CINXE.COM

Ivan Meshkov - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Ivan Meshkov - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="Z6OKEw3X+njXdTpyze42034xOZLtyiWx2JMz8rCfGQlk7gX7e4g0pwOOHJTXtK1sFVGEvGIQnmw/wUxV0ase2A==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-9e8218e1301001388038e3fc3427ed00d079a4760ff7745d1ec1b2d59103170a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="ivan meshkov" /> <meta name="description" content="Ivan Meshkov: 1 Follower, 2 Following, 44 Research papers. Research interests: XRD Crystallography, Dendrimers, and Liquid Crystals." /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '9387f500ddcbb8d05c67bef28a2fe0334f1aafb8'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15268,"monthly_visitors":"113 million","monthly_visitor_count":113758192,"monthly_visitor_count_in_millions":113,"user_count":277675357,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1732962333000); window.Aedu.timeDifference = new Date().getTime() - 1732962333000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-bdb9e8c097f01e611f2fc5e2f1a9dc599beede975e2ae5629983543a1726e947.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-3e572e3b706c3ed2ec5b2c1cb44a411fadc81f62a97963cb7bd9c327a0a9d5f2.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-2e8d3f30eaaddd1debd6ce4630b3453b23a23c91ac7c823ddf8822879835b029.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://independent.academia.edu/MeshkovI" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-ae3d0ee232cd83d11499343688b0160a3c7db15e95cb2d0844cae78d49ea53f1.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":213594000,"first_name":"Ivan","middle_initials":null,"last_name":"Meshkov","page_name":"MeshkovI","domain_name":"independent","created_at":"2022-02-01T02:48:52.980-08:00","display_name":"Ivan Meshkov","url":"https://independent.academia.edu/MeshkovI","photo":"/images/s65_no_pic.png","has_photo":false,"is_analytics_public":false,"interests":[{"id":131787,"name":"XRD Crystallography","url":"https://www.academia.edu/Documents/in/XRD_Crystallography"},{"id":26694,"name":"Dendrimers","url":"https://www.academia.edu/Documents/in/Dendrimers"},{"id":5020,"name":"Liquid Crystals","url":"https://www.academia.edu/Documents/in/Liquid_Crystals"},{"id":29617,"name":"Synchrotron Radiation","url":"https://www.academia.edu/Documents/in/Synchrotron_Radiation"},{"id":32927,"name":"Molecular modeling","url":"https://www.academia.edu/Documents/in/Molecular_modeling"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://independent.academia.edu/MeshkovI&quot;,&quot;location&quot;:&quot;/MeshkovI&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;independent.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/MeshkovI&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-083e595c-e82c-42fe-8267-50a56e1d9960"></div> <div id="ProfileCheckPaperUpdate-react-component-083e595c-e82c-42fe-8267-50a56e1d9960"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Ivan Meshkov</h1><div class="affiliations-container fake-truncate js-profile-affiliations"></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Ivan" data-follow-user-id="213594000" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="213594000"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Follower</p><p class="data">1</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">2</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">2</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="213594000" href="https://www.academia.edu/Documents/in/XRD_Crystallography"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://independent.academia.edu/MeshkovI&quot;,&quot;location&quot;:&quot;/MeshkovI&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;independent.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/MeshkovI&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;XRD Crystallography&quot;]}" data-trace="false" data-dom-id="Pill-react-component-a4aa5190-e5b2-41e9-b309-de8f87545283"></div> <div id="Pill-react-component-a4aa5190-e5b2-41e9-b309-de8f87545283"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="213594000" href="https://www.academia.edu/Documents/in/Dendrimers"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Dendrimers&quot;]}" data-trace="false" data-dom-id="Pill-react-component-70dee9f3-0371-4c5a-8257-80de08e564eb"></div> <div id="Pill-react-component-70dee9f3-0371-4c5a-8257-80de08e564eb"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="213594000" href="https://www.academia.edu/Documents/in/Liquid_Crystals"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Liquid Crystals&quot;]}" data-trace="false" data-dom-id="Pill-react-component-e7725d4f-3d4b-49ea-a38d-2f254676ae20"></div> <div id="Pill-react-component-e7725d4f-3d4b-49ea-a38d-2f254676ae20"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="213594000" href="https://www.academia.edu/Documents/in/Synchrotron_Radiation"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Synchrotron Radiation&quot;]}" data-trace="false" data-dom-id="Pill-react-component-d2ad490e-4504-440a-9e7f-9f72673326f5"></div> <div id="Pill-react-component-d2ad490e-4504-440a-9e7f-9f72673326f5"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="213594000" href="https://www.academia.edu/Documents/in/Molecular_modeling"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Molecular modeling&quot;]}" data-trace="false" data-dom-id="Pill-react-component-e2d22a03-e292-4996-9328-b808012bb47f"></div> <div id="Pill-react-component-e2d22a03-e292-4996-9328-b808012bb47f"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Ivan Meshkov</h3></div><div class="js-work-strip profile--work_container" data-work-id="70207376"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/70207376/Spectral_Modulation_Technique_Based_on_Frequency_Shift_Keying_for_High_Speed_Optical_Fiber_Wireless_Communication_System"><img alt="Research paper thumbnail of Spectral Modulation Technique Based on Frequency-Shift Keying for High-Speed Optical Fiber-Wireless Communication System" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/70207376/Spectral_Modulation_Technique_Based_on_Frequency_Shift_Keying_for_High_Speed_Optical_Fiber_Wireless_Communication_System">Spectral Modulation Technique Based on Frequency-Shift Keying for High-Speed Optical Fiber-Wireless Communication System</a></div><div class="wp-workCard_item"><span>2018 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon)</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper we present novel spectral modulation technique for high-speed hybrid telecommunicat...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper we present novel spectral modulation technique for high-speed hybrid telecommunication systems. This technique is based on frequency-shift keying of three wideband pulses with central frequency hopping in desired sub-terahertz frequency range. Mathematical and simulation models of optimal pulses based on hyperbolic secant square function shaped to get maximum of provided power are presented. For such modulation scheme we also developed symbol coding technique that provides bit rate incensement and gains into spectral efficiency and interception security of telecommunication system. Simulation results of spectral modulated signal propagation in radio-over-fiber links are presented and discussed. Finally we introduce preliminary results for system performance with expanded number of applied pulses and advanced symbol coding technique.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="70207376"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="70207376"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 70207376; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=70207376]").text(description); $(".js-view-count[data-work-id=70207376]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 70207376; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='70207376']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 70207376, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=70207376]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":70207376,"title":"Spectral Modulation Technique Based on Frequency-Shift Keying for High-Speed Optical Fiber-Wireless Communication System","translated_title":"","metadata":{"abstract":"In this paper we present novel spectral modulation technique for high-speed hybrid telecommunication systems. This technique is based on frequency-shift keying of three wideband pulses with central frequency hopping in desired sub-terahertz frequency range. Mathematical and simulation models of optimal pulses based on hyperbolic secant square function shaped to get maximum of provided power are presented. For such modulation scheme we also developed symbol coding technique that provides bit rate incensement and gains into spectral efficiency and interception security of telecommunication system. Simulation results of spectral modulated signal propagation in radio-over-fiber links are presented and discussed. Finally we introduce preliminary results for system performance with expanded number of applied pulses and advanced symbol coding technique.","publisher":"IEEE","publication_name":"2018 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon)"},"translated_abstract":"In this paper we present novel spectral modulation technique for high-speed hybrid telecommunication systems. This technique is based on frequency-shift keying of three wideband pulses with central frequency hopping in desired sub-terahertz frequency range. Mathematical and simulation models of optimal pulses based on hyperbolic secant square function shaped to get maximum of provided power are presented. For such modulation scheme we also developed symbol coding technique that provides bit rate incensement and gains into spectral efficiency and interception security of telecommunication system. Simulation results of spectral modulated signal propagation in radio-over-fiber links are presented and discussed. Finally we introduce preliminary results for system performance with expanded number of applied pulses and advanced symbol coding technique.","internal_url":"https://www.academia.edu/70207376/Spectral_Modulation_Technique_Based_on_Frequency_Shift_Keying_for_High_Speed_Optical_Fiber_Wireless_Communication_System","translated_internal_url":"","created_at":"2022-02-01T02:50:15.056-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":213594000,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Spectral_Modulation_Technique_Based_on_Frequency_Shift_Keying_for_High_Speed_Optical_Fiber_Wireless_Communication_System","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":213594000,"first_name":"Ivan","middle_initials":null,"last_name":"Meshkov","page_name":"MeshkovI","domain_name":"independent","created_at":"2022-02-01T02:48:52.980-08:00","display_name":"Ivan Meshkov","url":"https://independent.academia.edu/MeshkovI"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}],"urls":[{"id":17183895,"url":"http://xplorestaging.ieee.org/ielx7/8585254/8602430/08602869.pdf?arnumber=8602869"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="70207375"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/70207375/The_Propagation_Model_of_Modulated_Subterahertz_Signals_in_the_RoF_Communication_Systems"><img alt="Research paper thumbnail of The Propagation Model of Modulated Subterahertz Signals in the RoF Communication Systems" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/70207375/The_Propagation_Model_of_Modulated_Subterahertz_Signals_in_the_RoF_Communication_Systems">The Propagation Model of Modulated Subterahertz Signals in the RoF Communication Systems</a></div><div class="wp-workCard_item"><span>2018 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon)</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Radio-over-Fiber system scheme is described in the paper, the radio domain of this system is perf...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Radio-over-Fiber system scheme is described in the paper, the radio domain of this system is performed in the range 75–110 GHz (W-band). Optical signal with given orbital angular momentum (OAM signal) generation method in RoF fiber optic domain is suggested. The method is based on applying two independent lasers, performing at close wavelengths and the device for spatial phase modulation. For simulation and system parameters calculating, mathematical model of OAM signal envelope is suggested based on simplified wave equations system. Computer simulation of these signals envelope during its transmission was performed. It is shown that distortion of transmitted signals arises because of wavelengths difference. Recommendations were developed for constructing fiber-optic components of the system (including a radio-optical converter) designed to minimize this distortion.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="70207375"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="70207375"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 70207375; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=70207375]").text(description); $(".js-view-count[data-work-id=70207375]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 70207375; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='70207375']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 70207375, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=70207375]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":70207375,"title":"The Propagation Model of Modulated Subterahertz Signals in the RoF Communication Systems","translated_title":"","metadata":{"abstract":"Radio-over-Fiber system scheme is described in the paper, the radio domain of this system is performed in the range 75–110 GHz (W-band). Optical signal with given orbital angular momentum (OAM signal) generation method in RoF fiber optic domain is suggested. The method is based on applying two independent lasers, performing at close wavelengths and the device for spatial phase modulation. For simulation and system parameters calculating, mathematical model of OAM signal envelope is suggested based on simplified wave equations system. Computer simulation of these signals envelope during its transmission was performed. It is shown that distortion of transmitted signals arises because of wavelengths difference. Recommendations were developed for constructing fiber-optic components of the system (including a radio-optical converter) designed to minimize this distortion.","publisher":"IEEE","publication_name":"2018 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon)"},"translated_abstract":"Radio-over-Fiber system scheme is described in the paper, the radio domain of this system is performed in the range 75–110 GHz (W-band). Optical signal with given orbital angular momentum (OAM signal) generation method in RoF fiber optic domain is suggested. The method is based on applying two independent lasers, performing at close wavelengths and the device for spatial phase modulation. For simulation and system parameters calculating, mathematical model of OAM signal envelope is suggested based on simplified wave equations system. Computer simulation of these signals envelope during its transmission was performed. It is shown that distortion of transmitted signals arises because of wavelengths difference. Recommendations were developed for constructing fiber-optic components of the system (including a radio-optical converter) designed to minimize this distortion.","internal_url":"https://www.academia.edu/70207375/The_Propagation_Model_of_Modulated_Subterahertz_Signals_in_the_RoF_Communication_Systems","translated_internal_url":"","created_at":"2022-02-01T02:50:14.920-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":213594000,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_Propagation_Model_of_Modulated_Subterahertz_Signals_in_the_RoF_Communication_Systems","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":213594000,"first_name":"Ivan","middle_initials":null,"last_name":"Meshkov","page_name":"MeshkovI","domain_name":"independent","created_at":"2022-02-01T02:48:52.980-08:00","display_name":"Ivan Meshkov","url":"https://independent.academia.edu/MeshkovI"},"attachments":[],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"}],"urls":[{"id":17183894,"url":"http://xplorestaging.ieee.org/ielx7/8585254/8602430/08602760.pdf?arnumber=8602760"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="70207374"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/70207374/The_vortex_beams_conversion_from_the_optical_range_into_the_radio_domain_based_on_the_nonlinear_generation_of_the_difference_frequency"><img alt="Research paper thumbnail of The vortex beams conversion from the optical range into the radio domain based on the nonlinear generation of the difference frequency" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/70207374/The_vortex_beams_conversion_from_the_optical_range_into_the_radio_domain_based_on_the_nonlinear_generation_of_the_difference_frequency">The vortex beams conversion from the optical range into the radio domain based on the nonlinear generation of the difference frequency</a></div><div class="wp-workCard_item"><span>2019 27th Telecommunications Forum (TELFOR)</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper, we consider the conversion of optical vortex beams into the terahertz radio domain...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper, we consider the conversion of optical vortex beams into the terahertz radio domain based on the nonlinear difference frequency generation in a medium with second-order susceptibility. A theoretical substantiation of the law for converting topological charges of vortex beams is given, according to which the topological charge of the output vortex beam is equal to the difference between topological charges of the input optical vortex beams. A simulation model of the processes under consideration is implemented.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="70207374"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="70207374"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 70207374; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=70207374]").text(description); $(".js-view-count[data-work-id=70207374]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 70207374; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='70207374']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 70207374, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=70207374]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":70207374,"title":"The vortex beams conversion from the optical range into the radio domain based on the nonlinear generation of the difference frequency","translated_title":"","metadata":{"abstract":"In this paper, we consider the conversion of optical vortex beams into the terahertz radio domain based on the nonlinear difference frequency generation in a medium with second-order susceptibility. A theoretical substantiation of the law for converting topological charges of vortex beams is given, according to which the topological charge of the output vortex beam is equal to the difference between topological charges of the input optical vortex beams. A simulation model of the processes under consideration is implemented.","publisher":"IEEE","publication_name":"2019 27th Telecommunications Forum (TELFOR)"},"translated_abstract":"In this paper, we consider the conversion of optical vortex beams into the terahertz radio domain based on the nonlinear difference frequency generation in a medium with second-order susceptibility. A theoretical substantiation of the law for converting topological charges of vortex beams is given, according to which the topological charge of the output vortex beam is equal to the difference between topological charges of the input optical vortex beams. A simulation model of the processes under consideration is implemented.","internal_url":"https://www.academia.edu/70207374/The_vortex_beams_conversion_from_the_optical_range_into_the_radio_domain_based_on_the_nonlinear_generation_of_the_difference_frequency","translated_internal_url":"","created_at":"2022-02-01T02:50:14.790-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":213594000,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_vortex_beams_conversion_from_the_optical_range_into_the_radio_domain_based_on_the_nonlinear_generation_of_the_difference_frequency","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":213594000,"first_name":"Ivan","middle_initials":null,"last_name":"Meshkov","page_name":"MeshkovI","domain_name":"independent","created_at":"2022-02-01T02:48:52.980-08:00","display_name":"Ivan Meshkov","url":"https://independent.academia.edu/MeshkovI"},"attachments":[],"research_interests":[],"urls":[{"id":17183893,"url":"http://xplorestaging.ieee.org/ielx7/8962273/8971019/08971332.pdf?arnumber=8971332"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="70207373"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/70207373/Influence_of_Two_Frequency_Radiation_Intensity_Fluctuations_on_the_Output_Signal_of_a_Vortex_Optical_Fiber_Forming_OAM_Address_in_Polyharmonic_Sensor_Technology"><img alt="Research paper thumbnail of Influence of Two-Frequency Radiation Intensity Fluctuations on the Output Signal of a Vortex Optical Fiber Forming OAM Address in Polyharmonic Sensor Technology" class="work-thumbnail" src="https://attachments.academia-assets.com/80047727/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/70207373/Influence_of_Two_Frequency_Radiation_Intensity_Fluctuations_on_the_Output_Signal_of_a_Vortex_Optical_Fiber_Forming_OAM_Address_in_Polyharmonic_Sensor_Technology">Influence of Two-Frequency Radiation Intensity Fluctuations on the Output Signal of a Vortex Optical Fiber Forming OAM Address in Polyharmonic Sensor Technology</a></div><div class="wp-workCard_item"><span>Photonics</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A schematic diagram of a RoF radio-optic system with vortex signals is presented, in which the ra...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A schematic diagram of a RoF radio-optic system with vortex signals is presented, in which the radio frequency is determined by the difference between the wavelengths of two lasers. It is assumed that the generation of a vortex signal can be performed through a vortex fiber-optic periodic structure, which can be obtained using a technology similar to the manufacture of long-period fiber Bragg gratings. The parameters of the grating are modeled assuming that the fundamental light-guide mode (LP01) is applied to the specified vortex element, and the higher-order mode (LP11) is reflected. It was found that the distortion of the vortex signal can be reduced by introducing apodization and chirping of this periodic structure. The following optimal parameters have been estimated: the apodization and chirp multiplier functions, at which the distortions of the amplitude and phase of the vortex signal, as well as the appearance of an unwanted angle distortion, will be minimal. It is shown tha...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4a162ee3baf2421153dbc74bbe41864e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:80047727,&quot;asset_id&quot;:70207373,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/80047727/download_file?st=MTczMjk2MjMzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="70207373"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="70207373"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 70207373; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=70207373]").text(description); $(".js-view-count[data-work-id=70207373]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 70207373; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='70207373']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 70207373, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4a162ee3baf2421153dbc74bbe41864e" } } $('.js-work-strip[data-work-id=70207373]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":70207373,"title":"Influence of Two-Frequency Radiation Intensity Fluctuations on the Output Signal of a Vortex Optical Fiber Forming OAM Address in Polyharmonic Sensor Technology","translated_title":"","metadata":{"abstract":"A schematic diagram of a RoF radio-optic system with vortex signals is presented, in which the radio frequency is determined by the difference between the wavelengths of two lasers. It is assumed that the generation of a vortex signal can be performed through a vortex fiber-optic periodic structure, which can be obtained using a technology similar to the manufacture of long-period fiber Bragg gratings. The parameters of the grating are modeled assuming that the fundamental light-guide mode (LP01) is applied to the specified vortex element, and the higher-order mode (LP11) is reflected. It was found that the distortion of the vortex signal can be reduced by introducing apodization and chirping of this periodic structure. The following optimal parameters have been estimated: the apodization and chirp multiplier functions, at which the distortions of the amplitude and phase of the vortex signal, as well as the appearance of an unwanted angle distortion, will be minimal. It is shown tha...","publisher":"MDPI AG","publication_name":"Photonics"},"translated_abstract":"A schematic diagram of a RoF radio-optic system with vortex signals is presented, in which the radio frequency is determined by the difference between the wavelengths of two lasers. It is assumed that the generation of a vortex signal can be performed through a vortex fiber-optic periodic structure, which can be obtained using a technology similar to the manufacture of long-period fiber Bragg gratings. The parameters of the grating are modeled assuming that the fundamental light-guide mode (LP01) is applied to the specified vortex element, and the higher-order mode (LP11) is reflected. It was found that the distortion of the vortex signal can be reduced by introducing apodization and chirping of this periodic structure. The following optimal parameters have been estimated: the apodization and chirp multiplier functions, at which the distortions of the amplitude and phase of the vortex signal, as well as the appearance of an unwanted angle distortion, will be minimal. It is shown tha...","internal_url":"https://www.academia.edu/70207373/Influence_of_Two_Frequency_Radiation_Intensity_Fluctuations_on_the_Output_Signal_of_a_Vortex_Optical_Fiber_Forming_OAM_Address_in_Polyharmonic_Sensor_Technology","translated_internal_url":"","created_at":"2022-02-01T02:50:14.669-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":213594000,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":80047727,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80047727/thumbnails/1.jpg","file_name":"photonics-08-00351-v3.pdf","download_url":"https://www.academia.edu/attachments/80047727/download_file?st=MTczMjk2MjMzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Influence_of_Two_Frequency_Radiation_Int.