CINXE.COM

Search results for: olive-mill wastewater

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: olive-mill wastewater</title> <meta name="description" content="Search results for: olive-mill wastewater"> <meta name="keywords" content="olive-mill wastewater"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="olive-mill wastewater" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="olive-mill wastewater"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 982</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: olive-mill wastewater</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">982</span> Domestic Wastewater Treatment by Microalgae – Removal of Nitrogen </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Siham%20Dehmani">A. Siham Dehmani</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Djamal%20Zerrouki"> B. Djamal Zerrouki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Domestic wastewater contains high concentrations of nitrogen, which can affect public health and cause harmful ecological impacts. The potential of microalgae as a source of renewable energy based on wastewater has received increasing interest worldwide in recent decades. The microalgae cultivation in wastewater has two advantages: wastewater treatment and algal biomass production. Our work aimed to remove nitrogen from municipal wastewater. Wastewater samples were taken from the wastewater treatment station located in Ouargla and used as a medium for the cultivation of chlorella microalgae strains inside a photobioreactor. Analysis of different parameters was done every 2 days along the period of the cultivation (10 days). The average removal efficiencies of nitrogen were maintained at 95%. Our results show the potential of integrating nutrient removal from wastewater by microalgae as a secondary wastewater treatment processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass" title="biomass">biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgae" title=" microalgae"> microalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/40854/domestic-wastewater-treatment-by-microalgae-removal-of-nitrogen" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40854.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">981</span> Wastewater Treatment Using Microalgae</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chigbo%20Ikechukwu%20Emmanuel">Chigbo Ikechukwu Emmanuel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microalgae can be used for tertiary treatment of wastewater due to their capacity to assimilate nutrients. The pH increase which is mediated by the growing algae also induces phosphorus precipitation and ammonia stripping to the air, and may in addition act disinfecting on the wastewater. Domestic wastewater is ideal for algal growth since it contains high concentrations of all necessary nutrients. The growth limiting factor is rather light, especially at higher latitudes. The most important operational factors for successful wastewater treatment with microalgae are depth, turbulence and hydraulic retention time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microalgae" title="microalgae">microalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment" title=" wastewater treatment"> wastewater treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorus" title=" phosphorus"> phosphorus</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen" title=" nitrogen"> nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=light" title=" light"> light</a>, <a href="https://publications.waset.org/abstracts/search?q=operation" title=" operation"> operation</a>, <a href="https://publications.waset.org/abstracts/search?q=ponds" title=" ponds"> ponds</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a> </p> <a href="https://publications.waset.org/abstracts/15818/wastewater-treatment-using-microalgae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15818.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">980</span> Environmental Engineering Case Study of Waste Water Treatement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harold%20Jideofor">Harold Jideofor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wastewater treatment consists of applying known technology to improve or upgrade the quality of a wastewater. Usually wastewater treatment will involve collecting the wastewater in a central, segregated location (the Wastewater Treatment Plant) and subjecting the wastewater to various treatment processes. Most often, since large volumes of wastewater are involved, treatment processes are carried out on continuously flowing wastewaters (continuous flow or "open" systems) rather than as "batch" or a series of periodic treatment processes in which treatment is carried out on parcels or "batches" of wastewaters. While most wastewater treatment processes are continuous flow, certain operations, such as vacuum filtration, involving storage of sludge, the addition of chemicals, filtration and removal or disposal of the treated sludge, are routinely handled as periodic batch operations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment" title="wastewater treatment">wastewater treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20engineering" title=" environmental engineering"> environmental engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20water" title=" waste water"> waste water</a> </p> <a href="https://publications.waset.org/abstracts/14980/environmental-engineering-case-study-of-waste-water-treatement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14980.