CINXE.COM
Search results for: coupled differential equation
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: coupled differential equation</title> <meta name="description" content="Search results for: coupled differential equation"> <meta name="keywords" content="coupled differential equation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="coupled differential equation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="coupled differential equation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4715</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: coupled differential equation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4715</span> Dynamic Analysis of Differential Systems with Infinite Memory and Damping</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kun-Peng%20Jin">Kun-Peng Jin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20Liang"> Jin Liang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ti-Jun%20Xiao"> Ti-Jun Xiao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we are concerned with the dynamic behaviors of solutions to some coupled systems with infinite memory, which consist of two partial differential equations where only one partial differential equation has damping. Such coupled systems are good mathematical models to describe the deformation and stress characteristics of some viscoelastic materials affected by temperature change, external forces, and other factors. By using the theory of operator semigroups, we give wellposedness results for the Cauchy problem for these coupled systems. Then, with the help of some auxiliary functions and lemmas, which are specially designed for overcoming difficulties in the proof, we show that the solutions of the coupled systems decay to zero in a strong way under a few basic conditions. The results in this dynamic analysis of coupled systems are generalizations of many existing results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20analysis" title="dynamic analysis">dynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=coupled%20system" title=" coupled system"> coupled system</a>, <a href="https://publications.waset.org/abstracts/search?q=infinite%20memory" title=" infinite memory"> infinite memory</a>, <a href="https://publications.waset.org/abstracts/search?q=damping." title=" damping."> damping.</a> </p> <a href="https://publications.waset.org/abstracts/93937/dynamic-analysis-of-differential-systems-with-infinite-memory-and-damping" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93937.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4714</span> The Dynamics of Unsteady Squeezing Flow between Parallel Plates (Two-Dimensional)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiya%20Mohammed">Jiya Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Ismail%20Giwa"> Ibrahim Ismail Giwa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Unsteady squeezing flow of a viscous fluid between parallel plates is considered. The two plates are considered to be approaching each other symmetrically, causing the squeezing flow. Two-dimensional rectangular Cartesian coordinate is considered. The Navier-Stokes equation was reduced using similarity transformation to a single fourth order non-linear ordinary differential equation. The energy equation was transformed to a second order coupled differential equation. We obtained solution to the resulting ordinary differential equations via Homotopy Perturbation Method (HPM). HPM deforms a differential problem into a set of problem that are easier to solve and it produces analytic approximate expression in the form of an infinite power series by using only sixth and fifth terms for the velocity and temperature respectively. The results reveal that the proposed method is very effective and simple. Comparisons among present and existing solutions were provided and it is shown that the proposed method is in good agreement with Variation of Parameter Method (VPM). The effects of appropriate dimensionless parameters on the velocity profiles and temperature field are demonstrated with the aid of comprehensive graphs and tables. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coupled%20differential%20equation" title="coupled differential equation">coupled differential equation</a>, <a href="https://publications.waset.org/abstracts/search?q=Homotopy%20Perturbation%20Method" title=" Homotopy Perturbation Method"> Homotopy Perturbation Method</a>, <a href="https://publications.waset.org/abstracts/search?q=plates" title=" plates"> plates</a>, <a href="https://publications.waset.org/abstracts/search?q=squeezing%20flow" title=" squeezing flow"> squeezing flow</a> </p> <a href="https://publications.waset.org/abstracts/20444/the-dynamics-of-unsteady-squeezing-flow-between-parallel-plates-two-dimensional" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20444.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4713</span> Scrutiny and Solving Analytically Nonlinear Differential at Engineering Field of Fluids, Heat, Mass and Wave by New Method AGM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammadreza%20Akbari">Mohammadreza Akbari</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Akbari"> Sara Akbari</a>, <a href="https://publications.waset.org/abstracts/search?q=Davood%20Domiri%20Ganji"> Davood Domiri Ganji</a>, <a href="https://publications.waset.org/abstracts/search?q=Pooya%20Solimani"> Pooya Solimani</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Khalili"> Reza Khalili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As all experts know most of engineering system behavior in practical are nonlinear process (especially heat, fluid and mass, etc.) and analytical solving (no numeric) these problems are difficult, complex and sometimes impossible like (fluids and gas wave, these problems can't solve with numeric method, because of no have boundary condition) accordingly in this symposium we are going to exposure a innovative approach which we have named it Akbari-Ganji's Method or AGM in engineering, that can solve sets of coupled nonlinear differential equations (ODE, PDE) with high accuracy and simple solution and so this issue will be emerged after comparing the achieved solutions by Numerical method (Runge-Kutte 4th) and so compare to other methods such as HPM, ADM,… and exact solutions. Eventually, AGM method will be proved that could be created huge evolution for researchers, professors and students (engineering and basic science) in whole over the world, because of AGM coding system, so by using this software we can analytically solve all complicated linear and nonlinear differential equations, with help of that there is no difficulty for solving nonlinear differential equations(ODE and PDE). In this paper, we investigate and solve 4 types of the nonlinear differential equation with AGM method : 1-Heat and fluid, 2-Unsteady state of nonlinear partial differential, 3-Coupled nonlinear partial differential in wave equation, and 4-Nonlinear integro-differential equation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=new%20method%20AGM" title="new method AGM">new method AGM</a>, <a href="https://publications.waset.org/abstracts/search?q=sets%20of%20coupled%20nonlinear%20equations%20at%20engineering%20field" title=" sets of coupled nonlinear equations at engineering field"> sets of coupled nonlinear equations at engineering field</a>, <a href="https://publications.waset.org/abstracts/search?q=waves%20equations" title=" waves equations"> waves equations</a>, <a href="https://publications.waset.org/abstracts/search?q=integro-differential" title=" integro-differential"> integro-differential</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20and%20thermal" title=" fluid and thermal"> fluid and thermal</a> </p> <a