CINXE.COM
Search results for: R. Zahari
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: R. Zahari</title> <meta name="description" content="Search results for: R. Zahari"> <meta name="keywords" content="R. Zahari"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="R. Zahari" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="R. Zahari"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 11</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: R. Zahari</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Bamboo Fibre Extraction and Its Reinforced Polymer Composite Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Zakikhani">P. Zakikhani</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Zahari"> R. Zahari</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20T.%20H.%20Sultan"> M. T. H. Sultan</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20L.%20Majid"> D. L. Majid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural plant fibres reinforced polymeric composite materials have been used in many fields of our lives to save the environment. Especially, bamboo fibres due to its environmental sustainability, mechanical properties, and recyclability have been utilized as reinforced polymer matrix composite in construction industries. In this review study bamboo structure and three different methods such as mechanical, chemical and combination of mechanical and chemical to extract fibres from bamboo are summarized. Each extraction method has been done base on the application of bamboo. In addition Bamboo fibre is compared with glass fibre from various aspects and in some parts it has advantages over the glass fibre. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bamboo%20fibres" title="bamboo fibres">bamboo fibres</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20fibres" title=" natural fibres"> natural fibres</a>, <a href="https://publications.waset.org/abstracts/search?q=bio%20composite" title=" bio composite"> bio composite</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20extraction" title=" mechanical extraction"> mechanical extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20fibres" title=" glass fibres"> glass fibres</a> </p> <a href="https://publications.waset.org/abstracts/7836/bamboo-fibre-extraction-and-its-reinforced-polymer-composite-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7836.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Disability and Quality of Life in Low Back Pain: A Cross-Sectional Study </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zarina%20Zahari">Zarina Zahari</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Justine"> Maria Justine</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamaria%20Kamaruddin"> Kamaria Kamaruddin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Low back pain (LBP) is a major musculoskeletal problem in global population. This study aimed to examine the relationship between pain, disability and quality of life in patients with non-specific low back pain (LBP). One hundred LBP participants were recruited in this cross-sectional study (mean age = 42.23±11.34 years old). Pain was measured using Numerical Rating Scale (11-point). Disability was assessed using the revised Oswestry low back pain disability questionnaire (ODQ) and quality of life (QoL) was evaluated using the SF-36 v2. Majority of participants (58%) presented with moderate pain and 49% experienced severe disability. Thus, the pain and disability were found significant with negative correlation (r= -0.712, p<0.05). The pain and QoL also showed significant and positive correlation with both Physical Health Component Summary (PHCS) (r= .840, p<0.05) and Mental Health Component Summary (MHCS) (r= 0.446, p<0.05). Regression analysis indicated that pain emerged as an indicator of both disability and QoL (PHCS and MHCS) accounting for 51%, 71% and 21% of the variances respectively. This indicates that pain is an important factor in predicting disability and QoL in LBP sufferers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disability" title="disability">disability</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20back%20pain" title=" low back pain"> low back pain</a>, <a href="https://publications.waset.org/abstracts/search?q=pain" title=" pain"> pain</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20of%20life" title=" quality of life "> quality of life </a> </p> <a href="https://publications.waset.org/abstracts/11696/disability-and-quality-of-life-in-low-back-pain-a-cross-sectional-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11696.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">532</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Effect of Temperature on Adsorption of Nano Ca-DTPMP Scale Inhibitor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radhiyatul%20Hikmah%20Binti%20Abu">Radhiyatul Hikmah Binti Abu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zukhairi%20Bin%20Md%20Rahim"> Zukhairi Bin Md Rahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20Ujila%20Binti%20Masuri"> Siti Ujila Binti Masuri</a>, <a href="https://publications.waset.org/abstracts/search?q=Nur%20Ismarrubie%20Binti%20Zahari"> Nur Ismarrubie Binti Zahari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Zobir%20Hussein"> Mohd Zobir Hussein</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes the synthesis of Calcium Diethylenetriamine-penta (Ca-DTPMP) Scale Inhibitor (SI) and the effect of temperature on its adsorption onto the mineral surfaces. Nanosized particles of Ca-DTPMP SI were synthesized and TEM result