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">585</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">979</span> Removal of P-Nitrophenol in Wastewater by Using Fe-Nano Zeolite Synthesized</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pham-Thi%20Huong">Pham-Thi Huong</a>, <a href="https://publications.waset.org/abstracts/search?q=Byeong-Kyu%20Lee"> Byeong-Kyu Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi-Hyeon%20Lee"> Chi-Hyeon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=JiTae%20Kim"> JiTae Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study analyzed the removal of p-nitrophenol from wastewater using Fe-nano zeolite synthesized. The basic physical-chemical properties of Fe-nano zeolite was determined by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy. We focus on finding out the optimum conditions in adsorption and desorption processes for removal of p-nitrophenol by using Fe-nano zeolite in wastewater. The optimum pH for p-nitrophenol removal in wastewater was 5.0. Adsorption isotherms were better fitted with the Langmuir isotherm than with the Freundlich with 165.58 mg/g adsorption capacity of p-nitrophenol. These findings support potential of Fe-nano zeolite as an effective adsorbent for p-nitrophenol removal from wastewater. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fe-nano%20zeolite" title="Fe-nano zeolite">Fe-nano zeolite</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=regeneration" title=" regeneration"> regeneration</a> </p> <a href="https://publications.waset.org/abstracts/44511/removal-of-p-nitrophenol-in-wastewater-by-using-fe-nano-zeolite-synthesized" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44511.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">978</span> Development of Model for Effective Sub- District Municipality Wastewater Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vitool%20Suksankavanich">Vitool Suksankavanich</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This preliminary research aimed to explore the development of wastewater management of Bang Pu Sub- District Municipality, Samutprakan Province, in order to establish appropriate model for effective wastewater management that fit to the context of the area. The research posed three questions: [i] to what extent the promotion of social responsibility awareness built among the local community resulted in effectiveness of the local wastewater management; [ii] did the waste disposal management of Bang Pu Industrial Estate contribute to the overall environmental quality of Bang Pu Sub- District Municipality; and [iii] did the relationship between the community and the industrial factories have any effect on the wastewater management. The in- depth interview revealed main obstacles occurred in the process of wastewater management in the area. The fieldwork also contributed to a product of an appropriate model of effective wastewater management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=legitimacy%20theory" title="legitimacy theory">legitimacy theory</a>, <a href="https://publications.waset.org/abstracts/search?q=stakeholder%20theory" title=" stakeholder theory"> stakeholder theory</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20responsibility" title=" social responsibility"> social responsibility</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20management" title=" wastewater management"> wastewater management</a> </p> <a href="https://publications.waset.org/abstracts/34538/development-of-model-for-effective-sub-district-municipality-wastewater-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">977</span> A Polynomial Relationship for Prediction of COD Removal Efficiency of Cyanide-Inhibited Wastewater in Aerobic Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eze%20R.%20Onukwugha">Eze R. Onukwugha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The presence of cyanide in wastewater is known to inhibit the normal functioning of bio-reactors since it has the tendency to poison reactor micro-organisms. Bench scale models of activated sludge reactors with varying aspect ratios were operated for the treatment of cassava wastewater at several values of hydraulic retention time (HRT). The different values of HRT were achieved by the use of a peristaltic pump to vary the rate of introduction of the wastewater into the reactor. The main parameters monitored are the cyanide concentration and respective COD values of the influent and effluent. These observed values were then transformed into a mathematical model for the prediction of treatment efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wastewater" title="wastewater">wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=aspect%20ratio" title=" aspect ratio"> aspect ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=cyanide-inhibited%20wastewater" title=" cyanide-inhibited wastewater"> cyanide-inhibited wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a> </p> <a href="https://publications.waset.org/abstracts/168406/a-polynomial-relationship-for-prediction-of-cod-removal-efficiency-of-cyanide-inhibited-wastewater-in-aerobic-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168406.