href="https://publications.waset.org/abstracts/36022/scrutiny-and-solving-analytically-nonlinear-differential-at-engineering-field-of-fluids-heat-mass-and-wave-by-new-method-agm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">546</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4712</span> Closed Form Exact Solution for Second Order Linear Differential Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Otarod">Saeed Otarod</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a different simple and straight forward analysis a closed-form integral solution is found for nonhomogeneous second order linear ordinary differential equations, in terms of a particular solution of their corresponding homogeneous part. To find the particular solution of the homogeneous part, the equation is transformed into a simple Riccati equation from which the general solution of non-homogeneouecond order differential equation, in the form of a closed integral equation is inferred. The method works well in manyimportant cases, such as Schrödinger equation for hydrogen-like atoms. A non-homogenous second order linear differential equation has been solved as an extra example <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=explicit" title="explicit">explicit</a>, <a href="https://publications.waset.org/abstracts/search?q=linear" title=" linear"> linear</a>, <a href="https://publications.waset.org/abstracts/search?q=differential" title=" differential"> differential</a>, <a href="https://publications.waset.org/abstracts/search?q=closed%20form" title=" closed form"> closed form</a> </p> <a href="https://publications.waset.org/abstracts/185365/closed-form-exact-solution-for-second-order-linear-differential-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185365.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4711</span> Study and Solving Partial Differential Equation of Danel Equation in the Vibration Shells </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hesamoddin%20Abdollahpour">Hesamoddin Abdollahpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Roghayeh%20Abdollahpour"> Roghayeh Abdollahpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Elham%20Rahgozar"> Elham Rahgozar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper we deal with an analysis of the free vibrations of the governing partial differential equation that it is Danel equation in the shells. The problem considered represents the governing equation of the nonlinear, large amplitude free vibrations of the hinged shell. A new implementation of the new method is presented to obtain natural frequency and corresponding displacement on the shell. Our purpose is to enhance the ability to solve the mentioned complicated partial differential equation (PDE) with a simple and innovative approach. The results reveal that this new method to solve Danel equation is very effective and simple, and can be applied to other nonlinear partial differential equations. It is necessary to mention that there are some valuable advantages in this way of solving nonlinear differential equations and also most of the sets of partial differential equations can be answered in this manner which in the other methods they have not had acceptable solutions up to now. We can solve equation(s), and consequently, there is no need to utilize similarity solutions which make the solution procedure a time-consuming task. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=large%20amplitude" title="large amplitude">large amplitude</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20vibrations" title=" free vibrations"> free vibrations</a>, <a href="https://publications.waset.org/abstracts/search?q=analytical%20solution" title=" analytical solution"> analytical solution</a>, <a href="https://publications.waset.org/abstracts/search?q=Danell%20Equation" title=" Danell Equation"> Danell Equation</a>, <a href="https://publications.waset.org/abstracts/search?q=diagram%20of%20phase%20plane" title=" diagram of phase plane "> diagram of phase plane </a> </p> <a href="https://publications.waset.org/abstracts/66849/study-and-solving-partial-differential-equation-of-danel-equation-in-the-vibration-shells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4710</span> Periodicity of Solutions of a Nonlinear Impulsive Differential Equation with Piecewise Constant Arguments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehtap%20Lafc%C4%B1">Mehtap Lafcı</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, oscillation, periodicity and convergence of solutions of linear differential equations with piecewise constant arguments have been significantly considered but there are only a few papers for impulsive differential equations with piecewise constant arguments. In this paper, a first order nonlinear impulsive differential equation with piecewise constant arguments is studied and the existence of solutions and periodic solutions of this equation are investigated by using Carvalho’s method. Finally, an example is given to illustrate these results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carvalho%27s%20method" title="Carvalho's method">Carvalho's method</a>, <a href="https://publications.waset.org/abstracts/search?q=impulsive%20differential%20equation" title=" impulsive differential equation"> impulsive differential equation</a>, <a href="https://publications.waset.org/abstracts/search?q=periodic%20solution" title=" periodic solution"> periodic solution</a>, <a href="https://publications.waset.org/abstracts/search?q=piecewise%20constant%20arguments" title=" piecewise constant arguments"> piecewise constant arguments</a> </p> <a href="https://publications.waset.org/abstracts/33745/periodicity-of-solutions-of-a-nonlinear-impulsive-differential-equation-with-piecewise-constant-arguments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33745.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">515</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4709</span> Large Amplitude Vibration of Sandwich Beam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Youssef%20Abdelli">Youssef Abdelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Nasri"> Rachid Nasri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The large amplitude free vibration analysis of three-layered symmetric sandwich beams is carried out using two different approaches. The governing nonlinear partial differential equations of motion in free natural vibration are derived using Hamilton's principle. The formulation leads to two nonlinear partial differential equations that are coupled both in axial and binding deformations. In the first approach, the method of multiple scales is applied directly to the governing equation that is a nonlinear partial differential equation. In the second approach, we discretize the governing equation by using Galerkin's procedure and then apply the shooting method to the obtained ordinary differential equations. In order to check the validity of the solutions obtained by the two approaches, they are compared with the solutions obtained by two approaches; they are compared with the solutions obtained numerically by the finite difference method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20difference%20method" title="finite difference method">finite difference method</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20amplitude%20vibration" title=" large amplitude vibration"> large amplitude vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20scales" title=" multiple scales"> multiple scales</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20vibration" title=" nonlinear vibration"> nonlinear vibration</a> </p> <a href="https://publications.waset.org/abstracts/35464/large-amplitude-vibration-of-sandwich-beam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35464.