CINXE.COM
Search results for: ammonium
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: ammonium</title> <meta name="description" content="Search results for: ammonium"> <meta name="keywords" content="ammonium"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="ammonium" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="ammonium"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 247</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: ammonium</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">247</span> Solanum tuberosum Ammonium Transporter Gene: Some Bioinformatics Insights</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20T.%20Adetunji">A. T. Adetunji</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20B.%20Lewu"> F. B. Lewu</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Mundembe"> R. Mundembe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plants require nitrogen (N) to support desired production levels. Nitrogen is available to plants in the form of nitrate or ammonium, which are transported into the cell with the aid of various transport proteins. Ammonium transporters (AMTs) play a role in the uptake of ammonium, the form in which nitrogen is preferentially absorbed by plants. Solanum tuberosum AMT1 (StAMT1) was characterized using molecular biology and bioinformatics methods. Nucleotide database sequences were used to design AMT1-specific primers which were used to amplify the AMT1 internal regions. Nucleotide sequencing, alignment and phylogenetic analysis assigned StAMT1 to the AMT1 family. The deduced amino acid sequences showed that StAMT1 is 92%, 83% and 76% similar to Solanum lycopersicum LeAMT1.1, Lotus japonicus LjAMT1.1 and Solanum lycopersicum LeAMT1.2 respectively. StAMT1 fragments were shown to correspond to the 5th - 10th trans-membrane domains. Residue StAMT1 D15 is predicted to be essential for ammonium transport, while mutations of StAMT1 S76A may further enhance ammonium transport. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ammonium%20transporter" title="ammonium transporter">ammonium transporter</a>, <a href="https://publications.waset.org/abstracts/search?q=bioinformatics" title=" bioinformatics"> bioinformatics</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen" title=" nitrogen"> nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=primers" title=" primers"> primers</a>, <a href="https://publications.waset.org/abstracts/search?q=Solanum%20tuberosum" title=" Solanum tuberosum"> Solanum tuberosum</a> </p> <a href="https://publications.waset.org/abstracts/56484/solanum-tuberosum-ammonium-transporter-gene-some-bioinformatics-insights" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56484.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">246</span> Rapid Start-Up and Efficient Long-Term Nitritation of Low Strength Ammonium Wastewater with a Sequencing Batch Reactor Containing Immobilized Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hammad%20Khan">Hammad Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Wookeun%20Bae"> Wookeun Bae </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Major concerns regarding nitritation of low-strength ammonium wastewaters include low ammonium loading rates (usually below 0.2 kg/m3-d) and uncertainty about long-term stability of the process. The purpose of this study was to test a sequencing batch reactor (SBR) filled with cell-immobilized polyethylene glycol (PEG) pellets to see if it could achieve efficient and stable nitritation under various environmental conditions. SBR was fed with synthetic ammonium wastewater of 30±2 mg-N/L and pH: 8±0.05, maintaining the dissolved oxygen concentration of 1.7±0.2 mg/L and the temperature at 30±1oC. The reaction was easily converted to partial nitrification mode within a month by feeding relatively high ammonium substrate (~100 mg-N/L) in the beginning. We observed stable nitritation over 300 days with high ammonium loading rates (as high as ~1.1 kg-N/m3-d), nitrite accumulation rates (mostly over 97%) and ammonium removal rate (mostly over 95%). DO was a major limiting substrate when the DO concentration was below ~4 mg/L and the NH4+-N concentration was above 5 mg/L, giving almost linear increase in the ammonium oxidation rate with the bulk DO increase. Low temperatures mainly affected the reaction rate, which could be compensated for by increasing the pellet volume (i.e. biomass). Our results demonstrated that an SBR filled with small cell-immobilized PEG pellets could achieve very efficient and stable nitritation of a low-strength ammonium wastewater. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ammonium%20loading%20rate%20%28ALR%29" title="ammonium loading rate (ALR)">ammonium loading rate (ALR)</a>, <a href="https://publications.waset.org/abstracts/search?q=cell-immobilization" title=" cell-immobilization"> cell-immobilization</a>, <a href="https://publications.waset.org/abstracts/search?q=long-term%20nitritation" title=" long-term nitritation"> long-term nitritation</a>, <a href="https://publications.waset.org/abstracts/search?q=sequencing%20batch%20reactor%20%28SBR%29" title=" sequencing batch reactor (SBR)"> sequencing batch reactor (SBR)</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage%20treatment" title=" sewage treatment"> sewage treatment</a> </p> <a href="https://publications.waset.org/abstracts/14015/rapid-start-up-and-efficient-long-term-nitritation-of-low-strength-ammonium-wastewater-with-a-sequencing-batch-reactor-containing-immobilized-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14015.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">245</span> Malachite Ore Treatment with Typical Ammonium Salts and Its Mechanism to Promote the Flotation Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayman%20M.%20Ibrahim">Ayman M. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinpeng%20Cai"> Jinpeng Cai</a>, <a href="https://publications.waset.org/abstracts/search?q=Peilun%20Shen"> Peilun Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Dianwen%20Liu"> Dianwen Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The difference in promoting sulfurization between different ammonium salts and its anion's effect on the sulfurization of the malachite surface was systematically studied. Therefore, this study takes malachite, a typical copper oxide mineral, as the research object, field emission scanning electron microscopy and energy-dispersive X-ray analysis (FESEM‒EDS), X-ray photoelectron spectroscopy (XPS), and other analytical and testing methods, as well as pure mineral flotation experiments, were carried out to examine the superiority of the ammonium salts as the sulfurizing reagent of malachite at the microscopic level. Additionally, the promoting effects of ammonium sulfate and ammonium phosphate on the malachite sulfurization of xanthate-flotation were compared systematically from the microstructure of sulfurized products, elemental composition, chemical state of characteristic elements, and hydrophobicity surface evolution. The FESEM and AFM results presented that after being pre-treated with ammonium salts, the adhesion of sulfurized products formed on the mineral surface was denser; thus, the flake radial dimension product was significantly greater. For malachite sulfurization flotation, the impact of ammonium phosphate in promoting sulfurization is weaker than ammonium sulfate. The reason may be that hydrolyzing phosphate consumes a substantial quantity of H+ in the solution, which hastens the formation of the copper-sulfur products, decreasing the adhesion stability of copper-sulfur species on the malachite surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sulfurization%20flotation" title="sulfurization flotation">sulfurization flotation</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption%20characteristics" title=" adsorption characteristics"> adsorption characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=malachite" title=" malachite"> malachite</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophobicity" title=" hydrophobicity"> hydrophobicity</a> </p> <a href="https://publications.waset.org/abstracts/170990/malachite-ore-treatment-with-typical-ammonium-salts-and-its-mechanism-to-promote-the-flotation-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170990.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">244</span> Characterization of Solanum tuberosum Ammonium Transporter Gene Using Bioinformatics Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adewole%20Tomiwa%20Adetunji">Adewole Tomiwa Adetunji</a>, <a href="https://publications.waset.org/abstracts/search?q=Francis%20Bayo%20Lewu"> Francis Bayo Lewu</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Mundembe"> Richard Mundembe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plants require nitrogen (N) to support desired production levels. There is a need for better understanding of N transport mechanism in order to improve N assimilation by plant root. Nitrogen is available to plants in the form of nitrate or ammonium, which are transported into the cell with the aid of various transport proteins. Ammonium transporters (AMTs) play a role in the uptake of ammonium, the form in which N is preferentially absorbed by plants. Solanum tuberosum AMT1 (StAMT1) was amplified, sequenced and characterized using molecular biology and bioinformatics methods. Nucleotide database sequences were used to design 976 base pairs AMT1-specific primers which include forward primer 5’- GCCATCGCCGCCGCCGG-3’ and reverse primer 5’-GGGTCAGATCCATACCCGC-3’. These primers were used to amplify the Solanum tuberosum AMT1 internal regions. Nucleotide sequencing, alignment and phylogenetic analysis assigned StAMT1 to the AMT1 family due to the clade and high similarity it shared with other plant AMT1 genes. The deduced amino acid sequences showed that StAMT1 is 92%, 83% and 76% similar to Solanum lycopersicum LeAMT1.1, Lotus japonicus LjAMT1.1, and Solanum lycopersicum LeAMT1.2 respectively. StAMT1 fragments were shown to correspond to the 5th-10th trans-membrane domains. Residue StAMT1 D15 is predicted to be essential for ammonium transport, while mutations of StAMT1 S76A may further enhance ammonium transport. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ammonium%20transporter" title="ammonium transporter">ammonium transporter</a>, <a href="https://publications.waset.org/abstracts/search?q=bioinformatics" title=" bioinformatics"> bioinformatics</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen" title=" nitrogen"> nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=primers" title=" primers"> primers</a>, <a href="https://publications.waset.org/abstracts/search?q=Solanum%20tuberosum" title=" Solanum tuberosum"> Solanum tuberosum</a> </p> <a href="https://publications.waset.org/abstracts/77923/characterization-of-solanum-tuberosum-ammonium-transporter-gene-using-bioinformatics-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">243</span> The Combined Effect of the Magnetic Field and Ammonium Chlorides on Deposits Zn-Ni Obtained in Different Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.Benachour">N.Benachour</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Chouchane"> S. Chouchane</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20P.%20Chopart"> J. P. Chopart </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The zinc-nickel deposition on stainless steel substrate was obtained in a chloride bath composed of ZnCl2 (1.8M), NiCl2.6H2O (1.1M), boric acid H3BO3 (1M) and NH4Cl (4M). One configuration was studied the amplitude or field B (0.5 et1T) is parallel to the surface of the working electrodes .the other share the study of various layer was carried out by XRD. The study of the effect of ammonium chloride in combination with the magnetohydrodynamic effect gave several deposits supposedly good physical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ammonium%20chloride" title="ammonium chloride">ammonium chloride</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel-zinc%20alloys" title=" nickel-zinc alloys"> nickel-zinc alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=co-deposition" title=" co-deposition"> co-deposition</a> </p> <a href="https://publications.waset.org/abstracts/45247/the-combined-effect-of-the-magnetic-field-and-ammonium-chlorides-on-deposits-zn-ni-obtained-in-different-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45247.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">242</span> Interaction of Steel Slag and Zeolite on Ammonium Nitrogen Removal and Its Illumination on a New Carrier Filling Configuration for Constructed Wetlands</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hongtao%20Zhu">Hongtao Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dezhi%20Sun"> Dezhi Sun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nitrogen and phosphorus are essential nutrients for biomass growth. But excessive nitrogen and phosphorus can contribute to accelerated eutrophication of lakes and rivers. Constructed wetland is an efficient and eco-friendly wastewater treatment technology with low operating cost and low-energy consumption. Because of high affinity with ammonium ion, zeolite, as a common substrate, is applied in constructed wetlands worldwide. Another substrate seen commonly for constructed wetlands is steel slag, which has high contents of Ca, Al, or Fe, and possesses a strong affinity with phosphate. Due to the excellent ammonium removal ability of zeolite and phosphate removal ability of steel slag, they were considered to be combined in the substrate bed of a constructed wetland in order to enhance the simultaneous removal efficiencies of nitrogen and phosphorus. In our early tests, zeolite and steel slag were combined with each other in order to simultaneously achieve a high removal efficiency of ammonium-nitrogen and phosphate-phosphorus. However, compared with the results when only zeolite was used, the removal efficiency of ammonia was sharply decreased when zeolite and steel slag were used together. The main objective of this study was to establish an overview of the interaction of steel slag and zeolite on ammonium nitrogen removal. The CaO dissolution from slag, as well as the effects of influencing parameters (i.e. pH and Ca2+ concentration) on the ammonium adsorption onto zeolite, was systematically studied. Modeling results of Ca2+ and OH- release from slag indicated that pseudo-second order reaction had a better fitness than pseudo-first order reaction. Changing pH value from 7 to 12 would result in a drastic reduction of the ammonium adsorption capacity on zeolite, from the peak at pH7. High Ca2+ concentration in solution could also inhibit the adsorption of ammonium onto zeolite. The mechanism for steel slag inhibiting the ammonium adsorption capacity of zeolite includes: on one hand, OH- released from steel slag can react with ammonium ions to produce molecular form ammonia (NH3∙H2O), which would cause the dissociation of NH4+ from zeolite. On the other hand, Ca2+ could replace the NH4+ ions to adhere onto the surface of zeolite. An innovative substrate filling configuration that zeolite and steel slag are placed sequentially was proposed to eliminate the disadvantageous effects of steel slag. Experimental results showed that the novel filling configuration was superior to the other two contrast filling configurations in terms of ammonium removal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ammonium%20nitrogen" title="ammonium nitrogen">ammonium nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=constructed%20wetlands" title=" constructed wetlands"> constructed wetlands</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20slag" title=" steel slag"> steel slag</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolite" title=" zeolite"> zeolite</a> </p> <a href="https://publications.waset.org/abstracts/45275/interaction-of-steel-slag-and-zeolite-on-ammonium-nitrogen-removal-and-its-illumination-on-a-new-carrier-filling-configuration-for-constructed-wetlands" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45275.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">241</span> Optimization of Dissolution of Chevreul’s Salt in Ammonium Chloride Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Sert%C3%A7elik">Mustafa Sertçelik</a>, <a href="https://publications.waset.org/abstracts/search?q=Hacali%20Necefo%C4%9Flu"> Hacali Necefoğlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Turan%20%C3%87alban"> Turan Çalban</a>, <a href="https://publications.waset.org/abstracts/search?q=Soner%20Ku%C5%9Flu"> Soner Kuşlu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, Chevreul’s salt was dissolved in ammonium chloride solutions. All experiments were performed in a batch reactor. The obtained results were optimized. Parameters used in the experiments were the reaction temperature, the ammonium chloride concentration, the reaction time and the solid-to-liquid ratio. The optimum conditions were determined by 2<sup>4</sup> factorial experimental design method. The best values of four parameters were determined as based on the experiment results. After the evaluation of experiment results, all parameters were found as effective in experiment conditions selected. The optimum conditions on the maximum Chevreul’s salt dissolution were the ammonium chloride concentration 4.5 M, the reaction time 13.2 min., the reaction temperature 25 <sup>o</sup>C, and the solid-to-liquid ratio 9/80 g.mL<sup>-1</sup>. The best dissolution yield in these conditions was 96.20%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chevreul%27s%20salt" title="Chevreul's salt">Chevreul's salt</a>, <a href="https://publications.waset.org/abstracts/search?q=factorial%20experimental%20design%20method" title=" factorial experimental design method"> factorial experimental design method</a>, <a href="https://publications.waset.org/abstracts/search?q=ammonium%20chloride" title=" ammonium chloride"> ammonium chloride</a>, <a href="https://publications.waset.org/abstracts/search?q=dissolution" title=" dissolution"> dissolution</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/51927/optimization-of-dissolution-of-chevreuls-salt-in-ammonium-chloride-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51927.