CINXE.COM
Search results for: electric vehicle charging
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: electric vehicle charging</title> <meta name="description" content="Search results for: electric vehicle charging"> <meta name="keywords" content="electric vehicle charging"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="electric vehicle charging" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="electric vehicle charging"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2739</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: electric vehicle charging</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2739</span> Internet of Things-Based Electric Vehicle Charging Notification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nagarjuna%20Pitty">Nagarjuna Pitty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is believed invention “Advanced Method and Process Quick Electric Vehicle Charging” is an Electric Vehicles (EVs) are quickly turning into the heralds of vehicle innovation. This study endeavors to address the inquiries of how module charging process correspondence has been performed between the EV and Electric Vehicle Supply Equipment (EVSE). The energy utilization of gas-powered motors is higher than that of electric engines. An invention is related to an Advanced Method and Process Quick Electric Vehicle Charging. In this research paper, readings on the electric vehicle charging approaches will be checked, and the module charging phases will be described comprehensively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric" title="electric">electric</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle" title=" vehicle"> vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=charging" title=" charging"> charging</a>, <a href="https://publications.waset.org/abstracts/search?q=notification" title=" notification"> notification</a>, <a href="https://publications.waset.org/abstracts/search?q=IoT" title=" IoT"> IoT</a>, <a href="https://publications.waset.org/abstracts/search?q=supply" title=" supply"> supply</a>, <a href="https://publications.waset.org/abstracts/search?q=equipment" title=" equipment"> equipment</a> </p> <a href="https://publications.waset.org/abstracts/166037/internet-of-things-based-electric-vehicle-charging-notification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166037.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2738</span> Design of Cartesian Robot for Electric Vehicle Wireless Charging Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaan%20Karaoglu">Kaan Karaoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Raif%20Bayir"> Raif Bayir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a cartesian robot is developed to improve the performance and efficiency of wireless charging of electric vehicles. The cartesian robot has three axes, each of which moves linearly. Magnetic positioning is used to align the cartesian robot transmitter charging pad. There are two different wireless charging methods, static and dynamic, for charging electric vehicles. The current state of charge information (SOC State of Charge) and location information are received wirelessly from the electric vehicle. Based on this information, the power to be transmitted is determined, and the transmitter and receiver charging pads are aligned for maximum efficiency. With this study, a fully automated cartesian robot structure will be used to charge electric vehicles with the highest possible efficiency. With the wireless communication established between the electric vehicle and the charging station, the charging status will be monitored in real-time. The cartesian robot developed in this study is a fully automatic system that can be easily used in static wireless charging systems with vehicle-machine communication. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle" title="electric vehicle">electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20charging%20systems" title=" wireless charging systems"> wireless charging systems</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=cartesian%20robot" title=" cartesian robot"> cartesian robot</a>, <a href="https://publications.waset.org/abstracts/search?q=location%20detection" title=" location detection"> location detection</a>, <a href="https://publications.waset.org/abstracts/search?q=trajectory%20planning" title=" trajectory planning"> trajectory planning</a> </p> <a href="https://publications.waset.org/abstracts/181986/design-of-cartesian-robot-for-electric-vehicle-wireless-charging-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181986.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2737</span> Optimization of Electric Vehicle (EV) Charging Station Allocation Based on Multiple Data - Taking Nanjing (China) as an Example</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yue%20Huang">Yue Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yiheng%20Feng"> Yiheng Feng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the global pressure on climate and energy, many countries are vigorously promoting electric vehicles and building charging (public) charging facilities. Faced with the supply-demand gap of existing electric vehicle charging stations and unreasonable space usage in China, this paper takes the central city of Nanjing as an example, establishes a site selection model through multivariate data integration, conducts multiple linear regression SPSS analysis, gives quantitative site selection results, and provides optimization models and suggestions for charging station layout planning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle" title="electric vehicle">electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=charging%20station" title=" charging station"> charging station</a>, <a href="https://publications.waset.org/abstracts/search?q=allocation%20optimization" title=" allocation optimization"> allocation optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20mobility" title=" urban mobility"> urban mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20infrastructure" title=" urban infrastructure"> urban infrastructure</a>, <a href="https://publications.waset.org/abstracts/search?q=nanjing" title=" nanjing"> nanjing</a> </p> <a href="https://publications.waset.org/abstracts/162869/optimization-of-electric-vehicle-ev-charging-station-allocation-based-on-multiple-data-taking-nanjing-china-as-an-example" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162869.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2736</span> Comparison of Different Machine Learning Models for Time-Series Based Load Forecasting of Electric Vehicle Charging Stations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20J.%20Joshi">H. J. Joshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Satyajeet%20Patil"> Satyajeet Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=Parth%20Dandavate"> Parth Dandavate</a>, <a href="https://publications.waset.org/abstracts/search?q=Mihir%20Kulkarni"> Mihir Kulkarni</a>, <a href="https://publications.waset.org/abstracts/search?q=Harshita%20Agrawal"> Harshita Agrawal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the world looks towards a sustainable future, electric vehicles have become increasingly popular. Millions worldwide are looking to switch to Electric cars over the previously favored combustion engine-powered cars. This demand has seen an increase in Electric Vehicle Charging Stations. The big challenge is that the randomness of electrical energy makes it tough for these charging stations to provide an adequate amount of energy over a specific amount of time. Thus, it has become increasingly crucial to model these patterns and forecast the energy needs of power stations. This paper aims to analyze how different machine learning models perform on Electric Vehicle charging time-series data. The data set consists of authentic Electric Vehicle Data from the Netherlands. It has an overview of ten thousand transactions from public stations operated by EVnetNL. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forecasting" title="forecasting">forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20grid" title=" smart grid"> smart grid</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle%20load%20forecasting" title=" electric vehicle load forecasting"> electric vehicle load forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20series%20forecasting" title=" time series forecasting"> time series forecasting</a> </p> <a href="https://publications.waset.org/abstracts/150536/comparison-of-different-machine-learning-models-for-time-series-based-load-forecasting-of-electric-vehicle-charging-stations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150536.