CINXE.COM

Foundations of geometry - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Foundations of geometry - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"7eb2d282-aab1-428d-9aa2-550e989fd731","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Foundations_of_geometry","wgTitle":"Foundations of geometry","wgCurRevisionId":1229138311,"wgRevisionId":1229138311,"wgArticleId":21317755,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","Foundations of geometry","Foundations of mathematics","History of mathematics"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Foundations_of_geometry","wgRelevantArticleId":21317755,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject": "wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":80000,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q5474574","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={ "ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader", "ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.16"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Foundations of geometry - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Foundations_of_geometry"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Foundations_of_geometry&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Foundations_of_geometry"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Foundations_of_geometry rootpage-Foundations_of_geometry skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" title="Main menu" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li><li id="n-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages"><span>Special pages</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Foundations+of+geometry" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Foundations+of+geometry" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Foundations+of+geometry" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Foundations+of+geometry" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Axiomatic_systems" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Axiomatic_systems"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Axiomatic systems</span> </div> </a> <button aria-controls="toc-Axiomatic_systems-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Axiomatic systems subsection</span> </button> <ul id="toc-Axiomatic_systems-sublist" class="vector-toc-list"> <li id="toc-Properties_of_axiomatic_systems" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Properties_of_axiomatic_systems"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Properties of axiomatic systems</span> </div> </a> <ul id="toc-Properties_of_axiomatic_systems-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Euclidean_geometry" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Euclidean_geometry"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Euclidean geometry</span> </div> </a> <button aria-controls="toc-Euclidean_geometry-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Euclidean geometry subsection</span> </button> <ul id="toc-Euclidean_geometry-sublist" class="vector-toc-list"> <li id="toc-Euclid&#039;s_Elements" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Euclid&#039;s_Elements"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Euclid's <i>Elements</i></span> </div> </a> <ul id="toc-Euclid&#039;s_Elements-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-A_critique_of_Euclid" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#A_critique_of_Euclid"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>A critique of Euclid</span> </div> </a> <ul id="toc-A_critique_of_Euclid-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Pasch_and_Peano" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Pasch_and_Peano"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Pasch and Peano</span> </div> </a> <ul id="toc-Pasch_and_Peano-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Pieri_and_the_Italian_school_of_geometers" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Pieri_and_the_Italian_school_of_geometers"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>Pieri and the Italian school of geometers</span> </div> </a> <ul id="toc-Pieri_and_the_Italian_school_of_geometers-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Hilbert&#039;s_axioms" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Hilbert&#039;s_axioms"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.5</span> <span>Hilbert's axioms</span> </div> </a> <ul id="toc-Hilbert&#039;s_axioms-sublist" class="vector-toc-list"> <li id="toc-Changes_in_Hilbert&#039;s_axioms" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Changes_in_Hilbert&#039;s_axioms"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.5.1</span> <span>Changes in Hilbert's axioms</span> </div> </a> <ul id="toc-Changes_in_Hilbert&#039;s_axioms-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Consistency_and_independence" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Consistency_and_independence"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.5.2</span> <span>Consistency and independence</span> </div> </a> <ul id="toc-Consistency_and_independence-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Birkhoff&#039;s_axioms" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Birkhoff&#039;s_axioms"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.6</span> <span>Birkhoff's axioms</span> </div> </a> <ul id="toc-Birkhoff&#039;s_axioms-sublist" class="vector-toc-list"> <li id="toc-Postulates" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Postulates"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.6.1</span> <span>Postulates</span> </div> </a> <ul id="toc-Postulates-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-School_geometry" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#School_geometry"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.7</span> <span>School geometry</span> </div> </a> <ul id="toc-School_geometry-sublist" class="vector-toc-list"> <li id="toc-Mac_Lane&#039;s_axioms" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Mac_Lane&#039;s_axioms"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.7.1</span> <span>Mac Lane's axioms</span> </div> </a> <ul id="toc-Mac_Lane&#039;s_axioms-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-SMSG_(School_Mathematics_Study_Group)_axioms" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#SMSG_(School_Mathematics_Study_Group)_axioms"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.7.2</span> <span>SMSG (School Mathematics Study Group) axioms</span> </div> </a> <ul id="toc-SMSG_(School_Mathematics_Study_Group)_axioms-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-UCSMP_(University_of_Chicago_School_Mathematics_Project)_axioms" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#UCSMP_(University_of_Chicago_School_Mathematics_Project)_axioms"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.7.3</span> <span>UCSMP (University of Chicago School Mathematics Project) axioms</span> </div> </a> <ul id="toc-UCSMP_(University_of_Chicago_School_Mathematics_Project)_axioms-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Other_systems" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Other_systems"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.8</span> <span>Other systems</span> </div> </a> <ul id="toc-Other_systems-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Non-Euclidean_geometry" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Non-Euclidean_geometry"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Non-Euclidean geometry</span> </div> </a> <button aria-controls="toc-Non-Euclidean_geometry-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Non-Euclidean geometry subsection</span> </button> <ul id="toc-Non-Euclidean_geometry-sublist" class="vector-toc-list"> <li id="toc-Euclid&#039;s_parallel_postulate" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Euclid&#039;s_parallel_postulate"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Euclid's parallel postulate</span> </div> </a> <ul id="toc-Euclid&#039;s_parallel_postulate-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Neutral_(or_absolute)_geometry" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Neutral_(or_absolute)_geometry"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Neutral (or absolute) geometry</span> </div> </a> <ul id="toc-Neutral_(or_absolute)_geometry-sublist" class="vector-toc-list"> <li id="toc-Relation_to_other_geometries" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Relation_to_other_geometries"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2.1</span> <span>Relation to other geometries</span> </div> </a> <ul id="toc-Relation_to_other_geometries-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Incompleteness" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Incompleteness"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2.2</span> <span>Incompleteness</span> </div> </a> <ul id="toc-Incompleteness-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Hyperbolic_geometry" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Hyperbolic_geometry"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Hyperbolic geometry</span> </div> </a> <ul id="toc-Hyperbolic_geometry-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Elliptic_geometry" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Elliptic_geometry"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>Elliptic geometry</span> </div> </a> <ul id="toc-Elliptic_geometry-sublist" class="vector-toc-list"> <li id="toc-Spherical_geometry" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Spherical_geometry"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4.1</span> <span>Spherical geometry</span> </div> </a> <ul id="toc-Spherical_geometry-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-Other_geometries" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Other_geometries"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Other geometries</span> </div> </a> <button aria-controls="toc-Other_geometries-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Other geometries subsection</span> </button> <ul id="toc-Other_geometries-sublist" class="vector-toc-list"> <li id="toc-Projective_geometry" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Projective_geometry"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Projective geometry</span> </div> </a> <ul id="toc-Projective_geometry-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Affine_geometry" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Affine_geometry"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Affine geometry</span> </div> </a> <ul id="toc-Affine_geometry-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Ordered_geometry" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Ordered_geometry"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Ordered geometry</span> </div> </a> <ul id="toc-Ordered_geometry-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Finite_geometry" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Finite_geometry"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>Finite geometry</span> </div> </a> <ul id="toc-Finite_geometry-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" title="Table of Contents" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Foundations of geometry</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 5 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-5" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">5 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%90%D0%BA%D1%81%D1%96%D1%91%D0%BC%D1%8B_%D0%B3%D0%B5%D0%B0%D0%BC%D0%B5%D1%82%D1%80%D1%8B%D1%96" title="Аксіёмы геаметрыі – Belarusian" lang="be" hreflang="be" data-title="Аксіёмы геаметрыі" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%93%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8_%D0%BD%D0%B8%D0%BA%C4%95%D1%81%D0%BB%D0%B5%D0%B2%C4%95%D1%81%D0%B5%D0%BC" title="Геометри никĕслевĕсем – Chuvash" lang="cv" hreflang="cv" data-title="Геометри никĕслевĕсем" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E5%B9%BE%E4%BD%95%E5%AD%A6%E5%9F%BA%E7%A4%8E%E8%AB%96" title="幾何学基礎論 – Japanese" lang="ja" hreflang="ja" data-title="幾何学基礎論" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9E%D1%81%D0%BD%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D1%8F_%D0%B3%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D0%B8" title="Основания геометрии – Russian" lang="ru" hreflang="ru" data-title="Основания геометрии" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E5%B9%BE%E4%BD%95%E5%AD%B8%E7%90%86%E8%AB%96%E5%9F%BA%E7%A4%8E" title="幾何學理論基礎 – Cantonese" lang="yue" hreflang="yue" data-title="幾何學理論基礎" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q5474574#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Foundations_of_geometry" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Foundations_of_geometry" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Foundations_of_geometry"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Foundations_of_geometry&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Foundations_of_geometry&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Foundations_of_geometry"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Foundations_of_geometry&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Foundations_of_geometry&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Foundations_of_geometry" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Foundations_of_geometry" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Foundations_of_geometry&amp;oldid=1229138311" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Foundations_of_geometry&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Foundations_of_geometry&amp;id=1229138311&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FFoundations_of_geometry"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FFoundations_of_geometry"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Foundations_of_geometry&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Foundations_of_geometry&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q5474574" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Study of geometries as axiomatic systems</div> <p><b>Foundations of geometry</b> is the study of <a href="/wiki/Geometries" class="mw-redirect" title="Geometries">geometries</a> as <a href="/wiki/Axiomatic_system" title="Axiomatic system">axiomatic systems</a>. There are several sets of axioms which give rise to <a href="/wiki/Euclidean_geometry" title="Euclidean geometry">Euclidean geometry</a> or to <a href="/wiki/Non-Euclidean_geometry" title="Non-Euclidean geometry">non-Euclidean geometries</a>. These are fundamental to the study and of historical importance, but there are a great many modern geometries that are not Euclidean which can be studied from this viewpoint. The term <b>axiomatic geometry</b> can be applied to any geometry that is developed from an axiom system, but is often used to mean Euclidean geometry studied from this point of view. The completeness and independence of general axiomatic systems are important mathematical considerations, but there are also issues to do with the teaching of geometry which come into play. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Axiomatic_systems">Axiomatic systems</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Foundations_of_geometry&amp;action=edit&amp;section=1" title="Edit section: Axiomatic systems"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Axiomatic_system" title="Axiomatic system">Axiomatic system</a></div> <p>Based on ancient Greek methods, an <i>axiomatic system</i> is a formal description of a way to establish the <i>mathematical truth</i> that flows from a fixed set of assumptions. Although applicable to any area of mathematics, geometry is the branch of elementary mathematics in which this method has most extensively been successfully applied.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p><p>There are several components of an axiomatic system.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p> <ol><li><b><a href="/wiki/Primitive_notion" title="Primitive notion">Primitives</a></b> (undefined terms) are the most basic ideas. Typically they include objects and relationships. In geometry, the objects are things like <i>points</i>, <i>lines</i> and <i>planes</i> while a fundamental relationship is that of <i>incidence</i> – of one object meeting or joining with another. The terms themselves are undefined. <a href="/wiki/David_Hilbert" title="David Hilbert">Hilbert</a> once remarked that instead of points, lines and planes one might just as well talk of tables, chairs and beer mugs.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> His point being that the primitive terms are just empty shells, place holders if you will, and have no intrinsic properties.</li> <li><b><a href="/wiki/Axiom" title="Axiom">Axioms</a></b> (or postulates) are statements about these primitives; for example, <i>any two points are together incident with just one line</i> (i.e. that for any two points, there is just one line which passes through both of them). Axioms are assumed true, and not proven. They are the <i>building blocks</i> of geometric concepts, since they specify the properties that the primitives have.</li> <li>The laws of <b><a href="/wiki/Logic" title="Logic">logic</a></b>.</li> <li>The <b><a href="/wiki/Theorem" title="Theorem">theorems</a></b><sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> are the logical consequences of the axioms, that is, the statements that can be obtained from the axioms by using the laws of deductive logic.</li></ol> <p>An <i>interpretation</i> of an axiomatic system is some particular way of giving concrete meaning to the primitives of that system. If this association of meanings makes the axioms of the system true statements, then the interpretation is called a <b>model</b> of the system.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> In a model, all the theorems of the system are automatically true statements. </p> <div class="mw-heading mw-heading3"><h3 id="Properties_of_axiomatic_systems">Properties of axiomatic systems</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Foundations_of_geometry&amp;action=edit&amp;section=2" title="Edit section: Properties of axiomatic systems"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In discussing axiomatic systems several properties are often focused on:<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> </p> <ul><li>The axioms of an axiomatic system are said to be <a href="/wiki/Consistency" title="Consistency">consistent</a> if no logical contradiction can be derived from them. Except in the simplest systems, consistency is a difficult property to establish in an axiomatic system. On the other hand, if a <a href="/wiki/Model_(mathematical_logic)" class="mw-redirect" title="Model (mathematical logic)">model</a> exists for the axiomatic system, then any contradiction derivable in the system is also derivable in the model, and the axiomatic system is as consistent as any system in which the model belongs. This property (having a model) is referred to as <i>relative consistency</i> or <i>model consistency</i>.</li> <li>An axiom is called <a href="/wiki/Independence_(mathematical_logic)" title="Independence (mathematical logic)">independent</a> if it can not be proved or disproved from the other axioms of the axiomatic system. An axiomatic system is said to be independent if each of its axioms is independent. If a true statement is a <a href="/wiki/Logical_consequence" title="Logical consequence">logical consequence</a> of an axiomatic system, then it will be a true statement in every model of that system. To prove that an axiom is independent of the remaining axioms of the system, it is sufficient to find two models of the remaining axioms, for which the axiom is a true statement in one and a false statement in the other. Independence is not always a desirable property from a pedagogical viewpoint.</li> <li>An axiomatic system is called <a href="/wiki/Completeness_(logic)" title="Completeness (logic)">complete</a> if every statement expressible in the terms of the system is either provable or has a provable negation. Another way to state this is that no independent statement can be added to a complete axiomatic system which is consistent with axioms of that system.</li> <li>An axiomatic system is <a href="/wiki/Categorical_theory#History_and_motivation" title="Categorical theory">categorical</a> if any two models of the system are <a href="/wiki/Isomorphism" title="Isomorphism">isomorphic</a> (essentially, there is only one model for the system). A categorical system is necessarily complete, but completeness does not imply categoricity. In some situations categoricity is not a desirable property, since categorical axiomatic systems can not be generalized. For instance, the value of the axiomatic system for <a href="/wiki/Group_theory" title="Group theory">group theory</a> is that it is not categorical, so proving a result in group theory means that the result is valid in all the different models for group theory and one doesn't have to reprove the result in each of the non-isomorphic models.