CINXE.COM

Figure-eight knot (mathematics) - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Figure-eight knot (mathematics) - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"d6ab541e-37f3-4f7d-bb4e-9f7b9bbbbb1e","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Figure-eight_knot_(mathematics)","wgTitle":"Figure-eight knot (mathematics)","wgCurRevisionId":1218377244,"wgRevisionId":1218377244,"wgArticleId":59565,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description matches Wikidata","Knot theory","Alternating knots and links","Hyperbolic knots and links","Fibered knots and links","Prime knots and links","Fully amphichiral knots and links","Non-tricolorable knots and links","Twist knots","3-manifolds","Double torus knots and links"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName": "Figure-eight_knot_(mathematics)","wgRelevantArticleId":59565,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":9000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q168697","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness", "fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","ext.tmh.player.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.tmh.player","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js", "ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.tmh.player.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/0/05/Blue_Figure-Eight_Knot.png/1200px-Blue_Figure-Eight_Knot.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1364"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/0/05/Blue_Figure-Eight_Knot.png/800px-Blue_Figure-Eight_Knot.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="909"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/0/05/Blue_Figure-Eight_Knot.png/640px-Blue_Figure-Eight_Knot.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="727"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Figure-eight knot (mathematics) - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Figure-eight_knot_(mathematics)"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Figure-eight_knot_(mathematics)&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Figure-eight_knot_(mathematics)"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Figure-eight_knot_mathematics rootpage-Figure-eight_knot_mathematics skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Figure-eight+knot+%28mathematics%29" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Figure-eight+knot+%28mathematics%29" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Figure-eight+knot+%28mathematics%29" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Figure-eight+knot+%28mathematics%29" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Origin_of_name" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Origin_of_name"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Origin of name</span> </div> </a> <ul id="toc-Origin_of_name-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Description" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Description"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Description</span> </div> </a> <ul id="toc-Description-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Mathematical_properties" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Mathematical_properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Mathematical properties</span> </div> </a> <ul id="toc-Mathematical_properties-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Invariants" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Invariants"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Invariants</span> </div> </a> <ul id="toc-Invariants-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Figure-eight knot (mathematics)</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 8 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-8" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">8 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Achterknoten_(Mathematik)" title="Achterknoten (Mathematik) – German" lang="de" hreflang="de" data-title="Achterknoten (Mathematik)" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Nodo_a_otto" title="Nodo a otto – Italian" lang="it" hreflang="it" data-title="Nodo a otto" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Cijfer-8-knoop_(knopentheorie)" title="Cijfer-8-knoop (knopentheorie) – Dutch" lang="nl" hreflang="nl" data-title="Cijfer-8-knoop (knopentheorie)" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/8%E3%81%AE%E5%AD%97%E7%B5%90%E3%81%B3%E7%9B%AE" title="8の字結び目 – Japanese" lang="ja" hreflang="ja" data-title="8の字結び目" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/N%C3%B3_figura_oito" title="Nó figura oito – Portuguese" lang="pt" hreflang="pt" data-title="Nó figura oito" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%92%D0%BE%D1%81%D1%8C%D0%BC%D1%91%D1%80%D0%BA%D0%B0_(%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F_%D1%83%D0%B7%D0%BB%D0%BE%D0%B2)" title="Восьмёрка (теория узлов) – Russian" lang="ru" hreflang="ru" data-title="Восьмёрка (теория узлов)" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Figure-eight" title="Figure-eight – Simple English" lang="en-simple" hreflang="en-simple" data-title="Figure-eight" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%92%D1%96%D1%81%D1%96%D0%BC%D0%BA%D0%B0_(%D1%82%D0%B5%D0%BE%D1%80%D1%96%D1%8F_%D0%B2%D1%83%D0%B7%D0%BB%D1%96%D0%B2)" title="Вісімка (теорія вузлів) – Ukrainian" lang="uk" hreflang="uk" data-title="Вісімка (теорія вузлів)" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q168697#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Figure-eight_knot_(mathematics)" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Figure-eight_knot_(mathematics)" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Figure-eight_knot_(mathematics)"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Figure-eight_knot_(mathematics)&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Figure-eight_knot_(mathematics)&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Figure-eight_knot_(mathematics)"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Figure-eight_knot_(mathematics)&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Figure-eight_knot_(mathematics)&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Figure-eight_knot_(mathematics)" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Figure-eight_knot_(mathematics)" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Figure-eight_knot_(mathematics)&amp;oldid=1218377244" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Figure-eight_knot_(mathematics)&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Figure-eight_knot_%28mathematics%29&amp;id=1218377244&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FFigure-eight_knot_%28mathematics%29"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FFigure-eight_knot_%28mathematics%29"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Figure-eight_knot_%28mathematics%29&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Figure-eight_knot_(mathematics)&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Figure-eight_knots_(knot_theory)" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q168697" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Unique