CINXE.COM

Search results for: power density

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: power density</title> <meta name="description" content="Search results for: power density"> <meta name="keywords" content="power density"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="power density" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="power density"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 9308</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: power density</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9308</span> Assessing the Ways of Improving the Power Saving Modes in the Ore-Grinding Technological Process </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Baghdasaryan%20Marinka">Baghdasaryan Marinka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Monitoring the distribution of electric power consumption in the technological process of ore grinding is conducted. As a result, the impacts of the mill filling rate, the productivity of the ore supply, the volumetric density of the grinding balls, the specific density of the ground ore, and the relative speed of the mill rotation on the specific consumption of electric power have been studied. The power and technological factors affecting the reactive power generated by the synchronous motors, operating within the technological scheme are studied. A block diagram for evaluating the power consumption modes of the technological process is presented, which includes the analysis of the technological scheme, the determination of the place and volumetric density of the ore-grinding mill, the evaluation of the technological and power factors affecting the energy saving process, as well as the assessment of the electric power standards. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20power%20standard" title="electric power standard">electric power standard</a>, <a href="https://publications.waset.org/abstracts/search?q=factor" title=" factor"> factor</a>, <a href="https://publications.waset.org/abstracts/search?q=ore%20grinding" title=" ore grinding"> ore grinding</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20consumption" title=" power consumption"> power consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20power" title=" reactive power"> reactive power</a>, <a href="https://publications.waset.org/abstracts/search?q=technological" title=" technological"> technological</a> </p> <a href="https://publications.waset.org/abstracts/69150/assessing-the-ways-of-improving-the-power-saving-modes-in-the-ore-grinding-technological-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69150.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">555</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9307</span> Mesoporous RGO@(Co,Mn)3O4 Nanocomposite Prepared by Microwave Method and Its Electrochemical Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Charmaine%20Lamiel">Charmaine Lamiel</a>, <a href="https://publications.waset.org/abstracts/search?q=Van%20Hoa%20Nguyen"> Van Hoa Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Jin%20Shim"> Jae-Jin Shim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Supercapacitors are energy storage devices capable of storing more energy than conventional capacitors and have higher power density than batteries. The advantages of this method include the non-use of reducing agents and acidic medium, and no further use of a post-heat treatment unlike the conventional processes, in which calcination is generally employed after obtaining the initial product. Furthermore, it also offers a shorter reaction time at low temperatures and low power requirements, which allows low fabrication and energy cost. In this study, microwave irradiation was used for the facile and rapid synthesis of mesoporous RGO@(Co,Mn)3O4 nanosheets as an electrode material. The as-prepared electrode exhibited a high capacitance of 953 F•g^−1 at 1 A•g^−1 in a 6 M KOH electrolyte solution. Moreover, the electrode exhibited a high energy density of 76.2 Wh•kg^−1 at a power density of 720 W•kg^−1, and a high power density of 7200 W•kg^−1 at an energy density of 38 Wh•kg^−1. The successful methodology was considered to be efficient and cost-effective, thereby providing an active electrode material with very promising electrochemical performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cobalt-manganese%20oxide" title="cobalt-manganese oxide">cobalt-manganese oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical" title=" electrochemical"> electrochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20synthesis" title=" microwave synthesis"> microwave synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=supercapacitor" title=" supercapacitor"> supercapacitor</a> </p> <a href="https://publications.waset.org/abstracts/42664/mesoporous-rgo-at-comn3o4-nanocomposite-prepared-by-microwave-method-and-its-electrochemical-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42664.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9306</span> Numerical Investigation of Supertall Buildings and Using Aerodynamic Characteristics to Create New Wind Power Sources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20A.%20Masoumi">Mohammad A. Masoumi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Zare"> Mohammad Zare</a>, <a href="https://publications.waset.org/abstracts/search?q=Soroush%20Sabouki"> Soroush Sabouki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the aerodynamic characteristics of supertall buildings to evaluate wind turbine installation at high altitudes. Most recent studies have investigated supertall buildings at a horizontal plane, while a vertical plan could be as important, especially to install wind turbines. A typical square-plan building with a height of 500 m is investigated numerically at horizontal and vertical plans to evaluate wind power generation potentials. The results show good agreement with experimental data and past studies. Then four new geometries are proposed to improvise regions at high altitudes to install wind turbines. Evaluating the simulations shows two regions with high power density, which have the possibility to install wind turbines. Results show that improvised regions to install wind turbines at high altitudes contain significant power density while higher power density is found behind buildings in a far distance. In addition, power density fluctuations behind buildings are investigated, which show decreasing fluctuations by reaching 50 m altitude while altitudes lower than 20 m have the most fluctuations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20power" title="wind power">wind power</a>, <a href="https://publications.waset.org/abstracts/search?q=supertall%20building" title=" supertall building"> supertall building</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20density" title=" power density"> power density</a>, <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20characteristics" title=" aerodynamic characteristics"> aerodynamic characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine%20mobile" title=" wind turbine mobile"> wind turbine mobile</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20assurance" title=" quality assurance"> quality assurance</a>, <a href="https://publications.waset.org/abstracts/search?q=testing" title=" testing"> testing</a>, <a href="https://publications.waset.org/abstracts/search?q=applications" title=" applications"> applications</a> </p> <a href="https://publications.waset.org/abstracts/128113/numerical-investigation-of-supertall-buildings-and-using-aerodynamic-characteristics-to-create-new-wind-power-sources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128113.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9305</span> Characterization of 3D-MRP for Analyzing of Brain Balancing Index (BBI) Pattern</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Fuad">N. Fuad</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Taib"> M. N. Taib</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Jailani"> R. Jailani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20E.%20Marwan"> M. E. Marwan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses on power spectral density (PSD) characteristics which are extracted from three-dimensional (3D) electroencephalogram (EEG) models. The EEG signal recording was conducted on 150 healthy subjects. Development of 3D EEG models involves pre-processing of raw EEG signals and construction of spectrogram images. Then, the values of maximum PSD were extracted as features from the model. These features are analysed using mean relative power (MRP) and different mean relative power (DMRP) technique to observe the pattern among different brain balancing indexes. The results showed that by implementing these techniques, the pattern of brain balancing indexes can be clearly observed. Some patterns are indicates between index 1 to index 5 for left frontal (LF) and right frontal (RF). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20spectral%20density" title="power spectral density">power spectral density</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20EEG%20model" title=" 3D EEG model"> 3D EEG model</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20balancing" title=" brain balancing"> brain balancing</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20relative%20power" title=" mean relative power"> mean relative power</a>, <a href="https://publications.waset.org/abstracts/search?q=different%20mean%20relative%20power" title=" different mean relative power"> different mean relative power</a> </p> <a href="https://publications.waset.org/abstracts/6107/characterization-of-3d-mrp-for-analyzing-of-brain-balancing-index-bbi-pattern" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6107.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9304</span> An Innovative High Energy Density Power Pack for Portable and Off-Grid Power Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Idit%20Avrahami">Idit Avrahami</a>, <a href="https://publications.waset.org/abstracts/search?q=Alex%20Schechter"> Alex Schechter</a>, <a href="https://publications.waset.org/abstracts/search?q=Lev%20Zakhvatkin"> Lev Zakhvatkin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research focuses on developing a compact and light Hydrogen Generator (HG), coupled with fuel cells (FC) to provide a High-Energy-Density Power-Pack (HEDPP) solution, which is 10 times Li-Ion batteries. The HEDPP is designed for portable & off-grid power applications such as Drones, UAVs, stationary off-grid power sources, unmanned marine vehicles, and more. Hydrogen gas provided by this device is delivered in the safest way as a chemical powder at room temperature and ambient pressure is activated only when the power is on. Hydrogen generation is based on a stabilized chemical reaction of Sodium Borohydride (SBH) and water. The proposed solution enables a ‘No Storage’ Hydrogen-based Power Pack. Hydrogen is produced and consumed on-the-spot, during operation; therefore, there’s no need for high-pressure hydrogen tanks, which are large, heavy, and unsafe. In addition to its high energy density, ease of use, and safety, the presented power pack has a significant advantage of versatility and deployment in numerous applications and scales. This patented HG was demonstrated using several prototypes in our lab and was proved to be feasible and highly efficient for several applications. For example, in applications where water is available (such as marine vehicles, water and sewage infrastructure, and stationary applications), the Energy Density of the suggested power pack may reach 2700-3000 Wh/kg, which is again more than 10 times higher than conventional lithium-ion batteries. In other applications (e.g., UAV or small vehicles) the energy density may exceed 1000 Wh/kg. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20energy" title="hydrogen energy">hydrogen energy</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20borohydride" title=" sodium borohydride"> sodium borohydride</a>, <a href="https://publications.waset.org/abstracts/search?q=fixed-wing%20UAV" title=" fixed-wing UAV"> fixed-wing UAV</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20pack" title=" energy pack"> energy pack</a> </p> <a href="https://publications.waset.org/abstracts/158504/an-innovative-high-energy-density-power-pack-for-portable-and-off-grid-power-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158504.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9303</span> Novel Spoke-Type BLDC Motor Design for Cost Effective and High Power Density</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suyong%20Kim">Suyong Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently because of the rise in the price of rare earth magnet, interest of non-rare earth or less-rare earth motor is growing. Especially to achieve the high power density, Spoke-Type BLDC (Brushless Permanent Magnet) Motor with ferrite permanent magnet are spotlighted. But Spoke-Type Ferrite BLDC Motor has much of magnetic flux leakage in the direction of rotor shaft. In order to solve this problem, there are two conventional ways. But conventional ways bring the increases of product cost or the decreases of the power density. Therefore, this paper proposes new Spoke-Type BLDC Rotor shape that has the advantages of both conventional methods. The new shape is consists of a one-piece core. The inside and the outside of the rotor are open alternately. So it can take reduced production cost and high power density. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=motor" title="motor">motor</a>, <a href="https://publications.waset.org/abstracts/search?q=BLDC" title=" BLDC"> BLDC</a>, <a href="https://publications.waset.org/abstracts/search?q=spoke" title=" spoke"> spoke</a>, <a href="https://publications.waset.org/abstracts/search?q=ferrite" title=" ferrite"> ferrite</a> </p> <a href="https://publications.waset.org/abstracts/26835/novel-spoke-type-bldc-motor-design-for-cost-effective-and-high-power-density" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26835.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">573</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9302</span> High-Performance Li Doped CuO/Reduced Graphene Oxide Flexible Supercapacitor Electrode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruey-Chi%20Wang">Ruey-Chi Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Po-Hsiang%20Huang"> Po-Hsiang Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ping-Chang%20Chuang"> Ping-Chang Chuang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shu-Jen%20Chen"> Shu-Jen Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High-performance Li: CuO/reduced graphene oxide (RGO) flexible electrodes for supercapacitors were fabricated via a low-temperature and low-cost route. To increase energy density while maintaining high power density and long-term cyclability, Li was doped to increase the electrical conductivity of CuO particles between RGO flakes. Electrochemical measurements show that the electrical conductivity, specific capacitance, energy density, and rate capability were all enhanced by Li incorporation. The optimized Li:CuO/RGO electrodes show a high energy density of 179.9 Wh/kg and a power density of 900.0 W/kg at a current density of 1 A/g. Cyclic life tests show excellent stability over 10,000 cycles with a capacitance retention of 93.2%. Li doping improves the electrochemical performance of CuO, making CuO a promising pseudocapacitive material for fabricating low-cost excellent supercapacitors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supercapacitor" title="supercapacitor">supercapacitor</a>, <a href="https://publications.waset.org/abstracts/search?q=CuO" title=" CuO"> CuO</a>, <a href="https://publications.waset.org/abstracts/search?q=RGO" title=" RGO"> RGO</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium" title=" lithium"> lithium</a> </p> <a href="https://publications.waset.org/abstracts/96629/high-performance-li-doped-cuoreduced-graphene-oxide-flexible-supercapacitor-electrode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9301</span> Volume Density of Power of Multivector Electric Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aldan%20A.%20Sapargaliyev">Aldan A. Sapargaliyev</a>, <a href="https://publications.waset.org/abstracts/search?q=Yerbol%20A.%20Sapargaliyev"> Yerbol A. Sapargaliyev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since the invention, the electric machine (EM) can be defined as oEM &ndash; one-vector electric machine, as it works due to one-vector inductive coupling with use of one-vector electromagnet. The disadvantages of oEM are large size and limited efficiency at low and medium power applications. This paper describes multi-vector electric machine (mEM) based on multi-vector inductive coupling, which is characterized by the increased surface area of ​​the inductive coupling per EM volume, with a reduced share of inefficient and energy-consuming part of the winding, in comparison with oEM&rsquo;s. Particularly, it is considered, calculated and compared the performance of three different electrical motors and their power at the same volumes and rotor frequencies. It is also presented the result of calculation of correlation between power density and volume for oEM and mEM. The method of multi-vector inductive coupling enables mEM to possess 1.5-4.0 greater density of power per volume and significantly higher efficiency, in comparison with today&rsquo;s oEM, especially in low and medium power applications. mEM has distinct advantages, when used in transport vehicles such as electric cars and aircrafts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20machine" title="electric machine">electric machine</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20motor" title=" electric motor"> electric motor</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnet" title=" electromagnet"> electromagnet</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency%20of%20electric%20motor" title=" efficiency of electric motor"> efficiency of electric motor</a> </p> <a href="https://publications.waset.org/abstracts/67282/volume-density-of-power-of-multivector-electric-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67282.