CINXE.COM

Search results for: KNN algorithms

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: KNN algorithms</title> <meta name="description" content="Search results for: KNN algorithms"> <meta name="keywords" content="KNN algorithms"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="KNN algorithms" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="KNN algorithms"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2035</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: KNN algorithms</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2035</span> Hierarchical Clustering Algorithms in Data Mining</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Abdullah">Z. Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Hamdan"> A. R. Hamdan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Clustering is a process of grouping objects and data into groups of clusters to ensure that data objects from the same cluster are identical to each other. Clustering algorithms in one of the areas in data mining and it can be classified into partition, hierarchical, density based, and grid-based. Therefore, in this paper, we do a survey and review for four major hierarchical clustering algorithms called CURE, ROCK, CHAMELEON, and BIRCH. The obtained state of the art of these algorithms will help in eliminating the current problems, as well as deriving more robust and scalable algorithms for clustering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clustering" title="clustering">clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=unsupervised%20learning" title=" unsupervised learning"> unsupervised learning</a>, <a href="https://publications.waset.org/abstracts/search?q=algorithms" title=" algorithms"> algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical" title=" hierarchical"> hierarchical</a> </p> <a href="https://publications.waset.org/abstracts/31217/hierarchical-clustering-algorithms-in-data-mining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31217.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">885</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2034</span> Fault Diagnosis of Manufacturing Systems Using AntTreeStoch with Parameter Optimization by ACO</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ouahab%20Kadri">Ouahab Kadri</a>, <a href="https://publications.waset.org/abstracts/search?q=Leila%20Hayet%20Mouss"> Leila Hayet Mouss</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present three diagnostic modules for complex and dynamic systems. These modules are based on three ant colony algorithms, which are AntTreeStoch, Lumer & Faieta and Binary ant colony. We chose these algorithms for their simplicity and their wide application range. However, we cannot use these algorithms in their basement forms as they have several limitations. To use these algorithms in a diagnostic system, we have proposed three variants. We have tested these algorithms on datasets issued from two industrial systems, which are clinkering system and pasteurization system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ant%20colony%20algorithms" title="ant colony algorithms">ant colony algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20and%20dynamic%20systems" title=" complex and dynamic systems"> complex and dynamic systems</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnosis" title=" diagnosis"> diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/42293/fault-diagnosis-of-manufacturing-systems-using-anttreestoch-with-parameter-optimization-by-aco" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42293.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2033</span> Performance Analysis of Ad-Hoc Network Routing Protocols</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Baddari">I. Baddari</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Riahla"> A. Riahla</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mezghich"> M. Mezghich</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today in the literature, we discover a lot of routing algorithms which some have been the subject of normalization. Two great classes Routing algorithms are defined, the first is the class reactive algorithms and the second that of algorithms proactive. The aim of this work is to make a comparative study between some routing algorithms. Two comparisons are considered. The first will focus on the protocols of the same class and second class on algorithms of different classes (one reactive and the other proactive). Since they are not based on analytical models, the exact evaluation of some aspects of these protocols is challenging. Simulations have to be done in order to study their performances. Our simulation is performed in NS2 (Network Simulator 2). It identified a classification of the different routing algorithms studied in a metrics such as loss of message, the time transmission, mobility, etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ad-hoc%20network%20routing%20protocol" title="ad-hoc network routing protocol">ad-hoc network routing protocol</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=NS2" title=" NS2"> NS2</a>, <a href="https://publications.waset.org/abstracts/search?q=delay" title=" delay"> delay</a>, <a href="https://publications.waset.org/abstracts/search?q=packet%20loss" title=" packet loss"> packet loss</a>, <a href="https://publications.waset.org/abstracts/search?q=wideband" title=" wideband"> wideband</a>, <a href="https://publications.waset.org/abstracts/search?q=mobility" title=" mobility"> mobility</a> </p> <a href="https://publications.waset.org/abstracts/23093/performance-analysis-of-ad-hoc-network-routing-protocols" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23093.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2032</span> Emotion Recognition in Video and Images in the Wild</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faizan%20Tariq">Faizan Tariq</a>, <a href="https://publications.waset.org/abstracts/search?q=Moayid%20Ali%20Zaidi"> Moayid Ali Zaidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Facial emotion recognition algorithms are expanding rapidly now a day. People are using different algorithms with different combinations to generate best results. There are six basic emotions which are being studied in this area. Author tried to recognize the facial expressions using object detector algorithms instead of traditional algorithms. Two object detection algorithms were chosen which are Faster R-CNN and YOLO. For pre-processing we used image rotation and batch normalization. The dataset I have chosen for the experiments is Static Facial Expression in Wild (SFEW). Our approach worked well but there is still a lot of room to improve it, which will be a future direction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=face%20recognition" title="face recognition">face recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=emotion%20recognition" title=" emotion recognition"> emotion recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=CNN" title=" CNN"> CNN</a> </p> <a href="https://publications.waset.org/abstracts/152635/emotion-recognition-in-video-and-images-in-the-wild" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152635.