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4708</span> Rayleigh Wave Propagation in an Orthotropic Medium under the Influence of Exponentially Varying Inhomogeneities </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sumit%20Kumar%20Vishwakarma">Sumit Kumar Vishwakarma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the paper is to investigate the influence of inhomogeneity associated with the elastic constants and density of the orthotropic medium. The inhomogeneity is considered as exponential function of depth. The impact of gravity had been discussed. Using the concept of separation of variables, the system of a partial differential equation (equation of motion) has been converted into ordinary differential equation, which is coupled in nature. It further reduces to a biquadratic equation whose roots were found by using MATLAB. A suitable boundary condition is employed to derive the dispersion equation in a closed-form. Numerical simulations had been performed to show the influence of the inhomogeneity parameter. It was observed that as the numerical values of increases, the phase velocity of Rayleigh waves decreases at a particular wavenumber. Graphical illustrations were drawn to visualize the effect of the increasing and decreasing values of the inhomogeneity parameter. It can be concluded that it has a remarkable bearing on the phase velocity as well as damping velocity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rayleigh%20waves" title="Rayleigh waves">Rayleigh waves</a>, <a href="https://publications.waset.org/abstracts/search?q=orthotropic%20medium" title=" orthotropic medium"> orthotropic medium</a>, <a href="https://publications.waset.org/abstracts/search?q=gravity%20field" title=" gravity field"> gravity field</a>, <a href="https://publications.waset.org/abstracts/search?q=inhomogeneity" title=" inhomogeneity"> inhomogeneity</a> </p> <a href="https://publications.waset.org/abstracts/123019/rayleigh-wave-propagation-in-an-orthotropic-medium-under-the-influence-of-exponentially-varying-inhomogeneities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123019.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4707</span> Differential Transform Method: Some Important Examples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Jamil%20Amir">M. Jamil Amir</a>, <a href="https://publications.waset.org/abstracts/search?q=Rabia%20Iqbal"> Rabia Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Yaseen"> M. Yaseen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we solve some differential equations analytically by using differential transform method. For this purpose, we consider four models of Laplace equation with two Dirichlet and two Neumann boundary conditions and K(2,2) equation and obtain the corresponding exact solutions. The obtained results show the simplicity of the method and massive reduction in calculations when one compares it with other iterative methods, available in literature. It is worth mentioning that here only a few number of iterations are required to reach the closed form solutions as series expansions of some known functions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=differential%20transform%20method" title="differential transform method">differential transform method</a>, <a href="https://publications.waset.org/abstracts/search?q=laplace%20equation" title=" laplace equation"> laplace equation</a>, <a href="https://publications.waset.org/abstracts/search?q=Dirichlet%20boundary%20conditions" title=" Dirichlet boundary conditions"> Dirichlet boundary conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=Neumann%20boundary%20conditions" title=" Neumann boundary conditions"> Neumann boundary conditions</a> </p> <a href="https://publications.waset.org/abstracts/18605/differential-transform-method-some-important-examples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18605.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">537</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4706</span> Investigation a New Approach "AGM" to Solve of Complicate Nonlinear Partial Differential Equations at All Engineering Field and Basic Science</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammadreza%20Akbari">Mohammadreza Akbari</a>, <a href="https://publications.waset.org/abstracts/search?q=Pooya%20Soleimani%20Besheli"> Pooya Soleimani Besheli</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Khalili"> Reza Khalili</a>, <a href="https://publications.waset.org/abstracts/search?q=Davood%20Domiri%20Danji"> Davood Domiri Danji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this conference, our aims are accuracy, capabilities and power at solving of the complicated non-linear partial differential. Our purpose is to enhance the ability to solve the mentioned nonlinear differential equations at basic science and engineering field and similar issues with a simple and innovative approach. As we know most of engineering system behavior in practical are nonlinear process (especially basic science and engineering field, etc.) and analytical solving (no numeric) these problems are difficult, complex, and sometimes impossible like (Fluids and Gas wave, these problems can't solve with numeric method, because of no have boundary condition) accordingly in this symposium we are going to exposure an innovative approach which we have named it Akbari-Ganji's Method or AGM in engineering, that can solve sets of coupled nonlinear differential equations (ODE, PDE) with high accuracy and simple solution and so this issue will emerge after comparing the achieved solutions by Numerical method (Runge-Kutta 4th). Eventually, AGM method will be proved that could be created huge evolution for researchers, professors and students in whole over the world, because of AGM coding system, so by using this software we can analytically solve all complicated linear and nonlinear partial differential equations, with help of that there is no difficulty for solving all nonlinear differential equations. Advantages and ability of this method (AGM) as follow: (a) Non-linear Differential equations (ODE, PDE) are directly solvable by this method. (b) In this method (AGM), most of the time, without any dimensionless procedure, we can solve equation(s) by any boundary or initial condition number. (c) AGM method always is convergent in boundary or initial condition. (d) Parameters of exponential, Trigonometric and Logarithmic of the existent in the non-linear differential equation with AGM method no needs Taylor expand which are caused high solve precision. (e) AGM method is very flexible in the coding system, and can solve easily varieties of the non-linear differential equation at high acceptable accuracy. (f) One of the important advantages of this method is analytical solving with high accuracy such as partial differential equation in vibration in solids, waves in water and gas, with minimum initial and boundary condition capable to solve problem. (g) It is very important to present a general and simple approach for solving most problems of the differential equations with high non-linearity in engineering sciences especially at civil engineering, and compare output with numerical method (Runge-Kutta 4th) and Exact solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=new%20approach" title="new approach">new approach</a>, <a href="https://publications.waset.org/abstracts/search?q=AGM" title=" AGM"> AGM</a>, <a href="https://publications.waset.org/abstracts/search?q=sets%20of%20coupled%20nonlinear%20differential%20equation" title=" sets of coupled nonlinear differential equation"> sets of coupled nonlinear differential equation</a>, <a href="https://publications.waset.org/abstracts/search?q=exact%20solutions" title=" exact solutions"> exact solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical" title=" numerical"> numerical</a> </p> <a href="https://publications.waset.org/abstracts/32459/investigation-a-new-approach-agm-to-solve-of-complicate-nonlinear-partial-differential-equations-at-all-engineering-field-and-basic-science" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32459.