shows that the sizes of the synthesized particles are ranged from 10 nm to 30 nm. This synthesized nano SI was then used in static adsorption/precipitation test with various temperatures (37°C, 60°C and 100°C) to determine the effect of temperature on its adsorption ability. The performance of the SI was measured by their diffusion capability, which can be inferred by weighing the metal-SI that successfully adsorbed onto the kaolinite (mineral) surface. The kaolinite samples were analyzed using Scanning Electron Microscope (SEM) and the results show the reduction of pores on kaolinite surface as temperature increases. This indicates higher adsorption of the SI particles onto the mineral surface. Furthermore, EDX analysis shows the presence of Phosphorus (P) and Magnesium (Mg2+) on kaolinite particle surface, hence reaffirming the fact that adsorption took place on the kaolinite surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusivity" title=" diffusivity"> diffusivity</a>, <a href="https://publications.waset.org/abstracts/search?q=scale" title=" scale"> scale</a>, <a href="https://publications.waset.org/abstracts/search?q=scale%20inhibitor" title=" scale inhibitor"> scale inhibitor</a> </p> <a href="https://publications.waset.org/abstracts/37027/effect-of-temperature-on-adsorption-of-nano-ca-dtpmp-scale-inhibitor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37027.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Dynamic Mode Decomposition and Wake Flow Modelling of a Wind Turbine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nor%20Mazlin%20Zahari">Nor Mazlin Zahari</a>, <a href="https://publications.waset.org/abstracts/search?q=Lian%20Gan"> Lian Gan</a>, <a href="https://publications.waset.org/abstracts/search?q=Xuerui%20Mao"> Xuerui Mao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The power production in wind farms and the mechanical loads on the turbines are strongly impacted by the wake of the wind turbine. Thus, there is a need for understanding and modelling the turbine wake dynamic in the wind farm and the layout optimization. Having a good wake model is important in predicting plant performance and understanding fatigue loads. In this paper, the Dynamic Mode Decomposition (DMD) was applied to the simulation data generated by a Direct Numerical Simulation (DNS) of flow around a turbine, perturbed by upstream inflow noise. This technique is useful in analyzing the wake flow, to predict its future states and to reflect flow dynamics associated with the coherent structures behind wind turbine wake flow. DMD was employed to describe the dynamic of the flow around turbine from the DNS data. Since the DNS data comes with the unstructured meshes and non-uniform grid, the interpolation of each occurring within each element in the data to obtain an evenly spaced mesh was performed before the DMD was applied. DMD analyses were able to tell us characteristics of the travelling waves behind the turbine, e.g. the dominant helical flow structures and the corresponding frequencies. As the result, the dominant frequency will be detected, and the associated spatial structure will be identified. The dynamic mode which represented the coherent structure will be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coherent%20structure" title="coherent structure">coherent structure</a>, <a href="https://publications.waset.org/abstracts/search?q=Direct%20Numerical%20Simulation%20%28DNS%29" title=" Direct Numerical Simulation (DNS)"> Direct Numerical Simulation (DNS)</a>, <a href="https://publications.waset.org/abstracts/search?q=dominant%20frequency" title=" dominant frequency"> dominant frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=Dynamic%20Mode%20Decomposition%20%28DMD%29" title=" Dynamic Mode Decomposition (DMD)"> Dynamic Mode Decomposition (DMD)</a> </p> <a href="https://publications.waset.org/abstracts/72480/dynamic-mode-decomposition-and-wake-flow-modelling-of-a-wind-turbine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72480.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Force Distribution and Muscles Activation for Ankle Instability Patients with Rigid and Kinesiotape while Standing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Norazlin%20Mohamad">Norazlin Mohamad</a>, <a href="https://publications.waset.org/abstracts/search?q=Saiful%20Adli%20Bukry"> Saiful Adli Bukry</a>, <a href="https://publications.waset.org/abstracts/search?q=Zarina%20Zahari"> Zarina Zahari</a>, <a href="https://publications.waset.org/abstracts/search?q=Haidzir%20Manaf"> Haidzir Manaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanafi%20Sawalludin"> Hanafi Sawalludin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Deficit in neuromuscular recruitment and decrease force distribution were the common problems among ankle instability patients due to altered joint kinematics that lead to recurrent ankle injuries. Rigid Tape and KT Tape had widely been used as therapeutic and performance enhancement tools in ankle stability. However the difference effect between this two tapes is still controversial. Objective: To investigate the different effect between Rigid Tape and KT Tape on force distribution and muscle activation among ankle instability patients while standing. Study design: Crossover trial. Participants: 27 patients, age between 18 to 30 years old participated in this study. All the subjects were applied with KT Tape & Rigid Tape on their affected ankle with 3 days of interval for each intervention. The subjects were tested with their barefoot (without tape) first to act as a baseline before