CINXE.COM
F-distribution - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>F-distribution - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"685aba64-1ccc-4ca9-8f79-d7ad9128a20c","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"F-distribution","wgTitle":"F-distribution","wgCurRevisionId":1247905502,"wgRevisionId":1247905502,"wgArticleId":332116,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description matches Wikidata","Continuous distributions","Analysis of variance"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"F-distribution","wgRelevantArticleId":332116,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags": {"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":10000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q177144","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready", "site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming", "ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/7/74/F-distribution_pdf.svg/1200px-F-distribution_pdf.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="900"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/7/74/F-distribution_pdf.svg/800px-F-distribution_pdf.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="600"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/7/74/F-distribution_pdf.svg/640px-F-distribution_pdf.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="480"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="F-distribution - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/F-distribution"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=F-distribution&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/F-distribution"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-F-distribution rootpage-F-distribution skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=F-distribution" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=F-distribution" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=F-distribution" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=F-distribution" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Definition" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Definition</span> </div> </a> <ul id="toc-Definition-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Characterization" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Characterization"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Characterization</span> </div> </a> <ul id="toc-Characterization-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Properties_and_related_distributions" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Properties_and_related_distributions"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Properties and related distributions</span> </div> </a> <ul id="toc-Properties_and_related_distributions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><i>F</i>-distribution</h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 28 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-28" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">28 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AA%D9%88%D8%B2%D9%8A%D8%B9_%D8%A3%D9%81" title="توزيع أف – Arabic" lang="ar" hreflang="ar" data-title="توزيع أف" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%A0%D0%B0%D0%B7%D0%BC%D0%B5%D1%80%D0%BA%D0%B0%D0%B2%D0%B0%D0%BD%D0%BD%D0%B5_%D0%A4%D1%96%D1%88%D1%8D%D1%80%D0%B0_%E2%80%94_%D0%A1%D0%BD%D0%B5%D0%B4%D1%8D%D0%BA%D0%BE%D1%80%D0%B0" title="Размеркаванне Фішэра — Снедэкора – Belarusian" lang="be" hreflang="be" data-title="Размеркаванне Фішэра — Снедэкора" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Distribuci%C3%B3_F" title="Distribució F – Catalan" lang="ca" hreflang="ca" data-title="Distribució F" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Rozd%C4%9Blen%C3%AD_F" title="Rozdělení F – Czech" lang="cs" hreflang="cs" data-title="Rozdělení F" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/F-Verteilung" title="F-Verteilung – German" lang="de" hreflang="de" data-title="F-Verteilung" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Distribuci%C3%B3n_F" title="Distribución F – Spanish" lang="es" hreflang="es" data-title="Distribución F" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%AA%D9%88%D8%B2%DB%8C%D8%B9_%D8%A7%D9%81" title="توزیع اف – Persian" lang="fa" hreflang="fa" data-title="توزیع اف" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Loi_de_Fisher" title="Loi de Fisher – French" lang="fr" hreflang="fr" data-title="Loi de Fisher" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Distribuci%C3%B3n_F" title="Distribución F – Galician" lang="gl" hreflang="gl" data-title="Distribución F" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/F_%EB%B6%84%ED%8F%AC" title="F 분포 – Korean" lang="ko" hreflang="ko" data-title="F 분포" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Distribusi_F" title="Distribusi F – Indonesian" lang="id" hreflang="id" data-title="Distribusi F" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Distribuzione_di_Fisher-Snedecor" title="Distribuzione di Fisher-Snedecor – Italian" lang="it" hreflang="it" data-title="Distribuzione di Fisher-Snedecor" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%94%D7%AA%D7%A4%D7%9C%D7%92%D7%95%D7%AA_F" title="התפלגות F – Hebrew" lang="he" hreflang="he" data-title="התפלגות F" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/F-eloszl%C3%A1s" title="F-eloszlás – Hungarian" lang="hu" hreflang="hu" data-title="F-eloszlás" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/F-verdeling" title="F-verdeling – Dutch" lang="nl" hreflang="nl" data-title="F-verdeling" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/F%E5%88%86%E5%B8%83" title="F分布 – Japanese" lang="ja" hreflang="ja" data-title="F分布" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Rozk%C5%82ad_F_Snedecora" title="Rozkład F Snedecora – Polish" lang="pl" hreflang="pl" data-title="Rozkład F Snedecora" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Distribui%C3%A7%C3%A3o_F_de_Fisher-Snedecor" title="Distribuição F de Fisher-Snedecor – Portuguese" lang="pt" hreflang="pt" data-title="Distribuição F de Fisher-Snedecor" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A0%D0%B0%D1%81%D0%BF%D1%80%D0%B5%D0%B4%D0%B5%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5_%D0%A4%D0%B8%D1%88%D0%B5%D1%80%D0%B0" title="Распределение Фишера – Russian" lang="ru" hreflang="ru" data-title="Распределение Фишера" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Shp%C3%ABrndarja_F" title="Shpërndarja F – Albanian" lang="sq" hreflang="sq" data-title="Shpërndarja F" data-language-autonym="Shqip" data-language-local-name="Albanian" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Fisherovo-Snedecorovo_rozdelenie" title="Fisherovo-Snedecorovo rozdelenie – Slovak" lang="sk" hreflang="sk" data-title="Fisherovo-Snedecorovo rozdelenie" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Fisherjeva_porazdelitev" title="Fisherjeva porazdelitev – Slovenian" lang="sl" hreflang="sl" data-title="Fisherjeva porazdelitev" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-su mw-list-item"><a href="https://su.wikipedia.org/wiki/Sebaran-F" title="Sebaran-F – Sundanese" lang="su" hreflang="su" data-title="Sebaran-F" data-language-autonym="Sunda" data-language-local-name="Sundanese" class="interlanguage-link-target"><span>Sunda</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/F-jakauma" title="F-jakauma – Finnish" lang="fi" hreflang="fi" data-title="F-jakauma" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/F-da%C4%9F%C4%B1l%C4%B1m%C4%B1" title="F-dağılımı – Turkish" lang="tr" hreflang="tr" data-title="F-dağılımı" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A0%D0%BE%D0%B7%D0%BF%D0%BE%D0%B4%D1%96%D0%BB_%D0%A4%D1%96%D1%88%D0%B5%D1%80%D0%B0" title="Розподіл Фішера – Ukrainian" lang="uk" hreflang="uk" data-title="Розподіл Фішера" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/F-%E5%88%86%E4%BD%88" title="F-分佈 – Cantonese" lang="yue" hreflang="yue" data-title="F-分佈" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/F-%E5%88%86%E5%B8%83" title="F-分布 – Chinese" lang="zh" hreflang="zh" data-title="F-分布" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q177144#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/F-distribution" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:F-distribution" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/F-distribution"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=F-distribution&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=F-distribution&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/F-distribution"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=F-distribution&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=F-distribution&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/F-distribution" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/F-distribution" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=F-distribution&oldid=1247905502" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=F-distribution&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=F-distribution&id=1247905502&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FF-distribution"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FF-distribution"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=F-distribution&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=F-distribution&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q177144" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Continuous probability distribution</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">This article is about the central F-distribution. For the generalized distribution, see <a href="/wiki/Noncentral_F-distribution" title="Noncentral F-distribution">noncentral F-distribution</a>. For other uses, see <a href="/wiki/F-ratio_(disambiguation)" class="mw-redirect mw-disambig" title="F-ratio (disambiguation)">F-ratio</a>.</div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Not to be confused with <a href="/wiki/F-statistics" title="F-statistics"><i>F</i>-statistics</a> as used in population genetics.</div> <style data-mw-deduplicate="TemplateStyles:r1257001546">.mw-parser-output .infobox-subbox{padding:0;border:none;margin:-3px;width:auto;min-width:100%;font-size:100%;clear:none;float:none;background-color:transparent}.mw-parser-output .infobox-3cols-child{margin:auto}.mw-parser-output .infobox .navbar{font-size:100%}@media screen{html.skin-theme-clientpref-night .mw-parser-output .infobox-full-data:not(.notheme)>div:not(.notheme)[style]{background:#1f1f23!important;color:#f8f9fa}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .infobox-full-data:not(.notheme) div:not(.notheme){background:#1f1f23!important;color:#f8f9fa}}@media(min-width:640px){body.skin--responsive .mw-parser-output .infobox-table{display:table!important}body.skin--responsive .mw-parser-output .infobox-table>caption{display:table-caption!important}body.skin--responsive .mw-parser-output .infobox-table>tbody{display:table-row-group}body.skin--responsive .mw-parser-output .infobox-table tr{display:table-row!important}body.skin--responsive .mw-parser-output .infobox-table th,body.skin--responsive .mw-parser-output .infobox-table td{padding-left:inherit;padding-right:inherit}}</style><style data-mw-deduplicate="TemplateStyles:r1247679731">.mw-parser-output .ib-prob-dist{border-collapse:collapse;width:20em}.mw-parser-output .ib-prob-dist td,.mw-parser-output .ib-prob-dist th{border:1px solid var(--border-color-base,#a2a9b1)}.mw-parser-output .ib-prob-dist .infobox-subheader{text-align:left}.mw-parser-output .ib-prob-dist-image{background:var(--background-color-neutral,#eaecf0);font-weight:bold;text-align:center}</style><table class="infobox infobox-table ib-prob-dist"><caption class="infobox-title">Fisher–Snedecor</caption><tbody><tr><td colspan="4" class="infobox-image"> <div class="ib-prob-dist-image">Probability density function</div><span typeof="mw:File"><a href="/wiki/File:F-distribution_pdf.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/74/F-distribution_pdf.svg/325px-F-distribution_pdf.svg.png" decoding="async" width="325" height="244" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/74/F-distribution_pdf.svg/488px-F-distribution_pdf.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/74/F-distribution_pdf.svg/650px-F-distribution_pdf.svg.png 2x" data-file-width="800" data-file-height="600" /></a></span></td></tr><tr><td colspan="4" class="infobox-image"> <div class="ib-prob-dist-image">Cumulative distribution function</div><span typeof="mw:File"><a href="/wiki/File:F_dist_cdf.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8e/F_dist_cdf.svg/325px-F_dist_cdf.svg.png" decoding="async" width="325" height="244" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8e/F_dist_cdf.svg/488px-F_dist_cdf.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8e/F_dist_cdf.svg/650px-F_dist_cdf.svg.png 2x" data-file-width="512" data-file-height="384" /></a></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Statistical_parameter" title="Statistical parameter">Parameters</a></th><td colspan="3" class="infobox-data"> <i>d</i><sub>1</sub>, <i>d</i><sub>2</sub> > 0 deg. of freedom</td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Support_(mathematics)" title="Support (mathematics)">Support</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in (0,+\infty )\;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mo>+</mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> <mo stretchy="false">)</mo> <mspace width="thickmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in (0,+\infty )\;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28812fcc3d4a5927d51000945e354d231e6fb4c0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.953ex; height:2.843ex;" alt="{\displaystyle x\in (0,+\infty )\;}"></span> if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{1}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d_{1}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/56b088c47dfeccdfe8268e53843cc965c20294c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.524ex; height:2.509ex;" alt="{\displaystyle d_{1}=1}"></span>, otherwise <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in [0,+\infty )\;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mo>+</mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> <mo stretchy="false">)</mo> <mspace width="thickmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in [0,+\infty )\;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ca3880f232f03079bb34e7839e668a75fac30b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.695ex; height:2.843ex;" alt="{\displaystyle x\in [0,+\infty )\;}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Probability_density_function" title="Probability density function">PDF</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\sqrt {\frac {(d_{1}x)^{d_{1}}d_{2}^{d_{2}}}{(d_{1}x+d_{2})^{d_{1}+d_{2}}}}}{x\,\mathrm {B} \!