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20EFK%20observer" title=" the EFK observer"> the EFK observer</a>, <a href="https://publications.waset.org/abstracts/search?q=estimation%20of%20state%20of%20charge" title=" estimation of state of charge"> estimation of state of charge</a>, <a href="https://publications.waset.org/abstracts/search?q=SOC" title=" SOC"> SOC</a>, <a href="https://publications.waset.org/abstracts/search?q=implementation%20in%20Arduino%2FLabView" title=" implementation in Arduino/LabView"> implementation in Arduino/LabView</a> </p> <a href="https://publications.waset.org/abstracts/88834/estimation-of-the-state-of-charge-of-the-battery-using-efk-and-sliding-mode-observer-in-matlab-arduinolabview" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88834.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9799</span> Presentation of a Mix Algorithm for Estimating the Battery State of Charge Using Kalman Filter and Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amin%20Sedighfar">Amin Sedighfar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Moniri"> M. R. Moniri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Determination of state of charge (SOC) in today’s world becomes an increasingly important issue in all the applications that include a battery. In fact, estimation of the SOC is a fundamental need for the battery, which is the most important energy storage in Hybrid Electric Vehicles (HEVs), smart grid systems, drones, UPS and so on. Regarding those applications, the SOC estimation algorithm is expected to be precise and easy to implement. This paper presents an online method for the estimation of the SOC of Valve-Regulated Lead Acid (VRLA) batteries. The proposed method uses the well-known Kalman Filter (KF), and Neural Networks (NNs) and all of the simulations have been done with MATLAB software. The NN is trained offline using the data collected from the battery discharging process. A generic cell model is used, and the underlying dynamic behavior of the model has used two capacitors (bulk and surface) and three resistors (terminal, surface, and end), where the SOC determined from the voltage represents the bulk capacitor. The aim of this work is to compare the performance of conventional integration-based SOC estimation methods with a mixed algorithm. Moreover, by containing the effect of temperature, the final result becomes more accurate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kalman%20filter" title="Kalman filter">Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=state-of-charge" title=" state-of-charge"> state-of-charge</a>, <a href="https://publications.waset.org/abstracts/search?q=VRLA%20battery" title=" VRLA battery"> VRLA battery</a> </p> <a href="https://publications.waset.org/abstracts/89493/presentation-of-a-mix-algorithm-for-estimating-the-battery-state-of-charge-using-kalman-filter-and-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9798</span> A Mathematical Model of Power System State Estimation for Power Flow Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Benhamida">F. Benhamida</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Graa"> A. Graa</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Benameur"> L. Benameur</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Ziane"> I. Ziane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The state estimation of the electrical power system operation state is very important for supervising task. With the nonlinearity of the AC power flow model, the state estimation problem (SEP) is a nonlinear mathematical problem with many local optima. This paper treat the mathematical model for the SEP and the monitoring of the nonlinear systems of great dimensions with an application on power electrical system, the modelling, the analysis and state estimation synthesis in order to supervise the power system behavior. in fact, it is very difficult, to see impossible, (for reasons of accessibility, techniques and/or of cost) to measure the excessive number of the variables of state in a large-sized system. It is thus important to develop software sensors being able to produce a reliable estimate of the variables necessary for the diagnosis and also for the control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20system" title="power system">power system</a>, <a href="https://publications.waset.org/abstracts/search?q=state%20estimation" title=" state estimation"> state estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=robustness" title=" robustness"> robustness</a>, <a href="https://publications.waset.org/abstracts/search?q=observability" title=" observability"> observability</a> </p> <a href="https://publications.waset.org/abstracts/36293/a-mathematical-model-of-power-system-state-estimation-for-power-flow-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36293.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">523</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9797</span> State Estimation Method Based on Unscented Kalman Filter for Vehicle Nonlinear Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wataru%20Nakamura">Wataru Nakamura</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomoaki%20Hashimoto"> Tomoaki Hashimoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang-Kuang%20Chen"> Liang-Kuang Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper provides a state estimation method for automatic control systems of nonlinear vehicle dynamics. A nonlinear tire model is employed to represent the realistic behavior of a vehicle. In general, all the state variables of control systems are not precisedly known, because those variables are observed through output sensors and limited parts of them might be only measurable. Hence, automatic control systems must incorporate some type of state estimation. It is needed to establish a state estimation method for nonlinear vehicle dynamics with restricted measurable state variables. For this purpose, unscented Kalman filter method is applied in this study for estimating the state variables of nonlinear vehicle dynamics. The objective of this paper is to propose a state estimation method using unscented Kalman filter for nonlinear vehicle dynamics. The effectiveness of the proposed method is verified by numerical simulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=state%20estimation" title="state estimation">state estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20systems" title=" control systems"> control systems</a>, <a href="https://publications.waset.org/abstracts/search?q=observer%20systems" title=" observer systems"> observer systems</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20systems" title=" nonlinear systems"> nonlinear systems</a> </p> <a href="https://publications.waset.org/abstracts/118764/state-estimation-method-based-on-unscented-kalman-filter-for-vehicle-nonlinear-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118764.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9796</span> New Technique of Estimation of Charge Carrier Density of Nanomaterials from Thermionic Emission Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dilip%20K.%20De">Dilip K. De</a>, <a href="https://publications.waset.org/abstracts/search?q=Olukunle%20C.%20Olawole"> Olukunle C. Olawole</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20S.%20Joel"> Emmanuel S. Joel</a>, <a href="https://publications.waset.org/abstracts/search?q=Moses%20Emetere"> Moses Emetere</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A good number of electronic properties such as electrical and thermal conductivities depend on charge carrier densities of nanomaterials. By controlling the charge carrier densities during the fabrication (or growth) processes, the physical properties can be tuned. In this paper, we discuss a new technique of estimating the charge carrier densities of nanomaterials from the thermionic emission data using the newly modified Richardson-Dushman equation. We find that the technique yields excellent results for graphene and carbon nanotube. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=charge%20carrier%20density" title="charge carrier density">charge carrier density</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20materials" title=" nano materials"> nano materials</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20technique" title=" new technique"> new technique</a>, <a href="https://publications.waset.org/abstracts/search?q=thermionic%20emission" title=" thermionic emission"> thermionic emission</a> </p> <a href="https://publications.waset.org/abstracts/42562/new-technique-of-estimation-of-charge-carrier-density-of-nanomaterials-from-thermionic-emission-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9795</span> State Estimation of a Biotechnological Process Using Extended Kalman Filter and Particle Filter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Simutis">R. Simutis</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Galvanauskas"> V. Galvanauskas</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Levisauskas"> D. Levisauskas</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Repsyte"> J. Repsyte</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Grincas"> V. Grincas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with advanced state estimation algorithms for estimation of biomass concentration and specific growth rate in a typical fed-batch biotechnological process. This biotechnological process was represented by a nonlinear mass-balance based process model. Extended Kalman Filter (EKF) and Particle Filter (PF) was used to estimate the unmeasured state variables from oxygen uptake rate (OUR) and base consumption (BC) measurements. To obtain more general results, a simplified process model was involved in EKF and PF estimation algorithms. This model doesn’t require any special growth kinetic equations and could be applied for state estimation in various bioprocesses. The focus of this investigation was concentrated on the comparison of the estimation quality of the EKF and PF estimators by applying different measurement noises. The simulation results show that Particle Filter algorithm requires significantly more computation time for state estimation but gives lower estimation errors both for biomass concentration and specific growth rate. Also the tuning procedure for Particle Filter is simpler than for EKF. Consequently, Particle Filter should be preferred in real applications, especially for monitoring of industrial bioprocesses where the simplified implementation procedures are always desirable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass%20concentration" title="biomass concentration">biomass concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=extended%20Kalman%20filter" title=" extended Kalman filter"> extended Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20filter" title=" particle filter"> particle filter</a>, <a href="https://publications.waset.org/abstracts/search?q=state%20estimation" title=" state estimation"> state estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20growth%20rate" title=" specific growth rate"> specific growth rate</a> </p> <a href="https://publications.waset.org/abstracts/12940/state-estimation-of-a-biotechnological-process-using-extended-kalman-filter-and-particle-filter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12940.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9794</span> Estimation of State of Charge, State of Health and Power Status for the Li-Ion Battery On-Board Vehicle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Sabatino">S. Sabatino</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Calderaro"> V. Calderaro</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Galdi"> V. Galdi</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Graber"> G. Graber</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Ippolito"> L. Ippolito</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climate change is a rapidly growing global threat caused mainly by increased emissions of carbon dioxide (CO₂) into the atmosphere. These emissions come from multiple sources, including industry, power generation, and the transport sector. The need to tackle climate change and reduce CO₂ emissions is indisputable. A crucial solution to achieving decarbonization in the transport sector is the adoption of electric vehicles (EVs). These vehicles use lithium (Li-Ion) batteries as an energy source, making them extremely efficient and with low direct emissions. However, Li-Ion batteries are not without problems, including the risk of overheating and performance degradation. To ensure its safety and longevity, it is essential to use a battery management system (BMS). The BMS constantly monitors battery status, adjusts temperature and cell balance, ensuring optimal performance and preventing dangerous situations. From the monitoring carried out, it is also able to optimally manage the battery to increase its life. Among the parameters monitored by the BMS, the main ones are State of Charge (SoC), State of Health (SoH), and State of Power (SoP). The evaluation of these parameters can be carried out in two ways: offline, using benchtop batteries tested in the laboratory, or online, using batteries installed in moving vehicles. Online estimation is the preferred approach, as it relies on capturing real-time data from batteries while operating in real-life situations, such as in everyday EV use. Actual battery usage conditions are highly variable. Moving vehicles are exposed to a wide range of factors, including temperature variations, different driving styles, and complex charge/discharge cycles. This variability is difficult to replicate in a controlled laboratory environment and can greatly affect performance and battery life. Online estimation captures this variety of conditions, providing a more accurate assessment of battery behavior in real-world situations. In this article, a hybrid approach based on a neural network and a statistical method for real-time estimation of SoC, SoH, and SoP parameters of interest is proposed. These parameters are estimated from the analysis of a one-day driving profile of an electric vehicle, assumed to be divided into the following four phases: (i) Partial discharge (SoC 100% - SoC 50%), (ii) Partial discharge (SoC 50% - SoC 80%), (iii) Deep Discharge (SoC 80% - SoC 30%) (iv) Full charge (SoC 30% - SoC 100%). The neural network predicts the values of ohmic resistance and incremental capacity, while the statistical method is used to estimate the parameters of interest. This reduces the complexity of the model and improves its prediction accuracy. The effectiveness of the proposed model is evaluated by analyzing its performance in terms of square mean error (RMSE) and percentage error (MAPE) and comparing it with the reference method found in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle" title="electric vehicle">electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=Li-Ion%20battery" title=" Li-Ion battery"> Li-Ion battery</a>, <a href="https://publications.waset.org/abstracts/search?q=BMS" title=" BMS"> BMS</a>, <a href="https://publications.waset.org/abstracts/search?q=state-of-charge" title=" state-of-charge"> state-of-charge</a>, <a href="https://publications.waset.org/abstracts/search?q=state-of-health" title=" state-of-health"> state-of-health</a>, <a href="https://publications.waset.org/abstracts/search?q=state-of-power" title=" state-of-power"> state-of-power</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20networks" title=" artificial neural networks"> artificial neural networks</a> </p> <a href="https://publications.waset.org/abstracts/173542/estimation-of-state-of-charge-state-of-health-and-power-status-for-the-li-ion-battery-on-board-vehicle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9793</span> Online Battery Equivalent Circuit Model Estimation on Continuous-Time Domain Using Linear Integral Filter Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cheng%20Zhang">Cheng Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20Marco"> James Marco</a>, <a href="https://publications.waset.org/abstracts/search?q=Walid%20Allafi"> Walid Allafi</a>, <a href="https://publications.waset.org/abstracts/search?q=Truong%20Q.%20Dinh"> Truong Q. Dinh</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20D.%20Widanage"> W. D. Widanage</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Equivalent circuit models (ECMs) are widely used in battery management systems in electric vehicles and other battery energy storage systems. The battery dynamics and the model parameters vary under different working conditions, such as different temperature and state of charge (SOC) levels, and therefore online parameter identification can improve the modelling accuracy. This paper presents a way of online ECM parameter identification using a continuous time (CT) estimation method. The CT estimation method has several advantages over discrete time (DT) estimation methods for ECM parameter identification due to the widely separated battery dynamic modes and fast sampling. The presented method can be used for online SOC estimation. Test data are collected using a lithium ion cell, and the experimental results show that the presented CT method achieves better modelling accuracy compared with the conventional DT recursive least square method. The effectiveness of the presented method for online SOC estimation is also verified on test data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20circuit%20model" title="electric circuit model">electric circuit model</a>, <a href="https://publications.waset.org/abstracts/search?q=continuous%20time%20domain%20estimation" title=" continuous time domain estimation"> continuous time domain estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20integral%20filter%20method" title=" linear integral filter method"> linear integral filter method</a>, <a href="https://publications.waset.org/abstracts/search?q=parameter%20and%20SOC%20estimation" title=" parameter and SOC estimation"> parameter and SOC estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=recursive%20least%20square" title=" recursive least square"> recursive least square</a> </p> <a href="https://publications.waset.org/abstracts/67718/online-battery-equivalent-circuit-model-estimation-on-continuous-time-domain-using-linear-integral-filter-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67718.