proceeding with KT Tape, and then with Rigid Tape. Result: There were no significant difference on force distribution at forefoot and back-foot for both tapes while standing. However the mean data shows that Rigid Tape has the highest force distribution at back-foot rather than forefoot when compared with KT Tape that had more force distribution at forefoot while standing. Regarding muscle activation (Peroneus Longus), results showed significant difference between Rigid Tape and KT Tape (p= 0.048). However, there was no significant difference on Tibialis Anterior muscle activation between both tapes while standing. Conclusion: The results indicated that Peroneus longus muscle was more active when applied Rigid Tape rather than KT Tape in ankle instability patients while standing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ankle%20instability" title="ankle instability">ankle instability</a>, <a href="https://publications.waset.org/abstracts/search?q=kinematic" title=" kinematic"> kinematic</a>, <a href="https://publications.waset.org/abstracts/search?q=muscle%20activation" title=" muscle activation"> muscle activation</a>, <a href="https://publications.waset.org/abstracts/search?q=force%20distribution" title=" force distribution"> force distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=Rigid%20Tape" title=" Rigid Tape"> Rigid Tape</a>, <a href="https://publications.waset.org/abstracts/search?q=KT%20tape" title=" KT tape"> KT tape</a> </p> <a href="https://publications.waset.org/abstracts/11715/force-distribution-and-muscles-activation-for-ankle-instability-patients-with-rigid-and-kinesiotape-while-standing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11715.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Experimental Investigation of Nucleate Pool Boiling Heat Transfer Characteristics on Copper Surface with Laser-Textured Stepped Microstructures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luvindran%20Sugumaran">Luvindran Sugumaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Nashrul%20Mohd%20Zubir"> Mohd Nashrul Mohd Zubir</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazi%20Md%20Salim%20Newaz"> Kazi Md Salim Newaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Tuan%20Zaharinie%20Tuan%20Zahari"> Tuan Zaharinie Tuan Zahari</a>, <a href="https://publications.waset.org/abstracts/search?q=Suazlan%20Mt%20Aznam"> Suazlan Mt Aznam</a>, <a href="https://publications.waset.org/abstracts/search?q=Aiman%20Mohd%20Halil"> Aiman Mohd Halil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the rapid advancement of integrated circuits and the increasing trend towards miniaturizing electronic devices, the amount of heat produced by electronic devices has consistently exceeded the maximum limit for heat dissipation. Currently, the two-phase cooling technique based on phase change pool boiling heat transfer has received a lot of attention because of its potential to fully utilize the latent heat of the fluid and produce a highly effective heat dissipation capacity while keeping the equipment's operating temperature within an acceptable range. There are numerous strategies available for the alteration of heating surfaces, but to find the best, simplest, and most dependable one remains a challenge. Lately, surface texturing via laser ablation has been used in a variety of investigations, demonstrating its significant potential for enhancing the pool boiling heat transfer performance. In this research, the nucleate pool boiling heat transfer performance of laser-textured copper surfaces of different patterns was investigated. The bare copper surface serves as a reference to compare the performance of laser-structured surfaces. It was observed that the heat transfer coefficients were increased with the increase of surface area ratio and the ratio of the peak-to-valley height of the microstructure. Laser machined grain structure produced extra nucleation sites, which ultimately caused the improved pool boiling performance. Due to an increase in nucleation site density and surface area, the enhanced nucleate boiling served as the primary heat transfer mechanism. The pool boiling performance of the laser-textured copper surfaces is superior to the bare copper surface in all aspects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20coefficient" title="heat transfer coefficient">heat transfer coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20texturing" title=" laser texturing"> laser texturing</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20structured%20surface" title=" micro structured surface"> micro structured surface</a>, <a href="https://publications.waset.org/abstracts/search?q=pool%20boiling" title=" pool boiling"> pool boiling</a> </p> <a href="https://publications.waset.org/abstracts/165865/experimental-investigation-of-nucleate-pool-boiling-heat-transfer-characteristics-on-copper-surface-with-laser-textured-stepped-microstructures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165865.