\left({\frac {d_{1}}{2}},{\frac {d_{2}}{2}}\right)}}\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msqrt> <mfrac> <mrow> <mo stretchy="false">(</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msup> <msubsup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msubsup> </mrow> <mrow> <mo stretchy="false">(</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>x</mi> <mo>+</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msup> </mrow> </mfrac> </msqrt> <mrow> <mi>x</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">B</mi> </mrow> <mspace width="negativethinmathspace" /> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\sqrt {\frac {(d_{1}x)^{d_{1}}d_{2}^{d_{2}}}{(d_{1}x+d_{2})^{d_{1}+d_{2}}}}}{x\,\mathrm {B} \!\left({\frac {d_{1}}{2}},{\frac {d_{2}}{2}}\right)}}\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68bf5e8aeba175b3d855183a250e3843c715a416" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.505ex; margin-right: -0.108ex; width:14.78ex; height:13.009ex;" alt="{\displaystyle {\frac {\sqrt {\frac {(d_{1}x)^{d_{1}}d_{2}^{d_{2}}}{(d_{1}x+d_{2})^{d_{1}+d_{2}}}}}{x\,\mathrm {B} \!\left({\frac {d_{1}}{2}},{\frac {d_{2}}{2}}\right)}}\!}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Cumulative_distribution_function" title="Cumulative distribution function">CDF</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{\frac {d_{1}x}{d_{1}x+d_{2}}}\left({\tfrac {d_{1}}{2}},{\tfrac {d_{2}}{2}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>x</mi> </mrow> <mrow> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>x</mi> <mo>+</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </mfrac> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mn>2</mn> </mfrac> </mstyle> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I_{\frac {d_{1}x}{d_{1}x+d_{2}}}\left({\tfrac {d_{1}}{2}},{\tfrac {d_{2}}{2}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d62d2ffb6f95571e911c905fd6e04e94eb18377" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:16.124ex; height:6.009ex;" alt="{\displaystyle I_{\frac {d_{1}x}{d_{1}x+d_{2}}}\left({\tfrac {d_{1}}{2}},{\tfrac {d_{2}}{2}}\right)}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Expected_value" title="Expected value">Mean</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d_{2}}{d_{2}-2}}\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <mn>2</mn> </mrow> </mfrac> </mrow> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d_{2}}{d_{2}-2}}\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42bc770a649bafe0249c3f8c4614b45f42241f0a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; margin-right: -0.108ex; width:6.823ex; height:5.843ex;" alt="{\displaystyle {\frac {d_{2}}{d_{2}-2}}\!}"></span><br /> for <i>d</i><sub>2</sub> > 2</td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Mode_(statistics)" title="Mode (statistics)">Mode</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d_{1}-2}{d_{1}}}\;{\frac {d_{2}}{d_{2}+2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>−<!-- − --></mo> <mn>2</mn> </mrow> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mfrac> </mrow> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mn>2</mn> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d_{1}-2}{d_{1}}}\;{\frac {d_{2}}{d_{2}+2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa498a3d7ae8205dd2c0dc4a1a325dbec007aa83" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:14.849ex; height:5.843ex;" alt="{\displaystyle {\frac {d_{1}-2}{d_{1}}}\;{\frac {d_{2}}{d_{2}+2}}}"></span><br /> for <i>d</i><sub>1</sub> > 2</td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Variance" title="Variance">Variance</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {2\,d_{2}^{2}\,(d_{1}+d_{2}-2)}{d_{1}(d_{2}-2)^{2}(d_{2}-4)}}\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mspace width="thinmathspace" /> <msubsup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <mn>2</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <mn>4</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {2\,d_{2}^{2}\,(d_{1}+d_{2}-2)}{d_{1}(d_{2}-2)^{2}(d_{2}-4)}}\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce64d1edab4849983bd9d1590b30ce8a3d65ca73" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; margin-right: -0.108ex; width:20.025ex; height:6.676ex;" alt="{\displaystyle {\frac {2\,d_{2}^{2}\,(d_{1}+d_{2}-2)}{d_{1}(d_{2}-2)^{2}(d_{2}-4)}}\!}"></span><br /> for <i>d</i><sub>2</sub> > 4</td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Skewness" title="Skewness">Skewness</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {(2d_{1}+d_{2}-2){\sqrt {8(d_{2}-4)}}}{(d_{2}-6){\sqrt {d_{1}(d_{1}+d_{2}-2)}}}}\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <mn>2</mn> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>8</mn> <mo stretchy="false">(</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <mn>4</mn> <mo stretchy="false">)</mo> </msqrt> </mrow> </mrow> <mrow> <mo stretchy="false">(</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <mn>6</mn> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <mn>2</mn> <mo stretchy="false">)</mo> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {(2d_{1}+d_{2}-2){\sqrt {8(d_{2}-4)}}}{(d_{2}-6){\sqrt {d_{1}(d_{1}+d_{2}-2)}}}}\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac47c2f77fbcda51696e9f0819ff405c7f4c5b47" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; margin-right: -0.108ex; width:26.46ex; height:7.509ex;" alt="{\displaystyle {\frac {(2d_{1}+d_{2}-2){\sqrt {8(d_{2}-4)}}}{(d_{2}-6){\sqrt {d_{1}(d_{1}+d_{2}-2)}}}}\!}"></span><br />for <i>d</i><sub>2</sub> > 6</td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Excess_kurtosis" class="mw-redirect" title="Excess kurtosis">Excess kurtosis</a></th><td colspan="3" class="infobox-data"> <i>see text</i></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Information_entropy" class="mw-redirect" title="Information entropy">Entropy</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln \Gamma \left({\tfrac {d_{1}}{2}}\right)+\ln \Gamma \left({\tfrac {d_{2}}{2}}\right)-\ln \Gamma \left({\tfrac {d_{1}+d_{2}}{2}}\right)+\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ln</mi> <mo>⁡<!-- --></mo> <mi mathvariant="normal">Γ<!-- Γ --></mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>ln</mi> <mo>⁡<!-- --></mo> <mi mathvariant="normal">Γ<!-- Γ --></mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo>)</mo> </mrow> <mo>−<!-- − --></mo> <mi>ln</mi> <mo>⁡<!-- --></mo> <mi mathvariant="normal">Γ<!-- Γ --></mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ln \Gamma \left({\tfrac {d_{1}}{2}}\right)+\ln \Gamma \left({\tfrac {d_{2}}{2}}\right)-\ln \Gamma \left({\tfrac {d_{1}+d_{2}}{2}}\right)+\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a507d266e4e8fc6eeecff472ac0cd3c55b8ed681" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; margin-right: -0.257ex; width:39.233ex; height:4.843ex;" alt="{\displaystyle \ln \Gamma \left({\tfrac {d_{1}}{2}}\right)+\ln \Gamma \left({\tfrac {d_{2}}{2}}\right)-\ln \Gamma \left({\tfrac {d_{1}+d_{2}}{2}}\right)+\!}"></span><br /><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(1-{\tfrac {d_{1}}{2}}\right)\psi \left(1+{\tfrac {d_{1}}{2}}\right)-\left(1+{\tfrac {d_{2}}{2}}\right)\psi \left(1+{\tfrac {d_{2}}{2}}\right)\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mn>2</mn> </mfrac> </mstyle> </mrow> </mrow> <mo>)</mo> </mrow> <mi>ψ<!-- ψ --></mi> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mn>2</mn> </mfrac> </mstyle> </mrow> </mrow> <mo>)</mo> </mrow> <mo>−<!-- − --></mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mn>2</mn> </mfrac> </mstyle> </mrow> </mrow> <mo>)</mo> </mrow> <mi>ψ<!-- ψ --></mi> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mn>2</mn> </mfrac> </mstyle> </mrow> </mrow> <mo>)</mo> </mrow> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(1-{\tfrac {d_{1}}{2}}\right)\psi \left(1+{\tfrac {d_{1}}{2}}\right)-\left(1+{\tfrac {d_{2}}{2}}\right)\psi \left(1+{\tfrac {d_{2}}{2}}\right)\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f87cb3fbf968cbc40c36c51e6cc777bdfcfacb93" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:44.232ex; height:4.843ex;" alt="{\displaystyle \left(1-{\tfrac {d_{1}}{2}}\right)\psi \left(1+{\tfrac {d_{1}}{2}}\right)-\left(1+{\tfrac {d_{2}}{2}}\right)\psi \left(1+{\tfrac {d_{2}}{2}}\right)\!}"></span><br /><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle +\left({\tfrac {d_{1}+d_{2}}{2}}\right)\psi \left({\tfrac {d_{1}+d_{2}}{2}}\right)+\ln {\frac {d_{2}}{d_{1}}}\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>+</mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo>)</mo> </mrow> <mi>ψ<!-- ψ --></mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mfrac> </mrow> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle +\left({\tfrac {d_{1}+d_{2}}{2}}\right)\psi \left({\tfrac {d_{1}+d_{2}}{2}}\right)+\ln {\frac {d_{2}}{d_{1}}}\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18b034ff7485a59b869dcb944aeb7b4713ebee3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; margin-right: -0.108ex; width:28.996ex; height:5.843ex;" alt="{\displaystyle +\left({\tfrac {d_{1}+d_{2}}{2}}\right)\psi \left({\tfrac {d_{1}+d_{2}}{2}}\right)+\ln {\frac {d_{2}}{d_{1}}}\!}"></span><sup id="cite_ref-lazo1978entropy_1-0" class="reference"><a href="#cite_note-lazo1978entropy-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Moment-generating_function" title="Moment-generating function">MGF</a></th><td colspan="3" class="infobox-data"> <i>does not exist, raw moments defined in text and in <sup id="cite_ref-johnson_2-0" class="reference"><a href="#cite_note-johnson-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-abramowitz_3-0" class="reference"><a href="#cite_note-abramowitz-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup></i></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Characteristic_function_(probability_theory)" title="Characteristic function (probability theory)">CF</a></th><td colspan="3" class="infobox-data"> <i>see text</i></td></tr></tbody></table> <p>In <a href="/wiki/Probability_theory" title="Probability theory">probability theory</a> and <a href="/wiki/Statistics" title="Statistics">statistics</a>, the <b><i>F</i>-distribution</b> or <b><i>F</i>-ratio</b>, also known as <b>Snedecor's <i>F</i> distribution</b> or the <b>Fisher–Snedecor distribution</b> (after <a href="/wiki/Ronald_Fisher" title="Ronald Fisher">Ronald Fisher</a> and <a href="/wiki/George_W._Snedecor" title="George W. Snedecor">George W. Snedecor</a>), is a <a href="/wiki/Continuous_probability_distribution" class="mw-redirect" title="Continuous probability distribution">continuous probability distribution</a> that arises frequently as the <a href="/wiki/Null_distribution" title="Null distribution">null distribution</a> of a <a href="/wiki/Test_statistic" title="Test statistic">test statistic</a>, most notably in the <a href="/wiki/Analysis_of_variance" title="Analysis of variance">analysis of variance</a> (ANOVA) and other <a href="/wiki/F-test" title="F-test"><i>F</i>-tests</a>.