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2031</span> Examining the Performance of Three Multiobjective Evolutionary Algorithms Based on Benchmarking Problems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Konstantinos%20Metaxiotis">Konstantinos Metaxiotis</a>, <a href="https://publications.waset.org/abstracts/search?q=Konstantinos%20Liagkouras"> Konstantinos Liagkouras</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is to examine the performance of three well-known multiobjective evolutionary algorithms for solving optimization problems. The first algorithm is the Non-dominated Sorting Genetic Algorithm-II (NSGA-II), the second one is the Strength Pareto Evolutionary Algorithm 2 (SPEA-2), and the third one is the Multiobjective Evolutionary Algorithms based on decomposition (MOEA/D). The examined multiobjective algorithms are analyzed and tested on the ZDT set of test functions by three performance metrics. The results indicate that the NSGA-II performs better than the other two algorithms based on three performance metrics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MOEAs" title="MOEAs">MOEAs</a>, <a href="https://publications.waset.org/abstracts/search?q=multiobjective%20optimization" title=" multiobjective optimization"> multiobjective optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=ZDT%20test%20functions" title=" ZDT test functions"> ZDT test functions</a>, <a href="https://publications.waset.org/abstracts/search?q=evolutionary%20algorithms" title=" evolutionary algorithms"> evolutionary algorithms</a> </p> <a href="https://publications.waset.org/abstracts/65331/examining-the-performance-of-three-multiobjective-evolutionary-algorithms-based-on-benchmarking-problems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2030</span> Comparison of ANFIS Update Methods Using Genetic Algorithm, Particle Swarm Optimization, and Artificial Bee Colony</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20R.%20Phangtriastu">Michael R. Phangtriastu</a>, <a href="https://publications.waset.org/abstracts/search?q=Herriyandi%20Herriyandi"> Herriyandi Herriyandi</a>, <a href="https://publications.waset.org/abstracts/search?q=Diaz%20D.%20Santika"> Diaz D. Santika</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a comparison of the implementation of metaheuristic algorithms to train the antecedent parameters and consequence parameters in the adaptive network-based fuzzy inference system (ANFIS). The algorithms compared are genetic algorithm (GA), particle swarm optimization (PSO), and artificial bee colony (ABC). The objective of this paper is to benchmark well-known metaheuristic algorithms. The algorithms are applied to several data set with different nature. The combinations of the algorithms' parameters are tested. In all algorithms, a different number of populations are tested. In PSO, combinations of velocity are tested. In ABC, a different number of limit abandonment are tested. Experiments find out that ABC is more reliable than other algorithms, ABC manages to get better mean square error (MSE) than other algorithms in all data set. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANFIS" title="ANFIS">ANFIS</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20bee%20colony" title=" artificial bee colony"> artificial bee colony</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=metaheuristic%20algorithm" title=" metaheuristic algorithm"> metaheuristic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimization" title=" particle swarm optimization"> particle swarm optimization</a> </p> <a href="https://publications.waset.org/abstracts/68821/comparison-of-anfis-update-methods-using-genetic-algorithm-particle-swarm-optimization-and-artificial-bee-colony" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68821.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2029</span> The Role of Artificial Intelligence Algorithms in Psychiatry: Advancing Diagnosis and Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Netanel%20Stern">Netanel Stern</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Artificial intelligence (AI) algorithms have emerged as powerful tools in the field of psychiatry, offering new possibilities for enhancing diagnosis and treatment outcomes. This article explores the utilization of AI algorithms in psychiatry, highlighting their potential to revolutionize patient care. Various AI algorithms, including machine learning, natural language processing (NLP), reinforcement learning, clustering, and Bayesian networks, are discussed in detail. Moreover, ethical considerations and future directions for research and implementation are addressed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AI" title="AI">AI</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20engineering" title=" software engineering"> software engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=psychiatry" title=" psychiatry"> psychiatry</a>, <a href="https://publications.waset.org/abstracts/search?q=neuroimaging" title=" neuroimaging"> neuroimaging</a> </p> <a href="https://publications.waset.org/abstracts/166905/the-role-of-artificial-intelligence-algorithms-in-psychiatry-advancing-diagnosis-and-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2028</span> From Two-Way to Multi-Way: A Comparative Study for Map-Reduce Join Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marwa%20Hussien%20Mohamed">Marwa Hussien Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Helmy%20Khafagy"> Mohamed Helmy Khafagy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Map-Reduce is a programming model which is widely used to extract valuable information from enormous volumes of data. Map-reduce designed to support heterogeneous datasets. Apache Hadoop map-reduce used extensively to uncover hidden pattern like data mining, SQL, etc. The most important operation for data analysis is joining operation. But, map-reduce framework does not directly support join algorithm. This paper explains and compares two-way and multi-way map-reduce join algorithms for map reduce also we implement MR join Algorithms and show the performance of each phase in MR join algorithms. Our experimental results show that map side join and map merge join in two-way join algorithms has the longest time according to preprocessing step sorting data and reduce side cascade join has the longest time at Multi-Way join algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hadoop" title="Hadoop">Hadoop</a>, <a href="https://publications.waset.org/abstracts/search?q=MapReduce" title=" MapReduce"> MapReduce</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-way%20join" title=" multi-way join"> multi-way join</a>, <a href="https://publications.waset.org/abstracts/search?q=two-way%20join" title=" two-way join"> two-way join</a>, <a href="https://publications.waset.org/abstracts/search?q=Ubuntu" title=" Ubuntu"> Ubuntu</a> </p> <a href="https://publications.waset.org/abstracts/82539/from-two-way-to-multi-way-a-comparative-study-for-map-reduce-join-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82539.