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9300</span> High Electrochemical Performance of Electrode Material Based On Mesoporous RGO@(Co,Mn)3O4 Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Charmaine%20Lamiel">Charmaine Lamiel</a>, <a href="https://publications.waset.org/abstracts/search?q=Van%20Hoa%20Nguyen"> Van Hoa Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Deivasigamani%20Ranjith%20Kumar"> Deivasigamani Ranjith Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Jin%20Shim"> Jae-Jin Shim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The quest for alternative sources of energy storage had led to the exploration on supercapacitors. Hybrid supercapacitors, a combination of carbon-based material and transition metals, had yielded long and improved cycle life as well as high energy and power densities. In this study, microwave irradiation was used for the facile and rapid synthesis of mesoporous RGO@(Co,Mn)3O4 nanosheets as an active electrode material. The advantages of this method include the non-use of reducing agents and acidic medium, and no further post-heat treatment. Additionally, it offers shorter reaction time at low temperature and low power requirement, which allows low fabrication and energy cost. The as-prepared electrode material demonstrated a high capacitance of 953 F•g−1 at 1 A•g−1 in a 6 M KOH electrolyte. Furthermore, the electrode exhibited a high energy density of 76.2 Wh•kg−1 (power density of 720 W•kg−1) and a high power density of 7200 W•kg−1 (energy density of 38 Wh•kg−1). The successful synthesis was considered to be efficient and cost-effective, with very promising electrochemical performance that can be used as an active material in supercapacitors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cobalt%20manganese%20oxide" title="cobalt manganese oxide">cobalt manganese oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical" title=" electrochemical"> electrochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20synthesis" title=" microwave synthesis"> microwave synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=supercapacitor" title=" supercapacitor"> supercapacitor</a> </p> <a href="https://publications.waset.org/abstracts/42939/high-electrochemical-performance-of-electrode-material-based-on-mesoporous-rgo-at-comn3o4-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42939.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9299</span> A Comparative Study on Optimized Bias Current Density Performance of Cubic ZnB-GaN with Hexagonal 4H-SiC Based Impatts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arnab%20Majumdar">Arnab Majumdar</a>, <a href="https://publications.waset.org/abstracts/search?q=Srimani%20Sen"> Srimani Sen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a vivid simulated study has been made on 35 GHz Ka-band window frequency in order to judge and compare the DC and high frequency properties of cubic ZnB-GaN with the existing hexagonal 4H-SiC. A flat profile p<sup>+</sup>pnn<sup>+</sup> DDR structure of impatt is chosen and is optimized at a particular bias current density with respect to efficiency and output power taking into consideration the effect of mobile space charge also. The simulated results obtained reveals the strong potentiality of impatts based on both cubic ZnB-GaN and hexagonal 4H-SiC. The DC-to-millimeter wave conversion efficiency for cubic ZnB-GaN impatt obtained is 50% with an estimated output power of 2.83 W at an optimized bias current density of 2.5&times;10<sup>8</sup> A/m<sup>2</sup>. The conversion efficiency and estimated output power in case of hexagonal 4H-SiC impatt obtained is 22.34% and 40 W respectively at an optimum bias current density of 0.06&times;10<sup>8</sup> A/m<sup>2</sup>. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cubic%20ZnB-GaN" title="cubic ZnB-GaN">cubic ZnB-GaN</a>, <a href="https://publications.waset.org/abstracts/search?q=hexagonal%204H-SiC" title=" hexagonal 4H-SiC"> hexagonal 4H-SiC</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20drift%20impatt%20diode" title=" double drift impatt diode"> double drift impatt diode</a>, <a href="https://publications.waset.org/abstracts/search?q=millimetre%20wave" title=" millimetre wave"> millimetre wave</a>, <a href="https://publications.waset.org/abstracts/search?q=optimised%20bias%20current%20density" title=" optimised bias current density"> optimised bias current density</a>, <a href="https://publications.waset.org/abstracts/search?q=wide%20band%20gap%20semiconductor" title=" wide band gap semiconductor"> wide band gap semiconductor</a> </p> <a href="https://publications.waset.org/abstracts/44725/a-comparative-study-on-optimized-bias-current-density-performance-of-cubic-znb-gan-with-hexagonal-4h-sic-based-impatts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44725.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9298</span> Advanced Electric Motor Design Using Hollow Conductors for Maximizing Power, Density and Degree of Efficiency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20Naderer">Michael Naderer</a>, <a href="https://publications.waset.org/abstracts/search?q=Manuel%20Hartong"> Manuel Hartong</a>, <a href="https://publications.waset.org/abstracts/search?q=Raad%20Al-Kinani"> Raad Al-Kinani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of hollow conductors is known in electric generators of large MW scale. The application of motors of small scale between 50 and 200kW is new. The latest results in the practical application and set up of machines show that the power density can be raised significantly and the common problem of derating of the motors is prevented. Furthermore, new design dimensions can be realised as continuous current densities up to 75A/mm² are achievable. This paper shows the results of the application of hollow conductors for a motor design used for automotive traction machines comparing common coolings with hollow conductor cooling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=degree%20of%20efficiency" title="degree of efficiency">degree of efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20motor%20design" title=" electric motor design"> electric motor design</a>, <a href="https://publications.waset.org/abstracts/search?q=hollow%20conductors" title=" hollow conductors"> hollow conductors</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20density" title=" power density"> power density</a> </p> <a href="https://publications.waset.org/abstracts/142892/advanced-electric-motor-design-using-hollow-conductors-for-maximizing-power-density-and-degree-of-efficiency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142892.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9297</span> Enhancement of Pulsed Eddy Current Response Based on Power Spectral Density after Continuous Wavelet Transform Decomposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Benyahia">A. Benyahia</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zergoug"> M. Zergoug</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Amir"> M. Amir</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Fodil"> M. Fodil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this work is to enhance the Pulsed Eddy Current (PEC) response from the aluminum structure using signal processing. Cracks and metal loss in different structures cause changes in PEC response measurements. In this paper, time-frequency analysis is used to represent PEC response, which generates a large quantity of data and reduce the noise due to measurement. Power Spectral Density (PSD) after Wavelet Decomposition (PSD-WD) is proposed for defect detection. The experimental results demonstrate that the cracks in the surface can be extracted satisfactorily by the proposed methods. The validity of the proposed method is discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DT" title="DT">DT</a>, <a href="https://publications.waset.org/abstracts/search?q=pulsed%20eddy%20current" title=" pulsed eddy current"> pulsed eddy current</a>, <a href="https://publications.waset.org/abstracts/search?q=continuous%20wavelet%20transform" title=" continuous wavelet transform"> continuous wavelet transform</a>, <a href="https://publications.waset.org/abstracts/search?q=Mexican%20hat%20wavelet%20mother" title=" Mexican hat wavelet mother"> Mexican hat wavelet mother</a>, <a href="https://publications.waset.org/abstracts/search?q=defect%20detection" title=" defect detection"> defect detection</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20spectral%20density." title=" power spectral density."