<sup id="cite_ref-johnson_2-1" class="reference"><a href="#cite_note-johnson-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-abramowitz_3-1" class="reference"><a href="#cite_note-abramowitz-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Definition">Definition</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=F-distribution&action=edit&section=1" title="Edit section: Definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <i>F</i>-distribution with <i>d</i><sub>1</sub> and <i>d</i><sub>2</sub> degrees of freedom is the distribution of </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X={\frac {U_{1}/d_{1}}{U_{2}/d_{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X={\frac {U_{1}/d_{1}}{U_{2}/d_{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b8808c6b0f1ddb3ce9efaf6cba34f35a51a0fe2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:11.982ex; height:6.509ex;" alt="{\displaystyle X={\frac {U_{1}/d_{1}}{U_{2}/d_{2}}}}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle U_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle U_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd216950c787b413f9ace4445bdaeb612346d981" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.642ex; height:2.509ex;" alt="{\textstyle U_{1}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle U_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle U_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5badaf74b1759a4628ce79400f3592f731e7c4bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.642ex; height:2.509ex;" alt="{\textstyle U_{2}}"></span> are independent <a href="/wiki/Random_variable" title="Random variable">random variables</a> with <a href="/wiki/Chi-square_distribution" class="mw-redirect" title="Chi-square distribution">chi-square distributions</a> with respective degrees of freedom <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle d_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle d_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ddaf6d22bd90e548df8188829365fcb319e501ec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.263ex; height:2.509ex;" alt="{\textstyle d_{1}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle d_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle d_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c8cd178c612f65a8358db81b28807dc99cf90d7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.263ex; height:2.509ex;" alt="{\textstyle d_{2}}"></span>. </p><p>It can be shown to follow that the <a href="/wiki/Probability_density_function" title="Probability density function">probability density function</a> (pdf) for <i>X</i> is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}f(x;d_{1},d_{2})&={\frac {\sqrt {\frac {(d_{1}x)^{d_{1}}\,\,d_{2}^{d_{2}}}{(d_{1}x+d_{2})^{d_{1}+d_{2}}}}}{x\operatorname {B} \left({\frac {d_{1}}{2}},{\frac {d_{2}}{2}}\right)}}\\[5pt]&={\frac {1}{\operatorname {B} \left({\frac {d_{1}}{2}},{\frac {d_{2}}{2}}\right)}}\left({\frac {d_{1}}{d_{2}}}\right)^{\frac {d_{1}}{2}}x^{{\frac {d_{1}}{2}}-1}\left(1+{\frac {d_{1}}{d_{2}}}\,x\right)^{-{\frac {d_{1}+d_{2}}{2}}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.8em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msqrt> <mfrac> <mrow> <mo stretchy="false">(</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msup> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <msubsup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msubsup> </mrow> <mrow> <mo stretchy="false">(</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>x</mi> <mo>+</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msup> </mrow> </mfrac> </msqrt> <mrow> <mi>x</mi> <mi mathvariant="normal">B</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi mathvariant="normal">B</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mn>2</mn> </mfrac> </mrow> </msup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mn>2</mn> </mfrac> </mrow> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}f(x;d_{1},d_{2})&={\frac {\sqrt {\frac {(d_{1}x)^{d_{1}}\,\,d_{2}^{d_{2}}}{(d_{1}x+d_{2})^{d_{1}+d_{2}}}}}{x\operatorname {B} \left({\frac {d_{1}}{2}},{\frac {d_{2}}{2}}\right)}}\\[5pt]&={\frac {1}{\operatorname {B} \left({\frac {d_{1}}{2}},{\frac {d_{2}}{2}}\right)}}\left({\frac {d_{1}}{d_{2}}}\right)^{\frac {d_{1}}{2}}x^{{\frac {d_{1}}{2}}-1}\left(1+{\frac {d_{1}}{d_{2}}}\,x\right)^{-{\frac {d_{1}+d_{2}}{2}}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc2f8be5060a08b5c1fcb90902d5a3e09fb622f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -11.505ex; width:59.889ex; height:24.176ex;" alt="{\displaystyle {\begin{aligned}f(x;d_{1},d_{2})&={\frac {\sqrt {\frac {(d_{1}x)^{d_{1}}\,\,d_{2}^{d_{2}}}{(d_{1}x+d_{2})^{d_{1}+d_{2}}}}}{x\operatorname {B} \left({\frac {d_{1}}{2}},{\frac {d_{2}}{2}}\right)}}\\[5pt]&={\frac {1}{\operatorname {B} \left({\frac {d_{1}}{2}},{\frac {d_{2}}{2}}\right)}}\left({\frac {d_{1}}{d_{2}}}\right)^{\frac {d_{1}}{2}}x^{{\frac {d_{1}}{2}}-1}\left(1+{\frac {d_{1}}{d_{2}}}\,x\right)^{-{\frac {d_{1}+d_{2}}{2}}}\end{aligned}}}"></span></dd></dl> <p>for <a href="/wiki/Real_number" title="Real number">real</a> <i>x</i> > 0. Here <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {B} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">B</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {B} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/93003d072991ba424a73ed1e081afe55c124b6ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.646ex; height:2.176ex;" alt="{\displaystyle \mathrm {B} }"></span> is the <a href="/wiki/Beta_function" title="Beta function">beta function</a>. In many applications, the parameters <i>d</i><sub>1</sub> and <i>d</i><sub>2</sub> are <a href="/wiki/Positive_integer" class="mw-redirect" title="Positive integer">positive integers</a>, but the distribution is well-defined for positive real values of these parameters. </p><p>The <a href="/wiki/Cumulative_distribution_function" title="Cumulative distribution function">cumulative distribution function</a> is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(x;d_{1},d_{2})=I_{d_{1}x/(d_{1}x+d_{2})}\left({\tfrac {d_{1}}{2}},{\tfrac {d_{2}}{2}}\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>x</mi> <mo>+</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mn>2</mn> </mfrac> </mstyle> </mrow> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(x;d_{1},d_{2})=I_{d_{1}x/(d_{1}x+d_{2})}\left({\tfrac {d_{1}}{2}},{\tfrac {d_{2}}{2}}\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd8531bf0ce4f394322be6257b0b7764848fd2b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:36.423ex; height:4.843ex;" alt="{\displaystyle F(x;d_{1},d_{2})=I_{d_{1}x/(d_{1}x+d_{2})}\left({\tfrac {d_{1}}{2}},{\tfrac {d_{2}}{2}}\right),}"></span></dd></dl> <p>where <i>I</i> is the <a href="/wiki/Regularized_incomplete_beta_function" class="mw-redirect" title="Regularized incomplete beta function">regularized incomplete beta function</a>. </p><p>The expectation, variance, and other details about the F(<i>d</i><sub>1</sub>, <i>d</i><sub>2</sub>) are given in the sidebox; for <i>d</i><sub>2</sub> > 8, the <a href="/wiki/Excess_kurtosis" class="mw-redirect" title="Excess kurtosis">excess kurtosis</a> is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma _{2}=12{\frac {d_{1}(5d_{2}-22)(d_{1}+d_{2}-2)+(d_{2}-4)(d_{2}-2)^{2}}{d_{1}(d_{2}-6)(d_{2}-8)(d_{1}+d_{2}-2)}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>12</mn> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mn>5</mn> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <mn>22</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <mn>4</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <mn>2</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <mn>6</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <mn>8</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma _{2}=12{\frac {d_{1}(5d_{2}-22)(d_{1}+d_{2}-2)+(d_{2}-4)(d_{2}-2)^{2}}{d_{1}(d_{2}-6)(d_{2}-8)(d_{1}+d_{2}-2)}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b7d93408f3b054553e821dc99fc29469a67178a3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:55.052ex; height:6.676ex;" alt="{\displaystyle \gamma _{2}=12{\frac {d_{1}(5d_{2}-22)(d_{1}+d_{2}-2)+(d_{2}-4)(d_{2}-2)^{2}}{d_{1}(d_{2}-6)(d_{2}-8)(d_{1}+d_{2}-2)}}.}"></span></dd></dl> <p>The <i>k</i>-th moment of an F(<i>d</i><sub>1</sub>, <i>d</i><sub>2</sub>) distribution exists and is finite only when 2<i>k</i> < <i>d</i><sub>2</sub> and it is equal to </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu _{X}(k)=\left({\frac {d_{2}}{d_{1}}}\right)^{k}{\frac {\Gamma \left({\tfrac {d_{1}}{2}}+k\right)}{\Gamma \left({\tfrac {d_{1}}{2}}\right)}}{\frac {\Gamma \left({\tfrac {d_{2}}{2}}-k\right)}{\Gamma \left({\tfrac {d_{2}}{2}}\right)}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">Γ<!-- Γ --></mi> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo>+</mo> <mi>k</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mi mathvariant="normal">Γ<!-- Γ --></mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">Γ<!-- Γ --></mi> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo>−<!-- − --></mo> <mi>k</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mi mathvariant="normal">Γ<!-- Γ --></mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu _{X}(k)=\left({\frac {d_{2}}{d_{1}}}\right)^{k}{\frac {\Gamma \left({\tfrac {d_{1}}{2}}+k\right)}{\Gamma \left({\tfrac {d_{1}}{2}}\right)}}{\frac {\Gamma \left({\tfrac {d_{2}}{2}}-k\right)}{\Gamma \left({\tfrac {d_{2}}{2}}\right)}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b74498ecd02e8b92f7f6c2c6d08654bf4e8946f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.505ex; width:41.46ex; height:10.176ex;" alt="{\displaystyle \mu _{X}(k)=\left({\frac {d_{2}}{d_{1}}}\right)^{k}{\frac {\Gamma \left({\tfrac {d_{1}}{2}}+k\right)}{\Gamma \left({\tfrac {d_{1}}{2}}\right)}}{\frac {\Gamma \left({\tfrac {d_{2}}{2}}-k\right)}{\Gamma \left({\tfrac {d_{2}}{2}}\right)}}.}"></span><sup id="cite_ref-taboga_6-0" class="reference"><a href="#cite_note-taboga-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup></dd></dl> <p>The <i>F</i>-distribution is a particular <a href="/wiki/Parametrization_(geometry)" title="Parametrization (geometry)">parametrization</a> of the <a href="/wiki/Beta_prime_distribution" title="Beta prime distribution">beta prime distribution</a>, which is also called the beta distribution of the second kind. </p><p>The <a href="/wiki/Characteristic_function_(probability_theory)" title="Characteristic function (probability theory)">characteristic function</a> is listed incorrectly in many standard references (e.g.,<sup id="cite_ref-abramowitz_3-2" class="reference"><a href="#cite_note-abramowitz-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup>). The correct expression <sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi _{d_{1},d_{2}}^{F}(s)={\frac {\Gamma \left({\frac {d_{1}+d_{2}}{2}}\right)}{\Gamma \left({\tfrac {d_{2}}{2}}\right)}}U\!\left({\frac {d_{1}}{2}},1-{\frac {d_{2}}{2}},-{\frac {d_{2}}{d_{1}}}\imath s\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>F</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">Γ<!-- Γ --></mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mi mathvariant="normal">Γ<!-- Γ --></mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mi>U</mi> <mspace width="negativethinmathspace" /> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mfrac> </mrow> <mi>ı<!-- ı --></mi> <mi>s</mi> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi _{d_{1},d_{2}}^{F}(s)={\frac {\Gamma \left({\frac {d_{1}+d_{2}}{2}}\right)}{\Gamma \left({\tfrac {d_{2}}{2}}\right)}}U\!\left({\frac {d_{1}}{2}},1-{\frac {d_{2}}{2}},-{\frac {d_{2}}{d_{1}}}\imath s\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b677d54ba97a76b429404f56a9974114cb03b9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.505ex; width:46.784ex; height:10.176ex;" alt="{\displaystyle \varphi _{d_{1},d_{2}}^{F}(s)={\frac {\Gamma \left({\frac {d_{1}+d_{2}}{2}}\right)}{\Gamma \left({\tfrac {d_{2}}{2}}\right)}}U\!\left({\frac {d_{1}}{2}},1-{\frac {d_{2}}{2}},-{\frac {d_{2}}{d_{1}}}\imath s\right)}"></span></dd></dl> <p>where <i>U</i>(<i>a</i>, <i>b</i>, <i>z</i>) is the <a href="/wiki/Confluent_hypergeometric_function" title="Confluent hypergeometric function">confluent hypergeometric function</a> of the second kind. </p> <div class="mw-heading mw-heading2"><h2 id="Characterization">Characterization</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=F-distribution&action=edit&section=2" title="Edit section: Characterization"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A <a href="/wiki/Random_variate" title="Random variate">random variate</a> of the <i>F</i>-distribution with parameters <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4cccb5a6a2f1acab4ca255e0be86c224ed82282a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.263ex; height:2.509ex;" alt="{\displaystyle d_{1}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9276f8f68c5c23329de74ad76e69f6801358fb1f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.263ex; height:2.509ex;" alt="{\displaystyle d_{2}}"></span> arises as the ratio of two appropriately scaled <a href="/wiki/Chi-squared_distribution" title="Chi-squared distribution">chi-squared</a> variates:<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X={\frac {U_{1}/d_{1}}{U_{2}/d_{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X={\frac {U_{1}/d_{1}}{U_{2}/d_{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b8808c6b0f1ddb3ce9efaf6cba34f35a51a0fe2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:11.982ex; height:6.509ex;" alt="{\displaystyle X={\frac {U_{1}/d_{1}}{U_{2}/d_{2}}}}"></span></dd></dl> <p>where </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc9e7f892894bc50c32ce1b9f9a68a15562146ac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.642ex; height:2.509ex;" alt="{\displaystyle U_{1}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/590fa6a550fbe2866a28243a733d54245d218b9d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.642ex; height:2.509ex;" alt="{\displaystyle U_{2}}"></span> have <a href="/wiki/Chi-squared_distribution" title="Chi-squared distribution">chi-squared distributions</a> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4cccb5a6a2f1acab4ca255e0be86c224ed82282a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.263ex; height:2.509ex;" alt="{\displaystyle d_{1}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9276f8f68c5c23329de74ad76e69f6801358fb1f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.263ex; height:2.509ex;" alt="{\displaystyle d_{2}}"></span> <a href="/wiki/Degrees_of_freedom_(statistics)" title="Degrees of freedom (statistics)">degrees of freedom</a> respectively, and</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc9e7f892894bc50c32ce1b9f9a68a15562146ac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.642ex; height:2.509ex;" alt="{\displaystyle U_{1}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/590fa6a550fbe2866a28243a733d54245d218b9d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.642ex; height:2.509ex;" alt="{\displaystyle U_{2}}"></span> are <a href="/wiki/Statistical_independence" class="mw-redirect" title="Statistical independence">independent</a>.</li></ul> <p>In instances where the <i>F</i>-distribution is used, for example in the <a href="/wiki/Analysis_of_variance" title="Analysis of variance">analysis of variance</a>, independence of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc9e7f892894bc50c32ce1b9f9a68a15562146ac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.642ex; height:2.509ex;" alt="{\displaystyle U_{1}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/590fa6a550fbe2866a28243a733d54245d218b9d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.642ex; height:2.509ex;" alt="{\displaystyle U_{2}}"></span> might be demonstrated by applying <a href="/wiki/Cochran%27s_theorem" title="Cochran's theorem">Cochran's theorem</a>. </p><p>Equivalently, since the chi-squared distribution is the sum of <a href="/wiki/Independence_(probability_theory)" title="Independence (probability theory)">independent</a> <a href="/wiki/Standard_normal" class="mw-redirect" title="Standard normal">standard normal</a> random variables, the random variable of the <i>F</i>-distribution may also be written </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X={\frac {s_{1}^{2}}{\sigma _{1}^{2}}}\div {\frac {s_{2}^{2}}{\sigma _{2}^{2}}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <msubsup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mfrac> </mrow> <mo>÷<!