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80047727/photonics-08-00351-v3-libre.pdf?1643712913=\u0026response-content-disposition=attachment%3B+filename%3DInfluence_of_Two_Frequency_Radiation_Int.pdf\u0026Expires=1732965932\u0026Signature=Dm5AM5~JXnDccN4rAQWsQ4wVUcRaU1tLIZt11ysBEKFdKwNQajYyh0B0A5hM7bs9xXkxKTdNE~30C8TKP91vPaNhAht0TD~ayhtESSGWJ6dvlSosJ~oKGM3S7FG-eRljhgozPuchv69iPABpt~h70m8312U~qtuYHkimrQN3xWmyp~rW2UGVoyo-p0P6Xvhc7fuZQFEX09A0cZ1s74BOMusjwjrjfm7ySAHDLmXn3HbRzV3mGW-IjIQZMIBxQg-X7V8QxOtk4W1n2Sw6sSKnZ2Epd71-2m2wi4FmOpfod~45Z5o6JovLKrsTYwQK1BKnzKB2RAvPZ6SZxG3vuxm2Hw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Influence_of_Two_Frequency_Radiation_Intensity_Fluctuations_on_the_Output_Signal_of_a_Vortex_Optical_Fiber_Forming_OAM_Address_in_Polyharmonic_Sensor_Technology","translated_slug":"","page_count":16,"language":"en","content_type":"Work","owner":{"id":213594000,"first_name":"Ivan","middle_initials":null,"last_name":"Meshkov","page_name":"MeshkovI","domain_name":"independent","created_at":"2022-02-01T02:48:52.980-08:00","display_name":"Ivan Meshkov","url":"https://independent.academia.edu/MeshkovI"},"attachments":[{"id":80047727,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80047727/thumbnails/1.jpg","file_name":"photonics-08-00351-v3.pdf","download_url":"https://www.academia.edu/attachments/80047727/download_file?st=MTczMjk2MjMzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Influence_of_Two_Frequency_Radiation_Int.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80047727/photonics-08-00351-v3-libre.pdf?1643712913=\u0026response-content-disposition=attachment%3B+filename%3DInfluence_of_Two_Frequency_Radiation_Int.pdf\u0026Expires=1732965932\u0026Signature=Dm5AM5~JXnDccN4rAQWsQ4wVUcRaU1tLIZt11ysBEKFdKwNQajYyh0B0A5hM7bs9xXkxKTdNE~30C8TKP91vPaNhAht0TD~ayhtESSGWJ6dvlSosJ~oKGM3S7FG-eRljhgozPuchv69iPABpt~h70m8312U~qtuYHkimrQN3xWmyp~rW2UGVoyo-p0P6Xvhc7fuZQFEX09A0cZ1s74BOMusjwjrjfm7ySAHDLmXn3HbRzV3mGW-IjIQZMIBxQg-X7V8QxOtk4W1n2Sw6sSKnZ2Epd71-2m2wi4FmOpfod~45Z5o6JovLKrsTYwQK1BKnzKB2RAvPZ6SZxG3vuxm2Hw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":80047725,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80047725/thumbnails/1.jpg","file_name":"photonics-08-00351-v3.pdf","download_url":"https://www.academia.edu/attachments/80047725/download_file","bulk_download_file_name":"Influence_of_Two_Frequency_Radiation_Int.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80047725/photonics-08-00351-v3-libre.pdf?1643712913=\u0026response-content-disposition=attachment%3B+filename%3DInfluence_of_Two_Frequency_Radiation_Int.pdf\u0026Expires=1732965932\u0026Signature=X0Io3QxUIamuRfdL79GP-dzCWU5QszvttxR~yPCq8jdz8Z4jiAhEsOBlZey-5zFZZ7AsDSjxAqq9zoqKJlhh4V2344PmGMMIoYMocqYtwYw-JL03v4r7opp5rV7Vpf0reX9AhWlo8VasarTH5HtwNV8IVgqIwgsoSSE5zkeONMU84LeYMdQywP1-Tj3vScVP3-XwUSVTHM2GOs8ap3XQkDuanB~UUMDEDfmimG2UP5pae3lxUW59SKUPf9Lbug7bAtTury5kC--Siqj3m4-9jy3kMfMcpyxPqfjlNc-ncMenKWnm0AnGLhkOhrJ~dY-5FNJvVK0imX093~QkBqyFpw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":10019,"name":"Photonics","url":"https://www.academia.edu/Documents/in/Photonics"}],"urls":[{"id":17183892,"url":"https://www.mdpi.com/2304-6732/8/9/351/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="70207372"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/70207372/Usage_of_SDM_technology_in_radio_over_fiber_RoF_transmission_systems_in_high_speed_scalable_6G_wireless_networks"><img alt="Research paper thumbnail of Usage of SDM technology in radio-over-fiber (RoF) transmission systems in high-speed scalable 6G wireless networks" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/70207372/Usage_of_SDM_technology_in_radio_over_fiber_RoF_transmission_systems_in_high_speed_scalable_6G_wireless_networks">Usage of SDM technology in radio-over-fiber (RoF) transmission systems in high-speed scalable 6G wireless networks</a></div><div class="wp-workCard_item"><span>Optical Technologies for Telecommunications 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The article provides an overview of the use of space division multiplexing (SDM) technology in ra...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The article provides an overview of the use of space division multiplexing (SDM) technology in radio-over-fiber (RoF) data transmission systems in future high-speed scalable 6G wireless networks. The features of using the SDM technology in the radio access network are analyzed. The application of new specialized few-mode fibers in 6G networks for the useful information transmission is proposed. The results of experimental studies of custom optical fibers designed for vortex mode generation are also presented.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="70207372"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="70207372"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 70207372; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=70207372]").text(description); $(".js-view-count[data-work-id=70207372]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 70207372; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='70207372']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 70207372, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=70207372]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":70207372,"title":"Usage of SDM technology in radio-over-fiber (RoF) transmission systems in high-speed scalable 6G wireless networks","translated_title":"","metadata":{"abstract":"The article provides an overview of the use of space division multiplexing (SDM) technology in radio-over-fiber (RoF) data transmission systems in future high-speed scalable 6G wireless networks. The features of using the SDM technology in the radio access network are analyzed. The application of new specialized few-mode fibers in 6G networks for the useful information transmission is proposed. The results of experimental studies of custom optical fibers designed for vortex mode generation are also presented.","publisher":"SPIE","publication_name":"Optical Technologies for Telecommunications 2020"},"translated_abstract":"The article provides an overview of the use of space division multiplexing (SDM) technology in radio-over-fiber (RoF) data transmission systems in future high-speed scalable 6G wireless networks. The features of using the SDM technology in the radio access network are analyzed. The application of new specialized few-mode fibers in 6G networks for the useful information transmission is proposed. The results of experimental studies of custom optical fibers designed for vortex mode generation are also presented.","internal_url":"https://www.academia.edu/70207372/Usage_of_SDM_technology_in_radio_over_fiber_RoF_transmission_systems_in_high_speed_scalable_6G_wireless_networks","translated_internal_url":"","created_at":"2022-02-01T02:50:14.590-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":213594000,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Usage_of_SDM_technology_in_radio_over_fiber_RoF_transmission_systems_in_high_speed_scalable_6G_wireless_networks","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":213594000,"first_name":"Ivan","middle_initials":null,"last_name":"Meshkov","page_name":"MeshkovI","domain_name":"independent","created_at":"2022-02-01T02:48:52.980-08:00","display_name":"Ivan Meshkov","url":"https://independent.academia.edu/MeshkovI"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="70207370"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/70207370/Microstrip_ultra_wideband_antenna_measurements"><img alt="Research paper thumbnail of Microstrip ultra-wideband antenna measurements" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/70207370/Microstrip_ultra_wideband_antenna_measurements">Microstrip ultra-wideband antenna measurements</a></div><div class="wp-workCard_item"><span>2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT)</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">New microstrip ultra-wideband antenna is presented and measured in this paper. The antenna was ca...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">New microstrip ultra-wideband antenna is presented and measured in this paper. The antenna was calculated to operate in 3.1–10.6 GHz ultra-wideband frequency band, even though the measurements revealed that it covers the band 3.4–12 GHz. It&amp;#39;s manufactured on the basis of Rogers RO4350B, which is appropriate for this band. Antenna&amp;#39;s total size with SMA connector 72970 Pomona is 39 mm × 19 mm. The main goal stated in this paper is to prove the antenna&amp;#39;s characteristics, simulated before, by carrying out full-time measurements in anechoic chamber. Particularly the return loss, VSWR, transfer function, input impedance and radiation pattern were measured and analyzed, which finally showed similarity of simulation and measured results. It can be announced that the antenna has very wide radiation pattern (more than 180°) and well-matched to 50 Ohm in the entire frequency band. Since it&amp;#39;s small, compact, low profile it can be applied in many modern high-capacity communication systems, including UWB, hybrid optical fiber-wireless networks, 3G and future 5G networks.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="70207370"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="70207370"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 70207370; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=70207370]").text(description); $(".js-view-count[data-work-id=70207370]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 70207370; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='70207370']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 70207370, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=70207370]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":70207370,"title":"Microstrip ultra-wideband antenna measurements","translated_title":"","metadata":{"abstract":"New microstrip ultra-wideband antenna is presented and measured in this paper. The antenna was calculated to operate in 3.1–10.6 GHz ultra-wideband frequency band, even though the measurements revealed that it covers the band 3.4–12 GHz. It\u0026#39;s manufactured on the basis of Rogers RO4350B, which is appropriate for this band. Antenna\u0026#39;s total size with SMA connector 72970 Pomona is 39 mm × 19 mm. The main goal stated in this paper is to prove the antenna\u0026#39;s characteristics, simulated before, by carrying out full-time measurements in anechoic chamber. Particularly the return loss, VSWR, transfer function, input impedance and radiation pattern were measured and analyzed, which finally showed similarity of simulation and measured results. It can be announced that the antenna has very wide radiation pattern (more than 180°) and well-matched to 50 Ohm in the entire frequency band. Since it\u0026#39;s small, compact, low profile it can be applied in many modern high-capacity communication systems, including UWB, hybrid optical fiber-wireless networks, 3G and future 5G networks.","publisher":"IEEE","publication_name":"2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT)"},"translated_abstract":"New microstrip ultra-wideband antenna is presented and measured in this paper. The antenna was calculated to operate in 3.1–10.6 GHz ultra-wideband frequency band, even though the measurements revealed that it covers the band 3.4–12 GHz. It\u0026#39;s manufactured on the basis of Rogers RO4350B, which is appropriate for this band. Antenna\u0026#39;s total size with SMA connector 72970 Pomona is 39 mm × 19 mm. The main goal stated in this paper is to prove the antenna\u0026#39;s characteristics, simulated before, by carrying out full-time measurements in anechoic chamber. Particularly the return loss, VSWR, transfer function, input impedance and radiation pattern were measured and analyzed, which finally showed similarity of simulation and measured results. It can be announced that the antenna has very wide radiation pattern (more than 180°) and well-matched to 50 Ohm in the entire frequency band. Since it\u0026#39;s small, compact, low profile it can be applied in many modern high-capacity communication systems, including UWB, hybrid optical fiber-wireless networks, 3G and future 5G networks.","internal_url":"https://www.academia.edu/70207370/Microstrip_ultra_wideband_antenna_measurements","translated_internal_url":"","created_at":"2022-02-01T02:50:14.465-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":213594000,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Microstrip_ultra_wideband_antenna_measurements","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":213594000,"first_name":"Ivan","middle_initials":null,"last_name":"Meshkov","page_name":"MeshkovI","domain_name":"independent","created_at":"2022-02-01T02:48:52.980-08:00","display_name":"Ivan Meshkov","url":"https://independent.academia.edu/MeshkovI"},"attachments":[],"research_interests":[],"urls":[{"id":17183891,"url":"http://xplorestaging.ieee.org/ielx7/8373577/8384529/08384610.pdf?arnumber=8384610"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="70207369"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/70207369/Method_of_non_destructive_instrumental_analysis_of_mode_compositions_and_vortex_signals_in_guiding_structures"><img alt="Research paper thumbnail of Method of non-destructive instrumental analysis of mode compositions and vortex signals in guiding structures" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/70207369/Method_of_non_destructive_instrumental_analysis_of_mode_compositions_and_vortex_signals_in_guiding_structures">Method of non-destructive instrumental analysis of mode compositions and vortex signals in guiding structures</a></div><div class="wp-workCard_item"><span>Optical Technologies for Telecommunications 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this article the principle of instrumental (experimental) determination of the parameters of m...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this article the principle of instrumental (experimental) determination of the parameters of mode compositions of an optical signal propagating along an optical fiber is described. The measurement scheme is based on the use of a wellknown experimental setup designed to obtain the profile of the refractive index of an optical fiber. In addition to that setup, it is proposed to perform measurements for different angular positions of the investigated optical fiber, and for its different longitudinal positions. The proposed method is realizable in the case when the signal propagating through the optical fiber is characterized by increased intensity, which makes it possible to measure a nonlinear (Kerr) caused addition to the refractive index. It is proposed to calculate the desired mode weight coefficients by the method of probabilistic selection according to the developed method.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="70207369"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="70207369"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 70207369; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=70207369]").text(description); $(".js-view-count[data-work-id=70207369]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 70207369; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='70207369']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 70207369, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=70207369]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":70207369,"title":"Method of non-destructive instrumental analysis of mode compositions and vortex signals in guiding structures","translated_title":"","metadata":{"abstract":"In this article the principle of instrumental (experimental) determination of the parameters of mode compositions of an optical signal propagating along an optical fiber is described. The measurement scheme is based on the use of a wellknown experimental setup designed to obtain the profile of the refractive index of an optical fiber. In addition to that setup, it is proposed to perform measurements for different angular positions of the investigated optical fiber, and for its different longitudinal positions. The proposed method is realizable in the case when the signal propagating through the optical fiber is characterized by increased intensity, which makes it possible to measure a nonlinear (Kerr) caused addition to the refractive index. It is proposed to calculate the desired mode weight coefficients by the method of probabilistic selection according to the developed method.","publisher":"SPIE","publication_name":"Optical Technologies for Telecommunications 2020"},"translated_abstract":"In this article the principle of instrumental (experimental) determination of the parameters of mode compositions of an optical signal propagating along an optical fiber is described. The measurement scheme is based on the use of a wellknown experimental setup designed to obtain the profile of the refractive index of an optical fiber. In addition to that setup, it is proposed to perform measurements for different angular positions of the investigated optical fiber, and for its different longitudinal positions. The proposed method is realizable in the case when the signal propagating through the optical fiber is characterized by increased intensity, which makes it possible to measure a nonlinear (Kerr) caused addition to the refractive index. It is proposed to calculate the desired mode weight coefficients by the method of probabilistic selection according to the developed method.","internal_url":"https://www.academia.edu/70207369/Method_of_non_destructive_instrumental_analysis_of_mode_compositions_and_vortex_signals_in_guiding_structures","translated_internal_url":"","created_at":"2022-02-01T02:50:14.384-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":213594000,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Method_of_non_destructive_instrumental_analysis_of_mode_compositions_and_vortex_signals_in_guiding_structures","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":213594000,"first_name":"Ivan","middle_initials":null,"last_name":"Meshkov","page_name":"MeshkovI","domain_name":"independent","created_at":"2022-02-01T02:48:52.980-08:00","display_name":"Ivan Meshkov","url":"https://independent.academia.edu/MeshkovI"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="70207367"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/70207367/Advanced_modulation_and_precoding_techniques_for_OFDM_based_Radio_over_fiber_systems_operating_in_W_band"><img alt="Research paper thumbnail of Advanced modulation and precoding techniques for OFDM based Radio-over-fiber systems operating in W-band" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/70207367/Advanced_modulation_and_precoding_techniques_for_OFDM_based_Radio_over_fiber_systems_operating_in_W_band">Advanced modulation and precoding techniques for OFDM based Radio-over-fiber systems operating in W-band</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper we present advanced modulation and coding techniques for telecommunication systems ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper we present advanced modulation and coding techniques for telecommunication systems based on Orthogonal Frequency Division Multiplexing and Radio-over-fiber technologies operating in the subteraherz frequency range 75-110 GHz (W-band). The scheme for the Radio-over-fiber communication system based on full-optical frequency upconversion, and detailed description of the W-band wireless channel are presented. As a result, the main factors affecting the quality of the transmitted radio signal are identified, against which the developed modulation formats are aimed. Improving the efficiency of the Radio-over-fiber system is achieved in two stages: by reducing the interchannel interference due to the windowing of received signal, and reducing the peak-to-average power ratio by precoding the subcarrier frequencies of the group spectrum; by increasing the signal-to-noise ratio when using constellation rotation technique. Obtained simulation results showed that application of th...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="70207367"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="70207367"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 70207367; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=70207367]").text(description); $(".js-view-count[data-work-id=70207367]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 70207367; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='70207367']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 70207367, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=70207367]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":70207367,"title":"Advanced modulation and precoding techniques for OFDM based Radio-over-fiber systems operating in W-band","translated_title":"","metadata":{"abstract":"In this paper we present advanced modulation and coding techniques for telecommunication systems based on Orthogonal Frequency Division Multiplexing and Radio-over-fiber technologies operating in the subteraherz frequency range 75-110 GHz (W-band). The scheme for the Radio-over-fiber communication system based on full-optical frequency upconversion, and detailed description of the W-band wireless channel are presented. As a result, the main factors affecting the quality of the transmitted radio signal are identified, against which the developed modulation formats are aimed. Improving the efficiency of the Radio-over-fiber system is achieved in two stages: by reducing the interchannel interference due to the windowing of received signal, and reducing the peak-to-average power ratio by precoding the subcarrier frequencies of the group spectrum; by increasing the signal-to-noise ratio when using constellation rotation technique. Obtained simulation results showed that application of th...","publisher":"Optical Technologies for Telecommunications","publication_date":{"day":null,"month":null,"year":2019,"errors":{}}},"translated_abstract":"In this paper we present advanced modulation and coding techniques for telecommunication systems based on Orthogonal Frequency Division Multiplexing and Radio-over-fiber technologies operating in the subteraherz frequency range 75-110 GHz (W-band). The scheme for the Radio-over-fiber communication system based on full-optical frequency upconversion, and detailed description of the W-band wireless channel are presented. As a result, the main factors affecting the quality of the transmitted radio signal are identified, against which the developed modulation formats are aimed. Improving the efficiency of the Radio-over-fiber system is achieved in two stages: by reducing the interchannel interference due to the windowing of received signal, and reducing the peak-to-average power ratio by precoding the subcarrier frequencies of the group spectrum; by increasing the signal-to-noise ratio when using constellation rotation technique. Obtained simulation results showed that application of th...","internal_url":"https://www.academia.edu/70207367/Advanced_modulation_and_precoding_techniques_for_OFDM_based_Radio_over_fiber_systems_operating_in_W_band","translated_internal_url":"","created_at":"2022-02-01T02:50:14.301-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":213594000,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Advanced_modulation_and_precoding_techniques_for_OFDM_based_Radio_over_fiber_systems_operating_in_W_band","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":213594000,"first_name":"Ivan","middle_initials":null,"last_name":"Meshkov","page_name":"MeshkovI","domain_name":"independent","created_at":"2022-02-01T02:48:52.980-08:00","display_name":"Ivan Meshkov","url":"https://independent.academia.edu/MeshkovI"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="70207365"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/70207365/Propagation_of_non_dispersive_soliton_like_vortexes_in_the_optical_segment_of_radio_over_fiber_systems_in_the_range_75_110_GHz"><img alt="Research paper thumbnail of Propagation of non-dispersive soliton-like vortexes in the optical segment of radio-over-fiber systems in the range 75-110 GHz" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/70207365/Propagation_of_non_dispersive_soliton_like_vortexes_in_the_optical_segment_of_radio_over_fiber_systems_in_the_range_75_110_GHz">Propagation of non-dispersive soliton-like vortexes in the optical segment of radio-over-fiber systems in the range 75-110 GHz</a></div><div class="wp-workCard_item"><span>Optical Technologies for Telecommunications 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this article the propagation of soliton-like vortexes in the optical segment of Radio-over-Fib...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this article the propagation of soliton-like vortexes in the optical segment of Radio-over-Fiber system is considered. The approach is based on solution of nonlinear Schrödinger equation (NSE) for Kerr-type nonlinear medium. A numerical NSE solution for vortex solitons was obtained; simulation of the soliton-like vortexes propagation over an optical fiber was performed. Moreover, a phase-amplitude filter forming optical signals with a set orbital angular momentum state and polarization conserving during propagation through an optical fiber was simulated. The calculation of amplitude-phase filter was conducted based on spinor representation of Maxwell’s equations.