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4705</span> Step Method for Solving Nonlinear Two Delays Differential Equation in Parkinson’s Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20N.%20Agiza">H. N. Agiza</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Sohaly"> M. A. Sohaly</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Elfouly"> M. A. Elfouly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Parkinson's disease (PD) is a heterogeneous disorder with common age of onset, symptoms, and progression levels. In this paper we will solve analytically the PD model as a non-linear delay differential equation using the steps method. The step method transforms a system of delay differential equations (DDEs) into systems of ordinary differential equations (ODEs). On some numerical examples, the analytical solution will be difficult. So we will approximate the analytical solution using Picard method and Taylor method to ODEs<em>.</em> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parkinson%27s%20disease" title="Parkinson's disease">Parkinson's disease</a>, <a href="https://publications.waset.org/abstracts/search?q=step%20method" title=" step method"> step method</a>, <a href="https://publications.waset.org/abstracts/search?q=delay%20differential%20equation" title=" delay differential equation"> delay differential equation</a>, <a href="https://publications.waset.org/abstracts/search?q=two%20delays" title=" two delays"> two delays</a> </p> <a href="https://publications.waset.org/abstracts/131976/step-method-for-solving-nonlinear-two-delays-differential-equation-in-parkinsons-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4704</span> Existence of positive periodic solutions for certain delay differential equations </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farid%20Nouioua">Farid Nouioua</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelouaheb%20Ardjouni"> Abdelouaheb Ardjouni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, we study the existence of positive periodic solutions of certain delay differential equations. In the process we convert the differential equation into an equivalent integral equation after which appropriate mappings are constructed. We then employ Krasnoselskii's fixed point theorem to obtain sufficient conditions for the existence of a positive periodic solution of the differential equation. The obtained results improve and extend the results in the literature. Finally, an example is given to illustrate our results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=delay%20differential%20equations" title="delay differential equations">delay differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=positive%20periodic%20solutions" title=" positive periodic solutions"> positive periodic solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=integral%20equations" title=" integral equations"> integral equations</a>, <a href="https://publications.waset.org/abstracts/search?q=Krasnoselskii%20fixed%20point%20theorem" title=" Krasnoselskii fixed point theorem"> Krasnoselskii fixed point theorem</a> </p> <a href="https://publications.waset.org/abstracts/40904/existence-of-positive-periodic-solutions-for-certain-delay-differential-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40904.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">438</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4703</span> Development of Extended Trapezoidal Method for Numerical Solution of Volterra Integro-Differential Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fuziyah%20Ishak">Fuziyah Ishak</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20Norazura%20Ahmad"> Siti Norazura Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Volterra integro-differential equations appear in many models for real life phenomena. Since analytical solutions for this type of differential equations are hard and at times impossible to attain, engineers and scientists resort to numerical solutions that can be made as accurately as possible. Conventionally, numerical methods for ordinary differential equations are adapted to solve Volterra integro-differential equations. In this paper, numerical solution for solving Volterra integro-differential equation using extended trapezoidal method is described. Formulae for the integral and differential parts of the equation are presented. Numerical results show that the extended method is suitable for solving first order Volterra integro-differential equations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accuracy" title="accuracy">accuracy</a>, <a href="https://publications.waset.org/abstracts/search?q=extended%20trapezoidal%20method" title=" extended trapezoidal method"> extended trapezoidal method</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20solution" title=" numerical solution"> numerical solution</a>, <a href="https://publications.waset.org/abstracts/search?q=Volterra%20integro-differential%20equations" title=" Volterra integro-differential equations"> Volterra integro-differential equations</a> </p> <a href="https://publications.waset.org/abstracts/52856/development-of-extended-trapezoidal-method-for-numerical-solution-of-volterra-integro-differential-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4702</span> Stability Analysis of Two-delay Differential Equation for Parkinson's Disease Models with Positive Feedback</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Sohaly">M. A. Sohaly</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Elfouly"> M. A. Elfouly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Parkinson's disease (PD) is a heterogeneous movement disorder that often appears in the elderly. PD is induced by a loss of dopamine secretion. Some drugs increase the secretion of dopamine. In this paper, we will simply study the stability of PD models as a nonlinear delay differential equation. After a period of taking drugs, these act as positive feedback and increase the tremors of patients, and then, the differential equation has positive coefficients and the system is unstable under these conditions. We will present a set of suggested modifications to make the system more compatible with the biodynamic system. When giving a set of numerical examples, this research paper is concerned with the mathematical analysis, and no clinical data have been used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parkinson%27s%20disease" title="Parkinson's disease">Parkinson's disease</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=two%20delay%20differential%20equation" title=" two delay differential equation"> two delay differential equation</a> </p> <a href="https://publications.waset.org/abstracts/133686/stability-analysis-of-two-delay-differential-equation-for-parkinsons-disease-models-with-positive-feedback" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4701</span> Image Transform Based on Integral Equation-Wavelet Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuan%20Yan%20Tang">Yuan Yan Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lina%20Yang"> Lina Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Li"> Hong Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Harmonic model is a very important approximation for the image transform. The harmanic model converts an image into arbitrary shape; however, this mode cannot be described by any fixed functions in mathematics. In fact, it is represented by partial differential equation (PDE) with boundary conditions. Therefore, to develop an efficient method to solve such a PDE is extremely significant in the image transform. In this paper, a novel Integral Equation-Wavelet based method is presented, which consists of three steps: (1) The partial differential equation is converted into boundary integral equation and representation by an indirect method. (2) The boundary integral equation and representation are changed