-- ÷ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <msubsup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X={\frac {s_{1}^{2}}{\sigma _{1}^{2}}}\div {\frac {s_{2}^{2}}{\sigma _{2}^{2}}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d81e1f6bdfa51b90616c22a20f1c63a98622095" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:15.007ex; height:6.843ex;" alt="{\displaystyle X={\frac {s_{1}^{2}}{\sigma _{1}^{2}}}\div {\frac {s_{2}^{2}}{\sigma _{2}^{2}}},}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s_{1}^{2}={\frac {S_{1}^{2}}{d_{1}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s_{1}^{2}={\frac {S_{1}^{2}}{d_{1}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db2b624525dddfa97d2a1c209d46415fe6b516f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:8.655ex; height:6.343ex;" alt="{\displaystyle s_{1}^{2}={\frac {S_{1}^{2}}{d_{1}}}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s_{2}^{2}={\frac {S_{2}^{2}}{d_{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s_{2}^{2}={\frac {S_{2}^{2}}{d_{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c94b8a499d8d6906556aa016bb9c66f2f5f861b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:8.655ex; height:6.343ex;" alt="{\displaystyle s_{2}^{2}={\frac {S_{2}^{2}}{d_{2}}}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{1}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{1}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/538341b0169fdfc5e11c0009affc03c17efb70d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.576ex; height:3.176ex;" alt="{\displaystyle S_{1}^{2}}"></span> is the sum of squares of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4cccb5a6a2f1acab4ca255e0be86c224ed82282a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.263ex; height:2.509ex;" alt="{\displaystyle d_{1}}"></span> random variables from normal distribution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N(0,\sigma _{1}^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <msubsup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N(0,\sigma _{1}^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0febe30ae05563b903e20748721ccafd1204e87" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.454ex; height:3.176ex;" alt="{\displaystyle N(0,\sigma _{1}^{2})}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{2}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{2}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/162588281d3e68c8754882166f8566153ebcda2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.576ex; height:3.176ex;" alt="{\displaystyle S_{2}^{2}}"></span> is the sum of squares of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9276f8f68c5c23329de74ad76e69f6801358fb1f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.263ex; height:2.509ex;" alt="{\displaystyle d_{2}}"></span> random variables from normal distribution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N(0,\sigma _{2}^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <msubsup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N(0,\sigma _{2}^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/56ebb089eb50d28761f4c9cfbd762bfffecf0cb1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.454ex; height:3.176ex;" alt="{\displaystyle N(0,\sigma _{2}^{2})}"></span>. </p><p>In a <a href="/wiki/Frequentist" class="mw-redirect" title="Frequentist">frequentist</a> context, a scaled <i>F</i>-distribution therefore gives the probability <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p(s_{1}^{2}/s_{2}^{2}\mid \sigma _{1}^{2},\sigma _{2}^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo stretchy="false">(</mo> <msubsup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msubsup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>∣<!-- ∣ --></mo> <msubsup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p(s_{1}^{2}/s_{2}^{2}\mid \sigma _{1}^{2},\sigma _{2}^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e7b02d42f6e5771141f46bff819dccdcf6b87d1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; margin-left: -0.089ex; width:16.261ex; height:3.176ex;" alt="{\displaystyle p(s_{1}^{2}/s_{2}^{2}\mid \sigma _{1}^{2},\sigma _{2}^{2})}"></span>, with the <i>F</i>-distribution itself, without any scaling, applying where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma _{1}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma _{1}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0dc9bcce2153e3d171c8c1d3c09ba860513e8dcb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.385ex; height:3.176ex;" alt="{\displaystyle \sigma _{1}^{2}}"></span> is being taken equal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma _{2}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma _{2}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78c44f77a3e598e15f435073db206422e8cd33a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.385ex; height:3.176ex;" alt="{\displaystyle \sigma _{2}^{2}}"></span>. This is the context in which the <i>F</i>-distribution most generally appears in <a href="/wiki/F-test" title="F-test"><i>F</i>-tests</a>: where the null hypothesis is that two independent normal variances are equal, and the observed sums of some appropriately selected squares are then examined to see whether their ratio is significantly incompatible with this null hypothesis. </p><p>The quantity <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> has the same distribution in Bayesian statistics, if an uninformative rescaling-invariant <a href="/wiki/Jeffreys_prior" title="Jeffreys prior">Jeffreys prior</a> is taken for the <a href="/wiki/Prior_probability" title="Prior probability">prior probabilities</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma _{1}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma _{1}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0dc9bcce2153e3d171c8c1d3c09ba860513e8dcb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.385ex; height:3.176ex;" alt="{\displaystyle \sigma _{1}^{2}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma _{2}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma _{2}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78c44f77a3e598e15f435073db206422e8cd33a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.385ex; height:3.176ex;" alt="{\displaystyle \sigma _{2}^{2}}"></span>.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> In this context, a scaled <i>F</i>-distribution thus gives the posterior probability <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p(\sigma _{2}^{2}/\sigma _{1}^{2}\mid s_{1}^{2},s_{2}^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo stretchy="false">(</mo> <msubsup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msubsup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>∣<!-- ∣ --></mo> <msubsup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p(\sigma _{2}^{2}/\sigma _{1}^{2}\mid s_{1}^{2},s_{2}^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e5107c0201bb3865beb5ad48fead213681924af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; margin-left: -0.089ex; width:16.261ex; height:3.176ex;" alt="{\displaystyle p(\sigma _{2}^{2}/\sigma _{1}^{2}\mid s_{1}^{2},s_{2}^{2})}"></span>, where the observed sums <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s_{1}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s_{1}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79687de3d6ba9c8cc56f95a7e6223a0ef5d4aed6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.145ex; height:3.176ex;" alt="{\displaystyle s_{1}^{2}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s_{2}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s_{2}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f0edcc8af0f8c5d83204cd6dca873848708a174" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.145ex; height:3.176ex;" alt="{\displaystyle s_{2}^{2}}"></span> are now taken as known. </p> <div class="mw-heading mw-heading2"><h2 id="Properties_and_related_distributions"><span class="anchor" id="Properties"></span> Properties and related distributions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=F-distribution&action=edit&section=3" title="Edit section: Properties and related distributions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\sim \chi _{d_{1}}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>∼<!-- ∼ --></mo> <msubsup> <mi>χ<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\sim \chi _{d_{1}}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f7b4921114da6887bc2abef998f6a3edecb7e7c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:8.452ex; height:3.509ex;" alt="{\displaystyle X\sim \chi _{d_{1}}^{2}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y\sim \chi _{d_{2}}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> <mo>∼<!-- ∼ --></mo> <msubsup> <mi>χ<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y\sim \chi _{d_{2}}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dacad9505bf1a2ee8c80ff41e7b5ef6de9b51cab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:8.246ex; height:3.509ex;" alt="{\displaystyle Y\sim \chi _{d_{2}}^{2}}"></span> (<a href="/wiki/Chi_squared_distribution" class="mw-redirect" title="Chi squared distribution">Chi squared distribution</a>) are <a href="/wiki/Independence_(probability_theory)" title="Independence (probability theory)">independent</a>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {X/d_{1}}{Y/d_{2}}}\sim \mathrm {F} (d_{1},d_{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>∼<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">F</mi> </mrow> <mo stretchy="false">(</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {X/d_{1}}{Y/d_{2}}}\sim \mathrm {F} (d_{1},d_{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68f56e66c95a5e122058d2b20c4407e3bcd50ebe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:18.228ex; height:6.509ex;" alt="{\displaystyle {\frac {X/d_{1}}{Y/d_{2}}}\sim \mathrm {F} (d_{1},d_{2})}"></span></li> <li>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{k}\sim \Gamma (\alpha _{k},\beta _{k})\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>∼<!-- ∼ --></mo> <mi mathvariant="normal">Γ<!-- Γ --></mi> <mo stretchy="false">(</mo> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{k}\sim \Gamma (\alpha _{k},\beta _{k})\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/93b3bb7f3563f635649d7dc74ad13f248e80bd53" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.775ex; height:2.843ex;" alt="{\displaystyle X_{k}\sim \Gamma (\alpha _{k},\beta _{k})\,}"></span> (<a href="/wiki/Gamma_distribution" title="Gamma distribution">Gamma distribution</a>) are independent, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\alpha _{2}\beta _{1}X_{1}}{\alpha _{1}\beta _{2}X_{2}}}\sim \mathrm {F} (2\alpha _{1},2\alpha _{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>∼<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">F</mi> </mrow> <mo stretchy="false">(</mo> <mn>2</mn> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mn>2</mn> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\alpha _{2}\beta _{1}X_{1}}{\alpha _{1}\beta _{2}X_{2}}}\sim \mathrm {F} (2\alpha _{1},2\alpha _{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89d4abcc11916af8cb166426737f02fc6feed39e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:23.595ex; height:5.843ex;" alt="{\displaystyle {\frac {\alpha _{2}\beta _{1}X_{1}}{\alpha _{1}\beta _{2}X_{2}}}\sim \mathrm {F} (2\alpha _{1},2\alpha _{2})}"></span></li> <li>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\sim \operatorname {Beta} (d_{1}/2,d_{2}/2)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>∼<!-- ∼ --></mo> <mi>Beta</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo>,</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\sim \operatorname {Beta} (d_{1}/2,d_{2}/2)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ff311f78d54d74a6da8d5363ea7f5e3bede89c9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.843ex; height:2.843ex;" alt="{\displaystyle X\sim \operatorname {Beta} (d_{1}/2,d_{2}/2)}"></span> (<a href="/wiki/Beta_distribution" title="Beta distribution">Beta distribution</a>) then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d_{2}X}{d_{1}(1-X)}}\sim \operatorname {F} (d_{1},d_{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mi>X</mi> </mrow> <mrow> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>X</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>∼<!-- ∼ --></mo> <mi mathvariant="normal">F</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d_{2}X}{d_{1}(1-X)}}\sim \operatorname {F} (d_{1},d_{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b1424d78b38bb371df57ed6aee643b5bef184b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:22.877ex; height:6.176ex;" alt="{\displaystyle {\frac {d_{2}X}{d_{1}(1-X)}}\sim \operatorname {F} (d_{1},d_{2})}"></span></li> <li>Equivalently, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\sim F(d_{1},d_{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>∼<!-- ∼ --></mo> <mi>F</mi> <mo stretchy="false">(</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\sim F(d_{1},d_{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd51a1dc4055f2e0199dae2c7d01ee48d81aab41" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.189ex; height:2.843ex;" alt="{\displaystyle X\sim F(d_{1},d_{2})}"></span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d_{1}X/d_{2}}{1+d_{1}X/d_{2}}}\sim \operatorname {Beta} (d_{1}/2,d_{2}/2)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>∼<!