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="70207365"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="70207365"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 70207365; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=70207365]").text(description); $(".js-view-count[data-work-id=70207365]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 70207365; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='70207365']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 70207365, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=70207365]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":70207365,"title":"Propagation of non-dispersive soliton-like vortexes in the optical segment of radio-over-fiber systems in the range 75-110 GHz","translated_title":"","metadata":{"abstract":"In this article the propagation of soliton-like vortexes in the optical segment of Radio-over-Fiber system is considered. The approach is based on solution of nonlinear Schrödinger equation (NSE) for Kerr-type nonlinear medium. A numerical NSE solution for vortex solitons was obtained; simulation of the soliton-like vortexes propagation over an optical fiber was performed. Moreover, a phase-amplitude filter forming optical signals with a set orbital angular momentum state and polarization conserving during propagation through an optical fiber was simulated. The calculation of amplitude-phase filter was conducted based on spinor representation of Maxwell’s equations.","publisher":"SPIE","publication_name":"Optical Technologies for Telecommunications 2018"},"translated_abstract":"In this article the propagation of soliton-like vortexes in the optical segment of Radio-over-Fiber system is considered. The approach is based on solution of nonlinear Schrödinger equation (NSE) for Kerr-type nonlinear medium. A numerical NSE solution for vortex solitons was obtained; simulation of the soliton-like vortexes propagation over an optical fiber was performed. Moreover, a phase-amplitude filter forming optical signals with a set orbital angular momentum state and polarization conserving during propagation through an optical fiber was simulated. The calculation of amplitude-phase filter was conducted based on spinor representation of Maxwell’s equations.","internal_url":"https://www.academia.edu/70207365/Propagation_of_non_dispersive_soliton_like_vortexes_in_the_optical_segment_of_radio_over_fiber_systems_in_the_range_75_110_GHz","translated_internal_url":"","created_at":"2022-02-01T02:50:14.220-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":213594000,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Propagation_of_non_dispersive_soliton_like_vortexes_in_the_optical_segment_of_radio_over_fiber_systems_in_the_range_75_110_GHz","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":213594000,"first_name":"Ivan","middle_initials":null,"last_name":"Meshkov","page_name":"MeshkovI","domain_name":"independent","created_at":"2022-02-01T02:48:52.980-08:00","display_name":"Ivan Meshkov","url":"https://independent.academia.edu/MeshkovI"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="70207363"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/70207363/Energy_efficiency_improvement_of_OFDM_based_Radio_over_fiber_systems_enabled_with_PAPR_decrease_method"><img alt="Research paper thumbnail of Energy efficiency improvement of OFDM-based Radio-over-fiber systems enabled with PAPR decrease method" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/70207363/Energy_efficiency_improvement_of_OFDM_based_Radio_over_fiber_systems_enabled_with_PAPR_decrease_method">Energy efficiency improvement of OFDM-based Radio-over-fiber systems enabled with PAPR decrease method</a></div><div class="wp-workCard_item"><span>2019 International Conference on Electrotechnical Complexes and Systems (ICOECS)</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper we present the Peak-to-Average Power Ratio decrease method targeted at energy effic...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper we present the Peak-to-Average Power Ratio decrease method targeted at energy efficiency improvement of the Radio-over-fiber telecommunication systems based on the Orthogonal Frequency Division Multiplexing. The scheme for the proposed method that consists in the signal precoding with discrete function is discussed in details. The simulation results obtained for five different precoding functions: Discrete Hartley Transform, Discrete Cosine Transform, Discrete Sine Transform, Fast Walsh-Hadamard Transform, and Discrete Fourier Transform, show the peak-to-average power ratio decrease of the transmitted signal up to 7 dB without degradation in noise immunity. Such a gain in transmitted power reduction corresponds to energy efficiency improvement by 5.15 dB in the case of 16-position quadrature amplitude modulation. The experimental study confirms the simulation results, providing the 6.5 dB peak-to-average power ratio decrease for Discrete Fourier Transform function.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="70207363"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="70207363"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 70207363; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=70207363]").text(description); $(".js-view-count[data-work-id=70207363]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 70207363; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='70207363']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 70207363, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=70207363]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":70207363,"title":"Energy efficiency improvement of OFDM-based Radio-over-fiber systems enabled with PAPR decrease method","translated_title":"","metadata":{"abstract":"In this paper we present the Peak-to-Average Power Ratio decrease method targeted at energy efficiency improvement of the Radio-over-fiber telecommunication systems based on the Orthogonal Frequency Division Multiplexing. The scheme for the proposed method that consists in the signal precoding with discrete function is discussed in details. The simulation results obtained for five different precoding functions: Discrete Hartley Transform, Discrete Cosine Transform, Discrete Sine Transform, Fast Walsh-Hadamard Transform, and Discrete Fourier Transform, show the peak-to-average power ratio decrease of the transmitted signal up to 7 dB without degradation in noise immunity. Such a gain in transmitted power reduction corresponds to energy efficiency improvement by 5.15 dB in the case of 16-position quadrature amplitude modulation. The experimental study confirms the simulation results, providing the 6.5 dB peak-to-average power ratio decrease for Discrete Fourier Transform function.","publisher":"IEEE","publication_name":"2019 International Conference on Electrotechnical Complexes and Systems (ICOECS)"},"translated_abstract":"In this paper we present the Peak-to-Average Power Ratio decrease method targeted at energy efficiency improvement of the Radio-over-fiber telecommunication systems based on the Orthogonal Frequency Division Multiplexing. The scheme for the proposed method that consists in the signal precoding with discrete function is discussed in details. The simulation results obtained for five different precoding functions: Discrete Hartley Transform, Discrete Cosine Transform, Discrete Sine Transform, Fast Walsh-Hadamard Transform, and Discrete Fourier Transform, show the peak-to-average power ratio decrease of the transmitted signal up to 7 dB without degradation in noise immunity. Such a gain in transmitted power reduction corresponds to energy efficiency improvement by 5.15 dB in the case of 16-position quadrature amplitude modulation. The experimental study confirms the simulation results, providing the 6.5 dB peak-to-average power ratio decrease for Discrete Fourier Transform function.","internal_url":"https://www.academia.edu/70207363/Energy_efficiency_improvement_of_OFDM_based_Radio_over_fiber_systems_enabled_with_PAPR_decrease_method","translated_internal_url":"","created_at":"2022-02-01T02:50:14.093-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":213594000,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Energy_efficiency_improvement_of_OFDM_based_Radio_over_fiber_systems_enabled_with_PAPR_decrease_method","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":213594000,"first_name":"Ivan","middle_initials":null,"last_name":"Meshkov","page_name":"MeshkovI","domain_name":"independent","created_at":"2022-02-01T02:48:52.980-08:00","display_name":"Ivan Meshkov","url":"https://independent.academia.edu/MeshkovI"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"}],"urls":[{"id":17183890,"url":"http://xplorestaging.ieee.org/ielx7/8940999/8949873/08949932.pdf?arnumber=8949932"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="70207361"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/70207361/Design_of_vortex_optical_fibers_for_RoF_systems_Part_II_pilot_samples_of_chiral_microstructured_optical_fibers"><img alt="Research paper thumbnail of Design of vortex optical fibers for RoF systems: Part II: pilot samples of chiral microstructured optical fibers" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/70207361/Design_of_vortex_optical_fibers_for_RoF_systems_Part_II_pilot_samples_of_chiral_microstructured_optical_fibers">Design of vortex optical fibers for RoF systems: Part II: pilot samples of chiral microstructured optical fibers</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We propose and fabricate pilot lengths of two type microstructured optical fibers with chirality,...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We propose and fabricate pilot lengths of two type microstructured optical fibers with chirality, induced during the drawing process under 10 and 66 revolutions per meter. The first one is microstructured fiber with geometry providing quasi-ring radial mode field distribution. So it imitates ring-core optical fiber properties by special formation of designed 2D-periodic structure. The second is fiber with hexagonal geometry and shifted core in relation to central axe. The work presents results of numerical analysis of fabricated samples, performed by rigorous numerical method. Here initial data were set via manufactured optical fiber end face images. We also reports some results of far field laser beam profile images, measured at the output of described fiber samples under laser source excitation at wavelength 1550 nm.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="70207361"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="70207361"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 70207361; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=70207361]").text(description); $(".js-view-count[data-work-id=70207361]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 70207361; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='70207361']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 70207361, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=70207361]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":70207361,"title":"Design of vortex optical fibers for RoF systems: Part II: pilot samples of chiral microstructured optical fibers","translated_title":"","metadata":{"abstract":"We propose and fabricate pilot lengths of two type microstructured optical fibers with chirality, induced during the drawing process under 10 and 66 revolutions per meter. The first one is microstructured fiber with geometry providing quasi-ring radial mode field distribution. So it imitates ring-core optical fiber properties by special formation of designed 2D-periodic structure. The second is fiber with hexagonal geometry and shifted core in relation to central axe. The work presents results of numerical analysis of fabricated samples, performed by rigorous numerical method. Here initial data were set via manufactured optical fiber end face images. We also reports some results of far field laser beam profile images, measured at the output of described fiber samples under laser source excitation at wavelength 1550 nm.","publisher":"Optical Technologies for Telecommunications","publication_date":{"day":null,"month":null,"year":2020,"errors":{}}},"translated_abstract":"We propose and fabricate pilot lengths of two type microstructured optical fibers with chirality, induced during the drawing process under 10 and 66 revolutions per meter. The first one is microstructured fiber with geometry providing quasi-ring radial mode field distribution. So it imitates ring-core optical fiber properties by special formation of designed 2D-periodic structure. The second is fiber with hexagonal geometry and shifted core in relation to central axe. The work presents results of numerical analysis of fabricated samples, performed by rigorous numerical method. Here initial data were set via manufactured optical fiber end face images. We also reports some results of far field laser beam profile images, measured at the output of described fiber samples under laser source excitation at wavelength 1550 nm.","internal_url":"https://www.academia.edu/70207361/Design_of_vortex_optical_fibers_for_RoF_systems_Part_II_pilot_samples_of_chiral_microstructured_optical_fibers","translated_internal_url":"","created_at":"2022-02-01T02:50:13.998-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":213594000,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Design_of_vortex_optical_fibers_for_RoF_systems_Part_II_pilot_samples_of_chiral_microstructured_optical_fibers","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":213594000,"first_name":"Ivan","middle_initials":null,"last_name":"Meshkov","page_name":"MeshkovI","domain_name":"independent","created_at":"2022-02-01T02:48:52.980-08:00","display_name":"Ivan Meshkov","url":"https://independent.academia.edu/MeshkovI"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="70207359"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/70207359/The_optical_control_circuit_of_the_ROF_antenna_array_prototyping_RESULTS"><img alt="Research paper thumbnail of The optical control circuit of the ROF antenna array: prototyping RESULTS" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/70207359/The_optical_control_circuit_of_the_ROF_antenna_array_prototyping_RESULTS">The optical control circuit of the ROF antenna array: prototyping RESULTS</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="70207359"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="70207359"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 70207359; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=70207359]").text(description); $(".js-view-count[data-work-id=70207359]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 70207359; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='70207359']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 70207359, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=70207359]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":70207359,"title":"The optical control circuit of the ROF antenna array: prototyping RESULTS","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2017,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/70207359/The_optical_control_circuit_of_the_ROF_antenna_array_prototyping_RESULTS","translated_internal_url":"","created_at":"2022-02-01T02:50:13.886-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":213594000,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_optical_control_circuit_of_the_ROF_antenna_array_prototyping_RESULTS","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":213594000,"first_name":"Ivan","middle_initials":null,"last_name":"Meshkov","page_name":"MeshkovI","domain_name":"independent","created_at":"2022-02-01T02:48:52.980-08:00","display_name":"Ivan Meshkov","url":"https://independent.academia.edu/MeshkovI"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="70207357"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/70207357/Generation_of_Vortex_Optical_Beams_Based_on_Chiral_Fiber_Optic_Periodic_Structures"><img alt="Research paper thumbnail of Generation of Vortex Optical Beams Based on Chiral Fiber-Optic Periodic Structures" class="work-thumbnail" src="https://attachments.academia-assets.com/80047787/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/70207357/Generation_of_Vortex_Optical_Beams_Based_on_Chiral_Fiber_Optic_Periodic_Structures">Generation of Vortex Optical Beams Based on Chiral Fiber-Optic Periodic Structures</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper, we consider the process of fiber vortex modes generation using chiral periodic str...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper, we consider the process of fiber vortex modes generation using chiral periodic structures that include both chiral optical fibers and chiral (vortex) fiber Bragg gratings (ChFBGs). A generalized theoretical model of the ChFBG is developed including an arbitrary function of apodization and chirping, which provides a way to calculate gratings that generate vortex modes with a given state for the required frequency band and reflection coefficient. In addition, a matrix method for describing the ChFBG is proposed, based on the mathematical apparatus of the coupled modes theory and scattering matrices. Simulation modeling of the fiber structures considered is carried out. Chiral optical fibers maintaining optical vortex propagation are also described. It is also proposed to use chiral fiber-optic periodic structures as sensors of physical fields (temperature, strain, etc.), which can be applied to address multi-sensor monitoring systems due to a unique address parameter—th...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b9c2444e2ecc3d245948cb1acdad2d77" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:80047787,&quot;asset_id&quot;:70207357,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/80047787/download_file?st=MTczMjk2MjMzMyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="70207357"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="70207357"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 70207357; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=70207357]").text(description); $(".js-view-count[data-work-id=70207357]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 70207357; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='70207357']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 70207357, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b9c2444e2ecc3d245948cb1acdad2d77" } } $('.js-work-strip[data-work-id=70207357]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":70207357,"title":"Generation of Vortex Optical Beams Based on Chiral Fiber-Optic Periodic Structures","translated_title":"","metadata":{"abstract":"In this paper, we consider the process of fiber vortex modes generation using chiral periodic structures that include both chiral optical fibers and chiral (vortex) fiber Bragg gratings (ChFBGs). A generalized theoretical model of the ChFBG is developed including an arbitrary function of apodization and chirping, which provides a way to calculate gratings that generate vortex modes with a given state for the required frequency band and reflection coefficient. In addition, a matrix method for describing the ChFBG is proposed, based on the mathematical apparatus of the coupled modes theory and scattering matrices. Simulation modeling of the fiber structures considered is carried out. Chiral optical fibers maintaining optical vortex propagation are also described. It is also proposed to use chiral fiber-optic periodic structures as sensors of physical fields (temperature, strain, etc.), which can be applied to address multi-sensor monitoring systems due to a unique address parameter—th...","publisher":"Sensors","publication_date":{"day":null,"month":null,"year":2020,"errors":{}}},"translated_abstract":"In this paper, we consider the process of fiber vortex modes generation using chiral periodic structures that include both chiral optical fibers and chiral (vortex) fiber Bragg gratings (ChFBGs). A generalized theoretical model of the ChFBG is developed including an arbitrary function of apodization and chirping, which provides a way to calculate gratings that generate vortex modes with a given state for the required frequency band and reflection coefficient. In addition, a matrix method for describing the ChFBG is proposed, based on the mathematical apparatus of the coupled modes theory and scattering matrices. Simulation modeling of the fiber structures considered is carried out. Chiral optical fibers maintaining optical vortex propagation are also described. It is also proposed to use chiral fiber-optic periodic structures as sensors of physical fields (temperature, strain, etc.), which can be applied to address multi-sensor monitoring systems due to a unique address parameter—th...","internal_url":"https://www.academia.edu/70207357/Generation_of_Vortex_Optical_Beams_Based_on_Chiral_Fiber_Optic_Periodic_Structures","translated_internal_url":"","created_at":"2022-02-01T02:50:13.753-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":213594000,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":80047787,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80047787/thumbnails/1.jpg","file_name":"sensors-20-05345.pdf","download_url":"https://www.academia.edu/attachments/80047787/download_file?st=MTczMjk2MjMzMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Generation_of_Vortex_Optical_Beams_Based.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80047787/sensors-20-05345-libre.pdf?1643712915=\u0026response-content-disposition=attachment%3B+filename%3DGeneration_of_Vortex_Optical_Beams_Based.pdf\u0026Expires=1732965932\u0026Signature=aU8RQg~5lmGw5wooCDkuUeYCwQtg5hzY1FetvVZcMzxfwChUxjCxB5CZqA8SN1i3LhYIcn3moXACGBaaJ5SsxmuxSYx6sjOH96CCXuy3WlQHHN53xYhvbWu~Yf1XBZH-a-hX2~yi~h6h8v6vteTpsuwuurhD8gDuC6d3xh5X9e7Q4ZwkjFjdoGxhqVKEndd0VD5cjawyHJRkVLiNkFLzDlPGiC1xqFxjV9iK7Jzggm6O00XETPzDAe9qWSrigYsSRC~Mau~D8a4zAiAuLmVPTkoWuPippDStODC3ARpRwEH5e-x9scMH718v6yEWWNf9IjGV2k-u5zbn5zSJbt0euA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Generation_of_Vortex_Optical_Beams_Based_on_Chiral_Fiber_Optic_Periodic_Structures","translated_slug":"","page_count":16,"language":"en","content_type":"Work","owner":{"id":213594000,"first_name":"Ivan","middle_initials":null,"last_name":"Meshkov","page_name":"MeshkovI","domain_name":"independent","created_at":"2022-02-01T02:48:52.980-08:00","display_name":"Ivan Meshkov","url":"https://independent.academia.edu/MeshkovI"},"attachments":[{"id":80047787,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80047787/thumbnails/1.jpg","file_name":"sensors-20-05345.pdf","download_url":"https://www.academia.edu/attachments/80047787/download_file?st=MTczMjk2MjMzMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Generation_of_Vortex_Optical_Beams_Based.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80047787/sensors-20-05345-libre.pdf?1643712915=\u0026response-content-disposition=attachment%3B+filename%3DGeneration_of_Vortex_Optical_Beams_Based.pdf\u0026Expires=1732965932\u0026Signature=aU8RQg~5lmGw5wooCDkuUeYCwQtg5hzY1FetvVZcMzxfwChUxjCxB5CZqA8SN1i3LhYIcn3moXACGBaaJ5SsxmuxSYx6sjOH96CCXuy3WlQHHN53xYhvbWu~Yf1XBZH-a-hX2~yi~h6h8v6vteTpsuwuurhD8gDuC6d3xh5X9e7Q4ZwkjFjdoGxhqVKEndd0VD5cjawyHJRkVLiNkFLzDlPGiC1xqFxjV9iK7Jzggm6O00XETPzDAe9qWSrigYsSRC~Mau~D8a4zAiAuLmVPTkoWuPippDStODC3ARpRwEH5e-x9scMH718v6yEWWNf9IjGV2k-u5zbn5zSJbt0euA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":17183889,"url":"https://www.wikidata.org/entity/Q99605227"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="70207355"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/70207355/Development_of_a_beam_forming_circuit_for_the_antenna_array_operating_in_the_W_band"><img alt="Research paper thumbnail of Development of a beam-forming circuit for the antenna array operating in the W-band" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/70207355/Development_of_a_beam_forming_circuit_for_the_antenna_array_operating_in_the_W_band">Development of a beam-forming circuit for the antenna array operating in the W-band</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The paper presents the development of a beamforming circuit aimed at controlling the state of an ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The paper presents the development of a beamforming circuit aimed at controlling the state of an orbital angular moment of the output radio beam from a uniform circular antenna array operating in the W-band. The proposed device is based on the Rotman lens, the shape of which is calculated taking into account the configuration of the antenna array and the required states of its radiation pattern. The Rotman lens circuit has five input beam ports, eight output antenna ports, and eight dummy ports. The application of such a beam-forming scheme can significantly reduce the overall dimensions of the antenna system and can be implemented based on the microstrip technology together with the antenna array.