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9792</span> Validation of the Linear Trend Estimation Technique for Prediction of Average Water and Sewerage Charge Rate Prices in the Czech Republic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aneta%20Obloukov%C3%A1">Aneta Oblouková</a>, <a href="https://publications.waset.org/abstracts/search?q=Eva%20V%C3%ADtkov%C3%A1"> Eva Vítková</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article deals with the issue of water and sewerage charge rate prices in the Czech Republic. The research is specifically focused on the analysis of the development of the average prices of water and sewerage charge rate in the Czech Republic in the years 1994-2021 and on the validation of the chosen methodology relevant for the prediction of the development of the average prices of water and sewerage charge rate in the Czech Republic. The research is based on data collection. The data for this research was obtained from the Czech Statistical Office. The aim of the paper is to validate the relevance of the mathematical linear trend estimate technique for the calculation of the predicted average prices of water and sewerage charge rates. The real values of the average prices of water and sewerage charge rates in the Czech Republic in the years 1994-2018 were obtained from the Czech Statistical Office and were converted into a mathematical equation. The same type of real data was obtained from the Czech Statistical Office for the years 2019-2021. Prediction of the average prices of water and sewerage charge rates in the Czech Republic in the years 2019-2021 were also calculated using a chosen method -a linear trend estimation technique. The values obtained from the Czech Statistical Office and the values calculated using the chosen methodology were subsequently compared. The research result is a validation of the chosen mathematical technique to be a suitable technique for this research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Czech%20Republic" title="Czech Republic">Czech Republic</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20trend%20estimation" title=" linear trend estimation"> linear trend estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=price%20prediction" title=" price prediction"> price prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20and%20sewerage%20charge%20rate" title=" water and sewerage charge rate"> water and sewerage charge rate</a> </p> <a href="https://publications.waset.org/abstracts/157359/validation-of-the-linear-trend-estimation-technique-for-prediction-of-average-water-and-sewerage-charge-rate-prices-in-the-czech-republic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157359.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9791</span> Offline Parameter Identification and State-of-Charge Estimation for Healthy and Aged Electric Vehicle Batteries Based on the Combined Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaowei%20Zhang">Xiaowei Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20Xu"> Min Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeid%20Habibi"> Saeid Habibi</a>, <a href="https://publications.waset.org/abstracts/search?q=Fengjun%20Yan"> Fengjun Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryan%20Ahmed"> Ryan Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, Electric Vehicles (EVs) have received extensive consideration since they offer a more sustainable and greener transportation alternative compared to fossil-fuel propelled vehicles. Lithium-Ion (Li-ion) batteries are increasingly being deployed in EVs because of their high energy density, high cell-level voltage, and low rate of self-discharge. Since Li-ion batteries represent the most expensive component in the EV powertrain, accurate monitoring and control strategies must be executed to ensure their prolonged lifespan. The Battery Management System (BMS) has to accurately estimate parameters such as the battery State-of-Charge (SOC), State-of-Health (SOH), and Remaining Useful Life (RUL). In order for the BMS to estimate these parameters, an accurate and control-oriented battery model has to work collaboratively with a robust state and parameter estimation strategy. Since battery physical parameters, such as the internal resistance and diffusion coefficient change depending on the battery state-of-life (SOL), the BMS has to be adaptive to accommodate for this change. In this paper, an extensive battery aging study has been conducted over 12-months period on 5.4 Ah, 3.7 V Lithium polymer cells. Instead of using fixed charging/discharging aging cycles at fixed C-rate, a set of real-world driving scenarios have been used to age the cells. The test has been interrupted every 5% capacity degradation by a set of reference performance tests to assess the battery degradation and track model parameters. As battery ages, the combined model parameters are optimized and tracked in an offline mode over the entire batteries lifespan. Based on the optimized model, a state and parameter estimation strategy based on the Extended Kalman Filter (EKF) and the relatively new Smooth Variable Structure Filter (SVSF) have been applied to estimate the SOC at various states of life. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lithium-ion%20batteries" title="lithium-ion batteries">lithium-ion batteries</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm%20optimization" title=" genetic algorithm optimization"> genetic algorithm optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20aging%20test" title=" battery aging test"> battery aging test</a>, <a href="https://publications.waset.org/abstracts/search?q=parameter%20identification" title=" parameter identification"> parameter identification</a> </p> <a href="https://publications.waset.org/abstracts/52283/offline-parameter-identification-and-state-of-charge-estimation-for-healthy-and-aged-electric-vehicle-batteries-based-on-the-combined-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9790</span> Classic Training of a Neural Observer for Estimation Purposes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Loukil">R. Loukil</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Chtourou"> M. Chtourou</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Damak"> T. Damak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the training of multilayer neural network using the classic approach. Then, for estimation purposes, we suggest the use of a specific neural observer that we study its training algorithm which is the back-propagation one in the case of the disponibility of the state and in the case of an unmeasurable state. A MATLAB simulation example will be studied to highlight the usefulness of this kind of observer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=training" title="training">training</a>, <a href="https://publications.waset.org/abstracts/search?q=estimation%20purposes" title=" estimation purposes"> estimation purposes</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20observer" title=" neural observer"> neural observer</a>, <a href="https://publications.waset.org/abstracts/search?q=back-propagation" title=" back-propagation"> back-propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=unmeasurable%20state" title=" unmeasurable state"> unmeasurable state</a> </p> <a href="https://publications.waset.org/abstracts/21004/classic-training-of-a-neural-observer-for-estimation-purposes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21004.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">574</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9789</span> Review of Strategies for Hybrid Energy Storage Management System in Electric Vehicle Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kayode%20A.%20Olaniyi">Kayode A. Olaniyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Adeola%20A.%20Ogunleye"> Adeola A. Ogunleye</a>, <a href="https://publications.waset.org/abstracts/search?q=Tola%20M.