-- ∼ --></mo> <mi>Beta</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo>,</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d_{1}X/d_{2}}{1+d_{1}X/d_{2}}}\sim \operatorname {Beta} (d_{1}/2,d_{2}/2)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d1351bbe7ae00ab6236f0dc397de754b8b547fe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:32.371ex; height:6.509ex;" alt="{\displaystyle {\frac {d_{1}X/d_{2}}{1+d_{1}X/d_{2}}}\sim \operatorname {Beta} (d_{1}/2,d_{2}/2)}"></span>.</li> <li>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\sim F(d_{1},d_{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>∼<!-- ∼ --></mo> <mi>F</mi> <mo stretchy="false">(</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\sim F(d_{1},d_{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd51a1dc4055f2e0199dae2c7d01ee48d81aab41" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.189ex; height:2.843ex;" alt="{\displaystyle X\sim F(d_{1},d_{2})}"></span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d_{1}}{d_{2}}}X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mfrac> </mrow> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d_{1}}{d_{2}}}X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9b1c1181ae5228c618fb66019042e4f7ddb90ef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:5.079ex; height:5.843ex;" alt="{\displaystyle {\frac {d_{1}}{d_{2}}}X}"></span> has a <a href="/wiki/Beta_prime_distribution" title="Beta prime distribution">beta prime distribution</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d_{1}}{d_{2}}}X\sim \operatorname {\beta ^{\prime }} \left({\tfrac {d_{1}}{2}},{\tfrac {d_{2}}{2}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mfrac> </mrow> <mi>X</mi> <mo>∼<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <msup> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">′<!-- ′ --></mi> </mrow> </msup> </mrow> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mn>2</mn> </mfrac> </mstyle> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d_{1}}{d_{2}}}X\sim \operatorname {\beta ^{\prime }} \left({\tfrac {d_{1}}{2}},{\tfrac {d_{2}}{2}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a28a9d20e1d1a3471b4be04cfe48d12e1965df5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:19.054ex; height:5.843ex;" alt="{\displaystyle {\frac {d_{1}}{d_{2}}}X\sim \operatorname {\beta ^{\prime }} \left({\tfrac {d_{1}}{2}},{\tfrac {d_{2}}{2}}\right)}"></span>.</li> <li>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\sim F(d_{1},d_{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>∼<!-- ∼ --></mo> <mi>F</mi> <mo stretchy="false">(</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\sim F(d_{1},d_{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd51a1dc4055f2e0199dae2c7d01ee48d81aab41" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.189ex; height:2.843ex;" alt="{\displaystyle X\sim F(d_{1},d_{2})}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y=\lim _{d_{2}\to \infty }d_{1}X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munder> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y=\lim _{d_{2}\to \infty }d_{1}X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f24737655513f11f09279430780cd4ec436b8acc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:14.475ex; height:4.176ex;" alt="{\displaystyle Y=\lim _{d_{2}\to \infty }d_{1}X}"></span> has the <a href="/wiki/Chi-squared_distribution" title="Chi-squared distribution">chi-squared distribution</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \chi _{d_{1}}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>χ<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \chi _{d_{1}}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10ebab7a01e614e4e7c405592621eb5f41fdd48d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:3.374ex; height:3.509ex;" alt="{\displaystyle \chi _{d_{1}}^{2}}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(d_{1},d_{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(d_{1},d_{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2e1cb0655225361e3eeb28b53e66aab34e74ec2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.11ex; height:2.843ex;" alt="{\displaystyle F(d_{1},d_{2})}"></span> is equivalent to the scaled <a href="/wiki/Hotelling%27s_T-squared_distribution" title="Hotelling's T-squared distribution">Hotelling's T-squared distribution</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d_{2}}{d_{1}(d_{1}+d_{2}-1)}}\operatorname {T} ^{2}(d_{1},d_{1}+d_{2}-1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <msup> <mi mathvariant="normal">T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d_{2}}{d_{1}(d_{1}+d_{2}-1)}}\operatorname {T} ^{2}(d_{1},d_{1}+d_{2}-1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cfe5d99410c02d0c395f97b8d9a983bd52794925" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:35.873ex; height:6.176ex;" alt="{\displaystyle {\frac {d_{2}}{d_{1}(d_{1}+d_{2}-1)}}\operatorname {T} ^{2}(d_{1},d_{1}+d_{2}-1)}"></span>.</li> <li>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\sim F(d_{1},d_{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>∼<!-- ∼ --></mo> <mi>F</mi> <mo stretchy="false">(</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\sim F(d_{1},d_{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd51a1dc4055f2e0199dae2c7d01ee48d81aab41" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.189ex; height:2.843ex;" alt="{\displaystyle X\sim F(d_{1},d_{2})}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X^{-1}\sim F(d_{2},d_{1})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>∼<!-- ∼ --></mo> <mi>F</mi> <mo stretchy="false">(</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X^{-1}\sim F(d_{2},d_{1})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/56fe9a7f13f813b3809878287882d2ba7bbe5818" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.538ex; height:3.176ex;" alt="{\displaystyle X^{-1}\sim F(d_{2},d_{1})}"></span>.</li> <li>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\sim t_{(n)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>∼<!-- ∼ --></mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\sim t_{(n)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/826d603f04203dbbf7e19eff2caccdedbbc7f462" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:8.416ex; height:3.009ex;" alt="{\displaystyle X\sim t_{(n)}}"></span> — <a href="/wiki/Student%27s_t-distribution" title="Student's t-distribution">Student's t-distribution</a> — then: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}X^{2}&\sim \operatorname {F} (1,n)\\X^{-2}&\sim \operatorname {F} (n,1)\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>∼<!-- ∼ --></mo> <mi mathvariant="normal">F</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>2</mn> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>∼<!-- ∼ --></mo> <mi mathvariant="normal">F</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}X^{2}&\sim \operatorname {F} (1,n)\\X^{-2}&\sim \operatorname {F} (n,1)\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d548b95b3e6c9cb19892492d01efb0f0a8bd117" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:15.098ex; height:6.509ex;" alt="{\displaystyle {\begin{aligned}X^{2}&\sim \operatorname {F} (1,n)\\X^{-2}&\sim \operatorname {F} (n,1)\end{aligned}}}"></span></li> <li><i>F</i>-distribution is a special case of type 6 <a href="/wiki/Pearson_distribution" title="Pearson distribution">Pearson distribution</a></li> <li>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span> are independent, with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X,Y\sim }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo>∼<!-- ∼ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X,Y\sim }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51d6392d8f187f98e85bcfe5dcbac9f3ce2cdeda" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.241ex; height:2.509ex;" alt="{\displaystyle X,Y\sim }"></span> <a href="/wiki/Laplace_distribution" title="Laplace distribution">Laplace(<i>μ</i>, <i>b</i>)</a> then <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {|X-\mu |}{|Y-\mu |}}\sim \operatorname {F} (2,2)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>X</mi> <mo>−<!-- − --></mo> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>Y</mi> <mo>−<!-- − --></mo> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mo>∼<!-- ∼ --></mo> <mi mathvariant="normal">F</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>,</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {|X-\mu |}{|Y-\mu |}}\sim \operatorname {F} (2,2)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0181ec35b63ed6c84f654a5b577c7f650f86f03" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:18.136ex; height:6.509ex;" alt="{\displaystyle {\frac {|X-\mu |}{|Y-\mu |}}\sim \operatorname {F} (2,2)}"></span></li> <li>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\sim F(n,m)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>∼<!-- ∼ --></mo> <mi>F</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>m</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\sim F(n,m)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/108515303bd44e6a6d6fa97362ab5c8859b03c8b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.098ex; height:2.843ex;" alt="{\displaystyle X\sim F(n,m)}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {\log {X}}{2}}\sim \operatorname {FisherZ} (n,m)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mi>log</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </mrow> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo>∼<!-- ∼ --></mo> <mi>FisherZ</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>m</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {\log {X}}{2}}\sim \operatorname {FisherZ} (n,m)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c31668cf40b228833b129da27dc41ba87e13332b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:21.839ex; height:4.009ex;" alt="{\displaystyle {\tfrac {\log {X}}{2}}\sim \operatorname {FisherZ} (n,m)}"></span> (<a href="/wiki/Fisher%27s_z-distribution" title="Fisher's z-distribution">Fisher's z-distribution</a>)</li> <li>The <a href="/wiki/Noncentral_F-distribution" title="Noncentral F-distribution">noncentral <i>F</i>-distribution</a> simplifies to the <i>F</i>-distribution if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>λ<!-- λ --></mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/00c4bba30544017fe76932de5a4e25adb5512d95" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.616ex; height:2.176ex;" alt="{\displaystyle \lambda =0}"></span>.</li> <li>The doubly <a href="/wiki/Noncentral_F-distribution" title="Noncentral F-distribution">noncentral <i>F</i>-distribution</a> simplifies to the <i>F</i>-distribution if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda _{1}=\lambda _{2}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda _{1}=\lambda _{2}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/487dee4a1f95137a16149e0126249e2804c367fe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.178ex; height:2.509ex;" alt="{\displaystyle \lambda _{1}=\lambda _{2}=0}"></span></li> <li>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Q} _{X}(p)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Q} _{X}(p)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c77981bf7db06ccaf6ff8d94b3838e79d6d056db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.419ex; height:2.843ex;" alt="{\displaystyle \operatorname {Q} _{X}(p)}"></span> is the quantile <i>p</i> for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\sim F(d_{1},d_{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>∼<!-- ∼ --></mo> <mi>F</mi> <mo stretchy="false">(</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\sim F(d_{1},d_{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd51a1dc4055f2e0199dae2c7d01ee48d81aab41" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.189ex; height:2.843ex;" alt="{\displaystyle X\sim F(d_{1},d_{2})}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Q} _{Y}(1-p)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>p</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Q} _{Y}(1-p)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67413dac36d931a5423b44970807836aff50508d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.276ex; height:2.843ex;" alt="{\displaystyle \operatorname {Q} _{Y}(1-p)}"></span> is the quantile <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1-p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>−<!-- − --></mo> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1-p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9633a8692121eedfa99cace406205e5d1511ef8d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.172ex; height:2.509ex;" alt="{\displaystyle 1-p}"></span> for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y\sim F(d_{2},d_{1})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> <mo>∼<!-- ∼ --></mo> <mi>F</mi> <mo stretchy="false">(</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y\sim F(d_{2},d_{1})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15038642f785785e9cafc48e15ac668ab374c18c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.982ex; height:2.843ex;" alt="{\displaystyle Y\sim F(d_{2},d_{1})}"></span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Q} _{X}(p)={\frac {1}{\operatorname {Q} _{Y}(1-p)}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msub> <mi mathvariant="normal">Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Q} _{X}(p)={\frac {1}{\operatorname {Q} _{Y}(1-p)}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/894fb2eea7f44666eb954e2d39d56ac522a80866" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:21.277ex; height:6.009ex;" alt="{\displaystyle \operatorname {Q} _{X}(p)={\frac {1}{\operatorname {Q} _{Y}(1-p)}}.}"></span></li> <li><i>F</i>-distribution is an instance of <a href="/wiki/Ratio_distributions" class="mw-redirect" title="Ratio distributions">ratio distributions</a></li> <li><a href="/wiki/Kendall%27s_W" title="Kendall's W">W</a>-distribution<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> is a unique parametrization of F-distribution.