> power spectral density.</a> </p> <a href="https://publications.waset.org/abstracts/88425/enhancement-of-pulsed-eddy-current-response-based-on-power-spectral-density-after-continuous-wavelet-transform-decomposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9296</span> Mathematical Modeling of Carotenoids and Polyphenols Content of Faba Beans (Vicia faba L.) during Microwave Treatments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ridha%20Fethi%20Mechlouch">Ridha Fethi Mechlouch</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahlem%20Ayadi"> Ahlem Ayadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ammar%20Ben%20Brahim"> Ammar Ben Brahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Given the importance of the preservation of polyphenols and carotenoids during thermal processing, we attempted in this study to investigate the variation of these two parameters in faba beans during microwave treatment using different power densities (1; 2; and 3W/g), then to perform a mathematical modeling by using non-linear regression analysis to evaluate the models constants. The variation of the carotenoids and polyphenols ratio of faba beans and the models are tested to validate the experimental results. Exponential models were found to be suitable to describe the variation of caratenoid ratio (R²= 0.945, 0.927 and 0.946) for power densities (1; 2; and 3W/g) respectively, and polyphenol ratio (R²= 0.931, 0.989 and 0.982) for power densities (1; 2; and 3W/g) respectively. The effect of microwave power density Pd(W/g) on the coefficient k of models were also investigated. The coefficient is highly correlated (R² = 1) and can be expressed as a polynomial function. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microwave%20treatment" title="microwave treatment">microwave treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20density" title=" power density"> power density</a>, <a href="https://publications.waset.org/abstracts/search?q=carotenoid" title=" carotenoid"> carotenoid</a>, <a href="https://publications.waset.org/abstracts/search?q=polyphenol" title=" polyphenol"> polyphenol</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a> </p> <a href="https://publications.waset.org/abstracts/42759/mathematical-modeling-of-carotenoids-and-polyphenols-content-of-faba-beans-vicia-faba-l-during-microwave-treatments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9295</span> Stability Analysis of DC Microgrid with Varying Supercapacitor Operating Voltages</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Annie%20B.%20V.">Annie B. V.</a>, <a href="https://publications.waset.org/abstracts/search?q=Anu%20A.%20G."> Anu A. G.</a>, <a href="https://publications.waset.org/abstracts/search?q=Harikumar%20R."> Harikumar R.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microgrid (MG) is a self-governing miniature section of the power system. Nowadays the majority of loads and energy storage devices are inherently in DC form. This necessitates a greater scope of research in the various types of energy storage devices in DC microgrids. In a modern power system, DC microgrid is a manageable electric power system usually integrated with renewable energy sources (RESs) and DC loads with the help of power electronic converters. The stability of the DC microgrid mainly depends on the power imbalance. Power imbalance due to the presence of intermittent renewable energy resources (RERs) is supplied by energy storage devices. Battery, supercapacitor, flywheel, etc. are some of the commonly used energy storage devices. Owing to the high energy density provided by the batteries, this type of energy storage system is mainly utilized in all sorts of hybrid energy storage systems. To minimize the stability issues, a Supercapacitor (SC) is usually interfaced with the help of a bidirectional DC/DC converter. SC can exchange power during transient conditions due to its high power density. This paper analyses the stability issues of DC microgrids with hybrid energy storage systems (HESSs) arises from a reduction in SC operating voltage due to self-discharge. The stability of DC microgrid and power management is analyzed with different control strategies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DC%20microgrid" title="DC microgrid">DC microgrid</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20energy%20storage%20system%20%28HESS%29" title=" hybrid energy storage system (HESS)"> hybrid energy storage system (HESS)</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20management" title=" power management"> power management</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20signal%20modeling" title=" small signal modeling"> small signal modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=supercapacitor" title=" supercapacitor"> supercapacitor</a> </p> <a href="https://publications.waset.org/abstracts/138143/stability-analysis-of-dc-microgrid-with-varying-supercapacitor-operating-voltages" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138143.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9294</span> A Stochastic Approach to Extreme Wind Speeds Conditions on a Small Axial Wind Turbine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nkongho%20Ayuketang%20Arreyndip">Nkongho Ayuketang Arreyndip</a>, <a href="https://publications.waset.org/abstracts/search?q=Ebobenow%20Joseph"> Ebobenow Joseph</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, to model a real life wind turbine, a probabilistic approach is proposed to model the dynamics of the blade elements of a small axial wind turbine under extreme stochastic wind speeds conditions. It was found that the power and the torque probability density functions even though decreases at these extreme wind speeds but are not infinite. Moreover, we also found that it is possible to stabilize the power coefficient (stabilizing the output power) above rated wind speeds by turning some control parameters. This method helps to explain the effect of turbulence on the quality and quantity of the harness power and aerodynamic torque. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=probability" title="probability">probability</a>, <a href="https://publications.waset.org/abstracts/search?q=probability%20density%20function" title=" probability density function"> probability density function</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic" title=" stochastic"> stochastic</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence" title=" turbulence"> turbulence</a> </p> <a href="https://publications.waset.org/abstracts/34813/a-stochastic-approach-to-extreme-wind-speeds-conditions-on-a-small-axial-wind-turbine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34813.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">587</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9293</span> Ionic Polymer Actuators with Fast Response and High Power Density Based on Sulfonated Phthalocyanine/Sulfonated Polysulfone Composite Membrane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taehoon%20Kwon">Taehoon Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyeongrae%20Cho"> Hyeongrae Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Dirk%20Henkensmeier"> Dirk Henkensmeier</a>, <a href="https://publications.waset.org/abstracts/search?q=Youngjong%20Kang"> Youngjong Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chong%20Min%20%20Koo"> Chong Min Koo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ionic polymer actuators have been of interest in the bio-inspired artificial muscle devices. However, the relatively slow response and low power density were the obstacles for practical applications. In this study, ionic polymer actuators are fabricated with ionic polymer composite membranes based on sulfonated poly(arylene ether sulfone) (SPAES) and copper(II) phthalocyanine tetrasulfonic acid (CuPCSA). CuPCSA is an organic filler with very high ion exchange capacity (IEC, 4.5 mmol H+/g) that can be homogeneously dispersed on the molecular scale into the SPAES membrane. SPAES/CuPCSA actuators show larger ionic conductivity, mechanical properties, bending deformation, exceptional faster response to electrical stimuli, and larger mechanical power density (3028 W m–3) than Nafion actuators. This outstanding actuation performance of SPAES/CuPCSA composite membrane actuators makes them attractive for next generation transducers with high power density, which are currently developed biomimetic devices such as endoscopic surgery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=actuation%20performance" title="actuation performance">actuation performance</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20membranes" title=" composite membranes"> composite membranes</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20polymer%20actuators" title=" ionic polymer actuators"> ionic polymer actuators</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20filler" title=" organic filler"> organic filler</a> </p> <a href="https://publications.waset.org/abstracts/75672/ionic-polymer-actuators-with-fast-response-and-high-power-density-based-on-sulfonated-phthalocyaninesulfonated-polysulfone-composite-membrane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75672.