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">240</span> Dissolution Kinetics of Chevreul’s Salt in Ammonium Cloride Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Sert%C3%A7elik">Mustafa Sertçelik</a>, <a href="https://publications.waset.org/abstracts/search?q=Turan%20%C3%87alban"> Turan Çalban</a>, <a href="https://publications.waset.org/abstracts/search?q=Hacali%20Necefo%C4%9Flu"> Hacali Necefoğlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabri%20%C3%87olak"> Sabri Çolak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, Chevreul’s salt solubility and its dissolution kinetics in ammonium chloride solutions were investigated. Chevreul’s salt that we used in the studies was obtained by using the optimum conditions (ammonium sulphide concentration; 0,4 M, copper sulphate concentration; 0,25 M, temperature; 60°C, stirring speed; 600 rev/min, pH; 4 and reaction time; 15 mins) determined by T. Çalban et al. Chevreul’s salt solubility in ammonium chloride solutions and the kinetics of dissolution were investigated. The selected parameters that affect solubility were reaction temperature, concentration of ammonium chloride, stirring speed, and solid/liquid ratio. Correlation of experimental results had been achieved using linear regression implemented in the statistical package program statistica. The effect of parameters on Chevreul’s salt solubility was examined and integrated rate expression of dissolution rate was found using kinetic models in solid-liquid heterogeneous reactions. The results revealed that the dissolution rate of Chevreul’s salt was decreasing while temperature, concentration of ammonium chloride and stirring speed were increasing. On the other hand, dissolution rate was found to be decreasing with the increase of solid/liquid ratio. Based on result of the applications of the obtained experimental results to the kinetic models, we can deduce that Chevreul’s salt dissolution rate is controlled by diffusion through the ash (or product layer). Activation energy of the reaction of dissolution was found as 74.83 kJ/mol. The integrated rate expression along with the effects of parameters on Chevreul's salt solubility was found to be as follows: 1-3(1-X)2/3+2(1-X)= [2,96.1013.(CA)3,08 .(S/L)-038.(W)1,23 e-9001,2/T].t <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chevreul%27s%20salt" title="Chevreul's salt">Chevreul's salt</a>, <a href="https://publications.waset.org/abstracts/search?q=copper" title=" copper"> copper</a>, <a href="https://publications.waset.org/abstracts/search?q=ammonium%20chloride" title=" ammonium chloride"> ammonium chloride</a>, <a href="https://publications.waset.org/abstracts/search?q=ammonium%20sulphide" title=" ammonium sulphide"> ammonium sulphide</a>, <a href="https://publications.waset.org/abstracts/search?q=dissolution%20kinetics" title=" dissolution kinetics"> dissolution kinetics</a> </p> <a href="https://publications.waset.org/abstracts/27334/dissolution-kinetics-of-chevreuls-salt-in-ammonium-cloride-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27334.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">239</span> Quaternary Ammonium Salts Based Algerian Petroleum Products: Synthesis and Characterization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Houria%20Hamitouche">Houria Hamitouche</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdellah%20Khelifa"> Abdellah Khelifa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quaternary ammonium salts (QACs) are the most common cationic surfactants of natural or synthetic origin usually. They possess one or more hydrophobic hydrocarbon chains and hydrophilic cationic group. In fact, the hydrophobic groups are derived from three main sources: petrochemicals, vegetable oils, and animal fats. These QACs have attracted the attention of chemists for a long time, due to their general simple synthesis and their broad application in several fields. They are important as ingredients of cosmetic products and are also used as corrosion inhibitors, in emulsion polymerization and textile processing. Within biological applications, QACs show a good antimicrobial activity and can be used as medicines, gene delivery agents or in DNA extraction methods. The 2004 worldwide annual consumption of QACs was reported as 500,000 tons. The petroleum product is considered a true reservoir of a variety of chemical species, which can be used in the synthesis of quaternary ammonium salts. The purpose of the present contribution is to synthesize the quaternary ammonium salts by Menschutkin reaction, via chloromethylation/quaternization sequences, from Algerian petroleum products namely: reformate, light naphtha and kerosene and characterize. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quaternary%20ammonium%20salts" title="quaternary ammonium salts">quaternary ammonium salts</a>, <a href="https://publications.waset.org/abstracts/search?q=reformate" title=" reformate"> reformate</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20naphtha" title=" light naphtha"> light naphtha</a>, <a href="https://publications.waset.org/abstracts/search?q=kerosene" title=" kerosene "> kerosene </a> </p> <a href="https://publications.waset.org/abstracts/32772/quaternary-ammonium-salts-based-algerian-petroleum-products-synthesis-and-characterization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">238</span> Determination of Optimum Conditions for the Leaching of Oxidized Copper Ores with Ammonium Nitrate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Javier%20Paul%20Montalvo%20Andia">Javier Paul Montalvo Andia</a>, <a href="https://publications.waset.org/abstracts/search?q=Adriana%20Larrea%20Valdivia"> Adriana Larrea Valdivia</a>, <a href="https://publications.waset.org/abstracts/search?q=Adolfo%20Pillihuaman%20Zambrano"> Adolfo Pillihuaman Zambrano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The most common lixiviant in the leaching process of copper minerals is H₂SO₄, however, the current situation requires more environmentally friendly reagents and in certain situations that have a lower consumption due to the presence of undesirable gangue as muscovite or kaolinite that can make the process unfeasible. The present work studied the leaching of an oxidized copper mineral in an aqueous solution of ammonium nitrate, in order to obtain the optimum leaching conditions of the copper contained in the malachite mineral from Peru. The copper ore studied comes from a deposit in southern Peru and was characterized by X-ray diffractometer, inductively coupled-plasma emission spectrometer (ICP-OES) and atomic absorption spectrophotometry (AAS). The experiments were developed in batch reactor of 600 mL where the parameters as; temperature, pH, ammonium nitrate concentration, particle size and stirring speed were controlled according to experimental planning. The sample solution was analyzed for copper by atomic absorption spectrophotometry (AAS). A simulation in the HSC Chemistry 6.0 program showed that the predominance of the copper compounds of a Cu-H₂O aqueous system is altered by the presence in the system of ammonium complexes, the compound being thermodynamically more stable Cu(NH3)₄²⁺, which predominates in pH ranges from 8.5 to 10 at a temperature of 25 °C. The optimum conditions for copper leaching of the malachite mineral were a stirring speed of 600 rpm, an ammonium nitrate concentration of 4M, a particle diameter of 53 um and temperature of 62 °C. These results showed that the leaching of copper increases with increasing concentration of the ammonium solution, increasing the stirring rate, increasing the temperature and decreasing the particle diameter. Finally, the recovery of copper in optimum conditions was above 80%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ammonium%20nitrate" title="ammonium nitrate">ammonium nitrate</a>, <a href="https://publications.waset.org/abstracts/search?q=malachite" title=" malachite"> malachite</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20oxide" title=" copper oxide"> copper oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=leaching" title=" leaching"> leaching</a> </p> <a href="https://publications.waset.org/abstracts/77305/determination-of-optimum-conditions-for-the-leaching-of-oxidized-copper-ores-with-ammonium-nitrate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77305.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">237</span> Reaction Kinetics for the Pyrolysis of Urea Phosphate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20A.%20Broodryk">P. A. Broodryk</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20F.%20Van%20Der%20Merwe"> A. F. Van Der Merwe</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20W.%20J.%20P.%20Neomagus"> H. W. J. P. Neomagus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The production of the clear liquid fertilizer ammonium polyphosphate (APP) is best achieved by the pyrolysis of urea phosphate, as it produces a product that is free from any of the impurities present in the raw phosphoric acid it was made from. This is a multiphase, multi-step reaction that produces carbon dioxide and ammonia as gasses and ammonium polyphosphate as liquid products. The polyphosphate chain length affects the solubility and thus the applicability of the product as liquid fertiliser, thus proper control of the reaction conditions is thus required for the use of this reaction in the production of fertilisers. This study investigates the reaction kinetics of the aforementioned reaction, describing a mathematical model for the kinetics of the reaction along with the accompanying rate constants. The reaction is initially exothermic, producing only carbon dioxide as a gas product and ammonium diphosphate, at higher temperatures the reaction becomes endothermic, producing ammonia gas as an additional by-product and longer chain polyphosphates, which when condensed too far becomes highly water insoluble. The aim of this study was to (i) characterise the pyrolysis reaction of urea phosphate by determining the mechanisms and the associated kinetic constants, and (ii) to determine the optimum conditions for ammonium diphosphate production. A qualitative investigation was also done to find the rate of hydrolysis of APP as this provides an estimate of the shelf life of an APP clear liquid fertiliser solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ammonium%20polyphosphate" title="ammonium polyphosphate">ammonium polyphosphate</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrolysis" title=" pyrolysis"> pyrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=urea%20phosphate" title=" urea phosphate"> urea phosphate</a> </p> <a href="https://publications.waset.org/abstracts/92068/reaction-kinetics-for-the-pyrolysis-of-urea-phosphate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">236</span> Simultaneous