%20Osifeko"> Tola M. Osifeko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electric Vehicles (EV) appear to be gaining increasing patronage as a feasible alternative to Internal Combustion Engine Vehicles (ICEVs) for having low emission and high operation efficiency. The EV energy storage systems are required to handle high energy and power density capacity constrained by limited space, operating temperature, weight and cost. The choice of strategies for energy storage evaluation, monitoring and control remains a challenging task. This paper presents review of various energy storage technologies and recent researches in battery evaluation techniques used in EV applications. It also underscores strategies for the hybrid energy storage management and control schemes for the improvement of EV stability and reliability. The study reveals that despite the advances recorded in battery technologies there is still no cell which possess both the optimum power and energy densities among other requirements, for EV application. However combination of two or more energy storages as hybrid and allowing the advantageous attributes from each device to be utilized is a promising solution. The review also reveals that State-of-Charge (SoC) is the most crucial method for battery estimation. The conventional method of SoC measurement is however questioned in the literature and adaptive algorithms that include all model of disturbances are being proposed. The review further suggests that heuristic-based approach is commonly adopted in the development of strategies for hybrid energy storage system management. The alternative approach which is optimization-based is found to be more accurate but is memory and computational intensive and as such not recommended in most real-time applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=battery%20state%20estimation" title="battery state estimation">battery state estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20electric%20vehicle" title=" hybrid electric vehicle"> hybrid electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20energy%20storage" title=" hybrid energy storage"> hybrid energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=state%20of%20charge" title=" state of charge"> state of charge</a>, <a href="https://publications.waset.org/abstracts/search?q=state%20of%20health" title=" state of health"> state of health</a> </p> <a href="https://publications.waset.org/abstracts/93872/review-of-strategies-for-hybrid-energy-storage-management-system-in-electric-vehicle-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93872.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9788</span> Characterization of a LiFeOP₄ Battery Cell with Mechanical Responses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ki-Yong%20Oh">Ki-Yong Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=Eunji%20Kwak"> Eunji Kwak</a>, <a href="https://publications.waset.org/abstracts/search?q=Due%20Su%20Son"> Due Su Son</a>, <a href="https://publications.waset.org/abstracts/search?q=Siheon%20Jung"> Siheon Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A pouch type of 10 Ah LiFePO₄ battery cell is characterized with two mechanical responses: swelling and bulk force. Both responses vary upon the state of charge significantly, whereas voltage shows flat responses, suggesting that mechanical responses can become a sensitive gauge to characterize microstructure transformation of a battery cell. The derivative of swelling s with respect to capacity Q, (ds/dQ) and the derivative of force F with respect to capacity Q, (dF/dQ) more clearly identify phase transitions of cathode and anode electrodes in the overall charge process than the derivative of voltage V with respect to capacity Q, (dV/dQ). Especially, the force versus swelling curves over the state of charge clearly elucidates three different stiffness over the state of charge oriented from phase transitions: the α-phase, the β-phase, and the metastable solid-solution phase. The observation from mechanical responses suggests that macro-scale mechanical responses of a battery cell are directly correlated to microscopic transformation of a battery cell. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=force%20response" title="force response">force response</a>, <a href="https://publications.waset.org/abstracts/search?q=LiFePO%E2%82%84%20battery" title=" LiFePO₄ battery"> LiFePO₄ battery</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20response" title=" strain response"> strain response</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20response" title=" stress response"> stress response</a>, <a href="https://publications.waset.org/abstracts/search?q=swelling%20response" title=" swelling response"> swelling response</a> </p> <a href="https://publications.waset.org/abstracts/97098/characterization-of-a-lifeop4-battery-cell-with-mechanical-responses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9787</span> Tracking Filtering Algorithm Based on ConvLSTM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ailing%20Yang">Ailing Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Penghan%20Song"> Penghan Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Aihua%20Cai"> Aihua Cai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The nonlinear maneuvering target tracking problem is mainly a state estimation problem when the target motion model is uncertain. Traditional solutions include Kalman filtering based on Bayesian filtering framework and extended Kalman filtering. However, these methods need prior knowledge such as kinematics model and state system distribution, and their performance is poor in state estimation of nonprior complex dynamic systems. Therefore, in view of the problems existing in traditional algorithms, a convolution LSTM target state estimation (SAConvLSTM-SE) algorithm based on Self-Attention memory (SAM) is proposed to learn the historical motion state of the target and the error distribution information measured at the current time. The measured track point data of airborne radar are processed into data sets. After supervised training, the data-driven deep neural network based on SAConvLSTM can directly obtain the target state at the next moment. Through experiments on two different maneuvering targets, we find that the network has stronger robustness and better tracking accuracy than the existing tracking methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maneuvering%20target" title="maneuvering target">maneuvering target</a>, <a href="https://publications.waset.org/abstracts/search?q=state%20estimation" title=" state estimation"> state estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalman%20filter" title=" Kalman filter"> Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=LSTM" title=" LSTM"> LSTM</a>, <a href="https://publications.waset.org/abstracts/search?q=self-attention" title=" self-attention"> self-attention</a> </p> <a href="https://publications.waset.org/abstracts/164893/tracking-filtering-algorithm-based-on-convlstm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164893.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9786</span> Nonequilibrium Effects in Photoinduced Ultrafast Charge Transfer Reactions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Valentina%20A.%20Mikhailova">Valentina A. Mikhailova</a>, <a href="https://publications.waset.org/abstracts/search?q=Serguei%20V.%20Feskov"> Serguei V. Feskov</a>, <a href="https://publications.waset.org/abstracts/search?q=Anatoly%20I.%20Ivanov"> Anatoly I. Ivanov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last decade the nonequilibrium charge transfer have attracted considerable interest from the scientific community. Examples of such processes are the charge recombination in excited donor-acceptor complexes and the intramolecular electron transfer from the second excited electronic state. In these reactions the charge transfer proceeds predominantly in the nonequilibrium mode. In the excited donor-acceptor complexes the nuclear nonequilibrium is created by the pump pulse. The intramolecular electron transfer from the second excited electronic state is an example where the nuclear nonequilibrium is created by the forward electron transfer. The kinetics of these nonequilibrium reactions demonstrate a number of peculiar properties. Most important from them are: (i) the absence of the Marcus normal region in the free energy gap law for the charge recombination in excited donor-acceptor complexes, (ii) extremely low quantum yield of thermalized charge separated state in the ultrafast charge transfer from the second excited state, (iii) the nonexponential charge recombination dynamics in excited donor-acceptor complexes, (iv) the dependence of the charge transfer rate constant on the excitation pulse frequency. This report shows that most of these kinetic features can be well reproduced in the framework of stochastic point-transition multichannel model. The model involves an explicit description of the nonequilibrium excited state formation by the pump pulse and accounts for the reorganization of intramolecular high-frequency vibrational modes, for their relaxation as well as for the solvent relaxation. The model is able to quantitatively reproduce complex nonequilibrium charge transfer kinetics observed in modern experiments. The interpretation of the nonequilibrium effects from a unified