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Euclidean_geometry">Euclidean geometry</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Foundations_of_geometry&amp;action=edit&amp;section=3" title="Edit section: Euclidean geometry"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Euclidean_geometry" title="Euclidean geometry">Euclidean geometry</a></div> <p><i>Euclidean geometry</i> is a mathematical system attributed to the <a href="/wiki/Alexandria" title="Alexandria">Alexandrian</a> <a href="/wiki/Greek_mathematics" title="Greek mathematics">Greek mathematician</a> <a href="/wiki/Euclid" title="Euclid">Euclid</a>, which he described (although non-rigorously by modern standards) in his textbook on <a href="/wiki/Geometry" title="Geometry">geometry</a>: the <i><a href="/wiki/Euclid%27s_Elements" title="Euclid&#39;s Elements">Elements</a></i>. Euclid's method consists in assuming a small set of intuitively appealing <a href="/wiki/Axiom" title="Axiom">axioms</a>, and deducing many other <a href="/wiki/Proposition" title="Proposition">propositions</a> (<a href="/wiki/Theorem" title="Theorem">theorems</a>) from these. Although many of Euclid's results had been stated by earlier mathematicians,<sup id="cite_ref-Eves_1963_loc=p._19_7-0" class="reference"><a href="#cite_note-Eves_1963_loc=p._19-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> Euclid was the first to show how these propositions could fit into a comprehensive deductive and <a href="/wiki/Logical_system" class="mw-redirect" title="Logical system">logical system</a>.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> The <i>Elements</i> begins with plane geometry, still taught in <a href="/wiki/Secondary_school" title="Secondary school">secondary school</a> as the first <a href="/wiki/Axiomatic_system" title="Axiomatic system">axiomatic system</a> and the first examples of <a href="/wiki/Mathematical_proof" title="Mathematical proof">formal proof</a>. It goes on to the <a href="/wiki/Solid_geometry" title="Solid geometry">solid geometry</a> of <a href="/wiki/Three_dimensions" class="mw-redirect" title="Three dimensions">three dimensions</a>. Much of the <i>Elements</i> states results of what are now called <a href="/wiki/Algebra" title="Algebra">algebra</a> and <a href="/wiki/Number_theory" title="Number theory">number theory</a>, explained in geometrical language.<sup id="cite_ref-Eves_1963_loc=p._19_7-1" class="reference"><a href="#cite_note-Eves_1963_loc=p._19-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> </p><p>For over two thousand years, the adjective "Euclidean" was unnecessary because no other sort of geometry had been conceived. Euclid's axioms seemed so intuitively obvious (with the possible exception of the <a href="/wiki/Parallel_postulate" title="Parallel postulate">parallel postulate</a>) that any theorem proved from them was deemed true in an absolute, often metaphysical, sense. Today, however, many other geometries which are not Euclidean are known, the first ones having been discovered in the early 19th century. </p> <div class="mw-heading mw-heading3"><h3 id="Euclid's_Elements"><span id="Euclid.27s_Elements"></span>Euclid's <i>Elements</i></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Foundations_of_geometry&amp;action=edit&amp;section=4" title="Edit section: Euclid&#039;s Elements"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Euclid%27s_Elements" title="Euclid&#39;s Elements">Euclid's Elements</a></div> <p>Euclid's <i>Elements</i> is a <a href="/wiki/Mathematics" title="Mathematics">mathematical</a> and <a href="/wiki/Geometry" title="Geometry">geometric</a> <a href="/wiki/Treatise" title="Treatise">treatise</a> consisting of 13 books written by the ancient <a href="/wiki/Greek_mathematics" title="Greek mathematics">Greek mathematician</a> <a href="/wiki/Euclid" title="Euclid">Euclid</a> in <a href="/wiki/Alexandria" title="Alexandria">Alexandria</a> c. 300 BC. It is a collection of definitions, postulates (<a href="/wiki/Axiom" title="Axiom">axioms</a>), propositions (<a href="/wiki/Theorem" title="Theorem">theorems</a> and <a href="/wiki/Compass_and_straightedge_constructions" class="mw-redirect" title="Compass and straightedge constructions">constructions</a>), and <a href="/wiki/Mathematical_proof" title="Mathematical proof">mathematical proofs</a> of the propositions. The thirteen books cover <a href="/wiki/Euclidean_geometry" title="Euclidean geometry">Euclidean geometry</a> and the ancient Greek version of elementary <a href="/wiki/Number_theory" title="Number theory">number theory</a>. With the exception of <a href="/wiki/Autolycus_of_Pitane" title="Autolycus of Pitane">Autolycus'</a> <i>On the Moving Sphere</i>, the <i>Elements</i> is one of the oldest extant Greek mathematical treatises,<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> and it is the oldest extant axiomatic deductive treatment of <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>. It has proven instrumental in the development of <a href="/wiki/Logic" title="Logic">logic</a> and modern <a href="/wiki/Science" title="Science">science</a>. </p><p>Euclid's <i>Elements</i> has been referred to as the most successful<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Boyer_Author_of_the_Elements_11-0" class="reference"><a href="#cite_note-Boyer_Author_of_the_Elements-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> and influential<sup id="cite_ref-Boyer_Influence_of_the_Elements_12-0" class="reference"><a href="#cite_note-Boyer_Influence_of_the_Elements-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> textbook ever written. Being first set in type in <a href="/wiki/Venice" title="Venice">Venice</a> in 1482, it is one of the very earliest mathematical works to be printed after the invention of the <a href="/wiki/Printing_press" title="Printing press">printing press</a> and was estimated by <a href="/wiki/Carl_Benjamin_Boyer" title="Carl Benjamin Boyer">Carl Benjamin Boyer</a> to be second only to the <a href="/wiki/Bible" title="Bible">Bible</a> in the number of editions published,<sup id="cite_ref-Boyer_Influence_of_the_Elements_12-1" class="reference"><a href="#cite_note-Boyer_Influence_of_the_Elements-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> with the number reaching well over one thousand.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> For centuries, when the <a href="/wiki/Quadrivium" title="Quadrivium">quadrivium</a> was included in the curriculum of all university students, knowledge of at least part of Euclid's <i>Elements</i> was required of all students. Not until the 20th century, by which time its content was universally taught through other school textbooks, did it cease to be considered something all educated people had read.<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> </p><p>The <i>Elements</i> are mainly a systematization of earlier knowledge of geometry. It is assumed that its superiority over earlier treatments was recognized, with the consequence that there was little interest in preserving the earlier ones, and they are now nearly all lost. </p><p>Books I–IV and VI discuss plane geometry. Many results about plane figures are proved, e.g., <i>If a triangle has two equal angles, then the sides subtended by the angles are equal.</i> The <a href="/wiki/Pythagorean_theorem" title="Pythagorean theorem">Pythagorean theorem</a> is proved.<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> </p><p>Books V and VII–X deal with number theory, with numbers treated geometrically via their representation as line segments with various lengths. Notions such as <a href="/wiki/Prime_numbers" class="mw-redirect" title="Prime numbers">prime numbers</a> and <a href="/wiki/Rational_number" title="Rational number">rational</a> and <a href="/wiki/Irrational_number" title="Irrational number">irrational numbers</a> are introduced. The infinitude of prime numbers is proved. </p><p>Books XI–XIII concern solid geometry. A typical result is the 1:3 ratio between the volume of a cone and a cylinder with the same height and base. </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Parallel_postulate_en.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/ed/Parallel_postulate_en.svg/220px-Parallel_postulate_en.svg.png" decoding="async" width="220" height="165" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/ed/Parallel_postulate_en.svg/330px-Parallel_postulate_en.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/ed/Parallel_postulate_en.svg/440px-Parallel_postulate_en.svg.png 2x" data-file-width="800" data-file-height="600" /></a><figcaption>The parallel postulate: If two lines intersect a third in such a way that the sum of the inner angles on one side is less than two right angles, then the two lines inevitably must intersect each other on that side if extended far enough.</figcaption></figure> <p>Near the beginning of the first book of the <i>Elements</i>, Euclid gives five <a href="/wiki/Postulate" class="mw-redirect" title="Postulate">postulates</a> (axioms) for plane geometry, stated in terms of constructions (as translated by Thomas Heath):<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> </p><p>"Let the following be postulated": </p> <ol><li>"To draw a <a href="/wiki/Straight_line" class="mw-redirect" title="Straight line">straight line</a> from any <a href="/wiki/Point_(geometry)" title="Point (geometry)">point</a> to any point."</li> <li>"To produce [extend] a <a href="/wiki/Line_segment" title="Line segment">finite straight line</a> continuously in a straight line."</li> <li>"To describe a <a href="/wiki/Circle" title="Circle">circle</a> with any centre and distance [radius]."</li> <li>"That all right angles are equal to one another."</li> <li><i>The <a href="/wiki/Parallel_postulate" title="Parallel postulate">parallel postulate</a></i>: "That, if a straight line falling on two straight lines make the interior angles on the same side less than two right angles, the two straight lines, if produced indefinitely, meet on that side on which are the angles less than the two right angles."</li></ol> <p>Although Euclid's statement of the postulates only explicitly asserts the existence of the constructions, they are also assumed to produce unique objects. </p><p>The success of the <i>Elements</i> is due primarily to its logical presentation of most of the mathematical knowledge available to Euclid. Much of the material is not original to him, although many of the proofs are supposedly his. Euclid's systematic development of his subject, from a small set of axioms to deep results, and the consistency of his approach throughout the <i>Elements</i>, encouraged its use as a textbook for about 2,000 years. The <i>Elements</i> still influences modern geometry books. Further, its logical axiomatic approach and rigorous proofs remain the cornerstone of mathematics. </p> <div class="mw-heading mw-heading3"><h3 id="A_critique_of_Euclid">A critique of Euclid</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Foundations_of_geometry&amp;action=edit&amp;section=5" title="Edit section: A critique of Euclid"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The standards of mathematical rigor have changed since Euclid wrote the <i>Elements</i>.<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> Modern attitudes towards, and viewpoints of, an axiomatic system can make it appear that Euclid was in some way <i>sloppy</i> or <i>careless</i> in his approach to the subject, but this is an ahistorical illusion. It is only after the foundations were being carefully examined in response to the introduction of <a href="/wiki/Non-Euclidean_geometry" title="Non-Euclidean geometry">non-Euclidean geometry</a> that what we now consider <i>flaws</i> began to emerge. Mathematician and historian <a href="/wiki/W._W._Rouse_Ball" title="W. W. Rouse Ball">W. W. Rouse Ball</a> put these criticisms in perspective, remarking that "the fact that for two thousand years [the <i>Elements</i>] was the usual text-book on the subject raises a strong presumption that it is not unsuitable for that purpose."<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> </p><p>Some of the main issues with Euclid's presentation are: </p> <ul><li>Lack of recognition of the concept of <a href="/wiki/Primitive_notion" title="Primitive notion">primitive terms</a>, objects and notions that must be left undefined in the development of an axiomatic system.<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup></li> <li>The use of superposition in some proofs without there being an axiomatic justification of this method.<sup id="cite_ref-Faber_1983_loc=p._109_20-0" class="reference"><a href="#cite_note-Faber_1983_loc=p._109-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup></li> <li>Lack of a concept of continuity, which is needed to prove the existence of some points and lines that Euclid constructs.<sup id="cite_ref-Faber_1983_loc=p._109_20-1" class="reference"><a href="#cite_note-Faber_1983_loc=p._109-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup></li> <li>Lack of clarity on whether a straight line is infinite or boundaryless in the second postulate.<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup></li> <li>Lack of the concept of <i>betweenness</i> used, among other things, for distinguishing between the inside and outside of various figures.<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup></li></ul> <p>Euclid's list of axioms in the <i>Elements</i> was not exhaustive, but represented the principles that seemed the most important. His proofs often invoke axiomatic notions that were not originally presented in his list of axioms.<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> He does not go astray and prove erroneous things because of this, since he is making use of implicit assumptions whose validity appears to be justified by the diagrams which accompany his proofs. Later mathematicians have incorporated Euclid's implicit axiomatic assumptions in the list of formal axioms, thereby greatly extending that list.<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> </p><p>For example, in the first construction of Book 1, Euclid used a premise that was neither postulated nor proved: that two circles with centers at the distance of their radius will intersect in two points.<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup> Later, in the fourth construction, he used superposition (moving the triangles on top of each other) to prove that if two sides and their angles are equal then they are congruent; during these considerations he uses some properties of superposition, but these properties are not described explicitly in the treatise. If superposition is to be considered a valid method of geometric proof, all of geometry would be full of such proofs. For example, propositions I.1 to I.3 can be proved trivially by using superposition.<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup> </p><p>To address these issues in Euclid's work, later authors have either attempted to <i>fill in the holes</i> in Euclid's presentation &#8211; the most notable of these attempts is due to <a href="/wiki/David_Hilbert" title="David Hilbert">D. Hilbert</a> &#8211; or to organize the axiom system around <a href="#Birkhoff&#39;s_axioms">§ different concepts</a>, as <a href="/wiki/George_David_Birkhoff" title="George David Birkhoff">G.D. Birkhoff</a> has done. </p> <div class="mw-heading mw-heading3"><h3 id="Pasch_and_Peano">Pasch and Peano</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Foundations_of_geometry&amp;action=edit&amp;section=6" title="Edit section: Pasch and Peano"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The German mathematician <a href="/wiki/Moritz_Pasch" title="Moritz Pasch">Moritz Pasch</a> (1843&#8211;1930) was the first to accomplish the task of putting Euclidean geometry on a firm axiomatic footing.<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup> In his book, <i>Vorlesungen über neuere Geometrie</i> published in 1882, Pasch laid the foundations of the modern axiomatic method. He originated the concept of <a href="/wiki/Primitive_notion" title="Primitive notion">primitive notion</a> (which he called <i>Kernbegriffe</i>) and together with the axioms (<i>Kernsätzen</i>) he constructs a formal system which is free from any intuitive influences. According to Pasch, the only place where intuition should play a role is in deciding what the primitive notions and axioms should be. Thus, for Pasch, <i>point</i> is a primitive notion but <i>line</i> (straight line) is not, since we have good intuition about points but no one has ever seen or had experience with an infinite line. The primitive notion that Pasch uses in its place is <i>line segment</i>. </p><p>Pasch observed that the ordering of points on a line (or equivalently containment properties of line segments) is not properly resolved by Euclid's axioms; thus, <a href="/wiki/Pasch%27s_theorem" title="Pasch&#39;s theorem">Pasch's theorem</a>, stating that if two line segment containment relations hold then a third one also holds, cannot be proven from Euclid's axioms. The related <a href="/wiki/Pasch%27s_axiom" title="Pasch&#39;s axiom">Pasch's axiom</a> concerns the intersection properties of lines and triangles. </p><p>Pasch's work on the foundations set the standard for rigor, not only in geometry but also in the wider context of mathematics. His breakthrough ideas are now so commonplace that it is difficult to remember that they had a single originator. Pasch's work directly influenced many other mathematicians, in particular D. Hilbert and the Italian mathematician <a href="/wiki/G._Peano" class="mw-redirect" title="G. Peano">Giuseppe Peano</a> (1858&#8211;1932). Peano's 1889 work on geometry, largely a translation of Pasch's treatise into the notation of symbolic logic (which Peano invented), uses the primitive notions of <i>point</i> and <i>betweeness</i>.<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup> Peano breaks the empirical tie in the choice of primitive notions and axioms that Pasch required. For Peano, the entire system is purely formal, divorced from any empirical input.<sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Pieri_and_the_Italian_school_of_geometers">Pieri and the Italian school of geometers</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Foundations_of_geometry&amp;action=edit&amp;section=7" title="Edit section: Pieri and the Italian school of geometers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Italian mathematician <a href="/wiki/Mario_Pieri" title="Mario Pieri">Mario Pieri</a> (1860&#8211;1913) took a different approach and considered a system in which there were only two primitive notions, that of <i>point</i> and of <i>motion</i>.<sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> Pasch had used four primitives and Peano had reduced this to three, but both of these approaches relied on some concept of betweeness which Pieri replaced by his formulation of <a href="/wiki/Motion_(geometry)" title="Motion (geometry)">motion</a>. In 1905 Pieri gave the first axiomatic treatment of <a href="/wiki/Complex_number" title="Complex number">complex</a> <a href="/wiki/Projective_geometry" title="Projective geometry">projective geometry</a> which did not start by building <a href="/wiki/Real_number" title="Real number">real</a> projective geometry. </p><p>Pieri was a member of a group of Italian geometers and logicians that Peano had gathered around himself in Turin. This group of assistants, junior colleagues and others were dedicated to carrying out Peano's logico&#8211;geometrical program of putting the foundations of geometry on firm axiomatic footing based on Peano's logical symbolism. Besides Pieri, <a href="/wiki/Burali-Forti" class="mw-redirect" title="Burali-Forti">Burali-Forti</a>, <a href="/wiki/Alessandro_Padoa" title="Alessandro Padoa">Padoa</a> and <a href="/wiki/Gino_Fano" title="Gino Fano">Fano</a> were in this group. In 1900 there were two international conferences held back-to-back in Paris, the <a href="/wiki/International_Congress_of_Philosophy" class="mw-redirect" title="International Congress of Philosophy">International Congress of Philosophy</a> and the Second <a href="/wiki/International_Congress_of_Mathematicians" title="International Congress of Mathematicians">International Congress of Mathematicians</a>. This group of Italian mathematicians was very much in evidence at these congresses, pushing their axiomatic agenda.<sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup> Padoa gave a well regarded talk and Peano, in the question period after <a href="/wiki/David_Hilbert" title="David Hilbert">David Hilbert</a>'s famous address on <a href="/wiki/Hilbert%27s_problems" title="Hilbert&#39;s problems">unsolved problems</a>, remarked that his colleagues had already solved Hilbert's second problem. </p> <div class="mw-heading mw-heading3"><h3 id="Hilbert's_axioms"><span id="Hilbert.27s_axioms"></span>Hilbert's axioms</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Foundations_of_geometry&amp;action=edit&amp;section=8" title="Edit section: Hilbert&#039;s axioms"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Hilbert%27s_axioms" title="Hilbert&#39;s axioms">Hilbert's axioms</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Hilbert.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/79/Hilbert.jpg/220px-Hilbert.jpg" decoding="async" width="220" height="298" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/79/Hilbert.jpg/330px-Hilbert.