Removal of Phosphate and Ammonium from Eutrophic Water Using Dolochar Based Media Filter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prangya%20Ranjan%20Rout">Prangya Ranjan Rout</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Roshan%20Dash"> Rajesh Roshan Dash</a>, <a href="https://publications.waset.org/abstracts/search?q=Puspendu%20Bhunia"> Puspendu Bhunia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the aim of enhancing the nutrient (ammonium and phosphate) removal from eutrophic wastewater with reduced cost, a novel media based multistage bio filter with drop aeration facility was developed in this work. The bio filter was packed with a discarded sponge iron industry by product, ‘dolochar’ primarily to remove phosphate via physicochemical approach. In the multi stage bio-filter drop, aeration was achieved by the process of percolation of the gravity-fed wastewater through the filter media and dropping down of wastewater from stage to stage. Ammonium present in wastewater got adsorbed by the filter media and biomass grown on the filter media and subsequently, got converted to nitrate through biological nitrification in the aerobic condition, as realized by drop aeration. The performance of the bio-filter in treating real eutrophic wastewater was monitored for a period of about 2 months. The influent phosphate concentration was in the range of 16-19 mg/L, and ammonium concentration was in the range of 65-78 mg/L. The average nutrient removal efficiency observed during the study period were 95.2% for phosphate and 88.7% for ammonium, with mean final effluent concentration of 0.91, and 8.74 mg/L, respectively. Furthermore, the subsequent release of nutrient from the saturated filter media, after completion of treatment process has been undertaken in this study and thin layer funnel analytical test results reveal the slow nutrient release nature of spent dolochar, thereby, recommending its potential agricultural application. Thus, the bio-filter displays immense prospective for treating real eutrophic wastewater, significantly decreasing the level of nutrients and keeping the effluent nutrient concentrations at par with the permissible limit and more importantly, facilitating the conversion of the waste materials into usable ones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ammonium%20removal" title="ammonium removal">ammonium removal</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphate%20removal" title=" phosphate removal"> phosphate removal</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-stage%20bio-filter" title=" multi-stage bio-filter"> multi-stage bio-filter</a>, <a href="https://publications.waset.org/abstracts/search?q=dolochar" title=" dolochar"> dolochar</a> </p> <a href="https://publications.waset.org/abstracts/79309/simultaneous-removal-of-phosphate-and-ammonium-from-eutrophic-water-using-dolochar-based-media-filter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79309.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">235</span> Optimizing the Elevated Nitritation for Autotrophic/Heterotrophic Denitritation in CSTR by Treating STP Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hammad%20Khan">Hammad Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Wookeun%20Bae"> Wookeun Bae </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to optimize and control the highly loaded and efficient nitrite production having suitability for autotrophic and heterotrophic denitritation. A lab scale CSTR for partial and full nitritation was operated to treat the livestock manure digester liquor having an ammonium concentration of ~600 mg-NH4+-N/L and biodegradable contents of ~0.35 g-COD/L. The experiments were performed at 30°C, pH: 8.0, DO: 1.5 mg/L and SRT ranging from 7-20 days. After 125 days operation, >95% nitrite buildup having the ammonium loading rate of ~3.2 kg-NH4+-N/m3-day was seen with almost complete ammonium conversion. On increasing the loading rate further (i-e, from 3.2-6.2 kg-NH4+-N/m3-day), stability of the system remained unaffected. On decreasing the pH from 8 to 7.5 and further 7.2, removal rate can be easily controlled as 95%, 75%, and even 50%. Results demonstrated that nitritation stability and desired removal rates are controlled by a balance of simultaneous inhibition by FA & FNA, pH effect and DO limitation. These parameters proved to be effective even to produce an appropriate influent for anammox. In addition, a mathematical model, identified through the occurring biological reactions, is proposed to optimize the full and partial nitritation process. The proposed model present relationship between pH, ammonium and produced nitrite for full and partial nitritation under the varying concentrations of DO, and simultaneous inhibition by FA and FNA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stable%20nitritation" title="stable nitritation">stable nitritation</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20loading" title=" high loading"> high loading</a>, <a href="https://publications.waset.org/abstracts/search?q=autrophic%20denitritation" title=" autrophic denitritation"> autrophic denitritation</a>, <a href="https://publications.waset.org/abstracts/search?q=hetrotrophic%20denitritation" title=" hetrotrophic denitritation"> hetrotrophic denitritation</a> </p> <a href="https://publications.waset.org/abstracts/13980/optimizing-the-elevated-nitritation-for-autotrophicheterotrophic-denitritation-in-cstr-by-treating-stp-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13980.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">234</span> Achieving the Elevated Nitritation for Autotrophic/Heterotrophic Denitritation in CSTR by Treating STP Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hammad%20Khan">Hammad Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Wookeun%20Bae"> Wookeun Bae </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to optimize, achieve and control the highly loaded and efficient nitrite production having suitability for autotrophic and heterotrophic denitritation. A lab scale CSTR for partial and full nitritation was operated to treat the livestock manure digester liquor having an ammonium concentration of ~600 mg-NH4+-N/L and biodegradable contents of ~0.35 g-COD/L. The experiments were performed at 30°C, pH: 8.0, DO: 1.5 mg/L and SRT ranging from 7-20 days. After 125 days operation, >95% nitrite buildup having the ammonium loading rate of ~3.2 kg-NH4+-N/m3-day was seen with almost complete ammonium conversion. On increasing the loading rate further (i-e, from 3.2-6.2 kg-NH4+-N/m3-day), stability of the system remained unaffected. On decreasing the pH from 8 to7.5 and further 7.2, removal rate can be easily controlled as 95%, 75%, and even 50%. Results demonstrated that nitritation stability and desired removal rates are controlled by a balance of simultaneous inhibition by FA & FNA, pH affect and DO limitation. These parameters proved to be effective even to produce an appropriate influent for anammox. In addition, a mathematical model, identified through the occurring biological reactions, is proposed to optimize the full and partial nitritation process. The proposed model present relationship between pH, ammonium and produced nitrite for full and partial nitritation under the varying concentrations of DO, and simultaneous inhibition by FA and FNA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stable%20nitritation" title="stable nitritation">stable nitritation</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20loading" title=" high loading"> high loading</a>, <a href="https://publications.waset.org/abstracts/search?q=autrophic%20denitritation" title=" autrophic denitritation"> autrophic denitritation</a>, <a href="https://publications.waset.org/abstracts/search?q=CSTR" title=" CSTR"> CSTR</a> </p> <a href="https://publications.waset.org/abstracts/13981/achieving-the-elevated-nitritation-for-autotrophicheterotrophic-denitritation-in-cstr-by-treating-stp-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13981.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">233</span> Research on Thermal Runaway Reaction of Ammonium Nitrate with Incompatible Substances</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Weic-Ting%20Chen">Weic-Ting Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jo-Ming%20Tseng"> Jo-Ming Tseng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ammonium nitrate (AN) has caused many accidents in the world, which have caused a large number of people’s life and serious economic losses. In this study, the safety of the AN production process was discussed deeply, and the influence of incompatible substances was estimated according to the change of their heat value by mixing them with incompatible substances by thermal analysis techniques, and their safety parameters were calculated according to their kinetic parameters. In this study, differential scanning calorimeters (DSC) were applied for the temperature rise test and adiabatic thermal analysis in combination with the Advanced Reactive System Screening Tool (ARSST). The research results could contribute to the safety of the ammonium nitrate production process. Manufacturers can better understand the possibility of chemical heat release and the operating conditions that will cause a chemical reaction to be out of control when storing or adding new substances, so safety parameters were researched for these complex reactions. The results of this study will benefit the process of AN and the relevant staff, which also have safety protection in the working environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ammonium%20nitrate" title="ammonium nitrate">ammonium nitrate</a>, <a href="https://publications.waset.org/abstracts/search?q=incompatible%20substances" title=" incompatible substances"> incompatible substances</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20scanning%20calorimeters" title=" differential scanning calorimeters"> differential scanning calorimeters</a>, <a href="https://publications.waset.org/abstracts/search?q=advanced%20reactive%20system%20screening%20tool" title=" advanced reactive system screening tool"> advanced reactive system screening tool</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20parameters" title=" safety parameters"> safety parameters</a> </p> <a href="https://publications.waset.org/abstracts/162406/research-on-thermal-runaway-reaction-of-ammonium-nitrate-with-incompatible-substances" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162406.