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9292</span> Estimation of Wind Characteristics and Energy Yield at Different Towns in Libya </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farag%20Ahwide">Farag Ahwide</a>, <a href="https://publications.waset.org/abstracts/search?q=Souhel%20Bousheha"> Souhel Bousheha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A technical assessment has been made of electricity generation, considering wind turbines ranging between Vestas (V80-2.0 MW and V112-3.0 MW) and the air density is equal to 1.225 Kg/m3, at different towns in Libya. Wind speed might have been measured each 3 hours during 10 m stature at a time for 10 quite sometime between 2000 Furthermore 2009, these towns which are spotted on the bank from claiming Mediterranean ocean also how in the desert, which need aid Derna 1, Derna 2, Shahat, Benghazi, Ajdabya, Sirte, Misurata, Tripoli-Airport, Al-Zawya, Al-Kofra, Sabha, Nalut. The work presented long term &quot;wind data analysis in terms of annual, seasonal, monthly and diurnal variations at these sites. Wind power density with different heights has been studied. Excel sheet program was used to calculate the values of wind power density and the values of wind speed frequency for the stations; their seasonally values have been estimated. Limit variable with rated wind pace to 10 different wind turbines need to be been estimated, which is used to focus those required yearly vitality yield of a wind vitality change framework (WECS), acknowledging wind turbines extending between 600 kW and 3000 kW). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20yield" title="energy yield">energy yield</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbines" title=" wind turbines"> wind turbines</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20speed" title=" wind speed"> wind speed</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20power%20density" title=" wind power density"> wind power density</a> </p> <a href="https://publications.waset.org/abstracts/70620/estimation-of-wind-characteristics-and-energy-yield-at-different-towns-in-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70620.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9291</span> Velocity Distribution in Density Currents Flowing over Rough Beds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Nasrollahpour">Reza Nasrollahpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Hidayat%20Bin%20Jamal"> Mohamad Hidayat Bin Jamal</a>, <a href="https://publications.waset.org/abstracts/search?q=Zulhilmi%20Bin%20Ismail"> Zulhilmi Bin Ismail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Density currents are generated when the fluid of one density is released into another fluid with a different density. These currents occur in a variety of natural and man-made environments, and this emphasises the importance of studying them. In most practical cases, the density currents flow over the surfaces which are not plane; however, there have been limited investigations in this regard. This study uses laboratory experiments to analyse the influence of bottom roughness on the velocity distribution within these dense underflows. The currents are analysed over a plane surface and three different configurations of beam-roughened beds. The velocity profiles are collected using Acoustic Doppler Velocimetry technique, and the distribution of velocity within these currents is formulated for the tested beds. The results indicate that the empirical power and Gaussian relations can describe the velocity distribution in the inner and outer regions of the profiles, respectively. Moreover, it is found that the bottom roughness is the primary controlling parameter in the inner region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=density%20currents" title="density currents">density currents</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20profiles" title=" velocity profiles"> velocity profiles</a>, <a href="https://publications.waset.org/abstracts/search?q=Acoustic%20Doppler%20Velocimeter" title=" Acoustic Doppler Velocimeter"> Acoustic Doppler Velocimeter</a>, <a href="https://publications.waset.org/abstracts/search?q=bed%20roughness" title=" bed roughness"> bed roughness</a> </p> <a href="https://publications.waset.org/abstracts/96631/velocity-distribution-in-density-currents-flowing-over-rough-beds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96631.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9290</span> Wind Power Potential in Selected Algerian Sahara Regions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Dahbi">M. Dahbi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sellam"> M. Sellam</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Benatiallah"> A. Benatiallah</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Harrouz"> A. Harrouz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The wind energy is one of the most significant and rapidly developing renewable energy sources in the world and it provides a clean energy resource, which is a promising alternative in the short term in Algeria The main purpose of this paper is to compared and discuss the wind power potential in three sites located in sahara of Algeria (south west of Algeria) and to perform an investigation on the wind power potential of desert of Algeria. In this comparative, wind speed frequency distributions data obtained from the web site SODA.com are used to calculate the average wind speed and the available wind power. The Weibull density function has been used to estimate the monthly power wind density and to determine the characteristics of monthly parameters of Weibull for these three sites. The annual energy produced by the BWC XL.1 1KW wind machine is obtained and compared. The analysis shows that in the south west of Algeria, at 10 m height, the available wind power was found to vary between 136.59 W/m2 and 231.04 W/m2. The highest potential wind power was found at Adrar, with 21h per day and the mean wind speed is above 6 m/s. Besides, it is found that the annual wind energy generated by that machine lie between 512 KWh and 1643.2 kWh. However, the wind resource appears to be suitable for power production on the sahara and it could provide a viable substitute to diesel oil for irrigation pumps and rural electricity generation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Weibull%20distribution" title="Weibull distribution">Weibull distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=parameters%20of%20Wiebull" title=" parameters of Wiebull"> parameters of Wiebull</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20energy" title=" wind energy"> wind energy</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine" title=" wind turbine"> wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=operating%20hours" title=" operating hours"> operating hours</a> </p> <a href="https://publications.waset.org/abstracts/19968/wind-power-potential-in-selected-algerian-sahara-regions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">495</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9289</span> A Creative Strategy to Functionalize TiN/CNC Composites as Cathode for High-Energy Zinc Ion Capacitors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ye%20Ling">Ye Ling</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiang%20Yuting"> Jiang Yuting</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruan%20Haihui"> Ruan Haihui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zinc ion capacitors (ZICs) have garnered tremendous interest recently from researchers due to the perfect integration of batteries and supercapacitors (SC). However, ZICs are currently still facing two major challenges, one is low specific capacitance because of the limited capacity of capacitive cathode materials. In this work, TiN/CNC composites were obtained by a creative method composed of simple mixing and calcination treatment of tetrabutyl titanate (TBOT) and ZIF-8. The formed TiN particles are of ultra-small size and distributed uniformly on the nanoporous carbon matrix, which enhances the conductivity of the composites and the micropores caused by the evaporation of zinc during the