knot with a crossing number of four</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">This article is about the mathematical concept. For the knot, see <a href="/wiki/Figure-eight_knot" title="Figure-eight knot">Figure-eight knot</a>. For other uses, see <a href="/wiki/Figure_8_(disambiguation)" class="mw-redirect mw-disambig" title="Figure 8 (disambiguation)">Figure 8</a>.</div> <style data-mw-deduplicate="TemplateStyles:r1257001546">.mw-parser-output .infobox-subbox{padding:0;border:none;margin:-3px;width:auto;min-width:100%;font-size:100%;clear:none;float:none;background-color:transparent}.mw-parser-output .infobox-3cols-child{margin:auto}.mw-parser-output .infobox .navbar{font-size:100%}@media screen{html.skin-theme-clientpref-night .mw-parser-output .infobox-full-data:not(.notheme)>div:not(.notheme)[style]{background:#1f1f23!important;color:#f8f9fa}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .infobox-full-data:not(.notheme) div:not(.notheme){background:#1f1f23!important;color:#f8f9fa}}@media(min-width:640px){body.skin--responsive .mw-parser-output .infobox-table{display:table!important}body.skin--responsive .mw-parser-output .infobox-table>caption{display:table-caption!important}body.skin--responsive .mw-parser-output .infobox-table>tbody{display:table-row-group}body.skin--responsive .mw-parser-output .infobox-table tr{display:table-row!important}body.skin--responsive .mw-parser-output .infobox-table th,body.skin--responsive .mw-parser-output .infobox-table td{padding-left:inherit;padding-right:inherit}}</style><table class="infobox" style="width:16em;"><tbody><tr><th colspan="2" class="infobox-above" style="background:#ffff99">Figure-eight knot</th></tr><tr><td colspan="2" class="infobox-image"><span class="mw-default-size" typeof="mw:File/Frameless"><a href="/wiki/File:Blue_Figure-Eight_Knot.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/05/Blue_Figure-Eight_Knot.png/220px-Blue_Figure-Eight_Knot.png" decoding="async" width="220" height="250" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/05/Blue_Figure-Eight_Knot.png/330px-Blue_Figure-Eight_Knot.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/05/Blue_Figure-Eight_Knot.png/440px-Blue_Figure-Eight_Knot.png 2x" data-file-width="1584" data-file-height="1800" /></a></span></td></tr><tr><th scope="row" class="infobox-label">Common name</th><td class="infobox-data"><a href="/wiki/Figure-eight_knot" title="Figure-eight knot">Figure-eight knot</a></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Arf_invariant_of_a_knot" title="Arf invariant of a knot">Arf invariant</a></th><td class="infobox-data">1</td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Braid_length" class="mw-redirect" title="Braid length">Braid length</a></th><td class="infobox-data">4</td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Braid_number" class="mw-redirect" title="Braid number">Braid no.</a></th><td class="infobox-data">3</td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Bridge_number" title="Bridge number">Bridge no.</a></th><td class="infobox-data">2</td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Crosscap_number" title="Crosscap number">Crosscap no.</a></th><td class="infobox-data">2</td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Crossing_number_(knot_theory)" title="Crossing number (knot theory)">Crossing no.</a></th><td class="infobox-data">4</td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Knot_genus" class="mw-redirect" title="Knot genus">Genus</a></th><td class="infobox-data">1</td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Hyperbolic_volume" title="Hyperbolic volume">Hyperbolic volume</a></th><td class="infobox-data">2.02988</td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Stick_number" title="Stick number">Stick no.</a></th><td class="infobox-data">7</td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Unknotting_number" title="Unknotting number">Unknotting no.</a></th><td class="infobox-data">1</td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Conway_notation_(knot_theory)" title="Conway notation (knot theory)">Conway notation</a></th><td class="infobox-data">[22]</td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Knot_theory#Alexander–Briggs_notation" title="Knot theory">A–B notation</a></th><td class="infobox-data">4<sub>1</sub></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Dowker_notation" class="mw-redirect" title="Dowker notation">Dowker notation</a></th><td class="infobox-data">4, 6, 8, 2</td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/List_of_mathematical_knots_and_links" title="List of mathematical knots and links">Last /<span class="nowrap">&#160;</span>Next</a></th><td class="infobox-data"><a href="/wiki/3_1_knot" class="mw-redirect" title="3 1 knot">3<sub>1</sub></a> /&#160;<a href="/wiki/5_1_knot" class="mw-redirect" title="5 1 knot">5<sub>1</sub></a></td></tr><tr><th colspan="2" class="infobox-header">Other</th></tr><tr><td colspan="2" class="infobox-full-data"><a href="/wiki/Alternating_knot" title="Alternating knot">alternating</a>,&#32;<a href="/wiki/Hyperbolic_knot" class="mw-redirect" title="Hyperbolic knot">hyperbolic</a>,&#32;<a href="/wiki/Fibered_knot" title="Fibered knot">fibered</a>,&#32;<a href="/wiki/Prime_knot" title="Prime knot">prime</a>,&#32;<a href="/wiki/Fully_amphichiral_knot" class="mw-redirect" title="Fully amphichiral knot">fully amphichiral</a>,&#32;<a href="/wiki/Twist_knot" title="Twist knot">twist</a></td></tr></tbody></table> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Figure8knot-mathematical-knot-theory.