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">487</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2027</span> Comparative Study of Scheduling Algorithms for LTE Networks </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samia%20Dardouri">Samia Dardouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Ridha%20Bouallegue"> Ridha Bouallegue</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Scheduling is the process of dynamically allocating physical resources to User Equipment (UE) based on scheduling algorithms implemented at the LTE base station. Various algorithms have been proposed by network researchers as the implementation of scheduling algorithm which represents an open issue in Long Term Evolution (LTE) standard. This paper makes an attempt to study and compare the performance of PF, MLWDF and EXP/PF scheduling algorithms. The evaluation is considered for a single cell with interference scenario for different flows such as Best effort, Video and VoIP in a pedestrian and vehicular environment using the LTE-Sim network simulator. The comparative study is conducted in terms of system throughput, fairness index, delay, packet loss ratio (PLR) and total cell spectral efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LTE" title="LTE">LTE</a>, <a href="https://publications.waset.org/abstracts/search?q=multimedia%20flows" title=" multimedia flows"> multimedia flows</a>, <a href="https://publications.waset.org/abstracts/search?q=scheduling%20algorithms" title=" scheduling algorithms"> scheduling algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20computing" title=" mobile computing"> mobile computing</a> </p> <a href="https://publications.waset.org/abstracts/8094/comparative-study-of-scheduling-algorithms-for-lte-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8094.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2026</span> Algorithms of ABS-Plastic Extrusion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dmitrii%20Starikov">Dmitrii Starikov</a>, <a href="https://publications.waset.org/abstracts/search?q=Evgeny%20Rybakov"> Evgeny Rybakov</a>, <a href="https://publications.waset.org/abstracts/search?q=Denis%20Zhuravlev"> Denis Zhuravlev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plastic for 3D printing is very necessary material part for printers. But plastic production is technological process, which implies application of different control algorithms. Possible algorithms of providing set diameter of plastic fiber are proposed and described in the article. Results of research were proved by existing unit of filament production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ABS-plastic" title="ABS-plastic">ABS-plastic</a>, <a href="https://publications.waset.org/abstracts/search?q=automation" title=" automation"> automation</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20system" title=" control system"> control system</a>, <a href="https://publications.waset.org/abstracts/search?q=extruder" title=" extruder"> extruder</a>, <a href="https://publications.waset.org/abstracts/search?q=filament" title=" filament"> filament</a>, <a href="https://publications.waset.org/abstracts/search?q=PID-algorithm" title=" PID-algorithm"> PID-algorithm</a> </p> <a href="https://publications.waset.org/abstracts/17456/algorithms-of-abs-plastic-extrusion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17456.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2025</span> Angular-Coordinate Driven Radial Tree Drawing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farshad%20Ghassemi%20Toosi">Farshad Ghassemi Toosi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikola%20S.%20Nikolov"> Nikola S. Nikolov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present a visualization technique for radial drawing of trees consisting of two slightly different algorithms. Both of them make use of node-link diagrams for visual encoding. This visualization creates clear drawings without edge crossing. One of the algorithms is suitable for real-time visualization of large trees, as it requires minimal recalculation of the layout if leaves are inserted or removed from the tree; while the other algorithm makes better utilization of the drawing space. The algorithms are very similar and follow almost the same procedure but with different parameters. Both algorithms assign angular coordinates for all nodes which are then converted into 2D Cartesian coordinates for visualization. We present both algorithms and discuss how they compare to each other. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radial%20drawing" title="Radial drawing">Radial drawing</a>, <a href="https://publications.waset.org/abstracts/search?q=Visualization" title=" Visualization"> Visualization</a>, <a href="https://publications.waset.org/abstracts/search?q=Algorithm" title=" Algorithm"> Algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=Use%20of%20node-link%20diagrams" title=" Use of node-link diagrams"> Use of node-link diagrams</a> </p> <a href="https://publications.waset.org/abstracts/2184/angular-coordinate-driven-radial-tree-drawing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2184.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2024</span> Implementation of Distributed Randomized Algorithms for Resilient Peer-to-Peer Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Richard%20Tanaka">Richard Tanaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Ying%20Zhu"> Ying Zhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper studies a few randomized algorithms in application-layer peer-to-peer networks. The significant gain in scalability and resilience that peer-to-peer networks provide has made them widely used and adopted in many real-world distributed systems and applications. The unique properties of peer-to-peer networks make them particularly suitable for randomized algorithms such as random walks and gossip algorithms. Instead of simulations of peer-to-peer networks, we leverage the Docker virtual container technology to develop implementations of the peer-to-peer networks and these distributed randomized algorithms running on top of them. We can thus analyze their behaviour and performance in realistic settings. We further consider the problem of identifying high-risk bottleneck links in the network with the objective of improving the resilience and reliability of peer-to-peer networks. We propose a randomized algorithm to solve this problem and evaluate its performance by simulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20randomized%20algorithms" title="distributed randomized algorithms">distributed randomized algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=peer-to-peer%20networks" title=" peer-to-peer networks"> peer-to-peer networks</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20container%20technology" title=" virtual container technology"> virtual container technology</a>, <a href="https://publications.waset.org/abstracts/search?q=resilient%20networks" title=" resilient networks"> resilient networks</a> </p> <a href="https://publications.waset.org/abstracts/133527/implementation-of-distributed-randomized-algorithms-for-resilient-peer-to-peer-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133527.