CINXE.COM
Search results for: water filling
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: water filling</title> <meta name="description" content="Search results for: water filling"> <meta name="keywords" content="water filling"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="water filling" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="water filling"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8941</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: water filling</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8941</span> Power Allocation Algorithm for Orthogonal Frequency Division Multiplexing Based Cognitive Radio Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bircan%20Demiral">Bircan Demiral</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cognitive radio (CR) is the promising technology that addresses the spectrum scarcity problem for future wireless communications. Orthogonal Frequency Division Multiplexing (OFDM) technology provides more power band ratios for cognitive radio networks (CRNs). While CR is a solution to the spectrum scarcity, it also brings up the capacity problem. In this paper, a novel power allocation algorithm that aims at maximizing the sum capacity in the OFDM based cognitive radio networks is proposed. Proposed allocation algorithm is based on the previously developed water-filling algorithm. To reduce the computational complexity calculating in water filling algorithm, proposed algorithm allocates the total power according to each subcarrier. The power allocated to the subcarriers increases sum capacity. To see this increase, Matlab program was used, and the proposed power allocation was compared with average power allocation, water filling and general power allocation algorithms. The water filling algorithm performed worse than the proposed algorithm while it performed better than the other two algorithms. The proposed algorithm is better than other algorithms in terms of capacity increase. In addition the effect of the change in the number of subcarriers on capacity was discussed. Simulation results show that the increase in the number of subcarrier increases the capacity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cognitive%20radio%20network" title="cognitive radio network">cognitive radio network</a>, <a href="https://publications.waset.org/abstracts/search?q=OFDM" title=" OFDM"> OFDM</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20allocation" title=" power allocation"> power allocation</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20filling" title=" water filling"> water filling</a> </p> <a href="https://publications.waset.org/abstracts/92207/power-allocation-algorithm-for-orthogonal-frequency-division-multiplexing-based-cognitive-radio-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92207.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8940</span> Comparison between Open and Closed System for Dewatering with Geotextile: Field and Comparative Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Matheus%20M%C3%BCller">Matheus Müller</a>, <a href="https://publications.waset.org/abstracts/search?q=Delma%20Vidal"> Delma Vidal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present paper aims to expose two techniques of dewatering for sludge, analyzing its operations and dewatering processes, aiming at improving the conditions of disposal of residues with high liquid content. It describes the field tests performed on two geotextile systems, a closed geotextile tube and an open geotextile drying bed, both of which are submitted to two filling cycles. The sludge used in the filling cycles for the field trials is from the water treatment plant of the Technological Center of Aeronautics – CTA, in São José dos Campos, Brazil. Data about volume and height abatement due to the dewatering and consolidation were collected per time, until it was observed constancy. With the laboratory analysis of the sludge allied to the data collected in the field, it was possible to perform a critical comparative study between the observed and the scientific literature, in this way, this paper expresses the data obtained and compares them with the bibliography. The tests were carried out on three fronts: field tests, including the filling cycles of the systems with the sludge from CTA, taking measurements of filling time per cycle and maximum filling height per cycle, heights against the abatement by dewatering of the systems over time; tests carried out in the laboratory, including the characterization of the sludge and removal of material samples from the systems to ascertain the solids content within the systems per time and; comparing the data obtained in the field and laboratory tests with the scientific literature. Through the study, it was possible to perceive that the process of densification of the material inside a closed system, such as the geotextile tube, occurs faster than the observed in the drying bed system. This process of accelerated densification can be brought about by the pumping pressure of the sludge in its filling and by the confinement of the residue through the permeable geotextile membrane (allowing water to pass through), accelerating the process of densification and dewatering by its own weight after the filling with sludge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=consolidation" title="consolidation">consolidation</a>, <a href="https://publications.waset.org/abstracts/search?q=dewatering" title=" dewatering"> dewatering</a>, <a href="https://publications.waset.org/abstracts/search?q=geotextile%20drying%20bed" title=" geotextile drying bed"> geotextile drying bed</a>, <a href="https://publications.waset.org/abstracts/search?q=geotextile%20tube" title=" geotextile tube"> geotextile tube</a> </p> <a href="https://publications.waset.org/abstracts/104393/comparison-between-open-and-closed-system-for-dewatering-with-geotextile-field-and-comparative-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104393.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8939</span> Analysis of Evaporation of Liquid Ammonia in a Vertical Cylindrical Storage Tank</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Chikh">S. Chikh</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Boulifa"> S. Boulifa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study addresses the problem of ammonia evaporation during filling of a vertical cylindrical tank and the influence of various external factors on the stability of storage by determining the conditions for minimum evaporation. Numerical simulation is carried out by solving the governing equations namely, continuity, momentum, energy, and diffusion of species. The effect of temperature of surrounding air, the filling speed of the reservoir and the temperature of the filling liquid ammonia on the evaporation rate is investigated. Results show that the temperature of the filling liquid has little effect on the liquid ammonia for a short period, which, in fact, is function of the filling speed. The evaporation rate along the free surface of the liquid is non-uniform. The inlet temperature affects the vapor ammonia temperature because of pressure increase. The temperature of the surrounding air affects the temperature of the vapor phase rather than the liquid phase. The maximum of evaporation is reached at the final step of filling. In order to minimize loss of ammonia vapors automatically causing losses in quantity of the liquid stored, it is suggested to ensure the proper insulation for the walls and roof of the reservoir and to increase the filling speed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evaporation" title="evaporation">evaporation</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20ammonia" title=" liquid ammonia"> liquid ammonia</a>, <a href="https://publications.waset.org/abstracts/search?q=storage%20tank" title=" storage tank"> storage tank</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a> </p> <a href="https://publications.waset.org/abstracts/49166/analysis-of-evaporation-of-liquid-ammonia-in-a-vertical-cylindrical-storage-tank" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49166.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8938</span> A Study of Electrowetting-Assisted Mold Filling in Nanoimprint Lithography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wei-Hsuan%20Hsu">Wei-Hsuan Hsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Xuan%20Huang"> Yi-Xuan Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanoimprint lithography (NIL) possesses the advantages of sub-10-nm feature and low cost. NIL patterns the resist with physical deformation using a mold, which can easily reproduce the required nano-scale pattern. However, the variation of process parameters and environmental conditions seriously affect reproduction quality. How to ensure the quality of imprinted pattern is essential for industry. In this study, the authors used the electrowetting technology to assist mold filling in the NIL process. A special mold structure was designed to cause electrowetting. During the imprinting process, when a voltage was applied between the mold and substrate, the hydrophilicity/hydrophobicity of the surface of the mold can be converted. Both simulation and experiment confirmed that the electrowetting technology can assist mold filling and avoid incomplete filling rate. The proposed method can also reduce the crack formation during the de-molding process. Therefore, electrowetting technology can improve the process quality of NIL. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrowetting" title="electrowetting">electrowetting</a>, <a href="https://publications.waset.org/abstracts/search?q=mold%20filling" title=" mold filling"> mold filling</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-imprint" title=" nano-imprint"> nano-imprint</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20modification" title=" surface modification"> surface modification</a> </p> <a href="https://publications.waset.org/abstracts/99756/a-study-of-electrowetting-assisted-mold-filling-in-nanoimprint-lithography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99756.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8937</span> Study of the Quality of Surface Water in the Upper Cheliff Basin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Touhari%20Fadhila">Touhari Fadhila</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehaiguene%20Madjid"> Mehaiguene Madjid</a>, <a href="https://publications.waset.org/abstracts/search?q=Meddi%20Mohamed"> Meddi Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work aims to assess the quality of water dams based on the monitoring of physical-chemical parameters by the National Agency of Water Resources (ANRH) for a period of 10 years (1999-2008). Quality sheets of surface water for the four dams in the region of upper Cheliff (Ghrib, Deurdeur, Harreza, and Ouled Mellouk) show a degradation of the quality (organic pollution expressed in COD and OM) over time. Indeed, the registered amount of COD often exceeds 50 mg/ l, and the OM exceeds 15 mg/l. This pollution is caused by discharges of wastewater and eutrophication. The waters of dams show a very high salinity (TDS = 2574 mg/l in 2008 for the waters of the dam Ghrib, standard = 1500 mg/l). The concentration of nitrogenous substances (NH<sub>4</sub><sup>+</sup>, NO<sub>2</sub><sup>-</sup>) in water is high in 2008 at Ouled Melloukdam. This pollution is caused by the oxidation of nitrogenous organic matter. On the other hand, we studied the relationship between the evolution of quality parameters and filling dams. We observed a decrease in the salinity and COD following an improvement of the filling state of dams, this resides in the dilution water through the contribution of rainwater. While increased levels of nitrates and phosphorus in the waters of four dams studied during the rainy season is compared to the dry period, this increase may be due to leaching from fertilizers used in agricultural soils situated in watersheds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface%20water%20quality" title="surface water quality">surface water quality</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=physical-chemical%20parameters" title=" physical-chemical parameters"> physical-chemical parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=upper%20Cheliff%20basin." title=" upper Cheliff basin."> upper Cheliff basin.</a> </p> <a href="https://publications.waset.org/abstracts/36269/study-of-the-quality-of-surface-water-in-the-upper-cheliff-basin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36269.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8936</span> Growth Analysis in Wheat as Influenced by Water Stress and Variety in Sokoto, Sudan Savannah, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20B.%20Sokoto">M. B. Sokoto</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20U.%20Abubakar"> I. U. Abubakar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study was carried out on effect of water stress and variety on growth of wheat (Triticum aestivum L.), during 2009/10 and 2010/11 dry seasons. The treatments consisted of factorial combination of water stress at three critical growth stage which was imposed by withholding water at (Tillering, Flowering, Grain filling) and Control (No stress) and two varieties (Star 11 TR 77173/SLM and Kauze/Weaver) laid out in a split-plot design with three replications. Water stress was assigned to the main-plot while variety was assigned to the sub-plots. Result revealed significant (P<0.05) effect of water stress, water stress at tillering significantly (P<0.05) reduced plant height, LAI, CGR, and NAR. Variety had a significant effect on plant height, LAI, CGR and NAR. In conclusion water stress at tillering was observed to be most critical growth stage in wheat, and water stress at this period should be avoided because it results to decrease in growth components in wheat. Wheat should be sown in November or at least first week of December in this area and other area with similar climate. Star II TR 77173/LM is recommended variety for the area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wheat" title="wheat">wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20stress" title=" water stress"> water stress</a>, <a href="https://publications.waset.org/abstracts/search?q=variety" title=" variety"> variety</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudan%20savannah" title=" Sudan savannah"> Sudan savannah</a> </p> <a href="https://publications.waset.org/abstracts/21974/growth-analysis-in-wheat-as-influenced-by-water-stress-and-variety-in-sokoto-sudan-savannah-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21974.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8935</span> Assessment of Environmental Impact of Rain Water and Industrial Water Leakage in the Libyan Iron and Steel Company in the Sea Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Alzarug%20Aburugba">Mohamed Alzarug Aburugba</a>, <a href="https://publications.waset.org/abstracts/search?q=Rashid%20Mohamed%20Eltanashi"> Rashid Mohamed Eltanashi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rainwater is considered an essential water resource, as it contributes to filling the deficit in water resources, especially in countries that suffer from a scarcity of natural water sources. One of the important issues facing the Water and Gas Services Department at the Libyan Iron and Steel Company is the large loss of quantities of industrial water, both direct and indirect cooling water (DCW, ICW), produced within the company due to leaks in the cooling systems of the factories of the Libyan Iron and Steel Company. These amounts of polluted industrial water leakage are mixed with rainwater collected by stormwater stations (6 stations) in LISCO, which is pumped to the sea through pumps with a very high flow rate, and thus, this will carry a lot of waste, heavy metals, and oils to the sea, which negatively affects marine environmental resources. This paper assesses the environmental impact of the quantities of rainwater and mixed industrial water in stormwater stations in the Libyan Iron and Steel Company and methods of mitigation, treating pollutants and reusing them as industrial water in the production processes of the steel industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rainwater" title="rainwater">rainwater</a>, <a href="https://publications.waset.org/abstracts/search?q=mitigation" title=" mitigation"> mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=impact" title=" impact"> impact</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage" title=" sewage"> sewage</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=assessment" title=" assessment"> assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20resources" title=" natural resources"> natural resources</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20water." title=" industrial water."> industrial water.</a> </p> <a href="https://publications.waset.org/abstracts/181201/assessment-of-environmental-impact-of-rain-water-and-industrial-water-leakage-in-the-libyan-iron-and-steel-company-in-the-sea-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181201.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8934</span> The Research of Water Levels in the Zhinvali Water Reservoir and Results of Field Research on the Debris Flow Tributaries of the River Tetri Aragvi Flowing in It</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Givi%20Gavardashvili">Givi Gavardashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Eduard%20Kukhalashvili"> Eduard Kukhalashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamriko%20Supatashvili"> Tamriko Supatashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Giorgi%20Natroshvili"> Giorgi Natroshvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Konstantine%20Bziava"> Konstantine Bziava</a>, <a href="https://publications.waset.org/abstracts/search?q=Irma%20Qufarashvili"> Irma Qufarashvili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the article to research water levels in the Zhinvali water reservoirs by field and theoretical research and using GPS and GIS technologies has been established dynamic of water reservoirs changes in the suitable coordinates and has been made water reservoir maps and is lined in the 3D format. By using of GPS coordinates and digital maps has been established water horizons of Zhinvali water reservoir in the absolute marks and has been calculated water levels volume. To forecast the filling of the Zhinvali water reservoir by solid sediment in 2018 conducted field experimental researches in the catchment basin of river Tetri (White) Aragvi. It has been established main hydrological and hydraulic parameters of the active erosion-debris flow tributaries of river Tetri Aragvi. It has been calculated erosion coefficient considering the degradation of the slope. By calculation is determined, that in the river Tetri Aragvi catchment basin the value of 1% maximum discharge changes Q1% = 70,0 – 550,0 m3/sec, and erosion coefficient - E = 0,73 - 1,62, with suitable fifth class of erosion and intensity 50-100 tone/hectare in the year. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhinvali%20soil%20dam" title="Zhinvali soil dam">Zhinvali soil dam</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20reservoirs" title=" water reservoirs"> water reservoirs</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20levels" title=" water levels"> water levels</a>, <a href="https://publications.waset.org/abstracts/search?q=erosion" title=" erosion"> erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=debris%20flow" title=" debris flow"> debris flow</a> </p> <a href="https://publications.waset.org/abstracts/104072/the-research-of-water-levels-in-the-zhinvali-water-reservoir-and-results-of-field-research-on-the-debris-flow-tributaries-of-the-river-tetri-aragvi-flowing-in-it" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104072.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8933</span> Automated Marker Filling System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pinisetti%20Swami%20Sairam">Pinisetti Swami Sairam</a>, <a href="https://publications.waset.org/abstracts/search?q=Meera%20C.%20S."> Meera C. S.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Marker pens are widely used all over the world, mainly in educational institutions due to their neat, accurate and easily erasable nature. But refilling the ink in these pens is a tedious and time consuming job. Besides, it requires careful handling of the pens and ink bottle. A fully automated marker filling system is a solution developed to overcome this problem. The system comprises of pneumatics and electronics modules as well as PLC control. The system design is done in such a way that the empty markers are dumped in a marker container which then sent through different modules of the system in order to refill it automatically. The filled markers are then collected in a marker container. Refilling of ink takes place in different stages inside the system. An ink detecting system detects the colour of the marker which is to be filled and then refilling is done. The processes like capping and uncapping of the cap as well as screwing and unscrewing of the tip are done with the help of robotic arm and gripper. We make use of pneumatics in this system in order to get the precision while performing the capping, screwing, and refilling operations. Thus with the help of this system we can achieve cleanliness, accuracy, effective and time saving in the process of filling a marker. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automated%20system" title="automated system">automated system</a>, <a href="https://publications.waset.org/abstracts/search?q=market%20filling" title=" market filling"> market filling</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20technology" title=" information technology"> information technology</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20and%20automation" title=" control and automation"> control and automation</a> </p> <a href="https://publications.waset.org/abstracts/12067/automated-marker-filling-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12067.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">497</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8932</span> Study on Constitutive Model of Particle Filling Material Considering Volume Expansion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xu%20Jinsheng">Xu Jinsheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Tong%20Xin"> Tong Xin</a>, <a href="https://publications.waset.org/abstracts/search?q=Zheng%20Jian"> Zheng Jian</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhou%20Changsheng"> Zhou Changsheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The NEPE (nitrate ester plasticized polyether) propellant is a kind of particle filling material with relatively high filling fraction. The experimental results show that the microcracks, microvoids and dewetting can cause the stress softening of the material. In this paper, a series of mechanical testing in inclusion with CCD technique were conducted to analyze the evolution of internal defects of propellant. The volume expansion function of the particle filling material was established by measuring of longitudinal and transverse strain with optical deformation measurement system. By analyzing the defects and internal damages of the material, a visco-hyperelastic constitutive model based on free energy theory was proposed incorporating damage function. The proposed constitutive model could accurately predict the mechanical properties of uniaxial tensile tests and tensile-relaxation tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dewetting" title="dewetting">dewetting</a>, <a href="https://publications.waset.org/abstracts/search?q=constitutive%20model%EF%BC%8C%20uniaxial%20tensile%20tests" title=" constitutive model, uniaxial tensile tests"> constitutive model, uniaxial tensile tests</a>, <a href="https://publications.waset.org/abstracts/search?q=visco-hyperelastic" title=" visco-hyperelastic"> visco-hyperelastic</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear" title=" nonlinear"> nonlinear</a> </p> <a href="https://publications.waset.org/abstracts/71364/study-on-constitutive-model-of-particle-filling-material-considering-volume-expansion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71364.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8931</span> Gas Condensing Unit with Inner Heat Exchanger</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dagnija%20Blumberga">Dagnija Blumberga</a>, <a href="https://publications.waset.org/abstracts/search?q=Toms%20Prodanuks"> Toms Prodanuks</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivars%20Veidenbergs"> Ivars Veidenbergs</a>, <a href="https://publications.waset.org/abstracts/search?q=Andra%20Blumberga"> Andra Blumberga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gas condensing units with inner tubes heat exchangers represent third generation technology and differ from second generation heat and mass transfer units, which are fulfilled by passive filling material layer. The first one improves heat and mass transfer by increasing cooled contact surface of gas and condensate drops and film formed in inner tubes heat exchanger. This paper presents a selection of significant factors which influence the heat and mass transfer. Experimental planning is based on the research and analysis of main three independent variables; velocity of water and gas as well as density of spraying. Empirical mathematical models show that the coefficient of heat transfer is used as dependent parameter which depends on two independent variables; water and gas velocity. Empirical model is proved by the use of experimental data of two independent gas condensing units in Lithuania and Russia. Experimental data are processed by the use of heat transfer criteria-Kirpichov number. Results allow drawing the graphical nomogram for the calculation of heat and mass transfer conditions in the innovative and energy efficient gas cooling unit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20condensing%20unit" title="gas condensing unit">gas condensing unit</a>, <a href="https://publications.waset.org/abstracts/search?q=filling" title=" filling"> filling</a>, <a href="https://publications.waset.org/abstracts/search?q=inner%20heat%20exchanger" title=" inner heat exchanger"> inner heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=package" title=" package"> package</a>, <a href="https://publications.waset.org/abstracts/search?q=spraying" title=" spraying"> spraying</a>, <a href="https://publications.waset.org/abstracts/search?q=tunes" title=" tunes"> tunes</a> </p> <a href="https://publications.waset.org/abstracts/56372/gas-condensing-unit-with-inner-heat-exchanger" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8930</span> The Influence of Physical-Mechanical and Thermal Properties of Hemp Filling Materials by the Addition of Energy Byproducts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarka%20Keprdova">Sarka Keprdova</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiri%20Bydzovsky"> Jiri Bydzovsky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article describes to what extent the addition of energy by-products into the structures of the technical hemp filling materials influence their properties. The article focuses on the changes in physical-mechanical and thermal technical properties of materials after the addition of ash or FBC ash or slag in the binding component of material. Technical hemp filling materials are made of technical hemp shives bonded by the mixture of cement and dry hydrate lime. They are applicable as fillers of vertical or horizontal structures or roofs. The research used eight types of energy by-products of power or heating plants in the Czech Republic. Secondary energy products were dispensed in three different percentage ratios as a replacement