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">976</span> Removal of Heavy Metals in Wastewater Treatment System of Suan Sunandha Rajabhat University</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pantip%20Kayee">Pantip Kayee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuwadee%20Yaponha"> Yuwadee Yaponha</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiranit%20Pongtubthai"> Jiranit Pongtubthai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study focused on the determination of heavy metal concentration in wastewater and the investigation of heavy metal removal of wastewater treatment system of Suan Sunandha Rajabhat University. Heavy metals (Pb, Cu, Mn, Ni and Zn) were found in wastewater of Suan Sunandha Rajabhat University. Wastewater treatment systems of Suan Sunandha Rajabhat University showed the performance to remove heavy metals. However, heavy metals were still presented in effluent but these residue heavy metals were not over the standard for industrial wastewater. Wastewater treatment system can remove heavy metal by different process such as bioaccumulation by microorganism and biosorption on activated sludge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title="heavy metal">heavy metal</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=bioaccumulation" title=" bioaccumulation"> bioaccumulation</a>, <a href="https://publications.waset.org/abstracts/search?q=biosorption" title=" biosorption"> biosorption</a> </p> <a href="https://publications.waset.org/abstracts/10681/removal-of-heavy-metals-in-wastewater-treatment-system-of-suan-sunandha-rajabhat-university" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10681.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">975</span> Industrial Wastewater Treatment Improvements Using Limestone </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mamdouh%20Y.%20Saleh">Mamdouh Y. Saleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaber%20El%20Enany"> Gaber El Enany</a>, <a href="https://publications.waset.org/abstracts/search?q=Medhat%20H.%20Elzahar"> Medhat H. Elzahar</a>, <a href="https://publications.waset.org/abstracts/search?q=Moustafa%20H.%20Omran"> Moustafa H. Omran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The discharge limits of industrial wastewater effluents are subjected to regulations which are getting more restricted with time. A former research occurred in Port Said city studied the efficiency of treating industrial wastewater using the first stage (A-stage) of the multiple-stage plant (AB-system).From the results of this former research, the effluent treated wastewater has high rates of total dissolved solids (TDS) and chemical oxygen demand (COD). The purpose of this paper is to improve the treatment process in removing TDS and COD. So a pilot plant was constructed at wastewater pump station in the industrial area in the south of Port Said. Experimental work was divided into several groups adding powdered limestone with different dosages to wastewater, and for each group wastewater was filtered after being mixed with activated carbon. pH and TSS as variables were also studied. Significant removals of TDS and COD were observed in these experiments showing that using effective adsorbents can aid such removals to a large extent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=filtration" title=" filtration"> filtration</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20wastewater" title=" synthetic wastewater"> synthetic wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=TDS%20removal" title=" TDS removal"> TDS removal</a>, <a href="https://publications.waset.org/abstracts/search?q=COD%20removal" title=" COD removal"> COD removal</a> </p> <a href="https://publications.waset.org/abstracts/29474/industrial-wastewater-treatment-improvements-using-limestone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29474.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">974</span> An Industrial Wastewater Management Using Cloud Based IoT System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaarthik%20K.">Kaarthik K.</a>, <a href="https://publications.waset.org/abstracts/search?q=Harshini%20S."> Harshini S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Karthika%20M."> Karthika M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Kripanandhini%20T."> Kripanandhini T.