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2023</span> Improved Particle Swarm Optimization with Cellular Automata and Fuzzy Cellular Automata</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramin%20Javadzadeh">Ramin Javadzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The particle swarm optimization are Meta heuristic optimization method, which are used for clustering and pattern recognition applications are abundantly. These algorithms in multimodal optimization problems are more efficient than genetic algorithms. A major drawback in these algorithms is their slow convergence to global optimum and their weak stability can be considered in various running of these algorithms. In this paper, improved Particle swarm optimization is introduced for the first time to overcome its problems. The fuzzy cellular automata is used for improving the algorithm efficiently. The credibility of the proposed approach is evaluated by simulations, and it is shown that the proposed approach achieves better results can be achieved compared to the Particle swarm optimization algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellular%20automata" title="cellular automata">cellular automata</a>, <a href="https://publications.waset.org/abstracts/search?q=cellular%20learning%20automata" title=" cellular learning automata"> cellular learning automata</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20search" title=" local search"> local search</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimization" title=" particle swarm optimization"> particle swarm optimization</a> </p> <a href="https://publications.waset.org/abstracts/24739/improved-particle-swarm-optimization-with-cellular-automata-and-fuzzy-cellular-automata" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24739.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">607</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2022</span> Multishape Task Scheduling Algorithms for Real Time Micro-Controller Based Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ankur%20Jain">Ankur Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Wilfred%20Godfrey"> W. Wilfred Godfrey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Embedded systems are usually microcontroller-based systems that represent a class of reliable and dependable dedicated computer systems designed for specific purposes. Micro-controllers are used in most electronic devices in an endless variety of ways. Some micro-controller-based embedded systems are required to respond to external events in the shortest possible time and such systems are known as real-time embedded systems. So in multitasking system there is a need of task Scheduling,there are various scheduling algorithms like Fixed priority Scheduling(FPS),Earliest deadline first(EDF), Rate Monotonic(RM), Deadline Monotonic(DM),etc have been researched. In this Report various conventional algorithms have been reviewed and analyzed, these algorithms consists of single shape task, A new Multishape scheduling algorithms has been proposed and implemented and analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dm" title="dm">dm</a>, <a href="https://publications.waset.org/abstracts/search?q=edf" title=" edf"> edf</a>, <a href="https://publications.waset.org/abstracts/search?q=embedded%20systems" title=" embedded systems"> embedded systems</a>, <a href="https://publications.waset.org/abstracts/search?q=fixed%20priority" title=" fixed priority"> fixed priority</a>, <a href="https://publications.waset.org/abstracts/search?q=microcontroller" title=" microcontroller"> microcontroller</a>, <a href="https://publications.waset.org/abstracts/search?q=rtos" title=" rtos"> rtos</a>, <a href="https://publications.waset.org/abstracts/search?q=rm" title=" rm"> rm</a>, <a href="https://publications.waset.org/abstracts/search?q=scheduling%20algorithms" title=" scheduling algorithms"> scheduling algorithms</a> </p> <a href="https://publications.waset.org/abstracts/30817/multishape-task-scheduling-algorithms-for-real-time-micro-controller-based-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30817.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2021</span> A Survey in Techniques for Imbalanced Intrusion Detection System Datasets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Najmeh%20Abedzadeh">Najmeh Abedzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthew%20Jacobs"> Matthew Jacobs</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An intrusion detection system (IDS) is a software application that monitors malicious activities and generates alerts if any are detected. However, most network activities in IDS datasets are normal, and the relatively few numbers of attacks make the available data imbalanced. Consequently, cyber-attacks can hide inside a large number of normal activities, and machine learning algorithms have difficulty learning and classifying the data correctly. In this paper, a comprehensive literature review is conducted on different types of algorithms for both implementing the IDS and methods in correcting the imbalanced IDS dataset. The most famous algorithms are machine learning (ML), deep learning (DL), synthetic minority over-sampling technique (SMOTE), and reinforcement learning (RL). Most of the research use the CSE-CIC-IDS2017, CSE-CIC-IDS2018, and NSL-KDD datasets for evaluating their algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IDS" title="IDS">IDS</a>, <a href="https://publications.waset.org/abstracts/search?q=imbalanced%20datasets" title=" imbalanced datasets"> imbalanced datasets</a>, <a href="https://publications.waset.org/abstracts/search?q=sampling%20algorithms" title=" sampling algorithms"> sampling algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=big%20data" title=" big data"> big data</a> </p> <a href="https://publications.waset.org/abstracts/149498/a-survey-in-techniques-for-imbalanced-intrusion-detection-system-datasets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149498.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2020</span> Task Scheduling on Parallel System Using Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jasbir%20Singh%20Gill">Jasbir Singh Gill</a>, <a href="https://publications.waset.org/abstracts/search?q=Baljit%20Singh"> Baljit Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Scheduling and mapping the application task graph on multiprocessor parallel systems is considered as the most crucial and critical NP-complete problem. Many genetic algorithms have been proposed to solve such problems. In this paper, two genetic approach based algorithms have been designed and developed with or without task duplication. The proposed algorithms work on two fitness functions. The first fitness i.e. task fitness is used to minimize the total finish time of the schedule (schedule length) while the second fitness function i.e. process fitness is concerned with allocating the tasks to the available highly efficient processor from the list of available processors (load balance). Proposed genetic-based algorithms have been experimentally implemented and evaluated with other state-of-art popular and widely used algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=parallel%20computing" title="parallel computing">parallel computing</a>, <a href="https://publications.waset.org/abstracts/search?q=task%20scheduling" title=" task scheduling"> task scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=task%20duplication" title=" task duplication"> task duplication</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a> </p> <a href="https://publications.waset.org/abstracts/75569/task-scheduling-on-parallel-system-using-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75569.