</li></ul> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=F-distribution&action=edit&section=4" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col"> <ul><li><a href="/wiki/Beta_prime_distribution" title="Beta prime distribution">Beta prime distribution</a></li> <li><a href="/wiki/Chi-square_distribution" class="mw-redirect" title="Chi-square distribution">Chi-square distribution</a></li> <li><a href="/wiki/Chow_test" title="Chow test">Chow test</a></li> <li><a href="/wiki/Gamma_distribution" title="Gamma distribution">Gamma distribution</a></li> <li><a href="/wiki/Hotelling%27s_T-squared_distribution" title="Hotelling's T-squared distribution">Hotelling's T-squared distribution</a></li> <li><a href="/wiki/Wilks%27_lambda_distribution" class="mw-redirect" title="Wilks' lambda distribution">Wilks' lambda distribution</a></li> <li><a href="/wiki/Wishart_distribution" title="Wishart distribution">Wishart distribution</a></li> <li><a href="/wiki/Modified_half-normal_distribution" title="Modified half-normal distribution">Modified half-normal distribution</a><sup id="cite_ref-Sun,_Kong_and_Pal_11-0" class="reference"><a href="#cite_note-Sun,_Kong_and_Pal-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> with the pdf on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (0,\infty )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (0,\infty )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da17102e4ed0886686094ee531df040d2e86352a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.329ex; height:2.843ex;" alt="{\displaystyle (0,\infty )}"></span> is given as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)={\frac {2\beta ^{\frac {\alpha }{2}}x^{\alpha -1}\exp(-\beta x^{2}+\gamma x)}{\Psi {\left({\frac {\alpha }{2}},{\frac {\gamma }{\sqrt {\beta }}}\right)}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <msup> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>α<!-- α --></mi> <mn>2</mn> </mfrac> </mrow> </msup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>α<!-- α --></mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>exp</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mi>β<!-- β --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>γ<!-- γ --></mi> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>α<!-- α --></mi> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>γ<!-- γ --></mi> <msqrt> <mi>β<!-- β --></mi> </msqrt> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)={\frac {2\beta ^{\frac {\alpha }{2}}x^{\alpha -1}\exp(-\beta x^{2}+\gamma x)}{\Psi {\left({\frac {\alpha }{2}},{\frac {\gamma }{\sqrt {\beta }}}\right)}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba362b2bb9616f39c06cb4214bf4d8df1d14dc4e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.838ex; width:34.194ex; height:10.509ex;" alt="{\displaystyle f(x)={\frac {2\beta ^{\frac {\alpha }{2}}x^{\alpha -1}\exp(-\beta x^{2}+\gamma x)}{\Psi {\left({\frac {\alpha }{2}},{\frac {\gamma }{\sqrt {\beta }}}\right)}}}}"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Psi (\alpha ,z)={}_{1}\Psi _{1}\left({\begin{matrix}\left(\alpha ,{\frac {1}{2}}\right)\\(1,0)\end{matrix}};z\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mi>α<!-- α --></mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow> <mo>(</mo> <mrow> <mi>α<!-- α --></mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> <mo>;</mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Psi (\alpha ,z)={}_{1}\Psi _{1}\left({\begin{matrix}\left(\alpha ,{\frac {1}{2}}\right)\\(1,0)\end{matrix}};z\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f318f1c6f5b6c50886d35fe09b9205c3e66784" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:27.494ex; height:7.509ex;" alt="{\displaystyle \Psi (\alpha ,z)={}_{1}\Psi _{1}\left({\begin{matrix}\left(\alpha ,{\frac {1}{2}}\right)\\(1,0)\end{matrix}};z\right)}"></span> denotes the <a href="/wiki/Fox%E2%80%93Wright_Psi_function" class="mw-redirect" title="Fox–Wright Psi function">Fox–Wright Psi function</a>.</li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=F-distribution&action=edit&section=5" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-lazo1978entropy-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-lazo1978entropy_1-0">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFLazoRathie1978" class="citation journal cs1">Lazo, A.V.; Rathie, P. (1978). "On the entropy of continuous probability distributions". <i>IEEE Transactions on Information Theory</i>. <b>24</b> (1). IEEE: 120–122. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2Ftit.1978.1055832">10.1109/tit.1978.1055832</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IEEE+Transactions+on+Information+Theory&rft.atitle=On+the+entropy+of+continuous+probability+distributions&rft.volume=24&rft.issue=1&rft.pages=120-122&rft.date=1978&rft_id=info%3Adoi%2F10.1109%2Ftit.1978.1055832&rft.aulast=Lazo&rft.aufirst=A.V.&rft.au=Rathie%2C+P.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AF-distribution" class="Z3988"></span></span> </li> <li id="cite_note-johnson-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-johnson_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-johnson_2-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJohnsonSamuel_KotzN._Balakrishnan1995" class="citation book cs1">Johnson, Norman Lloyd; Samuel Kotz; N. Balakrishnan (1995). <i>Continuous Univariate Distributions, Volume 2 (Second Edition, Section 27)</i>. Wiley. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-471-58494-0" title="Special:BookSources/0-471-58494-0"><bdi>0-471-58494-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Continuous+Univariate+Distributions%2C+Volume+2+%28Second+Edition%2C+Section+27%29&rft.pub=Wiley&rft.date=1995&rft.isbn=0-471-58494-0&rft.aulast=Johnson&rft.aufirst=Norman+Lloyd&rft.au=Samuel+Kotz&rft.au=N.+Balakrishnan&rfr_id=info%3Asid%2Fen.wikipedia.org%3AF-distribution" class="Z3988"></span></span> </li> <li id="cite_note-abramowitz-3"><span class="mw-cite-backlink">^ <a href="#cite_ref-abramowitz_3-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-abramowitz_3-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-abramowitz_3-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAbramowitzStegun1983" class="citation book cs1"><a href="/wiki/Milton_Abramowitz" title="Milton Abramowitz">Abramowitz, Milton</a>; <a href="/wiki/Irene_Stegun" title="Irene Stegun">Stegun, Irene Ann</a>, eds. (1983) [June 1964]. <a rel="nofollow" class="external text" href="http://www.math.ubc.ca/~cbm/aands/page_946.htm">"Chapter 26"</a>. <a href="/wiki/Abramowitz_and_Stegun" title="Abramowitz and Stegun"><i>Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables</i></a>. Applied Mathematics Series. Vol. 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. p. 946. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-486-61272-0" title="Special:BookSources/978-0-486-61272-0"><bdi>978-0-486-61272-0</bdi></a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a> <a rel="nofollow" class="external text" href="https://lccn.loc.gov/64-60036">64-60036</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0167642">0167642</a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a> <a rel="nofollow" class="external text" href="https://www.loc.gov/item/65012253">65-12253</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Chapter+26&rft.btitle=Handbook+of+Mathematical+Functions+with+Formulas%2C+Graphs%2C+and+Mathematical+Tables&rft.place=Washington+D.C.%3B+New+York&rft.series=Applied+Mathematics+Series&rft.pages=946&rft.edition=Ninth+reprint+with+additional+corrections+of+tenth+original+printing+with+corrections+%28December+1972%29%3B+first&rft.pub=United+States+Department+of+Commerce%2C+National+Bureau+of+Standards%3B+Dover+Publications&rft.date=1983&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0167642%23id-name%3DMR&rft_id=info%3Alccn%2F64-60036&rft.isbn=978-0-486-61272-0&rft_id=http%3A%2F%2Fwww.math.ubc.ca%2F~cbm%2Faands%2Fpage_946.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3AF-distribution" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text">NIST (2006). <a rel="nofollow" class="external text" href="http://www.itl.nist.gov/div898/handbook/eda/section3/eda3665.htm">Engineering Statistics Handbook – F Distribution</a></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMoodFranklin_A._GraybillDuane_C._Boes1974" class="citation book cs1">Mood, Alexander; Franklin A. Graybill; Duane C. Boes (1974). <i>Introduction to the Theory of Statistics</i> (Third ed.). McGraw-Hill. pp. 246–249. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-07-042864-6" title="Special:BookSources/0-07-042864-6"><bdi>0-07-042864-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Introduction+to+the+Theory+of+Statistics&rft.pages=246-249&rft.edition=Third&rft.pub=McGraw-Hill&rft.date=1974&rft.isbn=0-07-042864-6&rft.aulast=Mood&rft.aufirst=Alexander&rft.au=Franklin+A.+Graybill&rft.au=Duane+C.+Boes&rfr_id=info%3Asid%2Fen.wikipedia.org%3AF-distribution" class="Z3988"></span></span> </li> <li id="cite_note-taboga-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-taboga_6-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTaboga" class="citation web cs1">Taboga, Marco. <a rel="nofollow" class="external text" href="http://www.statlect.com/F_distribution.htm">"The F distribution"</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=The+F+distribution&rft.aulast=Taboga&rft.aufirst=Marco&rft_id=http%3A%2F%2Fwww.statlect.com%2FF_distribution.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3AF-distribution" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text">Phillips, P. C. B. (1982) "The true characteristic function of the F distribution," <i><a href="/wiki/Biometrika" title="Biometrika">Biometrika</a></i>, 69: 261–264 <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2335882">2335882</a></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDeGroot1986" class="citation book cs1">DeGroot, M. H. (1986). <i>Probability and Statistics</i> (2nd ed.). Addison-Wesley. p. 500. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-201-11366-X" title="Special:BookSources/0-201-11366-X"><bdi>0-201-11366-X</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Probability+and+Statistics&rft.pages=500&rft.edition=2nd&rft.pub=Addison-Wesley&rft.date=1986&rft.isbn=0-201-11366-X&rft.aulast=DeGroot&rft.aufirst=M.+H.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AF-distribution" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBoxTiao1973" class="citation book cs1">Box, G. E. P.; Tiao, G. C. (1973). <i>Bayesian Inference in Statistical Analysis</i>. Addison-Wesley. p. 110. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-201-00622-7" title="Special:BookSources/0-201-00622-7"><bdi>0-201-00622-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Bayesian+Inference+in+Statistical+Analysis&rft.pages=110&rft.pub=Addison-Wesley&rft.date=1973&rft.isbn=0-201-00622-7&rft.aulast=Box&rft.aufirst=G.+E.+P.&rft.au=Tiao%2C+G.+C.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AF-distribution" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMahmoudiJaved2022" class="citation journal cs1">Mahmoudi, Amin; Javed, Saad Ahmed (October 2022). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9409630">"Probabilistic Approach to Multi-Stage Supplier Evaluation: Confidence Level Measurement in Ordinal Priority Approach"</a>. <i>Group Decision and Negotiation</i>. <b>31</b> (5): 1051–1096. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10726-022-09790-1">10.1007/s10726-022-09790-1</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0926-2644">0926-2644</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9409630">9409630</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/36042813">36042813</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Group+Decision+and+Negotiation&rft.atitle=Probabilistic+Approach+to+Multi-Stage+Supplier+Evaluation%3A+Confidence+Level+Measurement+in+Ordinal+Priority+Approach&rft.volume=31&rft.issue=5&rft.pages=1051-1096&rft.date=2022-10&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC9409630%23id-name%3DPMC&rft.issn=0926-2644&rft_id=info%3Apmid%2F36042813&rft_id=info%3Adoi%2F10.1007%2Fs10726-022-09790-1&rft.aulast=Mahmoudi&rft.aufirst=Amin&rft.au=Javed%2C+Saad+Ahmed&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC9409630&rfr_id=info%3Asid%2Fen.wikipedia.org%3AF-distribution" class="Z3988"></span></span> </li> <li id="cite_note-Sun,_Kong_and_Pal-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-Sun,_Kong_and_Pal_11-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSunKongPal2021" class="citation journal cs1">Sun, Jingchao; Kong, Maiying; Pal, Subhadip (22 June 2021). <a rel="nofollow" class="external text" href="https://figshare.com/articles/journal_contribution/The_Modified-Half-Normal_distribution_Properties_and_an_efficient_sampling_scheme/14825266/1/files/28535884.pdf">"The Modified-Half-Normal distribution: Properties and an efficient sampling scheme"</a> <span class="cs1-format">(PDF)</span>. <i>Communications in Statistics - Theory and Methods</i>. <b>52</b> (5): 1591–1613. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F03610926.2021.1934700">10.1080/03610926.2021.1934700</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0361-0926">0361-0926</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:237919587">237919587</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Communications+in+Statistics+-+Theory+and+Methods&rft.atitle=The+Modified-Half-Normal+distribution%3A+Properties+and+an+efficient+sampling+scheme&rft.volume=52&rft.issue=5&rft.pages=1591-1613&rft.date=2021-06-22&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A237919587%23id-name%3DS2CID&rft.issn=0361-0926&rft_id=info%3Adoi%2F10.1080%2F03610926.2021.1934700&rft.aulast=Sun&rft.aufirst=Jingchao&rft.au=Kong%2C+Maiying&rft.au=Pal%2C+Subhadip&rft_id=https%3A%2F%2Ffigshare.com%2Farticles%2Fjournal_contribution%2FThe_Modified-Half-Normal_distribution_Properties_and_an_efficient_sampling_scheme%2F14825266%2F1%2Ffiles%2F28535884.