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water is an essential part of living organisms. Major water pollution is caused due to contamination of industrial wastewater in the river. The most important step in bringing wastewater contaminants down to levels that are safe for nature is wastewater treatment. The contamination of river water harms both humans who consume it and the aquatic life that lives there. We introduce a new cloud-based industrial IoT paradigm in this work for real-time control and monitoring of wastewater. The proposed system prevents prohibited entry of industrial wastewater into the plant by monitoring temperature, hydrogen power (pH), CO₂ and turbidity factors from the wastewater input that the wastewater treatment facility will process. Real-time sensor values are collected and uploaded to the cloud by the system using an IoT Wi-Fi Module. By doing so, we can prevent the contamination of industrial wastewater entering the river earlier, and the necessary actions will be taken by the users. The proposed system's results are 90% efficient, preventing water pollution due to industry and protecting human lives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sensors" title="sensors">sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=pH" title=" pH"> pH</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82" title=" CO₂"> CO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=turbidity" title=" turbidity"> turbidity</a> </p> <a href="https://publications.waset.org/abstracts/163603/an-industrial-wastewater-management-using-cloud-based-iot-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163603.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">973</span> Advances in Membrane Technologies for Wastewater Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deniz%20Sahin">Deniz Sahin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study provides a literature review of the special issue on wastewater treatment technologies, especially membrane technologies. Currently, wastewater is a serious and increasing worldwide problem with an adverse effect on the environment and living organisms. For this reason, many technologies have been developed to treat wastewater before discharging it to water bodies. We have been discussed membrane technologies to remove contaminants from wastewater such as heavy metals, dyes, pesticides, etc., which represent the main pollutants in wastewater. All the properties of these technologies including performance, economics, simplicity, and operability are also compared with other wastewater treatment technologies. The conventional water treatment technologies have the disadvantages of low separation efficiency, high energy consumption, and strict operating temperature. To overcome these difficulties, membrane technologies have been developed and used in wastewater treatment. Membrane technology uses a selectively permeable membrane to remove suspended and dissolved solids from water. This membrane is a very thin film of synthetic organic or inorganic materials, that can allow a very selective separation between a mixture and its components. Examples of membrane technologies include microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), reverse osmosis (RO), electrodialysis (ED), gas separation, etc. Most of these technologies have been used extensively for the treatment of heavy metal wastewater. For instance, wastewater that contains Cu²⁺, Cd²⁺, Pb²⁺, Zn²⁺ was treated by ultrafiltration technology. It was shown that complete removal of metal ions could be achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=industrial%20pollution" title="industrial pollution">industrial pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20technologies" title=" membrane technologies"> membrane technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20ions" title=" metal ions"> metal ions</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/97532/advances-in-membrane-technologies-for-wastewater-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">972</span> Assessment of Physical, Chemical and Radionuclides Concentrations in Pharamasucal Industrial Wastewater Effluents in Amman, Jordan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Salem%20Abdullah%20Alhwaiti">Mohammad Salem Abdullah Alhwaiti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted to assess the physical, chemical, and radionuclide concentrations of pharmaceutical industrial wastewater effluents. Fourteen wastewater samples were collected from pharmaceutical industries. The results showed a marked reduction in the levels of TH, Mg, and Ca concentration in wastewater limit for properties and criteria for discharge of wastewater to streams or wadies or water bodies in the effluent, whereas TSS and TDS showed higher concentration allowable for discharge of wastewater to streams or wadies or water bodies. The gross α activity in all the wastewater samples ranged between (0.086-0.234 Bq/L) lowered the 0.1 Bq/L limit set by World Health Organization (WHO), whereas gross β activity in few samples ranged between (2.565-4.800 Bq/L), indicating the higher limit set by WHO. Gamma spectroscopy revealed that K-40, Cr-51, Co-60, I-131, Cs-137, and U-238 activity are ≤0.114 Bq/L, ≤0.062 Bq/L, ≤0.00815Bq/L, ≤0.00792Bq/L, ≤0.00956 Bq/L, and ≤0.151 Bq/L, respectively, indicating lowest concentrations of these radionuclides in the pharmaceutical industrial wastewater effluents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pharmaceutical%20wastewater" title="pharmaceutical wastewater">pharmaceutical wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=gross%20%CE%B1%2F%CE%B2%20activity" title=" gross α/β activity"> gross α/β activity</a>, <a href="https://publications.waset.org/abstracts/search?q=radionuclides" title=" radionuclides"> radionuclides</a>, <a href="https://publications.waset.org/abstracts/search?q=Jordan" title=" Jordan"> Jordan</a> </p> <a href="https://publications.waset.org/abstracts/162078/assessment-of-physical-chemical-and-radionuclides-concentrations-in-pharamasucal-industrial-wastewater-effluents-in-amman-jordan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162078.