to plane integral equation and representation by boundary measure formula. (3) The plane integral equation and representation are then solved by a method we call wavelet collocation. Our approach has two main advantages, the shape of an image is arbitrary and the program code is independent of the boundary. The performance of our method is evaluated by numerical experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=harmonic%20model" title="harmonic model">harmonic model</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20differential%20equation%20%28PDE%29" title=" partial differential equation (PDE)"> partial differential equation (PDE)</a>, <a href="https://publications.waset.org/abstracts/search?q=integral%20equation" title=" integral equation"> integral equation</a>, <a href="https://publications.waset.org/abstracts/search?q=integral%20representation" title=" integral representation"> integral representation</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20measure%20formula" title=" boundary measure formula"> boundary measure formula</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet%20collocation" title=" wavelet collocation"> wavelet collocation</a> </p> <a href="https://publications.waset.org/abstracts/3920/image-transform-based-on-integral-equation-wavelet-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">558</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4700</span> Asymptotic Expansion of the Korteweg-de Vries-Burgers Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jian-Jun%20Shu">Jian-Jun Shu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is common knowledge that many physical problems (such as non-linear shallow-water waves and wave motion in plasmas) can be described by the Korteweg-de Vries (KdV) equation, which possesses certain special solutions, known as solitary waves or solitons. As a marriage of the KdV equation and the classical Burgers (KdVB) equation, the Korteweg-de Vries-Burgers (KdVB) equation is a mathematical model of waves on shallow water surfaces in the presence of viscous dissipation. Asymptotic analysis is a method of describing limiting behavior and is a key tool for exploring the differential equations which arise in the mathematical modeling of real-world phenomena. By using variable transformations, the asymptotic expansion of the KdVB equation is presented in this paper. The asymptotic expansion may provide a good gauge on the validation of the corresponding numerical scheme. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymptotic%20expansion" title="asymptotic expansion">asymptotic expansion</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20equation" title=" differential equation"> differential equation</a>, <a href="https://publications.waset.org/abstracts/search?q=Korteweg-de%20Vries-Burgers%20%28KdVB%29%20equation" title=" Korteweg-de Vries-Burgers (KdVB) equation"> Korteweg-de Vries-Burgers (KdVB) equation</a>, <a href="https://publications.waset.org/abstracts/search?q=soliton" title=" soliton"> soliton</a> </p> <a href="https://publications.waset.org/abstracts/78883/asymptotic-expansion-of-the-korteweg-de-vries-burgers-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4699</span> Nonhomogeneous Linear Second Order Differential Equations and Resonance through Geogebra Program</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Maass">F. Maass</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Martin"> P. Martin</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Olivares"> J. Olivares</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work is the application of the program GeoGebra in teaching the study of nonhomogeneous linear second order differential equations with constant coefficients. Different kind of functions or forces will be considered in the right hand side of the differential equations, in particular, the emphasis will be placed in the case of trigonometrical functions producing the resonance phenomena. In order to obtain this, the frequencies of the trigonometrical functions will be changed. Once the resonances appear, these have to be correlationated with the roots of the second order algebraic equation determined by the coefficients of the differential equation. In this way, the physics and engineering students will understand resonance effects and its consequences in the simplest way. A large variety of examples will be shown, using different kind of functions for the nonhomogeneous part of the differential equations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=education" title="education">education</a>, <a href="https://publications.waset.org/abstracts/search?q=geogebra" title=" geogebra"> geogebra</a>, <a href="https://publications.waset.org/abstracts/search?q=ordinary%20differential%20equations" title=" ordinary differential equations"> ordinary differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=resonance" title=" resonance"> resonance</a> </p> <a href="https://publications.waset.org/abstracts/90040/nonhomogeneous-linear-second-order-differential-equations-and-resonance-through-geogebra-program" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90040.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4698</span> A Study of Non Linear Partial Differential Equation with Random Initial Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayaz%20Ahmad">Ayaz Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we present the effect of noise on the solution of a partial differential equation (PDE) in three different setting. We shall first consider random initial condition for two nonlinear dispersive PDE the non linear Schrodinger equation and the Kortteweg –de vries equation and analyse their effect on some special solution , the soliton solutions.The second case considered a linear partial differential equation , the wave equation with random initial conditions allow to substantially decrease the computational and data storage costs of an algorithm to solve the inverse problem based on the boundary measurements of the solution of this equation. Finally, the third example considered is that of the linear transport equation with a singular drift term, when we shall show that the addition of a multiplicative noise term forbids the blow up of solutions under a very weak hypothesis for which we have finite time blow up of a solution in the deterministic case. Here we consider the problem of wave propagation, which is modelled by a nonlinear dispersive equation with noisy initial condition .As observed noise can also be introduced directly in the equations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drift%20term" title="drift term">drift term</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20time%20blow%20up" title=" finite time blow up"> finite time blow up</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20problem" title=" inverse problem"> inverse problem</a>, <a href="https://publications.waset.org/abstracts/search?q=soliton%20solution" title=" soliton solution"> soliton solution</a> </p> <a href="https://publications.waset.org/abstracts/77445/a-study-of-non-linear-partial-differential-equation-with-random-initial-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77445.