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2019</span> A Pipeline for Detecting Copy Number Variation from Whole Exome Sequencing Using Comprehensive Tools</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cheng-Yang%20Lee">Cheng-Yang Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Petrus%20Tang"> Petrus Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Tzu-Hao%20Chang"> Tzu-Hao Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Copy number variations (CNVs) have played an important role in many kinds of human diseases, such as Autism, Schizophrenia and a number of cancers. Many diseases are found in genome coding regions and whole exome sequencing (WES) is a cost-effective and powerful technology in detecting variants that are enriched in exons and have potential applications in clinical setting. Although several algorithms have been developed to detect CNVs using WES and compared with other algorithms for finding the most suitable methods using their own samples, there were not consistent datasets across most of algorithms to evaluate the ability of CNV detection. On the other hand, most of algorithms is using command line interface that may greatly limit the analysis capability of many laboratories. We create a series of simulated WES datasets from UCSC hg19 chromosome 22, and then evaluate the CNV detective ability of 19 algorithms from OMICtools database using our simulated WES datasets. We compute the sensitivity, specificity and accuracy in each algorithm for validation of the exome-derived CNVs. After comparison of 19 algorithms from OMICtools database, we construct a platform to install all of the algorithms in a virtual machine like VirtualBox which can be established conveniently in local computers, and then create a simple script that can be easily to use for detecting CNVs using algorithms selected by users. We also build a table to elaborate on many kinds of events, such as input requirement, CNV detective ability, for all of the algorithms that can provide users a specification to choose optimum algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=whole%20exome%20sequencing" title="whole exome sequencing">whole exome sequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=copy%20number%20variations" title=" copy number variations"> copy number variations</a>, <a href="https://publications.waset.org/abstracts/search?q=omictools" title=" omictools"> omictools</a>, <a href="https://publications.waset.org/abstracts/search?q=pipeline" title=" pipeline"> pipeline</a> </p> <a href="https://publications.waset.org/abstracts/43020/a-pipeline-for-detecting-copy-number-variation-from-whole-exome-sequencing-using-comprehensive-tools" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43020.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2018</span> Analytical Study of CPU Scheduling Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keshav%20Rathi">Keshav Rathi</a>, <a href="https://publications.waset.org/abstracts/search?q=Aakriti%20Sharma"> Aakriti Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinayak%20R.%20Dinesh"> Vinayak R. Dinesh</a>, <a href="https://publications.waset.org/abstracts/search?q=Irfan%20Ramzan%20Parray"> Irfan Ramzan Parray</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Scheduling is a basic operating system function since practically all computer resources are scheduled before use. The CPU is one of the most important computer resources. Central Processing Unit (CPU) scheduling is vital because it allows the CPU to transition between processes. A processor is the most significant resource in a computer; the operating system can increase the computer's productivity. The objective of the operating system is to allow as many processes as possible to operate at the same time in order to maximize CPU utilization. The highly efficient CPU scheduler is based on the invention of high-quality scheduling algorithms that meet the scheduling objectives. In this paper, we reviewed various fundamental CPU scheduling algorithms for a single CPU and showed which algorithm is best for the particular situation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20science" title="computer science">computer science</a>, <a href="https://publications.waset.org/abstracts/search?q=Operating%20system" title=" Operating system"> Operating system</a>, <a href="https://publications.waset.org/abstracts/search?q=CPU%20scheduling" title=" CPU scheduling"> CPU scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=cpu%20algorithms" title=" cpu algorithms"> cpu algorithms</a> </p> <a href="https://publications.waset.org/abstracts/194885/analytical-study-of-cpu-scheduling-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194885.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">6</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2017</span> Performance Analysis of Artificial Neural Network with Decision Tree in Prediction of Diabetes Mellitus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20K.%20Alhassan">J. K. Alhassan</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Attah"> B. Attah</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Misra"> S. Misra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human beings have the ability to make logical decisions. Although human decision - making is often optimal, it is insufficient when huge amount of data is to be classified. medical dataset is a vital ingredient used in predicting patients health condition. In other to have the best prediction, there calls for most suitable machine learning algorithms. This work compared the performance of Artificial Neural Network (ANN) and Decision Tree Algorithms (DTA) as regards to some performance metrics using diabetes data. The evaluations was done using weka software and found out that DTA performed better than ANN. Multilayer Perceptron (MLP) and Radial Basis Function (RBF) were the two algorithms used for ANN, while RegTree and LADTree algorithms were the DTA models used. The Root Mean Squared Error (RMSE) of MLP is 0.3913,that of RBF is 0.3625, that of RepTree is 0.3174 and that of LADTree is 0.3206 respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title="artificial neural network">artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20tree%20algorithms" title=" decision tree algorithms"> decision tree algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes%20mellitus" title=" diabetes mellitus"> diabetes mellitus</a> </p> <a href="https://publications.waset.org/abstracts/35949/performance-analysis-of-artificial-neural-network-with-decision-tree-in-prediction-of-diabetes-mellitus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35949.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2016</span> Using Greywolf Optimized Machine Learning Algorithms to Improve Accuracy for Predicting Hospital Readmission for Diabetes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vincent%20Liu">Vincent Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Machine learning algorithms (ML) can achieve high accuracy in predicting outcomes compared to classical models. Metaheuristic, nature-inspired algorithms can enhance traditional ML algorithms by optimizing them such as by performing feature selection. We compare ten ML algorithms to predict 30-day hospital readmission rates for diabetes patients in the US using a dataset from UCI Machine Learning Repository with feature selection performed by Greywolf nature-inspired algorithm. The baseline accuracy for the initial random forest model was 65%. After performing feature engineering, SMOTE for class balancing, and Greywolf optimization, the machine learning algorithms showed better metrics, including F1 scores, accuracy, and confusion matrix with improvements ranging in 10%-30%, and a best model of XGBoost with an accuracy of 95%. Applying machine learning this way can improve patient outcomes as unnecessary rehospitalizations can be prevented by focusing on patients that are at a higher risk of readmission. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diabetes" title="diabetes">diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=30-day%20readmission" title=" 30-day readmission"> 30-day readmission</a>, <a href="https://publications.waset.org/abstracts/search?q=metaheuristic" title=" metaheuristic"> metaheuristic</a> </p> <a href="https://publications.waset.org/abstracts/181586/using-greywolf-optimized-machine-learning-algorithms-to-improve-accuracy-for-predicting-hospital-readmission-for-diabetes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181586.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2015</span> Automated Test Data Generation For some types of Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hitesh%20Tahbildar">Hitesh Tahbildar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The cost of test data generation for a program is computationally very high. In general case, no algorithm to generate test data for all types of algorithms has been found. The cost of generating test data for different types of algorithm is different. Till date, people are emphasizing the need to generate test data for different types of programming constructs rather than different types of algorithms. The test data generation methods have been implemented to find heuristics for different types of algorithms. Some algorithms that includes divide and conquer, backtracking, greedy approach, dynamic programming to find the minimum cost of test data generation have been tested. Our experimental results say that some of these types of algorithm can be used as a necessary condition for selecting heuristics and programming constructs are sufficient condition for selecting our heuristics. Finally we recommend the different heuristics for test data generation to be selected for different types of algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ongest%20path" title="ongest path">ongest path</a>, <a href="https://publications.waset.org/abstracts/search?q=saturation%20point" title=" saturation point"> saturation point</a>, <a href="https://publications.waset.org/abstracts/search?q=lmax" title=" lmax"> lmax</a>, <a href="https://publications.waset.org/abstracts/search?q=kL" title=" kL"> kL</a>, <a href="https://publications.waset.org/abstracts/search?q=kS" title=" kS"> kS</a> </p> <a href="https://publications.waset.org/abstracts/2406/automated-test-data-generation-for-some-types-of-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2406.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2014</span> M-Machine Assembly Scheduling Problem to Minimize Total Tardiness with Non-Zero Setup Times</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harun%20Aydilek">Harun Aydilek</a>, <a href="https://publications.waset.org/abstracts/search?q=Asiye%20Aydilek"> Asiye Aydilek</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Allahverdi"> Ali Allahverdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Our objective is to minimize the total tardiness in an m-machine two-stage assembly flowshop scheduling problem. The objective is an important performance measure because of the fact that the fulfillment of due dates of customers has to be taken into account while making scheduling decisions. In the literature, the problem is considered with zero setup times which may not be realistic and appropriate for some scheduling environments. Considering separate setup times from processing times increases machine utilization by decreasing the idle time and reduces total tardiness. We propose two new algorithms and adapt four existing algorithms in the literature which are different versions of simulated annealing and genetic algorithms. Moreover, a dominance relation is developed based on the mathematical formulation of the problem. The developed dominance relation is incorporated in our proposed algorithms. Computational experiments are conducted to investigate the performance of the newly proposed algorithms. We find that one of the proposed algorithms performs significantly better than the others, i.e., the error of the best algorithm is less than those of the other algorithms by minimum 50%. The newly proposed algorithm is also efficient for the case of zero setup times and performs better than the best existing algorithm in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algorithm" title="algorithm">algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=assembly%20flowshop" title=" assembly flowshop"> assembly flowshop</a>, <a href="https://publications.waset.org/abstracts/search?q=scheduling" title=" scheduling"> scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20tardiness" title=" total tardiness"> total tardiness</a> </p> <a href="https://publications.waset.org/abstracts/47645/m-machine-assembly-scheduling-problem-to-minimize-total-tardiness-with-non-zero-setup-times" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2013</span> The Modelling of Real Time Series Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Valeria%20Bondarenko">Valeria Bondarenko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We proposed algorithms for: estimation of parameters fBm (volatility and Hurst exponent) and for the approximation of random time series by functional of fBm. We proved the consistency of the estimators, which constitute the above algorithms, and proved the optimal forecast of approximated time series. The adequacy of estimation algorithms, approximation, and forecasting is proved by numerical experiment. During the process of creating software, the system has been created, which is displayed by the hierarchical structure. The comparative analysis of proposed algorithms with the other methods gives evidence of the advantage of approximation method. The results can be used to develop methods for the analysis and modeling of time series describing the economic, physical, biological and other processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mathematical%20model" title="mathematical model">mathematical model</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20process" title=" random process"> random process</a>, <a href="https://publications.waset.org/abstracts/search?q=Wiener%20process" title=" Wiener process"> Wiener process</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20Brownian%20motion" title=" fractional Brownian motion"> fractional Brownian motion</a> </p> <a href="https://publications.waset.org/abstracts/49210/the-modelling-of-real-time-series-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2012</span> Double Clustering as an Unsupervised Approach for Order Picking of Distributed Warehouses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hsin-Yi%20Huang">Hsin-Yi Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming-Sheng%20Liu"> Ming-Sheng Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiun-Yan%20Shiau"> Jiun-Yan Shiau</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Planning the order picking lists of warehouses to achieve when the costs associated with logistics on the operational performance is a significant challenge. In e-commerce era, this task is especially important productive processes are high. Nowadays, many order planning techniques employ supervised machine learning algorithms. However, the definition of which features should be processed by such algorithms is not a simple task, being crucial to the proposed technique’s success. Against this background, we consider whether unsupervised algorithms can enhance the planning of order-picking lists. A Zone2 picking approach, which is based on using clustering algorithms twice, is developed. A simplified example is given to demonstrate the merit of our approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=order%20picking" title="order picking">order picking</a>, <a href="https://publications.waset.org/abstracts/search?q=warehouse" title=" warehouse"> warehouse</a>, <a href="https://publications.waset.org/abstracts/search?q=clustering" title=" clustering"> clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=unsupervised%20learning" title=" unsupervised learning"> unsupervised learning</a> </p> <a href="https://publications.waset.org/abstracts/136656/double-clustering-as-an-unsupervised-approach-for-order-picking-of-distributed-warehouses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136656.