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Experimental Investigation of Nucleate Pool Boiling Heat Transfer on Laser-Structured Copper Surfaces of Different Patterns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luvindran%20Sugumaran">Luvindran Sugumaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Nashrul%20Mohd%20Zubir"> Mohd Nashrul Mohd Zubir</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazi%20Md%20Salim%20Newaz"> Kazi Md Salim Newaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Tuan%20Zaharinie%20Tuan%20Zahari"> Tuan Zaharinie Tuan Zahari</a>, <a href="https://publications.waset.org/abstracts/search?q=Suazlan%20Mt%20Aznam"> Suazlan Mt Aznam</a>, <a href="https://publications.waset.org/abstracts/search?q=Aiman%20Mohd%20Halil"> Aiman Mohd Halil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With reference to Energy Roadmap 2050, the minimization of greenhouse gas emissions and the enhancement of energy efficiency are the two key factors that could facilitate a radical change in the world's energy infrastructure. However, the energy demands of electronic devices skyrocketed with the advent of the digital age. Currently, the two-phase cooling technique based on phase change pool boiling heat transfer has received a lot of attention because of its potential to fully utilize the latent heat of the fluid and produce a highly effective heat dissipation capacity while keeping the equipment's operating temperature within an acceptable range. There are numerous strategies available for the alteration of heating surfaces, but finding the best, simplest, and most dependable one remains a challenge. Lately, surface texturing via laser ablation has been used in a variety of investigations, demonstrating its significant potential for enhancing the pool boiling heat transfer performance. In this research, the nucleate pool boiling heat transfer performance of laser-structured copper surfaces of different patterns was investigated. The bare copper surface serves as a reference to compare the performance of laser-structured surfaces. It was observed that the heat transfer coefficients were increased with the increase of surface area ratio and the ratio of the peak-to-valley height of the microstructure. Laser machined grain structure produced extra nucleation sites, which ultimately caused the improved pool boiling performance. Due to an increase in nucleation site density and surface area, the enhanced nucleate boiling served as the primary heat transfer mechanism. The pool boiling performance of the laser-structured copper surfaces is superior to the bare copper surface in all aspects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20coefficient" title="heat transfer coefficient">heat transfer coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20structuring" title=" laser structuring"> laser structuring</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20structured%20surface" title=" micro structured surface"> micro structured surface</a>, <a href="https://publications.waset.org/abstracts/search?q=pool%20boiling" title=" pool boiling"> pool boiling</a> </p> <a href="https://publications.waset.org/abstracts/163989/experimental-investigation-of-nucleate-pool-boiling-heat-transfer-on-laser-structured-copper-surfaces-of-different-patterns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Experimental Investigation of Nucleate Pool Boiling Heat Transfer on Laser-Structured Copper Surfaces of Different Patterns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luvindran%20Sugumaran">Luvindran Sugumaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Nashrul%20Mohd%20Zubir"> Mohd Nashrul Mohd Zubir</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazi%20Md%20Salim%20Newaz"> Kazi Md Salim Newaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Tuan%20Zaharinie%20Tuan%20Zahari"> Tuan Zaharinie Tuan Zahari</a>, <a href="https://publications.waset.org/abstracts/search?q=Suazlan%20Mt%20Aznam"> Suazlan Mt Aznam</a>, <a href="https://publications.waset.org/abstracts/search?q=Aiman%20Mohd%20Halil"> Aiman Mohd Halil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With reference to Energy Roadmap 2050, the minimization of greenhouse gas emissions, and the enhancement of energy efficiency are the two key factors that could facilitate a radical change in the world's energy infrastructure. However, the energy demands of electronic devices skyrocketed with the advent of the digital age. Currently, the two-phase cooling technique based on phase change pool boiling heat transfer has received a lot of attention because of its potential to fully utilize the latent heat of the fluid and produce a highly effective heat dissipation capacity while keeping the equipment's operating temperature within an acceptable range. There are numerous strategies available for the alteration of heating surfaces, but to find the best, simplest, and most dependable one remains a challenge. Lately, surface texturing via laser ablation has been used in a variety of investigations, demonstrating its significant potential for enhancing the pool boiling heat transfer performance. In this research, the nucleate pool boiling heat transfer performance of laser-structured copper surfaces of different patterns was investigated. The bare copper surface serves as a reference to compare the performance of laser-structured surfaces. It was observed that the heat transfer coefficients were increased with the increase of surface area ratio and the ratio of the peak-to-valley height of the microstructure. Laser machined grain structure produced extra nucleation sites, which ultimately caused the improved pool boiling performance. Due to an increase in nucleation site density and surface area, the enhanced nucleate boiling served as the primary heat transfer mechanism. The pool boiling performance of the laser-structured copper surfaces is superior to the bare copper surface in all aspects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20coefficient" title="heat transfer coefficient">heat transfer coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20structuring" title=" laser structuring"> laser structuring</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20structured%20surface" title=" micro structured surface"> micro structured surface</a>, <a href="https://publications.waset.org/abstracts/search?q=pool%20boiling" title=" pool boiling"> pool boiling</a> </p> <a href="https://publications.waset.org/abstracts/165129/experimental-investigation-of-nucleate-pool-boiling-heat-transfer-on-laser-structured-copper-surfaces-of-different-patterns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165129.