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">232</span> Optimizing the Elevated Nitritation for Autotrophic/Heterotrophic Denitritation in CSTR by Treating Livestock Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hammad%20Khan">Hammad Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Wookeun%20Bae"> Wookeun Bae</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to optimize and control the highly loaded and efficient nitrite production having suitability for autotrophic and heterotrophic denitritation. A lab scale CSTR for partial and full nitritation was operated to treat the livestock manure digester liquor having an ammonium concentration of ~2000 mg-NH4+-N/L and biodegradable contents of ~0.8 g-COD/L. The experiments were performed at 30°C, pH: 8.0 DO: 1.5 mg/L and SRT ranging from 7-20 days. After 125 days operation, >95% nitrite buildup having the ammonium loading rate of ~3.2 kg-NH4+-N/m3-day was seen with almost complete ammonium conversion. On increasing the loading rate further (i.e. from 3.2-6.2 kg-NH4+-N/m3-day), stability of the system remained unaffected. On decreasing the pH from 8 to7.5 and further 7.2, removal rate can be easily controlled as 95%, 75% and even 50%. Results demonstrated that nitritation stability and desired removal rates are controlled by a balance of simultaneous inhibition by FA and FNA, pH affect and DO limitation. These parameters proved to be effective even to produce an appropriate influent for anammox. In addition, a mathematical model, identified through the occurring biological reactions, is proposed to optimize the full and partial nitritation process. The proposed model presents relationship between pH, ammonium and produced nitrite for full and partial nitritation under the varying concentrations of DO, and simultaneous inhibition by FA and FNA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stable%20nitritation" title="stable nitritation">stable nitritation</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20loading" title=" high loading"> high loading</a>, <a href="https://publications.waset.org/abstracts/search?q=autrophic%20denitritation" title=" autrophic denitritation"> autrophic denitritation</a>, <a href="https://publications.waset.org/abstracts/search?q=hetrotrophic%20denitritation" title=" hetrotrophic denitritation"> hetrotrophic denitritation</a> </p> <a href="https://publications.waset.org/abstracts/13978/optimizing-the-elevated-nitritation-for-autotrophicheterotrophic-denitritation-in-cstr-by-treating-livestock-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13978.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">231</span> Designing ZIF67 Derivatives Using Ammonia-Based Fluorine Complex as Structure-Directing Agent for Energy Storage Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lu-Yin%20Lin">Lu-Yin Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The morphology of electroactive material is highly related to energy storage ability. Structure-directing agent (SDA) can design electroactive materials with favorable surface properties. Zeolitic imidazolate framework 67 (ZIF67) is one of the potential electroactive materials for energy storage devices. The SDA concept is less applied to designing ZIF67 derivatives in previous studies. An in-situ technique with ammonium fluoride (NH₄F) as SDA is proposed to produce a ZIF67 derivative with highly improved energy storage ability. Attracted by the effective in-situ technique, the NH₄F, ammonium bifluoride (NH₄HF₂), and ammonium tetrafluoroborate (NH₄BF₄) are first used as SDA to synthesize ZIF67 derivatives in one-step solution process as electroactive material of energy storage devices. The mechanisms of forming ZIF67 derivatives synthesized with different SDAs are discussed to explain the SDA effects on physical and electrochemical properties. The largest specific capacitance (CF) of 1527.0 Fg-¹ and the capacity of 296.9 mAhg-¹ are obtained for the ZIF67 derivative prepared using NH₄BF₄ as SDA. The energy storage device composed of the optimal ZIF67 derivative and carbon electrodes presents a maximum energy density of 15.1 Whkg-¹ at the power density of 857 Wkg-¹. The CF retention of 90% and Coulombic efficiency larger than 98% are also obtained after 5000 cycles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ammonium%20bifluoride" title="ammonium bifluoride">ammonium bifluoride</a>, <a href="https://publications.waset.org/abstracts/search?q=ammonium%20tetrafluoroborate" title=" ammonium tetrafluoroborate"> ammonium tetrafluoroborate</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20storage%20device" title=" energy storage device"> energy storage device</a>, <a href="https://publications.waset.org/abstracts/search?q=one-step%20solution%20process" title=" one-step solution process"> one-step solution process</a>, <a href="https://publications.waset.org/abstracts/search?q=structure-directing%20agent" title=" structure-directing agent"> structure-directing agent</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolitic%20imidazolate%20framework%2067" title=" zeolitic imidazolate framework 67"> zeolitic imidazolate framework 67</a> </p> <a href="https://publications.waset.org/abstracts/183111/designing-zif67-derivatives-using-ammonia-based-fluorine-complex-as-structure-directing-agent-for-energy-storage-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183111.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">230</span> Achieving the Elevated Nitritation for Autotrophic/Heterotrophic Denitritation in CSTR by Treating Livestock Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hammad%20Khan">Hammad Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Wookeun%20Bae"> Wookeun Bae </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to achieve, optimize and control the highly loaded and efficient nitrite production having suitability for autotrophic and heterotrophic denitritation. A lab scale CSTR for partial and full nitritation was operated to treat the livestock manure digester liquor having an ammonium concentration of ~2000 mg-NH4+-N/L and biodegradable contents of ~0.8 g-COD/L. The experiments were performed at 30°C, pH: 8.0, DO: 1.5 mg/L and SRT ranging from 7-20 days. After 125 days operation, >95% nitrite buildup having the ammonium loading rate of ~3.2 kg-NH4+-N/m3-day was seen with almost complete ammonium conversion. On increasing the loading rate further (i-e, from 3.2-6.2 kg-NH4+-N/m3-day), stability of the system remained unaffected. On decreasing the pH from 8 to 7.5 and further 7.2, removal rate can be easily controlled as 95%, 75% and even 50%. Results demonstrated that nitritation stability and desired removal rates are controlled by a balance of simultaneous inhibition by FA & FNA, pH affect and DO limitation. These parameters proved to be effective even to produce an appropriate influent for anammox. In addition, a mathematical model, identified through the occurring biological reactions, is proposed to optimize the full and partial nitritation process. The proposed model present relationship between pH, ammonium and produced nitrite for full and partial nitritation under the varying concentrations of DO, and simultaneous inhibition by FA and FNA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stable%20nitritation" title="stable nitritation">stable nitritation</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20loading" title=" high loading"> high loading</a>, <a href="https://publications.waset.org/abstracts/search?q=autrophic%20denitritation" title=" autrophic denitritation"> autrophic denitritation</a>, <a href="https://publications.waset.org/abstracts/search?q=hetrotrophic%20denitritation" title=" hetrotrophic denitritation"> hetrotrophic denitritation</a> </p> <a href="https://publications.waset.org/abstracts/13982/achieving-the-elevated-nitritation-for-autotrophicheterotrophic-denitritation-in-cstr-by-treating-livestock-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13982.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">229</span> Synergetic effect of the Sodium Hydrosulfide and Ammonium Sulfate as Activators in the Flotation of Copper-cobalt Bearing Oxide Minerals from the Kamoya Mineralization in the Democratic Republic of Congo (DRC).