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">971</span> Assessment of Different Industrial Wastewater Quality in the Most Common Industries in Kuwait</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mariam%20Aljumaa">Mariam Aljumaa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Industrial wastewater has been increased rapidly in the last decades, however, the generated wastewater is not treated properly on site before transfer it to the treatment plant. In this study, the most common industries (dairy, soft drinks, detergent, and petrochemical) has been studied in term of wastewater quality. The main aim of this study is to characterize and evaluate the quality of the most common industrial wastewater in Kuwait. Industrial wastewater samples were collected from detergents, dairy, beverage, and petrochemical factories. The collected wastewater samples were analyzed for temperature, EC, pH, DO, BOD, COD, TOC, TS, TSS, volatile suspended solids (VSS), total volatile solids (TVS), NO2, NO3, NH3, N, P, K, CaCO3, heavy metals, Total coliform, Fecal coliform, and E.coli bacteria. The results showed that petrochemical industry has the highest concentration of organic and nutrients, followed by detergents wastewater, then dairy, and finally, soft drink wastewater. Regarding the heavy metals, the results showed that dairy wastewater had the highest concentration, specifically in Zinc, Arsenic, and Cadmium. In term of biological analysis, the dairy industry had the highest concentration of total coliform, followed by soft drinks industry, then shampoo industry, and finally petrochemical industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=industrial%20wastewater" title="industrial wastewater">industrial wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20quality" title=" wastewater quality"> wastewater quality</a> </p> <a href="https://publications.waset.org/abstracts/162989/assessment-of-different-industrial-wastewater-quality-in-the-most-common-industries-in-kuwait" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">970</span> Analysis and Treatment of Sewage Treatment Plant Wastewater of El-Karma, Oran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Larbi%20Hammadi">Larbi Hammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdellatif%20El%20Bari%20Tidjani"> Abdellatif El Bari Tidjani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to reduce the flow of pollutants in the wastewater of the urban agglomerations of the city of Oran, a preliminary study was carried out at the El-Karma wastewater treatment plant. The primary objective of this study was to estimate the overall physicochemical pollution in the effluents of the El-Karma sewage treatment plant wastewater. It was found that the effluent of El-Karma wastewater treatment plant contains a significant amount of insoluble. Total suspended soli TSS concentrations ranged from 112 to 475 mg/l, with an average of 220.5 mg/l. The chemical oxygen demand (COD) and biochemical oxygen demand (BOD₅) values remain within the reference range for domestic wastewater with an average value of COD < 125 and BOD₅ < 25. The COD/BOD₅ ratio of raw water entering the treatment plant is less than 2. This ratio would predict that the raw sewage from the El-Karma treatment plant is polluted by inorganic pollution strong enough. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=El-Karma%20wastewater" title="El-Karma wastewater">El-Karma wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=TSS%20concentrations" title=" TSS concentrations"> TSS concentrations</a>, <a href="https://publications.waset.org/abstracts/search?q=COD%20and%20BOD5" title=" COD and BOD5"> COD and BOD5</a>, <a href="https://publications.waset.org/abstracts/search?q=COD%2FBOD5%20ratio" title=" COD/BOD5 ratio"> COD/BOD5 ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a> </p> <a href="https://publications.waset.org/abstracts/87940/analysis-and-treatment-of-sewage-treatment-plant-wastewater-of-el-karma-oran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87940.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">969</span> Monitoring and Evaluation of the Reverse Osmosis Reject Wastewater from the Sulaibiya Wastewater Treatment Plant in Kuwait</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mishari%20Khajah">Mishari Khajah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd.%20Elmuntasir%20Ahmed"> Mohd. Elmuntasir Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Al-Matouq"> Abdullah Al-Matouq</a>, <a href="https://publications.waset.org/abstracts/search?q=Farah%20Al-Ajeel"> Farah Al-Ajeel</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatemah%20Dashti"> Fatemah Dashti</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Shishter"> Ahmed Shishter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The overall aim of this study was to monitor and evaluate the effluent quality of a reverse osmosis (RO) reject wastewater from the biggest wastewater treatment plant in the world that is using RO and ultrafiltration membranes in their processes to reclaim water for indirect potable water reuse from municipal wastewaters. The RO reject wastewater or brine included various contaminants that could harm the human health and the environment such as trace organics, organic matters, heavy metals, nutrients and pathogens. Unfortunately, there are no legally binding regulatory guidelines for brine management in Kuwait as many countries around the world. This study monitors and evaluate the RO reject wastewater (brine) generated from the Sulaibiya Wastewater Treatment Plant. Samples were collected and analyzed about 37 parameters for one-year period, twice a month, and compare it to Kuwait Environment Public Authority, KEPA. Results showed that the heavy metals parameters were above KEPA standards, which needs to be treated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=domestic%20wastewater" title="domestic wastewater">domestic wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=management" title=" management"> management</a>, <a href="https://publications.waset.org/abstracts/search?q=potable%20water" title=" potable water"> potable water</a>, <a href="https://publications.waset.org/abstracts/search?q=RO%20reject%20wastewater" title=" RO reject wastewater"> RO reject wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=Sulaibiya%20wastewater%20treatment%20plant" title=" Sulaibiya wastewater treatment plant"> Sulaibiya wastewater treatment plant</a> </p> <a href="https://publications.waset.org/abstracts/162907/monitoring-and-evaluation-of-the-reverse-osmosis-reject-wastewater-from-the-sulaibiya-wastewater-treatment-plant-in-kuwait" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162907.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">968</span> Chemical Treatment of Wastewater through Biosorption for the Removal of Toxic Metals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shafiq%20Alam">Shafiq Alam</a>, <a href="https://publications.waset.org/abstracts/search?q=Manjunathan%20Ulaganathan"> Manjunathan Ulaganathan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water/wastewater often contains heavy/toxic metals, such as lead, copper, zinc and arsenic as well as harmful elements, such as antimony, selenium and fluoride. It may also contains radioactive elements, such as cesium and strontium. If they are not removed from water/wastewater then the environment and human health can be negatively impacted. Extensive research has been carried out to remove such harmful metals/elements from water/wastewater through biosorption using biomaterials (bioadsorbents). This presentation will give an overview of the research on preparation of bioadsorbents from biomass wastes and their use for the removal of harmful metals/elements from aqueous media. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosorption" title="biosorption">biosorption</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental" title=" environmental"> environmental</a>, <a href="https://publications.waset.org/abstracts/search?q=toxic%20metals" title=" toxic metals"> toxic metals</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/73865/chemical-treatment-of-wastewater-through-biosorption-for-the-removal-of-toxic-metals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73865.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">967</span> Performance of an Anaerobic Baffled Reactor (ABR) Treating High-Strength Food Industrial Wastewater with Fluctuating pH </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20M.%20Bassuney">D. M. Bassuney</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20A.%20Ibrahim"> W. A. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Medhat%20A.%20E.%20Moustafa"> Medhat A. E. Moustafa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As awareness of the variable nature of food industrial wastewater and its environmental impact grows, a more stable treatment reactor is needed to treat such wastewater. In this paper, a performance of 5-compartment lab-scale Anaerobic Baffled Reactor (ABR) treating high strength wastewater with high pH variation was studied under three organic loading rates (OLRs). The reactor showed high COD removal efficiencies: 92.67, 97.44, and 98.19% corresponding to OLRs of 2.0, 3.0, and 4.8 KgCOD/m3 d, respectively. The first compartment showed a good buffering capacity and a distinct phase separation occurred in the ABR. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20baffled%20reactor" title="anaerobic baffled reactor">anaerobic baffled reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20industrial%20wastewater" title=" food industrial wastewater"> food industrial wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20strength%20wastewater" title=" high strength wastewater"> high strength wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20loading" title=" organic loading"> organic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=pH" title=" pH"> pH</a> </p> <a href="https://publications.waset.org/abstracts/9695/performance-of-an-anaerobic-baffled-reactor-abr-treating-high-strength-food-industrial-wastewater-with-fluctuating-ph" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9695.