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Experimental Investigation of Nucleate Pool Boiling Heat Transfer on Laser-Structured Copper Surfaces of Different Patterns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luvindran%20Sugumaran">Luvindran Sugumaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Nashrul%20Mohd%20Zubir"> Mohd Nashrul Mohd Zubir</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazi%20Md.%20Salim%20Newaz"> Kazi Md. Salim Newaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Tuan%20Zaharinie%20Tuan%20Zahari"> Tuan Zaharinie Tuan Zahari</a>, <a href="https://publications.waset.org/abstracts/search?q=Suazlan%20Mt%20Aznam"> Suazlan Mt Aznam</a>, <a href="https://publications.waset.org/abstracts/search?q=Aiman%20Mohd%20Halil"> Aiman Mohd Halil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With reference to Energy Roadmap 2050, the minimization of greenhouse gas emissions and the enhancement of energy efficiency are the two key factors that could facilitate a radical change in the world's energy infrastructure. However, the energy demands of electronic devices skyrocketed with the advent of the digital age. Currently, the two-phase cooling technique based on phase change pool boiling heat transfer has received a lot of attention because of its potential to fully utilize the latent heat of the fluid and produce a highly effective heat dissipation capacity while keeping the equipment's operating temperature within an acceptable range. There are numerous strategies available for the alteration of heating surfaces, but to find the best, simplest, and most dependable one remains a challenge. Lately, surface texturing via laser ablation has been used in a variety of investigations, demonstrating its significant potential for enhancing the pool boiling heat transfer performance. In this research, the nucleate pool boiling heat transfer performance of laser-structured copper surfaces of different patterns was investigated. The bare copper surface serves as a reference to compare the performance of laser-structured surfaces. It was observed that the heat transfer coefficients were increased with the increase of surface area ratio and the ratio of the peak-to-valley height of the microstructure. Laser-machined grain structure produced extra nucleation sites, which ultimately caused the improved pool boiling performance. Due to an increase in nucleation site density and surface area, the enhanced nucleate boiling served as the primary heat transfer mechanism. The pool boiling performance of the laser-structured copper surfaces is superior to the bare copper surface in all aspects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20coefficient" title="heat transfer coefficient">heat transfer coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20structuring" title=" laser structuring"> laser structuring</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20structured%20surface" title=" micro structured surface"> micro structured surface</a>, <a href="https://publications.waset.org/abstracts/search?q=pool%20boiling" title=" pool boiling"> pool boiling</a> </p> <a href="https://publications.waset.org/abstracts/165173/experimental-investigation-of-nucleate-pool-boiling-heat-transfer-on-laser-structured-copper-surfaces-of-different-patterns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Thermoelectric Cooler As A Heat Transfer Device For Thermal Conductivity Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Murad%20Zainal%20Abidin">Abdul Murad Zainal Abidin</a>, <a href="https://publications.waset.org/abstracts/search?q=Azahar%20Mohd"> Azahar Mohd</a>, <a href="https://publications.waset.org/abstracts/search?q=Nor%20Idayu%20Arifin"> Nor Idayu Arifin</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20Nor%20Azila%20Khalid"> Siti Nor Azila Khalid</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Julzaha%20Zahari%20Mohamad%20Yusof"> Mohd Julzaha Zahari Mohamad Yusof</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A thermoelectric cooler (TEC) is an electronic component that uses ‘peltier’ effect to create a temperature difference by transferring heat between two electrical junctions of two different types of materials. TEC can also be used for heating by reversing the electric current flow and even power generation. A heat flow meter (HFM) is an equipment for measuring thermal conductivity of building materials. During the test, water is used as heat transfer medium to cool the HFM. The existing re-circulating cooler in the market is very costly, and the alternative is to use piped tap water to extract heat from HFM. However, the tap water temperature is insufficiently low to enable heat transfer to take place. The operating temperature for isothermal plates in the HFM is 40°C with the range of ±0.02°C. When the temperature exceeds the operating range, the HFM stops working, and the test cannot be conducted. The aim of the research is to develop a low-cost but energy-efficient TEC prototype that enables heat transfer without compromising the function of the HFM. The objectives of