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="70207355"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="70207355"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 70207355; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=70207355]").text(description); $(".js-view-count[data-work-id=70207355]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 70207355; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='70207355']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 70207355, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=70207355]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":70207355,"title":"Development of a beam-forming circuit for the antenna array operating in the W-band","translated_title":"","metadata":{"abstract":"The paper presents the development of a beamforming circuit aimed at controlling the state of an orbital angular moment of the output radio beam from a uniform circular antenna array operating in the W-band. The proposed device is based on the Rotman lens, the shape of which is calculated taking into account the configuration of the antenna array and the required states of its radiation pattern. The Rotman lens circuit has five input beam ports, eight output antenna ports, and eight dummy ports. The application of such a beam-forming scheme can significantly reduce the overall dimensions of the antenna system and can be implemented based on the microstrip technology together with the antenna array.","publisher":"2020 International Conference on Information Technology and Nanotechnology (ITNT)","publication_date":{"day":null,"month":null,"year":2020,"errors":{}}},"translated_abstract":"The paper presents the development of a beamforming circuit aimed at controlling the state of an orbital angular moment of the output radio beam from a uniform circular antenna array operating in the W-band. The proposed device is based on the Rotman lens, the shape of which is calculated taking into account the configuration of the antenna array and the required states of its radiation pattern. The Rotman lens circuit has five input beam ports, eight output antenna ports, and eight dummy ports. The application of such a beam-forming scheme can significantly reduce the overall dimensions of the antenna system and can be implemented based on the microstrip technology together with the antenna array.","internal_url":"https://www.academia.edu/70207355/Development_of_a_beam_forming_circuit_for_the_antenna_array_operating_in_the_W_band","translated_internal_url":"","created_at":"2022-02-01T02:50:13.659-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":213594000,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Development_of_a_beam_forming_circuit_for_the_antenna_array_operating_in_the_W_band","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":213594000,"first_name":"Ivan","middle_initials":null,"last_name":"Meshkov","page_name":"MeshkovI","domain_name":"independent","created_at":"2022-02-01T02:48:52.980-08:00","display_name":"Ivan Meshkov","url":"https://independent.academia.edu/MeshkovI"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="70207353"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/70207353/The_radio_photon_method_of_forming_directional_radio_emission_in_a_wide_frequency_band"><img alt="Research paper thumbnail of The radio-photon method of forming directional radio emission in a wide frequency band" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/70207353/The_radio_photon_method_of_forming_directional_radio_emission_in_a_wide_frequency_band">The radio-photon method of forming directional radio emission in a wide frequency band</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The task of the antenna array radiation pattern optical control for ultra-wideband radio emission...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The task of the antenna array radiation pattern optical control for ultra-wideband radio emission is considered in the paper. A fiber-optic phasing scheme is proposed, which is part of a complex fiber-optic device. The control device layout and the radio-photon segment layout photos are presented. An analytical model of the optical phasing process is developed that provides the frequency bands number calculation. The number of bands, on which a wide frequency range should be divided, depends on the permissible level of the array radiation pattern distortion. The results of experimental approbation of the radio lobe phasing control in the frequency band of 200 MHz, divided into 3 subbands of 70 MHz, are presented.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="70207353"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="70207353"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 70207353; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=70207353]").text(description); $(".js-view-count[data-work-id=70207353]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 70207353; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='70207353']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 70207353, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=70207353]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":70207353,"title":"The radio-photon method of forming directional radio emission in a wide frequency band","translated_title":"","metadata":{"abstract":"The task of the antenna array radiation pattern optical control for ultra-wideband radio emission is considered in the paper. A fiber-optic phasing scheme is proposed, which is part of a complex fiber-optic device. The control device layout and the radio-photon segment layout photos are presented. An analytical model of the optical phasing process is developed that provides the frequency bands number calculation. The number of bands, on which a wide frequency range should be divided, depends on the permissible level of the array radiation pattern distortion. The results of experimental approbation of the radio lobe phasing control in the frequency band of 200 MHz, divided into 3 subbands of 70 MHz, are presented.","publisher":"Optical Technologies for Telecommunications","publication_date":{"day":null,"month":null,"year":2018,"errors":{}}},"translated_abstract":"The task of the antenna array radiation pattern optical control for ultra-wideband radio emission is considered in the paper. A fiber-optic phasing scheme is proposed, which is part of a complex fiber-optic device. The control device layout and the radio-photon segment layout photos are presented. An analytical model of the optical phasing process is developed that provides the frequency bands number calculation. The number of bands, on which a wide frequency range should be divided, depends on the permissible level of the array radiation pattern distortion. The results of experimental approbation of the radio lobe phasing control in the frequency band of 200 MHz, divided into 3 subbands of 70 MHz, are presented.","internal_url":"https://www.academia.edu/70207353/The_radio_photon_method_of_forming_directional_radio_emission_in_a_wide_frequency_band","translated_internal_url":"","created_at":"2022-02-01T02:50:13.568-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":213594000,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_radio_photon_method_of_forming_directional_radio_emission_in_a_wide_frequency_band","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":213594000,"first_name":"Ivan","middle_initials":null,"last_name":"Meshkov","page_name":"MeshkovI","domain_name":"independent","created_at":"2022-02-01T02:48:52.980-08:00","display_name":"Ivan Meshkov","url":"https://independent.academia.edu/MeshkovI"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="70207351"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/70207351/Optical_device_models_for_RoF_systems"><img alt="Research paper thumbnail of Optical device models for RoF systems" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/70207351/Optical_device_models_for_RoF_systems">Optical device models for RoF systems</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper studies engineering design and modeling of an optical device intended for Radio-over-F...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper studies engineering design and modeling of an optical device intended for Radio-over-Fiber (RoF) antenna array radio emitting management. Design and assembled models of the device are based on either profiled multiple-wave interferometer or long-haul ring topology FOCL. To construct the interferential type OSCD (optical signal splitting and chirping device) models optical ceramic glass mixer processed with the ITHP (intense twist under high pressure) method was used. Loss and transmission coefficients with account of splitting for all the prototype units were measured — on frame-controller equipment and on RoF segment test bench equipment. Satisfactory measurement results obtained allow to make conclusion on OSCD models applicability for RoF test segments. The designed models and test bench pictures are also illustrated in this article.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="70207351"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="70207351"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 70207351; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=70207351]").text(description); $(".js-view-count[data-work-id=70207351]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 70207351; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='70207351']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 70207351, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=70207351]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":70207351,"title":"Optical device models for RoF systems","translated_title":"","metadata":{"abstract":"This paper studies engineering design and modeling of an optical device intended for Radio-over-Fiber (RoF) antenna array radio emitting management. Design and assembled models of the device are based on either profiled multiple-wave interferometer or long-haul ring topology FOCL. To construct the interferential type OSCD (optical signal splitting and chirping device) models optical ceramic glass mixer processed with the ITHP (intense twist under high pressure) method was used. Loss and transmission coefficients with account of splitting for all the prototype units were measured — on frame-controller equipment and on RoF segment test bench equipment. Satisfactory measurement results obtained allow to make conclusion on OSCD models applicability for RoF test segments. The designed models and test bench pictures are also illustrated in this article.","publisher":"2017 International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON)","publication_date":{"day":null,"month":null,"year":2017,"errors":{}}},"translated_abstract":"This paper studies engineering design and modeling of an optical device intended for Radio-over-Fiber (RoF) antenna array radio emitting management. Design and assembled models of the device are based on either profiled multiple-wave interferometer or long-haul ring topology FOCL. To construct the interferential type OSCD (optical signal splitting and chirping device) models optical ceramic glass mixer processed with the ITHP (intense twist under high pressure) method was used. Loss and transmission coefficients with account of splitting for all the prototype units were measured — on frame-controller equipment and on RoF segment test bench equipment. Satisfactory measurement results obtained allow to make conclusion on OSCD models applicability for RoF test segments. The designed models and test bench pictures are also illustrated in this article.","internal_url":"https://www.academia.edu/70207351/Optical_device_models_for_RoF_systems","translated_internal_url":"","created_at":"2022-02-01T02:50:13.481-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":213594000,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Optical_device_models_for_RoF_systems","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":213594000,"first_name":"Ivan","middle_initials":null,"last_name":"Meshkov","page_name":"MeshkovI","domain_name":"independent","created_at":"2022-02-01T02:48:52.980-08:00","display_name":"Ivan Meshkov","url":"https://independent.academia.edu/MeshkovI"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="70207349"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/70207349/Design_of_vortex_optical_fibers_for_RoF_systems_Part_I_overview_and_alternative_solutions"><img alt="Research paper thumbnail of Design of vortex optical fibers for RoF systems: Part I: overview and alternative solutions" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/70207349/Design_of_vortex_optical_fibers_for_RoF_systems_Part_I_overview_and_alternative_solutions">Design of vortex optical fibers for RoF systems: Part I: overview and alternative solutions</a></div><div class="wp-workCard_item"><span>Optical Technologies for Telecommunications 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper, an alternative fiber-optic method for forming vortex modes based on a chiral (twis...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper, an alternative fiber-optic method for forming vortex modes based on a chiral (twisted) microstructured fiber is proposed. This fiber can be considered as a ring-core fiber with ring core formed by capillaries. Besides, optical fibers design for transmitting optical vortexes over long distances. i.e. a vortex-maintaining fiber is also proposed. This fiber is a multimode fiber with an extremely large core. A comparison of the different types of vortex generation and vortex-maintaining fibers is also given. Both proposed fibers can be used in Radio over Fiber systems applying vortex beams.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="70207349"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="70207349"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 70207349; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=70207349]").text(description); $(".js-view-count[data-work-id=70207349]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 70207349; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='70207349']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 70207349, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=70207349]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":70207349,"title":"Design of vortex optical fibers for RoF systems: Part I: overview and alternative solutions","translated_title":"","metadata":{"abstract":"In this paper, an alternative fiber-optic method for forming vortex modes based on a chiral (twisted) microstructured fiber is proposed. This fiber can be considered as a ring-core fiber with ring core formed by capillaries. Besides, optical fibers design for transmitting optical vortexes over long distances. i.e. a vortex-maintaining fiber is also proposed. This fiber is a multimode fiber with an extremely large core. A comparison of the different types of vortex generation and vortex-maintaining fibers is also given. Both proposed fibers can be used in Radio over Fiber systems applying vortex beams.","publisher":"SPIE","publication_name":"Optical Technologies for Telecommunications 2019"},"translated_abstract":"In this paper, an alternative fiber-optic method for forming vortex modes based on a chiral (twisted) microstructured fiber is proposed. This fiber can be considered as a ring-core fiber with ring core formed by capillaries. Besides, optical fibers design for transmitting optical vortexes over long distances. i.e. a vortex-maintaining fiber is also proposed. This fiber is a multimode fiber with an extremely large core. A comparison of the different types of vortex generation and vortex-maintaining fibers is also given. Both proposed fibers can be used in Radio over Fiber systems applying vortex beams.","internal_url":"https://www.academia.edu/70207349/Design_of_vortex_optical_fibers_for_RoF_systems_Part_I_overview_and_alternative_solutions","translated_internal_url":"","created_at":"2022-02-01T02:50:13.350-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":213594000,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Design_of_vortex_optical_fibers_for_RoF_systems_Part_I_overview_and_alternative_solutions","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":213594000,"first_name":"Ivan","middle_initials":null,"last_name":"Meshkov","page_name":"MeshkovI","domain_name":"independent","created_at":"2022-02-01T02:48:52.980-08:00","display_name":"Ivan Meshkov","url":"https://independent.academia.edu/MeshkovI"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="70207348"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/70207348/Ultra_wideband_vortex_antenna_array_design_for_high_capacity_radio_links"><img alt="Research paper thumbnail of Ultra-wideband vortex antenna array design for high capacity radio links" class="work-thumbnail" src="https://attachments.academia-assets.com/80047723/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/70207348/Ultra_wideband_vortex_antenna_array_design_for_high_capacity_radio_links">Ultra-wideband vortex antenna array design for high capacity radio links</a></div><div class="wp-workCard_item"><span>Journal of Physics: Conference Series</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c7d718211006e8e7a49182917d53f9d3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:80047723,&quot;asset_id&quot;:70207348,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/80047723/download_file?st=MTczMjk2MjMzMyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="70207348"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="70207348"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 70207348; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=70207348]").text(description); $(".js-view-count[data-work-id=70207348]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 70207348; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='70207348']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 70207348, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c7d718211006e8e7a49182917d53f9d3" } } $('.js-work-strip[data-work-id=70207348]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":70207348,"title":"Ultra-wideband vortex antenna array design for high capacity radio links","translated_title":"","metadata":{"publisher":"IOP Publishing","grobid_abstract":"In this paper the development principles for calculation and construction of the antenna for «smooth» transmission and reception of multichannel ultra-wideband signals with a given spiral phase front applied in Radio-over-fiber system for the seamless data transmission are discussed. The detail description of the current state of research in this field is presented and deeply analyzed, so finally the new unique solutions are proposed and described in detail.Since the transceiver antenna has a significant effect on the signal shape working as a spatio-temporal filter, then the phase of the emitted wave (spin-orbital state) depends only on the antenna geometry. So the inverse problem of the antenna theory should be solved, when the antenna array configuration is synthesized on the basis of the given aperture.The antenna is considered as distributed in-space volume antenna arraybased on tripoles, providing the reception of a «tangled» signal with wave division and spin-orbital state multiplexing. The antenna is calculated using a mathematical and computer modelling and characterized with stable characteristics in the ultra-wide frequency band.","publication_name":"Journal of Physics: Conference Series","grobid_abstract_attachment_id":80047723},"translated_abstract":null,"internal_url":"https://www.academia.edu/70207348/Ultra_wideband_vortex_antenna_array_design_for_high_capacity_radio_links","translated_internal_url":"","created_at":"2022-02-01T02:50:13.214-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":213594000,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":80047723,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80047723/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/80047723/download_file?st=MTczMjk2MjMzMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Ultra_wideband_vortex_antenna_array_desi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80047723/pdf-libre.pdf?1643712911=\u0026response-content-disposition=attachment%3B+filename%3DUltra_wideband_vortex_antenna_array_desi.pdf\u0026Expires=1732965933\u0026Signature=ckRxwqRrsI5X2JRkOAw2xYNtJio5zDf-6ASFBTktiL-eoCzmXDvtQc7RyonuocjJpm5t2tZ~ni3LY-WqKTI~y3CI0hrTVzDMa4YPEC3HFSQfuDtPgYL6wEAKl7u66DHpzmbXegpffQneyjrSfHtIH5l0-lXTGaP5k8GA8I-kOJvloxpmDGzXCsaOzxPHaILKjgS0Y1U1qUPfB21bW0BZUI6L9Lgnsfsh6XMIzXbARrS7aqX0OYnY5wOyTXnQ6IBvwk9jMgItdX2ykyndfk0pwPLCfiRRhKWdXvOVXXe4b83DgAS9UrjDYxogF6vefSnnVAzkdMklZPEfmd6doNp0hQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Ultra_wideband_vortex_antenna_array_design_for_high_capacity_radio_links","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":213594000,"first_name":"Ivan","middle_initials":null,"last_name":"Meshkov","page_name":"MeshkovI","domain_name":"independent","created_at":"2022-02-01T02:48:52.980-08:00","display_name":"Ivan Meshkov","url":"https://independent.academia.edu/MeshkovI"},"attachments":[{"id":80047723,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80047723/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/80047723/download_file?st=MTczMjk2MjMzMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Ultra_wideband_vortex_antenna_array_desi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80047723/pdf-libre.pdf?1643712911=\u0026response-content-disposition=attachment%3B+filename%3DUltra_wideband_vortex_antenna_array_desi.pdf\u0026Expires=1732965933\u0026Signature=ckRxwqRrsI5X2JRkOAw2xYNtJio5zDf-6ASFBTktiL-eoCzmXDvtQc7RyonuocjJpm5t2tZ~ni3LY-WqKTI~y3CI0hrTVzDMa4YPEC3HFSQfuDtPgYL6wEAKl7u66DHpzmbXegpffQneyjrSfHtIH5l0-lXTGaP5k8GA8I-kOJvloxpmDGzXCsaOzxPHaILKjgS0Y1U1qUPfB21bW0BZUI6L9Lgnsfsh6XMIzXbARrS7aqX0OYnY5wOyTXnQ6IBvwk9jMgItdX2ykyndfk0pwPLCfiRRhKWdXvOVXXe4b83DgAS9UrjDYxogF6vefSnnVAzkdMklZPEfmd6doNp0hQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":80047722,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80047722/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/80047722/download_file","bulk_download_file_name":"Ultra_wideband_vortex_antenna_array_desi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80047722/pdf-libre.pdf?1643712910=\u0026response-content-disposition=attachment%3B+filename%3DUltra_wideband_vortex_antenna_array_desi.pdf\u0026Expires=1732965933\u0026Signature=gipca9WiDYG8VuM-HlUwVwD3BpWQmr9~Fs9uZRglB7HfA~-MTUh2XOOgJaGOVeYT5z5rr2UZ3BuQ7wS5gpL0A0BPS69hbPnIc4-buBIcCwT~zdFRJypyPuN96EY4uvQVCaFGVJJ0JL3gTNuxGapdZ8P43NL2IT4eLJSvrVXQb2gZl1XxJ5ySsIqoqu2r6f9Sq1kpBzWcmjM2XyrkOWkWC6CrRhyx1kiutyM5ocYuwG~XB~AQzmpI0hyCnRNu6YaWUcKUUxi-Sblakh81jKRN0kEd49w8PkwesSarYOoDmbaqVMw-voX8YvZUAX4PmJQWv8gEKeTVVPT84BEksFK2dg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"}],"urls":[{"id":17183888,"url":"http://stacks.iop.org/1742-6596/1096/i=1/a=012164/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="70207346"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/70207346/Optical_signal_splitting_and_chirping_device_modeling"><img alt="Research paper thumbnail of Optical signal splitting and chirping device modeling" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/70207346/Optical_signal_splitting_and_chirping_device_modeling">Optical signal splitting and chirping device modeling</a></div><div class="wp-workCard_item"><span>SPIE Proceedings</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This article examines the devices for optical signal splitting and chirping device modeling. Mode...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This article examines the devices for optical signal splitting and chirping device modeling. Models with splitting and switching functions are taken into consideration. The described device for optical signal splitting and chirping represents interferential splitter with profiled mixer which provides allocation of correspondent spectral component from ultra wide band frequency diapason, and signal phase shift for aerial array (AA) directive diagram control. This paper proposes modeling for two types of devices for optical signal splitting and chirping: the interference-type optical signal splitting and chirping device and the long-distance-type optical signal splitting and chirping device.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="70207346"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="70207346"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 70207346; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=70207346]").text(description); $(".js-view-count[data-work-id=70207346]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 70207346; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='70207346']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 70207346, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=70207346]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":70207346,"title":"Optical signal splitting and chirping device modeling","translated_title":"","metadata":{"abstract":"This article examines the devices for optical signal splitting and chirping device modeling. Models with splitting and switching functions are taken into consideration. The described device for optical signal splitting and chirping represents interferential splitter with profiled mixer which provides allocation of correspondent spectral component from ultra wide band frequency diapason, and signal phase shift for aerial array (AA) directive diagram control. This paper proposes modeling for two types of devices for optical signal splitting and chirping: the interference-type optical signal splitting and chirping device and the long-distance-type optical signal splitting and chirping device.","publisher":"SPIE","publication_name":"SPIE Proceedings"},"translated_abstract":"This article examines the devices for optical signal splitting and chirping device modeling. Models with splitting and switching functions are taken into consideration. The described device for optical signal splitting and chirping represents interferential splitter with profiled mixer which provides allocation of correspondent spectral component from ultra wide band frequency diapason, and signal phase shift for aerial array (AA) directive diagram control. This paper proposes modeling for two types of devices for optical signal splitting and chirping: the interference-type optical signal splitting and chirping device and the long-distance-type optical signal splitting and chirping device.","internal_url":"https://www.academia.edu/70207346/Optical_signal_splitting_and_chirping_device_modeling","translated_internal_url":"","created_at":"2022-02-01T02:50:13.125-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":213594000,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Optical_signal_splitting_and_chirping_device_modeling","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":213594000,"first_name":"Ivan","middle_initials":null,"last_name":"Meshkov","page_name":"MeshkovI","domain_name":"independent","created_at":"2022-02-01T02:48:52.980-08:00","display_name":"Ivan Meshkov","url":"https://independent.academia.edu/MeshkovI"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="70207345"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/70207345/Experimental_demonstration_of_high_speed_data_transmission_based_on_Gaussian_pulses_for_IR_UWB_radio_over_fiber_systems"><img alt="Research paper thumbnail of Experimental demonstration of high-speed data transmission based on Gaussian pulses for IR-UWB radio-over-fiber systems" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/70207345/Experimental_demonstration_of_high_speed_data_transmission_based_on_Gaussian_pulses_for_IR_UWB_radio_over_fiber_systems">Experimental demonstration of high-speed data transmission based on Gaussian pulses for IR-UWB radio-over-fiber systems</a></div><div class="wp-workCard_item"><span>Optical Technologies for Telecommunications 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Experimental bench, which provides high-speed data transmission for IR-UWB Radio-over-Fiber syste...