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7e/Figure8knot-mathematical-knot-theory.svg/100px-Figure8knot-mathematical-knot-theory.svg.png" decoding="async" width="100" height="207" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/7e/Figure8knot-mathematical-knot-theory.svg/150px-Figure8knot-mathematical-knot-theory.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/7e/Figure8knot-mathematical-knot-theory.svg/200px-Figure8knot-mathematical-knot-theory.svg.png 2x" data-file-width="453" data-file-height="939" /></a><figcaption>Figure-eight knot of practical knot-tying, with ends joined</figcaption></figure> <p>In <a href="/wiki/Knot_theory" title="Knot theory">knot theory</a>, a <b>figure-eight knot</b> (also called <b>Listing's knot</b><sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup>) is the unique knot with a <a href="/wiki/Crossing_number_(knot_theory)" title="Crossing number (knot theory)">crossing number</a> of four. This makes it the knot with the third-smallest possible crossing number, after the <a href="/wiki/Unknot" title="Unknot">unknot</a> and the <a href="/wiki/Trefoil_knot" title="Trefoil knot">trefoil knot</a>. The figure-eight knot is a <a href="/wiki/Prime_knot" title="Prime knot">prime knot</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Origin_of_name">Origin of name</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Figure-eight_knot_(mathematics)&amp;action=edit&amp;section=1" title="Edit section: Origin of name"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The name is given because tying a normal <a href="/wiki/Figure-eight_knot" title="Figure-eight knot">figure-eight knot</a> in a rope and then joining the ends together, in the most natural way, gives a model of the mathematical knot. </p> <div class="mw-heading mw-heading2"><h2 id="Description">Description</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Figure-eight_knot_(mathematics)&amp;action=edit&amp;section=2" title="Edit section: Description"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A simple parametric representation of the figure-eight knot is as the set of all points (<i>x</i>,<i>y</i>,<i>z</i>) where </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}x&amp;=\left(2+\cos {(2t)}\right)\cos {(3t)}\\y&amp;=\left(2+\cos {(2t)}\right)\sin {(3t)}\\z&amp;=\sin {(4t)}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>x</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mo>+</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>3</mn> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>y</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mo>+</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>3</mn> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>z</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>4</mn> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}x&amp;=\left(2+\cos {(2t)}\right)\cos {(3t)}\\y&amp;=\left(2+\cos {(2t)}\right)\sin {(3t)}\\z&amp;=\sin {(4t)}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c458b7a8910eb4441a525d27b4e7a43acdb4a0a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:25.998ex; height:9.176ex;" alt="{\displaystyle {\begin{aligned}x&amp;=\left(2+\cos {(2t)}\right)\cos {(3t)}\\y&amp;=\left(2+\cos {(2t)}\right)\sin {(3t)}\\z&amp;=\sin {(4t)}\end{aligned}}}"></span></dd></dl> <p>for <i>t</i> varying over the real numbers (see 2D visual realization at bottom right). </p><p>The figure-eight knot is <a href="/wiki/Prime_knot" title="Prime knot">prime</a>, <a href="/wiki/Alternating_knot" title="Alternating knot">alternating</a>, <a href="/wiki/Rational_knot" class="mw-redirect" title="Rational knot">rational</a> with an associated value of 5/3,<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> and is <a href="/wiki/Chiral_knot" title="Chiral knot">achiral</a>. The figure-eight knot is also a <a href="/wiki/Fibered_knot" title="Fibered knot">fibered knot</a>. This follows from other, less simple (but very interesting) representations of the knot: </p><p>(1) It is a <i>homogeneous</i><sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>note 1<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Closed_braid" class="mw-redirect" title="Closed braid">closed braid</a> (namely, the closure of the 3-string braid σ<sub>1</sub>σ<sub>2</sub><sup>−1</sup>σ<sub>1</sub>σ<sub>2</sub><sup>−1</sup>), and a theorem of <a href="/wiki/John_Stallings" class="mw-redirect" title="John Stallings">John Stallings</a> shows that any closed homogeneous braid is fibered. </p><p>(2) It is the link at (0,0,0,0) of an <a href="/w/index.php?title=Isolated_critical_point&amp;action=edit&amp;redlink=1" class="new" title="Isolated critical point (page does not exist)">isolated critical point</a> of a real-polynomial map <var>F</var>: <b>R</b><sup>4</sup>→<b>R</b><sup>2</sup>, so (according to a theorem of <a href="/wiki/John_Milnor" title="John Milnor">John Milnor</a>) the <a href="/wiki/Milnor_map" title="Milnor map">Milnor map</a> of <var>F</var> is actually a fibration. <a href="/w/index.php?title=Bernard_Perron&amp;action=edit&amp;redlink=1" class="new" title="Bernard Perron (page does not exist)">Bernard Perron</a> found the first such <var>F</var> for this knot, namely, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(x,y,z,t)=G(x,y,z^{2}-t^{2},2zt),\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>G</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> <mn>2</mn> <mi>z</mi> <mi>t</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(x,y,z,t)=G(x,y,z^{2}-t^{2},2zt),\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2dc4a34692d9630816377f1421929bd3e5255f20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-right: -0.387ex; width:34.389ex; height:3.176ex;" alt="{\displaystyle F(x,y,z,t)=G(x,y,z^{2}-t^{2},2zt),\,\!}"></span></dd></dl> <p>where </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}G(x,y,z,t)=\ &amp;(z(x^{2}+y^{2}+z^{2}+t^{2})+x(6x^{2}-2y^{2}-2z^{2}-2t^{2}),\\&amp;\ tx{\sqrt {2}}+y(6x^{2}-2y^{2}-2z^{2}-2t^{2})).\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>G</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mtext>&#xA0;</mtext> </mtd> <mtd> <mi></mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>+</mo> <mi>x</mi> <mo stretchy="false">(</mo> <mn>6</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mtext>&#xA0;</mtext> <mi>t</mi> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> <mo>+</mo> <mi>y</mi> <mo stretchy="false">(</mo> <mn>6</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}G(x,y,z,t)=\ &amp;(z(x^{2}+y^{2}+z^{2}+t^{2})+x(6x^{2}-2y^{2}-2z^{2}-2t^{2}),\\&amp;\ tx{\sqrt {2}}+y(6x^{2}-2y^{2}-2z^{2}-2t^{2})).