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AF-distribution" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=F-distribution&action=edit&section=6" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="http://www.itl.nist.gov/div898/handbook/eda/section3/eda3673.htm">Table of critical values of the <i>F</i>-distribution</a></li> <li><a rel="nofollow" class="external text" href="https://mathshistory.st-andrews.ac.uk/Miller/mathword/f/">Earliest Uses of Some of the Words of Mathematics: entry on <i>F</i>-distribution contains a brief history</a></li> <li><a rel="nofollow" class="external text" href="http://www.waterlog.info/f-test.htm">Free calculator for <i>F</i>-testing</a></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style><style data-mw-deduplicate="TemplateStyles:r886047488">.mw-parser-output .nobold{font-weight:normal}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"></div><div role="navigation" class="navbox" aria-labelledby="Probability_distributions_(list)" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Probability_distributions" title="Template:Probability distributions"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Probability_distributions" title="Template talk:Probability distributions"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Probability_distributions" title="Special:EditPage/Template:Probability distributions"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Probability_distributions_(list)" style="font-size:114%;margin:0 4em"><a href="/wiki/Probability_distribution" title="Probability distribution">Probability distributions</a> (<a href="/wiki/List_of_probability_distributions" title="List of probability distributions">list</a>)</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Discrete <br />univariate</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">with finite <br />support</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Benford%27s_law" title="Benford's law">Benford</a></li> <li><a href="/wiki/Bernoulli_distribution" title="Bernoulli distribution">Bernoulli</a></li> <li><a href="/wiki/Beta-binomial_distribution" title="Beta-binomial distribution">Beta-binomial</a></li> <li><a href="/wiki/Binomial_distribution" title="Binomial distribution">Binomial</a></li> <li><a href="/wiki/Categorical_distribution" title="Categorical distribution">Categorical</a></li> <li><a href="/wiki/Hypergeometric_distribution" title="Hypergeometric distribution">Hypergeometric</a> <ul><li><a href="/wiki/Negative_hypergeometric_distribution" title="Negative hypergeometric distribution">Negative</a></li></ul></li> <li><a href="/wiki/Poisson_binomial_distribution" title="Poisson binomial distribution">Poisson binomial</a></li> <li><a href="/wiki/Rademacher_distribution" title="Rademacher distribution">Rademacher</a></li> <li><a href="/wiki/Soliton_distribution" title="Soliton distribution">Soliton</a></li> <li><a href="/wiki/Discrete_uniform_distribution" title="Discrete uniform distribution">Discrete uniform</a></li> <li><a href="/wiki/Zipf%27s_law" title="Zipf's law">Zipf</a></li> <li><a href="/wiki/Zipf%E2%80%93Mandelbrot_law" title="Zipf–Mandelbrot law">Zipf–Mandelbrot</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">with infinite <br />support</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Beta_negative_binomial_distribution" title="Beta negative binomial distribution">Beta negative binomial</a></li> <li><a href="/wiki/Borel_distribution" title="Borel distribution">Borel</a></li> <li><a href="/wiki/Conway%E2%80%93Maxwell%E2%80%93Poisson_distribution" title="Conway–Maxwell–Poisson distribution">Conway–Maxwell–Poisson</a></li> <li><a href="/wiki/Discrete_phase-type_distribution" title="Discrete phase-type distribution">Discrete phase-type</a></li> <li><a href="/wiki/Delaporte_distribution" title="Delaporte distribution">Delaporte</a></li> <li><a href="/wiki/Extended_negative_binomial_distribution" title="Extended negative binomial distribution">Extended negative binomial</a></li> <li><a href="/wiki/Flory%E2%80%93Schulz_distribution" title="Flory–Schulz distribution">Flory–Schulz</a></li> <li><a href="/wiki/Gauss%E2%80%93Kuzmin_distribution" title="Gauss–Kuzmin distribution">Gauss–Kuzmin</a></li> <li><a href="/wiki/Geometric_distribution" title="Geometric distribution">Geometric</a></li> <li><a href="/wiki/Logarithmic_distribution" title="Logarithmic distribution">Logarithmic</a></li> <li><a href="/wiki/Mixed_Poisson_distribution" title="Mixed Poisson distribution">Mixed Poisson</a></li> <li><a href="/wiki/Negative_binomial_distribution" title="Negative binomial distribution">Negative binomial</a></li> <li><a href="/wiki/(a,b,0)_class_of_distributions" title="(a,b,0) class of distributions">Panjer</a></li> <li><a href="/wiki/Parabolic_fractal_distribution" title="Parabolic fractal distribution">Parabolic fractal</a></li> <li><a href="/wiki/Poisson_distribution" title="Poisson distribution">Poisson</a></li> <li><a href="/wiki/Skellam_distribution" title="Skellam distribution">Skellam</a></li> <li><a href="/wiki/Yule%E2%80%93Simon_distribution" title="Yule–Simon distribution">Yule–Simon</a></li> <li><a href="/wiki/Zeta_distribution" title="Zeta distribution">Zeta</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Continuous <br />univariate</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">supported on a <br />bounded interval</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Arcsine_distribution" title="Arcsine distribution">Arcsine</a></li> <li><a href="/wiki/ARGUS_distribution" title="ARGUS distribution">ARGUS</a></li> <li><a href="/wiki/Balding%E2%80%93Nichols_model" title="Balding–Nichols model">Balding–Nichols</a></li> <li><a href="/wiki/Bates_distribution" title="Bates distribution">Bates</a></li> <li><a href="/wiki/Beta_distribution" title="Beta distribution">Beta</a> <ul><li><a href="/wiki/Generalized_beta_distribution" title="Generalized beta distribution">Generalized</a></li></ul></li> <li><a href="/wiki/Beta_rectangular_distribution" title="Beta rectangular distribution">Beta rectangular</a></li> <li><a href="/wiki/Continuous_Bernoulli_distribution" title="Continuous Bernoulli distribution">Continuous Bernoulli</a></li> <li><a href="/wiki/Irwin%E2%80%93Hall_distribution" title="Irwin–Hall distribution">Irwin–Hall</a></li> <li><a href="/wiki/Kumaraswamy_distribution" title="Kumaraswamy distribution">Kumaraswamy</a></li> <li><a href="/wiki/Logit-normal_distribution" title="Logit-normal distribution">Logit-normal</a></li> <li><a href="/wiki/Noncentral_beta_distribution" title="Noncentral beta distribution">Noncentral beta</a></li> <li><a href="/wiki/PERT_distribution" title="PERT distribution">PERT</a></li> <li><a href="/wiki/Raised_cosine_distribution" title="Raised cosine distribution">Raised cosine</a></li> <li><a href="/wiki/Reciprocal_distribution" title="Reciprocal distribution">Reciprocal</a></li> <li><a href="/wiki/Triangular_distribution" title="Triangular distribution">Triangular</a></li> <li><a href="/wiki/U-quadratic_distribution" title="U-quadratic distribution">U-quadratic</a></li> <li><a href="/wiki/Continuous_uniform_distribution" title="Continuous uniform distribution">Uniform</a></li> <li><a href="/wiki/Wigner_semicircle_distribution" title="Wigner semicircle distribution">Wigner semicircle</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">supported on a <br />semi-infinite <br />interval</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Benini_distribution" title="Benini distribution">Benini</a></li> <li><a href="/wiki/Benktander_type_I_distribution" title="Benktander type I distribution">Benktander 1st kind</a></li> <li><a href="/wiki/Benktander_type_II_distribution" title="Benktander type II distribution">Benktander 2nd kind</a></li> <li><a href="/wiki/Beta_prime_distribution" title="Beta prime distribution">Beta prime</a></li> <li><a href="/wiki/Burr_distribution" title="Burr distribution">Burr</a></li> <li><a href="/wiki/Chi_distribution" title="Chi distribution">Chi</a></li> <li><a href="/wiki/Chi-squared_distribution" title="Chi-squared distribution">Chi-squared</a> <ul><li><a href="/wiki/Noncentral_chi-squared_distribution" title="Noncentral chi-squared distribution">Noncentral</a></li> <li><a href="/wiki/Inverse-chi-squared_distribution" title="Inverse-chi-squared distribution">Inverse</a> <ul><li><a href="/wiki/Scaled_inverse_chi-squared_distribution" title="Scaled inverse chi-squared distribution">Scaled</a></li></ul></li></ul></li> <li><a href="/wiki/Dagum_distribution" title="Dagum distribution">Dagum</a></li> <li><a href="/wiki/Davis_distribution" title="Davis distribution">Davis</a></li> <li><a href="/wiki/Erlang_distribution" title="Erlang distribution">Erlang</a> <ul><li><a href="/wiki/Hyper-Erlang_distribution" title="Hyper-Erlang distribution">Hyper</a></li></ul></li> <li><a href="/wiki/Exponential_distribution" title="Exponential distribution">Exponential</a> <ul><li><a href="/wiki/Hyperexponential_distribution" title="Hyperexponential distribution">Hyperexponential</a></li> <li><a href="/wiki/Hypoexponential_distribution" title="Hypoexponential distribution">Hypoexponential</a></li> <li><a href="/wiki/Exponential-logarithmic_distribution" title="Exponential-logarithmic distribution">Logarithmic</a></li></ul></li> <li><a class="mw-selflink selflink"><i>F</i></a> <ul><li><a href="/wiki/Noncentral_F-distribution" title="Noncentral F-distribution">Noncentral</a></li></ul></li> <li><a href="/wiki/Folded_normal_distribution" title="Folded normal distribution">Folded normal</a></li> <li><a href="/wiki/Fr%C3%A9chet_distribution" title="Fréchet distribution">Fréchet</a></li> <li><a href="/wiki/Gamma_distribution" title="Gamma distribution">Gamma</a> <ul><li><a href="/wiki/Generalized_gamma_distribution" title="Generalized gamma distribution">Generalized</a></li> <li><a href="/wiki/Inverse-gamma_distribution" title="Inverse-gamma distribution">Inverse</a></li></ul></li> <li><a href="/wiki/Gamma/Gompertz_distribution" title="Gamma/Gompertz distribution">gamma/Gompertz</a></li> <li><a href="/wiki/Gompertz_distribution" title="Gompertz distribution">Gompertz</a> <ul><li><a href="/wiki/Shifted_Gompertz_distribution" title="Shifted Gompertz distribution">Shifted</a></li></ul></li> <li><a href="/wiki/Half-logistic_distribution" title="Half-logistic distribution">Half-logistic</a></li> <li><a href="/wiki/Half-normal_distribution" title="Half-normal distribution">Half-normal</a></li> <li><a href="/wiki/Hotelling%27s_T-squared_distribution" title="Hotelling's T-squared distribution">Hotelling's <i>T</i>-squared</a></li> <li><a href="/wiki/Inverse_Gaussian_distribution" title="Inverse Gaussian distribution">Inverse Gaussian</a> <ul><li><a href="/wiki/Generalized_inverse_Gaussian_distribution" title="Generalized inverse Gaussian distribution">Generalized</a></li></ul></li> <li><a href="/wiki/Kolmogorov%E2%80%93Smirnov_test" title="Kolmogorov–Smirnov test">Kolmogorov</a></li> <li><a href="/wiki/L%C3%A9vy_distribution" title="Lévy distribution">Lévy</a></li> <li><a href="/wiki/Log-Cauchy_distribution" title="Log-Cauchy distribution">Log-Cauchy</a></li> <li><a href="/wiki/Log-Laplace_distribution" title="Log-Laplace distribution">Log-Laplace</a></li> <li><a href="/wiki/Log-logistic_distribution" title="Log-logistic distribution">Log-logistic</a></li> <li><a href="/wiki/Log-normal_distribution" title="Log-normal distribution">Log-normal</a></li> <li><a href="/wiki/Log-t_distribution" title="Log-t distribution">Log-t</a></li> <li><a href="/wiki/Lomax_distribution" title="Lomax distribution">Lomax</a></li> <li><a href="/wiki/Matrix-exponential_distribution" title="Matrix-exponential distribution">Matrix-exponential</a></li> <li><a href="/wiki/Maxwell%E2%80%93Boltzmann_distribution" title="Maxwell–Boltzmann distribution">Maxwell–Boltzmann</a></li> <li><a href="/wiki/Maxwell%E2%80%93J%C3%BCttner_distribution" title="Maxwell–Jüttner distribution">Maxwell–Jüttner</a></li> <li><a href="/wiki/Mittag-Leffler_distribution" title="Mittag-Leffler distribution">Mittag-Leffler</a></li> <li><a href="/wiki/Nakagami_distribution" title="Nakagami distribution">Nakagami</a></li> <li><a href="/wiki/Pareto_distribution" title="Pareto distribution">Pareto</a></li> <li><a href="/wiki/Phase-type_distribution" title="Phase-type distribution">Phase-type</a></li> <li><a href="/wiki/Poly-Weibull_distribution" title="Poly-Weibull distribution">Poly-Weibull</a></li> <li><a href="/wiki/Rayleigh_distribution" title="Rayleigh distribution">Rayleigh</a></li> <li><a href="/wiki/Relativistic_Breit%E2%80%93Wigner_distribution" title="Relativistic Breit–Wigner distribution">Relativistic Breit–Wigner</a></li> <li><a href="/wiki/Rice_distribution" title="Rice distribution">Rice</a></li> <li><a href="/wiki/Truncated_normal_distribution" title="Truncated normal distribution">Truncated normal</a></li> <li><a href="/wiki/Type-2_Gumbel_distribution" title="Type-2 Gumbel distribution">type-2 Gumbel</a></li> <li><a href="/wiki/Weibull_distribution" title="Weibull distribution">Weibull</a> <ul><li><a href="/wiki/Discrete_Weibull_distribution" title="Discrete Weibull distribution">Discrete</a></li></ul></li> <li><a href="/wiki/Wilks%27s_lambda_distribution" title="Wilks's lambda distribution">Wilks's lambda</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">supported <br />on the whole <br />real line</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cauchy_distribution" title="Cauchy distribution">Cauchy</a></li> <li><a href="/wiki/Generalized_normal_distribution#Version_1" title="Generalized normal distribution">Exponential power</a></li> <li><a href="/wiki/Fisher%27s_z-distribution" title="Fisher's z-distribution">Fisher's <i>z</i></a></li> <li><a href="/wiki/Kaniadakis_Gaussian_distribution" title="Kaniadakis Gaussian distribution">Kaniadakis κ-Gaussian</a></li> <li><a href="/wiki/Gaussian_q-distribution" title="Gaussian q-distribution">Gaussian <i>q</i></a></li> <li><a href="/wiki/Generalized_normal_distribution" title="Generalized normal distribution">Generalized normal</a></li> <li><a href="/wiki/Generalised_hyperbolic_distribution" title="Generalised hyperbolic