of cement in the binding component. Density, compressive strength and determination of the coefficient of thermal conductivity after 28, 60 and 90 days of curing in a laboratory environment were determined and subsequently evaluated on the specimens produced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ash" title="ash">ash</a>, <a href="https://publications.waset.org/abstracts/search?q=binder" title=" binder"> binder</a>, <a href="https://publications.waset.org/abstracts/search?q=cement" title=" cement"> cement</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20by-product" title=" energy by-product"> energy by-product</a>, <a href="https://publications.waset.org/abstracts/search?q=FBC%20ash%20%28fluidized%20bed%20combustion%20ash%29" title=" FBC ash (fluidized bed combustion ash)"> FBC ash (fluidized bed combustion ash)</a>, <a href="https://publications.waset.org/abstracts/search?q=filling%20materials" title=" filling materials"> filling materials</a>, <a href="https://publications.waset.org/abstracts/search?q=shives" title=" shives"> shives</a>, <a href="https://publications.waset.org/abstracts/search?q=slag" title=" slag"> slag</a>, <a href="https://publications.waset.org/abstracts/search?q=technical%20hemp" title=" technical hemp"> technical hemp</a> </p> <a href="https://publications.waset.org/abstracts/9190/the-influence-of-physical-mechanical-and-thermal-properties-of-hemp-filling-materials-by-the-addition-of-energy-byproducts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9190.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8929</span> Studies and Full Scale Tests for the Development of a Ravine Filling with a Depth of about 12.00m</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dana%20Madalina%20Pohrib">Dana Madalina Pohrib</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20Irina%20Ciobanu"> Elena Irina Ciobanu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In compaction works, the most often used codes and standards are those for road embankments and refer to a maximum filling height of 3.00m. When filling a height greater than 3.00m, such codes are no longer valid and thus their application may lead to technical difficulties in the process of compaction and to the achievement of a sufficient degree of compaction. For this reason, in the case of controlled fillings with heights greater than 3.00m it is necessary to formulate and apply a number of special techniques, which can be determined by performing a full scale test. This paper presents the results of the studies and full scale tests conducted for the stabilization of a ravine with vertical banks and a depth of about 12.00m. The fillings will support a heavy traffic road connecting the two parts of a village in Vaslui County, Romania. After analyzing two comparative intervention solutions, the variant of a controlled filling bordered by a monolith concrete retaining wall was chosen. The results obtained by the authors highlighted the need to insert a geogrid reinforcement at every 2.00m for creating a 12.00m thick compacted fill. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compaction" title="compaction">compaction</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20probing" title=" dynamic probing"> dynamic probing</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20stratification" title=" soil stratification"> soil stratification</a> </p> <a href="https://publications.waset.org/abstracts/6414/studies-and-full-scale-tests-for-the-development-of-a-ravine-filling-with-a-depth-of-about-1200m" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6414.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8928</span> The Study of Sintered Wick Structure of Heat Pipes with Excellent Heat Transfer Capabilities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Im-Nam%20Jang">Im-Nam Jang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong-Sik%20Ahn"> Yong-Sik Ahn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study sintered wick was formed in a heat pipe through the process of sintering a mixture of copper powder with particle sizes of 100μm and 200μm, mixed with a pore-forming agent. The heat pipe's thermal resistance, which affects its heat transfer efficiency, is determined during manufacturing according to powder type, thickness of the sintered wick, and filling rate of the working fluid. Heat transfer efficiency was then tested at various inclination angles (0°, 45°, 90°) to evaluate the performance of heat pipes. Regardless of the filling amount and test angle, the 200μm copper powder type exhibited superior heat transfer efficiency compared to the 100μm type. After analyzing heat transfer performance at various filling rates between 20% and 50%, it was determined that the heat pipe's optimal heat transfer capability occurred at a working fluid filling rate of 30%. The width of the wick was directly related to the heat transfer performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20pipe" title="heat pipe">heat pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20performance" title=" heat transfer performance"> heat transfer performance</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20pore%20size" title=" effective pore size"> effective pore size</a>, <a href="https://publications.waset.org/abstracts/search?q=capillary%20force" title=" capillary force"> capillary force</a>, <a href="https://publications.waset.org/abstracts/search?q=sintered%20wick" title=" sintered wick"> sintered wick</a> </p> <a href="https://publications.waset.org/abstracts/183110/the-study-of-sintered-wick-structure-of-heat-pipes-with-excellent-heat-transfer-capabilities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183110.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8927</span> A Fast and Cost-Effective Method to Monitor Microplastics in Compost and Soiduration of Enterococcus Faecalis Penetration in Environmentally Exposed Root Canals Obturated With Lateral Condensation Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Thawornwisit">N. Thawornwisit</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Pradoo"> P. Pradoo</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Nuypree"> S. Nuypree</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Jarukasetrporn"> L. Jarukasetrporn</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Jitpukdeebodintra"> S. Jitpukdeebodintra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: The aim of this study was to evaluate the duration of the Enterococcus faecalis (E. faecalis) penetration into the gap between root canal wall and filling material at a 3 to 6 mm distance from the cementoenamel junction (CEJ) in the dislodged temporary filling, in vitro. Material and methods: Thirty-four single root canal mandibular premolars were divided into two experimental groups (N = 15) and one negative control (N = 4). Root canals were prepared and obturated with gutta-percha using lateral condensation technique, X-ray checked, and sterilized. Leakages were set up using the modified bacterial leakage model, and E. faecalis was used as a microbial marker. Leakages were evaluated at 3 and 7 days by culturing gutta-percha and dentine drilled from a 3-6 mm distance from CEJ. Broth turbidity was recorded and compared. Result: All four negative control and the 3-day experimental group showed no broth turbidity. For the 7-day experimental group, there was 33.3% leakage. Conclusion: Penetration of E. faecalis into the gap between root canal wall and filling material at a 3 to 6 mm distance from CEJ in the dislodged temporary filling were not found at three days. However, at seven days of exposure, bacteria could penetrate into the interface of the root canal and filling materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coronal%20leakage" title="coronal leakage">coronal leakage</a>, <a href="https://publications.waset.org/abstracts/search?q=bacterial%20leakage%20model" title=" bacterial leakage model"> bacterial leakage model</a>, <a href="https://publications.waset.org/abstracts/search?q=enterococcus%20faecalis" title=" enterococcus faecalis"> enterococcus faecalis</a> </p> <a href="https://publications.waset.org/abstracts/153300/a-fast-and-cost-effective-method-to-monitor-microplastics-in-compost-and-soiduration-of-enterococcus-faecalis-penetration-in-environmentally-exposed-root-canals-obturated-with-lateral-condensation-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153300.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8926</span> Experimental Investigation of Heat Transfer on Vertical Two-Phased Closed Thermosyphon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Hadi%20Kusuma">M. Hadi Kusuma</a>, <a href="https://publications.waset.org/abstracts/search?q=Nandy%20Putra"> Nandy Putra</a>, <a href="https://publications.waset.org/abstracts/search?q=Anhar%20Riza%20Antariksawan"> Anhar Riza Antariksawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ficky%20Augusta%20Imawan"> Ficky Augusta Imawan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat pipe is considered to be applied as a passive system to remove residual heat that generated from reactor core when incident occur or from spent fuel storage pool. The objectives are to characterized the heat transfer phenomena, performance of heat pipe, and as a model for large heat pipe will be applied as passive cooling system on nuclear spent fuel pool storage. In this experimental wickless heat pipe or two-phase closed thermosyphon (TPCT) is used. Variation of heat flux are 611.24 Watt/m<sup>2</sup> - 3291.29 Watt/m<sup>2</sup>. Variation of filling ratio are 45 - 70%. Variation of initial pressure are -62 to -74 cm Hg. Demineralized water is used as working fluid in the TPCT. The results showed that increasing of heat load leads to an increase of evaporation of the working fluid. The optimum filling ratio obtained for 60% of TPCT evaporator volume, and initial pressure variation gave different TPCT wall temperature characteristic. TPCT showed best performance with 60% filling ratio and can be consider to be applied as passive residual heat removal system or passive cooling system on spent fuel storage pool. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=two-phase%20closed%20term%20syphon" title="two-phase closed term syphon">two-phase closed term syphon</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20pipe" title=" heat pipe"> heat pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20cooling" title=" passive cooling"> passive cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=spent%20fuel%20storage%20pool" title=" spent fuel storage pool"> spent fuel storage pool</a> </p> <a href="https://publications.waset.org/abstracts/30599/experimental-investigation-of-heat-transfer-on-vertical-two-phased-closed-thermosyphon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30599.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8925</span> Numerical Simulation of Structural Behavior of NSM CFRP Strengthened RC Beams Using Finite Element Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faruk%20Ortes">Faruk Ortes</a>, <a href="https://publications.waset.org/abstracts/search?q=Baris%20Sayin"> Baris Sayin</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarik%20Serhat%20Bozkurt"> Tarik Serhat Bozkurt</a>, <a href="https://publications.waset.org/abstracts/search?q=Cemil%20Akcay"> Cemil Akcay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The technique using near-surface mounted (NSM) carbon fiber-reinforced polymer (CFRP) composites has proved to be an reliable strengthening technique. However, the effects of different parameters for the use of NSM CFRP are not fully developed yet. This study focuses on the development of a numerical modeling that can predict the behavior of reinforced concrete (RC) beams strengthened with NSM FRP rods exposed to bending loading and the efficiency of various parameters such as CFRP rod size and filling material type are evaluated by using prepared models. For this purpose, three different models are developed and implemented in the ANSYS® software using Finite Element Analysis (FEA). The numerical results indicate that CFRP rod size and filling material type are significant factors in the behavior of the analyzed RC beams. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20model" title="numerical model">numerical model</a>, <a href="https://publications.waset.org/abstracts/search?q=FEA" title=" FEA"> FEA</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20beam" title=" RC beam"> RC beam</a>, <a href="https://publications.waset.org/abstracts/search?q=NSM%20technique" title=" NSM technique"> NSM technique</a>, <a href="https://publications.waset.org/abstracts/search?q=CFRP%20rod" title=" CFRP rod"> CFRP rod</a>, <a href="https://publications.waset.org/abstracts/search?q=filling%20material" title=" filling material"> filling material</a> </p> <a href="https://publications.waset.org/abstracts/38365/numerical-simulation-of-structural-behavior-of-nsm-cfrp-strengthened-rc-beams-using-finite-element-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38365.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">601</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8924</span> Evaluation of Reliability, Availability and Maintainability for Automotive Manufacturing Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamzeh%20Soltanali">Hamzeh Soltanali</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Rohani"> Abbas Rohani</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20S.%20Garmabaki"> A. H. S. Garmabaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Hossein%20Abbaspour-Fard"> Mohammad Hossein Abbaspour-Fard</a>, <a href="https://publications.waset.org/abstracts/search?q=Adithya%20Thaduri"> Adithya Thaduri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Toward continuous innovation and high complexity of technological systems, the automotive manufacturing industry is also under pressure to implement adequate management strategies regarding availability and productivity. In this context, evaluation of system’s performance by considering reliability, availability and maintainability (RAM) methodologies can constitute for resilient operation, identifying the bottlenecks of manufacturing process and optimization of maintenance actions. In this paper, RAM parameters are evaluated for improving the operational performance of the fluid filling process. To evaluate the RAM factors through the behavior of states defined for such process, a systematic decision framework was developed. The results of RAM analysis revealed that that the improving reliability and maintainability of main bottlenecks for each filling workstation need to be considered as a priority. The results could be useful to improve operational performance and sustainability of production process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automotive" title="automotive">automotive</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=RAM" title=" RAM"> RAM</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20filling%20process" title=" fluid filling process"> fluid filling process</a> </p> <a href="https://publications.waset.org/abstracts/94759/evaluation-of-reliability-availability-and-maintainability-for-automotive-manufacturing-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8923</span> Effects of Drought Stress on Red Bean (Phaseolus vulgaris L.) Cultivars during Post-Flowering Growth Stage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fariborz%20Shekari">Fariborz Shekari</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdollah%20Javanmard"> Abdollah Javanmard</a>, <a href="https://publications.waset.org/abstracts/search?q=Amin%20Abbasi"> Amin Abbasi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A pot experiment conducted to evaluate the response of two red bean cultivars, Sayad and Derakhshan, to water deficit stress during post-flowering growth stage and recovery potential of plants after stress. Treatments were included regular irrigation or control, water deficit during flowering stage, water deficit during pod formation and water deficit during pod filling period. Results showed that plant height had positive effects on yield of cultivars so that, the tall cultivar, ‘Sayad’, had higher yields. Stress application during flowering stage showed the highest negative impact on plant height and subsequently yield. The longest and the higher number of pods as well as the greatest number of seeds in pods were recorded in control treatment in ‘Sayad’. Stress application during pod formation resulted in the minimum amount of all studied traits in both cultivars. Stress encountered during seed filling period had the least effect on number and length of pods and seed/pod. However, 100 seeds weight significantly decreased. The highest amount for 100 seeds weight was record in control plants in ‘Derakhshan’. Under all treatments, ‘Sayad’ had higher biologic and seed yield compared to ‘Derakhshan’. The least amount of yield was recorded during stress application in pod formation and flowering period for ‘Sayad’ and ‘Derakhshan’ respectively. Harvest index of ‘Sayad’ was more affect by stress application. Data related to photosynthetic rate showed that during stress application, ‘Derakhshan’ owned rapid decline in photosynthesis. Beyond stress alleviation and onset of irrigation, recovery potential of ‘Sayad’ was higher than ‘Derakhshan’ and this cultivar was able to rapidly restore the photosynthesis rate of stress faced plants near control ones. In total, stress had lower impacts on photosynthetic rate of ‘Sayad’ cultivar. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=common%20bean" title="common bean">common bean</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20stress" title=" water stress"> water stress</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20components" title=" yield components"> yield components</a>, <a href="https://publications.waset.org/abstracts/search?q=photosynthetic%20rate" title=" photosynthetic rate"> photosynthetic rate</a> </p> <a href="https://publications.waset.org/abstracts/3558/effects-of-drought-stress-on-red-bean-phaseolus-vulgaris-l-cultivars-during-post-flowering-growth-stage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8922</span> Study of Photonic Crystal Band Gap and Hexagonal Microcavity Based on Elliptical Shaped Holes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Benmerkhi">A. Benmerkhi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bounouioua"> A. Bounouioua</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bouchemat"> M. Bouchemat</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Bouchemat"> T. Bouchemat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a numerical optical properties of a triangular periodic lattice of elliptical air holes. We report the influence of the ratio (semi-major axis length of elliptical hole to the filling ratio) on the photonic band gap. Then by using the finite difference time domain (FDTD) algorithm, the resonant wavelength of the point defect microcavities in a two-dimensional photonic crystal (PC) shifts towards the low wavelengths with significantly increased filing ratio. It can be noted that the Q factor is gradually changed to higher when the filling ratio increases. It is due to an increase in reflectivity of the PC mirror. Also we theoretically investigate the H1 cavity, where the value of semi-major axis (Rx) of the six holes surrounding the cavity are fixed at 0.5a and the Rx of the two edge air holes are fixed at the optimum value of 0.52a. The highest Q factor of 4.1359 × 10<sup>6</sup> is achieved at the resonant mode located at λ = 1.4970 µm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photonic%20crystal" title="photonic crystal">photonic crystal</a>, <a href="https://publications.waset.org/abstracts/search?q=microcavity" title=" microcavity"> microcavity</a>, <a href="https://publications.waset.org/abstracts/search?q=filling%20ratio" title=" filling ratio"> filling ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=elliptical%20holes" title=" elliptical holes"> elliptical holes</a> </p> <a href="https://publications.waset.org/abstracts/119036/study-of-photonic-crystal-band-gap-and-hexagonal-microcavity-based-on-elliptical-shaped-holes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119036.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8921</span> Theoretical-Experimental Investigations on Free Vibration of Glass Fiber/Polyester Composite Conical Shells Containing Fluid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tran%20Ich%20Thinh">Tran Ich Thinh</a>, <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Manh%20Cuong"> Nguyen Manh Cuong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Free vibrations of partial fluid-filled composite truncated conical shells are investigated using the Dynamic Stiffness Method (DSM) or Continuous Element Method (CEM) based on the First Order Shear Deformation Theory (FSDT) and non-viscous incompressible fluid equations. Numerical examples are given for analyzing natural frequencies and harmonic responses of clamped-free conical shells partially and completely filled with fluid. To compare with the theoretical results, detailed experimental results have been obtained on the free vibration of a clamped-free conical shells partially filled with water by using a multi-vibration measuring machine (DEWEBOOK-DASYLab 5.61.10). Three glass fiber/polyester composite truncated cones with the radius of the larger end 285 mm, thickness 2 mm, and the cone lengths along the generators are 285 mm, 427.5 mm and 570 mm with the semi-vertex angles 27, 14 and 9 degrees respectively were used, and the filling ratio of the contained water was 0, 0.25, 0.50, 0.75 and 1.0. The results calculated by proposed computational model for studied composite conical shells are in good agreement with experiments. Obtained results indicate that the fluid filling can reduce significantly the natural frequencies of composite conical shells. Parametric studies including circumferential wave number, fluid depth and cone angles are carried out. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20stiffness%20method" title="dynamic stiffness method">dynamic stiffness method</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20study" title=" experimental study"> experimental study</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20vibration" title=" free vibration"> free vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid-shell%20interaction" title=" fluid-shell interaction"> fluid-shell interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20fiber%2Fpolyester%20composite%20conical%20shell" title=" glass fiber/polyester composite conical shell"> glass fiber/polyester composite conical shell</a> </p> <a href="https://publications.waset.org/abstracts/26561/theoretical-experimental-investigations-on-free-vibration-of-glass-fiberpolyester-composite-conical-shells-containing-fluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26561.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">498</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8920</span> The Analysis of Defects Prediction in Injection Molding </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Moayyedian">Mehdi Moayyedian</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazem%20Abhary"> Kazem Abhary</a>, <a href="https://publications.waset.org/abstracts/search?q=Romeo%20Marian"> Romeo Marian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an evaluation of a plastic defect in injection molding before it occurs in the process; it is known as the short shot defect. The evaluation of different parameters which affect the possibility of short shot defect is the aim of this paper. The analysis of short shot possibility is conducted via SolidWorks Plastics and Taguchi method to determine the most significant parameters. Finite Element Method (FEM) is employed to analyze two circular flat polypropylene plates of 1 mm thickness. Filling time, part cooling time, pressure holding time, melt temperature and gate type are chosen as process and geometric parameters, respectively. A methodology is presented herein to predict the possibility of the short-shot occurrence. The analysis determined melt temperature is the most influential parameter affecting the possibility of short shot defect with a contribution of 74.25%, and filling time with a contribution of 22%, followed by gate type with a contribution of 3.69%. It was also determined the optimum level of each parameter leading to a reduction in the possibility of short shot are gate type at level 1, filling time at level 3 and melt temperature at level 3. Finally, the most significant parameters affecting the possibility of short shot were determined to be melt temperature, filling time, and gate type. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=injection%20molding" title="injection molding">injection molding</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20defects" title=" plastic defects"> plastic defects</a>, <a href="https://publications.waset.org/abstracts/search?q=short%20shot" title=" short shot"> short shot</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method "> Taguchi method </a> </p> <a href="https://publications.waset.org/abstracts/56717/the-analysis-of-defects-prediction-in-injection-molding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56717.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8919</span> Behavior of the Masonry Infill in Structures Subjected to the Horizontal Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mezigheche%20Nawel">Mezigheche Nawel</a>, <a href="https://publications.waset.org/abstracts/search?q=Gouasmia%20Abdelhacine"> Gouasmia Abdelhacine</a>, <a href="https://publications.waset.org/abstracts/search?q=Athmani%20Allaeddine"> Athmani Allaeddine</a>, <a href="https://publications.waset.org/abstracts/search?q=Merzoud%20Mouloud"> Merzoud Mouloud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Masonry infill walls are inevitable in the self-supporting structures, but their contribution in the resistance of earthquake loads is generally neglected in the structural analyses. The principal aim of this work through a numerical study of the behavior of masonry infill walls in structures subjected to horizontal load is to propose by finite elements numerical modeling, a more reliable approach, faster and close to reality. In this study, 3D finite element analysis was developed to study the behavior of masonry infill walls in structures subjected to horizontal load: The finite element software being used was ABAQUS, it is observed that more rigidity of the masonry filling is significant, more the structure is rigid, so we can conclude that the filling brings an additional rigidity to the structure not to be neglected. It is also observed that when the framework is subjected to horizontal loads, the framework separates from the filling on the level of the tended diagonal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title="finite element">finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=masonry%20infill%20walls" title=" masonry infill walls"> masonry infill walls</a>, <a href="https://publications.waset.org/abstracts/search?q=rigidity%20of%20the%20masonry" title=" rigidity of the masonry"> rigidity of the masonry</a>, <a href="https://publications.waset.org/abstracts/search?q=tended%20diagonal" title=" tended diagonal"> tended diagonal</a> </p> <a href="https://publications.waset.org/abstracts/30454/behavior-of-the-masonry-infill-in-structures-subjected-to-the-horizontal-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">491</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8918</span> Application of Geosynthetics for the Recovery of Located Road on Geological Failure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rideci%20Farias">Rideci Farias</a>, <a href="https://publications.waset.org/abstracts/search?q=Haroldo%20Paranhos"> Haroldo Paranhos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work deals