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Experimental bench, which provides high-speed data transmission for IR-UWB Radio-over-Fiber systems on the basis of Gaussian pulses, is presented in the paper. Experiment setup and results are described and discussed.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="70207345"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="70207345"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 70207345; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=70207345]").text(description); $(".js-view-count[data-work-id=70207345]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 70207345; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='70207345']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 70207345, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=70207345]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":70207345,"title":"Experimental demonstration of high-speed data transmission based on Gaussian pulses for IR-UWB radio-over-fiber systems","translated_title":"","metadata":{"abstract":"Experimental bench, which provides high-speed data transmission for IR-UWB Radio-over-Fiber systems on the basis of Gaussian pulses, is presented in the paper. Experiment setup and results are described and discussed.","publisher":"SPIE","publication_name":"Optical Technologies for Telecommunications 2016"},"translated_abstract":"Experimental bench, which provides high-speed data transmission for IR-UWB Radio-over-Fiber systems on the basis of Gaussian pulses, is presented in the paper. Experiment setup and results are described and discussed.","internal_url":"https://www.academia.edu/70207345/Experimental_demonstration_of_high_speed_data_transmission_based_on_Gaussian_pulses_for_IR_UWB_radio_over_fiber_systems","translated_internal_url":"","created_at":"2022-02-01T02:50:13.041-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":213594000,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Experimental_demonstration_of_high_speed_data_transmission_based_on_Gaussian_pulses_for_IR_UWB_radio_over_fiber_systems","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":213594000,"first_name":"Ivan","middle_initials":null,"last_name":"Meshkov","page_name":"MeshkovI","domain_name":"independent","created_at":"2022-02-01T02:48:52.980-08:00","display_name":"Ivan Meshkov","url":"https://independent.academia.edu/MeshkovI"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="13901860" id="papers"><div class="js-work-strip profile--work_container" data-work-id="70207376"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/70207376/Spectral_Modulation_Technique_Based_on_Frequency_Shift_Keying_for_High_Speed_Optical_Fiber_Wireless_Communication_System"><img alt="Research paper thumbnail of Spectral Modulation Technique Based on Frequency-Shift Keying for High-Speed Optical Fiber-Wireless Communication System" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/70207376/Spectral_Modulation_Technique_Based_on_Frequency_Shift_Keying_for_High_Speed_Optical_Fiber_Wireless_Communication_System">Spectral Modulation Technique Based on Frequency-Shift Keying for High-Speed Optical Fiber-Wireless Communication System</a></div><div class="wp-workCard_item"><span>2018 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon)</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper we present novel spectral modulation technique for high-speed hybrid telecommunicat...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper we present novel spectral modulation technique for high-speed hybrid telecommunication systems. This technique is based on frequency-shift keying of three wideband pulses with central frequency hopping in desired sub-terahertz frequency range. Mathematical and simulation models of optimal pulses based on hyperbolic secant square function shaped to get maximum of provided power are presented. For such modulation scheme we also developed symbol coding technique that provides bit rate incensement and gains into spectral efficiency and interception security of telecommunication system. Simulation results of spectral modulated signal propagation in radio-over-fiber links are presented and discussed. Finally we introduce preliminary results for system performance with expanded number of applied pulses and advanced symbol coding technique.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="70207376"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="70207376"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 70207376; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=70207376]").text(description); $(".js-view-count[data-work-id=70207376]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 70207376; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='70207376']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 70207376, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=70207376]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":70207376,"title":"Spectral Modulation Technique Based on Frequency-Shift Keying for High-Speed Optical Fiber-Wireless Communication System","translated_title":"","metadata":{"abstract":"In this paper we present novel spectral modulation technique for high-speed hybrid telecommunication systems. This technique is based on frequency-shift keying of three wideband pulses with central frequency hopping in desired sub-terahertz frequency range. Mathematical and simulation models of optimal pulses based on hyperbolic secant square function shaped to get maximum of provided power are presented. For such modulation scheme we also developed symbol coding technique that provides bit rate incensement and gains into spectral efficiency and interception security of telecommunication system. Simulation results of spectral modulated signal propagation in radio-over-fiber links are presented and discussed. Finally we introduce preliminary results for system performance with expanded number of applied pulses and advanced symbol coding technique.","publisher":"IEEE","publication_name":"2018 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon)"},"translated_abstract":"In this paper we present novel spectral modulation technique for high-speed hybrid telecommunication systems. This technique is based on frequency-shift keying of three wideband pulses with central frequency hopping in desired sub-terahertz frequency range. Mathematical and simulation models of optimal pulses based on hyperbolic secant square function shaped to get maximum of provided power are presented. For such modulation scheme we also developed symbol coding technique that provides bit rate incensement and gains into spectral efficiency and interception security of telecommunication system. Simulation results of spectral modulated signal propagation in radio-over-fiber links are presented and discussed. Finally we introduce preliminary results for system performance with expanded number of applied pulses and advanced symbol coding technique.","internal_url":"https://www.academia.edu/70207376/Spectral_Modulation_Technique_Based_on_Frequency_Shift_Keying_for_High_Speed_Optical_Fiber_Wireless_Communication_System","translated_internal_url":"","created_at":"2022-02-01T02:50:15.056-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":213594000,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Spectral_Modulation_Technique_Based_on_Frequency_Shift_Keying_for_High_Speed_Optical_Fiber_Wireless_Communication_System","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":213594000,"first_name":"Ivan","middle_initials":null,"last_name":"Meshkov","page_name":"MeshkovI","domain_name":"independent","created_at":"2022-02-01T02:48:52.980-08:00","display_name":"Ivan Meshkov","url":"https://independent.academia.edu/MeshkovI"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}],"urls":[{"id":17183895,"url":"http://xplorestaging.ieee.org/ielx7/8585254/8602430/08602869.pdf?arnumber=8602869"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="70207375"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/70207375/The_Propagation_Model_of_Modulated_Subterahertz_Signals_in_the_RoF_Communication_Systems"><img alt="Research paper thumbnail of The Propagation Model of Modulated Subterahertz Signals in the RoF Communication Systems" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/70207375/The_Propagation_Model_of_Modulated_Subterahertz_Signals_in_the_RoF_Communication_Systems">The Propagation Model of Modulated Subterahertz Signals in the RoF Communication Systems</a></div><div class="wp-workCard_item"><span>2018 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon)</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Radio-over-Fiber system scheme is described in the paper, the radio domain of this system is perf...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Radio-over-Fiber system scheme is described in the paper, the radio domain of this system is performed in the range 75–110 GHz (W-band). Optical signal with given orbital angular momentum (OAM signal) generation method in RoF fiber optic domain is suggested. The method is based on applying two independent lasers, performing at close wavelengths and the device for spatial phase modulation. For simulation and system parameters calculating, mathematical model of OAM signal envelope is suggested based on simplified wave equations system. Computer simulation of these signals envelope during its transmission was performed. It is shown that distortion of transmitted signals arises because of wavelengths difference. Recommendations were developed for constructing fiber-optic components of the system (including a radio-optical converter) designed to minimize this distortion.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="70207375"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="70207375"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 70207375; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=70207375]").text(description); $(".js-view-count[data-work-id=70207375]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 70207375; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='70207375']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 70207375, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=70207375]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":70207375,"title":"The Propagation Model of Modulated Subterahertz Signals in the RoF Communication Systems","translated_title":"","metadata":{"abstract":"Radio-over-Fiber system scheme is described in the paper, the radio domain of this system is performed in the range 75–110 GHz (W-band). Optical signal with given orbital angular momentum (OAM signal) generation method in RoF fiber optic domain is suggested. The method is based on applying two independent lasers, performing at close wavelengths and the device for spatial phase modulation. For simulation and system parameters calculating, mathematical model of OAM signal envelope is suggested based on simplified wave equations system. Computer simulation of these signals envelope during its transmission was performed. It is shown that distortion of transmitted signals arises because of wavelengths difference. Recommendations were developed for constructing fiber-optic components of the system (including a radio-optical converter) designed to minimize this distortion.","publisher":"IEEE","publication_name":"2018 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon)"},"translated_abstract":"Radio-over-Fiber system scheme is described in the paper, the radio domain of this system is performed in the range 75–110 GHz (W-band). Optical signal with given orbital angular momentum (OAM signal) generation method in RoF fiber optic domain is suggested. The method is based on applying two independent lasers, performing at close wavelengths and the device for spatial phase modulation. For simulation and system parameters calculating, mathematical model of OAM signal envelope is suggested based on simplified wave equations system. Computer simulation of these signals envelope during its transmission was performed. It is shown that distortion of transmitted signals arises because of wavelengths difference. Recommendations were developed for constructing fiber-optic components of the system (including a radio-optical converter) designed to minimize this distortion.","internal_url":"https://www.academia.edu/70207375/The_Propagation_Model_of_Modulated_Subterahertz_Signals_in_the_RoF_Communication_Systems","translated_internal_url":"","created_at":"2022-02-01T02:50:14.920-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":213594000,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_Propagation_Model_of_Modulated_Subterahertz_Signals_in_the_RoF_Communication_Systems","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":213594000,"first_name":"Ivan","middle_initials":null,"last_name":"Meshkov","page_name":"MeshkovI","domain_name":"independent","created_at":"2022-02-01T02:48:52.980-08:00","display_name":"Ivan Meshkov","url":"https://independent.academia.edu/MeshkovI"},"attachments":[],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"}],"urls":[{"id":17183894,"url":"http://xplorestaging.ieee.org/ielx7/8585254/8602430/08602760.pdf?arnumber=8602760"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="70207374"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/70207374/The_vortex_beams_conversion_from_the_optical_range_into_the_radio_domain_based_on_the_nonlinear_generation_of_the_difference_frequency"><img alt="Research paper thumbnail of The vortex beams conversion from the optical range into the radio domain based on the nonlinear generation of the difference frequency" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/70207374/The_vortex_beams_conversion_from_the_optical_range_into_the_radio_domain_based_on_the_nonlinear_generation_of_the_difference_frequency">The vortex beams conversion from the optical range into the radio domain based on the nonlinear generation of the difference frequency</a></div><div class="wp-workCard_item"><span>2019 27th Telecommunications Forum (TELFOR)</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper, we consider the conversion of optical vortex beams into the terahertz radio domain...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper, we consider the conversion of optical vortex beams into the terahertz radio domain based on the nonlinear difference frequency generation in a medium with second-order susceptibility. A theoretical substantiation of the law for converting topological charges of vortex beams is given, according to which the topological charge of the output vortex beam is equal to the difference between topological charges of the input optical vortex beams. A simulation model of the processes under consideration is implemented.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="70207374"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="70207374"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 70207374; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=70207374]").text(description); $(".js-view-count[data-work-id=70207374]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 70207374; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='70207374']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 70207374, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=70207374]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":70207374,"title":"The vortex beams conversion from the optical range into the radio domain based on the nonlinear generation of the difference frequency","translated_title":"","metadata":{"abstract":"In this paper, we consider the conversion of optical vortex beams into the terahertz radio domain based on the nonlinear difference frequency generation in a medium with second-order susceptibility. A theoretical substantiation of the law for converting topological charges of vortex beams is given, according to which the topological charge of the output vortex beam is equal to the difference between topological charges of the input optical vortex beams. A simulation model of the processes under consideration is implemented.","publisher":"IEEE","publication_name":"2019 27th Telecommunications Forum (TELFOR)"},"translated_abstract":"In this paper, we consider the conversion of optical vortex beams into the terahertz radio domain based on the nonlinear difference frequency generation in a medium with second-order susceptibility. A theoretical substantiation of the law for converting topological charges of vortex beams is given, according to which the topological charge of the output vortex beam is equal to the difference between topological charges of the input optical vortex beams. A simulation model of the processes under consideration is implemented.","internal_url":"https://www.academia.edu/70207374/The_vortex_beams_conversion_from_the_optical_range_into_the_radio_domain_based_on_the_nonlinear_generation_of_the_difference_frequency","translated_internal_url":"","created_at":"2022-02-01T02:50:14.790-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":213594000,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_vortex_beams_conversion_from_the_optical_range_into_the_radio_domain_based_on_the_nonlinear_generation_of_the_difference_frequency","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":213594000,"first_name":"Ivan","middle_initials":null,"last_name":"Meshkov","page_name":"MeshkovI","domain_name":"independent","created_at":"2022-02-01T02:48:52.980-08:00","display_name":"Ivan Meshkov","url":"https://independent.academia.edu/MeshkovI"},"attachments":[],"research_interests":[],"urls":[{"id":17183893,"url":"http://xplorestaging.ieee.org/ielx7/8962273/8971019/08971332.pdf?arnumber=8971332"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="70207373"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/70207373/Influence_of_Two_Frequency_Radiation_Intensity_Fluctuations_on_the_Output_Signal_of_a_Vortex_Optical_Fiber_Forming_OAM_Address_in_Polyharmonic_Sensor_Technology"><img alt="Research paper thumbnail of Influence of Two-Frequency Radiation Intensity Fluctuations on the Output Signal of a Vortex Optical Fiber Forming OAM Address in Polyharmonic Sensor Technology" class="work-thumbnail" src="https://attachments.academia-assets.com/80047727/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/70207373/Influence_of_Two_Frequency_Radiation_Intensity_Fluctuations_on_the_Output_Signal_of_a_Vortex_Optical_Fiber_Forming_OAM_Address_in_Polyharmonic_Sensor_Technology">Influence of Two-Frequency Radiation Intensity Fluctuations on the Output Signal of a Vortex Optical Fiber Forming OAM Address in Polyharmonic Sensor Technology</a></div><div class="wp-workCard_item"><span>Photonics</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A schematic diagram of a RoF radio-optic system with vortex signals is presented, in which the ra...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A schematic diagram of a RoF radio-optic system with vortex signals is presented, in which the radio frequency is determined by the difference between the wavelengths of two lasers. It is assumed that the generation of a vortex signal can be performed through a vortex fiber-optic periodic structure, which can be obtained using a technology similar to the manufacture of long-period fiber Bragg gratings. The parameters of the grating are modeled assuming that the fundamental light-guide mode (LP01) is applied to the specified vortex element, and the higher-order mode (LP11) is reflected. It was found that the distortion of the vortex signal can be reduced by introducing apodization and chirping of this periodic structure. The following optimal parameters have been estimated: the apodization and chirp multiplier functions, at which the distortions of the amplitude and phase of the vortex signal, as well as the appearance of an unwanted angle distortion, will be minimal. It is shown tha...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4a162ee3baf2421153dbc74bbe41864e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:80047727,&quot;asset_id&quot;:70207373,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/80047727/download_file?st=MTczMjk2MjMzMyw4LjIyMi4yMDguMTQ2&st=MTczMjk2MjMzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="70207373"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="70207373"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 70207373; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=70207373]").text(description); $(".js-view-count[data-work-id=70207373]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 70207373; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='70207373']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 70207373, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4a162ee3baf2421153dbc74bbe41864e" } } $('.js-work-strip[data-work-id=70207373]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":70207373,"title":"Influence of Two-Frequency Radiation Intensity Fluctuations on the Output Signal of a Vortex Optical Fiber Forming OAM Address in Polyharmonic Sensor Technology","translated_title":"","metadata":{"abstract":"A schematic diagram of a RoF radio-optic system with vortex signals is presented, in which the radio frequency is determined by the difference between the wavelengths of two lasers. It is assumed that the generation of a vortex signal can be performed through a vortex fiber-optic periodic structure, which can be obtained using a technology similar to the manufacture of long-period fiber Bragg gratings. The parameters of the grating are modeled assuming that the fundamental light-guide mode (LP01) is applied to the specified vortex element, and the higher-order mode (LP11) is reflected. It was found that the distortion of the vortex signal can be reduced by introducing apodization and chirping of this periodic structure. The following optimal parameters have been estimated: the apodization and chirp multiplier functions, at which the distortions of the amplitude and phase of the vortex signal, as well as the appearance of an unwanted angle distortion, will be minimal. It is shown tha...","publisher":"MDPI AG","publication_name":"Photonics"},"translated_abstract":"A schematic diagram of a RoF radio-optic system with vortex signals is presented, in which the radio frequency is determined by the difference between the wavelengths of two lasers. It is assumed that the generation of a vortex signal can be performed through a vortex fiber-optic periodic structure, which can be obtained using a technology similar to the manufacture of long-period fiber Bragg gratings. The parameters of the grating are modeled assuming that the fundamental light-guide mode (LP01) is applied to the specified vortex element, and the higher-order mode (LP11) is reflected. It was found that the distortion of the vortex signal can be reduced by introducing apodization and chirping of this periodic structure. The following optimal parameters have been estimated: the apodization and chirp multiplier functions, at which the distortions of the amplitude and phase of the vortex signal, as well as the appearance of an unwanted angle distortion, will be minimal. It is shown tha...","internal_url":"https://www.academia.edu/70207373/Influence_of_Two_Frequency_Radiation_Intensity_Fluctuations_on_the_Output_Signal_of_a_Vortex_Optical_Fiber_Forming_OAM_Address_in_Polyharmonic_Sensor_Technology","translated_internal_url":"","created_at":"2022-02-01T02:50:14.669-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":213594000,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":80047727,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80047727/thumbnails/1.jpg","file_name":"photonics-08-00351-v3.pdf","download_url":"https://www.academia.edu/attachments/80047727/download_file?st=MTczMjk2MjMzMyw4LjIyMi4yMDguMTQ2&st=MTczMjk2MjMzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Influence_of_Two_Frequency_Radiation_Int.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80047727/photonics-08-00351-v3-libre.pdf?1643712913=\u0026response-content-disposition=attachment%3B+filename%3DInfluence_of_Two_Frequency_Radiation_Int.pdf\u0026Expires=1732965932\u0026Signature=Dm5AM5~JXnDccN4rAQWsQ4wVUcRaU1tLIZt11ysBEKFdKwNQajYyh0B0A5hM7bs9xXkxKTdNE~30C8TKP91vPaNhAht0TD~ayhtESSGWJ6dvlSosJ~oKGM3S7FG-eRljhgozPuchv69iPABpt~h70m8312U~qtuYHkimrQN3xWmyp~rW2UGVoyo-p0P6Xvhc7fuZQFEX09A0cZ1s74BOMusjwjrjfm7ySAHDLmXn3HbRzV3mGW-IjIQZMIBxQg-X7V8QxOtk4W1n2Sw6sSKnZ2Epd71-2m2wi4FmOpfod~45Z5o6JovLKrsTYwQK1BKnzKB2RAvPZ6SZxG3vuxm2Hw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Influence_of_Two_Frequency_Radiation_Intensity_Fluctuations_on_the_Output_Signal_of_a_Vortex_Optical_Fiber_Forming_OAM_Address_in_Polyharmonic_Sensor_Technology","translated_slug":"","page_count":16,"language":"en","content_type":"Work","owner":{"id":213594000,"first_name":"Ivan","middle_initials":null,"last_name":"Meshkov","page_name":"MeshkovI","domain_name":"independent","created_at":"2022-02-01T02:48:52.980-08:00","display_name":"Ivan Meshkov","url":"https://independent.academia.edu/MeshkovI"},"attachments":[{"id":80047727,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80047727/thumbnails/1.jpg","file_name":"photonics-08-00351-v3.pdf","download_url":"https://www.academia.edu/attachments/80047727/download_file?st=MTczMjk2MjMzMyw4LjIyMi4yMDguMTQ2&st=MTczMjk2MjMzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Influence_of_Two_Frequency_Radiation_Int.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80047727/photonics-08-00351-v3-libre.pdf?1643712913=\u0026response-content-disposition=attachment%3B+filename%3DInfluence_of_Two_Frequency_Radiation_Int.pdf\u0026Expires=1732965932\u0026Signature=Dm5AM5~JXnDccN4rAQWsQ4wVUcRaU1tLIZt11ysBEKFdKwNQajYyh0B0A5hM7bs9xXkxKTdNE~30C8TKP91vPaNhAht0TD~ayhtESSGWJ6dvlSosJ~oKGM3S7FG-eRljhgozPuchv69iPABpt~h70m8312U~qtuYHkimrQN3xWmyp~rW2UGVoyo-p0P6Xvhc7fuZQFEX09A0cZ1s74BOMusjwjrjfm7ySAHDLmXn3HbRzV3mGW-IjIQZMIBxQg-X7V8QxOtk4W1n2Sw6sSKnZ2Epd71-2m2wi4FmOpfod~45Z5o6JovLKrsTYwQK1BKnzKB2RAvPZ6SZxG3vuxm2Hw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":80047725,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80047725/thumbnails/1.jpg","file_name":"photonics-08-00351-v3.pdf","download_url":"https://www.academia.edu/attachments/80047725/download_file","bulk_download_file_name":"Influence_of_Two_Frequency_Radiation_Int.