\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fbd2863b966e0bfe99a8a32a7e6face21bcbcc3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:64.976ex; height:6.509ex;" alt="{\displaystyle {\begin{aligned}G(x,y,z,t)=\ &amp;(z(x^{2}+y^{2}+z^{2}+t^{2})+x(6x^{2}-2y^{2}-2z^{2}-2t^{2}),\\&amp;\ tx{\sqrt {2}}+y(6x^{2}-2y^{2}-2z^{2}-2t^{2})).\end{aligned}}}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Mathematical_properties">Mathematical properties</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Figure-eight_knot_(mathematics)&amp;action=edit&amp;section=3" title="Edit section: Mathematical properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The figure-eight knot has played an important role historically (and continues to do so) in the theory of <a href="/wiki/3-manifold" title="3-manifold">3-manifolds</a>. Sometime in the mid-to-late 1970s, <a href="/wiki/William_Thurston" title="William Thurston">William Thurston</a> showed that the figure-eight was <a href="/wiki/Hyperbolic_knot" class="mw-redirect" title="Hyperbolic knot">hyperbolic</a>, by <a href="/wiki/Manifold_decomposition" title="Manifold decomposition">decomposing</a> its <a href="/wiki/Knot_complement" title="Knot complement">complement</a> into two <a href="/wiki/Ideal_point" title="Ideal point">ideal</a> <a href="/wiki/Hyperbolic_geometry" title="Hyperbolic geometry">hyperbolic</a> <a href="/wiki/Tetrahedra" class="mw-redirect" title="Tetrahedra">tetrahedra</a>. (Robert Riley and Troels Jørgensen, working independently of each other, had earlier shown that the figure-eight knot was hyperbolic by other means.) This construction, new at the time, led him to many powerful results and methods. For example, he was able to show that all but ten <a href="/wiki/Dehn_surgery" title="Dehn surgery">Dehn surgeries</a> on the figure-eight knot resulted in non-<a href="/wiki/Haken_manifold" title="Haken manifold">Haken</a>, non-<a href="/wiki/Seifert_fiber_space" title="Seifert fiber space">Seifert-fibered</a> <a href="/wiki/Prime_decomposition_(3-manifold)" class="mw-redirect" title="Prime decomposition (3-manifold)">irreducible</a> 3-manifolds; these were the first such examples. Many more have been discovered by generalizing Thurston's construction to other knots and links. </p><p>The figure-eight knot is also the hyperbolic knot whose complement has the smallest possible <a href="/wiki/Hyperbolic_volume_(knot)" class="mw-redirect" title="Hyperbolic volume (knot)">volume</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 6\Lambda (\pi /3)\approx 2.02988...}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>6</mn> <mi mathvariant="normal">&#x039B;<!-- Λ --></mi> <mo stretchy="false">(</mo> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>3</mn> <mo stretchy="false">)</mo> <mo>&#x2248;<!-- ≈ --></mo> <mn>2.02988...</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 6\Lambda (\pi /3)\approx 2.02988...}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/090e47620a94f33b34aa3b8d09ea2eb01741a09a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.902ex; height:2.843ex;" alt="{\displaystyle 6\Lambda (\pi /3)\approx 2.02988...}"></span> (sequence <span class="nowrap external"><a href="//oeis.org/A091518" class="extiw" title="oeis:A091518">A091518</a></span> in the <a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>), where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x039B;<!-- Λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ac0a4a98a414e3480335f9ba652d12571ec6733" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.613ex; height:2.176ex;" alt="{\displaystyle \Lambda }"></span> is the <a href="/wiki/Lobachevsky_function" class="mw-redirect" title="Lobachevsky function">Lobachevsky function</a>.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> From this perspective, the figure-eight knot can be considered the simplest hyperbolic knot. The figure eight knot complement is a <a href="/wiki/Covering_space" title="Covering space">double-cover</a> of the <a href="/wiki/Gieseking_manifold" title="Gieseking manifold">Gieseking manifold</a>, which has the smallest volume among non-compact hyperbolic 3-manifolds. </p><p>The figure-eight knot and the <a href="/wiki/(%E2%88%922,3,7)_pretzel_knot" title="(−2,3,7) pretzel knot">(−2,3,7) pretzel knot</a> are the only two hyperbolic knots known to have more than 6 <i>exceptional surgeries</i>, Dehn surgeries resulting in a non-hyperbolic 3-manifold; they have 10 and 7, respectively. A theorem of <a href="/wiki/Marc_Lackenby" title="Marc Lackenby">Lackenby</a> and Meyerhoff, whose proof relies on the <a href="/wiki/Geometrization_conjecture" title="Geometrization conjecture">geometrization conjecture</a> and <a href="/wiki/Computer-assisted_proof" title="Computer-assisted proof">computer assistance</a>, holds that 10 is the largest possible number of exceptional surgeries of any hyperbolic knot. However, it is not currently known whether the figure-eight knot is the only one that achieves the bound of 10. A well-known conjecture is that the bound (except for the two knots mentioned) is 6. </p> <table> <tbody><tr> <td><figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Figure8knot-math-square.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8b/Figure8knot-math-square.svg/220px-Figure8knot-math-square.svg.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8b/Figure8knot-math-square.svg/330px-Figure8knot-math-square.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8b/Figure8knot-math-square.svg/440px-Figure8knot-math-square.svg.png 2x" data-file-width="600" data-file-height="600" /></a><figcaption>Simple squared depiction of figure-eight configuration.</figcaption></figure></td> <td><figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Figure8knot-rose-limacon-curve.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3c/Figure8knot-rose-limacon-curve.svg/220px-Figure8knot-rose-limacon-curve.svg.png" decoding="async" width="220" height="190" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3c/Figure8knot-rose-limacon-curve.svg/330px-Figure8knot-rose-limacon-curve.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3c/Figure8knot-rose-limacon-curve.svg/440px-Figure8knot-rose-limacon-curve.svg.png 2x" data-file-width="696" data-file-height="600" /></a><figcaption>Symmetric depiction generated by parametric equations.</figcaption></figure></td> <td><figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Superf%C3%ADcie_-_bordo_n%C3%B3_figura-oito.