calcination process and can serve as the reservoir of electrolytes; both are beneficial to zinc ion storage. When it was used as a cathode with zinc metal and 2M ZnSO₄ as the anode and electrolyte, respectively, in a ZIC device, the assembled device delivered a maximum energy density as high as 153 Wh kg-¹ at a power density of 269.4 W kg-¹, which is superior to many ZICs as reported. Also, it can maintain an energy density of 83.7 Wh kg-¹ at a peak power density of 8.6 kW kg-¹, exhibiting good rate performance. Moreover, when it was charged/discharged for 5000 cycles at a current density of 5 A g-¹, it remained at 85.8% of the initial capacity with a Coulombic efficiency (CE) of nearly 100%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=zinc%20ion%20capacitor" title="zinc ion capacitor">zinc ion capacitor</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20nitride" title=" metal nitride"> metal nitride</a>, <a href="https://publications.waset.org/abstracts/search?q=zif-8" title=" zif-8"> zif-8</a>, <a href="https://publications.waset.org/abstracts/search?q=supercapacitor" title=" supercapacitor"> supercapacitor</a> </p> <a href="https://publications.waset.org/abstracts/186407/a-creative-strategy-to-functionalize-tincnc-composites-as-cathode-for-high-energy-zinc-ion-capacitors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">44</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9288</span> Electrochemical Study of Al-Doped K₂CO₃ Activated Coconut Husk Carbon-Based Composite Anode Material for Battery Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alpha%20Matthew">Alpha Matthew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Composites of Al-Doped K₂CO₃ activated coconut husk carbon, Al₀.₁:(K₂CO₃C)₀.₉ and AI₀.₃:(K₂CO₃C)₀.₇, were prepared using the hydrothermal method and drop casting deposition technique. The electrochemical performance of the Al-doped K₂CO₃ activated coconut husk carbon composite as a promising anode material for lithium-ion batteries was characterised by cyclic voltammetry analysis, electrochemical impedance spectroscopy, and galvanostatic charge discharge analysis. The charges that are retained in the anode material during charging showed a linear decline in charge capacity as the charging current intensity increased. Ionic polarisation was the reason for the observed drop in the charge and discharge capabilities at the current density of 5 A/g. Having greater specific capacitance and energy density, the composite Al₀.₁:(K₂CO₃C)₀.₉ is a better anode material for electrochemical applications compared to AI₀.₃:(K₂CO₃C)₀.₇, also its comparatively higher power density at a scan rate of 5 mV/s is mostly explained by its lower equivalent series resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coconut%20carbon%20husk" title="coconut carbon husk">coconut carbon husk</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20density" title=" power density"> power density</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20density" title=" energy density"> energy density</a>, <a href="https://publications.waset.org/abstracts/search?q=battery" title=" battery"> battery</a>, <a href="https://publications.waset.org/abstracts/search?q=anode%20electrode" title=" anode electrode"> anode electrode</a> </p> <a href="https://publications.waset.org/abstracts/192345/electrochemical-study-of-al-doped-k2co3-activated-coconut-husk-carbon-based-composite-anode-material-for-battery-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192345.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">23</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9287</span> Generation and Diagnostics of Atmospheric Pressure Dielectric Barrier Discharge in Argon/Air</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Shrestha">R. Shrestha</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20P.%20Subedi"> D. P. Subedi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20B.%20Tyata"> R. B. Tyata</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20S.%20Wong"> C. S. Wong</a>, <a href="https://publications.waset.org/abstracts/search?q="> </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a technique for the determination of electron temperatures and electron densities in atmospheric pressure Argon/air discharge by the analysis of optical emission spectra (OES) is reported. The discharge was produced using a high voltage (0-20) kV power supply operating at a frequency of 27 kHz in parallel electrode system, with glass as dielectric. The dielectric layers covering the electrodes act as current limiters and prevent the transition to an arc discharge. Optical emission spectra in the range of (300nm-850nm) were recorded for the discharge with different inter electrode gap keeping electric field constant. Electron temperature (Te) and electron density (ne) are estimated from electrical and optical methods. Electron density was calculated using power balance method. The optical methods are related with line intensity ratio from the relative intensities of Ar-I and Ar-II lines in Argon plasma. The electron density calculated by using line intensity ratio method was compared with the electron density calculated by stark broadening method. The effect of dielectric thickness on plasma parameters (Te and ne) have also been studied and found that Te and ne increases as thickness of dielectric decrease for same inter electrode distance and applied voltage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electron%20density" title="electron density">electron density</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20temperature" title=" electron temperature"> electron temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20emission%20spectra" title=" optical emission spectra"> optical emission spectra</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=""></a> </p> <a href="https://publications.waset.org/abstracts/29426/generation-and-diagnostics-of-atmospheric-pressure-dielectric-barrier-discharge-in-argonair" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29426.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9286</span> Lithium and Sodium Ion Capacitors with High Energy and Power Densities based on Carbons from Recycled Olive Pits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jon%20Ajuria">Jon Ajuria</a>, <a href="https://publications.waset.org/abstracts/search?q=Edurne%20Redondo"> Edurne Redondo</a>, <a href="https://publications.waset.org/abstracts/search?q=Roman%20Mysyk"> Roman Mysyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Eider%20Goikolea"> Eider Goikolea</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hybrid capacitor configurations are now of increasing interest to overcome the current energy limitations of supercapacitors entirely based on non-Faradaic charge storage. Among them, Li-ion capacitors including a negative battery-type lithium intercalation electrode and a positive capacitor-type electrode have achieved tremendous progress and have gone up to commercialization. Inexpensive electrode materials from renewable sources have recently received increased attention since cost is a persistently major criterion to make supercapacitors a more viable energy solution, with electrode materials being a major contributor to supercapacitor cost. Additionally, Na-ion battery chemistries are currently under development as less expensive and accessible alternative to Li-ion based battery electrodes. In this work, we are presenting both lithium and sodium ion capacitor (LIC & NIC) entirely based on electrodes prepared from carbon materials derived from recycled olive pits. Yearly, around 1 million ton of olive pit waste is generated worldwide, of which a third originates in the Spanish olive oil industry. On the one hand, olive pits were pyrolized at different temperatures to obtain a low specific surface area semigraphitic hard carbon to be used as the Li/Na ion intercalation (battery-type) negative electrode. The best hard carbon delivers a total capacity of 270mAh/g vs Na/Na+ in 1M NaPF6 and 350mAh/g vs Li/Li+ in 1M LiPF6. On the other hand, the same hard carbon is chemically activated with KOH to obtain high specific surface area -about 2000 m2g-1- activated carbon that is further used as the ion-adsorption (capacitor-type) positive electrode. In a voltage window of 1.5-4.2V, activated carbon delivers a specific capacity of 80 mAh/g vs. Na/Na+ and 95 mAh/g vs. Li/Li+ at 0.1A /g. Both electrodes were assembled in the same hybrid cell to build a LIC/NIC. For comparison purposes, a symmetric EDLC supercapacitor cell using the same activated carbon in 1.5M Et4NBF4 electrolyte was also built. Both LIC & NIC demonstrates considerable improvements in the energy density over its EDLC counterpart, delivering a maximum energy density of 110Wh/Kg at a power density of 30W/kg AM and a maximum power density of 6200W/Kg at an energy density of 27 Wh/Kg in the case of NIC and a maximum energy density of 110Wh/Kg at a power density of 30W/kg and a maximum power density of 18000W/Kg at an energy density of 22 Wh/Kg in the case of LIC. In conclusion, our work demonstrates that the same biomass waste can be adapted to offer a hybrid capacitor/battery storage device overcoming the limited energy density of corresponding double layer capacitors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20supercapacitor" title="hybrid supercapacitor">hybrid supercapacitor</a>, <a href="https://publications.waset.org/abstracts/search?q=Na-Ion%20capacitor" title=" Na-Ion capacitor"> Na-Ion capacitor</a>, <a href="https://publications.waset.org/abstracts/search?q=supercapacitor" title=" supercapacitor"> supercapacitor</a>, <a href="https://publications.waset.org/abstracts/search?q=Li-Ion%20capacitor" title=" Li-Ion capacitor"> Li-Ion capacitor</a>, <a href="https://publications.waset.org/abstracts/search?q=EDLC" title=" EDLC"> EDLC</a> </p> <a href="https://publications.waset.org/abstracts/55801/lithium-and-sodium-ion-capacitors-with-high-energy-and-power-densities-based-on-carbons-from-recycled-olive-pits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55801.