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80047725/photonics-08-00351-v3-libre.pdf?1643712913=\u0026response-content-disposition=attachment%3B+filename%3DInfluence_of_Two_Frequency_Radiation_Int.pdf\u0026Expires=1732965932\u0026Signature=X0Io3QxUIamuRfdL79GP-dzCWU5QszvttxR~yPCq8jdz8Z4jiAhEsOBlZey-5zFZZ7AsDSjxAqq9zoqKJlhh4V2344PmGMMIoYMocqYtwYw-JL03v4r7opp5rV7Vpf0reX9AhWlo8VasarTH5HtwNV8IVgqIwgsoSSE5zkeONMU84LeYMdQywP1-Tj3vScVP3-XwUSVTHM2GOs8ap3XQkDuanB~UUMDEDfmimG2UP5pae3lxUW59SKUPf9Lbug7bAtTury5kC--Siqj3m4-9jy3kMfMcpyxPqfjlNc-ncMenKWnm0AnGLhkOhrJ~dY-5FNJvVK0imX093~QkBqyFpw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":10019,"name":"Photonics","url":"https://www.academia.edu/Documents/in/Photonics"}],"urls":[{"id":17183892,"url":"https://www.mdpi.com/2304-6732/8/9/351/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="70207372"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/70207372/Usage_of_SDM_technology_in_radio_over_fiber_RoF_transmission_systems_in_high_speed_scalable_6G_wireless_networks"><img alt="Research paper thumbnail of Usage of SDM technology in radio-over-fiber (RoF) transmission systems in high-speed scalable 6G wireless networks" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/70207372/Usage_of_SDM_technology_in_radio_over_fiber_RoF_transmission_systems_in_high_speed_scalable_6G_wireless_networks">Usage of SDM technology in radio-over-fiber (RoF) transmission systems in high-speed scalable 6G wireless networks</a></div><div class="wp-workCard_item"><span>Optical Technologies for Telecommunications 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The article provides an overview of the use of space division multiplexing (SDM) technology in ra...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The article provides an overview of the use of space division multiplexing (SDM) technology in radio-over-fiber (RoF) data transmission systems in future high-speed scalable 6G wireless networks. The features of using the SDM technology in the radio access network are analyzed. The application of new specialized few-mode fibers in 6G networks for the useful information transmission is proposed. The results of experimental studies of custom optical fibers designed for vortex mode generation are also presented.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="70207372"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="70207372"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 70207372; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=70207372]").text(description); $(".js-view-count[data-work-id=70207372]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 70207372; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='70207372']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 70207372, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=70207372]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":70207372,"title":"Usage of SDM technology in radio-over-fiber (RoF) transmission systems in high-speed scalable 6G wireless networks","translated_title":"","metadata":{"abstract":"The article provides an overview of the use of space division multiplexing (SDM) technology in radio-over-fiber (RoF) data transmission systems in future high-speed scalable 6G wireless networks. The features of using the SDM technology in the radio access network are analyzed. The application of new specialized few-mode fibers in 6G networks for the useful information transmission is proposed. The results of experimental studies of custom optical fibers designed for vortex mode generation are also presented.","publisher":"SPIE","publication_name":"Optical Technologies for Telecommunications 2020"},"translated_abstract":"The article provides an overview of the use of space division multiplexing (SDM) technology in radio-over-fiber (RoF) data transmission systems in future high-speed scalable 6G wireless networks. The features of using the SDM technology in the radio access network are analyzed. The application of new specialized few-mode fibers in 6G networks for the useful information transmission is proposed. The results of experimental studies of custom optical fibers designed for vortex mode generation are also presented.","internal_url":"https://www.academia.edu/70207372/Usage_of_SDM_technology_in_radio_over_fiber_RoF_transmission_systems_in_high_speed_scalable_6G_wireless_networks","translated_internal_url":"","created_at":"2022-02-01T02:50:14.590-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":213594000,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Usage_of_SDM_technology_in_radio_over_fiber_RoF_transmission_systems_in_high_speed_scalable_6G_wireless_networks","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":213594000,"first_name":"Ivan","middle_initials":null,"last_name":"Meshkov","page_name":"MeshkovI","domain_name":"independent","created_at":"2022-02-01T02:48:52.980-08:00","display_name":"Ivan Meshkov","url":"https://independent.academia.edu/MeshkovI"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="70207370"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/70207370/Microstrip_ultra_wideband_antenna_measurements"><img alt="Research paper thumbnail of Microstrip ultra-wideband antenna measurements" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/70207370/Microstrip_ultra_wideband_antenna_measurements">Microstrip ultra-wideband antenna measurements</a></div><div class="wp-workCard_item"><span>2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT)</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">New microstrip ultra-wideband antenna is presented and measured in this paper. The antenna was ca...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">New microstrip ultra-wideband antenna is presented and measured in this paper. The antenna was calculated to operate in 3.1–10.6 GHz ultra-wideband frequency band, even though the measurements revealed that it covers the band 3.4–12 GHz. It&amp;#39;s manufactured on the basis of Rogers RO4350B, which is appropriate for this band. Antenna&amp;#39;s total size with SMA connector 72970 Pomona is 39 mm × 19 mm. The main goal stated in this paper is to prove the antenna&amp;#39;s characteristics, simulated before, by carrying out full-time measurements in anechoic chamber. Particularly the return loss, VSWR, transfer function, input impedance and radiation pattern were measured and analyzed, which finally showed similarity of simulation and measured results. It can be announced that the antenna has very wide radiation pattern (more than 180°) and well-matched to 50 Ohm in the entire frequency band. Since it&amp;#39;s small, compact, low profile it can be applied in many modern high-capacity communication systems, including UWB, hybrid optical fiber-wireless networks, 3G and future 5G networks.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="70207370"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="70207370"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 70207370; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=70207370]").text(description); $(".js-view-count[data-work-id=70207370]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 70207370; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='70207370']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 70207370, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=70207370]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":70207370,"title":"Microstrip ultra-wideband antenna measurements","translated_title":"","metadata":{"abstract":"New microstrip ultra-wideband antenna is presented and measured in this paper. The antenna was calculated to operate in 3.1–10.6 GHz ultra-wideband frequency band, even though the measurements revealed that it covers the band 3.4–12 GHz. It\u0026#39;s manufactured on the basis of Rogers RO4350B, which is appropriate for this band. Antenna\u0026#39;s total size with SMA connector 72970 Pomona is 39 mm × 19 mm. The main goal stated in this paper is to prove the antenna\u0026#39;s characteristics, simulated before, by carrying out full-time measurements in anechoic chamber. Particularly the return loss, VSWR, transfer function, input impedance and radiation pattern were measured and analyzed, which finally showed similarity of simulation and measured results. It can be announced that the antenna has very wide radiation pattern (more than 180°) and well-matched to 50 Ohm in the entire frequency band. Since it\u0026#39;s small, compact, low profile it can be applied in many modern high-capacity communication systems, including UWB, hybrid optical fiber-wireless networks, 3G and future 5G networks.","publisher":"IEEE","publication_name":"2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT)"},"translated_abstract":"New microstrip ultra-wideband antenna is presented and measured in this paper. The antenna was calculated to operate in 3.1–10.6 GHz ultra-wideband frequency band, even though the measurements revealed that it covers the band 3.4–12 GHz. It\u0026#39;s manufactured on the basis of Rogers RO4350B, which is appropriate for this band. Antenna\u0026#39;s total size with SMA connector 72970 Pomona is 39 mm × 19 mm. The main goal stated in this paper is to prove the antenna\u0026#39;s characteristics, simulated before, by carrying out full-time measurements in anechoic chamber. Particularly the return loss, VSWR, transfer function, input impedance and radiation pattern were measured and analyzed, which finally showed similarity of simulation and measured results. It can be announced that the antenna has very wide radiation pattern (more than 180°) and well-matched to 50 Ohm in the entire frequency band. Since it\u0026#39;s small, compact, low profile it can be applied in many modern high-capacity communication systems, including UWB, hybrid optical fiber-wireless networks, 3G and future 5G networks.","internal_url":"https://www.academia.edu/70207370/Microstrip_ultra_wideband_antenna_measurements","translated_internal_url":"","created_at":"2022-02-01T02:50:14.465-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":213594000,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Microstrip_ultra_wideband_antenna_measurements","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":213594000,"first_name":"Ivan","middle_initials":null,"last_name":"Meshkov","page_name":"MeshkovI","domain_name":"independent","created_at":"2022-02-01T02:48:52.980-08:00","display_name":"Ivan Meshkov","url":"https://independent.academia.edu/MeshkovI"},"attachments":[],"research_interests":[],"urls":[{"id":17183891,"url":"http://xplorestaging.ieee.org/ielx7/8373577/8384529/08384610.pdf?arnumber=8384610"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="70207369"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/70207369/Method_of_non_destructive_instrumental_analysis_of_mode_compositions_and_vortex_signals_in_guiding_structures"><img alt="Research paper thumbnail of Method of non-destructive instrumental analysis of mode compositions and vortex signals in guiding structures" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/70207369/Method_of_non_destructive_instrumental_analysis_of_mode_compositions_and_vortex_signals_in_guiding_structures">Method of non-destructive instrumental analysis of mode compositions and vortex signals in guiding structures</a></div><div class="wp-workCard_item"><span>Optical Technologies for Telecommunications 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this article the principle of instrumental (experimental) determination of the parameters of m...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this article the principle of instrumental (experimental) determination of the parameters of mode compositions of an optical signal propagating along an optical fiber is described. The measurement scheme is based on the use of a wellknown experimental setup designed to obtain the profile of the refractive index of an optical fiber. In addition to that setup, it is proposed to perform measurements for different angular positions of the investigated optical fiber, and for its different longitudinal positions. The proposed method is realizable in the case when the signal propagating through the optical fiber is characterized by increased intensity, which makes it possible to measure a nonlinear (Kerr) caused addition to the refractive index. It is proposed to calculate the desired mode weight coefficients by the method of probabilistic selection according to the developed method.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="70207369"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="70207369"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 70207369; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=70207369]").text(description); $(".js-view-count[data-work-id=70207369]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 70207369; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='70207369']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 70207369, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=70207369]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":70207369,"title":"Method of non-destructive instrumental analysis of mode compositions and vortex signals in guiding structures","translated_title":"","metadata":{"abstract":"In this article the principle of instrumental (experimental) determination of the parameters of mode compositions of an optical signal propagating along an optical fiber is described. The measurement scheme is based on the use of a wellknown experimental setup designed to obtain the profile of the refractive index of an optical fiber. In addition to that setup, it is proposed to perform measurements for different angular positions of the investigated optical fiber, and for its different longitudinal positions. The proposed method is realizable in the case when the signal propagating through the optical fiber is characterized by increased intensity, which makes it possible to measure a nonlinear (Kerr) caused addition to the refractive index. It is proposed to calculate the desired mode weight coefficients by the method of probabilistic selection according to the developed method.","publisher":"SPIE","publication_name":"Optical Technologies for Telecommunications 2020"},"translated_abstract":"In this article the principle of instrumental (experimental) determination of the parameters of mode compositions of an optical signal propagating along an optical fiber is described. The measurement scheme is based on the use of a wellknown experimental setup designed to obtain the profile of the refractive index of an optical fiber. In addition to that setup, it is proposed to perform measurements for different angular positions of the investigated optical fiber, and for its different longitudinal positions. The proposed method is realizable in the case when the signal propagating through the optical fiber is characterized by increased intensity, which makes it possible to measure a nonlinear (Kerr) caused addition to the refractive index. It is proposed to calculate the desired mode weight coefficients by the method of probabilistic selection according to the developed method.","internal_url":"https://www.academia.edu/70207369/Method_of_non_destructive_instrumental_analysis_of_mode_compositions_and_vortex_signals_in_guiding_structures","translated_internal_url":"","created_at":"2022-02-01T02:50:14.384-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":213594000,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Method_of_non_destructive_instrumental_analysis_of_mode_compositions_and_vortex_signals_in_guiding_structures","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":213594000,"first_name":"Ivan","middle_initials":null,"last_name":"Meshkov","page_name":"MeshkovI","domain_name":"independent","created_at":"2022-02-01T02:48:52.980-08:00","display_name":"Ivan Meshkov","url":"https://independent.academia.edu/MeshkovI"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="70207367"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/70207367/Advanced_modulation_and_precoding_techniques_for_OFDM_based_Radio_over_fiber_systems_operating_in_W_band"><img alt="Research paper thumbnail of Advanced modulation and precoding techniques for OFDM based Radio-over-fiber systems operating in W-band" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/70207367/Advanced_modulation_and_precoding_techniques_for_OFDM_based_Radio_over_fiber_systems_operating_in_W_band">Advanced modulation and precoding techniques for OFDM based Radio-over-fiber systems operating in W-band</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper we present advanced modulation and coding techniques for telecommunication systems ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper we present advanced modulation and coding techniques for telecommunication systems based on Orthogonal Frequency Division Multiplexing and Radio-over-fiber technologies operating in the subteraherz frequency range 75-110 GHz (W-band). The scheme for the Radio-over-fiber communication system based on full-optical frequency upconversion, and detailed description of the W-band wireless channel are presented. As a result, the main factors affecting the quality of the transmitted radio signal are identified, against which the developed modulation formats are aimed. Improving the efficiency of the Radio-over-fiber system is achieved in two stages: by reducing the interchannel interference due to the windowing of received signal, and reducing the peak-to-average power ratio by precoding the subcarrier frequencies of the group spectrum; by increasing the signal-to-noise ratio when using constellation rotation technique. Obtained simulation results showed that application of th...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="70207367"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="70207367"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 70207367; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=70207367]").text(description); $(".js-view-count[data-work-id=70207367]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 70207367; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='70207367']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 70207367, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=70207367]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":70207367,"title":"Advanced modulation and precoding techniques for OFDM based Radio-over-fiber systems operating in W-band","translated_title":"","metadata":{"abstract":"In this paper we present advanced modulation and coding techniques for telecommunication systems based on Orthogonal Frequency Division Multiplexing and Radio-over-fiber technologies operating in the subteraherz frequency range 75-110 GHz (W-band). The scheme for the Radio-over-fiber communication system based on full-optical frequency upconversion, and detailed description of the W-band wireless channel are presented. As a result, the main factors affecting the quality of the transmitted radio signal are identified, against which the developed modulation formats are aimed. Improving the efficiency of the Radio-over-fiber system is achieved in two stages: by reducing the interchannel interference due to the windowing of received signal, and reducing the peak-to-average power ratio by precoding the subcarrier frequencies of the group spectrum; by increasing the signal-to-noise ratio when using constellation rotation technique. Obtained simulation results showed that application of th...","publisher":"Optical Technologies for Telecommunications","publication_date":{"day":null,"month":null,"year":2019,"errors":{}}},"translated_abstract":"In this paper we present advanced modulation and coding techniques for telecommunication systems based on Orthogonal Frequency Division Multiplexing and Radio-over-fiber technologies operating in the subteraherz frequency range 75-110 GHz (W-band). The scheme for the Radio-over-fiber communication system based on full-optical frequency upconversion, and detailed description of the W-band wireless channel are presented. As a result, the main factors affecting the quality of the transmitted radio signal are identified, against which the developed modulation formats are aimed. Improving the efficiency of the Radio-over-fiber system is achieved in two stages: by reducing the interchannel interference due to the windowing of received signal, and reducing the peak-to-average power ratio by precoding the subcarrier frequencies of the group spectrum; by increasing the signal-to-noise ratio when using constellation rotation technique. Obtained simulation results showed that application of th...","internal_url":"https://www.academia.edu/70207367/Advanced_modulation_and_precoding_techniques_for_OFDM_based_Radio_over_fiber_systems_operating_in_W_band","translated_internal_url":"","created_at":"2022-02-01T02:50:14.301-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":213594000,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Advanced_modulation_and_precoding_techniques_for_OFDM_based_Radio_over_fiber_systems_operating_in_W_band","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":213594000,"first_name":"Ivan","middle_initials":null,"last_name":"Meshkov","page_name":"MeshkovI","domain_name":"independent","created_at":"2022-02-01T02:48:52.980-08:00","display_name":"Ivan Meshkov","url":"https://independent.academia.edu/MeshkovI"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="70207365"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/70207365/Propagation_of_non_dispersive_soliton_like_vortexes_in_the_optical_segment_of_radio_over_fiber_systems_in_the_range_75_110_GHz"><img alt="Research paper thumbnail of Propagation of non-dispersive soliton-like vortexes in the optical segment of radio-over-fiber systems in the range 75-110 GHz" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/70207365/Propagation_of_non_dispersive_soliton_like_vortexes_in_the_optical_segment_of_radio_over_fiber_systems_in_the_range_75_110_GHz">Propagation of non-dispersive soliton-like vortexes in the optical segment of radio-over-fiber systems in the range 75-110 GHz</a></div><div class="wp-workCard_item"><span>Optical Technologies for Telecommunications 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this article the propagation of soliton-like vortexes in the optical segment of Radio-over-Fib...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this article the propagation of soliton-like vortexes in the optical segment of Radio-over-Fiber system is considered. The approach is based on solution of nonlinear Schrödinger equation (NSE) for Kerr-type nonlinear medium. A numerical NSE solution for vortex solitons was obtained; simulation of the soliton-like vortexes propagation over an optical fiber was performed. Moreover, a phase-amplitude filter forming optical signals with a set orbital angular momentum state and polarization conserving during propagation through an optical fiber was simulated. The calculation of amplitude-phase filter was conducted based on spinor representation of Maxwell’s equations.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="70207365"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="70207365"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 70207365; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=70207365]").text(description); $(".js-view-count[data-work-id=70207365]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 70207365; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='70207365']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 70207365, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=70207365]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":70207365,"title":"Propagation of non-dispersive soliton-like vortexes in the optical segment of radio-over-fiber systems in the range 75-110 GHz","translated_title":"","metadata":{"abstract":"In this article the propagation of soliton-like vortexes in the optical segment of Radio-over-Fiber system is considered. The approach is based on solution of nonlinear Schrödinger equation (NSE) for Kerr-type nonlinear medium. A numerical NSE solution for vortex solitons was obtained; simulation of the soliton-like vortexes propagation over an optical fiber was performed. Moreover, a phase-amplitude filter forming optical signals with a set orbital angular momentum state and polarization conserving during propagation through an optical fiber was simulated. The calculation of amplitude-phase filter was conducted based on spinor representation of Maxwell’s equations.","publisher":"SPIE","publication_name":"Optical Technologies for Telecommunications 2018"},"translated_abstract":"In this article the propagation of soliton-like vortexes in the optical segment of Radio-over-Fiber system is considered. The approach is based on solution of nonlinear Schrödinger equation (NSE) for Kerr-type nonlinear medium. A numerical NSE solution for vortex solitons was obtained; simulation of the soliton-like vortexes propagation over an optical fiber was performed. Moreover, a phase-amplitude filter forming optical signals with a set orbital angular momentum state and polarization conserving during propagation through an optical fiber was simulated. The calculation of amplitude-phase filter was conducted based on spinor representation of Maxwell’s equations.","internal_url":"https://www.academia.edu/70207365/Propagation_of_non_dispersive_soliton_like_vortexes_in_the_optical_segment_of_radio_over_fiber_systems_in_the_range_75_110_GHz","translated_internal_url":"","created_at":"2022-02-01T02:50:14.220-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":213594000,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Propagation_of_non_dispersive_soliton_like_vortexes_in_the_optical_segment_of_radio_over_fiber_systems_in_the_range_75_110_GHz","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":213594000,"first_name":"Ivan","middle_initials":null,"last_name":"Meshkov","page_name":"MeshkovI","domain_name":"independent","created_at":"2022-02-01T02:48:52.980-08:00","display_name":"Ivan Meshkov","url":"https://independent.academia.edu/MeshkovI"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="70207363"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/70207363/Energy_efficiency_improvement_of_OFDM_based_Radio_over_fiber_systems_enabled_with_PAPR_decrease_method"><img alt="Research paper thumbnail of Energy efficiency improvement of OFDM-based Radio-over-fiber systems enabled with PAPR decrease method" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/70207363/Energy_efficiency_improvement_of_OFDM_based_Radio_over_fiber_systems_enabled_with_PAPR_decrease_method">Energy efficiency improvement of OFDM-based Radio-over-fiber systems enabled with PAPR decrease method</a></div><div class="wp-workCard_item"><span>2019 International Conference on Electrotechnical Complexes and Systems (ICOECS)</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper we present the Peak-to-Average Power Ratio decrease method targeted at energy effic...