distribution">Generalized hyperbolic</a></li> <li><a href="/wiki/Geometric_stable_distribution" title="Geometric stable distribution">Geometric stable</a></li> <li><a href="/wiki/Gumbel_distribution" title="Gumbel distribution">Gumbel</a></li> <li><a href="/wiki/Holtsmark_distribution" title="Holtsmark distribution">Holtsmark</a></li> <li><a href="/wiki/Hyperbolic_secant_distribution" title="Hyperbolic secant distribution">Hyperbolic secant</a></li> <li><a href="/wiki/Johnson%27s_SU-distribution" title="Johnson's SU-distribution">Johnson's <i>S<sub>U</sub></i></a></li> <li><a href="/wiki/Landau_distribution" title="Landau distribution">Landau</a></li> <li><a href="/wiki/Laplace_distribution" title="Laplace distribution">Laplace</a> <ul><li><a href="/wiki/Asymmetric_Laplace_distribution" title="Asymmetric Laplace distribution">Asymmetric</a></li></ul></li> <li><a href="/wiki/Logistic_distribution" title="Logistic distribution">Logistic</a></li> <li><a href="/wiki/Noncentral_t-distribution" title="Noncentral t-distribution">Noncentral <i>t</i></a></li> <li><a href="/wiki/Normal_distribution" title="Normal distribution">Normal (Gaussian)</a></li> <li><a href="/wiki/Normal-inverse_Gaussian_distribution" title="Normal-inverse Gaussian distribution">Normal-inverse Gaussian</a></li> <li><a href="/wiki/Skew_normal_distribution" title="Skew normal distribution">Skew normal</a></li> <li><a href="/wiki/Slash_distribution" title="Slash distribution">Slash</a></li> <li><a href="/wiki/Stable_distribution" title="Stable distribution">Stable</a></li> <li><a href="/wiki/Student%27s_t-distribution" title="Student's t-distribution">Student's <i>t</i></a></li> <li><a href="/wiki/Tracy%E2%80%93Widom_distribution" title="Tracy–Widom distribution">Tracy–Widom</a></li> <li><a href="/wiki/Variance-gamma_distribution" title="Variance-gamma distribution">Variance-gamma</a></li> <li><a href="/wiki/Voigt_profile" title="Voigt profile">Voigt</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">with support <br />whose type varies</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Generalized_chi-squared_distribution" title="Generalized chi-squared distribution">Generalized chi-squared</a></li> <li><a href="/wiki/Generalized_extreme_value_distribution" title="Generalized extreme value distribution">Generalized extreme value</a></li> <li><a href="/wiki/Generalized_Pareto_distribution" title="Generalized Pareto distribution">Generalized Pareto</a></li> <li><a href="/wiki/Marchenko%E2%80%93Pastur_distribution" title="Marchenko–Pastur distribution">Marchenko–Pastur</a></li> <li><a href="/wiki/Kaniadakis_Exponential_distribution" class="mw-redirect" title="Kaniadakis Exponential distribution">Kaniadakis <i>κ</i>-exponential</a></li> <li><a href="/wiki/Kaniadakis_Gamma_distribution" title="Kaniadakis Gamma distribution">Kaniadakis <i>κ</i>-Gamma</a></li> <li><a href="/wiki/Kaniadakis_Weibull_distribution" title="Kaniadakis Weibull distribution">Kaniadakis <i>κ</i>-Weibull</a></li> <li><a href="/wiki/Kaniadakis_Logistic_distribution" class="mw-redirect" title="Kaniadakis Logistic distribution">Kaniadakis <i>κ</i>-Logistic</a></li> <li><a href="/wiki/Kaniadakis_Erlang_distribution" title="Kaniadakis Erlang distribution">Kaniadakis <i>κ</i>-Erlang</a></li> <li><a href="/wiki/Q-exponential_distribution" title="Q-exponential distribution"><i>q</i>-exponential</a></li> <li><a href="/wiki/Q-Gaussian_distribution" title="Q-Gaussian distribution"><i>q</i>-Gaussian</a></li> <li><a href="/wiki/Q-Weibull_distribution" title="Q-Weibull distribution"><i>q</i>-Weibull</a></li> <li><a href="/wiki/Shifted_log-logistic_distribution" title="Shifted log-logistic distribution">Shifted log-logistic</a></li> <li><a href="/wiki/Tukey_lambda_distribution" title="Tukey lambda distribution">Tukey lambda</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Mixed <br />univariate</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">continuous-<br />discrete</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Rectified_Gaussian_distribution" title="Rectified Gaussian distribution">Rectified Gaussian</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Joint_probability_distribution" title="Joint probability distribution">Multivariate <br />(joint)</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><span class="nobold"><i>Discrete: </i></span></li> <li><a href="/wiki/Ewens%27s_sampling_formula" title="Ewens's sampling formula">Ewens</a></li> <li><a href="/wiki/Multinomial_distribution" title="Multinomial distribution">Multinomial</a> <ul><li><a href="/wiki/Dirichlet-multinomial_distribution" title="Dirichlet-multinomial distribution">Dirichlet</a></li> <li><a href="/wiki/Negative_multinomial_distribution" title="Negative multinomial distribution">Negative</a></li></ul></li> <li><span class="nobold"><i>Continuous: </i></span></li> <li><a href="/wiki/Dirichlet_distribution" title="Dirichlet distribution">Dirichlet</a> <ul><li><a href="/wiki/Generalized_Dirichlet_distribution" title="Generalized Dirichlet distribution">Generalized</a></li></ul></li> <li><a href="/wiki/Multivariate_Laplace_distribution" title="Multivariate Laplace distribution">Multivariate Laplace</a></li> <li><a href="/wiki/Multivariate_normal_distribution" title="Multivariate normal distribution">Multivariate normal</a></li> <li><a href="/wiki/Multivariate_stable_distribution" title="Multivariate stable distribution">Multivariate stable</a></li> <li><a href="/wiki/Multivariate_t-distribution" title="Multivariate t-distribution">Multivariate <i>t</i></a></li> <li><a href="/wiki/Normal-gamma_distribution" title="Normal-gamma distribution">Normal-gamma</a> <ul><li><a href="/wiki/Normal-inverse-gamma_distribution" title="Normal-inverse-gamma distribution">Inverse</a></li></ul></li> <li><span class="nobold"><i><a href="/wiki/Random_matrix" title="Random matrix">Matrix-valued: </a></i></span></li> <li><a href="/wiki/Lewandowski-Kurowicka-Joe_distribution" title="Lewandowski-Kurowicka-Joe distribution">LKJ</a></li> <li><a href="/wiki/Matrix_normal_distribution" title="Matrix normal distribution">Matrix normal</a></li> <li><a href="/wiki/Matrix_t-distribution" title="Matrix t-distribution">Matrix <i>t</i></a></li> <li><a href="/wiki/Matrix_gamma_distribution" title="Matrix gamma distribution">Matrix gamma</a> <ul><li><a href="/wiki/Inverse_matrix_gamma_distribution" title="Inverse matrix gamma distribution">Inverse</a></li></ul></li> <li><a href="/wiki/Wishart_distribution" title="Wishart distribution">Wishart</a> <ul><li><a href="/wiki/Normal-Wishart_distribution" title="Normal-Wishart distribution">Normal</a></li> <li><a href="/wiki/Inverse-Wishart_distribution" title="Inverse-Wishart distribution">Inverse</a></li> <li><a href="/wiki/Normal-inverse-Wishart_distribution" title="Normal-inverse-Wishart distribution">Normal-inverse</a></li> <li><a href="/wiki/Complex_Wishart_distribution" title="Complex Wishart distribution">Complex</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Directional_statistics" title="Directional statistics">Directional</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <dl><dt><span class="nobold"><i>Univariate (circular) <a href="/wiki/Directional_statistics" title="Directional statistics">directional</a></i></span></dt> <dd><a href="/wiki/Circular_uniform_distribution" title="Circular uniform distribution">Circular uniform</a></dd> <dd><a href="/wiki/Von_Mises_distribution" title="Von Mises distribution">Univariate von Mises</a></dd> <dd><a href="/wiki/Wrapped_normal_distribution" title="Wrapped normal distribution">Wrapped normal</a></dd> <dd><a href="/wiki/Wrapped_Cauchy_distribution" title="Wrapped Cauchy distribution">Wrapped Cauchy</a></dd> <dd><a href="/wiki/Wrapped_exponential_distribution" title="Wrapped exponential distribution">Wrapped exponential</a></dd> <dd><a href="/wiki/Wrapped_asymmetric_Laplace_distribution" title="Wrapped asymmetric Laplace distribution">Wrapped asymmetric Laplace</a></dd> <dd><a href="/wiki/Wrapped_L%C3%A9vy_distribution" title="Wrapped Lévy distribution">Wrapped Lévy</a></dd> <dt><span class="nobold"><i>Bivariate (spherical)</i></span></dt> <dd><a href="/wiki/Kent_distribution" title="Kent distribution">Kent</a></dd> <dt><span class="nobold"><i>Bivariate (toroidal)</i></span></dt> <dd><a href="/wiki/Bivariate_von_Mises_distribution" title="Bivariate von Mises distribution">Bivariate von Mises</a></dd> <dt><span class="nobold"><i>Multivariate</i></span></dt> <dd><a href="/wiki/Von_Mises%E2%80%93Fisher_distribution" title="Von Mises–Fisher distribution">von Mises–Fisher</a></dd> <dd><a href="/wiki/Bingham_distribution" title="Bingham distribution">Bingham</a></dd></dl> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Degenerate_distribution" title="Degenerate distribution">Degenerate</a> <br />and <a href="/wiki/Singular_distribution" title="Singular distribution">singular</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <dl><dt><span class="nobold"><i>Degenerate</i></span></dt> <dd><a href="/wiki/Dirac_delta_function" title="Dirac delta function">Dirac delta function</a></dd> <dt><span class="nobold"><i>Singular</i></span></dt> <dd><a href="/wiki/Cantor_distribution" title="Cantor distribution">Cantor</a></dd></dl> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Families</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Circular_distribution" title="Circular distribution">Circular</a></li> <li><a href="/wiki/Compound_Poisson_distribution" title="Compound Poisson distribution">Compound Poisson</a></li> <li><a href="/wiki/Elliptical_distribution" title="Elliptical distribution">Elliptical</a></li> <li><a href="/wiki/Exponential_family" title="Exponential family">Exponential</a></li> <li><a href="/wiki/Natural_exponential_family" title="Natural exponential family">Natural exponential</a></li> <li><a href="/wiki/Location%E2%80%93scale_family" title="Location–scale family">Location–scale</a></li> <li><a href="/wiki/Maximum_entropy_probability_distribution" title="Maximum entropy probability distribution">Maximum entropy</a></li> <li><a href="/wiki/Mixture_distribution" title="Mixture distribution">Mixture</a></li> <li><a href="/wiki/Pearson_distribution" title="Pearson distribution">Pearson</a></li> <li><a href="/wiki/Tweedie_distribution" title="Tweedie distribution">Tweedie</a></li> <li><a href="/wiki/Wrapped_distribution" title="Wrapped distribution">Wrapped</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Probability_distributions" title="Category:Probability distributions">Category</a></li> <li><span class="noviewer" typeof="mw:File"><span title="Commons page"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span> <a href="https://commons.wikimedia.org/wiki/Category:Probability_distributions" class="extiw" title="commons:Category:Probability distributions">Commons</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐7n487 Cached time: 20241122140708 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.462 seconds Real time usage: 0.667 seconds Preprocessor visited node count: 2081/1000000 Post‐expand include size: 93444/2097152 bytes Template argument size: 2665/2097152 bytes Highest expansion depth: 9/100 Expensive parser function count: 3/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 51860/5000000 bytes Lua time usage: 0.226/10.000 seconds Lua memory usage: 5450183/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 424.644 1 -total 32.31% 137.187 1 Template:Reflist 23.33% 99.087 1 Template:Short_description 22.01% 93.456 4 Template:Navbox 21.26% 90.281 1 Template:ProbDistributions 19.00% 80.695 3 Template:Cite_journal 15.63% 66.387 2 Template:Pagetype 9.16% 38.917 1 Template:Probability_distribution 6.24% 26.488 5 Template:Cite_book 5.73% 24.319 1 Template:About --> <!-- Saved in parser cache with key enwiki:pcache:idhash:332116-0!canonical and timestamp 20241122140708 and revision id 1247905502. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=F-distribution&oldid=1247905502">https://en.wikipedia.org/w/index.php?title=F-distribution&oldid=1247905502</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Continuous_distributions" title="Category:Continuous distributions">Continuous distributions</a></li><li><a href="/wiki/Category:Analysis_of_variance" title="Category:Analysis of variance">Analysis of variance</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 26 September 2024, at 17:22<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=F-distribution&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-xn2z5","wgBackendResponseTime":151,"wgPageParseReport":{"limitreport":{"cputime":"0.462","walltime":"0.667","ppvisitednodes":{"value":2081,"limit":1000000},"postexpandincludesize":{"value":93444,"limit":2097152},"templateargumentsize":{"value":2665,"limit":2097152},"expansiondepth":{"value":9,"limit":100},"expensivefunctioncount":{"value":3,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":51860,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 424.644 1 -total"," 32.31% 137.187 1 Template:Reflist"," 23.33% 99.087 1 Template:Short_description"," 22.01% 93.456 4 Template:Navbox"," 21.26% 90.281 1 Template:ProbDistributions"," 19.00% 80.695 3 Template:Cite_journal"," 15.63% 66.387 2 Template:Pagetype"," 9.16% 38.917 1 Template:Probability_distribution"," 6.24% 26.488 5 Template:Cite_book"," 5.73% 24.319 1 Template:About"]},"scribunto":{"limitreport-timeusage":{"value":"0.226","limit":"10.000"},"limitreport-memusage":{"value":5450183,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-7n487","timestamp":"20241122140708","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"F-distribution","url":"https:\/\/en.wikipedia.org\/wiki\/F-distribution","sameAs":"http:\/\/www.wikidata.org\/entity\/Q177144","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q177144","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-09-30T21:45:15Z","dateModified":"2024-09-26T17:22:27Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/7\/74\/F-distribution_pdf.svg","headline":"continuous probability distribution"}</script> </body> </html>