</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Craig%20Nsakabwebwe%20Kabange">Craig Nsakabwebwe Kabange</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current study investigated the synergetic effect of two activators, mainly sodium hydrosulfide (NaHS) and ammonium sulfate (NH₄)₂SO₄, as sulphidizersin the flotation of oxide minerals. A series of flotation tests were conducted on copper-cobalt samples originating from the Kamoyaopen pitin the DRCat an adjusted pH value of 9.5. The results revealed that in the presence of NaHS (5000g/t), an increase in the recovery values of both metals to a maximum of 87% copper and 78.1% cobalt could be achieved. However, the addition of (NH4)₂SO4 to theNaHS-containing pulp had a negative effect on the recoveries, shifting it from 87 to 49.1% for copper and from78.1 to 49.2% forcobalt. The recovery trend for the two metals waskept below 50% with an increase in the concentration of(NH₄)₂SO4. A satisfactory result was obtained at a NaHS - (NH₄)₂SO₄ concentration ratio of 1/1, which delivered 89.5 % Cu recovery and 79.2% Co recovery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ammonium%20sulphate" title="ammonium sulphate">ammonium sulphate</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20hydrosulphide" title=" sodium hydrosulphide"> sodium hydrosulphide</a>, <a href="https://publications.waset.org/abstracts/search?q=sulphidizer" title=" sulphidizer"> sulphidizer</a>, <a href="https://publications.waset.org/abstracts/search?q=activator" title=" activator"> activator</a> </p> <a href="https://publications.waset.org/abstracts/158296/synergetic-effect-of-the-sodium-hydrosulfide-and-ammonium-sulfate-as-activators-in-the-flotation-of-copper-cobalt-bearing-oxide-minerals-from-the-kamoya-mineralization-in-the-democratic-republic-of-congo-drc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158296.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">228</span> Thermal Decomposition of Ammonium Perchlorate in the Presence of Ferric Oxide and Graphene Oxide Nonmaterial’s</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mourad%20Makhlouf">Mourad Makhlouf</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouabdellah%20Benaicha"> Bouabdellah Benaicha</a>, <a href="https://publications.waset.org/abstracts/search?q=Zoubir%20Benmaamar"> Zoubir Benmaamar</a>, <a href="https://publications.waset.org/abstracts/search?q=Didier%20Villemin"> Didier Villemin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The addition of combustion catalysts to ammonium perchlorate-based composite fuels can indeed significantly enhance their performance. In this work, a nanocomposite was synthesized using graphene oxide (GO) and hematite nanoparticles grafted onto graphene oxide as a catalyst support.To characterize the nanocomposite, several experimental techniques were employed, including Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, and scanning electron microscopy (SEM). FTIR is useful for analyzing chemical bonding and functional groups, while Raman spectroscopy provides information about the vibrational modes of the materials. SEM allows for visualizing the surface morphology and structure.The thermal analysis of two mixtures, one based on AP/GO and the other on AP/GO-Fe2O3, was conducted with varying percentages. The results indicated that the nanocomposite GO-Fe2O3 acted as a catalyst, significantly accelerating the thermal decomposition process of AP. This catalytic effect ultimately led to an improvement in the energy performance of the composite fuel.Overall, the synthesis and characterization of the nanocomposite, as well as the thermal analysis, demonstrated the effectiveness of GO-Fe2O3 as a combustion catalyst in enhancing the performance of ammonium perchlorate-based composite fuels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20propellants" title="composite propellants">composite propellants</a>, <a href="https://publications.waset.org/abstracts/search?q=ammonium%20perchlorate" title=" ammonium perchlorate"> ammonium perchlorate</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=catalytic%20support" title=" catalytic support"> catalytic support</a>, <a href="https://publications.waset.org/abstracts/search?q=hematite%20nanoparticles" title=" hematite nanoparticles"> hematite nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title=" graphene oxide"> graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20decomposition" title=" thermal decomposition"> thermal decomposition</a> </p> <a href="https://publications.waset.org/abstracts/186830/thermal-decomposition-of-ammonium-perchlorate-in-the-presence-of-ferric-oxide-and-graphene-oxide-nonmaterials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">48</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">227</span> Sulfamethoxazole Removal and Ammonium Nitrogen Conversion by Microalgae-Bacteria Consortium in Ammonium-Rich Wastewater: Responses Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eheneden%20Iyobosa">Eheneden Iyobosa</a>, <a href="https://publications.waset.org/abstracts/search?q=Rongchang%20Wang"> Rongchang Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Adesina%20Odunayo%20Blessing"> Adesina Odunayo Blessing</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaoxiang%20Chen"> Gaoxiang Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Haijing%20Ren"> Haijing Ren</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianfu%20Zhao"> Jianfu Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the treatment of ammonium-rich wastewater with 500 μg/L sulfamethoxazole (SMX) antibiotic by a Microalgae-Bacteria Consortium, diverse parameters were monitored to assess treatment efficacy. Over 14 days, residual SMX concentrations decreased markedly from 500 μg/L to 45.6 μg/L, and removal rates declined from 102.4 to 9.9 μg/L/day. Biomass exhibited consistent growth, reaching a peak of 542.6 mg/L on day 10. Chlorophyll-a, chlorophyll-b, and carotenoid levels varied over time, reflecting fluctuations in microalgal activity. Extracellular polymeric substances (EPS) production showed temporal variations, with protein content ranging from 69.4 to 162.3 mg/g Dry cell weight (DCW) and polysaccharides content from 50.6 to 82.8 mg/g DCW. Ammonium nitrogen concentration decreased steadily from 300 mg/L to 5 mg/L throughout the treatment period. The bacterial community composition was significantly altered in the presence of antibiotics, with notable increases in Bacteroidota and Proteobacteria. Community richness and diversity indices were higher in the antibiotics-treated group than in the control group, as evidenced by the Chao index (258 compared to 181), Shannon index (1.8085 compared to 1.1545), and Simpson index (0.5032 compared to 0.6478), indicating notable shifts in microbial community structure. These findings demonstrate the efficacy of the Microalgae-Bacteria Consortium in removing SMX from wastewater and suggest its potential to mitigate antibiotic pollution while maintaining microbial diversity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ammonium-rich%20wastewater" title="ammonium-rich wastewater">ammonium-rich wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgae-bacteria%20consortium" title=" microalgae-bacteria consortium"> microalgae-bacteria consortium</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfamethoxazole%20removal" title=" sulfamethoxazole removal"> sulfamethoxazole removal</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20community%20diversity" title=" microbial community diversity"> microbial community diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass%20growth" title=" biomass growth"> biomass growth</a> </p> <a href="https://publications.waset.org/abstracts/191493/sulfamethoxazole-removal-and-ammonium-nitrogen-conversion-by-microalgae-bacteria-consortium-in-ammonium-rich-wastewater-responses-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">24</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">226</span> Comparative Study of Electronic and Optical Properties of Ammonium and Potassium Dinitramide Salts through Ab-Initio Calculations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Prathap%20Kumar">J. Prathap Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Vaitheeswaran"> G. Vaitheeswaran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study investigates the role of ammonium and potassium ion in the electronic, bonding and optical properties of dinitramide salts due to their stability and non-toxic nature. A detailed analysis of bonding between NH₄ and K with dinitramide, optical transitions from the valence band to the conduction band, absorption spectra, refractive indices, reflectivity, loss function are reported. These materials are well known as oxidizers in solid rocket propellants. In the present work, we use full potential linear augmented plane wave (FP-LAPW) method which is implemented in the Wien2k package within the framework of density functional theory. The standard DFT functional local density approximation (LDA) and generalized gradient approximation (GGA) always underestimate the band gap by 30-40% due to the lack of derivative discontinuities of the exchange-correlation potential with respect to an occupation number. In order to get reliable results, one must use hybrid functional (HSE-PBE), GW calculations and Tran-Blaha modified Becke-Johnson (TB-mBJ) potential. It is very well known that hybrid functionals GW calculations are very expensive, the later methods are computationally cheap. The new developed TB-mBJ functionals use information kinetic energy density along with the charge density employed in DFT. The TB-mBJ functionals cannot be used for total energy calculations but instead yield very much improved band gap. The obtained electronic band gap at gamma point for both the ammonium dinitramide and potassium dinitramide are found to be 2.78 eV and 3.014 eV with GGA functional, respectively. After the inclusion of TB-mBJ, the band gap improved by 4.162 eV for potassium dinitramide and 4.378 eV for ammonium dinitramide. The nature of the band gap is direct in ADN and indirect in KDN. The optical constants such as dielectric constant, absorption, and refractive indices, birefringence values are presented. Overall as there are no experimental studies we present the improved band gap with TB-mBJ functional following with optical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ammonium%20dinitramide" title="ammonium dinitramide">ammonium dinitramide</a>, <a href="https://publications.waset.org/abstracts/search?q=potassium%20dinitramide" title=" potassium dinitramide"> potassium dinitramide</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=propellants" title=" propellants"> propellants</a> </p> <a href="https://publications.waset.org/abstracts/94164/comparative-study-of-electronic-and-optical-properties-of-ammonium-and-potassium-dinitramide-salts-through-ab-initio-calculations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94164.