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4697</span> A Coupled System of Caputo-Type Katugampola Fractional Differential Equations with Integral Boundary Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yacine%20Arioua">Yacine Arioua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we investigate the existence and uniqueness of solutions for a coupled system of nonlinear Caputo-type Katugampola fractional differential equations with integral boundary conditions. Based upon a contraction mapping principle, Schauders fixed point theorems, some new existence and uniqueness results of solutions for the given problems are obtained. For application, some examples are given to illustrate the usefulness of our main results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractional%20differential%20equations" title="fractional differential equations">fractional differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=coupled%20system" title=" coupled system"> coupled system</a>, <a href="https://publications.waset.org/abstracts/search?q=Caputo-Katugampola%20derivative" title=" Caputo-Katugampola derivative"> Caputo-Katugampola derivative</a>, <a href="https://publications.waset.org/abstracts/search?q=fixed%20point%20theorems" title=" fixed point theorems"> fixed point theorems</a>, <a href="https://publications.waset.org/abstracts/search?q=existence" title=" existence"> existence</a>, <a href="https://publications.waset.org/abstracts/search?q=uniqueness" title=" uniqueness"> uniqueness</a> </p> <a href="https://publications.waset.org/abstracts/124953/a-coupled-system-of-caputo-type-katugampola-fractional-differential-equations-with-integral-boundary-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124953.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4696</span> A Study of Hamilton-Jacobi-Bellman Equation Systems Arising in Differential Game Models of Changing Society</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Weihua%20Ruan">Weihua Ruan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuan-Chou%20Chen"> Kuan-Chou Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is concerned with a system of Hamilton-Jacobi-Bellman equations coupled with an autonomous dynamical system. The mathematical system arises in the differential game formulation of political economy models as an infinite-horizon continuous-time differential game with discounted instantaneous payoff rates and continuously and discretely varying state variables. The existence of a weak solution of the PDE system is proven and a computational scheme of approximate solution is developed for a class of such systems. A model of democratization is mathematically analyzed as an illustration of application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamilton-Jacobi-Bellman%20equations" title="Hamilton-Jacobi-Bellman equations">Hamilton-Jacobi-Bellman equations</a>, <a href="https://publications.waset.org/abstracts/search?q=infinite-horizon%20differential%20games" title=" infinite-horizon differential games"> infinite-horizon differential games</a>, <a href="https://publications.waset.org/abstracts/search?q=continuous%20and%20discrete%20state%20variables" title=" continuous and discrete state variables"> continuous and discrete state variables</a>, <a href="https://publications.waset.org/abstracts/search?q=political-economy%20models" title=" political-economy models"> political-economy models</a> </p> <a href="https://publications.waset.org/abstracts/69675/a-study-of-hamilton-jacobi-bellman-equation-systems-arising-in-differential-game-models-of-changing-society" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69675.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4695</span> Solution of Singularly Perturbed Differential Difference Equations Using Liouville Green Transformation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20N.%20Reddy">Y. N. Reddy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The class of differential-difference equations which have characteristics of both classes, i.e., delay/advance and singularly perturbed behaviour is known as singularly perturbed differential-difference equations. The expression ‘positive shift’ and ‘negative shift’ are also used for ‘advance’ and ‘delay’ respectively. In general, an ordinary differential equation in which the highest order derivative is multiplied by a small positive parameter and containing at least one delay/advance is known as singularly perturbed differential-difference equation. Singularly perturbed differential-difference equations arise in the modelling of various practical phenomena in bioscience, engineering, control theory, specifically in variational problems, in describing the human pupil-light reflex, in a variety of models for physiological processes or diseases and first exit time problems in the modelling of the determination of expected time for the generation of action potential in nerve cells by random synaptic inputs in dendrites. In this paper, we envisage the use of Liouville Green Transformation to find the solution of singularly perturbed differential difference equations. First, using Taylor series, the given singularly perturbed differential difference equation is approximated by an asymptotically equivalent singularly perturbation problem. Then the Liouville Green Transformation is applied to get the solution. Several model examples are solved, and the results are compared with other methods. It is observed that the present method gives better approximate solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=difference%20equations" title="difference equations">difference equations</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20equations" title=" differential equations"> differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=singular%20perturbations" title=" singular perturbations"> singular perturbations</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer" title=" boundary layer"> boundary layer</a> </p> <a href="https://publications.waset.org/abstracts/86176/solution-of-singularly-perturbed-differential-difference-equations-using-liouville-green-transformation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86176.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4694</span> Empirical Evaluation of Gradient-Based Training Algorithms for Ordinary Differential Equation Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Martin%20K.%20Steiger">Martin K. Steiger</a>, <a href="https://publications.waset.org/abstracts/search?q=Lukas%20Heisler"> Lukas Heisler</a>, <a href="https://publications.waset.org/abstracts/search?q=Hans-Georg%20Brachtendorf"> Hans-Georg Brachtendorf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Deep neural networks and their variants form the backbone of many AI applications. Based on the so-called residual networks, a continuous formulation of such models as ordinary differential equations (ODEs) has proven advantageous since different techniques may be applied that significantly increase the learning speed and enable controlled trade-offs with the resulting error at the same time. For the evaluation of such models, high-performance numerical differential equation solvers are used, which also provide the gradients required for training. However, whether classical gradient-based methods are even applicable or which one yields the best results has not been discussed yet. This paper aims to redeem this situation by providing empirical results for different applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20neural%20networks" title="deep neural networks">deep neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=gradient-based%20learning" title=" gradient-based learning"> gradient-based learning</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=ordinary%20differential%20equation%20networks" title=" ordinary differential equation networks"> ordinary differential equation networks</a> </p> <a href="https://publications.waset.org/abstracts/145435/empirical-evaluation-of-gradient-based-training-algorithms-for-ordinary-differential-equation-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4693</span> Application of Wavelet Based Approximation for the Solution of Partial Integro-Differential Equation Arising from Viscoelasticity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Somveer%20Singh">Somveer Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Vineet%20Kumar%20Singh"> Vineet Kumar Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work contributes a numerical method based on Legendre wavelet approximation for the treatment of partial integro-differential equation (PIDE). Operational matrices of Legendre wavelets reduce the solution of PIDE into the system of algebraic equations. Some useful results concerning the computational order of convergence and error estimates associated to the suggested scheme are presented. Illustrative examples are provided to show the effectiveness and accuracy of proposed numerical method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=legendre%20wavelets" title="legendre wavelets">legendre wavelets</a>, <a href="https://publications.waset.org/abstracts/search?q=operational%20matrices" title=" operational matrices"> operational matrices</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20integro-differential%20equation" title=" partial integro-differential equation"> partial integro-differential equation</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelasticity" title=" viscoelasticity"> viscoelasticity</a> </p> <a href="https://publications.waset.org/abstracts/57515/application-of-wavelet-based-approximation-for-the-solution-of-partial-integro-differential-equation-arising-from-viscoelasticity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57515.