point of view in the terms of the multichannel point transition stochastic model allows to see similarities and differences of electron transfer mechanism in various molecular donor-acceptor systems and formulates general regularities inherent in these phenomena. The nonequilibrium effects in photoinduced ultrafast charge transfer which have been studied for the last 10 years are analyzed. The methods of suppression of the ultrafast charge recombination, similarities and dissimilarities of electron transfer mechanism in different molecular donor-acceptor systems are discussed. The extremely low quantum yield of the thermalized charge separated state observed in the ultrafast charge transfer from the second excited state in the complex consisting of 1,2,4-trimethoxybenzene and tetracyanoethylene in acetonitrile solution directly demonstrates that its effectiveness can be close to unity. This experimental finding supports the idea that the nonequilibrium charge recombination in the excited donor-acceptor complexes can be also very effective so that the part of thermalized complexes is negligible. It is discussed the regularities inherent to the equilibrium and nonequilibrium reactions. Their fundamental differences are analyzed. Namely the opposite dependencies of the charge transfer rates on the dynamical properties of the solvent. The increase of the solvent viscosity results in decreasing the thermal rate and vice versa increasing the nonequilibrium rate. The dependencies of the rates on the solvent reorganization energy and the free energy gap also can considerably differ. This work was supported by the Russian Science Foundation (Grant No. 16-13-10122). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Charge%20recombination" title="Charge recombination">Charge recombination</a>, <a href="https://publications.waset.org/abstracts/search?q=higher%20excited%20states" title=" higher excited states"> higher excited states</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20energy%20gap%20law" title=" free energy gap law"> free energy gap law</a>, <a href="https://publications.waset.org/abstracts/search?q=nonequilibrium" title=" nonequilibrium"> nonequilibrium</a> </p> <a href="https://publications.waset.org/abstracts/51761/nonequilibrium-effects-in-photoinduced-ultrafast-charge-transfer-reactions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51761.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9785</span> Frequency Selective Filters for Estimating the Equivalent Circuit Parameters of Li-Ion Battery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arpita%20Mondal">Arpita Mondal</a>, <a href="https://publications.waset.org/abstracts/search?q=Aurobinda%20Routray"> Aurobinda Routray</a>, <a href="https://publications.waset.org/abstracts/search?q=Sreeraj%20Puravankara"> Sreeraj Puravankara</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajashree%20Biswas"> Rajashree Biswas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The most difficult part of designing a battery management system (BMS) is battery modeling. A good battery model can capture the dynamics which helps in energy management, by accurate model-based state estimation algorithms. So far the most suitable and fruitful model is the equivalent circuit model (ECM). However, in real-time applications, the model parameters are time-varying, changes with current, temperature, state of charge (SOC), and aging of the battery and this make a great impact on the performance of the model. Therefore, to increase the equivalent circuit model performance, the parameter estimation has been carried out in the frequency domain. The battery is a very complex system, which is associated with various chemical reactions and heat generation. Therefore, it’s very difficult to select the optimal model structure. As we know, if the model order is increased, the model accuracy will be improved automatically. However, the higher order model will face the tendency of over-parameterization and unfavorable prediction capability, while the model complexity will increase enormously. In the time domain, it becomes difficult to solve higher order differential equations as the model order increases. This problem can be resolved by frequency domain analysis, where the overall computational problems due to ill-conditioning reduce. In the frequency domain, several dominating frequencies can be found in the input as well as output data. The selective frequency domain estimation has been carried out, first by estimating the frequencies of the input and output by subspace decomposition, then by choosing the specific bands from the most dominating to the least, while carrying out the least-square, recursive least square and Kalman Filter based parameter estimation. In this paper, a second order battery model consisting of three resistors, two capacitors, and one SOC controlled voltage source has been chosen. For model identification and validation hybrid pulse power characterization (HPPC) tests have been carried out on a 2.6 Ah LiFePO₄ battery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=equivalent%20circuit%20model" title="equivalent circuit model">equivalent circuit model</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20estimation" title=" frequency estimation"> frequency estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=parameter%20estimation" title=" parameter estimation"> parameter estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=subspace%20decomposition" title=" subspace decomposition"> subspace decomposition</a> </p> <a href="https://publications.waset.org/abstracts/108720/frequency-selective-filters-for-estimating-the-equivalent-circuit-parameters-of-li-ion-battery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9784</span> An Algorithm to Compute the State Estimation of a Bilinear Dynamical Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Eqal%20Al%20Mazrooei">Abdullah Eqal Al Mazrooei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we introduce a mathematical algorithm which is used for estimating the states in the bilinear systems. This algorithm uses a special linearization of the second-order term by using the best available information about the state of the system. This technique makes our algorithm generalizes the well-known Kalman estimators. The system which is used here is of the bilinear class, the evolution of this model is linear-bilinear in the state of the system. Our algorithm can be used with linear and bilinear systems. We also here introduced a real application for the new algorithm to prove the feasibility and the efficiency for it. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=estimation%20algorithm" title="estimation algorithm">estimation algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=bilinear%20systems" title=" bilinear systems"> bilinear systems</a>, <a href="https://publications.waset.org/abstracts/search?q=Kakman%20filter" title=" Kakman filter"> Kakman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=second%20order%20linearization" title=" second order linearization"> second order linearization</a> </p> <a href="https://publications.waset.org/abstracts/51466/an-algorithm-to-compute-the-state-estimation-of-a-bilinear-dynamical-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">486</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9783</span> Switched System Diagnosis Based on Intelligent State Filtering with Unknown Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nada%20Slimane">Nada Slimane</a>, <a href="https://publications.waset.org/abstracts/search?q=Foued%20Theljani"> Foued Theljani</a>, <a href="https://publications.waset.org/abstracts/search?q=Faouzi%20Bouani"> Faouzi Bouani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper addresses the problem of fault diagnosis for systems operating in several modes (normal or faulty) based on states assessment. We use, for this purpose, a methodology consisting of three main processes: 1) sequential data clustering, 2) linear model regression and 3) state filtering. Typically, Kalman Filter (KF) is an algorithm that provides estimation of unknown states using a sequence of I/O measurements. Inevitably, although it is an efficient technique for state estimation, it presents two main weaknesses. First, it merely predicts states without being able to isolate/classify them according to their different operating modes, whether normal or faulty modes. To deal with this dilemma, the KF is endowed with an extra clustering step based fully on sequential version of the k-means algorithm. Second, to provide state estimation, KF requires state space models, which can be unknown. A linear regularized regression is used to identify the required models. To prove its effectiveness, the proposed approach is assessed on a simulated benchmark. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clustering" title="clustering">clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnosis" title=" diagnosis"> diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalman%20Filtering" title=" Kalman Filtering"> Kalman Filtering</a>, <a href="https://publications.waset.org/abstracts/search?q=k-means" title=" k-means"> k-means</a>, <a href="https://publications.waset.org/abstracts/search?q=regularized%20regression" title=" regularized regression"> regularized regression</a> </p> <a href="https://publications.waset.org/abstracts/104370/switched-system-diagnosis-based-on-intelligent-state-filtering-with-unknown-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9782</span> Parameter Estimation of Induction Motors by PSO Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Mohammadi">A. Mohammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Asghari"> S. Asghari</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Aien"> M. Aien</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Rashidinejad"> M. Rashidinejad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> After emergent of alternative current networks and their popularity, asynchronous motors became more widespread than other kinds of industrial motors. In order to control and run these motors efficiently, an accurate estimation of motor parameters is needed. There are different methods to obtain these parameters such as rotor locked test, no load test, DC test, analytical methods, and so on. The most common drawback of these methods is their inaccuracy in estimation of some motor parameters. In order to remove this concern, a novel method for parameter estimation of induction motors using particle swarm optimization (PSO) algorithm is proposed. In the proposed method, transient state of motor is used for parameter estimation. Comparison of the simulation results purtuined to the PSO algorithm with other available methods justifies the effectiveness of the proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=induction%20motor" title="induction motor">induction motor</a>, <a href="https://publications.waset.org/abstracts/search?q=motor%20parameter%20estimation" title=" motor parameter estimation"> motor parameter estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=PSO%20algorithm" title=" PSO algorithm"> PSO algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=analytical%20method" title=" analytical method"> analytical method</a> </p> <a href="https://publications.waset.org/abstracts/15433/parameter-estimation-of-induction-motors-by-pso-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">633</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9781</span> State Estimation Based on Unscented Kalman Filter for Burgers’ Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Takashi%20Shimizu">Takashi Shimizu</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomoaki%20Hashimoto"> Tomoaki Hashimoto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Controlling the flow of fluids is a challenging problem that arises in many fields. Burgers’ equation is a fundamental equation for several flow phenomena such as traffic, shock waves, and turbulence. The optimal feedback control method, so-called model predictive control, has been proposed for Burgers’ equation. However, the model predictive control method is inapplicable to systems whose all state variables are not exactly known. In practical point of view, it is unusual that all the state variables of systems are exactly known, because the state variables of systems are measured through output sensors and limited parts of them can be only available. In fact, it is usual that flow velocities of fluid systems cannot be measured for all spatial domains. Hence, any practical feedback controller for fluid systems must incorporate some type of state estimator. To apply the model predictive control to the fluid systems described by Burgers’ equation, it is needed to establish a state estimation method for Burgers’ equation with limited measurable state variables. To this purpose, we apply unscented Kalman filter for estimating the state variables of fluid systems described by Burgers’ equation. The objective of this study is to establish a state estimation method based on unscented Kalman filter for Burgers’ equation. The effectiveness of the proposed method is verified by numerical simulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=observer%20systems" title="observer systems">observer systems</a>, <a href="https://publications.waset.org/abstracts/search?q=unscented%20Kalman%20filter" title=" unscented Kalman filter"> unscented Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20systems" title=" nonlinear systems"> nonlinear systems</a>, <a href="https://publications.waset.org/abstracts/search?q=Burgers%27%20equation" title=" Burgers' equation"> Burgers' equation</a> </p> <a href="https://publications.waset.org/abstracts/99541/state-estimation-based-on-unscented-kalman-filter-for-burgers-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9780</span> Behaviour of an RC Circuit near Extreme Point</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tribhuvan%20N.%20Soorya">Tribhuvan N. Soorya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Charging and discharging of a capacitor through a resistor can be shown as exponential curve. Theoretically, it takes infinite time to fully charge or discharge a capacitor. The flow of charge is due to electrons having finite and fixed value of charge. If we carefully examine the charging and discharging process after several time constants, the points on q vs t graph become discrete and curve become discontinuous. Moreover for all practical purposes capacitor with charge (q0-e) can be taken as fully charged, as it introduces an error less than one part per million. Similar is the case for discharge of a capacitor, where the capacitor with the last electron (charge e) can be taken as fully discharged. With this, we can estimate the finite value of time for fully charging and discharging a capacitor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=charging" title="charging">charging</a>, <a href="https://publications.waset.org/abstracts/search?q=discharging" title=" discharging"> discharging</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20Circuit" title=" RC Circuit"> RC Circuit</a>, <a href="https://publications.waset.org/abstracts/search?q=capacitor" title=" capacitor"> capacitor</a> </p> <a href="https://publications.waset.org/abstracts/28590/behaviour-of-an-rc-circuit-near-extreme-point" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28590.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9779</span> Internet of Things Based Battery Management System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pakhil%20Singh">Pakhil Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahul%20Singh"> Rahul Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Saad%20Alam"> Mohammad Saad Alam</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasser%20Rafat"> Yasser Rafat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The battery management system is an essential package/system which ensures optimum performance and safety of a battery by monitoring the key essential parameters of the battery like the voltage, current, temperature, state of charge, state of health during charging and discharging. This can be accomplished using outputs of various sensors employed to serve the purpose. The increasing demand for electricity generation from renewable energy sources requires proper storage and hence a proper monitoring system as well. A battery management system is required in wide applications ranging from renewable energy storage systems, off-grid solar PV applications to electric vehicles. The aim of this paper is to study the parameters used in monitoring various battery operating conditions and proposes the usage of the internet of things (IoT) to implement a reliable battery management system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicles" title="electric vehicles">electric vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=internet%20of%20things" title=" internet of things"> internet of things</a>, <a href="https://publications.waset.org/abstracts/search?q=sensors" title=" sensors"> sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=state%20of%20charge" title=" state of charge"> state of charge</a>, <a href="https://publications.waset.org/abstracts/search?q=state%20of%20health" title=" state of health"> state of health</a> </p> <a href="https://publications.waset.org/abstracts/133342/internet-of-things-based-battery-management-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133342.