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">225</span> Evaluation of the Appropriateness of Common Oxidants for Ruthenium (II) Chemiluminescence in a Microfluidic Detection Device Coupled to Microbore High Performance Liquid Chromatography for the Analysis of Drugs in Formulations and Biological Fluids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Afsal%20Mohammed%20Kadavilpparampu">Afsal Mohammed Kadavilpparampu</a>, <a href="https://publications.waset.org/abstracts/search?q=Haider%20A.%20J.%20Al%20Lawati"> Haider A. J. Al Lawati</a>, <a href="https://publications.waset.org/abstracts/search?q=Fakhr%20Eldin%20O.%20Suliman"> Fakhr Eldin O. Suliman</a>, <a href="https://publications.waset.org/abstracts/search?q=Salma%20M.%20Z.%20Al%20Kindy"> Salma M. Z. Al Kindy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we evaluated the appropriateness of various oxidants that can be used potentially with Ru(bipy)32+ CL system while performing CL detection in a microfluidic device using eight common active pharmaceutical ingredients- ciprofloxacin, hydrochlorothiazide, norfloxacin, buspirone, fexofenadine, cetirizine, codeine, and dextromethorphan. This is because, microfludics have very small channel volume and the residence time is also very short. Hence, a highly efficient oxidant is required for on-chip CL detection to obtain analytically acceptable CL emission. Three common oxidants were evaluated, lead dioxide, cerium ammonium sulphate and ammonium peroxydisulphate. Results obtained showed that ammonium peroxydisulphate is the most appropriate oxidant which can be used in microfluidic setup and all the tested analyte give strong CL emission while using this oxidant. We also found that Ru(bipy)33+ generated off-line by oxidizing [Ru(bipy)3]Cl2.6H2O in acetonitrile under acidic condition with lead dioxide was stable for more than 72 hrs. A highly sensitive microbore HPLC- CL method using ammonium peroxydisulphate as an oxidant in a microfluidic on-chip CL detection has been developed for the analyses of fixed-dose combinations of pseudoephedrine (PSE), fexofenadine (FEX) and cetirizine (CIT) in biological fluids and pharmaceutical formulations with minimum sample pre-treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oxidants" title="oxidants">oxidants</a>, <a href="https://publications.waset.org/abstracts/search?q=microbore%20High%20Performance%20Liquid%20Chromatography" title=" microbore High Performance Liquid Chromatography"> microbore High Performance Liquid Chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=chemiluminescence" title=" chemiluminescence"> chemiluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidics" title=" microfluidics"> microfluidics</a> </p> <a href="https://publications.waset.org/abstracts/16967/evaluation-of-the-appropriateness-of-common-oxidants-for-ruthenium-ii-chemiluminescence-in-a-microfluidic-detection-device-coupled-to-microbore-high-performance-liquid-chromatography-for-the-analysis-of-drugs-in-formulations-and-biological-fluids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16967.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">224</span> Synthesis and Charaterization of Nanocomposite Poly (4,4' Methylenedianiline) Catalyzed by Maghnite-H+</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Belmokhtar">A. Belmokhtar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Yahiaoui"> A. Yahiaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Benyoucef"> A. Benyoucef</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Belbachir"> M. Belbachir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We reported the synthesis and characterization of nanocomposite poly (4,4’ methylenedianiline) via chemical polymerization of monomers 4,4’ methylenedianiline by ammonium persulfate (APS) at room temperature catalyzed by Maghnite-H+. A facile method was demonstrated to grow poly (4,4’ methylenedianiline) nanocomposite, which was carried out by mixing Ammonium Persulfate (APS) aqueous and 4,4’ methylenedianiline solution in the presence of Maghnite-H+ at room temperature The effect of amount of catalyst and time on the polymerization yield of the polymers was studied. Structure was confirmed by elemental analysis, UV vis, RMN-1H, and voltammetry cyclique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=charaterization" title="charaterization">charaterization</a>, <a href="https://publications.waset.org/abstracts/search?q=maghnite-h%2B" title=" maghnite-h+"> maghnite-h+</a>, <a href="https://publications.waset.org/abstracts/search?q=polymerization" title=" polymerization"> polymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%20%284" title=" poly (4"> poly (4</a>, <a href="https://publications.waset.org/abstracts/search?q=4%E2%80%99%20methylenedianiline%29" title="4’ methylenedianiline)">4’ methylenedianiline)</a> </p> <a href="https://publications.waset.org/abstracts/30737/synthesis-and-charaterization-of-nanocomposite-poly-44-methylenedianiline-catalyzed-by-maghnite-h" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30737.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">223</span> Combination of Electrodialysis and Electrodeionization for Treatment of Condensate from Ammonium Nitrate Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lubomir%20Machuca">Lubomir Machuca</a>, <a href="https://publications.waset.org/abstracts/search?q=Vit%20Fara"> Vit Fara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ammonium nitrate (AN) is produced by the reaction of ammonia and nitric acid, and a waste condensate is obtained. The condensate contains pure AN in concentration up to 10g/L. The salt content in the condensate is too high to discharge immediately into the river thus it must be treated. This study is concerned with the treatment of condensates from an industrial AN production by combination of electrodialysis (ED) and electrodeionization (EDI). The condensate concentration was in range 1.9–2.5g/L of AN. A pilot ED module with 25 membrane pairs following by a laboratory EDI module with 10 membrane pairs operated continuously during 800 hours. Results confirmed that the combination of ED and EDI is suitable for the condensate treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=desalination" title="desalination">desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodialysis" title=" electrodialysis"> electrodialysis</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodeionization" title=" electrodeionization"> electrodeionization</a>, <a href="https://publications.waset.org/abstracts/search?q=fertilizer%20industry" title=" fertilizer industry"> fertilizer industry</a> </p> <a href="https://publications.waset.org/abstracts/5846/combination-of-electrodialysis-and-electrodeionization-for-treatment-of-condensate-from-ammonium-nitrate-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5846.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">222</span> Isolation and Identification of Biosurfactant Producing Microorganism for Bioaugmentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karthick%20Gopalan">Karthick Gopalan</a>, <a href="https://publications.waset.org/abstracts/search?q=Selvamohan%20Thankiah"> Selvamohan Thankiah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biosurfactants are lipid compounds produced by microbes, which are amphipathic molecules consisting of hydrophophic and hydrophilic domains. In the present investigation, ten bacterial strains were isolated from petroleum oil contaminated sites near petrol bunk. Oil collapsing test, haemolytic activity were used as a criteria for primary isolation of biosurfactant producing bacteria. In this study, all the bacterial strains gave positive results. Among the ten strains, two were observed as good biosurfactant producers, they utilize the diesel as a sole carbon source. Optimization of biosurfactant producing bacteria isolated from petroleum oil contaminated sites was carried out using different parameters such as, temperature (20ºC, 25ºC, 30ºC, 37ºC and 45ºC), pH (5,6,7,8 & 9) and nitrogen sources (ammonium chloride, ammonium carbonate and sodium nitrate). Biosurfactants produced by bacteria were extracted, dried and quantified. As a result of optimization of parameters the suitable values for the production of more amount of biosurfactant by the isolated bacterial species was observed as 30ºC (0.543 gm/lt) in the pH 7 (0.537 gm/lt) with ammonium nitrate (0.431 gm/lt) as sole carbon source. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=isolation%20and%20identification" title="isolation and identification">isolation and identification</a>, <a href="https://publications.waset.org/abstracts/search?q=biosurfactant" title=" biosurfactant"> biosurfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=microorganism" title=" microorganism"> microorganism</a>, <a href="https://publications.waset.org/abstracts/search?q=bioaugmentation" title=" bioaugmentation"> bioaugmentation</a> </p> <a href="https://publications.waset.org/abstracts/8222/isolation-and-identification-of-biosurfactant-producing-microorganism-for-bioaugmentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8222.