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4692</span> The Application of Variable Coefficient Jacobian elliptic Function Method to Differential-Difference Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chao-Qing%20Dai">Chao-Qing Dai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In modern nonlinear science and textile engineering, nonlinear differential-difference equations are often used to describe some nonlinear phenomena. In this paper, we extend the variable coefficient Jacobian elliptic function method, which was used to find new exact travelling wave solutions of nonlinear partial differential equations, to nonlinear differential-difference equations. As illustration, we derive two series of Jacobian elliptic function solutions of the discrete sine-Gordon equation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete%20sine-Gordon%20equation" title="discrete sine-Gordon equation">discrete sine-Gordon equation</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20coefficient%20Jacobian%20elliptic%20function%20method" title=" variable coefficient Jacobian elliptic function method"> variable coefficient Jacobian elliptic function method</a>, <a href="https://publications.waset.org/abstracts/search?q=exact%20solutions" title=" exact solutions"> exact solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=equation" title=" equation"> equation</a> </p> <a href="https://publications.waset.org/abstracts/12987/the-application-of-variable-coefficient-jacobian-elliptic-function-method-to-differential-difference-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12987.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">668</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4691</span> A Trapezoidal-Like Integrator for the Numerical Solution of One-Dimensional Time Dependent Schrödinger Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Johnson%20Oladele%20Fatokun">Johnson Oladele Fatokun</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20P.%20Akpan"> I. P. Akpan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the one-dimensional time dependent Schrödinger equation is discretized by the method of lines using a second order finite difference approximation to replace the second order spatial derivative. The evolving system of stiff ordinary differential equation (ODE) in time is solved numerically by an L-stable trapezoidal-like integrator. Results show accuracy of relative maximum error of order 10-4 in the interval of consideration. The performance of the method as compared to an existing scheme is considered favorable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Schrodinger%E2%80%99s%20equation" title="Schrodinger’s equation">Schrodinger’s equation</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20differential%20equations" title=" partial differential equations"> partial differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=method%20of%20lines%20%28MOL%29" title=" method of lines (MOL)"> method of lines (MOL)</a>, <a href="https://publications.waset.org/abstracts/search?q=stiff%20ODE" title=" stiff ODE"> stiff ODE</a>, <a href="https://publications.waset.org/abstracts/search?q=trapezoidal-like%20integrator" title=" trapezoidal-like integrator "> trapezoidal-like integrator </a> </p> <a href="https://publications.waset.org/abstracts/11665/a-trapezoidal-like-integrator-for-the-numerical-solution-of-one-dimensional-time-dependent-schrodinger-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11665.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4690</span> Analytical Solving of Nonlinear Differential Equations in the Nonlinear Phenomena for Viscos Fluids </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arash%20Jafari">Arash Jafari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Taghaddosi"> Mehdi Taghaddosi</a>, <a href="https://publications.waset.org/abstracts/search?q=Azin%20Parvin"> Azin Parvin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the paper, our purpose is to enhance the ability to solve a nonlinear differential equation which is about the motion of an incompressible fluid flow going down of an inclined plane without thermal effect with a simple and innovative approach which we have named it new method. Comparisons are made amongst the Numerical, new method, and HPM methods, and the results reveal that this method is very effective and simple and can be applied to other nonlinear problems. It is noteworthy that there are some valuable advantages in this way of solving differential equations, and also most of the sets of differential equations can be answered in this manner which in the other methods they do not have acceptable solutions up to now. A summary of the excellence of this method in comparison to the other manners is as follows: 1) Differential equations are directly solvable by this method. 2) Without any dimensionless procedure, we can solve equation(s). 3) It is not necessary to convert variables into new ones. According to the afore-mentioned assertions which will be proved in this case study, the process of solving nonlinear equation(s) will be very easy and convenient in comparison to the other methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=viscos%20fluid" title="viscos fluid">viscos fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=incompressible%20fluid%20flow" title=" incompressible fluid flow"> incompressible fluid flow</a>, <a href="https://publications.waset.org/abstracts/search?q=inclined%20plane" title=" inclined plane"> inclined plane</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20phenomena" title=" nonlinear phenomena"> nonlinear phenomena</a> </p> <a href="https://publications.waset.org/abstracts/58352/analytical-solving-of-nonlinear-differential-equations-in-the-nonlinear-phenomena-for-viscos-fluids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58352.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4689</span> Existence Theory for First Order Functional Random Differential Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajkumar%20N.%20Ingle">Rajkumar N. Ingle</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the existence of a solution of nonlinear functional random differential equations of the first order is proved under caratheodory condition. The study of the functional random differential equation has got importance in the random analysis of the dynamical systems of universal phenomena. Objectives: Nonlinear functional random differential equation is useful to the scientists, engineers, and mathematicians, who are engaged in N.F.R.D.E. analyzing a universal random phenomenon, govern by nonlinear random initial value problems of D.E. Applications of this in the theory of diffusion or heat conduction. Methodology: Using the concepts of probability theory, functional analysis, generally the existence theorems for the nonlinear F.R.D.E. are prove by using some tools such as fixed point theorem. The significance of the study: Our contribution will be the generalization of some well-known results in the theory of Nonlinear F.R.D.E.s. Further, it seems that our study will be useful to scientist, engineers, economists and mathematicians in their endeavors to analyses the nonlinear random problems of the universe in a better way. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Random%20Fixed%20Point%20Theorem" title="Random Fixed Point Theorem">Random Fixed Point Theorem</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20random%20differential%20equation" title=" functional random differential equation"> functional random differential equation</a>, <a href="https://publications.waset.org/abstracts/search?q=N.F.R.D.E." title=" N.F.R.D.E."> N.F.R.D.E.</a>, <a href="https://publications.waset.org/abstracts/search?q=universal%20random%20phenomenon" title=" universal random phenomenon "> universal random phenomenon </a> </p> <a href="https://publications.waset.org/abstracts/28934/existence-theory-for-first-order-functional-random-differential-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28934.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">501</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4688</span> Multiple Positive Solutions for Boundary Value Problem of Nonlinear Fractional Differential Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Guezane-Lakoud">A. Guezane-Lakoud</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bensebaa"> S. Bensebaa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we study a boundary value problem of nonlinear fractional differential equation. Existence and positivity results of solutions are obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=positive%20solution" title="positive solution">positive solution</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20caputo%20derivative" title=" fractional caputo derivative"> fractional caputo derivative</a>, <a href="https://publications.waset.org/abstracts/search?q=Banach%20contraction%20principle" title=" Banach contraction principle"> Banach contraction principle</a>, <a href="https://publications.waset.org/abstracts/search?q=Avery%20and%20Peterson%20fixed%20point%20theorem" title=" Avery and Peterson fixed point theorem"> Avery and Peterson fixed point theorem</a> </p> <a href="https://publications.waset.org/abstracts/17545/multiple-positive-solutions-for-boundary-value-problem-of-nonlinear-fractional-differential-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17545.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4687</span> Numerical Solutions of an Option Pricing Rainfall Derivatives Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Clarinda%20Vitorino%20Nhangumbe">Clarinda Vitorino Nhangumbe</a>, <a href="https://publications.waset.org/abstracts/search?q=Erc%C3%ADlia%20Sousa"> Ercília Sousa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Weather derivatives are financial products used to cover non catastrophic weather events with a weather index as the underlying asset. The rainfall weather derivative pricing model is modeled based in the assumption that the rainfall dynamics follows Ornstein-Uhlenbeck process, and the partial differential equation approach is used to derive the convection-diffusion two dimensional time dependent partial differential equation, where the spatial variables are the rainfall index and rainfall depth. To compute the approximation solutions of the partial differential equation, the appropriate boundary conditions are suggested, and an explicit numerical method is proposed in order to deal efficiently with the different choices of the coefficients involved in the equation. Being an explicit numerical method, it will be conditionally stable, then the stability region of the numerical method and the order of convergence are discussed. The model is tested for real precipitation data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20differences%20method" title="finite differences method">finite differences method</a>, <a href="https://publications.waset.org/abstracts/search?q=ornstein-uhlenbeck%20process" title=" ornstein-uhlenbeck process"> ornstein-uhlenbeck process</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20differential%20equations%20approach" title=" partial differential equations approach"> partial differential equations approach</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall%20derivatives" title=" rainfall derivatives"> rainfall derivatives</a> </p> <a href="https://publications.waset.org/abstracts/169674/numerical-solutions-of-an-option-pricing-rainfall-derivatives-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169674.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4686</span> On the Derivation of Variable Step BBDF for Solving Second Order Stiff ODEs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20M.%20Yatim">S. A. M. Yatim</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20B.%20Ibrahim"> Z. B. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20I.%20Othman"> K. I. Othman</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Suleiman"> M. Suleiman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The method of solving second order stiff ordinary differential equation (ODEs) that is based on backward differentiation formula (BDF) is considered in this paper. We derived the method by increasing the order of the existing method using an improved strategy in choosing the step size. Numerical results are presented to compare the efficiency of the proposed method to the MATLAB’s suite of ODEs solvers namely ode15s and ode23s. The method was found to be efficient to solve second order ordinary differential equation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=backward%20differentiation%20formulae" title="backward differentiation formulae">backward differentiation formulae</a>, <a href="https://publications.waset.org/abstracts/search?q=block%20backward%20differentiation%20formulae" title=" block backward differentiation formulae"> block backward differentiation formulae</a>, <a href="https://publications.waset.org/abstracts/search?q=stiff%20ordinary%20differential%20equation" title=" stiff ordinary differential equation"> stiff ordinary differential equation</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20step%20size" title=" variable step size"> variable step size</a> </p> <a href="https://publications.waset.org/abstracts/13370/on-the-derivation-of-variable-step-bbdf-for-solving-second-order-stiff-odes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">497</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coupled%20differential%20equation&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coupled%20differential%20equation&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coupled%20differential%20equation&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coupled%20differential%20equation&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coupled%20differential%20equation&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coupled%20differential%20equation&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coupled%20differential%20equation&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coupled%20differential%20equation&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coupled%20differential%20equation&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coupled%20differential%20equation&page=157">157</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coupled%20differential%20equation&page=158">158</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coupled%20differential%20equation&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>