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">966</span> Risk Allocation in Public-Private Partnership (PPP) Projects for Wastewater Treatment Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Capintero">Samuel Capintero</a>, <a href="https://publications.waset.org/abstracts/search?q=Ole%20H.%20Petersen"> Ole H. Petersen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper examines the utilization of public-private partnerships for the building and operation of wastewater treatment plants. Our research focuses on risk allocation in this kind of projects. Our analysis builds on more than hundred wastewater treatment plants built and operated through PPP projects in Aragon (Spain). The paper illustrates the consequences of an inadequate management of construction risk and an unsuitable transfer of demand risk in wastewater treatment plants. It also shows that the involvement of many public bodies at local, regional and national level further increases the complexity of this kind of projects and make time delays more likely. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wastewater" title="wastewater">wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment%20plants" title=" treatment plants"> treatment plants</a>, <a href="https://publications.waset.org/abstracts/search?q=PPP" title=" PPP"> PPP</a>, <a href="https://publications.waset.org/abstracts/search?q=construction" title=" construction"> construction</a> </p> <a href="https://publications.waset.org/abstracts/25863/risk-allocation-in-public-private-partnership-ppp-projects-for-wastewater-treatment-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25863.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">649</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">965</span> MBR-RO System Operation in Quantitative and Qualitative Promotion of Waste Water Cleaning: Case Study of Shokohieyh Qoms’ Waste Water Cleaning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Hassani">A. A. Hassani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Nasri%20Nasrabadi"> M. Nasri Nasrabadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> According to population growth and increasing water needs of industrial and agricultural sections and lack of existing water sources, also increases of wastewater and new wastewater treatment plant construction’s high costs, it is inevitable to reuse wastewater with the approach of increasing wastewater treatment capacity and output sewage quality. In this regard, the first sewage reuse plan in industrial uses was designed with the approach of qualitative and quantitative improvement due to the increased organic load of the output sewage of Qom Shokohieh city’s’ in wastewater treatment plant. This research investigated qualitative factors COD, BOD, TSS, TDS, and input and output heavy metal of MBR-RO system and ability of increase wastewater acceptance capacity by existing in wastewater treatment plant. For this purpose, experimental results of seven-month navigation system have been used from 07/01/2013 to 02/01/2014. Existing data analysis showed that MBR system is able to remove 93.2% COD, 94.4% BOD, 13.8% TDS, 98% heavy metals and RO system is able to remove 98.9% TDS. This study showed that MBR-RO integration system is able to increase the capacity of refinery by 30%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=industrial%20wastewater" title="industrial wastewater">industrial wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20reuse" title=" wastewater reuse"> wastewater reuse</a>, <a href="https://publications.waset.org/abstracts/search?q=MBR" title=" MBR"> MBR</a>, <a href="https://publications.waset.org/abstracts/search?q=RO" title=" RO"> RO</a> </p> <a href="https://publications.waset.org/abstracts/16657/mbr-ro-system-operation-in-quantitative-and-qualitative-promotion-of-waste-water-cleaning-case-study-of-shokohieyh-qoms-waste-water-cleaning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16657.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">964</span> Kinetic Evaluation of Biodegradability of Paint Shop Wastewater of a Bus Production Factory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Didem%20G%C3%BCven">Didem Güven</a>, <a href="https://publications.waset.org/abstracts/search?q=Oytun%20Hanhan"> Oytun Hanhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Elif%20Ceren%20Aksoy"> Elif Ceren Aksoy</a>, <a href="https://publications.waset.org/abstracts/search?q=Emine%20Ubay%20%C3%87okg%C3%B6r"> Emine Ubay Çokgör</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a biological treatability study ofpaintshopwastewaterof a bus factory by an anoxic/aerobic sequencing batch reactor.A lab scale 14L SBR system was implementedto investigate carbon and nitrogen removal performance frompaint shop waste streams combined with domestic and process wastewater of a bus production factory in Istanbul (Turkey).The wastewater collected from decanters of the paint boots and pre-treatmentplant was usedforthefeeding of SBR. The reactor was operated with a total hydraulic retention time of 24 hrs, and a total sludge age of 18.7 days. Initially the efficiency and stability of the reactor were studied when fed with main wastewater stream to simulate the current wastewater treatment plant. Removal efficiency of 57% nitrogen and 90% COD were obtained. Once the paint shop wastewater was