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2011</span> Algorithms Minimizing Total Tardiness</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harun%20Aydilek">Harun Aydilek</a>, <a href="https://publications.waset.org/abstracts/search?q=Asiye%20Aydilek"> Asiye Aydilek</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Allahverdi"> Ali Allahverdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The total tardiness is a widely used performance measure in the scheduling literature. This performance measure is particularly important in situations where there is a cost to complete a job beyond its due date. The cost of scheduling increases as the gap between a job's due date and its completion time increases. Such costs may also be penalty costs in contracts, loss of goodwill. This performance measure is important as the fulfillment of due dates of customers has to be taken into account while making scheduling decisions. The problem is addressed in the literature, however, it has been assumed zero setup times. Even though this assumption may be valid for some environments, it is not valid for some other scheduling environments. When setup times are treated as separate from processing times, it is possible to increase machine utilization and to reduce total tardiness. Therefore, non-zero setup times need to be considered as separate. A dominance relation is developed and several algorithms are proposed. The developed dominance relation is utilized in the proposed algorithms. Extensive computational experiments are conducted for the evaluation of the algorithms. The experiments indicated that the developed algorithms perform much better than the existing algorithms in the literature. More specifically, one of the newly proposed algorithms reduces the error of the best existing algorithm in the literature by 40 percent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algorithm" title="algorithm">algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=assembly%20flowshop" title=" assembly flowshop"> assembly flowshop</a>, <a href="https://publications.waset.org/abstracts/search?q=dominance%20relation" title=" dominance relation"> dominance relation</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20tardiness" title=" total tardiness"> total tardiness</a> </p> <a href="https://publications.waset.org/abstracts/29889/algorithms-minimizing-total-tardiness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29889.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2010</span> Principal Component Analysis Applied to the Electric Power Systems – Practical Guide; Practical Guide for Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=John%20Morales">John Morales</a>, <a href="https://publications.waset.org/abstracts/search?q=Eduardo%20Ordu%C3%B1a"> Eduardo Orduña</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently the Principal Component Analysis (PCA) theory has been used to develop algorithms regarding to Electric Power Systems (EPS). In this context, this paper presents a practical tutorial of this technique detailed their concept, on-line and off-line mathematical foundations, which are necessary and desirables in EPS algorithms. Thus, features of their eigenvectors which are very useful to real-time process are explained, showing how it is possible to select these parameters through a direct optimization. On the other hand, in this work in order to show the application of PCA to off-line and on-line signals, an example step to step using Matlab commands is presented. Finally, a list of different approaches using PCA is presented, and some works which could be analyzed using this tutorial are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=practical%20guide%3B%20on-line%3B%20off-line" title="practical guide; on-line; off-line">practical guide; on-line; off-line</a>, <a href="https://publications.waset.org/abstracts/search?q=algorithms" title=" algorithms"> algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=faults" title=" faults"> faults</a> </p> <a href="https://publications.waset.org/abstracts/34859/principal-component-analysis-applied-to-the-electric-power-systems-practical-guide-practical-guide-for-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34859.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">563</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2009</span> Comparing Community Detection Algorithms in Bipartite Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Khademi">Ehsan Khademi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Jalili"> Mahdi Jalili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite the special features of bipartite networks, they are common in many systems. Real-world bipartite networks may show community structure, similar to what one can find in one-mode networks. However, the interpretation of the community structure in bipartite networks is different as compared to one-mode networks. In this manuscript, we compare a number of available methods that are frequently used to discover community structure of bipartite networks. These networks are categorized into two broad classes. One class is the methods that, first, transfer the network into a one-mode network, and then apply community detection algorithms. The other class is the algorithms that have been developed specifically for bipartite networks. These algorithms are applied on a model network with prescribed community structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=community%20detection" title="community detection">community detection</a>, <a href="https://publications.waset.org/abstracts/search?q=bipartite%20networks" title=" bipartite networks"> bipartite networks</a>, <a href="https://publications.waset.org/abstracts/search?q=co-clustering" title=" co-clustering"> co-clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=modularity" title=" modularity"> modularity</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20projection" title=" network projection"> network projection</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20networks" title=" complex networks"> complex networks</a> </p> <a href="https://publications.waset.org/abstracts/14451/comparing-community-detection-algorithms-in-bipartite-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14451.