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9778</span> Ultrafast Ground State Recovery Dynamics of a Cyanine Dye Molecule in Heterogeneous Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tapas%20Goswami">Tapas Goswami</a>, <a href="https://publications.waset.org/abstracts/search?q=Debabrata%20Goswami"> Debabrata Goswami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have studied the changes in ground state recovery dynamics of IR 144 dye using degenerate transient absorption spectroscopy technique when going from homogeneous solution phase to heterogeneous partially miscible liquid/liquid interface. Towards this aim, we set up a partially miscible liquid/liquid interface in which dye is insoluble in one solvent carbon tetrachloride (CCl₄) layer and soluble in other solvent dimethyl sulphoxide (DMSO). A gradual increase in ground state recovery time of the dye molecule is observed from homogenous bulk solution to more heterogeneous environment interface layer. In the bulk solution charge distribution of dye molecule is in equilibrium with polar DMSO solvent molecule. Near the interface micro transportation of non-polar solvent, CCl₄ disturbs the solvent equilibrium in DMSO layer and it relaxes to a new equilibrium state corresponding to a new charge distribution of dye with a heterogeneous mixture of polar and non-polar solvent. In this experiment, we have measured the time required for the dye molecule to relax to the new equilibrium state in different heterogeneous environment. As a result, dye remains longer time in the excited state such that even it can populate more triplet state. The present study of ground state recovery dynamics of a cyanine dye molecule in different solvent environment provides the important characteristics of effect of solvation on excited life time of a dye molecule. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=excited%20state" title="excited state">excited state</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20state%20recovery" title=" ground state recovery"> ground state recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=solvation" title=" solvation"> solvation</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20absorption" title=" transient absorption"> transient absorption</a> </p> <a href="https://publications.waset.org/abstracts/63240/ultrafast-ground-state-recovery-dynamics-of-a-cyanine-dye-molecule-in-heterogeneous-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63240.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9777</span> Ultra-Fast pH-Gradient Ion Exchange Chromatography for the Separation of Monoclonal Antibody Charge Variants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Robert%20van%20Ling">Robert van Ling</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Schwahn"> Alexander Schwahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Shanhua%20Lin"> Shanhua Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ken%20Cook"> Ken Cook</a>, <a href="https://publications.waset.org/abstracts/search?q=Frank%20Steiner"> Frank Steiner</a>, <a href="https://publications.waset.org/abstracts/search?q=Rowan%20Moore"> Rowan Moore</a>, <a href="https://publications.waset.org/abstracts/search?q=Mauro%20de%20Pra"> Mauro de Pra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: Demonstration of fast high resolution charge variant analysis for monoclonal antibody (mAb) therapeutics within 5 minutes. Methods: Three commercially available mAbs were used for all experiments. The charge variants of therapeutic mAbs (Bevacizumab, Cetuximab, Infliximab, and Trastuzumab) are analyzed on a strong cation exchange column with a linear pH gradient separation method. The linear gradient from pH 5.6 to pH 10.2 is generated over time by running a linear pump gradient from 100% Thermo Scientific™ CX-1 pH Gradient Buffer A (pH 5.6) to 100% CX-1 pH Gradient Buffer B (pH 10.2), using the Thermo Scientific™ Vanquish™ UHPLC system. Results: The pH gradient method is generally applicable to monoclonal antibody charge variant analysis. In conjunction with state-of-the-art column and UHPLC technology, ultra fast high-resolution separations are consistently achieved in under 5 minutes for all mAbs analyzed. Conclusion: The linear pH gradient method is a platform method for mAb charge variant analysis. The linear pH gradient method can be easily optimized to improve separations and shorten cycle times. Ultra-fast charge variant separation is facilitated with UHPLC that complements, and in some instances outperforms CE approaches in terms of both resolution and throughput. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=charge%20variants" title="charge variants">charge variants</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20exchange%20chromatography" title=" ion exchange chromatography"> ion exchange chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=monoclonal%20antibody" title=" monoclonal antibody"> monoclonal antibody</a>, <a href="https://publications.waset.org/abstracts/search?q=UHPLC" title=" UHPLC"> UHPLC</a> </p> <a href="https://publications.waset.org/abstracts/63884/ultra-fast-ph-gradient-ion-exchange-chromatography-for-the-separation-of-monoclonal-antibody-charge-variants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63884.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9776</span> Ab-Initio Study of Native Defects in SnO Under Strain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Albar">A. Albar</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20B.%20Granato"> D. B. Granato</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Schwingenschlogl"> U. Schwingenschlogl</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tin monoxide (SnO) has promising properties to be applied as a p-type semiconductor in transparent electronics. To this end, it is necessary to understand the behavior of defects in order to control them. We use density functional theory to study native defects of SnO under tensile and compressive strain. We show that Sn vacancies are more stable under tension and less stable under compression, irrespectively of the charge state. In contrast, O vacancies behave differently for different charge. It turns out that the most stable defect under compression is the +1 charged O vacancy in a Sn-rich environment and the charge neutral O interstitial in an O-rich environment. Therefore, compression can be used to transform SnO from an n-type into un-doped semiconductor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=native%20defects" title="native defects">native defects</a>, <a href="https://publications.waset.org/abstracts/search?q=ab-initio" title=" ab-initio"> ab-initio</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20defect" title=" point defect"> point defect</a>, <a href="https://publications.waset.org/abstracts/search?q=tension" title=" tension"> tension</a>, <a href="https://publications.waset.org/abstracts/search?q=compression" title=" compression"> compression</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor" title=" semiconductor"> semiconductor</a> </p> <a href="https://publications.waset.org/abstracts/1948/ab-initio-study-of-native-defects-in-sno-under-strain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9775</span> Phasor Measurement Unit Based on Particle Filtering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rithvik%20Reddy%20Adapa">Rithvik Reddy Adapa</a>, <a href="https://publications.waset.org/abstracts/search?q=Xin%20Wang"> Xin Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phasor Measurement Units (PMUs) are very sophisticated measuring devices that find amplitude, phase and frequency of various voltages and currents in a power system. Particle filter is a state estimation technique that uses Bayesian inference. Particle filters are widely used in pose estimation and indoor navigation and are very reliable. This paper studies and compares four different particle filters as PMUs namely, generic particle filter (GPF), genetic algorithm particle filter (GAPF), particle swarm optimization particle filter (PSOPF) and adaptive particle filter (APF). Two different test signals are used to test the performance of the filters in terms of responsiveness and correctness of the estimates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phasor%20measurement%20unit" title="phasor measurement unit">phasor measurement unit</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20filter" title=" particle filter"> particle filter</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimisation" title=" particle swarm optimisation"> particle swarm optimisation</a>, <a href="https://publications.waset.org/abstracts/search?q=state%20estimation" title=" state estimation"> state estimation</a> </p> <a href="https://publications.waset.org/abstracts/194127/phasor-measurement-unit-based-on-particle-filtering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194127.