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">221</span> Electrical Characteristics of SiON/GaAs MOS Capacitor with Various Passivations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ming-Kwei%20Lee">Ming-Kwei Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih-Feng%20Yen"> Chih-Feng Yen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The electrical characteristics of liquid phase deposited silicon oxynitride film on ammonium sulfide treated p-type (100) gallium arsenide substrate were investigated. Hydrofluosilicic acid, ammonia and boric acid aqueous solutions were used as precursors. The electrical characteristics of silicon oxynitride film are much improved on gallium arsenide substrate with ammonium sulfide treatment. With post-metallization annealing, hydrogen ions can further passivate defects in SiON/GaAs film and interface. The leakage currents can reach 7.1 × 10-8 and 1.8 × 10-7 at ± 2 V. The dielectric constant and effective oxide charges are 5.6 and -5.3 × 1010 C/cm2, respectively. The hysteresis offset of hysteresis loop is merely 0.09 V. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquid%20phase%20deposition" title="liquid phase deposition">liquid phase deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=SiON" title=" SiON"> SiON</a>, <a href="https://publications.waset.org/abstracts/search?q=GaAs" title=" GaAs"> GaAs</a>, <a href="https://publications.waset.org/abstracts/search?q=PMA" title=" PMA"> PMA</a>, <a href="https://publications.waset.org/abstracts/search?q=%28NH4%292S" title=" (NH4)2S "> (NH4)2S </a> </p> <a href="https://publications.waset.org/abstracts/19612/electrical-characteristics-of-siongaas-mos-capacitor-with-various-passivations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19612.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">641</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">220</span> Modification of a Natural Zeolite with a Short-Chain Quaternary Ammonium Salt in an Ultrasonication Process and Investigation of Its Ability to Eliminate Nitrate Ions: Characterization and Mechanism Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nona%20%20Mirzamohammadi">Nona Mirzamohammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahram%20Nasernejad"> Bahram Nasernejad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work mainly focuses on studying the mechanism governing the adsorption of tetraethylammonium bromide, a short-chain quaternary ammonium salt, on the surface of natural zeolite and to characterize modified and raw zeolites in order to study the removal of nitrate anions from water. Natural clinoptilolite, as the most common zeolite, was chosen and modified in an ultrasonication process using tetraethylammonium bromide, subsequent to being contacted with NaCl solutions. FT-IR studies indicated a peak attributed to the stretching vibrations of the –CH₂ group in the molecule of tetraethylammonium bromide in the spectrum of the modified sample. Moreover, the SEM images showed some obvious changes in the surface morphology and crystallinity of clinoptilolite after being modified. Batch adsorption experiments show that the modified zeolite is capable of removing nitrate anions, and the predominant removal mechanism is suggested to be a combination of electrostatic attraction and ion exchange since the results from the zeta potential analysis showed a decrease in the net negative charge of clinoptilolite after modification, while bromide ions were detected in the modified sample in the µXRF analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=clinoptilolite" title=" clinoptilolite"> clinoptilolite</a>, <a href="https://publications.waset.org/abstracts/search?q=short-chain%20quaternary%20ammonium%20salt" title=" short-chain quaternary ammonium salt"> short-chain quaternary ammonium salt</a>, <a href="https://publications.waset.org/abstracts/search?q=tetraethylammoniumbromide" title=" tetraethylammoniumbromide"> tetraethylammoniumbromide</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonication" title=" ultrasonication"> ultrasonication</a> </p> <a href="https://publications.waset.org/abstracts/138686/modification-of-a-natural-zeolite-with-a-short-chain-quaternary-ammonium-salt-in-an-ultrasonication-process-and-investigation-of-its-ability-to-eliminate-nitrate-ions-characterization-and-mechanism-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">219</span> Preparation and Characterization of α–Alumina with Low Sodium Oxide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gyung%20Soo%20Jeon">Gyung Soo Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Bae%20Kim"> Hong Bae Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi%20Jung%20Oh"> Chi Jung Oh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to prepare the α-alumina with low content of sodium oxide from aluminum trihydroxide as a reactant, three kinds of methods were employed as follows; the mixture of Chamotte (aggregate composed of silica and alumina), ammonium chloride and aluminum fluoride with aluminum trihydroxide under 1600°C, respectively. The sodium oxide in α-alumina produced above methods was analyzed by XRF and the particle size distribution was determined by particle size analyzer, and the specific surface area of α-alumina was measured by BET method, and phase of α-alumina produced was confirmed by XRD. Acknowledgement: This research was supported by Development Program of Technical Innovation funded by Korea Technology and Information Promotion Agency for SMEs (KTIP-2016-S2401821). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-alumina" title="α-alumina">α-alumina</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20oxide" title=" sodium oxide"> sodium oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum%20trihydroxide" title=" aluminum trihydroxide"> aluminum trihydroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=Chamotte" title=" Chamotte"> Chamotte</a>, <a href="https://publications.waset.org/abstracts/search?q=ammonium%20chloride" title=" ammonium chloride"> ammonium chloride</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum%20fluoride" title=" aluminum fluoride"> aluminum fluoride</a> </p> <a href="https://publications.waset.org/abstracts/66138/preparation-and-characterization-of-a-alumina-with-low-sodium-oxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66138.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">218</span> The Cellular Internalization Mechanisms of Cationic Niosomes/DNA Complex in HeLa Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Orapan%20Paecharoenchai">Orapan Paecharoenchai</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanasait%20Ngawhirunpat"> Tanasait Ngawhirunpat</a>, <a href="https://publications.waset.org/abstracts/search?q=Theerasak%20Rojanarata"> Theerasak Rojanarata</a>, <a href="https://publications.waset.org/abstracts/search?q=Auayporn%20Apirakaramwong"> Auayporn Apirakaramwong</a>, <a href="https://publications.waset.org/abstracts/search?q=Praneet%20Opanasopit"> Praneet Opanasopit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cationic niosomes formulated with Span20, cholesterol and novel synthesized spermine-cationic lipids (2-hydrocarbon tail and 4- hydrocarbon tail) in a molar ratio of 2.5:2.5:1 can mediate high gene transfection in vitro. However, the uptake mechanisms of these systems are not well clarified. In the present study, effect of endocytic inhibitors on the transfection efficiency of niosomes/DNA complexes was determined on a human cervical carcinoma cell line (HeLa cells) using the inhibitors of macropinocytosis (wortmannin), clathrin- and caveolae-mediated endocytosis (methyl-β-cyclodextrin), clathrin-mediated endocytosis (chlorpromazine), caveolae-mediated endocytosis (genistein and filipin), cytosolic transfer (ammonium chloride) and microtubules polymerization (nocodazole). The transfection of niosomes with 2-hydrocarbon tail lipid was blocked by nocodazole, genistein, ammonium chloride and filipin, respectively, whereas, the transfection of niosomes with 4-hydrocarbon tail lipid was blocked by nocodazole, genistein, ammonium chloride, methyl-β-cyclodextrin and filipin, respectively. It can be concluded that these niosomes/DNA complexes were internalized predominantly by endocytosis via clathrin and caveolae-independent pathway. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellular%20internalization" title="cellular internalization">cellular internalization</a>, <a href="https://publications.waset.org/abstracts/search?q=cationic%20niosomes" title=" cationic niosomes"> cationic niosomes</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20carriers" title=" gene carriers"> gene carriers</a>, <a href="https://publications.waset.org/abstracts/search?q=spermine-cationic%20lipids" title=" spermine-cationic lipids"> spermine-cationic lipids</a> </p> <a href="https://publications.waset.org/abstracts/11538/the-cellular-internalization-mechanisms-of-cationic-niosomesdna-complex-in-hela-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ammonium&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ammonium&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ammonium&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ammonium&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ammonium&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ammonium&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ammonium&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ammonium&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ammonium&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>