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2735</span> Hybrid System Configurations and Charging Strategies for Isolated Electric Tuk-Tuk Charging Station in South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Bokopane">L. Bokopane</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Kusakana"> K. Kusakana</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20J.%20Vermaark"> H. J. Vermaark </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The success of renewable powered electric vehicle charging station in isolated areas depends highly on the availability and sustainability of renewable resources all year round at a selected location. The main focus of this paper is to discuss the possible charging strategies that could be implemented to find the best possible configuration of an electric Tuk-Tuk charging station at a given location within South Africa. The charging station is designed, modeled and simulated to evaluate its performances. The techno-economic analysis of different feasible supply configurations of the charging station using renewable energies is simulated using HOMER software and the results compared in order to select the best possible charging strategies in terms of cost of energy consumed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20tuk-tuk" title="electric tuk-tuk">electric tuk-tuk</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20Storage" title=" energy Storage"> energy Storage</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20systems" title=" hybrid systems"> hybrid systems</a>, <a href="https://publications.waset.org/abstracts/search?q=HOMER" title=" HOMER"> HOMER</a> </p> <a href="https://publications.waset.org/abstracts/13148/hybrid-system-configurations-and-charging-strategies-for-isolated-electric-tuk-tuk-charging-station-in-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13148.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">513</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2734</span> Review of Vehicle to Grid Applications in Recent Years</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Afsane%20Amiri">Afsane Amiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electric Vehicle (EV) technology is expected to take a major share in the light-vehicle market in the coming decades. Charging of EVs will put an extra burden on the distribution grid and in some cases adjustments will need to be made. In this paper a review of different plug-in and vehicle to grid (V2G) capable vehicles are given along with their power electronics topologies. The economic implication of charging the vehicle or sending power back to the utility is described in brief. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20storage%20system" title="energy storage system">energy storage system</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20unit" title=" battery unit"> battery unit</a>, <a href="https://publications.waset.org/abstracts/search?q=cost" title=" cost"> cost</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20sizing" title=" optimal sizing"> optimal sizing</a>, <a href="https://publications.waset.org/abstracts/search?q=plug-in%20electric%20vehicles%20%28PEVs%29" title=" plug-in electric vehicles (PEVs)"> plug-in electric vehicles (PEVs)</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20grid" title=" smart grid"> smart grid</a> </p> <a href="https://publications.waset.org/abstracts/22824/review-of-vehicle-to-grid-applications-in-recent-years" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22824.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">600</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2733</span> Vehicle Routing Problem with Mixed Fleet of Conventional and Heterogenous Electric Vehicles and Time Dependent Charging Costs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ons%20Sassi">Ons Sassi</a>, <a href="https://publications.waset.org/abstracts/search?q=Wahiba%20Ramdane%20Cherif-Khettaf"> Wahiba Ramdane Cherif-Khettaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Ammar%20Oulamara"> Ammar Oulamara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we consider a new real-life Heterogenous Electric Vehicle Routing Problem with Time Dependant Charging Costs and a Mixed Fleet (HEVRP-TDMF), in which a set of geographically scattered customers have to be served by a mixed fleet of vehicles composed of a heterogenous fleet of Electric Vehicles (EVs), having different battery capacities and operating costs, and Conventional Vehicles (CVs). We include the possibility of charging EVs in the available charging stations during the routes in order to serve all customers. Each charging station offers charging service with a known technology of chargers and time-dependent charging costs. Charging stations are also subject to operating time windows constraints. EVs are not necessarily compatible with all available charging technologies and a partial charging is allowed. Intermittent charging at the depot is also allowed provided that constraints related to the electricity grid are satisfied. The objective is to minimize the number of employed vehicles and then minimize the total travel and charging costs. In this study, we present a Mixed Integer Programming Model and develop a Charging Routing Heuristic and a Local Search Heuristic based on the Inject-Eject routine with three different insertion strategies. All heuristics are tested on real data instances. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=charging%20problem" title="charging problem">charging problem</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle" title=" electric vehicle"> electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=heuristics" title=" heuristics"> heuristics</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20search" title=" local search"> local search</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=routing%20problem" title=" routing problem"> routing problem</a> </p> <a href="https://publications.waset.org/abstracts/19969/vehicle-routing-problem-with-mixed-fleet-of-conventional-and-heterogenous-electric-vehicles-and-time-dependent-charging-costs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2732</span> Electric Vehicles Charging Stations: Strategies and Algorithms Integrated in a Power-Sharing Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Riccardo%20Loggia">Riccardo Loggia</a>, <a href="https://publications.waset.org/abstracts/search?q=Francesca%20Pizzimenti"> Francesca Pizzimenti</a>, <a href="https://publications.waset.org/abstracts/search?q=Francesco%20Lelli"> Francesco Lelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Luigi%20Martirano"> Luigi Martirano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent air emission regulations point toward the complete electrification of road vehicles. An increasing number of users are beginning to prefer full electric or hybrid, plug-in vehicle solutions, incentivized by government subsidies and the lower cost of electricity compared to gasoline or diesel. However, it is necessary to optimize charging stations so that they can simultaneously satisfy as many users as possible. The purpose of this paper is to present optimization algorithms that enable simultaneous charging of multiple electric vehicles while ensuring maximum performance in relation to the type of charging station. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicles" title="electric vehicles">electric vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=charging%20stations" title=" charging stations"> charging stations</a>, <a href="https://publications.waset.org/abstracts/search?q=sharing%20model" title=" sharing model"> sharing model</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20charging" title=" fast charging"> fast charging</a>, <a href="https://publications.waset.org/abstracts/search?q=car%20park" title=" car park"> car park</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20profiles" title=" power profiles"> power profiles</a> </p> <a href="https://publications.waset.org/abstracts/151373/electric-vehicles-charging-stations-strategies-and-algorithms-integrated-in-a-power-sharing-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151373.