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/7/79/Hilbert.jpg 2x" data-file-width="437" data-file-height="592" /></a><figcaption><div class="center" style="width:auto; margin-left:auto; margin-right:auto;">David Hilbert</div></figcaption></figure> <p>At the University of Göttingen, during the 1898&#8211;1899 winter term, the eminent German mathematician <a href="/wiki/David_Hilbert" title="David Hilbert">David Hilbert</a> (1862&#8211;1943) presented a course of lectures on the foundations of geometry. At the request of <a href="/wiki/Felix_Klein" title="Felix Klein">Felix Klein</a>, Professor Hilbert was asked to write up the lecture notes for this course in time for the summer 1899 dedication ceremony of a monument to <a href="/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss">C.F. Gauss</a> and <a href="/wiki/Wilhelm_Eduard_Weber" title="Wilhelm Eduard Weber">Wilhelm Weber</a> to be held at the university. The rearranged lectures were published in June 1899 under the title <i><a href="/wiki/Grundlagen_der_Geometrie" class="mw-redirect" title="Grundlagen der Geometrie">Grundlagen der Geometrie</a></i> (Foundations of Geometry). The influence of the book was immediate. According to <a href="#CITEREFEves1963">Eves (1963</a>, pp. 384&#8211;5): </p> <blockquote> <p>By developing a postulate set for Euclidean geometry that does not depart too greatly in spirit from Euclid's own, and by employing a minimum of symbolism, Hilbert succeeded in convincing mathematicians to a far greater extent than had Pasch and Peano, of the purely hypothetico-deductive nature of geometry. But the influence of Hilbert's work went far beyond this, for, backed by the author's great mathematical authority, it firmly implanted the postulational method, not only in the field of geometry, but also in essentially every other branch of mathematics. The stimulus to the development of the foundations of mathematics provided by Hilbert's little book is difficult to overestimate. Lacking the strange symbolism of the works of Pasch and Peano, Hilbert's work can be read, in great part, by any intelligent student of high school geometry. </p> </blockquote> <p>It is difficult to specify the axioms used by Hilbert without referring to the publication history of the <i>Grundlagen</i> since Hilbert changed and modified them several times. The original monograph was quickly followed by a French translation, in which Hilbert added V.2, the Completeness Axiom. An English translation, authorized by Hilbert, was made by E.J. Townsend and copyrighted in 1902.<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup> This translation incorporated the changes made in the French translation and so is considered to be a translation of the 2nd edition. Hilbert continued to make changes in the text and several editions appeared in German. The 7th edition was the last to appear in Hilbert's lifetime. New editions followed the 7th, but the main text was essentially not revised. The modifications in these editions occur in the appendices and in supplements. The changes in the text were large when compared to the original and a new English translation was commissioned by Open Court Publishers, who had published the Townsend translation. So, the 2nd English Edition was translated by Leo Unger from the 10th German edition in 1971.<sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup> This translation incorporates several revisions and enlargements of the later German editions by Paul Bernays. The differences between the two English translations are due not only to Hilbert, but also to differing choices made by the two translators. What follows will be based on the Unger translation. </p><p>Hilbert's <a href="/wiki/Axiom_system" class="mw-redirect" title="Axiom system">axiom system</a> is constructed with six <a href="/wiki/Primitive_notion" title="Primitive notion">primitive notions</a>: <a href="/wiki/Point_(geometry)" title="Point (geometry)"><i>point</i></a>, <a href="/wiki/Line_(geometry)" title="Line (geometry)"><i>line</i></a>, <a href="/wiki/Plane_(mathematics)" title="Plane (mathematics)"><i>plane</i></a>, <i>betweenness</i>, <i>lies on (containment)</i>, and <i>congruence</i>. </p><p>All points, lines, and planes in the following axioms are distinct unless otherwise stated. </p> <dl><dd><b>I. Incidence</b></dd></dl> <ol><li>For every two points <i>A</i> and <i>B</i> there exists a line <i>a</i> that contains them both. We write <i>AB</i> = <i>a</i> or <i>BA</i> = <i>a</i>. Instead of “contains,” we may also employ other forms of expression; for example, we may say “<i>A</i> lies upon <i>a</i>”, “<i>A</i> is a point of <i>a</i>”, “<i>a</i> goes through <i>A</i> and through <i>B</i>”, “<i>a</i> joins <i>A</i> to <i>B</i>”, etc. If <i>A</i> lies upon <i>a</i> and at the same time upon another line <i>b</i>, we make use also of the expression: “The lines <i>a</i> and <i>b</i> have the point <i>A</i> in common,” etc.</li> <li>For every two points there exists no more than one line that contains them both; consequently, if <i>AB</i> = <i>a</i> and <i>AC</i> = <i>a</i>, where <i>B</i> ≠ <i>C</i>, then also <i>BC</i> = a<i>.</i></li> <li>There exist at least two points on a line. There exist at least three points that do not lie on a line.</li> <li>For every three points <i>A</i>, <i>B</i>, <i>C</i> not situated on the same line there exists a plane α that contains all of them. For every plane there exists a point which lies on it. We write <i>ABC</i> = <i>α</i>. We employ also the expressions: “<i>A</i>, <i>B</i>, <i>C</i>, lie in α”; “A, B, C are points of α”, etc.</li> <li>For every three points <i>A</i>, <i>B</i>, <i>C</i> which do not lie in the same line, there exists no more than one plane that contains them all.</li> <li>If two points <i>A</i>, <i>B</i> of a line <i>a</i> lie in a plane α, then every point of <i>a</i> lies in α. In this case we say: “The line <i>a</i> lies in the plane α,” etc.</li> <li>If two planes α, β have a point <i>A</i> in common, then they have at least a second point <i>B</i> in common.</li> <li>There exist at least four points not lying in a plane.</li></ol> <dl><dd><b>II. Order</b></dd></dl> <ol><li>If a point <i>B</i> lies between points <i>A</i> and <i>C</i>, <i>B</i> is also between <i>C</i> and <i>A</i>, and there exists a line containing the distinct points <i>A,B,C</i>.</li> <li>If <i>A</i> and <i>C</i> are two points of a line, then there exists at least one point <i>B</i> lying between <i>A</i> and <i>C</i>.</li> <li>Of any three points situated on a line, there is no more than one which lies between the other two.</li> <li><a href="/wiki/Pasch%27s_Axiom" class="mw-redirect" title="Pasch&#39;s Axiom">Pasch's Axiom</a>: Let <i>A</i>, <i>B</i>, <i>C</i> be three points not lying in the same line and let <i>a</i> be a line lying in the plane <i>ABC</i> and not passing through any of the points <i>A</i>, <i>B</i>, <i>C</i>. Then, if the line <i>a</i> passes through a point of the segment <i>AB</i>, it will also pass through either a point of the segment <i>BC</i> or a point of the segment <i>AC</i>.</li></ol> <dl><dd><b>III. Congruence</b></dd></dl> <ol><li>If <i>A</i>, <i>B</i> are two points on a line <i>a</i>, and if <i>A′</i> is a point upon the same or another line <i>a′</i> , then, upon a given side of <i>A′</i> on the straight line <i>a′</i> , we can always find a point <i>B′</i> so that the segment <i>AB</i> is congruent to the segment <i>A′B′</i> . We indicate this relation by writing <i>AB</i> &#8773; <i>A′</i> <i>B′</i>. Every segment is congruent to itself; that is, we always have <i>AB</i> &#8773; <i>AB</i>.<br />We can state the above axiom briefly by saying that every segment can be <i>laid off</i> upon a given side of a given point of a given straight line in at least one way.</li> <li>If a segment <i>AB</i> is congruent to the segment <i>A′B′</i> and also to the segment <i>A″B″</i>, then the segment <i>A′B′</i> is congruent to the segment <i>A″B″</i>; that is, if <i>AB</i> &#8773; <i>A′B′</i> and <i>AB</i> ≅ <i>A″B″</i>, then <i>A′B′</i> ≅ <i>A″B″</i>.</li> <li>Let <i>AB</i> and <i>BC</i> be two segments of a line <i>a</i> which have no points in common aside from the point <i>B</i>, and, furthermore, let <i>A′B′</i> and <i>B′C′</i> be two segments of the same or of another line <i>a′</i> having, likewise, no point other than <i>B′</i> in common. Then, if <i>AB</i> &#8773; <i>A′B′</i> and <i>BC</i> ≅ <i>B′C′</i>, we have <i>AC</i> &#8773; <i>A′C′</i>.</li> <li>Let an angle ∠&#160;(<i>h</i>,<i>k</i>) be given in the plane α and let a line <i>a′</i> be given in a plane α′. Suppose also that, in the plane α′, a definite side of the straight line <i>a′</i> be assigned. Denote by <i>h′</i> a ray of the straight line <i>a′</i> emanating from a point <i>O′</i> of this line. Then in the plane α′ there is one and only one ray <i>k′</i> such that the angle ∠&#160;(<i>h</i>, <i>k</i>), or ∠&#160;(<i>k</i>, <i>h</i>), is congruent to the angle ∠&#160;(<i>h′</i>, <i>k′</i>) and at the same time all interior points of the angle ∠&#160;(<i>h′</i>, <i>k′</i>) lie upon the given side of <i>a′</i>. We express this relation by means of the notation ∠&#160;(<i>h</i>, <i>k</i>) &#8773; ∠&#160;(<i>h′</i>, <i>k′</i>).</li> <li>If the angle ∠&#160;(<i>h</i>, <i>k</i>) is congruent to the angle ∠&#160;(<i>h′</i>, <i>k′</i>) and to the angle ∠&#160;(<i>h″</i>, <i>k″</i>), then the angle ∠&#160;(<i>h′</i>, <i>k′</i>) is congruent to the angle ∠&#160;(<i>h″</i>, <i>k″</i>); that is to say, if ∠&#160;(<i>h</i>, <i>k</i>) &#8773; ∠&#160;(<i>h′</i>, <i>k′</i>) and ∠&#160;(<i>h</i>, <i>k</i>) &#8773; ∠&#160;(<i>h″</i>, <i>k″</i>), then ∠&#160;(<i>h′</i>, <i>k′</i>) &#8773; ∠&#160;(<i>h″</i>, <i>k″</i>).</li></ol> <dl><dd><b>IV. Parallels</b></dd></dl> <ol><li>(Euclid's Axiom):<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup> Let <i>a</i> be any line and <i>A</i> a point not on it. Then there is at most one line in the plane, determined by <i>a</i> and <i>A</i>, that passes through <i>A</i> and does not intersect <i>a</i>.</li></ol> <dl><dd><b>V. Continuity</b></dd></dl> <ol><li><a href="/wiki/Axiom_of_Archimedes" class="mw-redirect" title="Axiom of Archimedes">Axiom of Archimedes</a>. If <i>AB</i> and <i>CD</i> are any segments then there exists a number <i>n</i> such that <i>n</i> segments <i>CD</i> constructed contiguously from <i>A</i>, along the ray from <i>A</i> through <i>B</i>, will pass beyond the point <i>B</i>.</li> <li><i>Axiom of line completeness</i>. An extension of a set of points on a line with its order and congruence relations that would preserve the relations existing among the original elements as well as the fundamental properties of line order and congruence that follows from Axioms I–III and from V-1 is impossible.</li></ol> <div class="mw-heading mw-heading4"><h4 id="Changes_in_Hilbert's_axioms"><span id="Changes_in_Hilbert.27s_axioms"></span>Changes in Hilbert's axioms</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Foundations_of_geometry&amp;action=edit&amp;section=9" title="Edit section: Changes in Hilbert&#039;s axioms"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>When the monograph of 1899 was translated into French, Hilbert added: </p> <dl><dd><dl><dd>V.2 <i>Axiom of completeness</i>. To a system of points, straight lines, and planes, it is impossible to add other elements in such a manner that the system thus generalized shall form a new geometry obeying all of the five groups of axioms. In other words, the elements of geometry form a system which is not susceptible of extension, if we regard the five groups of axioms as valid.</dd></dl></dd></dl> <p>This axiom is not needed for the development of Euclidean geometry, but is needed to establish a <a href="/wiki/Bijection" title="Bijection">bijection</a> between the <a href="/wiki/Real_number" title="Real number">real numbers</a> and the points on a line.<sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup> This was an essential ingredient in Hilbert's proof of the consistency of his axiom system. </p><p>By the 7th edition of the <i>Grundlagen</i>, this axiom had been replaced by the axiom of line completeness given above and the old axiom V.2 became Theorem 32. </p><p>Also to be found in the 1899 monograph (and appearing in the Townsend translation) is: </p> <dl><dd>II.4. Any four points <i>A</i>, <i>B</i>, <i>C</i>, <i>D</i> of a line can always be labeled so that <i>B</i> shall lie between <i>A</i> and <i>C</i> and also between <i>A</i> and <i>D</i>, and, furthermore, that <i>C</i> shall lie between <i>A</i> and <i>D</i> and also between <i>B</i> and <i>D</i>.</dd></dl> <p>However, <a href="/wiki/E.H._Moore" class="mw-redirect" title="E.H. Moore">E.H. Moore</a> and <a href="/wiki/R.L._Moore" class="mw-redirect" title="R.L. Moore">R.L. Moore</a> independently proved that this axiom is redundant, and the former published this result in an article appearing in the <i>Transactions of the American Mathematical Society</i> in 1902.<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup> Hilbert moved the axiom to Theorem 5 and renumbered the axioms accordingly (old axiom II-5 (Pasch's axiom) now became II-4). </p><p>While not as dramatic as these changes, most of the remaining axioms were also modified in form and/or function over the course of the first seven editions. </p> <div class="mw-heading mw-heading4"><h4 id="Consistency_and_independence">Consistency and independence</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Foundations_of_geometry&amp;action=edit&amp;section=10" title="Edit section: Consistency and independence"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Going beyond the establishment of a satisfactory set of axioms, Hilbert also proved the consistency of his system relative to the theory of real numbers by constructing a model of his axiom system from the real numbers. He proved the independence of some of his axioms by constructing models of geometries which satisfy all except the one axiom under consideration. Thus, there are examples of geometries satisfying all except the Archimedean axiom V.1 (non-Archimedean geometries), all except the parallel axiom IV.1 (non-Euclidean geometries) and so on. Using the same technique he also showed how some important theorems depended on certain axioms and were independent of others. Some of his models were very complex and other mathematicians tried to simplify them. For instance, Hilbert's model for showing the independence of <a href="/wiki/Desargues_theorem" class="mw-redirect" title="Desargues theorem">Desargues theorem</a> from certain axioms ultimately led Ray Moulton to discover the non-Desarguesian <a href="/wiki/Moulton_plane" title="Moulton plane">Moulton plane</a>. These investigations by Hilbert virtually inaugurated the modern study of abstract geometry in the twentieth century.<sup id="cite_ref-Eves_1963_loc=p._387_37-0" class="reference"><a href="#cite_note-Eves_1963_loc=p._387-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Birkhoff's_axioms"><span id="Birkhoff.27s_axioms"></span>Birkhoff's axioms</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Foundations_of_geometry&amp;action=edit&amp;section=11" title="Edit section: Birkhoff&#039;s axioms"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Birkhoff%27s_axioms" title="Birkhoff&#39;s axioms">Birkhoff's axioms</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:George_David_Birkhoff_1.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/52/George_David_Birkhoff_1.jpg/220px-George_David_Birkhoff_1.jpg" decoding="async" width="220" height="268" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/5/52/George_David_Birkhoff_1.jpg 1.5x" data-file-width="268" data-file-height="326" /></a><figcaption><div class="center" style="width:auto; margin-left:auto; margin-right:auto;">George David Birkhoff</div></figcaption></figure> <p>In 1932, <a href="/wiki/George_David_Birkhoff" title="George David Birkhoff">G. D. Birkhoff</a> created a set of four <a href="/wiki/Postulate" class="mw-redirect" title="Postulate">postulates</a> of <a href="/wiki/Euclidean_geometry" title="Euclidean geometry">Euclidean geometry</a> sometimes referred to as <i>Birkhoff's axioms</i>.<sup id="cite_ref-38" class="reference"><a href="#cite_note-38"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup> These postulates are all based on basic <a href="/wiki/Geometry" title="Geometry">geometry</a> that can be experimentally verified with a <a href="/wiki/Vernier_scale" title="Vernier scale">scale</a> and <a href="/wiki/Protractor" class="mw-redirect" title="Protractor">protractor</a>. In a radical departure from the synthetic approach of Hilbert, Birkhoff was the first to build the foundations of geometry on the <a href="/wiki/Real_number" title="Real number">real number</a> system.<sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup> It is this powerful assumption that permits the small number of axioms in this system. </p> <div class="mw-heading mw-heading4"><h4 id="Postulates">Postulates</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Foundations_of_geometry&amp;action=edit&amp;section=12" title="Edit section: Postulates"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Birkhoff uses four undefined terms: <i>point</i>, <i>line</i>, <i>distance</i> and <i>angle</i>. His postulates are:<sup id="cite_ref-40" class="reference"><a href="#cite_note-40"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup> </p><p><b>Postulate I: Postulate of Line Measure</b>. The points <i>A</i>, <i>B</i>, ... of any line can be put into 1:1 correspondence with the <a href="/wiki/Real_number" title="Real number">real numbers</a> <i>x</i> so that |<i>x</i><sub><i>B</i></sub>&#160;&#8722;<i>x</i><sub>&#160;<i>A</i></sub>| =&#160;d(<i>A,&#160;B</i>) for all points <i>A</i> and&#160;<i>B</i>. </p><p><b>Postulate II: Point-Line Postulate</b>. There is one and only one straight line, <i>ℓ</i>, that contains any two given distinct points <i>P</i> and&#160;<i>Q</i>. </p><p><b>Postulate III: Postulate of Angle Measure</b>. The rays {<i>ℓ,&#160;m,&#160;n</i>,&#160;...} through any point <i>O</i> can be put into 1:1 correspondence with the real numbers <i>a</i>&#160;(mod&#160;2<i>π</i>) so that if <i>A</i> and <i>B</i> are points (not equal to <i>O</i>) of <i>ℓ</i> and <i>m</i>, respectively, the difference <i>a</i><sub><i>m</i></sub>&#160;&#8722;&#160;<i>a</i><sub><i>ℓ</i></sub>&#160;(mod&#160;2π) of the numbers associated with the lines <i>ℓ</i> and <i>m</i> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \angle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2220;<!-- ∠ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \angle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb772c0cb6f32e9359da3c1a0a26f8ac8f66301f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \angle }"></span><i>AOB</i>. Furthermore, if the point <i>B</i> on <i>m</i> varies continuously in a line <i>r</i> not containing the vertex <i>O</i>, the number <i>a</i><sub><i>m</i></sub> varies continuously also. </p><p><b>Postulate IV: Postulate of Similarity</b>. If in two triangles <i>ABC</i> and <i>A'B'C'&#160;</i> and for some constant <i>k</i>&#160;&gt;&#160;0, <i>d</i>(<i>A',&#160;B' </i>) =&#160;<i>kd</i>(<i>A, B</i>), <i>d</i>(<i>A',&#160;C'&#160;</i>)&#160;=&#160;<i>kd</i>(<i>A,&#160;C</i>) and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \angle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2220;<!-- ∠ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \angle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb772c0cb6f32e9359da3c1a0a26f8ac8f66301f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \angle }"></span><i>B'A'C'&#160;</i>&#160;=&#160;±<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \angle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2220;<!-- ∠ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \angle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb772c0cb6f32e9359da3c1a0a26f8ac8f66301f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \angle }"></span><i>BAC</i>, then <i>d</i>(<i>B',&#160;C'&#160;</i>)&#160;=&#160;<i>kd</i>(<i>B,&#160;C</i>), <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \angle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2220;<!-- ∠ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \angle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb772c0cb6f32e9359da3c1a0a26f8ac8f66301f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \angle }"></span>&#160;<i>C'B'A'&#160;</i>&#160;=&#160;±<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \angle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2220;<!-- ∠ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \angle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb772c0cb6f32e9359da3c1a0a26f8ac8f66301f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \angle }"></span><i>CBA</i>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \angle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2220;<!-- ∠ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \angle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb772c0cb6f32e9359da3c1a0a26f8ac8f66301f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \angle }"></span><i>A'C'B'&#160;</i>&#160;=&#160;±<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \angle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2220;<!-- ∠ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \angle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb772c0cb6f32e9359da3c1a0a26f8ac8f66301f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \angle }"></span><i>ACB</i>. </p> <div class="mw-heading mw-heading3"><h3 id="School_geometry">School geometry</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Foundations_of_geometry&amp;action=edit&amp;section=13" title="Edit section: School geometry"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:George_Bruce_Halsted.jpeg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/76/George_Bruce_Halsted.jpeg/220px-George_Bruce_Halsted.jpeg" decoding="async" width="220" height="268" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/7/76/George_Bruce_Halsted.jpeg 1.5x" data-file-width="268" data-file-height="326" /></a><figcaption>George Bruce Halsted</figcaption></figure> <p>Whether or not it is wise to teach Euclidean geometry from an axiomatic viewpoint at the high school level has been a matter of debate. There have been many attempts to do so and not all of them have been successful. In 1904, <a href="/wiki/George_Bruce_Halsted" class="mw-redirect" title="George Bruce Halsted">George Bruce Halsted</a> published a high school geometry text based on Hilbert's axiom set.<sup id="cite_ref-41" class="reference"><a href="#cite_note-41"><span class="cite-bracket">&#91;</span>41<span class="cite-bracket">&#93;</span></a></sup> Logical criticisms of this text led to a highly revised second edition.