the research are a) to identify potential of TEC as a cooling device by evaluating its cooling rate and b) to determine the amount of water savings using TEC compared to normal tap water. Four (4) peltier sets were used, with two (2) sets used as pre-cooler. The cooling water is re-circulated from the reservoir into HFM using a water pump. The thermal conductivity readings, the water flow rate, and the power consumption were measured while the HFM was operating. The measured data has shown decrease in average cooling temperature difference (ΔTave) of 2.42°C and average cooling rate of 0.031°C/min. The water savings accrued from using the TEC is projected to be 8,332.8 litres/year with the application of water re-circulation. The results suggest the prototype has achieved required objectives. Further research will include comparing the cooling rate of TEC prototype against conventional tap water and to optimize its design and performance in terms of size and portability. The possible application of the prototype could also be expanded to portable storage for medicine and beverages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title="energy efficiency">energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoelectric%20cooling" title=" thermoelectric cooling"> thermoelectric cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-cooling%20device" title=" pre-cooling device"> pre-cooling device</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20flow%20meter" title=" heat flow meter"> heat flow meter</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20technology" title=" sustainable technology"> sustainable technology</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a> </p> <a href="https://publications.waset.org/abstracts/144569/thermoelectric-cooler-as-a-heat-transfer-device-for-thermal-conductivity-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144569.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Experimental Study of Nucleate Pool Boiling Heat Transfer Characteristics on Laser-Processed Copper Surfaces of Different Patterns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luvindran%20Sugumaran">Luvindran Sugumaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Nashrul%20Mohd%20Zubir"> Mohd Nashrul Mohd Zubir</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazi%20Md%20Salim%20Newaz"> Kazi Md Salim Newaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Tuan%20Zaharinie%20Tuan%20Zahari"> Tuan Zaharinie Tuan Zahari</a>, <a href="https://publications.waset.org/abstracts/search?q=Suazlan%20Mt%20Aznam"> Suazlan Mt Aznam</a>, <a href="https://publications.waset.org/abstracts/search?q=Aiman%20Mohd%20Halil"> Aiman Mohd Halil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the fast growth of integrated circuits and the trend towards making electronic devices smaller, the heat dissipation load of electronic devices has continued to go over the limit. The high heat flux element would not only harm the operation and lifetime of the equipment but would also impede the performance upgrade brought about by the iteration of technological updates, which would have a direct negative impact on the economic and production cost benefits of rising industries. Hence, in high-tech industries like radar, information and communication, electromagnetic power, and aerospace, the development and implementation of effective heat dissipation technologies were urgently required. Pool boiling is favored over other cooling methods because of its capacity to dissipate a high heat flux at a low wall superheat without the usage of mechanical components. Enhancing the pool boiling performance by increasing the heat transfer coefficient via surface modification techniques has received a lot of attention. There are several surface modification methods feasible today, but the stability and durability of surface modification are the greatest priority. Thus, laser machining is an interesting choice for surface modification due to its low production cost, high scalability, and repeatability. In this study, different patterns of laser-processed copper surfaces are fabricated to investigate the nucleate pool boiling heat transfer performance of distilled water. The investigation showed that there is a significant enhancement in the pool boiling heat transfer performance of the laser-processed surface compared to the reference surface due to the notable increase in nucleation frequency and nucleation site density. It was discovered that the heat transfer coefficients increased when both the surface area ratio and the ratio of peak-to-valley height of the microstructure were raised. It is believed that the development of microstructures on the surface as a result of laser processing is the primary factor in the enhancement of heat transfer performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20coefficient" title="heat transfer coefficient">heat transfer coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20processing" title=" laser processing"> laser processing</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20structured%20surface" title=" micro structured surface"> micro structured surface</a>, <a href="https://publications.waset.org/abstracts/search?q=pool%20boiling" title=" pool boiling"> pool boiling</a> </p> <a href="https://publications.waset.org/abstracts/163991/experimental-study-of-nucleate-pool-boiling-heat-transfer-characteristics-on-laser-processed-copper-surfaces-of-different-patterns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163991.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>