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2731</span> Model and Algorithm for Dynamic Wireless Electric Vehicle Charging Network Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Trung%20Hieu%20Tran">Trung Hieu Tran</a>, <a href="https://publications.waset.org/abstracts/search?q=Jesse%20O%27Hanley"> Jesse O'Hanley</a>, <a href="https://publications.waset.org/abstracts/search?q=Russell%20Fowler"> Russell Fowler</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When in-wheel wireless charging technology for electric vehicles becomes mature, a need for such integrated charging stations network development is essential. In this paper, we thus investigate the optimisation problem of in-wheel wireless electric vehicle charging network design. A mixed-integer linear programming model is formulated to solve into optimality the problem. In addition, a meta-heuristic algorithm is proposed for efficiently solving large-sized instances within a reasonable computation time. A parallel computing strategy is integrated into the algorithm to speed up its computation time. Experimental results carried out on the benchmark instances show that our model and algorithm can find the optimal solutions and their potential for practical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle" title="electric vehicle">electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20charging%20station" title=" wireless charging station"> wireless charging station</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20programming" title=" mathematical programming"> mathematical programming</a>, <a href="https://publications.waset.org/abstracts/search?q=meta-heuristic%20algorithm" title=" meta-heuristic algorithm"> meta-heuristic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20computing" title=" parallel computing"> parallel computing</a> </p> <a href="https://publications.waset.org/abstracts/159397/model-and-algorithm-for-dynamic-wireless-electric-vehicle-charging-network-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159397.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2730</span> The Location Problem of Electric Vehicle Charging Stations: A Case Study of Istanbul</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M%C3%BCjde%20Erol%20Genevois">Müjde Erol Genevois</a>, <a href="https://publications.waset.org/abstracts/search?q=Hatice%20Kocaman"> Hatice Kocaman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Growing concerns about the increasing consumption of fossil energy and the improved recognition of environmental protection require sustainable road transportation technology. Electric vehicles (EVs) can contribute to improve environmental sustainability and to solve the energy problem with the right infrastructure. The problem of where to locate electric vehicle charging station can be grouped as decision-making problems because of including many criteria and alternatives that have to be considered simultaneously. The purpose of this paper is to present an integrated AHP and TOPSIS model to rank the optimal sites of EVs charging station in Istanbul, Turkey. Ten different candidate points and three decision criteria are identified. The performances of each candidate points with respect to criteria are obtained according to AHP calculations. These performances are used as an input for TOPSIS method to rank the candidate points. It is obtained accurate and robust results by integrating AHP and TOPSIS methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle%20charging%20station%20%28EVCS%29" title="electric vehicle charging station (EVCS)">electric vehicle charging station (EVCS)</a>, <a href="https://publications.waset.org/abstracts/search?q=AHP" title=" AHP"> AHP</a>, <a href="https://publications.waset.org/abstracts/search?q=TOPSIS" title=" TOPSIS"> TOPSIS</a>, <a href="https://publications.waset.org/abstracts/search?q=location%20selection" title=" location selection"> location selection</a> </p> <a href="https://publications.waset.org/abstracts/79222/the-location-problem-of-electric-vehicle-charging-stations-a-case-study-of-istanbul" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79222.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2729</span> The Impact of Public Charging Infrastructure on the Adoption of Electric Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shaherah%20Jordan">Shaherah Jordan</a>, <a href="https://publications.waset.org/abstracts/search?q=Paula%20Vandergert"> Paula Vandergert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The discussion on public charging infrastructure is usually framed around the ‘chicken-egg’ challenge of consumers feeling reluctant to purchase without the necessary infrastructure and policymakers reluctant to invest in the infrastructure without the demand. However, public charging infrastructure may be more crucial to electric vehicle (EV) adoption than previously thought. Historically, access to residential charging was thought to be a major factor in potential for growth in the EV market as it offered a guaranteed place for a vehicle to be charged. The purpose of this study is to understand how the built environment may encourage uptake of EVs by seeking a correlation between EV ownership and public charging points in an urban and densely populated city such as London. Using a statistical approach with data from the Department for Transport and Zap-Map, a statistically significant correlation was found between the total (slow, fast and rapid) number of public charging points and a number of EV registrations per borough – with the strongest correlation found between EV registrations and rapid chargers. This research does not explicitly prove that there is a cause and effect relationship between public charging points EVs but challenges some of the previous literature which indicates that public charging infrastructure is not as important as home charging. Furthermore, the study provides strong evidence that public charging points play a functional and psychological role in the adoption of EVs and supports the notion that the built environment can influence human behaviour. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=behaviour%20change" title="behaviour change">behaviour change</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicles" title=" electric vehicles"> electric vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20charging%20infrastructure" title=" public charging infrastructure"> public charging infrastructure</a>, <a href="https://publications.waset.org/abstracts/search?q=transportation" title=" transportation"> transportation</a> </p> <a href="https://publications.waset.org/abstracts/99164/the-impact-of-public-charging-infrastructure-on-the-adoption-of-electric-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99164.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2728</span> Optimizing Electric Vehicle Charging with Charging Data Analytics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tayyibah%20Khanam">Tayyibah Khanam</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Saad%20Alam"> Mohammad Saad Alam</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanchari%20Deb"> Sanchari Deb</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasser%20Rafat"> Yasser Rafat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electric vehicles are considered as viable replacements to gasoline cars since they help in reducing harmful emissions and stimulate power generation through renewable energy sources, hence contributing to sustainability. However, one of the significant obstacles in the mass deployment of electric vehicles is the charging time anxiety among users and, thus, the subsequent large waiting times for available chargers at charging stations. Data analytics, on the other hand, has revolutionized the decision-making tasks of management and operating systems since its arrival. In this paper, we attempt to optimize the choice of EV charging stations for users in their vicinity by minimizing the time taken to reach the charging stations and the waiting times for available chargers. Time taken to travel to the charging station is calculated by the Google Maps API and the waiting times are predicted by polynomial regression of the historical data stored. The proposed framework utilizes real-time data and historical data from all operating charging stations in the city and assists the user in finding the best suitable charging station for their current situation and can be implemented in a mobile phone application. The algorithm successfully predicts the most optimal choice of a charging station and the minimum required time for various sample data sets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=charging%20data" title="charging data">charging data</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicles" title=" electric vehicles"> electric vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=waiting%20times" title=" waiting times"> waiting times</a> </p> <a href="https://publications.waset.org/abstracts/133474/optimizing-electric-vehicle-charging-with-charging-data-analytics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133474.