<sup id="cite_ref-Eves_1963_loc=p._388_42-0" class="reference"><a href="#cite_note-Eves_1963_loc=p._388-42"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup> In reaction to the launching of the Russian satellite <a href="/wiki/Sputnik_crisis" title="Sputnik crisis">Sputnik</a> there was a call in the United States to revise the school mathematics curriculum. From this effort there arose the <a href="/wiki/New_Math" title="New Math">New Math</a> program of the 1960s. With this as a background, many individuals and groups set about to provide textual material for geometry classes based on an axiomatic approach. </p> <div class="mw-heading mw-heading4"><h4 id="Mac_Lane's_axioms"><span id="Mac_Lane.27s_axioms"></span>Mac Lane's axioms</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Foundations_of_geometry&amp;action=edit&amp;section=14" title="Edit section: Mac Lane&#039;s axioms"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-left" typeof="mw:File/Thumb"><a href="/wiki/File:Saunders_MacLane.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/27/Saunders_MacLane.jpg/220px-Saunders_MacLane.jpg" decoding="async" width="220" height="311" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/2/27/Saunders_MacLane.jpg 1.5x" data-file-width="283" data-file-height="400" /></a><figcaption>Saunders Mac Lane</figcaption></figure> <p><a href="/wiki/Saunders_Mac_Lane" title="Saunders Mac Lane">Saunders Mac Lane</a> (1909&#8211;2005), a mathematician,<sup id="cite_ref-43" class="reference"><a href="#cite_note-43"><span class="cite-bracket">&#91;</span>43<span class="cite-bracket">&#93;</span></a></sup> wrote a paper in 1959 in which he proposed a set of axioms for Euclidean geometry in the spirit of Birkhoff's treatment using a distance function to associate real numbers with line segments.<sup id="cite_ref-44" class="reference"><a href="#cite_note-44"><span class="cite-bracket">&#91;</span>44<span class="cite-bracket">&#93;</span></a></sup> This was not the first attempt to base a school level treatment on Birkhoff's system, in fact, Birkhoff and Ralph Beatley had written a high school text in 1940<sup id="cite_ref-45" class="reference"><a href="#cite_note-45"><span class="cite-bracket">&#91;</span>45<span class="cite-bracket">&#93;</span></a></sup> which developed Euclidean geometry from five axioms and the ability to measure line segments and angles. However, in order to gear the treatment to a high school audience, some mathematical and logical arguments were either ignored or slurred over.<sup id="cite_ref-Eves_1963_loc=p._388_42-1" class="reference"><a href="#cite_note-Eves_1963_loc=p._388-42"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup> </p><p>In Mac Lane's system there are four <a href="/wiki/Primitive_notion" title="Primitive notion">primitive notions</a> (undefined terms): <i>point</i>, <i>distance</i>, <i>line</i> and <i>angle measure</i>. There are also 14 axioms, four giving the properties of the distance function, four describing properties of lines, four discussing angles (which are directed angles in this treatment), a similarity axiom (essentially the same as Birkhoff's) and a continuity axiom which can be used to derive the <a href="/wiki/Crossbar_theorem" title="Crossbar theorem">Crossbar theorem</a> and its converse.<sup id="cite_ref-46" class="reference"><a href="#cite_note-46"><span class="cite-bracket">&#91;</span>46<span class="cite-bracket">&#93;</span></a></sup> The increased number of axioms has the pedagogical advantage of making early proofs in the development easier to follow and the use of a familiar <a href="/wiki/Metric_(mathematics)" class="mw-redirect" title="Metric (mathematics)">metric</a> permits a rapid advancement through basic material so that the more "interesting" aspects of the subject can be gotten to sooner. </p> <div class="mw-heading mw-heading4"><h4 id="SMSG_(School_Mathematics_Study_Group)_axioms"><span id="SMSG_.28School_Mathematics_Study_Group.29_axioms"></span>SMSG (School Mathematics Study Group) axioms</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Foundations_of_geometry&amp;action=edit&amp;section=15" title="Edit section: SMSG (School Mathematics Study Group) axioms"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In the 1960s a new set of axioms for Euclidean geometry, suitable for American high school geometry courses, was introduced by the <a href="/wiki/School_Mathematics_Study_Group" title="School Mathematics Study Group">School Mathematics Study Group</a> (SMSG), as a part of the <a href="/wiki/New_math" class="mw-redirect" title="New math">New math</a> curricula. This set of axioms follows the Birkhoff model of using the real numbers to gain quick entry into the geometric fundamentals. However, whereas Birkhoff tried to minimize the number of axioms used, and most authors were concerned with the independence of the axioms in their treatments, the SMSG axiom list was intentionally made large and redundant for pedagogical reasons.<sup id="cite_ref-Venema_2006_loc=p._55_47-0" class="reference"><a href="#cite_note-Venema_2006_loc=p._55-47"><span class="cite-bracket">&#91;</span>47<span class="cite-bracket">&#93;</span></a></sup> The SMSG only produced a mimeographed text using these axioms,<sup id="cite_ref-48" class="reference"><a href="#cite_note-48"><span class="cite-bracket">&#91;</span>48<span class="cite-bracket">&#93;</span></a></sup> but <a href="/wiki/Edwin_E._Moise" title="Edwin E. Moise">Edwin E. Moise</a>, a member of the SMSG, wrote a high school text based on this system,<sup id="cite_ref-49" class="reference"><a href="#cite_note-49"><span class="cite-bracket">&#91;</span>49<span class="cite-bracket">&#93;</span></a></sup> and a college level text, <a href="#CITEREFMoise1974">Moise (1974)</a>, with some of the redundancy removed and modifications made to the axioms for a more sophisticated audience.<sup id="cite_ref-50" class="reference"><a href="#cite_note-50"><span class="cite-bracket">&#91;</span>50<span class="cite-bracket">&#93;</span></a></sup> </p><p>There are eight undefined terms: <i>point</i>, <i>line</i>, <i>plane</i>, <i>lies on</i>, <i>angle measure</i>, <i>distance</i>, <i>area</i> and <i>volume</i>. The 22 axioms of this system are given individual names for ease of reference. Amongst these are to be found: the Ruler Postulate, the Ruler Placement Postulate, the Plane Separation Postulate, the Angle Addition Postulate, the <a href="/wiki/Side_angle_side" class="mw-redirect" title="Side angle side">Side angle side</a> (SAS) Postulate, the Parallel Postulate (in <a href="/wiki/Playfair%27s_axiom" title="Playfair&#39;s axiom">Playfair's form</a>), and <a href="/wiki/Cavalieri%27s_principle" title="Cavalieri&#39;s principle">Cavalieri's principle</a>.<sup id="cite_ref-51" class="reference"><a href="#cite_note-51"><span class="cite-bracket">&#91;</span>51<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="UCSMP_(University_of_Chicago_School_Mathematics_Project)_axioms"><span id="UCSMP_.28University_of_Chicago_School_Mathematics_Project.29_axioms"></span>UCSMP (University of Chicago School Mathematics Project) axioms</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Foundations_of_geometry&amp;action=edit&amp;section=16" title="Edit section: UCSMP (University of Chicago School Mathematics Project) axioms"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Although much of the <a href="/wiki/New_math" class="mw-redirect" title="New math">New math</a> curriculum has been drastically modified or abandoned, the geometry portion has remained relatively stable in the United States. Modern American high school textbooks use axiom systems that are very similar to those of the SMSG. For example, the texts produced by the <a href="/wiki/University_of_Chicago_School_Mathematics_Project" title="University of Chicago School Mathematics Project">University of Chicago School Mathematics Project</a> (UCSMP) use a system which, besides some updating of language, differs mainly from the SMSG system in that it includes some <a href="/wiki/Transformation_(function)" title="Transformation (function)">transformation</a> concepts under its "Reflection Postulate".<sup id="cite_ref-Venema_2006_loc=p._55_47-1" class="reference"><a href="#cite_note-Venema_2006_loc=p._55-47"><span class="cite-bracket">&#91;</span>47<span class="cite-bracket">&#93;</span></a></sup> </p><p>There are only three undefined terms: <i>point</i>, <i>line</i> and <i>plane</i>. There are eight "postulates", but most of these have several parts (which are generally called <i>assumptions</i> in this system). Counting these parts, there are 32 axioms in this system. Amongst the postulates can be found the <a href="/wiki/Point-line-plane_postulate" class="mw-redirect" title="Point-line-plane postulate">point-line-plane postulate</a>, the <a href="/wiki/Triangle_inequality" title="Triangle inequality">Triangle inequality</a> postulate, postulates for distance, angle measurement, corresponding angles, area and volume, and the Reflection postulate. The reflection postulate is used as a replacement for the SAS postulate of SMSG system.<sup id="cite_ref-52" class="reference"><a href="#cite_note-52"><span class="cite-bracket">&#91;</span>52<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Other_systems">Other systems</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Foundations_of_geometry&amp;action=edit&amp;section=17" title="Edit section: Other systems"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Oswald_Veblen" title="Oswald Veblen">Oswald Veblen</a> (1880 &#8211; 1960) provided a new axiom system in 1904 when he replaced the concept of "betweeness", as used by Hilbert and Pasch, with a new primitive, <i>order</i>. This permitted several primitive terms used by Hilbert to become defined entities, reducing the number of primitive notions to two, <i>point</i> and <i>order</i>.<sup id="cite_ref-Eves_1963_loc=p._387_37-1" class="reference"><a href="#cite_note-Eves_1963_loc=p._387-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup> </p><p>Many other axiomatic systems for Euclidean geometry have been proposed over the years. A comparison of many of these can be found in a 1927 monograph by Henry George Forder.<sup id="cite_ref-53" class="reference"><a href="#cite_note-53"><span class="cite-bracket">&#91;</span>53<span class="cite-bracket">&#93;</span></a></sup> Forder also gives, by combining axioms from different systems, his own treatment based on the two primitive notions of <i>point</i> and <i>order</i>. He also provides a more abstract treatment of one of Pieri's systems (from 1909) based on the primitives <i>point</i> and <i>congruence</i>.<sup id="cite_ref-Eves_1963_loc=p._388_42-2" class="reference"><a href="#cite_note-Eves_1963_loc=p._388-42"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup> </p><p>Starting with Peano, there has been a parallel thread of interest amongst logicians concerning the axiomatic foundations of Euclidean geometry. This can be seen, in part, in the notation used to describe the axioms. Pieri claimed that even though he wrote in the traditional language of geometry, he was always thinking in terms of the logical notation introduced by Peano, and used that formalism to see how to prove things. A typical example of this type of notation can be found in the work of <a href="/wiki/Edward_Vermilye_Huntington" title="Edward Vermilye Huntington">E. V. Huntington</a> (1874 &#8211; 1952) who, in 1913,<sup id="cite_ref-54" class="reference"><a href="#cite_note-54"><span class="cite-bracket">&#91;</span>54<span class="cite-bracket">&#93;</span></a></sup> produced an axiomatic treatment of three-dimensional Euclidean geometry based upon the primitive notions of <i>sphere</i> and <i>inclusion</i> (one sphere lying within another).<sup id="cite_ref-Eves_1963_loc=p._388_42-3" class="reference"><a href="#cite_note-Eves_1963_loc=p._388-42"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup> Beyond notation there is also interest in the logical structure of the theory of geometry. <a href="/wiki/Alfred_Tarski" title="Alfred Tarski">Alfred Tarski</a> proved that a portion of geometry, which he called <i>elementary</i> geometry, is a first order logical theory (see <a href="/wiki/Tarski%27s_axioms" title="Tarski&#39;s axioms">Tarski's axioms</a>). </p><p>Modern text treatments of the axiomatic foundations of Euclidean geometry follow the pattern of H.G. Forder and <a href="/wiki/Gilbert_de_Beauregard_Robinson" title="Gilbert de Beauregard Robinson">Gilbert de B. Robinson</a><sup id="cite_ref-55" class="reference"><a href="#cite_note-55"><span class="cite-bracket">&#91;</span>55<span class="cite-bracket">&#93;</span></a></sup> who mix and match axioms from different systems to produce different emphases. <a href="#CITEREFVenema2006">Venema (2006)</a> is a modern example of this approach. </p> <div class="mw-heading mw-heading2"><h2 id="Non-Euclidean_geometry">Non-Euclidean geometry</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Foundations_of_geometry&amp;action=edit&amp;section=18" title="Edit section: Non-Euclidean geometry"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Non-Euclidean_geometry" title="Non-Euclidean geometry">Non-Euclidean geometry</a></div> <blockquote> <p>In view of the role which mathematics plays in science and implications of scientific knowledge for all of our beliefs, revolutionary changes in man's understanding of the nature of mathematics could not but mean revolutionary changes in his understanding of science, doctrines of philosophy, religious and ethical beliefs, and, in fact, all intellectual disciplines.<sup id="cite_ref-56" class="reference"><a href="#cite_note-56"><span class="cite-bracket">&#91;</span>56<span class="cite-bracket">&#93;</span></a></sup> </p> </blockquote> <p>In the first half of the nineteenth century a revolution took place in the field of geometry that was as scientifically important as the Copernican revolution in astronomy and as philosophically profound as the Darwinian theory of evolution in its impact on the way we think. This was the consequence of the discovery of non-Euclidean geometry.<sup id="cite_ref-57" class="reference"><a href="#cite_note-57"><span class="cite-bracket">&#91;</span>57<span class="cite-bracket">&#93;</span></a></sup> For over two thousand years, starting in the time of Euclid, the postulates which grounded geometry were considered self-evident truths about physical space. Geometers thought that they were deducing other, more obscure truths from them, without the possibility of error. This view became untenable with the development of hyperbolic geometry. There were now two incompatible systems of geometry (and more came later) that were self-consistent and compatible with the observable physical world. "From this point on, the whole discussion of the relation between geometry and physical space was carried on in quite different terms."(<a href="#CITEREFMoise1974">Moise 1974</a>, p. 388) </p><p>To obtain a non-Euclidean geometry, the parallel postulate (or its equivalent) <i>must</i> be replaced by its <a href="/wiki/Negation" title="Negation">negation</a>. Negating the <a href="/wiki/Playfair%27s_axiom" title="Playfair&#39;s axiom">Playfair's axiom</a> form, since it is a compound statement (... there exists one and only one ...), can be done in two ways. Either there will exist more than one line through the point parallel to the given line or there will exist no lines through the point parallel to the given line. In the first case, replacing the parallel postulate (or its equivalent) with the statement "In a plane, given a point P and a line <i>ℓ</i> not passing through P, there exist two lines through P which do not meet <i>ℓ</i>" and keeping all the other axioms, yields <a href="/wiki/Hyperbolic_geometry" title="Hyperbolic geometry">hyperbolic geometry</a>.<sup id="cite_ref-58" class="reference"><a href="#cite_note-58"><span class="cite-bracket">&#91;</span>58<span class="cite-bracket">&#93;</span></a></sup> The second case is not dealt with as easily. Simply replacing the parallel postulate with the statement, "In a plane, given a point P and a line <i>ℓ</i> not passing through P, all the lines through P meet <i>ℓ</i>", does not give a consistent set of axioms. This follows since parallel lines exist in absolute geometry,<sup id="cite_ref-59" class="reference"><a href="#cite_note-59"><span class="cite-bracket">&#91;</span>59<span class="cite-bracket">&#93;</span></a></sup> but this statement would say that there are no parallel lines. This problem was known (in a different guise) to Khayyam, Saccheri and Lambert and was the basis for their rejecting what was known as the "obtuse angle case". In order to obtain a consistent set of axioms which includes this axiom about having no parallel lines, some of the other axioms must be tweaked. The adjustments to be made depend upon the axiom system being used. Amongst others these tweaks will have the effect of modifying Euclid's second postulate from the statement that line segments can be extended indefinitely to the statement that lines are unbounded. <a href="/wiki/Riemann" class="mw-redirect" title="Riemann">Riemann</a>'s <a href="/wiki/Elliptic_geometry" title="Elliptic geometry">elliptic geometry</a> emerges as the most natural geometry satisfying this axiom. </p><p>It was <a href="/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss">Gauss</a> who coined the term "non-Euclidean geometry".<sup id="cite_ref-60" class="reference"><a href="#cite_note-60"><span class="cite-bracket">&#91;</span>60<span class="cite-bracket">&#93;</span></a></sup> He was referring to his own, unpublished work, which today we call <i>hyperbolic geometry</i>. Several authors still consider "non-Euclidean geometry" and "hyperbolic geometry" to be synonyms. In 1871, <a href="/wiki/Felix_Klein" title="Felix Klein">Felix Klein</a>, by adapting a metric discussed by <a href="/wiki/Arthur_Cayley" title="Arthur Cayley">Arthur Cayley</a> in 1852, was able to bring metric properties into a projective setting and was thus able to unify the treatments of hyperbolic, euclidean and elliptic geometry under the umbrella of <a href="/wiki/Projective_geometry" title="Projective geometry">projective geometry</a>.<sup id="cite_ref-61" class="reference"><a href="#cite_note-61"><span class="cite-bracket">&#91;</span>61<span class="cite-bracket">&#93;</span></a></sup> Klein is responsible for the terms "hyperbolic" and "elliptic" (in his system he called Euclidean geometry "parabolic", a term which has not survived the test of time and is used today only in a few disciplines.) His influence has led to the common usage of the term "non-Euclidean geometry" to mean either "hyperbolic" or "elliptic" geometry. </p><p>There are some mathematicians who would extend the list of geometries that should be called "non-Euclidean" in various ways. In other disciplines, most notably <a href="/wiki/Mathematical_physics" title="Mathematical physics">mathematical physics</a>, where Klein's influence was not as strong, the term "non-Euclidean" is often taken to mean <i>not</i> Euclidean. </p> <div class="mw-heading mw-heading3"><h3 id="Euclid's_parallel_postulate"><span id="Euclid.27s_parallel_postulate"></span>Euclid's parallel postulate</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Foundations_of_geometry&amp;action=edit&amp;section=19" title="Edit section: Euclid&#039;s parallel postulate"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Parallel_postulate" title="Parallel postulate">Parallel postulate</a></div> <p>For two thousand years, many attempts were made to prove the parallel postulate using Euclid's first four postulates. A possible reason that such a proof was so highly sought after was that, unlike the first four postulates, the parallel postulate isn't self-evident. If the order the postulates listed in the Elements were significant, it would indicate that Euclid included this postulate only when he realised he could not prove it or proceed without it.<sup id="cite_ref-62" class="reference"><a href="#cite_note-62"><span class="cite-bracket">&#91;</span>62<span class="cite-bracket">&#93;</span></a></sup> Many attempts were made to prove the fifth postulate from the other four, many of them being accepted as proofs for long periods of time until the mistake was found. Invariably the mistake was assuming some 'obvious' property which turned out to be equivalent to the fifth postulate. Eventually it was realized that this postulate might not be provable from the other four. According to <a href="#CITEREFTrudeau1987">Trudeau (1987</a>, p. 154) this opinion about the parallel postulate (Postulate 5) does appear in print: </p> <blockquote> <p>Apparently the first to do so was G. S. Klügel (1739&#8211;1812), a doctoral student at the University of Gottingen, with the support of his teacher A. G. Kästner, in the former's 1763 dissertation <i>Conatuum praecipuorum theoriam parallelarum demonstrandi recensio</i> (Review of the Most Celebrated Attempts at Demonstrating the Theory of Parallels). In this work Klügel examined 28 attempts to prove Postulate 5 (including Saccheri's), found them all deficient, and offered the opinion that Postulate 5 is unprovable and is supported solely by the judgment of our senses. </p> </blockquote> <p>The beginning of the 19th century would finally witness decisive steps in the creation of non-Euclidean geometry. Circa 1813, <a href="/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss">Carl Friedrich Gauss</a> and independently around 1818, the German professor of law <a href="/wiki/Ferdinand_Karl_Schweikart" title="Ferdinand Karl Schweikart">Ferdinand Karl Schweikart</a><sup id="cite_ref-63" class="reference"><a href="#cite_note-63"><span class="cite-bracket">&#91;</span>63<span class="cite-bracket">&#93;</span></a></sup> had the germinal ideas of non-Euclidean geometry worked out, but neither published any results. Then, around 1830, the <a href="/wiki/Hungary" title="Hungary">Hungarian</a> mathematician <a href="/wiki/J%C3%A1nos_Bolyai" title="János Bolyai">János Bolyai</a> and the <a href="/wiki/Russia" title="Russia">Russian</a> mathematician <a href="/wiki/Nikolai_Ivanovich_Lobachevsky" class="mw-redirect" title="Nikolai Ivanovich Lobachevsky">Nikolai Ivanovich Lobachevsky</a> separately published treatises on what we today call <a href="/wiki/Hyperbolic_geometry" title="Hyperbolic geometry">hyperbolic geometry</a>. Consequently, hyperbolic geometry has been called Bolyai-Lobachevskian geometry, as both mathematicians, independent of each other, are the basic authors of non-Euclidean geometry. <a href="/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss">Gauss</a> mentioned to Bolyai's father, when shown the younger Bolyai's work, that he had developed such a geometry several years before,<sup id="cite_ref-64" class="reference"><a href="#cite_note-64"><span class="cite-bracket">&#91;</span>64<span class="cite-bracket">&#93;</span></a></sup> though he did not publish. While Lobachevsky created a non-Euclidean geometry by negating the parallel postulate, Bolyai worked out a geometry where both the Euclidean and the hyperbolic geometry are possible depending on a parameter <i>k</i>. Bolyai ends his work by mentioning that it is not possible to decide through mathematical reasoning alone if the geometry of the physical universe is Euclidean or non-Euclidean; this is a task for the physical sciences. The <a href="/wiki/Independence_(mathematical_logic)" title="Independence (mathematical logic)">independence</a> of the parallel postulate from Euclid's other axioms was finally demonstrated by <a href="/wiki/Eugenio_Beltrami" title="Eugenio Beltrami">Eugenio Beltrami</a> in 1868.