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper we present the Peak-to-Average Power Ratio decrease method targeted at energy efficiency improvement of the Radio-over-fiber telecommunication systems based on the Orthogonal Frequency Division Multiplexing. The scheme for the proposed method that consists in the signal precoding with discrete function is discussed in details. The simulation results obtained for five different precoding functions: Discrete Hartley Transform, Discrete Cosine Transform, Discrete Sine Transform, Fast Walsh-Hadamard Transform, and Discrete Fourier Transform, show the peak-to-average power ratio decrease of the transmitted signal up to 7 dB without degradation in noise immunity. Such a gain in transmitted power reduction corresponds to energy efficiency improvement by 5.15 dB in the case of 16-position quadrature amplitude modulation. The experimental study confirms the simulation results, providing the 6.5 dB peak-to-average power ratio decrease for Discrete Fourier Transform function.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="70207363"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="70207363"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 70207363; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=70207363]").text(description); $(".js-view-count[data-work-id=70207363]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 70207363; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='70207363']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 70207363, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=70207363]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":70207363,"title":"Energy efficiency improvement of OFDM-based Radio-over-fiber systems enabled with PAPR decrease method","translated_title":"","metadata":{"abstract":"In this paper we present the Peak-to-Average Power Ratio decrease method targeted at energy efficiency improvement of the Radio-over-fiber telecommunication systems based on the Orthogonal Frequency Division Multiplexing. The scheme for the proposed method that consists in the signal precoding with discrete function is discussed in details. The simulation results obtained for five different precoding functions: Discrete Hartley Transform, Discrete Cosine Transform, Discrete Sine Transform, Fast Walsh-Hadamard Transform, and Discrete Fourier Transform, show the peak-to-average power ratio decrease of the transmitted signal up to 7 dB without degradation in noise immunity. Such a gain in transmitted power reduction corresponds to energy efficiency improvement by 5.15 dB in the case of 16-position quadrature amplitude modulation. The experimental study confirms the simulation results, providing the 6.5 dB peak-to-average power ratio decrease for Discrete Fourier Transform function.","publisher":"IEEE","publication_name":"2019 International Conference on Electrotechnical Complexes and Systems (ICOECS)"},"translated_abstract":"In this paper we present the Peak-to-Average Power Ratio decrease method targeted at energy efficiency improvement of the Radio-over-fiber telecommunication systems based on the Orthogonal Frequency Division Multiplexing. The scheme for the proposed method that consists in the signal precoding with discrete function is discussed in details. The simulation results obtained for five different precoding functions: Discrete Hartley Transform, Discrete Cosine Transform, Discrete Sine Transform, Fast Walsh-Hadamard Transform, and Discrete Fourier Transform, show the peak-to-average power ratio decrease of the transmitted signal up to 7 dB without degradation in noise immunity. Such a gain in transmitted power reduction corresponds to energy efficiency improvement by 5.15 dB in the case of 16-position quadrature amplitude modulation. The experimental study confirms the simulation results, providing the 6.5 dB peak-to-average power ratio decrease for Discrete Fourier Transform function.","internal_url":"https://www.academia.edu/70207363/Energy_efficiency_improvement_of_OFDM_based_Radio_over_fiber_systems_enabled_with_PAPR_decrease_method","translated_internal_url":"","created_at":"2022-02-01T02:50:14.093-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":213594000,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Energy_efficiency_improvement_of_OFDM_based_Radio_over_fiber_systems_enabled_with_PAPR_decrease_method","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":213594000,"first_name":"Ivan","middle_initials":null,"last_name":"Meshkov","page_name":"MeshkovI","domain_name":"independent","created_at":"2022-02-01T02:48:52.980-08:00","display_name":"Ivan Meshkov","url":"https://independent.academia.edu/MeshkovI"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"}],"urls":[{"id":17183890,"url":"http://xplorestaging.ieee.org/ielx7/8940999/8949873/08949932.pdf?arnumber=8949932"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="70207361"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/70207361/Design_of_vortex_optical_fibers_for_RoF_systems_Part_II_pilot_samples_of_chiral_microstructured_optical_fibers"><img alt="Research paper thumbnail of Design of vortex optical fibers for RoF systems: Part II: pilot samples of chiral microstructured optical fibers" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/70207361/Design_of_vortex_optical_fibers_for_RoF_systems_Part_II_pilot_samples_of_chiral_microstructured_optical_fibers">Design of vortex optical fibers for RoF systems: Part II: pilot samples of chiral microstructured optical fibers</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We propose and fabricate pilot lengths of two type microstructured optical fibers with chirality,...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We propose and fabricate pilot lengths of two type microstructured optical fibers with chirality, induced during the drawing process under 10 and 66 revolutions per meter. The first one is microstructured fiber with geometry providing quasi-ring radial mode field distribution. So it imitates ring-core optical fiber properties by special formation of designed 2D-periodic structure. The second is fiber with hexagonal geometry and shifted core in relation to central axe. The work presents results of numerical analysis of fabricated samples, performed by rigorous numerical method. Here initial data were set via manufactured optical fiber end face images. We also reports some results of far field laser beam profile images, measured at the output of described fiber samples under laser source excitation at wavelength 1550 nm.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="70207361"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="70207361"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 70207361; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=70207361]").text(description); $(".js-view-count[data-work-id=70207361]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 70207361; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='70207361']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 70207361, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=70207361]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":70207361,"title":"Design of vortex optical fibers for RoF systems: Part II: pilot samples of chiral microstructured optical fibers","translated_title":"","metadata":{"abstract":"We propose and fabricate pilot lengths of two type microstructured optical fibers with chirality, induced during the drawing process under 10 and 66 revolutions per meter. The first one is microstructured fiber with geometry providing quasi-ring radial mode field distribution. So it imitates ring-core optical fiber properties by special formation of designed 2D-periodic structure. The second is fiber with hexagonal geometry and shifted core in relation to central axe. The work presents results of numerical analysis of fabricated samples, performed by rigorous numerical method. Here initial data were set via manufactured optical fiber end face images. We also reports some results of far field laser beam profile images, measured at the output of described fiber samples under laser source excitation at wavelength 1550 nm.","publisher":"Optical Technologies for Telecommunications","publication_date":{"day":null,"month":null,"year":2020,"errors":{}}},"translated_abstract":"We propose and fabricate pilot lengths of two type microstructured optical fibers with chirality, induced during the drawing process under 10 and 66 revolutions per meter. The first one is microstructured fiber with geometry providing quasi-ring radial mode field distribution. So it imitates ring-core optical fiber properties by special formation of designed 2D-periodic structure. The second is fiber with hexagonal geometry and shifted core in relation to central axe. The work presents results of numerical analysis of fabricated samples, performed by rigorous numerical method. Here initial data were set via manufactured optical fiber end face images. We also reports some results of far field laser beam profile images, measured at the output of described fiber samples under laser source excitation at wavelength 1550 nm.","internal_url":"https://www.academia.edu/70207361/Design_of_vortex_optical_fibers_for_RoF_systems_Part_II_pilot_samples_of_chiral_microstructured_optical_fibers","translated_internal_url":"","created_at":"2022-02-01T02:50:13.998-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":213594000,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Design_of_vortex_optical_fibers_for_RoF_systems_Part_II_pilot_samples_of_chiral_microstructured_optical_fibers","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":213594000,"first_name":"Ivan","middle_initials":null,"last_name":"Meshkov","page_name":"MeshkovI","domain_name":"independent","created_at":"2022-02-01T02:48:52.980-08:00","display_name":"Ivan Meshkov","url":"https://independent.academia.edu/MeshkovI"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="70207359"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/70207359/The_optical_control_circuit_of_the_ROF_antenna_array_prototyping_RESULTS"><img alt="Research paper thumbnail of The optical control circuit of the ROF antenna array: prototyping RESULTS" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/70207359/The_optical_control_circuit_of_the_ROF_antenna_array_prototyping_RESULTS">The optical control circuit of the ROF antenna array: prototyping RESULTS</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="70207359"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="70207359"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 70207359; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=70207359]").text(description); $(".js-view-count[data-work-id=70207359]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 70207359; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='70207359']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 70207359, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=70207359]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":70207359,"title":"The optical control circuit of the ROF antenna array: prototyping RESULTS","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2017,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/70207359/The_optical_control_circuit_of_the_ROF_antenna_array_prototyping_RESULTS","translated_internal_url":"","created_at":"2022-02-01T02:50:13.886-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":213594000,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_optical_control_circuit_of_the_ROF_antenna_array_prototyping_RESULTS","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":213594000,"first_name":"Ivan","middle_initials":null,"last_name":"Meshkov","page_name":"MeshkovI","domain_name":"independent","created_at":"2022-02-01T02:48:52.980-08:00","display_name":"Ivan Meshkov","url":"https://independent.academia.edu/MeshkovI"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="70207357"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/70207357/Generation_of_Vortex_Optical_Beams_Based_on_Chiral_Fiber_Optic_Periodic_Structures"><img alt="Research paper thumbnail of Generation of Vortex Optical Beams Based on Chiral Fiber-Optic Periodic Structures" class="work-thumbnail" src="https://attachments.academia-assets.com/80047787/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/70207357/Generation_of_Vortex_Optical_Beams_Based_on_Chiral_Fiber_Optic_Periodic_Structures">Generation of Vortex Optical Beams Based on Chiral Fiber-Optic Periodic Structures</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper, we consider the process of fiber vortex modes generation using chiral periodic str...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper, we consider the process of fiber vortex modes generation using chiral periodic structures that include both chiral optical fibers and chiral (vortex) fiber Bragg gratings (ChFBGs). A generalized theoretical model of the ChFBG is developed including an arbitrary function of apodization and chirping, which provides a way to calculate gratings that generate vortex modes with a given state for the required frequency band and reflection coefficient. In addition, a matrix method for describing the ChFBG is proposed, based on the mathematical apparatus of the coupled modes theory and scattering matrices. Simulation modeling of the fiber structures considered is carried out. Chiral optical fibers maintaining optical vortex propagation are also described. It is also proposed to use chiral fiber-optic periodic structures as sensors of physical fields (temperature, strain, etc.), which can be applied to address multi-sensor monitoring systems due to a unique address parameter—th...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b9c2444e2ecc3d245948cb1acdad2d77" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:80047787,&quot;asset_id&quot;:70207357,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/80047787/download_file?st=MTczMjk2MjMzMyw4LjIyMi4yMDguMTQ2&st=MTczMjk2MjMzMyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="70207357"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="70207357"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 70207357; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=70207357]").text(description); $(".js-view-count[data-work-id=70207357]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 70207357; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='70207357']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 70207357, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b9c2444e2ecc3d245948cb1acdad2d77" } } $('.js-work-strip[data-work-id=70207357]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":70207357,"title":"Generation of Vortex Optical Beams Based on Chiral Fiber-Optic Periodic Structures","translated_title":"","metadata":{"abstract":"In this paper, we consider the process of fiber vortex modes generation using chiral periodic structures that include both chiral optical fibers and chiral (vortex) fiber Bragg gratings (ChFBGs). A generalized theoretical model of the ChFBG is developed including an arbitrary function of apodization and chirping, which provides a way to calculate gratings that generate vortex modes with a given state for the required frequency band and reflection coefficient. In addition, a matrix method for describing the ChFBG is proposed, based on the mathematical apparatus of the coupled modes theory and scattering matrices. Simulation modeling of the fiber structures considered is carried out. Chiral optical fibers maintaining optical vortex propagation are also described. It is also proposed to use chiral fiber-optic periodic structures as sensors of physical fields (temperature, strain, etc.), which can be applied to address multi-sensor monitoring systems due to a unique address parameter—th...","publisher":"Sensors","publication_date":{"day":null,"month":null,"year":2020,"errors":{}}},"translated_abstract":"In this paper, we consider the process of fiber vortex modes generation using chiral periodic structures that include both chiral optical fibers and chiral (vortex) fiber Bragg gratings (ChFBGs). A generalized theoretical model of the ChFBG is developed including an arbitrary function of apodization and chirping, which provides a way to calculate gratings that generate vortex modes with a given state for the required frequency band and reflection coefficient. In addition, a matrix method for describing the ChFBG is proposed, based on the mathematical apparatus of the coupled modes theory and scattering matrices. Simulation modeling of the fiber structures considered is carried out. Chiral optical fibers maintaining optical vortex propagation are also described. It is also proposed to use chiral fiber-optic periodic structures as sensors of physical fields (temperature, strain, etc.), which can be applied to address multi-sensor monitoring systems due to a unique address parameter—th...","internal_url":"https://www.academia.edu/70207357/Generation_of_Vortex_Optical_Beams_Based_on_Chiral_Fiber_Optic_Periodic_Structures","translated_internal_url":"","created_at":"2022-02-01T02:50:13.753-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":213594000,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":80047787,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80047787/thumbnails/1.jpg","file_name":"sensors-20-05345.pdf","download_url":"https://www.academia.edu/attachments/80047787/download_file?st=MTczMjk2MjMzMyw4LjIyMi4yMDguMTQ2&st=MTczMjk2MjMzMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Generation_of_Vortex_Optical_Beams_Based.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80047787/sensors-20-05345-libre.pdf?1643712915=\u0026response-content-disposition=attachment%3B+filename%3DGeneration_of_Vortex_Optical_Beams_Based.pdf\u0026Expires=1732965932\u0026Signature=aU8RQg~5lmGw5wooCDkuUeYCwQtg5hzY1FetvVZcMzxfwChUxjCxB5CZqA8SN1i3LhYIcn3moXACGBaaJ5SsxmuxSYx6sjOH96CCXuy3WlQHHN53xYhvbWu~Yf1XBZH-a-hX2~yi~h6h8v6vteTpsuwuurhD8gDuC6d3xh5X9e7Q4ZwkjFjdoGxhqVKEndd0VD5cjawyHJRkVLiNkFLzDlPGiC1xqFxjV9iK7Jzggm6O00XETPzDAe9qWSrigYsSRC~Mau~D8a4zAiAuLmVPTkoWuPippDStODC3ARpRwEH5e-x9scMH718v6yEWWNf9IjGV2k-u5zbn5zSJbt0euA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Generation_of_Vortex_Optical_Beams_Based_on_Chiral_Fiber_Optic_Periodic_Structures","translated_slug":"","page_count":16,"language":"en","content_type":"Work","owner":{"id":213594000,"first_name":"Ivan","middle_initials":null,"last_name":"Meshkov","page_name":"MeshkovI","domain_name":"independent","created_at":"2022-02-01T02:48:52.980-08:00","display_name":"Ivan Meshkov","url":"https://independent.academia.edu/MeshkovI"},"attachments":[{"id":80047787,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80047787/thumbnails/1.jpg","file_name":"sensors-20-05345.pdf","download_url":"https://www.academia.edu/attachments/80047787/download_file?st=MTczMjk2MjMzMyw4LjIyMi4yMDguMTQ2&st=MTczMjk2MjMzMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Generation_of_Vortex_Optical_Beams_Based.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80047787/sensors-20-05345-libre.pdf?1643712915=\u0026response-content-disposition=attachment%3B+filename%3DGeneration_of_Vortex_Optical_Beams_Based.pdf\u0026Expires=1732965932\u0026Signature=aU8RQg~5lmGw5wooCDkuUeYCwQtg5hzY1FetvVZcMzxfwChUxjCxB5CZqA8SN1i3LhYIcn3moXACGBaaJ5SsxmuxSYx6sjOH96CCXuy3WlQHHN53xYhvbWu~Yf1XBZH-a-hX2~yi~h6h8v6vteTpsuwuurhD8gDuC6d3xh5X9e7Q4ZwkjFjdoGxhqVKEndd0VD5cjawyHJRkVLiNkFLzDlPGiC1xqFxjV9iK7Jzggm6O00XETPzDAe9qWSrigYsSRC~Mau~D8a4zAiAuLmVPTkoWuPippDStODC3ARpRwEH5e-x9scMH718v6yEWWNf9IjGV2k-u5zbn5zSJbt0euA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":17183889,"url":"https://www.wikidata.org/entity/Q99605227"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="70207355"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/70207355/Development_of_a_beam_forming_circuit_for_the_antenna_array_operating_in_the_W_band"><img alt="Research paper thumbnail of Development of a beam-forming circuit for the antenna array operating in the W-band" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/70207355/Development_of_a_beam_forming_circuit_for_the_antenna_array_operating_in_the_W_band">Development of a beam-forming circuit for the antenna array operating in the W-band</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The paper presents the development of a beamforming circuit aimed at controlling the state of an ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The paper presents the development of a beamforming circuit aimed at controlling the state of an orbital angular moment of the output radio beam from a uniform circular antenna array operating in the W-band. The proposed device is based on the Rotman lens, the shape of which is calculated taking into account the configuration of the antenna array and the required states of its radiation pattern. The Rotman lens circuit has five input beam ports, eight output antenna ports, and eight dummy ports. The application of such a beam-forming scheme can significantly reduce the overall dimensions of the antenna system and can be implemented based on the microstrip technology together with the antenna array.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="70207355"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="70207355"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 70207355; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=70207355]").text(description); $(".js-view-count[data-work-id=70207355]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 70207355; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='70207355']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 70207355, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=70207355]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":70207355,"title":"Development of a beam-forming circuit for the antenna array operating in the W-band","translated_title":"","metadata":{"abstract":"The paper presents the development of a beamforming circuit aimed at controlling the state of an orbital angular moment of the output radio beam from a uniform circular antenna array operating in the W-band. The proposed device is based on the Rotman lens, the shape of which is calculated taking into account the configuration of the antenna array and the required states of its radiation pattern. The Rotman lens circuit has five input beam ports, eight output antenna ports, and eight dummy ports. The application of such a beam-forming scheme can significantly reduce the overall dimensions of the antenna system and can be implemented based on the microstrip technology together with the antenna array.","publisher":"2020 International Conference on Information Technology and Nanotechnology (ITNT)","publication_date":{"day":null,"month":null,"year":2020,"errors":{}}},"translated_abstract":"The paper presents the development of a beamforming circuit aimed at controlling the state of an orbital angular moment of the output radio beam from a uniform circular antenna array operating in the W-band. The proposed device is based on the Rotman lens, the shape of which is calculated taking into account the configuration of the antenna array and the required states of its radiation pattern. The Rotman lens circuit has five input beam ports, eight output antenna ports, and eight dummy ports. The application of such a beam-forming scheme can significantly reduce the overall dimensions of the antenna system and can be implemented based on the microstrip technology together with the antenna array.","internal_url":"https://www.academia.edu/70207355/Development_of_a_beam_forming_circuit_for_the_antenna_array_operating_in_the_W_band","translated_internal_url":"","created_at":"2022-02-01T02:50:13.659-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":213594000,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Development_of_a_beam_forming_circuit_for_the_antenna_array_operating_in_the_W_band","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":213594000,"first_name":"Ivan","middle_initials":null,"last_name":"Meshkov","page_name":"MeshkovI","domain_name":"independent","created_at":"2022-02-01T02:48:52.980-08:00","display_name":"Ivan Meshkov","url":"https://independent.academia.edu/MeshkovI"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="70207353"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/70207353/The_radio_photon_method_of_forming_directional_radio_emission_in_a_wide_frequency_band"><img alt="Research paper thumbnail of The radio-photon method of forming directional radio emission in a wide frequency band" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/70207353/The_radio_photon_method_of_forming_directional_radio_emission_in_a_wide_frequency_band">The radio-photon method of forming directional radio emission in a wide frequency band</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The task of the antenna array radiation pattern optical control for ultra-wideband radio emission...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The task of the antenna array radiation pattern optical control for ultra-wideband radio emission is considered in the paper. A fiber-optic phasing scheme is proposed, which is part of a complex fiber-optic device. The control device layout and the radio-photon segment layout photos are presented. An analytical model of the optical phasing process is developed that provides the frequency bands number calculation. The number of bands, on which a wide frequency range should be divided, depends on the permissible level of the array radiation pattern distortion. The results of experimental approbation of the radio lobe phasing control in the frequency band of 200 MHz, divided into 3 subbands of 70 MHz, are presented.