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Superf%C3%ADcie_-_bordo_n%C3%B3_figura-oito.jpg/220px-Superf%C3%ADcie_-_bordo_n%C3%B3_figura-oito.jpg" decoding="async" width="220" height="184" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Superf%C3%ADcie_-_bordo_n%C3%B3_figura-oito.jpg/330px-Superf%C3%ADcie_-_bordo_n%C3%B3_figura-oito.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Superf%C3%ADcie_-_bordo_n%C3%B3_figura-oito.jpg/440px-Superf%C3%ADcie_-_bordo_n%C3%B3_figura-oito.jpg 2x" data-file-width="3787" data-file-height="3169" /></a><figcaption>Mathematical surface Illustrating Figure-eight knot</figcaption></figure> </td></tr></tbody></table> <p>The figure-eight knot has genus 1 and is fibered. Therefore its complement fibers over the circle, the fibers being <a href="/wiki/Seifert_surface" title="Seifert surface">Seifert surfaces</a> which are 2-dimensional tori with one boundary component. The <a href="/wiki/Fibered_knot" title="Fibered knot">monodromy map</a> is then a homeomorphism of the 2-torus, which can be represented in this case by the matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({\begin{smallmatrix}2&amp;1\\1&amp;1\end{smallmatrix}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle scriptlevel="1"> <mtable rowspacing=".2em" columnspacing="0.333em" displaystyle="false"> <mtr> <mtd> <mn>2</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mstyle> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ({\begin{smallmatrix}2&amp;1\\1&amp;1\end{smallmatrix}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b42752e3b3f4aeba16de7eb56e3776d3a5e3b29" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.919ex; margin-bottom: -0.253ex; width:4.978ex; height:3.176ex;" alt="{\displaystyle ({\begin{smallmatrix}2&amp;1\\1&amp;1\end{smallmatrix}})}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Invariants">Invariants</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Figure-eight_knot_(mathematics)&amp;action=edit&amp;section=4" title="Edit section: Invariants"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Alexander_polynomial" title="Alexander polynomial">Alexander polynomial</a> of the figure-eight knot is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta (t)=-t+3-t^{-1},\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>t</mi> <mo>+</mo> <mn>3</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>,</mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta (t)=-t+3-t^{-1},\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9deecbb76191e9436400b1dd85eb226bde713663" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.961ex; height:3.176ex;" alt="{\displaystyle \Delta (t)=-t+3-t^{-1},\ }"></span></dd></dl> <p>the <a href="/wiki/Alexander_polynomial#Alexander–Conway_polynomial" title="Alexander polynomial">Conway polynomial</a> is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla (z)=1-z^{2},\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla (z)=1-z^{2},\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b9f3ffcf767088beaa9d5b35c1e190a26bbba8b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.694ex; height:3.176ex;" alt="{\displaystyle \nabla (z)=1-z^{2},\ }"></span><sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup></dd></dl> <p>and the <a href="/wiki/Jones_polynomial" title="Jones polynomial">Jones polynomial</a> is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V(q)=q^{2}-q+1-q^{-1}+q^{-2}.\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo stretchy="false">(</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mi>q</mi> <mo>+</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mo>.</mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V(q)=q^{2}-q+1-q^{-1}+q^{-2}.\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b17ce58036c174ddaf1dbe18c86ff2d0c9c9fbf2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.931ex; height:3.176ex;" alt="{\displaystyle V(q)=q^{2}-q+1-q^{-1}+q^{-2}.\ }"></span></dd></dl> <p>The symmetry between <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0231d68e66d89fb25248a5270f83fd5cbd7f8f75" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.412ex; height:3.009ex;" alt="{\displaystyle q^{-1}}"></span> in the Jones polynomial reflects the fact that the figure-eight knot is achiral. </p> <figure typeof="mw:File/Thumb"><span><video id="mwe_player_0" poster="//upload.wikimedia.org/wikipedia/commons/thumb/6/66/Figure-eight_knot.webm/400px--Figure-eight_knot.webm.jpg" controls="" preload="none" data-mw-tmh="" class="mw-file-element" width="400" height="225" data-durationhint="20" data-mwtitle="Figure-eight_knot.webm" data-mwprovider="wikimediacommons" resource="/wiki/File:Figure-eight_knot.webm"><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/6/66/Figure-eight_knot.webm/Figure-eight_knot.webm.480p.vp9.webm" type="video/webm; codecs=&quot;vp9, opus&quot;" data-transcodekey="480p.vp9.webm" data-width="854" data-height="480" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/6/66/Figure-eight_knot.webm/Figure-eight_knot.webm.720p.vp9.webm" type="video/webm; codecs=&quot;vp9, opus&quot;" data-transcodekey="720p.vp9.webm" data-width="1280" data-height="720" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/6/66/Figure-eight_knot.webm/Figure-eight_knot.webm.1080p.vp9.webm" type="video/webm; codecs=&quot;vp9, opus&quot;" data-transcodekey="1080p.vp9.webm" data-width="1920" data-height="1080" /><source src="//upload.wikimedia.org/wikipedia/commons/6/66/Figure-eight_knot.webm" type="video/webm; codecs=&quot;vp8, vorbis&quot;" data-width="1920" data-height="1080" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/6/66/Figure-eight_knot.webm/Figure-eight_knot.webm.144p.mjpeg.mov" type="video/quicktime" data-transcodekey="144p.mjpeg.mov" data-width="256" data-height="144" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/6/66/Figure-eight_knot.webm/Figure-eight_knot.webm.240p.vp9.webm" type="video/webm; codecs=&quot;vp9, opus&quot;" data-transcodekey="240p.vp9.webm" data-width="426" data-height="240" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/6/66/Figure-eight_knot.webm/Figure-eight_knot.webm.360p.webm" type="video/webm; codecs=&quot;vp8, vorbis&quot;" data-transcodekey="360p.webm" data-width="640" data-height="360" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/6/66/Figure-eight_knot.webm/Figure-eight_knot.webm.360p.vp9.webm" type="video/webm; codecs=&quot;vp9, opus&quot;" data-transcodekey="360p.vp9.webm" data-width="640" data-height="360" /></video></span><figcaption>Figure-eight knot</figcaption></figure> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Figure-eight_knot_(mathematics)&amp;action=edit&amp;section=5" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text">A braid is called homogeneous if every generator <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6ab3208a7d0c634ef720e03ff5a9949e8310edc4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.127ex; height:2.009ex;" alt="{\displaystyle \sigma _{i}}"></span> either occurs always with positive or always with negative sign.