<sup id="cite_ref-65" class="reference"><a href="#cite_note-65"><span class="cite-bracket">&#91;</span>65<span class="cite-bracket">&#93;</span></a></sup> </p><p>The various attempted proofs of the parallel postulate produced a long list of theorems that are equivalent to the parallel postulate. Equivalence here means that in the presence of the other axioms of the geometry each of these theorems can be assumed to be true and the parallel postulate can be proved from this altered set of axioms. This is not the same as <a href="/wiki/Logical_equivalence" title="Logical equivalence">logical equivalence</a>.<sup id="cite_ref-66" class="reference"><a href="#cite_note-66"><span class="cite-bracket">&#91;</span>66<span class="cite-bracket">&#93;</span></a></sup> In different sets of axioms for Euclidean geometry, any of these can replace the Euclidean parallel postulate.<sup id="cite_ref-67" class="reference"><a href="#cite_note-67"><span class="cite-bracket">&#91;</span>67<span class="cite-bracket">&#93;</span></a></sup> The following partial list indicates some of these theorems that are of historical interest.<sup id="cite_ref-68" class="reference"><a href="#cite_note-68"><span class="cite-bracket">&#91;</span>68<span class="cite-bracket">&#93;</span></a></sup> </p> <ol><li>Parallel straight lines are equidistant. (Poseidonios, 1st century B.C.)</li> <li>All the points equidistant from a given straight line, on a given side of it, constitute a straight line. (Christoph Clavius, 1574)</li> <li><a href="/wiki/Playfair%27s_axiom" title="Playfair&#39;s axiom">Playfair's axiom</a>. In a plane, there is at most one line that can be drawn parallel to another given one through an external point. (Proclus, 5th century, but popularized by John Playfair, late 18th century)</li> <li>The sum of the <a href="/wiki/Angle" title="Angle">angles</a> in every <a href="/wiki/Triangle" title="Triangle">triangle</a> is 180° (Gerolamo Saccheri, 1733; Adrien-Marie Legendre, early 19th century)</li> <li>There exists a triangle whose angles add up to 180°. (Gerolamo Saccheri, 1733; Adrien-Marie Legendre, early 19th century)</li> <li>There exists a pair of <a href="/wiki/Similarity_(geometry)" title="Similarity (geometry)">similar</a>, but not <a href="/wiki/Congruence_(geometry)" title="Congruence (geometry)">congruent</a>, triangles. (Gerolamo Saccheri, 1733)</li> <li>Every triangle can be <a href="/wiki/Circumscribe" class="mw-redirect" title="Circumscribe">circumscribed</a>. (Adrien-Marie Legendre, Farkas Bolyai, early 19th century)</li> <li>If three angles of a <a href="/wiki/Quadrilateral" title="Quadrilateral">quadrilateral</a> are <a href="/wiki/Right_angle" title="Right angle">right angles</a>, then the fourth angle is also a right angle. (Alexis-Claude Clairaut, 1741; Johann Heinrich Lambert, 1766)</li> <li>There exists a quadrilateral in which all angles are right angles. (Geralamo Saccheri, 1733)</li> <li><a href="/wiki/John_Wallis#Geometry" title="John Wallis">Wallis' postulate</a>. On a given finite straight line it is always possible to construct a triangle similar to a given triangle. (John Wallis, 1663; Lazare-Nicholas-Marguerite Carnot, 1803; Adrien-Marie Legendre, 1824)</li> <li>There is no upper limit to the <a href="/wiki/Area_(geometry)" class="mw-redirect" title="Area (geometry)">area</a> of a triangle. (Carl Friedrich Gauss, 1799)</li> <li>The summit angles of the <a href="/wiki/Saccheri_quadrilateral" title="Saccheri quadrilateral">Saccheri quadrilateral</a> are 90°. (Geralamo Saccheri, 1733)</li> <li><a href="/wiki/Proclus" title="Proclus">Proclus</a>' axiom. If a line intersects one of two parallel lines, both of which are coplanar with the original line, then it also intersects the other. (Proclus, 5th century)</li></ol> <div class="mw-heading mw-heading3"><h3 id="Neutral_(or_absolute)_geometry"><span id="Neutral_.28or_absolute.29_geometry"></span>Neutral (or absolute) geometry</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Foundations_of_geometry&amp;action=edit&amp;section=20" title="Edit section: Neutral (or absolute) geometry"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Absolute_geometry" title="Absolute geometry">Absolute geometry</a></div> <p><b>Absolute geometry</b> is a <a href="/wiki/Geometry" title="Geometry">geometry</a> based on an <a href="/wiki/Axiom_system" class="mw-redirect" title="Axiom system">axiom system</a> consisting of all the axioms giving <a href="/wiki/Euclidean_geometry" title="Euclidean geometry">Euclidean geometry</a> except for the <a href="/wiki/Parallel_postulate" title="Parallel postulate">parallel postulate</a> or any of its alternatives.<sup id="cite_ref-69" class="reference"><a href="#cite_note-69"><span class="cite-bracket">&#91;</span>69<span class="cite-bracket">&#93;</span></a></sup> The term was introduced by <a href="/wiki/J%C3%A1nos_Bolyai" title="János Bolyai">János Bolyai</a> in 1832.<sup id="cite_ref-70" class="reference"><a href="#cite_note-70"><span class="cite-bracket">&#91;</span>70<span class="cite-bracket">&#93;</span></a></sup> It is sometimes referred to as <b>neutral geometry</b>,<sup id="cite_ref-71" class="reference"><a href="#cite_note-71"><span class="cite-bracket">&#91;</span>71<span class="cite-bracket">&#93;</span></a></sup> as it is neutral with respect to the parallel postulate. </p> <div class="mw-heading mw-heading4"><h4 id="Relation_to_other_geometries">Relation to other geometries</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Foundations_of_geometry&amp;action=edit&amp;section=21" title="Edit section: Relation to other geometries"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In <a href="/wiki/Euclid%27s_Elements" title="Euclid&#39;s Elements">Euclid's <i>Elements</i></a>, the first 28 propositions and Proposition I.31 avoid using the parallel postulate, and therefore are valid theorems in absolute geometry.<sup id="cite_ref-72" class="reference"><a href="#cite_note-72"><span class="cite-bracket">&#91;</span>72<span class="cite-bracket">&#93;</span></a></sup> Proposition I.31 proves the existence of parallel lines (by construction). Also, the <a href="/wiki/Saccheri%E2%80%93Legendre_theorem" title="Saccheri–Legendre theorem">Saccheri–Legendre theorem</a>, which states that the sum of the angles in a triangle is at most 180°, can be proved. </p><p>The theorems of absolute geometry hold in <a href="/wiki/Hyperbolic_geometry" title="Hyperbolic geometry">hyperbolic geometry</a> as well as in <a href="/wiki/Euclidean_geometry" title="Euclidean geometry">Euclidean geometry</a>.<sup id="cite_ref-73" class="reference"><a href="#cite_note-73"><span class="cite-bracket">&#91;</span>73<span class="cite-bracket">&#93;</span></a></sup> </p><p>Absolute geometry is inconsistent with <a href="/wiki/Elliptic_geometry" title="Elliptic geometry">elliptic geometry</a>: in elliptic geometry there are no parallel lines at all, but in absolute geometry parallel lines do exist. Also, in elliptic geometry, the sum of the angles in any triangle is greater than 180°. </p> <div class="mw-heading mw-heading4"><h4 id="Incompleteness">Incompleteness</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Foundations_of_geometry&amp;action=edit&amp;section=22" title="Edit section: Incompleteness"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Logically, the axioms do not form a <a href="/wiki/Complete_theory" title="Complete theory">complete theory</a> since one can add extra independent axioms without making the axiom system inconsistent. One can extend absolute geometry by adding different axioms about parallelism and get incompatible but consistent axiom systems, giving rise to Euclidean and hyperbolic geometry. Thus every theorem of absolute geometry is a theorem of hyperbolic geometry and Euclidean geometry. However the converse is not true. Also, absolute geometry is <i>not</i> a <a href="/wiki/Categorical_theory" title="Categorical theory">categorical theory</a>, since it has models that are not isomorphic.<sup id="cite_ref-74" class="reference"><a href="#cite_note-74"><span class="cite-bracket">&#91;</span>74<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Hyperbolic_geometry">Hyperbolic geometry</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Foundations_of_geometry&amp;action=edit&amp;section=23" title="Edit section: Hyperbolic geometry"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Hyperbolic_geometry" title="Hyperbolic geometry">Hyperbolic geometry</a></div> <p>In the axiomatic approach to <b>hyperbolic geometry</b> (also referred to as Lobachevskian geometry or Bolyai–Lobachevskian geometry), one additional axiom is added to the axioms giving <a href="/wiki/Absolute_geometry" title="Absolute geometry">absolute geometry</a>. The new axiom is <i>Lobachevsky's parallel postulate</i> (also known as the <i>characteristic postulate of hyperbolic geometry</i>):<sup id="cite_ref-75" class="reference"><a href="#cite_note-75"><span class="cite-bracket">&#91;</span>75<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd>Through a point not on a given line there exists (in the plane determined by this point and line) at least two lines which do not meet the given line.</dd></dl> <p>With this addition, the axiom system is now complete. </p><p>Although the new axiom asserts only the existence of two lines, it is readily established that there are an infinite number of lines through the given point which do not meet the given line. Given this plenitude, one must be careful with terminology in this setting, as the term <i>parallel line</i> no longer has the unique meaning that it has in Euclidean geometry. Specifically, let <i>P</i> be a point not on a given line <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x2113;<!-- ℓ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f066e981e530bacc07efc6a10fa82deee985929e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.97ex; height:2.176ex;" alt="{\displaystyle \ell }"></span>. Let <i>PA</i> be the perpendicular drawn from <i>P</i> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x2113;<!-- ℓ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f066e981e530bacc07efc6a10fa82deee985929e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.97ex; height:2.176ex;" alt="{\displaystyle \ell }"></span> (meeting at point <i>A</i>). The lines through <i>P</i> fall into two classes, those that meet <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x2113;<!-- ℓ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f066e981e530bacc07efc6a10fa82deee985929e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.97ex; height:2.176ex;" alt="{\displaystyle \ell }"></span> and those that don't. The characteristic postulate of hyperbolic geometry says that there are at least two lines of the latter type. Of the lines which don't meet <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x2113;<!-- ℓ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f066e981e530bacc07efc6a10fa82deee985929e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.97ex; height:2.176ex;" alt="{\displaystyle \ell }"></span>, there will be (on each side of <i>PA</i>) a line making the smallest angle with <i>PA</i>. Sometimes these lines are referred to as the <i>first</i> lines through <i>P</i> which don't meet <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x2113;<!-- ℓ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f066e981e530bacc07efc6a10fa82deee985929e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.97ex; height:2.176ex;" alt="{\displaystyle \ell }"></span> and are variously called <i>limiting, asymptotic</i> or <i>parallel</i> lines (when this last term is used, these are the <u>only</u> parallel lines). All other lines through <i>P</i> which do not meet <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x2113;<!-- ℓ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f066e981e530bacc07efc6a10fa82deee985929e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.97ex; height:2.176ex;" alt="{\displaystyle \ell }"></span> are called <i>non-intersecting</i> or <i>ultraparallel</i> lines. </p><p>Since hyperbolic geometry and Euclidean geometry are both built on the axioms of absolute geometry, they share many properties and propositions. However, the consequences of replacing the parallel postulate of Euclidean geometry with the characteristic postulate of hyperbolic geometry can be dramatic. To mention a few of these: </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Lambert_quadrilateral.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/84/Lambert_quadrilateral.svg/170px-Lambert_quadrilateral.svg.png" decoding="async" width="170" height="135" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/84/Lambert_quadrilateral.svg/255px-Lambert_quadrilateral.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/84/Lambert_quadrilateral.svg/340px-Lambert_quadrilateral.svg.png 2x" data-file-width="212" data-file-height="168" /></a><figcaption><div class="center" style="width:auto; margin-left:auto; margin-right:auto;">Lambert quadrilateral in hyperbolic geometry</div></figcaption></figure> <ul><li>A <a href="/wiki/Lambert_quadrilateral" title="Lambert quadrilateral">Lambert quadrilateral</a> is a quadrilateral which has three right angles. The fourth angle of a Lambert quadrilateral is <a href="/wiki/Acute_angle" class="mw-redirect" title="Acute angle">acute</a> if the geometry is hyperbolic, and a <a href="/wiki/Right_angle" title="Right angle">right angle</a> if the geometry is Euclidean. Furthermore, <a href="/wiki/Rectangle" title="Rectangle">rectangles</a> can exist (a statement equivalent to the parallel postulate) only in Euclidean geometry.</li> <li>A <a href="/wiki/Saccheri_quadrilateral" title="Saccheri quadrilateral">Saccheri quadrilateral</a> is a quadrilateral which has two sides of equal length, both perpendicular to a side called the <i>base</i>. The other two angles of a Saccheri quadrilateral are called the <i>summit angles</i> and they have equal measure. The summit angles of a Saccheri quadrilateral are acute if the geometry is hyperbolic, and right angles if the geometry is Euclidean.</li> <li>The sum of the measures of the angles of any triangle is less than 180° if the geometry is hyperbolic, and equal to 180° if the geometry is Euclidean. The <a href="/wiki/Defect_(geometry)" class="mw-redirect" title="Defect (geometry)"><i>defect</i></a> of a triangle is the numerical value (180° – sum of the measures of the angles of the triangle). This result may also be stated as: the defect of triangles in hyperbolic geometry is positive, and the defect of triangles in Euclidean geometry is zero.</li> <li>The <a href="/wiki/Area_of_a_triangle" title="Area of a triangle">area of a triangle</a> in hyperbolic geometry is bounded while triangles exist with arbitrarily large areas in Euclidean geometry.</li> <li>The set of points on the same side and equally far from a given straight line themselves form a line in Euclidean geometry, but don't in hyperbolic geometry (they form a <a href="/wiki/Hypercycle_(geometry)" title="Hypercycle (geometry)">hypercycle</a>.)</li></ul> <p>Advocates of the position that Euclidean geometry is the one and only "true" geometry received a setback when, in a memoir published in 1868, "Fundamental theory of spaces of constant curvature",<sup id="cite_ref-76" class="reference"><a href="#cite_note-76"><span class="cite-bracket">&#91;</span>76<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Eugenio_Beltrami" title="Eugenio Beltrami">Eugenio Beltrami</a> gave an abstract proof of <a href="/wiki/Equiconsistency" title="Equiconsistency">equiconsistency</a> of hyperbolic and Euclidean geometry for any dimension. He accomplished this by introducing several models of non-Euclidean geometry that are now known as the <a href="/wiki/Beltrami%E2%80%93Klein_model" title="Beltrami–Klein model">Beltrami–Klein model</a>, the <a href="/wiki/Poincar%C3%A9_disk_model" title="Poincaré disk model">Poincaré disk model</a>, and the <a href="/wiki/Poincar%C3%A9_half-plane_model" title="Poincaré half-plane model">Poincaré half-plane model</a>, together with transformations that relate them. For the half-plane model, Beltrami cited a note by <a href="/wiki/Liouville" class="mw-redirect" title="Liouville">Liouville</a> in the treatise of <a href="/wiki/Gaspard_Monge" title="Gaspard Monge">Monge</a> on <a href="/wiki/Differential_geometry" title="Differential geometry">differential geometry</a>. Beltrami also showed that <i>n</i>-dimensional Euclidean geometry is realized on a <a href="/wiki/Horosphere" title="Horosphere">horosphere</a> of the (<i>n</i>&#160;+&#160;1)-dimensional <a href="/wiki/Hyperbolic_space" title="Hyperbolic space">hyperbolic space</a>, so the logical relation between consistency of the Euclidean and the non-Euclidean geometries is symmetric. </p> <div class="mw-heading mw-heading3"><h3 id="Elliptic_geometry">Elliptic geometry</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Foundations_of_geometry&amp;action=edit&amp;section=24" title="Edit section: Elliptic geometry"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Elliptic_geometry" title="Elliptic geometry">Elliptic geometry</a></div> <p>Another way to modify the <a href="/wiki/Parallel_postulate" title="Parallel postulate">Euclidean parallel postulate</a> is to assume that there are no parallel lines in a plane. Unlike the situation with <a href="/wiki/Hyperbolic_geometry" title="Hyperbolic geometry">hyperbolic geometry</a>, where we just add one new axiom, we can not obtain a consistent system by adding this statement as a new axiom to the axioms of <a href="/wiki/Absolute_geometry" title="Absolute geometry">absolute geometry</a>. This follows since parallel lines provably exist in absolute geometry. Other axioms must be changed. </p><p>Starting with <a href="/wiki/Hilbert%27s_axioms" title="Hilbert&#39;s axioms">Hilbert's axioms</a> the necessary changes involve removing Hilbert's four axioms of order and replacing them with these seven axioms of separation concerned with a new undefined relation.<sup id="cite_ref-77" class="reference"><a href="#cite_note-77"><span class="cite-bracket">&#91;</span>77<span class="cite-bracket">&#93;</span></a></sup> </p><p>There is an undefined (<a href="/wiki/Primitive_notion" title="Primitive notion">primitive</a>) relation between four points, <i>A</i>, <i>B</i>, <i>C</i> and <i>D</i> denoted by (<i>A</i>,<i>C</i>|<i>B</i>,<i>D</i>) and read as "<i>A</i> and <i>C</i> separate <i>B</i> and <i>D</i>",<sup id="cite_ref-78" class="reference"><a href="#cite_note-78"><span class="cite-bracket">&#91;</span>78<span class="cite-bracket">&#93;</span></a></sup> satisfying these axioms: </p> <ol><li>If (<i>A</i>,<i>B</i>|<i>C</i>,<i>D</i>), then the points <i>A</i>, <i>B</i>, <i>C</i> and <i>D</i> are <a href="/wiki/Collinear" class="mw-redirect" title="Collinear">collinear</a> and distinct.</li> <li>If (<i>A</i>,<i>B</i>|<i>C</i>,<i>D</i>), then (<i>C</i>,<i>D</i>|<i>A</i>,<i>B</i>) and (<i>B</i>,<i>A</i>|<i>D</i>,<i>C</i>).</li> <li>If (<i>A</i>,<i>B</i>|<i>C</i>,<i>D</i>), then not (<i>A</i>,<i>C</i>|<i>B</i>,<i>D</i>).</li> <li>If points <i>A</i>, <i>B</i>, <i>C</i> and <i>D</i> are collinear and distinct then (<i>A</i>,<i>B</i>|<i>C</i>,<i>D</i>) or (<i>A</i>,<i>C</i>|<i>B</i>,<i>D</i>) or (<i>A</i>,<i>D</i>|<i>B</i>,<i>C</i>).</li> <li>If points <i>A</i>, <i>B</i>, and <i>C</i> are collinear and distinct, then there exists a point <i>D</i> such that (<i>A</i>,<i>B</i>|<i>C</i>,<i>D</i>).</li> <li>For any five distinct collinear points <i>A</i>, <i>B</i>, <i>C</i>, <i>D</i> and <i>E</i>, if (<i>A</i>,<i>B</i>|<i>D</i>,<i>E</i>), then either (<i>A</i>,<i>B</i>|<i>C</i>,<i>D</i>) or (<i>A</i>,<i>B</i>|<i>C</i>,<i>E</i>).</li> <li><a href="/wiki/Perspectivity" title="Perspectivity">Perspectivities</a> preserve separation.</li></ol> <p>Since the Hilbert notion of "betweeness" has been removed, terms which were defined using that concept need to be redefined.