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9285</span> Exact Solutions for Steady Response of Nonlinear Systems under Non-White Excitation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yaping%20Zhao">Yaping Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, the exact solutions for the steady response of quasi-linear systems under non-white wide-band random excitation are considered by means of the stochastic averaging method. The non linearity of the systems contains the power-law damping and the cross-product term of the power-law damping and displacement. The drift and diffusion coefficients of the Fokker-Planck-Kolmogorov (FPK) equation after averaging are obtained by a succinct approach. After solving the averaged FPK equation, the joint probability density function and the marginal probability density function in steady state are attained. In the process of resolving, the eigenvalue problem of ordinary differential equation is handled by integral equation method. Some new results are acquired and the novel method to deal with the problems in nonlinear random vibration is proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=random%20vibration" title="random vibration">random vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20averaging%20method" title=" stochastic averaging method"> stochastic averaging method</a>, <a href="https://publications.waset.org/abstracts/search?q=FPK%20equation" title=" FPK equation"> FPK equation</a>, <a href="https://publications.waset.org/abstracts/search?q=transition%20probability%20density" title=" transition probability density"> transition probability density</a> </p> <a href="https://publications.waset.org/abstracts/10709/exact-solutions-for-steady-response-of-nonlinear-systems-under-non-white-excitation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">503</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9284</span> The Improved Biofuel Cell for Electrical Power Generation from Wastewaters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Kilic">M. S. Kilic</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Korkut"> S. Korkut</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Hazer"> B. Hazer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Newly synthesized Polypropylene-g-Polyethylene glycol polymer was first time used for a compartment-less enzymatic fuel cell. Working electrodes based on Polypropylene-g-Polyethylene glycol were operated as unmediated and mediated system (with ferrocene and gold/cobalt oxide nanoparticles). Glucose oxidase and bilirubin oxidase was selected as anodic and cathodic enzyme, respectively. Glucose was used as fuel in a single-compartment and membrane-less cell. Maximum power density was obtained as 0.65 nW cm-2, 65 nW cm-2, and 23500 nW cm-2 from the unmediated, ferrocene and gold/cobalt oxide modified polymeric film, respectively. Power density was calculated to be ~16000 nW cm-2 for undiluted wastewater sample with gold/cobalt oxide nanoparticles including system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bilirubin%20oxidase" title="bilirubin oxidase">bilirubin oxidase</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20fuel%20cell" title=" enzymatic fuel cell"> enzymatic fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose%20oxidase" title=" glucose oxidase"> glucose oxidase</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/16725/the-improved-biofuel-cell-for-electrical-power-generation-from-wastewaters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16725.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9283</span> Hydrothermal Synthesis of Carbon Sphere/Nickel Cobalt Sulfide Core/Shell Microstructure and Its Electrochemical Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Charmaine%20Lamiel">Charmaine Lamiel</a>, <a href="https://publications.waset.org/abstracts/search?q=Van%20Hoa%20Nguyen"> Van Hoa Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Marjorie%20Baynosa"> Marjorie Baynosa</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Jin%20Shim"> Jae-Jin Shim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrochemical supercapacitors have attracted considerable attention because of their high potential as an efficient energy storage system. The combination of carbon-based material and transition metal oxides/sulfides are studied because they have long and improved cycle life as well as high energy and power densities. In this study, a hierarchical mesoporous carbon sphere/nickel cobalt sulfide (CS/Ni-Co-S) core/shell structure was synthesized using a facile hydrothermal method without any further sulfurization or post-heat treatment. The CS/Ni-Co-S core/shell microstructures exhibited a high capacitance of 724 F g−1 at 2 A g−1 in a 6 M KOH electrolyte. After 2000 charge-discharge cycles, it retained 86.1% of its original capacitance, with high Coulombic efficiency of 97.9%. The electrode exhibited a high energy density of 58.0 Wh kg−1 at an energy density of 1440 W kg−1, and high power density of 7200 W kg−1 at an energy density of 34.2 Wh kg−1. The successful synthesis was considered to be simple and cost-effective which supports the viability of this composite as an alternative activated material for high performance supercapacitors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20sphere" title="carbon sphere">carbon sphere</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical" title=" electrochemical"> electrochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrothermal" title=" hydrothermal"> hydrothermal</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel%20cobalt%20sulfide" title=" nickel cobalt sulfide"> nickel cobalt sulfide</a>, <a href="https://publications.waset.org/abstracts/search?q=supercapacitor" title=" supercapacitor"> supercapacitor</a> </p> <a href="https://publications.waset.org/abstracts/42938/hydrothermal-synthesis-of-carbon-spherenickel-cobalt-sulfide-coreshell-microstructure-and-its-electrochemical-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9282</span> Wind Power Density and Energy Conversion in Al-Adwas Ras-Huwirah Area, Hadhramout, Yemen</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bawadi%20M.%20A.">Bawadi M. A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbad%20J.%20A."> Abbad J. A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Baras%20E.%20A."> Baras E. A.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted to assess wind energy resources in the area of Al-Adwas Ras-Huwirah Hadhramout Governorate, Yemen, through using statistical calculations, the Weibull model and SPSS program were used in the monthly and the annual to analyze the wind energy resource; the convergence of wind energy; turbine efficiency in the selected area. Wind speed data was obtained from NASA over a period of ten years (2010-2019) and at heights of 50 m above ground level. Probability distributions derived from wind data and their distribution parameters are determined. The density probability function is fitted to the measured probability distributions on an annual basis. This study also involves locating preliminary sites for wind farms using Geographic Information System (GIS) technology. This further leads to maximizing the output energy from the most suitable wind turbines in the proposed site. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20speed%20analysis" title="wind speed analysis">wind speed analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Yemen%20wind%20energy" title=" Yemen wind energy"> Yemen wind energy</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20power%20density" title=" wind power density"> wind power density</a>, <a href="https://publications.waset.org/abstracts/search?q=Weibull%20distribution%20model" title=" Weibull distribution model"> Weibull distribution model</a> </p> <a href="https://publications.waset.org/abstracts/165480/wind-power-density-and-energy-conversion-in-al-adwas-ras-huwirah-area-hadhramout-yemen" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165480.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9281</span> Defining the Limits of No Load Test Parameters at Over Excitation to Ensure No Over-Fluxing of Core Based on a Case Study: A Perspective From Utilities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pranjal%20Johri">Pranjal Johri</a>, <a href="https://publications.waset.org/abstracts/search?q=Misbah%20Ul-Islam"> Misbah Ul-Islam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Power Transformers are one of the most critical and failure prone entities in an electrical power system. It is an established practice that each design of a power transformer has to undergo numerous type tests for design validation and routine tests are performed on each and every power transformer before dispatch from manufacturer’s works. Different countries follow different standards for testing the transformers. Most common and widely followed standard for Power Transformers is IEC 60076 series. Though these standards put up a strict testing requirements for power transformers, however, few aspects of transformer characteristics and guaranteed parameters can be ensured by some additional tests. Based on certain observations during routine test of a transformer and analyzing the data of a large fleet of transformers, three propositions have been discussed and put forward to be included in test schedules and standards. The observations in the routine test raised questions on design flux density of transformer. In order to ensure that flux density in any part of the core & yoke does not exceed 1.9 tesla at 1.1 pu as well, following propositions need to be followed during testing:  From the data studied, it was evident that generally NLC at 1.1 pu is apporx. 3 times of No Load Current at 1 pu voltage.  During testing the power factor at 1.1 pu excitation, it must be comparable to calculated values from the Cold Rolled Grain Oriented steel material curves, including building factor.  A limit of 3 % to be extended for higher than rated voltages on difference in Vavg and Vrms, during no load testing.  Extended over excitation test to be done in case above propositions are observed to be violated during testing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20transfoemrs" title="power transfoemrs">power transfoemrs</a>, <a href="https://publications.waset.org/abstracts/search?q=no%20load%20current" title=" no load current"> no load current</a>, <a href="https://publications.waset.org/abstracts/search?q=DGA" title=" DGA"> DGA</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20factor" title=" power factor"> power factor</a> </p> <a href="https://publications.waset.org/abstracts/157253/defining-the-limits-of-no-load-test-parameters-at-over-excitation-to-ensure-no-over-fluxing-of-core-based-on-a-case-study-a-perspective-from-utilities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157253.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9280</span> The Mechanical and Electrochemical Properties of DC-Electrodeposited Ni-Mn Alloy Coating with Low Internal Stress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chun-Ying%20Lee">Chun-Ying Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuan-Hui%20Cheng"> Kuan-Hui Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Mei-Wen%20Wu"> Mei-Wen Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The nickel-manganese (Ni-Mn) alloy coating prepared from DC electrodeposition process in sulphamate bath was studied. The effects of process parameters, such as current density and electrolyte composition, on the cathodic current efficiency, microstructure, internal stress and mechanical properties were investigated. Because of its crucial effect on the application to the electroforming of microelectronic components, the development of low internal stress coating with high leveling power was emphasized. It was found that both the coating’s manganese content and the cathodic current efficiency increased with the raise in current density. In addition, the internal stress of the deposited coating showed compressive nature at low current densities while changed to tensile one at higher current densities. Moreover, the metallographic observation, X-ray diffraction measurement, transmission electron microscope (TEM) examination, and polarization curve measurement were conducted. It was found that the Ni-Mn coating consisted of nano-sized columnar grains and the maximum hardness of the coating was associated with (111) preferred orientation in the microstructure. The grain size was refined along with the increase in the manganese content of the coating, which accordingly, raised its hardness and mechanical tensile strength. In summary, the Ni-Mn coating prepared at lower current density of 1-2 A/dm2 had low internal stress, high leveling power, and better corrosion resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ni-Mn%20coating" title="Ni-Mn coating">Ni-Mn coating</a>, <a href="https://publications.waset.org/abstracts/search?q=DC%20plating" title=" DC plating"> DC plating</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20stress" title=" internal stress"> internal stress</a>, <a href="https://publications.waset.org/abstracts/search?q=leveling%20power" title=" leveling power"> leveling power</a> </p> <a href="https://publications.waset.org/abstracts/24914/the-mechanical-and-electrochemical-properties-of-dc-electrodeposited-ni-mn-alloy-coating-with-low-internal-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24914.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9279</span> Phosphorus Recovery Optimization in Microbial Fuel Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Almatouq">Abdullah Almatouq</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding the impact of key operational variables on concurrent energy generation and phosphorus recovery in microbial fuel cell is required to improve the process and reduce the operational cost. In this study, full factorial design (FFD) and central composite designs (CCD) were employed to identify the effect of influent COD concentration and cathode aeration flow rate on energy generation and phosphorus (P) recovery and to optimise MFC power density and P recovery. Results showed that influent chemical oxygen demand (COD) concentration and cathode aeration flow rate had a significant effect on power density, coulombic efficiency, phosphorus precipitation efficiency and phosphorus precipitation rate at the cathode. P precipitation was negatively affected by the generated current during the batch duration. The generated energy was reduced due to struvite being precipitated on the cathode surface, which might obstruct the mass transfer of ions and oxygen. Response surface mathematical model was used to predict the optimum operating conditions that resulted in a maximum power density and phosphorus precipitation efficiency of 184 mW/m² and 84%, and this corresponds to COD= 1700 mg/L and aeration flow rate=210 mL/min. The findings highlight the importance of the operational conditions of energy generation and phosphorus recovery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy" title="energy">energy</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20fuel%20cell" title=" microbial fuel cell"> microbial fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorus" title=" phosphorus"> phosphorus</a>, <a href="https://publications.waset.org/abstracts/search?q=struvite" title=" struvite"> struvite</a> </p> <a href="https://publications.waset.org/abstracts/82315/phosphorus-recovery-optimization-in-microbial-fuel-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=power%20density&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=power%20density&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=power%20density&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=power%20density&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=power%20density&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=power%20density&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=power%20density&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=power%20density&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=power%20density&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=power%20density&amp;page=310">310</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=power%20density&amp;page=311">311</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=power%20density&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10