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2727</span> Designing Electric Vehicle Charging Infrastructure to Benefit Historically-Marginalized Residents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Polly%20Parkinson">Polly Parkinson</a>, <a href="https://publications.waset.org/abstracts/search?q=Emma%20Mecham"> Emma Mecham</a>, <a href="https://publications.waset.org/abstracts/search?q=Fawn%20Groves"> Fawn Groves</a>, <a href="https://publications.waset.org/abstracts/search?q=Amy%20Wilson-Lopez"> Amy Wilson-Lopez</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivonne%20Santiago"> Ivonne Santiago</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the rush to meet electric vehicle (EV) adoption goals that address environmental and health concerns, engineering planners and community policy experts cannot separate the socioeconomic and equity factors from transportation needs. Two gaps are identified in existing research: concrete proposals that address affordable micromobility options and provide for needs of community members without cars, and community-engaged research that elevates the concerns and solutions brought forward by historically-marginalized community members. This data analysis from a recent case study in a vulnerable community indicates that because transportation decisions are inextricably linked to health, work, and housing, EV adoption must also address multifaceted human needs. Communities focused on building more electric vehicle charging stations must find ways for lower-income households to also benefit. This research engaged residents in the planning process and resulted in a template for charging stations to advance mobility justice with a range of options that purposefully benefit the whole community. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=community%20engagement" title="community engagement">community engagement</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle%20charging" title=" electric vehicle charging"> electric vehicle charging</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20justice" title=" environmental justice"> environmental justice</a>, <a href="https://publications.waset.org/abstracts/search?q=participatory%20research" title=" participatory research"> participatory research</a>, <a href="https://publications.waset.org/abstracts/search?q=transportation%20equity" title=" transportation equity"> transportation equity</a> </p> <a href="https://publications.waset.org/abstracts/188181/designing-electric-vehicle-charging-infrastructure-to-benefit-historically-marginalized-residents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188181.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">37</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2726</span> The Effect of Socio-Economic Factors on Electric Vehicle Charging Behavior: An Investigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Judith%20Mwakalonge">Judith Mwakalonge</a>, <a href="https://publications.waset.org/abstracts/search?q=Geophrey%20Mbatta"> Geophrey Mbatta</a>, <a href="https://publications.waset.org/abstracts/search?q=Cuthbert%20Ruseruka"> Cuthbert Ruseruka</a>, <a href="https://publications.waset.org/abstracts/search?q=Gurcan%20Comert"> Gurcan Comert</a>, <a href="https://publications.waset.org/abstracts/search?q=Saidi%20Siuhi"> Saidi Siuhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent advancements in technology have fostered the development of Electric Vehicles (EVs) that provides relief from transportation dependence on natural fossil fuels as sources of energy. It is estimated that more than 50% of petroleum is used for transportation, which accounts for 28% of annual energy use. Vehicles make up about 82% of all transportation energy use. It is also estimated that about 22% of global Carbon dioxide (CO2) emissions are produced by the transportation sector, therefore, it raises environmental concerns. Governments worldwide, including the United States, are investing in developing EVs to resolve the issues related to the use of natural fossil fuels, such as air pollution due to emissions. For instance, the Bipartisan Infrastructure Law (BIL) that was signed by President Biden on November 15th, 2021, sets aside about $5 billion to be apportioned to all 50 states, the District of Columbia, and Puerto Rico for the development of EV chargers. These chargers should be placed in a way that maximizes their utility. This study aims at studying the charging behaviors of Electric Vehicle (EV) users to establish factors to be considered in the selection of charging locations. The study will focus on social-economic and land use data by studying the relationship between charging time and charging locations. Local factors affecting the charging time and the chargers’ utility will be investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicles" title="electric vehicles">electric vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=EV%20charging%20stations" title=" EV charging stations"> EV charging stations</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20economic%20factors" title=" social economic factors"> social economic factors</a>, <a href="https://publications.waset.org/abstracts/search?q=charging%20networks" title=" charging networks"> charging networks</a> </p> <a href="https://publications.waset.org/abstracts/163547/the-effect-of-socio-economic-factors-on-electric-vehicle-charging-behavior-an-investigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2725</span> Modeling and Simulation of Standalone Photovoltaic Charging Stations for Electric Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Mkahl">R. Mkahl</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Nait-Sidi-Moh"> A. Nait-Sidi-Moh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Wack"> M. Wack</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Batteries of electric vehicles (BEV) are becoming more attractive with the advancement of new battery technologies and promotion of electric vehicles. BEV batteries are recharged on board vehicles using either the grid (G2V for Grid to Vehicle) or renewable energies in a stand-alone application (H2V for Home to Vehicle). This paper deals with the modeling, sizing and control of a photo voltaic stand-alone application that can charge the BEV at home. The modeling approach and developed mathematical models describing the system components are detailed. Simulation and experimental results are presented and commented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicles" title="electric vehicles">electric vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20energy" title=" photovoltaic energy"> photovoltaic energy</a>, <a href="https://publications.waset.org/abstracts/search?q=lead-acid%20batteries" title=" lead-acid batteries"> lead-acid batteries</a>, <a href="https://publications.waset.org/abstracts/search?q=charging%20process" title=" charging process"> charging process</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20tests" title=" experimental tests"> experimental tests</a> </p> <a href="https://publications.waset.org/abstracts/19209/modeling-and-simulation-of-standalone-photovoltaic-charging-stations-for-electric-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2724</span> Solar Powered Front Wheel Drive (FWD) Electric Trike: An Innovation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20C.%20Barbecho">Michael C. Barbecho</a>, <a href="https://publications.waset.org/abstracts/search?q=Romeo%20B.