</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Figure-eight_knot_(mathematics)&amp;action=edit&amp;section=6" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://encyclopediaofmath.org/wiki/Listing_knot">"Listing knot - Encyclopedia of Mathematics"</a>. <i>encyclopediaofmath.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2020-06-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=encyclopediaofmath.org&amp;rft.atitle=Listing+knot+-+Encyclopedia+of+Mathematics&amp;rft_id=https%3A%2F%2Fencyclopediaofmath.org%2Fwiki%2FListing_knot&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFigure-eight+knot+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGruber" class="citation web cs1">Gruber, Hermann. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20060209202316/http://home.in.tum.de/~gruberh/">"Rational Knots with 4 crossings"</a>. <i>Rational Knots database</i>. Archived from <a rel="nofollow" class="external text" href="https://home.in.tum.de/~gruberh/">the original</a> on 2006-02-09<span class="reference-accessdate">. Retrieved <span class="nowrap">5 May</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Rational+Knots+database&amp;rft.atitle=Rational+Knots+with+4+crossings&amp;rft.aulast=Gruber&amp;rft.aufirst=Hermann&amp;rft_id=http%3A%2F%2Fhome.in.tum.de%2F~gruberh%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFigure-eight+knot+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWilliam_Thurston2002" class="citation cs2"><a href="/wiki/William_Thurston" title="William Thurston">William Thurston</a> (March 2002), <a rel="nofollow" class="external text" href="https://web.archive.org/web/20200727020107/http://library.msri.org/books/gt3m/">"7. Computation of volume"</a>, <a rel="nofollow" class="external text" href="http://library.msri.org/books/gt3m/"><i>The Geometry and Topology of Three-Manifolds</i></a>, p.&#160;165, archived from <a rel="nofollow" class="external text" href="http://library.msri.org/books/gt3m/PDF/7.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2020-07-27<span class="reference-accessdate">, retrieved <span class="nowrap">2020-10-19</span></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=7.+Computation+of+volume&amp;rft.btitle=The+Geometry+and+Topology+of+Three-Manifolds&amp;rft.pages=165&amp;rft.date=2002-03&amp;rft.au=William+Thurston&amp;rft_id=http%3A%2F%2Flibrary.msri.org%2Fbooks%2Fgt3m%2FPDF%2F7.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFigure-eight+knot+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text">"<a rel="nofollow" class="external text" href="https://katlas.org/wiki/4_1">4_1</a>", <i><a href="/wiki/The_Knot_Atlas" title="The Knot Atlas">The Knot Atlas</a></i>.</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Figure-eight_knot_(mathematics)&amp;action=edit&amp;section=7" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Ian_Agol" title="Ian Agol">Ian Agol</a>, <i>Bounds on exceptional Dehn filling</i>, <a href="/wiki/Geometry_%26_Topology" title="Geometry &amp; Topology">Geometry &amp; Topology</a> 4 (2000), 431–449. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1799796">1799796</a></li> <li>Chun Cao and Robert Meyerhoff, <i>The orientable cusped hyperbolic 3-manifolds of minimum volume</i>, Inventiones Mathematicae, 146 (2001), no. 3, 451–478. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1869847">1869847</a></li> <li><a href="/wiki/Marc_Lackenby" title="Marc Lackenby">Marc Lackenby</a>, <i>Word hyperbolic Dehn surgery</i>, <a href="/wiki/Inventiones_Mathematicae" title="Inventiones Mathematicae">Inventiones Mathematicae</a> 140 (2000), no. 2, 243–282. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1756996">1756996</a></li> <li><a href="/wiki/Marc_Lackenby" title="Marc Lackenby">Marc Lackenby</a> and Robert Meyerhoff, <a rel="nofollow" class="external text" href="http://arxiv.org/abs/0808.1176"><i>The maximal number of exceptional Dehn surgeries</i></a>, arXiv:0808.1176</li> <li><a href="/wiki/Robion_Kirby" title="Robion Kirby">Robion Kirby</a>, <a rel="nofollow" class="external text" href="http://math.berkeley.edu/~kirby/problems.ps.gz"><i>Problems in low-dimensional topology</i></a>, (see problem 1.77, due to <a href="/wiki/Cameron_Gordon_(mathematician)" title="Cameron Gordon (mathematician)">Cameron Gordon</a>, for exceptional slopes)</li> <li>William Thurston, <a rel="nofollow" class="external text" href="http://msri.org/publications/books/gt3m/"><i>The Geometry and Topology of Three-Manifolds</i></a>, Princeton University lecture notes (1978–1981).</li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Figure-eight_knot_(mathematics)&amp;action=edit&amp;section=8" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>"<a rel="nofollow" class="external text" href="https://katlas.org/wiki/4_1">4_1</a>", <i><a href="/wiki/The_Knot_Atlas" title="The Knot Atlas">The Knot Atlas</a></i>.&#160;Accessed: 7 May 2013.</li> <li><span class="citation mathworld" id="Reference-Mathworld-Figure_Eight_Knot"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs1"><a href="/wiki/Eric_W._Weisstein" title="Eric W. Weisstein">Weisstein, Eric W.</a> <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/FigureEightKnot.html">"Figure Eight Knot"</a>. <i><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=MathWorld&amp;rft.atitle=Figure+Eight+Knot&amp;rft.au=Weisstein%2C+Eric+W.&amp;rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FFigureEightKnot.