<sup id="cite_ref-79" class="reference"><a href="#cite_note-79"><span class="cite-bracket">&#91;</span>79<span class="cite-bracket">&#93;</span></a></sup> Thus, a line segment <i>AB</i> defined as the points <i>A</i> and <i>B</i> and all the points <i>between</i> <i>A</i> and <i>B</i> in absolute geometry, needs to be reformulated. A line segment in this new geometry is determined by three collinear points <i>A</i>, <i>B</i> and <i>C</i> and consists of those three points and all the points not separated from <i>B</i> by <i>A</i> and <i>C</i>. There are further consequences. Since two points do not determine a line segment uniquely, three noncollinear points do not determine a unique triangle, and the definition of triangle has to be reformulated. </p><p>Once these notions have been redefined, the other axioms of absolute geometry (incidence, congruence and continuity) all make sense and are left alone. Together with the new axiom on the nonexistence of parallel lines we have a consistent system of axioms giving a new geometry. The geometry that results is called (plane) <i>Elliptic geometry</i>. </p> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Saccheri_quads.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f9/Saccheri_quads.svg/150px-Saccheri_quads.svg.png" decoding="async" width="150" height="375" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f9/Saccheri_quads.svg/225px-Saccheri_quads.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f9/Saccheri_quads.svg/300px-Saccheri_quads.svg.png 2x" data-file-width="300" data-file-height="750" /></a><figcaption><div class="center" style="width:auto; margin-left:auto; margin-right:auto;">Saccheri quadrilaterals in Euclidean, Elliptic and Hyperbolic geometry</div></figcaption></figure> <p>Even though elliptic geometry is not an extension of absolute geometry (as Euclidean and hyperbolic geometry are), there is a certain "symmetry" in the propositions of the three geometries that reflects a deeper connection which was observed by Felix Klein. Some of the propositions which exhibit this property are: </p> <ul><li>The fourth angle of a <a href="/wiki/Lambert_quadrilateral" title="Lambert quadrilateral">Lambert quadrilateral</a> is an <a href="/wiki/Obtuse_angle" class="mw-redirect" title="Obtuse angle">obtuse angle</a> in elliptic geometry.</li> <li>The summit angles of a <a href="/wiki/Saccheri_quadrilateral" title="Saccheri quadrilateral">Saccheri quadrilateral</a> are obtuse in elliptic geometry.</li> <li>The sum of the measures of the angles of any triangle is greater than 180° if the geometry is elliptic. That is, the <a href="/wiki/Defect_(geometry)" class="mw-redirect" title="Defect (geometry)">defect</a> of a triangle is negative.<sup id="cite_ref-80" class="reference"><a href="#cite_note-80"><span class="cite-bracket">&#91;</span>80<span class="cite-bracket">&#93;</span></a></sup></li> <li>All the lines perpendicular to a given line meet at a common point in elliptic geometry, called the <a href="/wiki/Pole_and_polar" title="Pole and polar"><i>pole</i></a> of the line. In hyperbolic geometry these lines are mutually non-intersecting, while in Euclidean geometry they are mutually parallel.</li></ul> <p>Other results, such as the <a href="/wiki/Exterior_angle_theorem" title="Exterior angle theorem">exterior angle theorem</a>, clearly emphasize the difference between elliptic and the geometries that are extensions of absolute geometry. </p> <div class="mw-heading mw-heading4"><h4 id="Spherical_geometry">Spherical geometry</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Foundations_of_geometry&amp;action=edit&amp;section=25" title="Edit section: Spherical geometry"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Spherical_geometry" title="Spherical geometry">Spherical geometry</a></div> <div class="mw-heading mw-heading2"><h2 id="Other_geometries">Other geometries</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Foundations_of_geometry&amp;action=edit&amp;section=26" title="Edit section: Other geometries"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Projective_geometry">Projective geometry</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Foundations_of_geometry&amp;action=edit&amp;section=27" title="Edit section: Projective geometry"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Projective_geometry" title="Projective geometry">Projective geometry</a></div> <div class="mw-heading mw-heading3"><h3 id="Affine_geometry">Affine geometry</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Foundations_of_geometry&amp;action=edit&amp;section=28" title="Edit section: Affine geometry"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Affine_geometry" title="Affine geometry">Affine geometry</a></div> <div class="mw-heading mw-heading3"><h3 id="Ordered_geometry">Ordered geometry</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Foundations_of_geometry&amp;action=edit&amp;section=29" title="Edit section: Ordered geometry"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Ordered_geometry" title="Ordered geometry">Ordered geometry</a></div> <p>Absolute geometry is an extension of <a href="/wiki/Ordered_geometry" title="Ordered geometry">ordered geometry</a>, and thus, all theorems in ordered geometry hold in absolute geometry. The converse is not true. Absolute geometry assumes the first four of Euclid's Axioms (or their equivalents), to be contrasted with <a href="/wiki/Affine_geometry" title="Affine geometry">affine geometry</a>, which does not assume Euclid's third and fourth axioms. Ordered geometry is a common foundation of both absolute and affine geometry.<sup id="cite_ref-81" class="reference"><a href="#cite_note-81"><span class="cite-bracket">&#91;</span>81<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Finite_geometry">Finite geometry</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Foundations_of_geometry&amp;action=edit&amp;section=30" title="Edit section: Finite geometry"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Finite_geometry" title="Finite geometry">Finite geometry</a></div> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Foundations_of_geometry&amp;action=edit&amp;section=31" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Coordinate-free" title="Coordinate-free">Coordinate-free</a></li> <li><a href="/wiki/Synthetic_geometry" title="Synthetic geometry">Synthetic geometry</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Foundations_of_geometry&amp;action=edit&amp;section=32" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><a href="#CITEREFVenema2006">Venema 2006</a>, p. 17</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><a href="#CITEREFWylie1964">Wylie 1964</a>, p. 8</span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><a href="#CITEREFGreenberg2007">Greenberg 2007</a>, p. 59</span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text">In this context no distinction is made between different categories of theorems. Propositions, lemmas, corollaries, etc. are all treated the same.</span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><a href="#CITEREFVenema2006">Venema 2006</a>, p. 19</span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><a href="#CITEREFFaber1983">Faber 1983</a>, pp. 105 &#8211; 8</span> </li> <li id="cite_note-Eves_1963_loc=p._19-7"><span class="mw-cite-backlink">^ <a href="#cite_ref-Eves_1963_loc=p._19_7-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Eves_1963_loc=p._19_7-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFEves1963">Eves 1963</a>, p. 19</span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><a href="#CITEREFEves1963">Eves 1963</a>, p. 10</span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFBoyer1991" class="citation cs2"><a href="/wiki/Carl_Benjamin_Boyer" title="Carl Benjamin Boyer">Boyer</a> (1991), "Euclid of Alexandria", <i>A History of Mathematics</i>, p.&#160;101, <q>With the exception of the <i>Sphere</i> of Autolycus, surviving work by Euclid are the oldest Greek mathematical treatises extant; yet of what Euclid wrote more than half has been lost,</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Euclid+of+Alexandria&amp;rft.btitle=A+History+of+Mathematics&amp;rft.pages=101&amp;rft.date=1991&amp;rft.au=Boyer&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFoundations+of+geometry" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text">Encyclopedia of Ancient Greece (2006) by Nigel Guy Wilson, page 278. Published by Routledge Taylor and Francis Group. Quote:"Euclid's Elements subsequently became the basis of all mathematical education, not only in the Romand and Byzantine periods, but right down to the mid-20th century, and it could be argued that it is the most successful textbook ever written."</span> </li> <li id="cite_note-Boyer_Author_of_the_Elements-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-Boyer_Author_of_the_Elements_11-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBoyer1991" class="citation cs2"><a href="/wiki/Carl_Benjamin_Boyer" title="Carl Benjamin Boyer">Boyer</a> (1991), "Euclid of Alexandria", <i>A History of Mathematics</i>, p.&#160;100, <q>As teachers at the school he called a band of leading scholars, among whom was the author of the most fabulously successful mathematics textbook ever written – the <i>Elements</i> (<i>Stoichia</i>) of Euclid.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Euclid+of+Alexandria&amp;rft.btitle=A+History+of+Mathematics&amp;rft.pages=100&amp;rft.date=1991&amp;rft.au=Boyer&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFoundations+of+geometry" class="Z3988"></span></span> </li> <li id="cite_note-Boyer_Influence_of_the_Elements-12"><span class="mw-cite-backlink">^ <a href="#cite_ref-Boyer_Influence_of_the_Elements_12-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Boyer_Influence_of_the_Elements_12-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBoyer1991" class="citation cs2"><a href="/wiki/Carl_Benjamin_Boyer" title="Carl Benjamin Boyer">Boyer</a> (1991), "Euclid of Alexandria", <i>A History of Mathematics</i>, p.&#160;119, <q>The <i>Elements</i> of Euclid not only was the earliest major Greek mathematical work to come down to us, but also the most influential textbook of all times. [...]The first printed versions of the <i>Elements</i> appeared at Venice in 1482, one of the very earliest of mathematical books to be set in type; it has been estimated that since then at least a thousand editions have been published. Perhaps no book other than the Bible can boast so many editions, and certainly no mathematical work has had an influence comparable with that of Euclid's <i>Elements</i>.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Euclid+of+Alexandria&amp;rft.btitle=A+History+of+Mathematics&amp;rft.pages=119&amp;rft.date=1991&amp;rft.au=Boyer&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFoundations+of+geometry" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text">The Historical Roots of Elementary Mathematics by Lucas Nicolaas Hendrik Bunt, Phillip S. Jones, Jack D. Bedient (1988), page 142. Dover publications. Quote:"the <i>Elements</i> became known to Western Europe via the Arabs and the Moors. There the <i>Elements</i> became the foundation of mathematical education. More than 1000 editions of the <i>Elements</i> are known. In all probability it is, next to the <i>Bible</i>, the most widely spread book in the civilization of the Western world."</span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text">From the introduction by Amit Hagar to <i>Euclid and His Modern Rivals</i> by Lewis Carroll (2009, Barnes &amp; Noble) pg. xxviii: <blockquote><p>Geometry emerged as an indispensable part of the standard education of the English gentleman in the eighteenth century; by the Victorian period it was also becoming an important part of the education of artisans, children at Board Schools, colonial subjects and, to a rather lesser degree, women. ... The standard textbook for this purpose was none other than Euclid's <i>The Elements</i>. </p></blockquote></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text">Euclid, book I, proposition 47</span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><a href="#CITEREFHeath1956">Heath 1956</a>, pp. 195 &#8211; 202 (vol 1)</span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><a href="#CITEREFVenema2006">Venema 2006</a>, p. 11</span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><a href="#CITEREFBall1960">Ball 1960</a>, p. 55</span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><a href="#CITEREFWylie1964">Wylie 1964</a>, p. 39</span> </li> <li id="cite_note-Faber_1983_loc=p._109-20"><span class="mw-cite-backlink">^ <a href="#cite_ref-Faber_1983_loc=p._109_20-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Faber_1983_loc=p._109_20-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFFaber1983">Faber 1983</a>, p. 109</span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><a href="#CITEREFFaber1983">Faber 1983</a>, p. 113</span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><a href="#CITEREFFaber1983">Faber 1983</a>, p. 115</span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><a href="#CITEREFHeath1956">Heath 1956</a>, p. 62 (vol. I)</span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"><a href="#CITEREFGreenberg2007">Greenberg 2007</a>, p. 57</span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"><a href="#CITEREFHeath1956">Heath 1956</a>, p. 242 (vol. I)</span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"><a href="#CITEREFHeath1956">Heath 1956</a>, p. 249 (vol. I)</span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"><a href="#CITEREFEves1963">Eves 1963</a>, p. 380</span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><a href="#CITEREFPeano1889">Peano 1889</a></span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><a href="#CITEREFEves1963">Eves 1963</a>, p. 382</span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text"><a href="#CITEREFEves1963">Eves 1963</a>, p. 383</span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text">Pieri did not attend since he had recently moved to Sicily, but he did have a paper of his read at the Congress of Philosophy.</span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text"><a href="#CITEREFHilbert1950">Hilbert 1950</a></span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text"><a href="#CITEREFHilbert1990">Hilbert 1990</a></span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text">This is Hilbert's terminology. This statement is more familiarly known as <a href="/wiki/Playfair%27s_axiom" title="Playfair&#39;s axiom">Playfair's axiom</a>.</span> </li> <li id="cite_note-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-35">^</a></b></span> <span class="reference-text"><a href="#CITEREFEves1963">Eves 1963</a>, p. 386</span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMoore1902" class="citation cs2">Moore, E.H. (1902), "On the projective axioms of geometry", <i>Transactions of the American Mathematical Society</i>, <b>3</b> (1): <span class="nowrap">142–</span>158, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F1986321">10.2307/1986321</a></span>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/1986321">1986321</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Transactions+of+the+American+Mathematical+Society&amp;rft.atitle=On+the+projective+axioms+of+geometry&amp;rft.volume=3&amp;rft.issue=1&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E142-%3C%2Fspan%3E158&amp;rft.date=1902&amp;rft_id=info%3Adoi%2F10.2307%2F1986321&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F1986321%23id-name%3DJSTOR&amp;rft.aulast=Moore&amp;rft.aufirst=E.H.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFoundations+of+geometry" class="Z3988"></span></span> </li> <li id="cite_note-Eves_1963_loc=p._387-37"><span class="mw-cite-backlink">^ <a href="#cite_ref-Eves_1963_loc=p._387_37-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Eves_1963_loc=p._387_37-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFEves1963">Eves 1963</a>, p. 387</span> </li> <li id="cite_note-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-38">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBirkhoff1932" class="citation cs2"><a href="/wiki/George_David_Birkhoff" title="George David Birkhoff">Birkhoff, George David</a> (1932), "A set of postulates for plane geometry", <i>Annals of Mathematics</i>, <b>33</b> (2): <span class="nowrap">329–</span>345, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F1968336">10.2307/1968336</a>, <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/10338.dmlcz%2F147209">10338.dmlcz/147209</a></span>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/1968336">1968336</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Annals+of+Mathematics&amp;rft.atitle=A+set+of+postulates+for+plane+geometry&amp;rft.volume=33&amp;rft.issue=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E329-%3C%2Fspan%3E345&amp;rft.date=1932&amp;rft_id=info%3Ahdl%2F10338.dmlcz%2F147209&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F1968336%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.2307%2F1968336&amp;rft.aulast=Birkhoff&amp;rft.aufirst=George+David&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFoundations+of+geometry" class="Z3988"></span></span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-39">^</a></b></span> <span class="reference-text"><a href="#CITEREFVenema2006">Venema 2006</a>, p. 400</span> </li> <li id="cite_note-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-40">^</a></b></span> <span class="reference-text"><a href="#CITEREFVenema2006">Venema 2006</a>, pp. 400&#8211;1</span> </li> <li id="cite_note-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-41">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHalsted1904" class="citation cs2">Halsted, G. B. (1904), <i>Rational Geometry</i>, New York: John Wiley and Sons, Inc.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Rational+Geometry&amp;rft.place=New+York&amp;rft.pub=John+Wiley+and+Sons%2C+Inc.&amp;rft.date=1904&amp;rft.aulast=Halsted&amp;rft.aufirst=G.+B.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFoundations+of+geometry" class="Z3988"></span></span> </li> <li id="cite_note-Eves_1963_loc=p._388-42"><span class="mw-cite-backlink">^ <a href="#cite_ref-Eves_1963_loc=p._388_42-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Eves_1963_loc=p._388_42-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Eves_1963_loc=p._388_42-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Eves_1963_loc=p._388_42-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFEves1963">Eves 1963</a>, p. 388</span> </li> <li id="cite_note-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-43">^</a></b></span> <span class="reference-text">among his several achievements, he is the cofounder (with <a href="/wiki/Samuel_Eilenberg" title="Samuel Eilenberg">Samuel Eilenberg</a>) of <a href="/wiki/Category_theory" title="Category theory">Category theory</a>.</span> </li> <li id="cite_note-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-44">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMac_Lane1959" class="citation cs2">Mac Lane, Saunders (1959), "Metric postulates for plane geometry", <i>American Mathematical Monthly</i>, <b>66</b> (7): <span class="nowrap">543–</span>555, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2309851">10.2307/2309851</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2309851">2309851</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=American+Mathematical+Monthly&amp;rft.atitle=Metric+postulates+for+plane+geometry&amp;rft.volume=66&amp;rft.issue=7&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E543-%3C%2Fspan%3E555&amp;rft.date=1959&amp;rft_id=info%3Adoi%2F10.2307%2F2309851&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2309851%23id-name%3DJSTOR&amp;rft.aulast=Mac+Lane&amp;rft.aufirst=Saunders&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFoundations+of+geometry" class="Z3988"></span></span> </li> <li id="cite_note-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-45">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBirkhoffBeatley1940" class="citation cs2">Birkhoff, G.D.; Beatley, R. (1940), <i>Basic Geometry</i>, Chicago: Scott, Foresman and Company</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Basic+Geometry&amp;rft.place=Chicago&amp;rft.pub=Scott%2C+Foresman+and+Company&amp;rft.date=1940&amp;rft.aulast=Birkhoff&amp;rft.aufirst=G.D.&amp;rft.au=Beatley%2C+R.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFoundations+of+geometry" class="Z3988"></span> [Reprint of 3rd edition: American Mathematical Society, 2000. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8218-2101-5" title="Special:BookSources/978-0-8218-2101-5">978-0-8218-2101-5</a>]</span> </li> <li id="cite_note-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-46">^</a></b></span> <span class="reference-text"><a href="#CITEREFVenema2006">Venema 2006</a>, pp. 401&#8211;2</span> </li> <li id="cite_note-Venema_2006_loc=p._55-47"><span class="mw-cite-backlink">^ <a href="#cite_ref-Venema_2006_loc=p._55_47-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Venema_2006_loc=p._55_47-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFVenema2006">Venema 2006</a>, p. 55</span> </li> <li id="cite_note-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-48">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchool_Mathematics_Study_Group_(SMSG)1961" class="citation cs2">School Mathematics Study Group (SMSG) (1961), <i>Geometry, Parts 1 and 2 (Student Text)</i>, New Haven and London: Yale University Press</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Geometry%2C+Parts+1+and+2+%28Student+Text%29&amp;rft.place=New+Haven+and+London&amp;rft.pub=Yale+University+Press&amp;rft.date=1961&amp;rft.au=School+Mathematics+Study+Group+%28SMSG%29&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFoundations+of+geometry" class="Z3988"></span></span> </li> <li id="cite_note-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-49">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMoiseDowns1991" class="citation cs2">Moise, Edwin E.; Downs, Floyd L. (1991), <i>Geometry</i>, Reading, MA: Addison–Wesley</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Geometry&amp;rft.place=Reading%2C+MA&amp;rft.pub=Addison%E2%80%93Wesley&amp;rft.date=1991&amp;rft.aulast=Moise&amp;rft.aufirst=Edwin+E.