%20Morcilla"> Romeo B. Morcilla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study focused on the development of a solar powered front wheel drive electric trike for personal use and short distance travel, utilizing solar power and a variable speed transmission to adapt in places where varying road grades and unavailability of plug-in charging stations are of great problems. The actual performance of the vehicle was measured in terms of duration of charging using solar power, distance travel and battery power duration, top speed developed at full power, and load capacity. This project followed the research and development process which involved planning, designing, construction, and testing. Solar charging tests revealed that the vehicle requires 6 to 8 hours sunlight exposure to fully charge the batteries. At full charge, the vehicle can travel 35 km utilizing battery power down to 42%. Vehicle showed top speed of 25 kph at 0 to 3% road grade carrying a maximum load of 122 kg. The maximum climbing grade was 23% with the vehicle carrying a maximum load of 122 kg. Technically the project was feasible and can be a potential model for possible conversion of traditional Philippine made “pedicabs” and gasoline engine powered tricycle into modern electric vehicles. Moreover, it has several technical features and advantages over a commercialized electric vehicle such as the use solar charging system and variable speed power transmission and front drive power train for adaptability in any road gradient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle" title="electric vehicle">electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20vehicles" title=" solar vehicles"> solar vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=front%20drive" title=" front drive"> front drive</a>, <a href="https://publications.waset.org/abstracts/search?q=solar" title=" solar"> solar</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20power" title=" solar power "> solar power </a> </p> <a href="https://publications.waset.org/abstracts/22601/solar-powered-front-wheel-drive-fwd-electric-trike-an-innovation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22601.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">571</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2723</span> The Impact of the Parking Spot’ Surroundings on Charging Decision: A Data-Driven Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xizhen%20Zhou">Xizhen Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanjie%20Ji"> Yanjie Ji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The charging behavior of drivers provides a reference for the planning and management of charging facilities. Based on the real trajectory data of electric vehicles, this study explored the influence of the surrounding environments of the parking spot on charging decisions. The built environment, the condition of vehicles, and the nearest charging station were all considered. And the mixed binary logit model was used to capture the impact of unobserved heterogeneity. The results show that the number of fast chargers in the charging station, parking price, dwell time, and shopping services all significantly impact the charging decision, while the leisure services, scenic spots, and mileage since the last charging are opposite. Besides, factors related to unobserved heterogeneity include the number of fast chargers, parking and charging prices, residential areas, etc. The interaction effects of random parameters further illustrate the complexity of charging choice behavior. The results provide insights for planning and managing charging facilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=charging%20decision" title="charging decision">charging decision</a>, <a href="https://publications.waset.org/abstracts/search?q=trajectory" title=" trajectory"> trajectory</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle" title=" electric vehicle"> electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=infrastructure" title=" infrastructure"> infrastructure</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20logit" title=" mixed logit"> mixed logit</a> </p> <a href="https://publications.waset.org/abstracts/174575/the-impact-of-the-parking-spot-surroundings-on-charging-decision-a-data-driven-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174575.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2722</span> Experimental Analysis of Control in Electric Vehicle Charging Station Based Grid Tied Photovoltaic-Battery System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Hassoune">A. Hassoune</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Khafallah"> M. Khafallah</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mesbahi"> A. Mesbahi</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Bouragba"> T. Bouragba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents an improved strategy of control for charging a lithium-ion battery in an electric vehicle charging station using two charger topologies i.e. single ended primary inductor converter (SEPIC) and forward converter. In terms of rapidity and accuracy, the power system consists of a topology/control diagram that would overcome the performance constraints, for instance the power instability, the battery overloading and how the energy conversion blocks would react efficiently to any kind of perturbations. Simulation results show the effectiveness of the proposed topologies operated with a power management algorithm based on voltage/peak current mode controls. In order to provide credible findings, a low power prototype is developed to test the control strategy via experimental evaluations of the converter topology and its controls. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=battery%20storage%20buffer" title="battery storage buffer">battery storage buffer</a>, <a href="https://publications.waset.org/abstracts/search?q=charging%20station" title=" charging station"> charging station</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle" title=" electric vehicle"> electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20analysis" title=" experimental analysis"> experimental analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=management%20algorithm" title=" management algorithm"> management algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=switches%20control" title=" switches control"> switches control</a> </p> <a href="https://publications.waset.org/abstracts/100812/experimental-analysis-of-control-in-electric-vehicle-charging-station-based-grid-tied-photovoltaic-battery-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2721</span> Impact of Charging PHEV at Different Penetration Levels on Power System Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Ahmad">M. R. Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Musirin"> I. Musirin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Othman"> M. M. Othman</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20A.%20Rahmat"> N. A. Rahmat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plug-in Hybrid-Electric Vehicle (PHEV) has gained immense popularity in recent years. PHEV offers numerous advantages compared to the conventional internal-combustion engine (ICE) vehicle. Millions of PHEVs are estimated to be on the road in the USA by 2020. Uncoordinated PHEV charging is believed to cause severe impacts to the power grid; i.e. feeders, lines and transformers overload and voltage drop. Nevertheless, improper PHEV data model used in such studies may cause the findings of their works is in appropriated. Although smart charging is more attractive to researchers in recent years, its implementation is not yet attainable on the street due to its requirement for physical infrastructure readiness and technology advancement. As the first step, it is finest to study the impact of charging PHEV based on real vehicle travel data from National Household Travel Survey (NHTS) and at present charging rate. Due to the lack of charging station on the street at the moment, charging PHEV at home is the best option and has been considered in this work. This paper proposed a technique that comprehensively presents the impact of charging PHEV on power system networks considering huge numbers of PHEV samples with its traveling data pattern. Vehicles Charging Load Profile (VCLP) is developed and implemented in IEEE 30-bus test system that represents a portion of American Electric Power System (Midwestern US). Normalization technique is used to correspond to real time loads at all buses. Results from the study indicated that charging PHEV using opportunity charging will have significant impacts on power system networks, especially whereas bigger battery capacity (kWh) is used as well as for higher penetration level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plug-in%20hybrid%20electric%20vehicle" title="plug-in hybrid electric vehicle">plug-in hybrid electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=transportation%20electrification" title=" transportation electrification"> transportation electrification</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20of%20charging%20PHEV" title=" impact of charging PHEV"> impact of charging PHEV</a>, <a href="https://publications.waset.org/abstracts/search?q=electricity%20demand%20profile" title=" electricity demand profile"> electricity demand profile</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20profile" title=" load profile"> load profile</a> </p> <a href="https://publications.waset.org/abstracts/7838/impact-of-charging-phev-at-different-penetration-levels-on-power-system-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2720</span> Multi-Objective Electric Vehicle Charge