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">625</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2008</span> Data Mining Algorithms Analysis: Case Study of Price Predictions of Lands</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Julio%20Albuja">Julio Albuja</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Zaldumbide"> David Zaldumbide</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Data analysis is an important step before taking a decision about money. The aim of this work is to analyze the factors that influence the final price of the houses through data mining algorithms. To our best knowledge, previous work was researched just to compare results. Furthermore, before using the data of the data set, the Z-Transformation were used to standardize the data in the same range. Hence, the data was classified into two groups to visualize them in a readability format. A decision tree was built, and graphical data is displayed where clearly is easy to see the results and the factors' influence in these graphics. The definitions of these methods are described, as well as the descriptions of the results. Finally, conclusions and recommendations are presented related to the released results that our research showed making it easier to apply these algorithms using a customized data set. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algorithms" title="algorithms">algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=data" title=" data"> data</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20tree" title=" decision tree"> decision tree</a>, <a href="https://publications.waset.org/abstracts/search?q=transformation" title=" transformation"> transformation</a> </p> <a href="https://publications.waset.org/abstracts/76382/data-mining-algorithms-analysis-case-study-of-price-predictions-of-lands" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76382.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2007</span> A Review on Comparative Analysis of Path Planning and Collision Avoidance Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Divya%20Agarwal">Divya Agarwal</a>, <a href="https://publications.waset.org/abstracts/search?q=Pushpendra%20S.%20Bharti"> Pushpendra S. Bharti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Autonomous mobile robots (AMR) are expected as smart tools for operations in every automation industry. Path planning and obstacle avoidance is the backbone of AMR as robots have to reach their goal location avoiding obstacles while traversing through optimized path defined according to some criteria such as distance, time or energy. Path planning can be classified into global and local path planning where environmental information is known and unknown/partially known, respectively. A number of sensors are used for data collection. A number of algorithms such as artificial potential field (APF), rapidly exploring random trees (RRT), bidirectional RRT, Fuzzy approach, Purepursuit, A* algorithm, vector field histogram (VFH) and modified local path planning algorithm, etc. have been used in the last three decades for path planning and obstacle avoidance for AMR. This paper makes an attempt to review some of the path planning and obstacle avoidance algorithms used in the field of AMR. The review includes comparative analysis of simulation and mathematical computations of path planning and obstacle avoidance algorithms using MATLAB 2018a. From the review, it could be concluded that different algorithms may complete the same task (i.e. with a different set of instructions) in less or more time, space, effort, etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=path%20planning" title="path planning">path planning</a>, <a href="https://publications.waset.org/abstracts/search?q=obstacle%20avoidance" title=" obstacle avoidance"> obstacle avoidance</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20mobile%20robots" title=" autonomous mobile robots"> autonomous mobile robots</a>, <a href="https://publications.waset.org/abstracts/search?q=algorithms" title=" algorithms"> algorithms</a> </p> <a href="https://publications.waset.org/abstracts/93693/a-review-on-comparative-analysis-of-path-planning-and-collision-avoidance-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2006</span> Secure Hashing Algorithm and Advance Encryption Algorithm in Cloud Computing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaimin%20Patel">Jaimin Patel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cloud computing is one of the most sharp and important movement in various computing technologies. It provides flexibility to users, cost effectiveness, location independence, easy maintenance, enables multitenancy, drastic performance improvements, and increased productivity. On the other hand, there are also major issues like security. Being a common server, security for a cloud is a major issue; it is important to provide security to protect user&rsquo;s private data, and it is especially important in e-commerce and social networks. In this paper, encryption algorithms such as Advanced Encryption Standard algorithms, their vulnerabilities, risk of attacks, optimal time and complexity management and comparison with other algorithms based on software implementation is proposed. Encryption techniques to improve the performance of AES algorithms and to reduce risk management are given. Secure Hash Algorithms, their vulnerabilities, software implementations, risk of attacks and comparison with other hashing algorithms as well as the advantages and disadvantages between hashing techniques and encryption are given. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cloud%20computing" title="Cloud computing">Cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=encryption%20algorithm" title=" encryption algorithm"> encryption algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=secure%20hashing%20algorithm" title=" secure hashing algorithm"> secure hashing algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=brute%20force%20attack" title=" brute force attack"> brute force attack</a>, <a href="https://publications.waset.org/abstracts/search?q=birthday%20attack" title=" birthday attack"> birthday attack</a>, <a href="https://publications.waset.org/abstracts/search?q=plaintext%20attack" title=" plaintext attack"> plaintext attack</a>, <a href="https://publications.waset.org/abstracts/search?q=man%20in%20middle%20attack" title=" man in middle attack"> man in middle attack</a> </p> <a href="https://publications.waset.org/abstracts/58309/secure-hashing-algorithm-and-advance-encryption-algorithm-in-cloud-computing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58309.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=KNN%20algorithms&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=KNN%20algorithms&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=KNN%20algorithms&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=KNN%20algorithms&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=KNN%20algorithms&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=KNN%20algorithms&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=KNN%20algorithms&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=KNN%20algorithms&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=KNN%20algorithms&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=KNN%20algorithms&amp;page=67">67</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=KNN%20algorithms&amp;page=68">68</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=KNN%20algorithms&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10