&amp;rft.au=Downs%2C+Floyd+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFoundations+of+geometry" class="Z3988"></span></span> </li> <li id="cite_note-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-50">^</a></b></span> <span class="reference-text"><a href="#CITEREFVenema2006">Venema 2006</a>, p. 403</span> </li> <li id="cite_note-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-51">^</a></b></span> <span class="reference-text"><a href="#CITEREFVenema2006">Venema 2006</a>, pp. 403&#8211;4</span> </li> <li id="cite_note-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-52">^</a></b></span> <span class="reference-text"><a href="#CITEREFVenema2006">Venema 2006</a>, pp. 405 &#8211; 7</span> </li> <li id="cite_note-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-53">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFForder1927" class="citation cs2">Forder, H.G. (1927), "The Foundations of Euclidean Geometry", <i>Nature</i>, <b>123</b> (3089), New York: Cambridge University Press: 44, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1928Natur.123...44.">1928Natur.123...44.</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F123044a0">10.1038/123044a0</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4093478">4093478</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=The+Foundations+of+Euclidean+Geometry&amp;rft.volume=123&amp;rft.issue=3089&amp;rft.pages=44&amp;rft.date=1927&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4093478%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1038%2F123044a0&amp;rft_id=info%3Abibcode%2F1928Natur.123...44.&amp;rft.aulast=Forder&amp;rft.aufirst=H.G.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFoundations+of+geometry" class="Z3988"></span> (reprinted by Dover, 1958)</span> </li> <li id="cite_note-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-54">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHuntington1913" class="citation cs2">Huntington, E.V. (1913), <a rel="nofollow" class="external text" href="https://zenodo.org/record/1428276">"A set of postulates for abstract geometry, expressed in terms of the simple relation of inclusion"</a>, <i>Mathematische Annalen</i>, <b>73</b> (4): <span class="nowrap">522–</span>559, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fbf01455955">10.1007/bf01455955</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119440414">119440414</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mathematische+Annalen&amp;rft.atitle=A+set+of+postulates+for+abstract+geometry%2C+expressed+in+terms+of+the+simple+relation+of+inclusion&amp;rft.volume=73&amp;rft.issue=4&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E522-%3C%2Fspan%3E559&amp;rft.date=1913&amp;rft_id=info%3Adoi%2F10.1007%2Fbf01455955&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119440414%23id-name%3DS2CID&amp;rft.aulast=Huntington&amp;rft.aufirst=E.V.&amp;rft_id=https%3A%2F%2Fzenodo.org%2Frecord%2F1428276&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFoundations+of+geometry" class="Z3988"></span></span> </li> <li id="cite_note-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-55">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRobinson1946" class="citation cs2">Robinson, G. de B. (1946), <i>The Foundations of Geometry</i>, Mathematical Expositions No. 1 (2nd&#160;ed.), Toronto: University of Toronto Press</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Foundations+of+Geometry&amp;rft.place=Toronto&amp;rft.series=Mathematical+Expositions+No.+1&amp;rft.edition=2nd&amp;rft.pub=University+of+Toronto+Press&amp;rft.date=1946&amp;rft.aulast=Robinson&amp;rft.aufirst=G.+de+B.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFoundations+of+geometry" class="Z3988"></span></span> </li> <li id="cite_note-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-56">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKline1967" class="citation cs2">Kline, Morris (1967), <a rel="nofollow" class="external text" href="https://archive.org/details/mathematicsforno00klin/page/474"><i>Mathematics for the Nonmathematician</i></a>, New York: Dover, p.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/mathematicsforno00klin/page/474">474</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-486-24823-2" title="Special:BookSources/0-486-24823-2"><bdi>0-486-24823-2</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mathematics+for+the+Nonmathematician&amp;rft.place=New+York&amp;rft.pages=474&amp;rft.pub=Dover&amp;rft.date=1967&amp;rft.isbn=0-486-24823-2&amp;rft.aulast=Kline&amp;rft.aufirst=Morris&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fmathematicsforno00klin%2Fpage%2F474&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFoundations+of+geometry" class="Z3988"></span></span> </li> <li id="cite_note-57"><span class="mw-cite-backlink"><b><a href="#cite_ref-57">^</a></b></span> <span class="reference-text"><a href="#CITEREFGreenberg2007">Greenberg 2007</a>, p. 1</span> </li> <li id="cite_note-58"><span class="mw-cite-backlink"><b><a href="#cite_ref-58">^</a></b></span> <span class="reference-text">while only two lines are postulated, it is easily shown that there must be an infinite number of such lines.</span> </li> <li id="cite_note-59"><span class="mw-cite-backlink"><b><a href="#cite_ref-59">^</a></b></span> <span class="reference-text">Book I Proposition 27 of Euclid's <i>Elements</i></span> </li> <li id="cite_note-60"><span class="mw-cite-backlink"><b><a href="#cite_ref-60">^</a></b></span> <span class="reference-text">Felix Klein, <i>Elementary Mathematics from an Advanced Standpoint: Geometry</i>, Dover, 1948 (reprint of English translation of 3rd Edition, 1940. First edition in German, 1908) pg. 176</span> </li> <li id="cite_note-61"><span class="mw-cite-backlink"><b><a href="#cite_ref-61">^</a></b></span> <span class="reference-text">F. Klein, Über die sogenannte nichteuklidische Geometrie, <i>Mathematische Annalen</i>, <b>4</b>(1871).</span> </li> <li id="cite_note-62"><span class="mw-cite-backlink"><b><a href="#cite_ref-62">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFlorence_P._Lewis1920" class="citation cs2">Florence P. Lewis (Jan 1920), "History of the Parallel Postulate", <i>The American Mathematical Monthly</i>, <b>27</b> (1), The American Mathematical Monthly, Vol. 27, No. 1: <span class="nowrap">16–</span>23, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2973238">10.2307/2973238</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2973238">2973238</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+American+Mathematical+Monthly&amp;rft.atitle=History+of+the+Parallel+Postulate&amp;rft.volume=27&amp;rft.issue=1&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E16-%3C%2Fspan%3E23&amp;rft.date=1920-01&amp;rft_id=info%3Adoi%2F10.2307%2F2973238&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2973238%23id-name%3DJSTOR&amp;rft.au=Florence+P.+Lewis&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFoundations+of+geometry" class="Z3988"></span></span> </li> <li id="cite_note-63"><span class="mw-cite-backlink"><b><a href="#cite_ref-63">^</a></b></span> <span class="reference-text">In a letter of December 1818, Ferdinand Karl Schweikart (1780–1859) sketched a few insights into non-Euclidean geometry. The letter was forwarded to Gauss in 1819 by Gauss's former student Gerling. In his reply to Gerling, Gauss praised Schweikart and mentioned his own, earlier research into non-Euclidean geometry.</span> </li> <li id="cite_note-64"><span class="mw-cite-backlink"><b><a href="#cite_ref-64">^</a></b></span> <span class="reference-text">In the letter to Wolfgang (Farkas) Bolyai of March 6, 1832 Gauss claims to have worked on the problem for thirty or thirty-five years (<a href="#CITEREFFaber1983">Faber 1983</a>, p. 162). In his 1824 letter to Taurinus (<a href="#CITEREFFaber1983">Faber 1983</a>, p. 158) he claimed that he had been working on the problem for over 30 years and provided enough detail to show that he actually had worked out the details. According to <a href="#CITEREFFaber1983">Faber (1983</a>, p. 156) it wasn't until around 1813 that Gauss had come to accept the existence of a new geometry.</span> </li> <li id="cite_note-65"><span class="mw-cite-backlink"><b><a href="#cite_ref-65">^</a></b></span> <span class="reference-text">Beltrami, Eugenio (1868) "Teoria fondamentale degli spazî di curvatura costante", <i>Annali di Matematica Pura et Applicata</i>, Series II <b>2</b>:232&#8211;255.</span> </li> <li id="cite_note-66"><span class="mw-cite-backlink"><b><a href="#cite_ref-66">^</a></b></span> <span class="reference-text">An appropriate example of logical equivalence is given by Playfair's axiom and Euclid I.30 (see <a href="/wiki/Playfair%27s_axiom#Transitivity_of_parallelism" title="Playfair&#39;s axiom">Playfair's axiom#Transitivity of parallelism</a>).</span> </li> <li id="cite_note-67"><span class="mw-cite-backlink"><b><a href="#cite_ref-67">^</a></b></span> <span class="reference-text">For instance, Hilbert uses Playfair's axiom while Birkhoff uses the theorem about similar but not congruent triangles.</span> </li> <li id="cite_note-68"><span class="mw-cite-backlink"><b><a href="#cite_ref-68">^</a></b></span> <span class="reference-text">attributions are due to <a href="#CITEREFTrudeau1987">Trudeau 1987</a>, pp. 128&#8211;9</span> </li> <li id="cite_note-69"><span class="mw-cite-backlink"><b><a href="#cite_ref-69">^</a></b></span> <span class="reference-text">Use a complete set of axioms for Euclidean geometry such as <a href="/wiki/Hilbert%27s_axioms" title="Hilbert&#39;s axioms">Hilbert's axioms</a> or another modern equivalent (<a href="#CITEREFFaber1983">Faber 1983</a>, p. 131). Euclid's original set of axioms is ambiguous and not complete, it does not form a basis for Euclidean geometry.</span> </li> <li id="cite_note-70"><span class="mw-cite-backlink"><b><a href="#cite_ref-70">^</a></b></span> <span class="reference-text">In "<i>Appendix exhibiting the absolute science of space: independent of the truth or falsity of Euclid's Axiom XI (by no means previously decided)</i>" (<a href="#CITEREFFaber1983">Faber 1983</a>, p. 161)</span> </li> <li id="cite_note-71"><span class="mw-cite-backlink"><b><a href="#cite_ref-71">^</a></b></span> <span class="reference-text">Greenberg cites W. Prenowitz and M. Jordan (Greenberg, p. xvi) for having used the term <i>neutral geometry</i> to refer to that part of Euclidean geometry that does not depend on Euclid's parallel postulate. He says that the word <i>absolute</i> in <i>absolute geometry</i> misleadingly implies that all other geometries depend on it.</span> </li> <li id="cite_note-72"><span class="mw-cite-backlink"><b><a href="#cite_ref-72">^</a></b></span> <span class="reference-text"><a href="#CITEREFTrudeau1987">Trudeau 1987</a>, p. 44</span> </li> <li id="cite_note-73"><span class="mw-cite-backlink"><b><a href="#cite_ref-73">^</a></b></span> <span class="reference-text">Absolute geometry is, in fact, the intersection of hyperbolic geometry and Euclidean geometry when these are regarded as sets of propositions.</span> </li> <li id="cite_note-74"><span class="mw-cite-backlink"><b><a href="#cite_ref-74">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchiemer2012" class="citation cs2">Schiemer, Georg (2012), "Carnap on extremal axioms, "<i>completeness of the models</i>," and categoricity", <i>The Review of Symbolic Logic</i>, <b>5</b> (4): <span class="nowrap">613–</span>641, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FS1755020312000172">10.1017/S1755020312000172</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2998930">2998930</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Review+of+Symbolic+Logic&amp;rft.atitle=Carnap+on+extremal+axioms%2C+%22completeness+of+the+models%2C%22+and+categoricity&amp;rft.volume=5&amp;rft.issue=4&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E613-%3C%2Fspan%3E641&amp;rft.date=2012&amp;rft_id=info%3Adoi%2F10.1017%2FS1755020312000172&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2998930%23id-name%3DMR&amp;rft.aulast=Schiemer&amp;rft.aufirst=Georg&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFoundations+of+geometry" class="Z3988"></span></span> </li> <li id="cite_note-75"><span class="mw-cite-backlink"><b><a href="#cite_ref-75">^</a></b></span> <span class="reference-text"><a href="#CITEREFFaber1983">Faber 1983</a>, p. 167</span> </li> <li id="cite_note-76"><span class="mw-cite-backlink"><b><a href="#cite_ref-76">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBeltrami1868" class="citation cs2">Beltrami, Eugenio (1868), <a rel="nofollow" class="external text" href="https://zenodo.org/record/2243105">"Teoria fondamentale degli spazii di curvatura costante"</a>, <i>Annali di Matematica Pura ed Applicata</i>, Series II, <b>2</b>: <span class="nowrap">232–</span>255, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF02419615">10.1007/BF02419615</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:120773141">120773141</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Annali+di+Matematica+Pura+ed+Applicata&amp;rft.atitle=Teoria+fondamentale+degli+spazii+di+curvatura+costante&amp;rft.volume=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E232-%3C%2Fspan%3E255&amp;rft.date=1868&amp;rft_id=info%3Adoi%2F10.1007%2FBF02419615&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A120773141%23id-name%3DS2CID&amp;rft.aulast=Beltrami&amp;rft.aufirst=Eugenio&amp;rft_id=https%3A%2F%2Fzenodo.org%2Frecord%2F2243105&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFoundations+of+geometry" class="Z3988"></span></span> </li> <li id="cite_note-77"><span class="mw-cite-backlink"><b><a href="#cite_ref-77">^</a></b></span> <span class="reference-text"><a href="#CITEREFGreenberg2007">Greenberg 2007</a>, pp. 541–4</span> </li> <li id="cite_note-78"><span class="mw-cite-backlink"><b><a href="#cite_ref-78">^</a></b></span> <span class="reference-text">Visualize four points on a circle which in counter-clockwise order are <i>A</i>, <i>B</i>, <i>C</i> and <i>D</i>.</span> </li> <li id="cite_note-79"><span class="mw-cite-backlink"><b><a href="#cite_ref-79">^</a></b></span> <span class="reference-text">This reenforces the futility of attempting to "fix" Euclid's axioms to obtain this geometry. Changes need to be made in the unstated assumptions of Euclid.</span> </li> <li id="cite_note-80"><span class="mw-cite-backlink"><b><a href="#cite_ref-80">^</a></b></span> <span class="reference-text">Negative defect is called the <i>excess</i>, so this may also be phrased as&#8211; triangles have a positive excess in elliptic geometry.</span> </li> <li id="cite_note-81"><span class="mw-cite-backlink"><b><a href="#cite_ref-81">^</a></b></span> <span class="reference-text">Coxeter, pgs.&#160;175–176</span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Foundations_of_geometry&amp;action=edit&amp;section=33" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBall1960" class="citation cs2"><a href="/wiki/W._W._Rouse_Ball" title="W. W. Rouse Ball">Ball, W.W. Rouse</a> (1960), <a rel="nofollow" class="external text" href="https://archive.org/details/shortaccountofhi0000ball/page/50"><i>A Short Account of the History of Mathematics</i></a> (4th ed. [Reprint. Original publication: London: Macmillan &amp; Co., 1908]&#160;ed.), New York: Dover Publications, pp.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/shortaccountofhi0000ball/page/50">50–62</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-486-20630-0" title="Special:BookSources/0-486-20630-0"><bdi>0-486-20630-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Short+Account+of+the+History+of+Mathematics&amp;rft.place=New+York&amp;rft.pages=50-62&amp;rft.edition=4th+ed.+%5BReprint.+Original+publication%3A+London%3A+Macmillan+%26+Co.%2C+1908%5D&amp;rft.pub=Dover+Publications&amp;rft.date=1960&amp;rft.isbn=0-486-20630-0&amp;rft.aulast=Ball&amp;rft.aufirst=W.W.+Rouse&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fshortaccountofhi0000ball%2Fpage%2F50&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFoundations+of+geometry" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBeutelspacherRosenbaum1998" class="citation cs2">Beutelspacher, Albrecht; Rosenbaum, Ute (1998), <i>Projective geometry: from foundations to applications</i>, <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-48364-3" title="Special:BookSources/978-0-521-48364-3"><bdi>978-0-521-48364-3</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1629468">1629468</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Projective+geometry%3A+from+foundations+to+applications&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1998&amp;rft.isbn=978-0-521-48364-3&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1629468%23id-name%3DMR&amp;rft.aulast=Beutelspacher&amp;rft.aufirst=Albrecht&amp;rft.au=Rosenbaum%2C+Ute&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFoundations+of+geometry" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEves1963" class="citation cs2">Eves, Howard (1963), <i>A Survey of Geometry (Volume One)</i>, Boston: Allyn and Bacon</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Survey+of+Geometry+%28Volume+One%29&amp;rft.place=Boston&amp;rft.pub=Allyn+and+Bacon&amp;rft.date=1963&amp;rft.aulast=Eves&amp;rft.aufirst=Howard&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFoundations+of+geometry" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFaber1983" class="citation cs2">Faber, Richard L. (1983), <i>Foundations of Euclidean and Non-Euclidean Geometry</i>, New York: Marcel Dekker, Inc., <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-8247-1748-1" title="Special:BookSources/0-8247-1748-1"><bdi>0-8247-1748-1</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Foundations+of+Euclidean+and+Non-Euclidean+Geometry&amp;rft.place=New+York&amp;rft.pub=Marcel+Dekker%2C+Inc.&amp;rft.date=1983&amp;rft.isbn=0-8247-1748-1&amp;rft.aulast=Faber&amp;rft.aufirst=Richard+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFoundations+of+geometry" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGreenberg2007" class="citation cs2"><a href="/wiki/Marvin_Greenberg" title="Marvin Greenberg">Greenberg, Marvin Jay</a> (2007) [1974], <i>Euclidean and Non-Euclidean Geometries/Development and History, 4th edition</i>, San Francisco: W.H. Freeman, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0716799481" title="Special:BookSources/978-0716799481"><bdi>978-0716799481</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Euclidean+and+Non-Euclidean+Geometries%2FDevelopment+and+History%2C+4th+edition&amp;rft.place=San+Francisco&amp;rft.pub=W.H.+Freeman&amp;rft.date=2007&amp;rft.isbn=978-0716799481&amp;rft.aulast=Greenberg&amp;rft.aufirst=Marvin+Jay&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFoundations+of+geometry" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHeath1956" class="citation cs2"><a href="/wiki/T._L._Heath" class="mw-redirect" title="T. L. Heath">Heath, Thomas L.</a> (1956), <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/thirteenbooksofe00eucl"><i>The Thirteen Books of Euclid's Elements</i></a></span> (2nd ed. [Facsimile. Original publication: Cambridge University Press, 1925]&#160;ed.), New York: Dover Publications</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Thirteen+Books+of+Euclid%27s+Elements&amp;rft.place=New+York&amp;rft.edition=2nd+ed.+%5BFacsimile.+Original+publication%3A+Cambridge+University+Press%2C+1925%5D&amp;rft.pub=Dover+Publications&amp;rft.date=1956&amp;rft.aulast=Heath&amp;rft.aufirst=Thomas+L.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fthirteenbooksofe00eucl&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFoundations+of+geometry" class="Z3988"></span></li></ul> <dl><dd>(3 vols.): <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-486-60088-2" title="Special:BookSources/0-486-60088-2">0-486-60088-2</a> (vol. 1), <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-486-60089-0" title="Special:BookSources/0-486-60089-0">0-486-60089-0</a> (vol. 2), <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-486-60090-4" title="Special:BookSources/0-486-60090-4">0-486-60090-4</a> (vol. 3).</dd></dl> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHilbert1950" class="citation cs2"><a href="/wiki/David_Hilbert" title="David Hilbert">Hilbert, David</a> (1950) [first published 1902], <a rel="nofollow" class="external text" href="http://www.gutenberg.org/files/17384/17384-pdf.pdf"><i>The Foundations of Geometry &#91;Grundlagen der Geometrie&#93;</i></a> <span class="cs1-format">(PDF)</span>, English translation by E.J. Townsend (2nd&#160;ed.), La Salle, IL: Open Court Publishing</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Foundations+of+Geometry+%5BGrundlagen+der+Geometrie%5D&amp;rft.place=La+Salle%2C+IL&amp;rft.edition=2nd&amp;rft.pub=Open+Court+Publishing&amp;rft.date=1950&amp;rft.aulast=Hilbert&amp;rft.aufirst=David&amp;rft_id=http%3A%2F%2Fwww.gutenberg.org%2Ffiles%2F17384%2F17384-pdf.