Coordination for Economic Network Management under Uncertainty</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ridoy%20Das">Ridoy Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Myriam%20Neaimeh"> Myriam Neaimeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Yue%20Wang"> Yue Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghanim%20Putrus"> Ghanim Putrus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electric vehicles are a popular transportation medium renowned for potential environmental benefits. However, large and uncontrolled charging volumes can impact distribution networks negatively. Smart charging is widely recognized as an efficient solution to achieve both improved renewable energy integration and grid relief. Nevertheless, different decision-makers may pursue diverse and conflicting objectives. In this context, this paper proposes a multi-objective optimization framework to control electric vehicle charging to achieve both energy cost reduction and peak shaving. A weighted-sum method is developed due to its intuitiveness and efficiency. Monte Carlo simulations are implemented to investigate the impact of uncertain electric vehicle driving patterns and provide decision-makers with a robust outcome in terms of prospective cost and network loading. The results demonstrate that there is a conflict between energy cost efficiency and peak shaving, with the decision-makers needing to make a collaborative decision. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicles" title="electric vehicles">electric vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-objective%20optimization" title=" multi-objective optimization"> multi-objective optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title=" uncertainty"> uncertainty</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20integer%20linear%20programming" title=" mixed integer linear programming"> mixed integer linear programming</a> </p> <a href="https://publications.waset.org/abstracts/129629/multi-objective-electric-vehicle-charge-coordination-for-economic-network-management-under-uncertainty" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2719</span> Evaluation of the Electric Vehicle Impact in Distribution System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sania%20Maghsodloo">Sania Maghsodloo</a>, <a href="https://publications.waset.org/abstracts/search?q=Sirus%20Mohammadi"> Sirus Mohammadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electric Vehicle (EV) technology is expected to take a major share in the light-vehicle market in the coming decades. Transportation electrification has become an important issue in recent decades and the large scale deployment of EVs has yet to be achieved. The smart coordination of EV demand addresses an improvement in the flexibility of power systems and reduces the costs of power system investment. The uncertainty in EV drivers’ behaviour is one of the main problems to solve to obtain an optimal integration of EVs into power systems Charging of EVs will put an extra burden on the distribution grid and in some cases adjustments will need to be made. The stochastic process of the driving pattern is done to make the outcome of the project more realistic. Based on the stochastic data, the optimization of charging plans is made. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicles%20%28PEVs%29" title="electric vehicles (PEVs)">electric vehicles (PEVs)</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20grid" title=" smart grid"> smart grid</a>, <a href="https://publications.waset.org/abstracts/search?q=Monticello" title=" Monticello"> Monticello</a>, <a href="https://publications.waset.org/abstracts/search?q=distribution%20system" title=" distribution system"> distribution system</a> </p> <a href="https://publications.waset.org/abstracts/21027/evaluation-of-the-electric-vehicle-impact-in-distribution-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21027.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">552</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2718</span> Electric Propulsion System Development for High Floor Trolley Bus </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asep%20Andi%20Suryandi">Asep Andi Suryandi</a>, <a href="https://publications.waset.org/abstracts/search?q=Katri%20Yulianto"> Katri Yulianto</a>, <a href="https://publications.waset.org/abstracts/search?q=Dewi%20Rianti%20Mandasari"> Dewi Rianti Mandasari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of environmentally friendly vehicles increasingly attracted the attention of almost all countries in the world, including Indonesia. There are various types of environmentally friendly vehicles, such as: electric vehicles, hybrid, and fuel gas. The Electric vehicle has been developed in Indonesia, a private or public vehicle. But many electric vehicles had been developed using the battery as a power source, while the battery technology for electric vehicles still constraints in capacity, dimensions of the battery itself and charging system. Trolley bus is one of the electric buses with the main power source of the network catenary / overhead line with trolley pole as the point of contact. This paper will discuss the design and manufacture electrical system in Trolleybus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=trolley%20bus" title="trolley bus">trolley bus</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20propulsion%20system" title=" electric propulsion system"> electric propulsion system</a>, <a href="https://publications.waset.org/abstracts/search?q=design" title=" design"> design</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacture" title=" manufacture"> manufacture</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle" title=" electric vehicle"> electric vehicle</a> </p> <a href="https://publications.waset.org/abstracts/71367/electric-propulsion-system-development-for-high-floor-trolley-bus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71367.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2717</span> Investigating the Characteristics of Correlated Parking-Charging Behaviors for Electric Vehicles: A Data-Driven Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xizhen%20Zhou">Xizhen Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanjie%20Ji"> Yanjie Ji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In advancing the management of integrated electric vehicle (EV) parking-charging behaviors, this study uses Changshu City in Suzhou as a case study to establish a data association mechanism for parking-charging platforms and to develop a database for EV parking-charging behaviors. Key indicators, such as charging start time, initial state of charge, final state of charge, and parking-charging time difference, are considered. Utilizing the K-S test method, the paper examines the heterogeneity of parking-charging behavior preferences among pure EV and non-pure EV users. The K-means clustering method is employed to analyze the characteristics of parking-charging behaviors for both user groups, thereby enhancing the overall understanding of these behaviors. The findings of this study reveal that using a classification model, the parking-charging behaviors of pure EVs can be classified into five distinct groups, while those of non-pure EVs can be separated into four groups. Among them, both types of EV users exhibit groups with low range anxiety for complete charging with special journeys, complete charging at destination, and partial charging. Additionally, both types have a group with high range anxiety, characterized by pure EV users displaying a preference for complete charging with specific journeys, while non-pure EV users exhibit a preference for complete charging. Notably, pure EV users also display a significant group engaging in nocturnal complete charging. The findings of this study can provide technical support for the scientific and rational layout and management of integrated parking and charging facilities for EVs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traffic%20engineering" title="traffic engineering">traffic engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=potential%20preferences" title=" potential preferences"> potential preferences</a>, <a href="https://publications.waset.org/abstracts/search?q=cluster%20analysis" title=" cluster analysis"> cluster analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=EV" title=" EV"> EV</a>, <a href="https://publications.waset.org/abstracts/search?q=parking-charging%20behavior" title=" parking-charging behavior"> parking-charging behavior</a> </p> <a href="https://publications.waset.org/abstracts/174576/investigating-the-characteristics-of-correlated-parking-charging-behaviors-for-electric-vehicles-a-data-driven-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174576.