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">8</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9774</span> An Equivalent Circuit Model Approach for Battery Pack Simulation in a Hybrid Electric Vehicle System Powertrain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suchitra%20Sivakumar">Suchitra Sivakumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hajime%20Shingyouchi"> Hajime Shingyouchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Toshinori%20Okajima"> Toshinori Okajima</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyohei%20Yamaguchi"> Kyohei Yamaguchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20Kusaka"> Jin Kusaka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The progressing need for powertrain electrification calls for more accurate and reliable simulation models. A battery pack serves as the most vital component for energy storage in an electrified powertrain. Hybrid electric vehicles (HEV) do not behave the same way as they age, and there are several environmental factors that account for the degradation of the battery on a system level. Therefore, in this work, a battery model was proposed to study the state of charge (SOC) variation and the internal dynamic changes that contribute to aging and performance degradation in HEV batteries. An equivalent circuit battery model (ECM) is built using MATLAB Simulink to investigate the output characteristics of the lithium-ion battery. The ECM comprises of circuit elements like a voltage source, a series resistor and a parallel RC network connected in series. A parameter estimation study is conducted on the ECM to study the dependencies of the circuit elements with the state of charge (SOC) and the terminal voltage of the battery. The battery model is extended to simulate the temperature dependence of the individual battery cell and the battery pack with the environment. The temperature dependence model accounts for the heat loss due to internal resistance build up in the battery pack during charging, discharging, and due to atmospheric temperature. The model was validated for a lithium-ion battery pack with an independent drive cycle showing a voltage accuracy of 4% and SOC accuracy of about 2%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=battery%20model" title="battery model">battery model</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20electric%20vehicle" title=" hybrid electric vehicle"> hybrid electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium-ion%20battery" title=" lithium-ion battery"> lithium-ion battery</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20model" title=" thermal model"> thermal model</a> </p> <a href="https://publications.waset.org/abstracts/113330/an-equivalent-circuit-model-approach-for-battery-pack-simulation-in-a-hybrid-electric-vehicle-system-powertrain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113330.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9773</span> Hierarchical Manganese and Nickel Selenide based Ultra-efficient Electrode Material for All-Solid-State Asymmetric Supercapacitors with Extended Energy Efficacy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siddhant%20Srivastav">Siddhant Srivastav</a>, <a href="https://publications.waset.org/abstracts/search?q=Soumyaranjan%20Mishra"> Soumyaranjan Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumanta%20Kumar%20Meher"> Sumanta Kumar Meher</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Researchers are attempting to develop extremely efficient electrochemical energy storage technologies as a result of the phenomenal advancement of portable electronic devices. Because of their improved electrical conductivity and narrower band gap, transition metal selenide-based nanostructures have piqued the interest of many researchers in this field. Based on this concept, we present a simple anion exchange hydrothermal synthesis method for synthesizing manganese and nickel based selenide (Mn/NiSe2) nanostructure for use in all-solid-state asymmetric supercapacitors. According to the comprehensive physicochemical characterizations, the material has lowly crystalline properties, a distinct porous microstructure, and a significant bonding contact between the metal and the selenium. The electrochemical investigations of the Mn/NiSe2 electrode material revealed supercapacitive charge discharge properties, excellent electro-kinetic reversibility, and minimal charge transfer resistance (Rct). Furthermore, the all-solid-state asymmetric supercapacitor device assembled using Mn/NiSe2 as positive electrode, nitrogen doped reduced graphene oxide (N-rGO) as negative electrode, and PVA-KOH gel as electrolyte/separator exhibit good redox behaviour, excellent charge-discharge properties with negligible voltage (IR) drop, and lower impedance characteristics. The solid state asymmetric supercapacitor device (Mn/NiSe2||N-rGO) demonstrated the power density of ultra-capacitors and the energy density of rechargeable batteries. Conclusively, the Mn/NiSe2 has been proposed as a potential outstanding electrode material for the next generation of all-solid-state asymmetric supercapacitors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anion%20exchange" title="anion exchange">anion exchange</a>, <a href="https://publications.waset.org/abstracts/search?q=asymmetric%20supercapacitor" title=" asymmetric supercapacitor"> asymmetric supercapacitor</a>, <a href="https://publications.waset.org/abstracts/search?q=supercapacitive%20charge-discharge" title=" supercapacitive charge-discharge"> supercapacitive charge-discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage%20drop" title=" voltage drop"> voltage drop</a> </p> <a href="https://publications.waset.org/abstracts/168493/hierarchical-manganese-and-nickel-selenide-based-ultra-efficient-electrode-material-for-all-solid-state-asymmetric-supercapacitors-with-extended-energy-efficacy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9772</span> Particle Filter State Estimation Algorithm Based on Improved Artificial Bee Colony Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guangyuan%20Zhao">Guangyuan Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Nan%20Huang"> Nan Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xuesong%20Han"> Xuesong Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Xu%20Huang"> Xu Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to solve the problem of sample dilution in the traditional particle filter algorithm and achieve accurate state estimation in a nonlinear system, a particle filter method based on an improved artificial bee colony (ABC) algorithm was proposed. The algorithm simulated the process of bee foraging and optimization and made the high likelihood region of the backward probability of particles moving to improve the rationality of particle distribution. The opposition-based learning (OBL) strategy is introduced to optimize the initial population of the artificial bee colony algorithm. The convergence factor is introduced into the neighborhood search strategy to limit the search range and improve the convergence speed. Finally, the crossover and mutation operations of the genetic algorithm are introduced into the search mechanism of the following bee, which makes the algorithm jump out of the local extreme value quickly and continue to search the global extreme value to improve its optimization ability. The simulation results show that the improved method can improve the estimation accuracy of particle filters, ensure the diversity of particles, and improve the rationality of particle distribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=particle%20filter" title="particle filter">particle filter</a>, <a href="https://publications.waset.org/abstracts/search?q=impoverishment" title=" impoverishment"> impoverishment</a>, <a href="https://publications.waset.org/abstracts/search?q=state%20estimation" title=" state estimation"> state estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20bee%20colony%20algorithm" title=" artificial bee colony algorithm"> artificial bee colony algorithm</a> </p> <a href="https://publications.waset.org/abstracts/174985/particle-filter-state-estimation-algorithm-based-on-improved-artificial-bee-colony-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=state%20of%20charge%20estimation&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=state%20of%20charge%20estimation&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=state%20of%20charge%20estimation&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=state%20of%20charge%20estimation&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=state%20of%20charge%20estimation&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=state%20of%20charge%20estimation&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=state%20of%20charge%20estimation&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=state%20of%20charge%20estimation&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=state%20of%20charge%20estimation&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=state%20of%20charge%20estimation&page=326">326</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=state%20of%20charge%20estimation&page=327">327</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=state%20of%20charge%20estimation&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>