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="70207353"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="70207353"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 70207353; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=70207353]").text(description); $(".js-view-count[data-work-id=70207353]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 70207353; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='70207353']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 70207353, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=70207353]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":70207353,"title":"The radio-photon method of forming directional radio emission in a wide frequency band","translated_title":"","metadata":{"abstract":"The task of the antenna array radiation pattern optical control for ultra-wideband radio emission is considered in the paper. A fiber-optic phasing scheme is proposed, which is part of a complex fiber-optic device. The control device layout and the radio-photon segment layout photos are presented. An analytical model of the optical phasing process is developed that provides the frequency bands number calculation. The number of bands, on which a wide frequency range should be divided, depends on the permissible level of the array radiation pattern distortion. The results of experimental approbation of the radio lobe phasing control in the frequency band of 200 MHz, divided into 3 subbands of 70 MHz, are presented.","publisher":"Optical Technologies for Telecommunications","publication_date":{"day":null,"month":null,"year":2018,"errors":{}}},"translated_abstract":"The task of the antenna array radiation pattern optical control for ultra-wideband radio emission is considered in the paper. A fiber-optic phasing scheme is proposed, which is part of a complex fiber-optic device. The control device layout and the radio-photon segment layout photos are presented. An analytical model of the optical phasing process is developed that provides the frequency bands number calculation. The number of bands, on which a wide frequency range should be divided, depends on the permissible level of the array radiation pattern distortion. The results of experimental approbation of the radio lobe phasing control in the frequency band of 200 MHz, divided into 3 subbands of 70 MHz, are presented.","internal_url":"https://www.academia.edu/70207353/The_radio_photon_method_of_forming_directional_radio_emission_in_a_wide_frequency_band","translated_internal_url":"","created_at":"2022-02-01T02:50:13.568-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":213594000,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_radio_photon_method_of_forming_directional_radio_emission_in_a_wide_frequency_band","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":213594000,"first_name":"Ivan","middle_initials":null,"last_name":"Meshkov","page_name":"MeshkovI","domain_name":"independent","created_at":"2022-02-01T02:48:52.980-08:00","display_name":"Ivan Meshkov","url":"https://independent.academia.edu/MeshkovI"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="70207351"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/70207351/Optical_device_models_for_RoF_systems"><img alt="Research paper thumbnail of Optical device models for RoF systems" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/70207351/Optical_device_models_for_RoF_systems">Optical device models for RoF systems</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper studies engineering design and modeling of an optical device intended for Radio-over-F...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper studies engineering design and modeling of an optical device intended for Radio-over-Fiber (RoF) antenna array radio emitting management. Design and assembled models of the device are based on either profiled multiple-wave interferometer or long-haul ring topology FOCL. To construct the interferential type OSCD (optical signal splitting and chirping device) models optical ceramic glass mixer processed with the ITHP (intense twist under high pressure) method was used. Loss and transmission coefficients with account of splitting for all the prototype units were measured — on frame-controller equipment and on RoF segment test bench equipment. Satisfactory measurement results obtained allow to make conclusion on OSCD models applicability for RoF test segments. The designed models and test bench pictures are also illustrated in this article.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="70207351"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="70207351"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 70207351; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=70207351]").text(description); $(".js-view-count[data-work-id=70207351]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 70207351; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='70207351']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 70207351, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=70207351]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":70207351,"title":"Optical device models for RoF systems","translated_title":"","metadata":{"abstract":"This paper studies engineering design and modeling of an optical device intended for Radio-over-Fiber (RoF) antenna array radio emitting management. Design and assembled models of the device are based on either profiled multiple-wave interferometer or long-haul ring topology FOCL. To construct the interferential type OSCD (optical signal splitting and chirping device) models optical ceramic glass mixer processed with the ITHP (intense twist under high pressure) method was used. Loss and transmission coefficients with account of splitting for all the prototype units were measured — on frame-controller equipment and on RoF segment test bench equipment. Satisfactory measurement results obtained allow to make conclusion on OSCD models applicability for RoF test segments. The designed models and test bench pictures are also illustrated in this article.","publisher":"2017 International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON)","publication_date":{"day":null,"month":null,"year":2017,"errors":{}}},"translated_abstract":"This paper studies engineering design and modeling of an optical device intended for Radio-over-Fiber (RoF) antenna array radio emitting management. Design and assembled models of the device are based on either profiled multiple-wave interferometer or long-haul ring topology FOCL. To construct the interferential type OSCD (optical signal splitting and chirping device) models optical ceramic glass mixer processed with the ITHP (intense twist under high pressure) method was used. Loss and transmission coefficients with account of splitting for all the prototype units were measured — on frame-controller equipment and on RoF segment test bench equipment. Satisfactory measurement results obtained allow to make conclusion on OSCD models applicability for RoF test segments. The designed models and test bench pictures are also illustrated in this article.","internal_url":"https://www.academia.edu/70207351/Optical_device_models_for_RoF_systems","translated_internal_url":"","created_at":"2022-02-01T02:50:13.481-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":213594000,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Optical_device_models_for_RoF_systems","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":213594000,"first_name":"Ivan","middle_initials":null,"last_name":"Meshkov","page_name":"MeshkovI","domain_name":"independent","created_at":"2022-02-01T02:48:52.980-08:00","display_name":"Ivan Meshkov","url":"https://independent.academia.edu/MeshkovI"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="70207349"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/70207349/Design_of_vortex_optical_fibers_for_RoF_systems_Part_I_overview_and_alternative_solutions"><img alt="Research paper thumbnail of Design of vortex optical fibers for RoF systems: Part I: overview and alternative solutions" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/70207349/Design_of_vortex_optical_fibers_for_RoF_systems_Part_I_overview_and_alternative_solutions">Design of vortex optical fibers for RoF systems: Part I: overview and alternative solutions</a></div><div class="wp-workCard_item"><span>Optical Technologies for Telecommunications 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper, an alternative fiber-optic method for forming vortex modes based on a chiral (twis...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper, an alternative fiber-optic method for forming vortex modes based on a chiral (twisted) microstructured fiber is proposed. This fiber can be considered as a ring-core fiber with ring core formed by capillaries. Besides, optical fibers design for transmitting optical vortexes over long distances. i.e. a vortex-maintaining fiber is also proposed. This fiber is a multimode fiber with an extremely large core. A comparison of the different types of vortex generation and vortex-maintaining fibers is also given. Both proposed fibers can be used in Radio over Fiber systems applying vortex beams.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="70207349"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="70207349"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 70207349; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=70207349]").text(description); $(".js-view-count[data-work-id=70207349]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 70207349; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='70207349']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 70207349, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=70207349]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":70207349,"title":"Design of vortex optical fibers for RoF systems: Part I: overview and alternative solutions","translated_title":"","metadata":{"abstract":"In this paper, an alternative fiber-optic method for forming vortex modes based on a chiral (twisted) microstructured fiber is proposed. This fiber can be considered as a ring-core fiber with ring core formed by capillaries. Besides, optical fibers design for transmitting optical vortexes over long distances. i.e. a vortex-maintaining fiber is also proposed. This fiber is a multimode fiber with an extremely large core. A comparison of the different types of vortex generation and vortex-maintaining fibers is also given. Both proposed fibers can be used in Radio over Fiber systems applying vortex beams.","publisher":"SPIE","publication_name":"Optical Technologies for Telecommunications 2019"},"translated_abstract":"In this paper, an alternative fiber-optic method for forming vortex modes based on a chiral (twisted) microstructured fiber is proposed. This fiber can be considered as a ring-core fiber with ring core formed by capillaries. Besides, optical fibers design for transmitting optical vortexes over long distances. i.e. a vortex-maintaining fiber is also proposed. This fiber is a multimode fiber with an extremely large core. A comparison of the different types of vortex generation and vortex-maintaining fibers is also given. Both proposed fibers can be used in Radio over Fiber systems applying vortex beams.","internal_url":"https://www.academia.edu/70207349/Design_of_vortex_optical_fibers_for_RoF_systems_Part_I_overview_and_alternative_solutions","translated_internal_url":"","created_at":"2022-02-01T02:50:13.350-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":213594000,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Design_of_vortex_optical_fibers_for_RoF_systems_Part_I_overview_and_alternative_solutions","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":213594000,"first_name":"Ivan","middle_initials":null,"last_name":"Meshkov","page_name":"MeshkovI","domain_name":"independent","created_at":"2022-02-01T02:48:52.980-08:00","display_name":"Ivan Meshkov","url":"https://independent.academia.edu/MeshkovI"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="70207348"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/70207348/Ultra_wideband_vortex_antenna_array_design_for_high_capacity_radio_links"><img alt="Research paper thumbnail of Ultra-wideband vortex antenna array design for high capacity radio links" class="work-thumbnail" src="https://attachments.academia-assets.com/80047723/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/70207348/Ultra_wideband_vortex_antenna_array_design_for_high_capacity_radio_links">Ultra-wideband vortex antenna array design for high capacity radio links</a></div><div class="wp-workCard_item"><span>Journal of Physics: Conference Series</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c7d718211006e8e7a49182917d53f9d3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:80047723,&quot;asset_id&quot;:70207348,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/80047723/download_file?st=MTczMjk2MjMzMyw4LjIyMi4yMDguMTQ2&st=MTczMjk2MjMzMyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="70207348"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="70207348"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 70207348; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=70207348]").text(description); $(".js-view-count[data-work-id=70207348]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 70207348; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='70207348']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 70207348, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c7d718211006e8e7a49182917d53f9d3" } } $('.js-work-strip[data-work-id=70207348]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":70207348,"title":"Ultra-wideband vortex antenna array design for high capacity radio links","translated_title":"","metadata":{"publisher":"IOP Publishing","grobid_abstract":"In this paper the development principles for calculation and construction of the antenna for «smooth» transmission and reception of multichannel ultra-wideband signals with a given spiral phase front applied in Radio-over-fiber system for the seamless data transmission are discussed. The detail description of the current state of research in this field is presented and deeply analyzed, so finally the new unique solutions are proposed and described in detail.Since the transceiver antenna has a significant effect on the signal shape working as a spatio-temporal filter, then the phase of the emitted wave (spin-orbital state) depends only on the antenna geometry. So the inverse problem of the antenna theory should be solved, when the antenna array configuration is synthesized on the basis of the given aperture.The antenna is considered as distributed in-space volume antenna arraybased on tripoles, providing the reception of a «tangled» signal with wave division and spin-orbital state multiplexing. The antenna is calculated using a mathematical and computer modelling and characterized with stable characteristics in the ultra-wide frequency band.","publication_name":"Journal of Physics: Conference Series","grobid_abstract_attachment_id":80047723},"translated_abstract":null,"internal_url":"https://www.academia.edu/70207348/Ultra_wideband_vortex_antenna_array_design_for_high_capacity_radio_links","translated_internal_url":"","created_at":"2022-02-01T02:50:13.214-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":213594000,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":80047723,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80047723/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/80047723/download_file?st=MTczMjk2MjMzMyw4LjIyMi4yMDguMTQ2&st=MTczMjk2MjMzMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Ultra_wideband_vortex_antenna_array_desi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80047723/pdf-libre.pdf?1643712911=\u0026response-content-disposition=attachment%3B+filename%3DUltra_wideband_vortex_antenna_array_desi.pdf\u0026Expires=1732965933\u0026Signature=ckRxwqRrsI5X2JRkOAw2xYNtJio5zDf-6ASFBTktiL-eoCzmXDvtQc7RyonuocjJpm5t2tZ~ni3LY-WqKTI~y3CI0hrTVzDMa4YPEC3HFSQfuDtPgYL6wEAKl7u66DHpzmbXegpffQneyjrSfHtIH5l0-lXTGaP5k8GA8I-kOJvloxpmDGzXCsaOzxPHaILKjgS0Y1U1qUPfB21bW0BZUI6L9Lgnsfsh6XMIzXbARrS7aqX0OYnY5wOyTXnQ6IBvwk9jMgItdX2ykyndfk0pwPLCfiRRhKWdXvOVXXe4b83DgAS9UrjDYxogF6vefSnnVAzkdMklZPEfmd6doNp0hQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Ultra_wideband_vortex_antenna_array_design_for_high_capacity_radio_links","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":213594000,"first_name":"Ivan","middle_initials":null,"last_name":"Meshkov","page_name":"MeshkovI","domain_name":"independent","created_at":"2022-02-01T02:48:52.980-08:00","display_name":"Ivan Meshkov","url":"https://independent.academia.edu/MeshkovI"},"attachments":[{"id":80047723,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80047723/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/80047723/download_file?st=MTczMjk2MjMzMyw4LjIyMi4yMDguMTQ2&st=MTczMjk2MjMzMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Ultra_wideband_vortex_antenna_array_desi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80047723/pdf-libre.pdf?1643712911=\u0026response-content-disposition=attachment%3B+filename%3DUltra_wideband_vortex_antenna_array_desi.pdf\u0026Expires=1732965933\u0026Signature=ckRxwqRrsI5X2JRkOAw2xYNtJio5zDf-6ASFBTktiL-eoCzmXDvtQc7RyonuocjJpm5t2tZ~ni3LY-WqKTI~y3CI0hrTVzDMa4YPEC3HFSQfuDtPgYL6wEAKl7u66DHpzmbXegpffQneyjrSfHtIH5l0-lXTGaP5k8GA8I-kOJvloxpmDGzXCsaOzxPHaILKjgS0Y1U1qUPfB21bW0BZUI6L9Lgnsfsh6XMIzXbARrS7aqX0OYnY5wOyTXnQ6IBvwk9jMgItdX2ykyndfk0pwPLCfiRRhKWdXvOVXXe4b83DgAS9UrjDYxogF6vefSnnVAzkdMklZPEfmd6doNp0hQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":80047722,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80047722/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/80047722/download_file","bulk_download_file_name":"Ultra_wideband_vortex_antenna_array_desi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80047722/pdf-libre.pdf?1643712910=\u0026response-content-disposition=attachment%3B+filename%3DUltra_wideband_vortex_antenna_array_desi.pdf\u0026Expires=1732965933\u0026Signature=gipca9WiDYG8VuM-HlUwVwD3BpWQmr9~Fs9uZRglB7HfA~-MTUh2XOOgJaGOVeYT5z5rr2UZ3BuQ7wS5gpL0A0BPS69hbPnIc4-buBIcCwT~zdFRJypyPuN96EY4uvQVCaFGVJJ0JL3gTNuxGapdZ8P43NL2IT4eLJSvrVXQb2gZl1XxJ5ySsIqoqu2r6f9Sq1kpBzWcmjM2XyrkOWkWC6CrRhyx1kiutyM5ocYuwG~XB~AQzmpI0hyCnRNu6YaWUcKUUxi-Sblakh81jKRN0kEd49w8PkwesSarYOoDmbaqVMw-voX8YvZUAX4PmJQWv8gEKeTVVPT84BEksFK2dg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"}],"urls":[{"id":17183888,"url":"http://stacks.iop.org/1742-6596/1096/i=1/a=012164/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="70207346"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/70207346/Optical_signal_splitting_and_chirping_device_modeling"><img alt="Research paper thumbnail of Optical signal splitting and chirping device modeling" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/70207346/Optical_signal_splitting_and_chirping_device_modeling">Optical signal splitting and chirping device modeling</a></div><div class="wp-workCard_item"><span>SPIE Proceedings</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This article examines the devices for optical signal splitting and chirping device modeling. Mode...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This article examines the devices for optical signal splitting and chirping device modeling. Models with splitting and switching functions are taken into consideration. The described device for optical signal splitting and chirping represents interferential splitter with profiled mixer which provides allocation of correspondent spectral component from ultra wide band frequency diapason, and signal phase shift for aerial array (AA) directive diagram control. This paper proposes modeling for two types of devices for optical signal splitting and chirping: the interference-type optical signal splitting and chirping device and the long-distance-type optical signal splitting and chirping device.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="70207346"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="70207346"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 70207346; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=70207346]").text(description); $(".js-view-count[data-work-id=70207346]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 70207346; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='70207346']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 70207346, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=70207346]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":70207346,"title":"Optical signal splitting and chirping device modeling","translated_title":"","metadata":{"abstract":"This article examines the devices for optical signal splitting and chirping device modeling. Models with splitting and switching functions are taken into consideration. The described device for optical signal splitting and chirping represents interferential splitter with profiled mixer which provides allocation of correspondent spectral component from ultra wide band frequency diapason, and signal phase shift for aerial array (AA) directive diagram control. This paper proposes modeling for two types of devices for optical signal splitting and chirping: the interference-type optical signal splitting and chirping device and the long-distance-type optical signal splitting and chirping device.","publisher":"SPIE","publication_name":"SPIE Proceedings"},"translated_abstract":"This article examines the devices for optical signal splitting and chirping device modeling. Models with splitting and switching functions are taken into consideration. The described device for optical signal splitting and chirping represents interferential splitter with profiled mixer which provides allocation of correspondent spectral component from ultra wide band frequency diapason, and signal phase shift for aerial array (AA) directive diagram control. This paper proposes modeling for two types of devices for optical signal splitting and chirping: the interference-type optical signal splitting and chirping device and the long-distance-type optical signal splitting and chirping device.","internal_url":"https://www.academia.edu/70207346/Optical_signal_splitting_and_chirping_device_modeling","translated_internal_url":"","created_at":"2022-02-01T02:50:13.125-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":213594000,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Optical_signal_splitting_and_chirping_device_modeling","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":213594000,"first_name":"Ivan","middle_initials":null,"last_name":"Meshkov","page_name":"MeshkovI","domain_name":"independent","created_at":"2022-02-01T02:48:52.980-08:00","display_name":"Ivan Meshkov","url":"https://independent.academia.edu/MeshkovI"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="70207345"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/70207345/Experimental_demonstration_of_high_speed_data_transmission_based_on_Gaussian_pulses_for_IR_UWB_radio_over_fiber_systems"><img alt="Research paper thumbnail of Experimental demonstration of high-speed data transmission based on Gaussian pulses for IR-UWB radio-over-fiber systems" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/70207345/Experimental_demonstration_of_high_speed_data_transmission_based_on_Gaussian_pulses_for_IR_UWB_radio_over_fiber_systems">Experimental demonstration of high-speed data transmission based on Gaussian pulses for IR-UWB radio-over-fiber systems</a></div><div class="wp-workCard_item"><span>Optical Technologies for Telecommunications 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Experimental bench, which provides high-speed data transmission for IR-UWB Radio-over-Fiber syste...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Experimental bench, which provides high-speed data transmission for IR-UWB Radio-over-Fiber systems on the basis of Gaussian pulses, is presented in the paper. Experiment setup and results are described and discussed.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="70207345"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="70207345"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 70207345; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=70207345]").text(description); $(".js-view-count[data-work-id=70207345]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 70207345; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='70207345']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 70207345, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=70207345]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":70207345,"title":"Experimental demonstration of high-speed data transmission based on Gaussian pulses for IR-UWB radio-over-fiber systems","translated_title":"","metadata":{"abstract":"Experimental bench, which provides high-speed data transmission for IR-UWB Radio-over-Fiber systems on the basis of Gaussian pulses, is presented in the paper. Experiment setup and results are described and discussed.","publisher":"SPIE","publication_name":"Optical Technologies for Telecommunications 2016"},"translated_abstract":"Experimental bench, which provides high-speed data transmission for IR-UWB Radio-over-Fiber systems on the basis of Gaussian pulses, is presented in the paper. Experiment setup and results are described and discussed.","internal_url":"https://www.academia.edu/70207345/Experimental_demonstration_of_high_speed_data_transmission_based_on_Gaussian_pulses_for_IR_UWB_radio_over_fiber_systems","translated_internal_url":"","created_at":"2022-02-01T02:50:13.041-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":213594000,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Experimental_demonstration_of_high_speed_data_transmission_based_on_Gaussian_pulses_for_IR_UWB_radio_over_fiber_systems","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":213594000,"first_name":"Ivan","middle_initials":null,"last_name":"Meshkov","page_name":"MeshkovI","domain_name":"independent","created_at":"2022-02-01T02:48:52.980-08:00","display_name":"Ivan Meshkov","url":"https://independent.academia.edu/MeshkovI"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "5e630ff27fbd6436f0b42c5163e304d638982f66400d7331f306ca9bd130af53", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="SddSEm5zPVsyHk4TvisTdYK/6/Cke4cdohEYoQuMdGZKmt36GCzzhOblaPWkcYjK6d9W3iuhPMBFQ2cGarhztw==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://independent.academia.edu/MeshkovI" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="4w+O2SvNnt+BepctlStGi9DgzVDi3XQ43q8Yse999LPgQgExXZJQAFWBscuPcd00u4Bwfm0Hz+U5/WcWjknzYg==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10