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFigure-eight+knot+%28mathematics%29" class="Z3988"></span></span></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Knot_theory_(knots_and_links)" style="padding:3px"><table class="nowraplinks hlist mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Knot_theory" title="Template:Knot theory"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Knot_theory" title="Template talk:Knot theory"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Knot_theory" title="Special:EditPage/Template:Knot theory"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Knot_theory_(knots_and_links)" style="font-size:114%;margin:0 4em"><a href="/wiki/Knot_theory" title="Knot theory">Knot theory</a> (<a href="/wiki/Knot_(mathematics)" title="Knot (mathematics)">knots</a> and <a href="/wiki/Link_(knot_theory)" title="Link (knot theory)">links</a>)</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Hyperbolic_link" title="Hyperbolic link">Hyperbolic</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a class="mw-selflink selflink">Figure-eight</a> (4<sub>1</sub>)</li> <li><a href="/wiki/Three-twist_knot" title="Three-twist knot">Three-twist</a> (5<sub>2</sub>)</li> <li><a href="/wiki/Stevedore_knot_(mathematics)" title="Stevedore knot (mathematics)">Stevedore</a> (6<sub>1</sub>)</li> <li><a href="/wiki/6%E2%82%82_knot" class="mw-redirect" title="6₂ knot">6<sub>2</sub></a></li> <li><a href="/wiki/6%E2%82%83_knot" class="mw-redirect" title="6₃ knot">6<sub>3</sub></a></li> <li><a href="/wiki/7%E2%82%84_knot" class="mw-redirect" title="7₄ knot">Endless</a> (7<sub>4</sub>)</li> <li><a href="/wiki/Carrick_mat" title="Carrick mat">Carrick mat</a> (8<sub>18</sub>)</li> <li><a href="/wiki/Perko_pair" title="Perko pair">Perko pair</a> (10<sub>161</sub>)</li> <li><a href="/wiki/Conway_knot" title="Conway knot">Conway knot</a> (11n34)</li> <li><a href="/wiki/Kinoshita%E2%80%93Terasaka_knot" title="Kinoshita–Terasaka knot">Kinoshita–Terasaka knot</a> (11n42)</li> <li><a href="/wiki/(%E2%88%922,3,7)_pretzel_knot" title="(−2,3,7) pretzel knot">(−2,3,7) pretzel</a> (12n242)</li> <li><a href="/wiki/Whitehead_link" title="Whitehead link">Whitehead</a> (5<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sub></span></span>)</li> <li><a href="/wiki/Borromean_rings" title="Borromean rings">Borromean rings</a> (6<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">3</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span>)</li> <li><a href="/wiki/L10a140_link" title="L10a140 link">L10a140</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Satellite_knot" title="Satellite knot">Satellite</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Composite_knot" class="mw-redirect" title="Composite knot">Composite knots</a> <ul><li><a href="/wiki/Granny_knot_(mathematics)" title="Granny knot (mathematics)">Granny</a></li> <li><a href="/wiki/Square_knot_(mathematics)" title="Square knot (mathematics)">Square</a></li></ul></li> <li><a href="/wiki/Knot_sum" class="mw-redirect" title="Knot sum">Knot sum</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Torus_knot" title="Torus knot">Torus</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Unknot" title="Unknot">Unknot</a> (0<sub>1</sub>)</li> <li><a href="/wiki/Trefoil_knot" title="Trefoil knot">Trefoil</a> (3<sub>1</sub>)</li> <li><a href="/wiki/Cinquefoil_knot" title="Cinquefoil knot">Cinquefoil</a> (5<sub>1</sub>)</li> <li><a href="/wiki/7%E2%82%81_knot" class="mw-redirect" title="7₁ knot">Septafoil</a> (7<sub>1</sub>)</li> <li><a href="/wiki/Unlink" title="Unlink">Unlink</a> (0<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sub></span></span>)</li> <li><a href="/wiki/Hopf_link" title="Hopf link">Hopf</a> (2<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sub></span></span>)</li> <li><a href="/wiki/Solomon%27s_knot" title="Solomon&#39;s knot">Solomon's</a> (4<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sub></span></span>)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Knot_invariant" title="Knot invariant">Invariants</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Alternating_knot" title="Alternating knot">Alternating</a></li> <li><a href="/wiki/Arf_invariant_of_a_knot" title="Arf invariant of a knot">Arf invariant</a></li> <li><a href="/wiki/Bridge_number" title="Bridge number">Bridge no.</a> <ul><li><a href="/wiki/2-bridge_knot" title="2-bridge knot">2-bridge</a></li></ul></li> <li><a href="/wiki/Brunnian_link" title="Brunnian link">Brunnian</a></li> <li><a href="/wiki/Chiral_knot" title="Chiral knot">Chirality</a> <ul><li><a href="/wiki/Invertible_knot" title="Invertible knot">Invertible</a></li></ul></li> <li><a href="/wiki/Crosscap_number" title="Crosscap number">Crosscap no.</a></li> <li><a href="/wiki/Crossing_number_(knot_theory)" title="Crossing number (knot theory)">Crossing no.</a></li> <li><a href="/wiki/Finite_type_invariant" title="Finite type invariant">Finite type invariant</a></li> <li><a href="/wiki/Hyperbolic_volume" title="Hyperbolic volume">Hyperbolic volume</a></li> <li><a href="/wiki/Khovanov_homology" title="Khovanov homology">Khovanov homology</a></li> <li><a href="/wiki/Knot_genus" class="mw-redirect" title="Knot genus">Genus</a></li> <li><a href="/wiki/Knot_group" title="Knot group">Knot group</a></li> <li><a href="/wiki/Link_group" title="Link group">Link group</a></li> <li><a href="/wiki/Linking_number" title="Linking number">Linking no.</a></li> <li><a href="/wiki/Knot_polynomial" title="Knot polynomial">Polynomial</a> <ul><li><a href="/wiki/Alexander_polynomial" title="Alexander polynomial">Alexander</a></li> <li><a href="/wiki/Bracket_polynomial" title="Bracket polynomial">Bracket</a></li> <li><a href="/wiki/HOMFLY_polynomial" title="HOMFLY polynomial">HOMFLY</a></li> <li><a href="/wiki/Jones_polynomial" title="Jones polynomial">Jones</a></li> <li><a href="/wiki/Kauffman_polynomial" title="Kauffman polynomial">Kauffman</a></li></ul></li> <li><a href="/wiki/Pretzel_link" title="Pretzel link">Pretzel</a></li> <li><a href="/wiki/Prime_knot" title="Prime knot">Prime</a> <ul><li><a href="/wiki/List_of_prime_knots" title="List of prime knots">list</a></li></ul></li> <li><a href="/wiki/Stick_number" title="Stick number">Stick no.</a></li> <li><a href="/wiki/Tricolorability" title="Tricolorability">Tricolorability</a></li> <li><a href="/wiki/Unknotting_number" title="Unknotting number">Unknotting no.