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2716</span> Designing Ecologically and Economically Optimal Electric Vehicle Charging Stations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Ghiassi-Farrokhfal">Y. Ghiassi-Farrokhfal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The number of electric vehicles (EVs) is increasing worldwide. Replacing gas fueled cars with EVs reduces carbon emission. However, the extensive energy consumption of EVs stresses the energy systems, requiring non-green sources of energy (such as gas turbines) to compensate for the new energy demand caused by EVs in the energy systems. To make EVs even a greener solution for the future energy systems, new EV charging stations are equipped with solar PV panels and batteries. This will help serve the energy demand of EVs through the green energy of solar panels. To ensure energy availability, solar panels are combined with batteries. The energy surplus at any point is stored in batteries and is used when there is not enough solar energy to serve the demand. While EV charging stations equipped with solar panels and batteries are green and ecologically optimal, they might not be financially viable solutions, due to battery prices. To make the system viable, we should size the battery economically and operate the system optimally. This is, in general, a challenging problem because of the stochastic nature of the EV arrivals at the charging station, the available solar energy, and the battery operating system. In this work, we provide a mathematical model for this problem and we compute the return on investment (ROI) of such a system, which is designed to be ecologically and financially optimal. We also quantify the minimum required investment in terms of battery and solar panels along with the operating strategy to ensure that a charging station has enough energy to serve its EV demand at any time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title="solar energy">solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20storage" title=" battery storage"> battery storage</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle" title=" electric vehicle"> electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=charging%20stations" title=" charging stations"> charging stations</a> </p> <a href="https://publications.waset.org/abstracts/70149/designing-ecologically-and-economically-optimal-electric-vehicle-charging-stations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2715</span> Design of an Electric Vehicle Model with a Dynamo Drive Setup Using Model-Based Development (MBD) (EV Using MBD)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gondu%20Vykunta%20Rao">Gondu Vykunta Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=Madhuri%20Bayya"> Madhuri Bayya</a>, <a href="https://publications.waset.org/abstracts/search?q=Aruna%20Bharathi%20M."> Aruna Bharathi M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Paramesw%20Chidamparam"> Paramesw Chidamparam</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Murali"> B. Murali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increase in software content in today’s electric vehicles is increasing attention to having vast, unique topographies from low emission to high efficiency, whereas the chemical batteries have huge short comes, such as limited cycle life, power density, and cost. As for understanding and visualization, the companies are turning toward the virtual vehicle to test their design in software which is known as a simulation in the loop (SIL). In this project, in addition to the electric vehicle (EV) technology, we are adding a dynamo with the vehicle for regenerative braking. Traditionally the principle of dynamos is used in lighting the purpose of the bicycle. Here by using the same mechanism, we are running the vehicle as well as charging the vehicle from system-level simulation to the model in the loop and then to the Hardware in Loop (HIL) by using model-based development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle" title="electric vehicle">electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20in%20the%20loop%20%28SIL%29" title=" simulation in the loop (SIL)"> simulation in the loop (SIL)</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20in%20loop%20%28MIL%29" title=" model in loop (MIL)"> model in loop (MIL)</a>, <a href="https://publications.waset.org/abstracts/search?q=hardware%20in%20loop%20%28HIL%29" title=" hardware in loop (HIL)"> hardware in loop (HIL)</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamos" title=" dynamos"> dynamos</a>, <a href="https://publications.waset.org/abstracts/search?q=model-based%20development%20%28MBD%29" title=" model-based development (MBD)"> model-based development (MBD)</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20synchronous%20motor%20%28PMSM%29" title=" permanent magnet synchronous motor (PMSM)"> permanent magnet synchronous motor (PMSM)</a>, <a href="https://publications.waset.org/abstracts/search?q=current%20control%20%28CC%29" title=" current control (CC)"> current control (CC)</a>, <a href="https://publications.waset.org/abstracts/search?q=field-oriented%20control%20%28FOC%29" title=" field-oriented control (FOC)"> field-oriented control (FOC)</a>, <a href="https://publications.waset.org/abstracts/search?q=regenerative%20braking" title=" regenerative braking"> regenerative braking</a> </p> <a href="https://publications.waset.org/abstracts/163206/design-of-an-electric-vehicle-model-with-a-dynamo-drive-setup-using-model-based-development-mbd-ev-using-mbd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163206.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2714</span> Automatic Battery Charging for Rotor Wings Type Unmanned Aerial Vehicle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeyeon%20Kim">Jeyeon Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes the development of the automatic battery charging device for the rotor wings type unmanned aerial vehicle (UAV) and the positioning method that can be accurately landed on the charging device when landing. The developed automatic battery charging device is considered by simple maintenance, durability, cost and error of the positioning when landing. In order to for the UAV accurately land on the charging device, two kinds of markers (a color marker and a light marker) installed on the charging device is detected by the camera mounted on the UAV. And then, the UAV is controlled so that the detected marker becomes the center of the image and is landed on the device. We conduct the performance evaluation of the proposal positioning method by the outdoor experiments at day and night, and show the effectiveness of the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=unmanned%20aerial%20vehicle" title="unmanned aerial vehicle">unmanned aerial vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=automatic%20battery%20charging" title=" automatic battery charging"> automatic battery charging</a>, <a href="https://publications.waset.org/abstracts/search?q=positioning" title=" positioning"> positioning</a> </p> <a href="https://publications.waset.org/abstracts/71183/automatic-battery-charging-for-rotor-wings-type-unmanned-aerial-vehicle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2713</span> Modeling Battery Degradation for Electric Buses: Assessment of Lifespan Reduction from In-Depot Charging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anaissia%20Franca">Anaissia Franca</a>, <a href="https://publications.waset.org/abstracts/search?q=Julian%20Fernandez"> Julian Fernandez</a>, <a href="https://publications.waset.org/abstracts/search?q=Curran%20Crawford"> Curran Crawford</a>, <a href="https://publications.waset.org/abstracts/search?q=Ned%20Djilali"> Ned Djilali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A methodology to estimate the state-of-charge (SOC) of battery electric buses, including degradation effects, for a given driving cycle is presented to support long-term techno-economic analysis integrating electric buses and charging infrastructure. The degradation mechanisms, characterized by both capacity and power fade with time, have been modeled using an electrochemical model for Li-ion batteries. Iterative changes in the negative electrode film resistance and decrease in available lithium as a function of utilization is simulated for every cycle. The cycles are formulated to follow typical transit bus driving patterns. The power and capacity decay resulting from the degradation