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFoundations+of+geometry" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHilbert1990" class="citation cs2"><a href="/wiki/David_Hilbert" title="David Hilbert">Hilbert, David</a> (1990) [1971], <i>Foundations of Geometry [Grundlagen der Geometrie]</i>, translated by Leo Unger from the 10th German edition (2nd English&#160;ed.), La Salle, IL: Open Court Publishing, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-87548-164-7" title="Special:BookSources/0-87548-164-7"><bdi>0-87548-164-7</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Foundations+of+Geometry+%5BGrundlagen+der+Geometrie%5D&amp;rft.place=La+Salle%2C+IL&amp;rft.edition=2nd+English&amp;rft.pub=Open+Court+Publishing&amp;rft.date=1990&amp;rft.isbn=0-87548-164-7&amp;rft.aulast=Hilbert&amp;rft.aufirst=David&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFoundations+of+geometry" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMoise1974" class="citation cs2">Moise, Edwin E. (1974), <i>Elementary Geometry from an Advanced Standpoint</i> (2nd&#160;ed.), Reading, MA: Addison–Wesley, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-201-04793-4" title="Special:BookSources/0-201-04793-4"><bdi>0-201-04793-4</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Elementary+Geometry+from+an+Advanced+Standpoint&amp;rft.place=Reading%2C+MA&amp;rft.edition=2nd&amp;rft.pub=Addison%E2%80%93Wesley&amp;rft.date=1974&amp;rft.isbn=0-201-04793-4&amp;rft.aulast=Moise&amp;rft.aufirst=Edwin+E.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFoundations+of+geometry" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPeano1889" class="citation cs2"><a href="/wiki/G._Peano" class="mw-redirect" title="G. Peano">Peano, Giuseppe</a> (1889), <i>I principii di geometria: logicamente esposti</i>, Turin: Fratres Bocca</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=I+principii+di+geometria%3A+logicamente+esposti&amp;rft.place=Turin&amp;rft.pub=Fratres+Bocca&amp;rft.date=1889&amp;rft.aulast=Peano&amp;rft.aufirst=Giuseppe&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFoundations+of+geometry" class="Z3988"></span></li> <li><a href="/wiki/Bertrand_Russell" title="Bertrand Russell">Russell, Bertrand</a> (1897) <a rel="nofollow" class="external text" href="https://archive.org/details/essayfoundations00russrich/page/n7/mode/2up">An Essay on the Foundations of Geometry</a>, via <a href="/wiki/Internet_Archive" title="Internet Archive">Internet Archive</a></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTrudeau1987" class="citation cs2">Trudeau, Richard J. (1987), <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/noneuclideanrevo0000trud"><i>The Non-Euclidean Revolution</i></a></span>, Boston: Birkhauser, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-8176-3311-1" title="Special:BookSources/0-8176-3311-1"><bdi>0-8176-3311-1</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Non-Euclidean+Revolution&amp;rft.place=Boston&amp;rft.pub=Birkhauser&amp;rft.date=1987&amp;rft.isbn=0-8176-3311-1&amp;rft.aulast=Trudeau&amp;rft.aufirst=Richard+J.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fnoneuclideanrevo0000trud&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFoundations+of+geometry" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVenema2006" class="citation cs2">Venema, Gerard A. (2006), <i>Foundations of Geometry</i>, Upper Saddle River, NJ: Pearson Prentice Hall, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-13-143700-3" title="Special:BookSources/0-13-143700-3"><bdi>0-13-143700-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Foundations+of+Geometry&amp;rft.place=Upper+Saddle+River%2C+NJ&amp;rft.pub=Pearson+Prentice+Hall&amp;rft.date=2006&amp;rft.isbn=0-13-143700-3&amp;rft.aulast=Venema&amp;rft.aufirst=Gerard+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFoundations+of+geometry" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWylie1964" class="citation cs2">Wylie, C.R. Jr. (1964), <i>Foundations of Geometry</i>, New York: McGraw–Hill</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Foundations+of+Geometry&amp;rft.place=New+York&amp;rft.pub=McGraw%E2%80%93Hill&amp;rft.date=1964&amp;rft.aulast=Wylie&amp;rft.aufirst=C.R.+Jr.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFoundations+of+geometry" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Foundations_of_geometry&amp;action=edit&amp;section=34" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFO&#39;ConnorRobertson" class="citation cs2">O'Connor, John J.; <a href="/wiki/Edmund_F._Robertson" class="mw-redirect" title="Edmund F. Robertson">Robertson, Edmund F.</a>, <a rel="nofollow" class="external text" href="https://mathshistory.st-andrews.ac.uk/Biographies/Pasch.html">"Moritz Pasch"</a>, <i><a href="/wiki/MacTutor_History_of_Mathematics_Archive" title="MacTutor History of Mathematics Archive">MacTutor History of Mathematics Archive</a></i>, <a href="/wiki/University_of_St_Andrews" title="University of St Andrews">University of St Andrews</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Moritz+Pasch&amp;rft.btitle=MacTutor+History+of+Mathematics+Archive&amp;rft.pub=University+of+St+Andrews&amp;rft.aulast=O%27Connor&amp;rft.aufirst=John+J.&amp;rft.au=Robertson%2C+Edmund+F.&amp;rft_id=https%3A%2F%2Fmathshistory.st-andrews.ac.uk%2FBiographies%2FPasch.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFoundations+of+geometry" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFA._Seidenberg2008" class="citation cs2">A. Seidenberg (2008), <a rel="nofollow" class="external text" href="http://www.encyclopedia.com/doc/1G2-2830903301.html"><i>Pasch, Moritz</i></a>, Complete Dictionary of Scientific Biography<span class="reference-accessdate">, retrieved <span class="nowrap">25 August</span> 2013</span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Pasch%2C+Moritz&amp;rft.pub=Complete+Dictionary+of+Scientific+Biography&amp;rft.date=2008&amp;rft.au=A.+Seidenberg&amp;rft_id=http%3A%2F%2Fwww.encyclopedia.com%2Fdoc%2F1G2-2830903301.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFoundations+of+geometry" class="Z3988"></span></li> <li><a rel="nofollow" class="external text" href="https://mathgenealogy.org/id.php?id=19496">Moritz Pasch</a> at the <a href="/wiki/Mathematics_Genealogy_Project" title="Mathematics Genealogy Project">Mathematics Genealogy Project</a></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFO&#39;ConnorRobertson" class="citation cs2">O'Connor, John J.; <a href="/wiki/Edmund_F._Robertson" class="mw-redirect" title="Edmund F. Robertson">Robertson, Edmund F.</a>, <a rel="nofollow" class="external text" href="https://mathshistory.st-andrews.ac.uk/Biographies/Peano.html">"Giuseppe Peano"</a>, <i><a href="/wiki/MacTutor_History_of_Mathematics_Archive" title="MacTutor History of Mathematics Archive">MacTutor History of Mathematics Archive</a></i>, <a href="/wiki/University_of_St_Andrews" title="University of St Andrews">University of St Andrews</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Giuseppe+Peano&amp;rft.btitle=MacTutor+History+of+Mathematics+Archive&amp;rft.pub=University+of+St+Andrews&amp;rft.aulast=O%27Connor&amp;rft.aufirst=John+J.&amp;rft.au=Robertson%2C+Edmund+F.&amp;rft_id=https%3A%2F%2Fmathshistory.st-andrews.ac.uk%2FBiographies%2FPeano.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFoundations+of+geometry" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHubert_Kennedy2002" class="citation cs2">Hubert Kennedy (2002), <a rel="nofollow" class="external text" href="https://hubertkennedy.angelfire.com/TwelveArticles.pdf"><i>Twelve articles on Giuseppe Peano</i></a> <span class="cs1-format">(PDF)</span>, San Francisco: Peremptory Publications<span class="reference-accessdate">, retrieved <span class="nowrap">8 April</span> 2012</span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Twelve+articles+on+Giuseppe+Peano&amp;rft.place=San+Francisco&amp;rft.pub=Peremptory+Publications&amp;rft.date=2002&amp;rft.au=Hubert+Kennedy&amp;rft_id=https%3A%2F%2Fhubertkennedy.angelfire.com%2FTwelveArticles.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFoundations+of+geometry" class="Z3988"></span> Collection of articles on life and mathematics of Peano (1960s to 1980s).</li> <li><a rel="nofollow" class="external text" href="https://mathgenealogy.org/id.php?id=43284">Giuseppe Peano</a> at the <a href="/wiki/Mathematics_Genealogy_Project" title="Mathematics Genealogy Project">Mathematics Genealogy Project</a></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFO&#39;ConnorRobertson" class="citation cs2">O'Connor, John J.; <a href="/wiki/Edmund_F._Robertson" class="mw-redirect" title="Edmund F. Robertson">Robertson, Edmund F.</a>, <a rel="nofollow" class="external text" href="https://mathshistory.st-andrews.ac.uk/Biographies/Pieri.html">"Mario Pieri"</a>, <i><a href="/wiki/MacTutor_History_of_Mathematics_Archive" title="MacTutor History of Mathematics Archive">MacTutor History of Mathematics Archive</a></i>, <a href="/wiki/University_of_St_Andrews" title="University of St Andrews">University of St Andrews</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Mario+Pieri&amp;rft.btitle=MacTutor+History+of+Mathematics+Archive&amp;rft.pub=University+of+St+Andrews&amp;rft.aulast=O%27Connor&amp;rft.aufirst=John+J.&amp;rft.au=Robertson%2C+Edmund+F.&amp;rft_id=https%3A%2F%2Fmathshistory.st-andrews.ac.uk%2FBiographies%2FPieri.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFoundations+of+geometry" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHubert_Kennedy" class="citation cs2">Hubert Kennedy, <a rel="nofollow" class="external text" href="http://www.encyclopedia.com/doc/1G2-2830903412.html"><i>Pieri, Mario</i></a>, Complete Dictionary of Scientific Biography<span class="reference-accessdate">, retrieved <span class="nowrap">26 August</span> 2013</span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Pieri%2C+Mario&amp;rft.pub=Complete+Dictionary+of+Scientific+Biography&amp;rft.au=Hubert+Kennedy&amp;rft_id=http%3A%2F%2Fwww.encyclopedia.com%2Fdoc%2F1G2-2830903412.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFoundations+of+geometry" class="Z3988"></span></li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20130615062200/http://userpages.umbc.edu/~rcampbel/Math306/Axioms/SMSG.html">SMSG axioms</a></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Metalogic_and_metamathematics37" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Metalogic" title="Template:Metalogic"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Metalogic" title="Template talk:Metalogic"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Metalogic" title="Special:EditPage/Template:Metalogic"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Metalogic_and_metamathematics37" style="font-size:114%;margin:0 4em"><a href="/wiki/Metalogic" title="Metalogic">Metalogic</a> and <a href="/wiki/Metamathematics" title="Metamathematics">metamathematics</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0;padding-left:2.0em;padding-right:2.0em;"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cantor%27s_theorem" title="Cantor&#39;s theorem">Cantor's theorem</a></li> <li><i><a href="/wiki/Entscheidungsproblem" title="Entscheidungsproblem">Entscheidungsproblem</a></i></li> <li><a href="/wiki/Church%E2%80%93Turing_thesis" title="Church–Turing thesis">Church–Turing thesis</a></li> <li><a href="/wiki/Consistency" title="Consistency">Consistency</a></li> <li><a href="/wiki/Effective_method" title="Effective method">Effective method</a></li> <li><a href="/wiki/Foundations_of_mathematics" title="Foundations of mathematics">Foundations of mathematics</a> <ul><li><a class="mw-selflink selflink">of geometry</a></li></ul></li> <li><a href="/wiki/G%C3%B6del%27s_completeness_theorem" title="Gödel&#39;s completeness theorem">Gödel's completeness theorem</a></li> <li><a href="/wiki/G%C3%B6del%27s_incompleteness_theorems" title="Gödel&#39;s incompleteness theorems">Gödel's incompleteness theorems</a></li> <li><a href="/wiki/Soundness" title="Soundness">Soundness</a></li> <li><a href="/wiki/Completeness_(logic)" title="Completeness (logic)">Completeness</a></li> <li><a href="/wiki/Decidability_(logic)" title="Decidability (logic)">Decidability</a></li> <li><a href="/wiki/Interpretation_(logic)" title="Interpretation (logic)">Interpretation</a></li> <li><a href="/wiki/L%C3%B6wenheim%E2%80%93Skolem_theorem" title="Löwenheim–Skolem theorem">Löwenheim–Skolem theorem</a></li> <li><a href="/wiki/Metatheorem" title="Metatheorem">Metatheorem</a></li> <li><a href="/wiki/Satisfiability" title="Satisfiability">Satisfiability</a></li> <li><a href="/wiki/Independence_(mathematical_logic)" title="Independence (mathematical logic)">Independence</a></li> <li><a href="/wiki/Type%E2%80%93token_distinction" title="Type–token distinction">Type–token distinction</a></li> <li><a href="/wiki/Use%E2%80%93mention_distinction" title="Use–mention distinction">Use–mention distinction</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox authority-control" aria-label="Navbox398" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q5474574#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.ndl.go.jp/auth/ndlna/00565739">Japan</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐api‐int.codfw.main‐5b65fffc7d‐2cw7j Cached time: 20250214053754 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.975 seconds Real time usage: 1.147 seconds Preprocessor visited node count: 4784/1000000 Post‐expand include size: 83996/2097152 bytes Template argument size: 1485/2097152 bytes Highest expansion depth: 16/100 Expensive parser function count: 16/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 158811/5000000 bytes Lua time usage: 0.562/10.000 seconds Lua memory usage: 7133756/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 893.434 1 -total 39.62% 354.023 1 Template:Reflist 36.17% 323.182 33 Template:Citation 10.52% 94.029 1 Template:Short_description 10.00% 89.355 1 Template:Metalogic 9.76% 87.221 1 Template:Navbox 6.73% 60.086 2 Template:Pagetype 6.36% 56.798 15 Template:Main 6.26% 55.923 5 Template:Harvtxt 5.01% 44.740 39 Template:Harvnb --> <!-- Saved in parser cache with key enwiki:pcache:21317755:|#|:idhash:canonical and timestamp 20250214053754 and revision id 1229138311. Rendering was triggered because: api-parse --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=desktop&amp;type=1x1&amp;usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Foundations_of_geometry&amp;oldid=1229138311">https://en.wikipedia.org/w/index.php?title=Foundations_of_geometry&amp;oldid=1229138311</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Foundations_of_geometry" title="Category:Foundations of geometry">Foundations of geometry</a></li><li><a href="/wiki/Category:Foundations_of_mathematics" title="Category:Foundations of mathematics">Foundations of mathematics</a></li><li><a href="/wiki/Category:History_of_mathematics" title="Category:History of mathematics">History of mathematics</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 15 June 2024, at 02:44<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Foundations_of_geometry&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" lang="en" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/w/resources/assets/poweredby_mediawiki.svg" width="88" height="31"><img src="/w/resources/assets/mediawiki_compact.svg" alt="Powered by MediaWiki" width="25" height="25" loading="lazy"></picture></a></li> </ul> </footer> </div> </div> </div> <div class="vector-header-container vector-sticky-header-container"> <div id="vector-sticky-header" class="vector-sticky-header"> <div class="vector-sticky-header-start"> <div class="vector-sticky-header-icon-start vector-button-flush-left vector-button-flush-right" aria-hidden="true"> <button class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-sticky-header-search-toggle" tabindex="-1" data-event-name="ui.vector-sticky-search-form.icon"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </button> </div> <div role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box"> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail"> <form action="/w/index.php" id="vector-sticky-search-form" class="cdx-search-input cdx-search-input--has-end-button"> <div class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia"> <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <div class="vector-sticky-header-context-bar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-sticky-header-toc" class="vector-dropdown mw-portlet mw-portlet-sticky-header-toc vector-sticky-header-toc vector-button-flush-left" > <input type="checkbox" id="vector-sticky-header-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-sticky-header-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-sticky-header-toc-label" for="vector-sticky-header-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-sticky-header-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div class="vector-sticky-header-context-bar-primary" aria-hidden="true" ><span class="mw-page-title-main">Foundations of geometry</span></div> </div> </div> <div class="vector-sticky-header-end" aria-hidden="true"> <div class="vector-sticky-header-icons"> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-talk-sticky-header" tabindex="-1" data-event-name="talk-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbles mw-ui-icon-wikimedia-speechBubbles"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-subject-sticky-header" tabindex="-1" data-event-name="subject-sticky-header"><span class="vector-icon mw-ui-icon-article mw-ui-icon-wikimedia-article"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-history-sticky-header" tabindex="-1" data-event-name="history-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-history mw-ui-icon-wikimedia-wikimedia-history"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only mw-watchlink" id="ca-watchstar-sticky-header" tabindex="-1" data-event-name="watch-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-star mw-ui-icon-wikimedia-wikimedia-star"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-edit-sticky-header" tabindex="-1" data-event-name="wikitext-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-wikiText mw-ui-icon-wikimedia-wikimedia-wikiText"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-ve-edit-sticky-header" tabindex="-1" data-event-name="ve-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-edit mw-ui-icon-wikimedia-wikimedia-edit"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-viewsource-sticky-header" tabindex="-1" data-event-name="ve-edit-protected-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-editLock mw-ui-icon-wikimedia-wikimedia-editLock"></span> <span></span> </a> </div> <div class="vector-sticky-header-buttons"> <button class="cdx-button cdx-button--weight-quiet mw-interlanguage-selector" id="p-lang-btn-sticky-header" tabindex="-1" data-event-name="ui.dropdown-p-lang-btn-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-language mw-ui-icon-wikimedia-wikimedia-language"></span> <span>5 languages</span> </button> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive" id="ca-addsection-sticky-header" tabindex="-1" data-event-name="addsection-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbleAdd-progressive mw-ui-icon-wikimedia-speechBubbleAdd-progressive"></span> <span>Add topic</span> </a> </div> <div class="vector-sticky-header-icon-end"> <div class="vector-user-links"> </div> </div> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-b766959bd-zq28g","wgBackendResponseTime":128,"wgPageParseReport":{"limitreport":{"cputime":"0.975","walltime":"1.147","ppvisitednodes":{"value":4784,"limit":1000000},"postexpandincludesize":{"value":83996,"limit":2097152},"templateargumentsize":{"value":1485,"limit":2097152},"expansiondepth":{"value":16,"limit":100},"expensivefunctioncount":{"value":16,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":158811,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 893.434 1 -total"," 39.62% 354.023 1 Template:Reflist"," 36.17% 323.182 33 Template:Citation"," 10.52% 94.029 1 Template:Short_description"," 10.00% 89.355 1 Template:Metalogic"," 9.76% 87.221 1 Template:Navbox"," 6.73% 60.086 2 Template:Pagetype"," 6.36% 56.798 15 Template:Main"," 6.26% 55.923 5 Template:Harvtxt"," 5.01% 44.740 39 Template:Harvnb"]},"scribunto":{"limitreport-timeusage":{"value":"0.562","limit":"10.000"},"limitreport-memusage":{"value":7133756,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREF\"] = 3,\n [\"CITEREFA._Seidenberg2008\"] = 1,\n [\"CITEREFBall1960\"] = 1,\n [\"CITEREFBeltrami1868\"] = 1,\n [\"CITEREFBeutelspacherRosenbaum1998\"] = 1,\n [\"CITEREFBirkhoff1932\"] = 1,\n [\"CITEREFBirkhoffBeatley1940\"] = 1,\n [\"CITEREFBoyer1991\"] = 3,\n [\"CITEREFEves1963\"] = 1,\n [\"CITEREFFaber1983\"] = 1,\n [\"CITEREFFlorence_P._Lewis1920\"] = 1,\n [\"CITEREFForder1927\"] = 1,\n [\"CITEREFGreenberg2007\"] = 1,\n [\"CITEREFHalsted1904\"] = 1,\n [\"CITEREFHeath1956\"] = 1,\n [\"CITEREFHilbert1950\"] = 1,\n [\"CITEREFHilbert1990\"] = 1,\n [\"CITEREFHubert_Kennedy\"] = 1,\n [\"CITEREFHubert_Kennedy2002\"] = 1,\n [\"CITEREFHuntington1913\"] = 1,\n [\"CITEREFKline1967\"] = 1,\n [\"CITEREFMac_Lane1959\"] = 1,\n [\"CITEREFMoise1974\"] = 1,\n [\"CITEREFMoiseDowns1991\"] = 1,\n [\"CITEREFMoore1902\"] = 1,\n [\"CITEREFPeano1889\"] = 1,\n [\"CITEREFRobinson1946\"] = 1,\n [\"CITEREFSchiemer2012\"] = 1,\n [\"CITEREFSchool_Mathematics_Study_Group_(SMSG)1961\"] = 1,\n [\"CITEREFTrudeau1987\"] = 1,\n [\"CITEREFVenema2006\"] = 1,\n [\"CITEREFWylie1964\"] = 1,\n}\ntemplate_list = table#1 {\n [\"Authority control\"] = 1,\n [\"Center\"] = 4,\n [\"Citation\"] = 33,\n [\"Harv\"] = 5,\n [\"Harvnb\"] = 39,\n [\"Harvtxt\"] = 5,\n [\"ISBN\"] = 4,\n [\"MacTutor Biography\"] = 3,\n [\"Main\"] = 15,\n [\"MathGenealogy\"] = 2,\n [\"Metalogic\"] = 1,\n [\"Reflist\"] = 1,\n [\"Short description\"] = 1,\n}\narticle_whitelist = table#1 {\n}\nciteref_patterns = table#1 {\n}\n"},"cachereport":{"origin":"mw-api-int.codfw.main-5b65fffc7d-2cw7j","timestamp":"20250214053754","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Foundations of geometry","url":"https:\/\/en.wikipedia.org\/wiki\/Foundations_of_geometry","sameAs":"http:\/\/www.wikidata.org\/entity\/Q5474574","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q5474574","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2009-01-30T00:22:19Z","dateModified":"2024-06-15T02:44:33Z","headline":"study of geometries as axiomatic systems. There are several sets of axioms which give rise to Euclidean geometry or to non-Euclidean geometries"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10