</a> and <a href="/wiki/Unknotting_problem" title="Unknotting problem">problem</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Notation<br />and <a href="/wiki/Knot_operation" title="Knot operation">operations</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Alexander%E2%80%93Briggs_notation" class="mw-redirect" title="Alexander–Briggs notation">Alexander–Briggs notation</a></li> <li><a href="/wiki/Conway_notation_(knot_theory)" title="Conway notation (knot theory)">Conway notation</a></li> <li><a href="/wiki/Dowker%E2%80%93Thistlethwaite_notation" title="Dowker–Thistlethwaite notation">Dowker–Thistlethwaite notation</a></li> <li><a href="/wiki/Flype" title="Flype">Flype</a></li> <li><a href="/wiki/Mutation_(knot_theory)" title="Mutation (knot theory)">Mutation</a></li> <li><a href="/wiki/Reidemeister_move" title="Reidemeister move">Reidemeister move</a></li> <li><a href="/wiki/Skein_relation" title="Skein relation">Skein relation</a></li> <li><a href="/wiki/Knot_tabulation" title="Knot tabulation">Tabulation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Alexander%27s_theorem" title="Alexander&#39;s theorem">Alexander's theorem</a></li> <li><a href="/wiki/Berge_knot" title="Berge knot">Berge</a></li> <li><a href="/wiki/Braid_theory" class="mw-redirect" title="Braid theory">Braid theory</a></li> <li><a href="/wiki/Conway_sphere" title="Conway sphere">Conway sphere</a></li> <li><a href="/wiki/Knot_complement" title="Knot complement">Complement</a></li> <li><a href="/wiki/Double_torus_knot" class="mw-redirect" title="Double torus knot">Double torus</a></li> <li><a href="/wiki/Fibered_knot" title="Fibered knot">Fibered</a></li> <li><a href="/wiki/Knot" title="Knot">Knot</a></li> <li><a href="/wiki/List_of_mathematical_knots_and_links" title="List of mathematical knots and links">List of knots and links</a></li> <li><a href="/wiki/Ribbon_knot" title="Ribbon knot">Ribbon</a></li> <li><a href="/wiki/Slice_knot" title="Slice knot">Slice</a></li> <li><a href="/wiki/Knot_sum" class="mw-redirect" title="Knot sum">Sum</a></li> <li><a href="/wiki/Tait_conjectures" title="Tait conjectures">Tait conjectures</a></li> <li><a href="/wiki/Twist_knot" title="Twist knot">Twist</a></li> <li><a href="/wiki/Wild_knot" title="Wild knot">Wild</a></li> <li><a href="/wiki/Writhe" title="Writhe">Writhe</a></li> <li><a href="/wiki/Surgery_theory" title="Surgery theory">Surgery theory</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <b><a href="/wiki/Category:Knot_theory" title="Category:Knot theory">Category</a></b></li> <li><span class="noviewer" typeof="mw:File"><span title="Commons page"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span> <b><a href="https://commons.wikimedia.org/wiki/Category:Knot_theory" class="extiw" title="commons:Category:Knot theory">Commons</a></b></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐7n487 Cached time: 20241122181434 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.286 seconds Real time usage: 0.489 seconds Preprocessor visited node count: 1370/1000000 Post‐expand include size: 44731/2097152 bytes Template argument size: 1307/2097152 bytes Highest expansion depth: 10/100 Expensive parser function count: 3/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 32307/5000000 bytes Lua time usage: 0.165/10.000 seconds Lua memory usage: 5383022/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 338.120 1 -total 32.09% 108.489 2 Template:Reflist 25.42% 85.954 1 Template:Knot_theory 24.24% 81.967 2 Template:Cite_web 23.53% 79.560 1 Template:Navbox 17.13% 57.915 1 Template:Short_description 10.77% 36.403 2 Template:Pagetype 10.18% 34.411 1 Template:Infobox_knot_theory 9.22% 31.190 1 Template:Infobox 6.19% 20.925 1 Template:About --> <!-- Saved in parser cache with key enwiki:pcache:idhash:59565-0!canonical and timestamp 20241122181434 and revision id 1218377244. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Figure-eight_knot_(mathematics)&amp;oldid=1218377244">https://en.wikipedia.org/w/index.php?title=Figure-eight_knot_(mathematics)&amp;oldid=1218377244</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Knot_theory" title="Category:Knot theory">Knot theory</a></li><li><a href="/wiki/Category:Alternating_knots_and_links" title="Category:Alternating knots and links">Alternating knots and links</a></li><li><a href="/wiki/Category:Hyperbolic_knots_and_links" title="Category:Hyperbolic knots and links">Hyperbolic knots and links</a></li><li><a href="/wiki/Category:Fibered_knots_and_links" title="Category:Fibered knots and links">Fibered knots and links</a></li><li><a href="/wiki/Category:Prime_knots_and_links" title="Category:Prime knots and links">Prime knots and links</a></li><li><a href="/wiki/Category:Fully_amphichiral_knots_and_links" title="Category:Fully amphichiral knots and links">Fully amphichiral knots and links</a></li><li><a href="/wiki/Category:Non-tricolorable_knots_and_links" title="Category:Non-tricolorable knots and links">Non-tricolorable knots and links</a></li><li><a href="/wiki/Category:Twist_knots" title="Category:Twist knots">Twist knots</a></li><li><a href="/wiki/Category:3-manifolds" title="Category:3-manifolds">3-manifolds</a></li><li><a href="/wiki/Category:Double_torus_knots_and_links" title="Category:Double torus knots and links">Double torus knots and links</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 11 April 2024, at 10:48<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Figure-eight_knot_(mathematics)&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-qvkwc","wgBackendResponseTime":152,"wgPageParseReport":{"limitreport":{"cputime":"0.286","walltime":"0.489","ppvisitednodes":{"value":1370,"limit":1000000},"postexpandincludesize":{"value":44731,"limit":2097152},"templateargumentsize":{"value":1307,"limit":2097152},"expansiondepth":{"value":10,"limit":100},"expensivefunctioncount":{"value":3,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":32307,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 338.120 1 -total"," 32.09% 108.489 2 Template:Reflist"," 25.42% 85.954 1 Template:Knot_theory"," 24.24% 81.967 2 Template:Cite_web"," 23.53% 79.560 1 Template:Navbox"," 17.13% 57.915 1 Template:Short_description"," 10.77% 36.403 2 Template:Pagetype"," 10.18% 34.411 1 Template:Infobox_knot_theory"," 9.22% 31.190 1 Template:Infobox"," 6.19% 20.925 1 Template:About"]},"scribunto":{"limitreport-timeusage":{"value":"0.165","limit":"10.000"},"limitreport-memusage":{"value":5383022,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-7n487","timestamp":"20241122181434","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Figure-eight knot (mathematics)","url":"https:\/\/en.wikipedia.org\/wiki\/Figure-eight_knot_(mathematics)","sameAs":"http:\/\/www.wikidata.org\/entity\/Q168697","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q168697","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2002-06-26T11:33:07Z","dateModified":"2024-04-11T10:48:18Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/0\/05\/Blue_Figure-Eight_Knot.png","headline":"unique knot with a crossing number of four"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10