with the use of drainage geo-composite as a deep drainage and geogrid element to reinforce the base of the body of the landfill destined to the road pavement on geological faults in the stretch of the TO-342 Highway, between the cities of Miracema and Miranorte, in the State of Tocantins / TO, Brazil, which for many years was the main link between TO-010 and BR-153, after the city of Palmas, also in the state of Tocantins / TO, Brazil. For this application, geotechnical and geological studies were carried out by means of SPT percussion drilling, drilling and rotary drilling, to understand the problem, identifying the type of faults, filling material and the definition of the water table. According to the geological and geotechnical studies carried out, the area where the route was defined, passes through a zone of longitudinal fault to the runway, with strong breaking / fracturing, with presence of voids, intense alteration and with advanced argilization of the rock and with the filling up parts of the faults by organic and compressible soils leachate from other horizons. This geology presents as a geotechnical aggravating agent a medium of high hydraulic load and very low resistance to penetration. For more than 20 years, the region presented constant excessive deformations in the upper layers of the pavement, which after routine services of regularization, reconformation, re-compaction of the layers and application of the asphalt coating. The faults were quickly propagated to the surface of the asphalt pavement, generating a longitudinal shear, forming steps (unevenness), close to 40 cm, causing numerous accidents and discomfort to the drivers, since the geometric positioning was in a horizontal curve. Several projects were presented to the region's highway department to solve the problem. Due to the need for partial closure of the runway, the short time for execution, the use of geosynthetics was proposed and the most adequate solution for the problem was taken into account the movement of existing geological faults and the position of the water level in relation to several Layers of pavement and failure. In order to avoid any flow of water in the body of the landfill and in the filling material of the faults, a drainage curtain solution was used, carried out at 4.0 meters depth, with drainage geo-composite and as reinforcement element and inhibitor of the possible A geogrid of 200 kN / m of resistance was inserted at the base of the reconstituted landfill. Recent evaluations, after 13 years of application of the solution, show the efficiency of the technique used, supported by the geotechnical studies carried out in the area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geosynthetics" title="geosynthetics">geosynthetics</a>, <a href="https://publications.waset.org/abstracts/search?q=geocomposite" title=" geocomposite"> geocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=geogrid" title=" geogrid"> geogrid</a>, <a href="https://publications.waset.org/abstracts/search?q=road" title=" road"> road</a>, <a href="https://publications.waset.org/abstracts/search?q=recovery" title=" recovery"> recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=geological%20failure" title=" geological failure"> geological failure</a> </p> <a href="https://publications.waset.org/abstracts/77561/application-of-geosynthetics-for-the-recovery-of-located-road-on-geological-failure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77561.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8917</span> Fairly Irrigation Water Distribution between Upstream and Downstream Water Users in Water Shortage Periods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Hashemy%20Shahdany">S. M. Hashemy Shahdany</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Equitable water delivery becomes one of the main concerns for water authorities in arid regions. Due to water scarcity, providing reliable amount of water is not possible for most of the irrigation districts in arid regions. In this paper, water level difference control is applied to keep the water level errors equal in adjacent reaches. Distant downstream decentralized configurations of the control method are designed and tested under a realistic scenario shows canal operation under water shortage. The simulation results show that the difference controllers share the water level error among all of the users in a fair way. Therefore, water deficit has a similar influence on downstream as well as upstream and water offtakes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=equitable%20water%20distribution" title="equitable water distribution">equitable water distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=precise%20agriculture" title=" precise agriculture"> precise agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20agriculture" title=" sustainable agriculture"> sustainable agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20shortage" title=" water shortage"> water shortage</a> </p> <a href="https://publications.waset.org/abstracts/39301/fairly-irrigation-water-distribution-between-upstream-and-downstream-water-users-in-water-shortage-periods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39301.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8916</span> Stationary Methanol Steam Reforming to Hydrogen Fuel for Fuel-Cell Filling Stations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Athanasios%20A.%20Tountas">Athanasios A. Tountas</a>, <a href="https://publications.waset.org/abstracts/search?q=Geoffrey%20A.%20Ozin"> Geoffrey A. Ozin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohini%20M.%20Sain"> Mohini M. Sain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Renewable hydrogen (H₂) carriers such as methanol (MeOH), dimethyl ether (DME), oxymethylene dimethyl ethers (OMEs), and conceivably ammonia (NH₃) can be reformed back into H₂ and are fundamental chemical conversions for the long-term viability of the H₂ economy due to their higher densities and ease of transportability compared to H₂. MeOH is an especially important carrier as it is a simple C1 chemical that can be produced from green solar-PV-generated H₂ and direct-air-captured CO₂ with a current commercially practical solar-to-fuel efficiency of 10% from renewable solar energy. MeOH steam reforming (MSR) in stationary systems next to H₂ fuel-cell filling stations can eliminate the need for onboard mobile reformers, and the former systems can be more robust in terms of attaining strict H₂ product specifications, and MeOH is a safe, lossless, and compact medium for long-term H₂ storage. Both thermal- and photo-catalysts are viable options for achieving the stable, long-term performance of stationary MSR systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuel-cell%20vehicle%20filling%20stations" title="fuel-cell vehicle filling stations">fuel-cell vehicle filling stations</a>, <a href="https://publications.waset.org/abstracts/search?q=methanol%20steam%20reforming" title=" methanol steam reforming"> methanol steam reforming</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20transport%20and%20storage" title=" hydrogen transport and storage"> hydrogen transport and storage</a>, <a href="https://publications.waset.org/abstracts/search?q=stationary%20reformer" title=" stationary reformer"> stationary reformer</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20hydrogen%20carriers" title=" liquid hydrogen carriers"> liquid hydrogen carriers</a> </p> <a href="https://publications.waset.org/abstracts/148294/stationary-methanol-steam-reforming-to-hydrogen-fuel-for-fuel-cell-filling-stations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8915</span> Design of Raw Water Reservoir on Sandy Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Venkata%20Ramana%20Pamu">Venkata Ramana Pamu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is a case study of a 5310 ML capacity Raw Water Reservoir (RWR), situated in Indian state Rajasthan, which is a part of Rajasthan Rural Water Supply & Fluorosis Mitigation Project. This RWR embankment was constructed by locally available material on natural ground profile. Height of the embankment was varying from 2m to 10m.This is due to existing ground level was varying. Reservoir depth 9m including 1.5m free board and 1V:3H slopes were provided both upstream and downstream side. Proper soil investigation, tests were done and it was confirmed that the existing soil is sandy silt. The existing excavated earth was used as filling material for embankment construction, due to this controlling seepage from upstream to downstream be a challenging task. Slope stability and Seismic analysis of the embankment done by Conventional method for both full reservoir condition and rapid drawdown. Horizontal filter at toe level was provided along with upstream side PCC (Plain Cement Concrete) block and HDPE (High Density poly ethylene) lining as a remedy to control seepage. HDPE lining was also provided at storage area of the reservoir bed level. Mulching was done for downstream side slope protection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=raw%20water%20reservoir" title="raw water reservoir">raw water reservoir</a>, <a href="https://publications.waset.org/abstracts/search?q=seepage" title=" seepage"> seepage</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20analysis" title=" seismic