model are introduced as inputs to a longitudinal chassis dynamic analysis that calculates the power consumption of the bus for a given driving cycle to find the state-of-charge of the battery as a function of time. The method is applied to an in-depot charging scenario, for which the bus is charged exclusively at the depot, overnight and to its full capacity. This scenario is run both with and without including degradation effects over time to illustrate the significant impact of degradation mechanisms on bus performance when doing feasibility studies for a fleet of electric buses. The impact of battery degradation on battery lifetime is also assessed. The modeling tool can be further used to optimize component sizing and charging locations for electric bus deployment projects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=battery%20electric%20bus" title="battery electric bus">battery electric bus</a>, <a href="https://publications.waset.org/abstracts/search?q=E-bus" title=" E-bus"> E-bus</a>, <a href="https://publications.waset.org/abstracts/search?q=in-depot%20charging" title=" in-depot charging"> in-depot charging</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium-ion%20battery" title=" lithium-ion battery"> lithium-ion battery</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20degradation" title=" battery degradation"> battery degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=capacity%20fade" title=" capacity fade"> capacity fade</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20fade" title=" power fade"> power fade</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle" title=" electric vehicle"> electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=SEI" title=" SEI"> SEI</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20models" title=" electrochemical models"> electrochemical models</a> </p> <a href="https://publications.waset.org/abstracts/57537/modeling-battery-degradation-for-electric-buses-assessment-of-lifespan-reduction-from-in-depot-charging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2712</span> Effective Scheduling of Hybrid Reconfigurable Microgrids Considering High Penetration of Renewable Sources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdollah%20Kavousi%20Fard">Abdollah Kavousi Fard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper addresses the optimal scheduling of hybrid reconfigurable microgrids considering hybrid electric vehicle charging demands. A stochastic framework based on unscented transform to model the high uncertainties of renewable energy sources including wind turbine and photovoltaic panels, as well as the hybrid electric vehicles’ charging demand. In order to get to the optimal scheduling, the network reconfiguration is employed as an effective tool for changing the power supply path and avoiding possible congestions. The simulation results are analyzed and discussed in three different scenarios including coordinated, uncoordinated and smart charging demand of hybrid electric vehicles. A typical grid-connected microgrid is employed to show the satisfying performance of the proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microgrid" title="microgrid">microgrid</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy%20sources" title=" renewable energy sources"> renewable energy sources</a>, <a href="https://publications.waset.org/abstracts/search?q=reconfiguration" title=" reconfiguration"> reconfiguration</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/76987/effective-scheduling-of-hybrid-reconfigurable-microgrids-considering-high-penetration-of-renewable-sources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76987.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2711</span> Intelligent Electric Vehicle Charging System (IEVCS)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prateek%20Saxena">Prateek Saxena</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjeev%20Singh"> Sanjeev Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Julius%20Roy"> Julius Roy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The security of the power distribution grid remains a paramount to the utility professionals while enhancing and making it more efficient. The most serious threat to the system can be maintaining the transformers, as the load is ever increasing with the addition of elements like electric vehicles. In this paper, intelligent transformer monitoring and grid management has been proposed. The engineering is done to use the evolving data from the smart meter for grid analytics and diagnostics for preventive maintenance. The two-tier architecture for hardware and software integration is coupled to form a robust system for the smart grid. The proposal also presents interoperable meter standards for easy integration. Distribution transformer analytics based on real-time data benefits utilities preventing outages, protects the revenue loss, improves the return on asset and reduces overall maintenance cost by predictive monitoring. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle%20charging" title="electric vehicle charging">electric vehicle charging</a>, <a href="https://publications.waset.org/abstracts/search?q=transformer%20monitoring" title=" transformer monitoring"> transformer monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20analytics" title=" data analytics"> data analytics</a>, <a href="https://publications.waset.org/abstracts/search?q=intelligent%20grid" title=" intelligent grid"> intelligent grid</a> </p> <a href="https://publications.waset.org/abstracts/27443/intelligent-electric-vehicle-charging-system-ievcs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27443.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">790</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2710</span> Design of Electric Ship Charging Station Considering Renewable Energy and Storage Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jun%20Yuan">Jun Yuan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shipping is a major transportation mode all over the world, and it has a significant contribution to global carbon emissions. Electrification of ships is one of the main strategies to reduce shipping carbon emissions. The number of electric ships has continued to grow in recent years. However, charging infrastructure is still scarce, which severely restricts the development of electric ships. Therefore, it is very important to design ship charging stations reasonably by comprehensively considering charging demand and investment costs. This study aims to minimize the full life cycle cost of charging stations, considering the uncertainty of charging demand. A mixed integer programming model is developed for this optimization problem. Based on the characteristics of the mathematical model, a simulation based optimization method is proposed to find the optimal number and rated power of chargers. In addition, the impact of renewable energy and storage systems is analyzed. The results can provide decision support and a reference basis for the design of ship charging stations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shipping%20emission" title="shipping emission">shipping emission</a>, <a href="https://publications.waset.org/abstracts/search?q=electricity%20ship" title=" electricity ship"> electricity ship</a>, <a href="https://publications.waset.org/abstracts/search?q=charging%20station" title=" charging station"> charging station</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20design" title=" optimal design"> optimal design</a> </p> <a href="https://publications.waset.org/abstracts/175837/design-of-electric-ship-charging-station-considering-renewable-energy-and-storage-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20vehicle%20charging&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20vehicle%20charging&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20vehicle%20charging&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20vehicle%20charging&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20vehicle%20charging&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20vehicle%20charging&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20vehicle%20charging&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20vehicle%20charging&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20vehicle%20charging&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20vehicle%20charging&page=91">91</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20vehicle%20charging&page=92">92</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20vehicle%20charging&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>