analysis"> seismic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=slope%20stability" title=" slope stability"> slope stability</a> </p> <a href="https://publications.waset.org/abstracts/51993/design-of-raw-water-reservoir-on-sandy-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">497</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8914</span> The Damage and Durability of a Sport Synthetic Resin Floor: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Paglia">C. Paglia</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Mosca"> C. Mosca</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synthetic resin floorsare often used in sport infrastructure. These organic materials are often in contact with a bituminous substrate, which in turn is placed on the ground. In this work, the damage of a basket resin field surface was characterized by means of visual inspection, optical microscopy, resin thickness measurements, adhesion strength, water vapor transmission capacity, capillary water adsorption, granulometry of the bituminous conglomerate, the surface properties, and the water ground infiltration speed. The infiltration speed indicates water pemeability. This was due to its composition: clean sand mixed with gravel. Relatively good adhesion was present between the synthetic resin and the bituminous layer. The adhesion resistance of the bituminous layer was relatively low. According to the required bitumoniousasphalt-concrete mixes AC 11 S, the placed material was more porous. Insufficient constipation was present. The spaces values were above the standard limits, while the apparent densities were lower compared to the conventional AC 11 mixtures. The microstructure outlines the high permeability and porosity of the bituminous layer. The synthetic resin wasvapourproof and did not exhibit capillary adsorption. It exhibited a lower thickness as required, and no multiple placing steps were observed. Multiple cavities were detected along with the interface between the bituminous layer and the resin coating with no intermediate layers. The layer for the pore filling in the bituminous surface was not properly applied. The swelling bubbles on the synthetic pavement were caused by the humidity in the bituminous layer. Water or humidity were present prior to the application of the resin, and the effect was worsened by the upward movement of the water from the ground. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=resin" title="resin">resin</a>, <a href="https://publications.waset.org/abstracts/search?q=floor" title=" floor"> floor</a>, <a href="https://publications.waset.org/abstracts/search?q=damage" title=" damage"> damage</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a> </p> <a href="https://publications.waset.org/abstracts/142209/the-damage-and-durability-of-a-sport-synthetic-resin-floor-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8913</span> Effect of Silica Fume at Cellular Sprayed Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyong-Ku%20Yun">Kyong-Ku Yun</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung-Yeon%20Han"> Seung-Yeon Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyeo-Re%20Lee"> Kyeo-Re Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Silica fume which is a super-fine byproduct of ferrosilicon or silicon metal has a filling effect on micro-air voids or a transition zone in a hardened cement paste by appropriate mixing, placement, and curing. It, also, has a Pozzolan reaction which enhances the interior density of the hydrated cement paste through a formation of calcium silicate hydroxide. When substituting cement with silica fume, it improves water tightness and durability by filling effect and Pozzolan reaction. However, it needs high range water reducer or super-plasticizer to distribute silica fume into a concrete because of its finesses and high specific surface area. In order to distribute into concrete evenly, cement manufacturers make a pre-blended cement of silica fume and provide to a market. However, a special mixing procedures and another transportation charge another cost and this result in a high price of pre-blended cement of silica fume. The purpose of this dissertation was to investigate the dispersion of silica fume by air slurry and its effect on the mechanical properties of at ready-mixed concrete. The results are as follows: A dispersion effect of silica fume was measured from an analysis of standard deviation for compressive strength test results. It showed that the standard deviation decreased as the air bubble content increased, which means that the dispersion became better as the air bubble content increased. The test result of rapid chloride permeability test showed that permeability resistance increased as the percentages of silica fume increased, but the permeability resistance decreased as the quantity of mixing air bubble increased. The image analysis showed that a spacing factor decreased and a specific surface area increased as the quantity of mixing air bubble increased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellular%20sprayed%20concrete" title="cellular sprayed concrete">cellular sprayed concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20fume" title=" silica fume"> silica fume</a>, <a href="https://publications.waset.org/abstracts/search?q=deviation" title=" deviation"> deviation</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability" title=" permeability "> permeability </a> </p> <a href="https://publications.waset.org/abstracts/88774/effect-of-silica-fume-at-cellular-sprayed-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8912</span> Advancement in Scour Protection with Flexible Solutions: Interpretation of Hydraulic Tests Data for Reno Mattresses in Open Channel Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paolo%20Di%20Pietro">Paolo Di Pietro</a>, <a href="https://publications.waset.org/abstracts/search?q=Matteo%20Lelli"> Matteo Lelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Kinjal%20Parmar"> Kinjal Parmar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water hazards are consistently identified as among the highest global risks in terms of impact. Riverbank protection plays a key role in flood risk management. For erosion control and scour protection, flexible solutions like gabions & mattresses are being used since quite some time now. The efficacy of erosion control systems depends both on the ability to prevent soil loss underneath, as well as to maintain their integrity under the effects of the water flow. The paper presents the results of a research carried out at the Colorado State University on the performance of double twisted wire mesh products, known as Reno Mattresses, used as soil erosion control system. Mattresses were subjected to various flow conditions on a 10m long flume where they were placed on a 0.30 m thick soil layer. The performance against erosion was evaluated by assessing the effect of the stone motion inside the mattress combined with the condition of incipient soil erosion underneath, in relationship to the mattress thickness, the filling stone properties and under variable hydraulic flow regimes. While confirming the stability obtained using a conventional design approach (commonly referred to tractive force theories), the results of the research allowed to introduce a new performance limit based on incipient soil erosion underneath the revetment. Based on the research results, the authors propose to express the shear resistance of mattresses used as soil erosion control system as a function of the size of the filling stones, their uniformity, their unit weight, the thickness of the mattress, and the presence of vertical connecting elements between the mattress lid and bottom. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reno%20Mattress" title="Reno Mattress">Reno Mattress</a>, <a href="https://publications.waset.org/abstracts/search?q=riverbank%20protection" title=" riverbank protection"> riverbank protection</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulics" title=" hydraulics"> hydraulics</a>, <a href="https://publications.waset.org/abstracts/search?q=full%20scale%20tests" title=" full scale tests"> full scale tests</a> </p> <a href="https://publications.waset.org/abstracts/181062/advancement-in-scour-protection-with-flexible-solutions-interpretation-of-hydraulic-tests-data-for-reno-mattresses-in-open-channel-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181062.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">24</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20filling&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20filling&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20filling&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20filling&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20filling&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20filling&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20filling&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20filling&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20filling&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20filling&page=298">298</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20filling&page=299">299</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20filling&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>