introduced to mainstream feeding with a ratio of 1:5, nitrification completely, carbon removal were partially inhibited. SBR system was successful to handle even at very high COD concentrations of paint shop wastewater after feeding of 2 months, with an average effluent COD of 100 mg/L. For the determination of kinetic parameters, respirometric analysis was also conducted with/without paint shop wastewater addition. Model simulation indicated lower maximum specific growth and hydrolysis rates when paint shop wastewater was mixed with the mainstream wastewater of the factory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biological%20treatability" title="biological treatability">biological treatability</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20removal" title=" nitrogen removal"> nitrogen removal</a>, <a href="https://publications.waset.org/abstracts/search?q=paint%20shop%20wastewater" title=" paint shop wastewater"> paint shop wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=sequencing%20batch%20reactor" title=" sequencing batch reactor"> sequencing batch reactor</a> </p> <a href="https://publications.waset.org/abstracts/44831/kinetic-evaluation-of-biodegradability-of-paint-shop-wastewater-of-a-bus-production-factory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44831.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">963</span> Microbial Fuel Cells in Waste Water Treatment and Electricity Generation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajalaxmi%20N.">Rajalaxmi N.</a>, <a href="https://publications.waset.org/abstracts/search?q=Padma%20Bhat"> Padma Bhat</a>, <a href="https://publications.waset.org/abstracts/search?q=Pooja%20Garag"> Pooja Garag</a>, <a href="https://publications.waset.org/abstracts/search?q=Pooja%20N.%20M."> Pooja N. M.</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20S.%20Hombalimath"> V. S. Hombalimath</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microbial fuel cell (MFC) is the advancement of science that aims at utilizing the oxidizing potential of bacteria for wastewater treatment and production of bio-hydrogen and bio-electricity. Salt-bridge is the economic alternative to highly priced proton-exchange membrane in the construction of a microbial fuel cell. This paper studies the electricity generating capacity of E.coli and Clostridium sporogenes in microbial fuel cells (MFCs). Unlike most of MFC research, this targets the long term goals of renewable energy production and wastewater treatment. In present study the feasibility and potential of bioelectricity production from different wastewater was observed. Different wastewater was primarily treated which were confirmed by the COD tests which showed reduction of COD. We observe that the electricity production of MFCs decreases almost linearly after 120 hrs. The sewage wastewater containing Clostridium sporogenes showed bioelectricity production up to 188mV with COD removal of 60.52%. Sewage wastewater efficiently produces bioelectricity and this also helpful to reduce wastewater pollution load. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microbial%20fuel%20cell" title="microbial fuel cell">microbial fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=bioelectricity" title=" bioelectricity"> bioelectricity</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=salt%20bridge" title=" salt bridge"> salt bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=COD" title=" COD"> COD</a> </p> <a href="https://publications.waset.org/abstracts/23470/microbial-fuel-cells-in-waste-water-treatment-and-electricity-generation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23470.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">536</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">962</span> Evaluation of the Effectiveness of a Sewage Treatment Plant in Oman: Samail Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azza%20Mohsin%20Al-Hashami">Azza Mohsin Al-Hashami</a>, <a href="https://publications.waset.org/abstracts/search?q=Reginald%20Victor"> Reginald Victor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Treatment of wastewater involves physical, chemical, and biological processes to remove the pollutants from wastewater. This study evaluates of the effectiveness of sewage treatment plants (STP) in Samail, Oman. Samail STP has tertiary treatment using conventional activated sludge with surface aeration. The collection of wastewater is through a network with a total length of about 60 km and also by tankers for the areas outside the network. Treated wastewater from this STP is used for the irrigation of vegetation in the STP premises and as a backwash for sand filters. Some treated water is supplied to the Samail municipality, which uses it for the landscaping, road construction, and 'the Million Date Palms' project. In this study, homogenous samples were taken from eight different treatment stages along the treatment continuum for one year, at a frequency of once a month, to evaluate the physical, chemical, and biological parameters. All samples were analyzed using the standard methods for the examination of water and wastewater. The spatial variations in water quality along the continuum are discussed. Despite these variations, the treated wastewater from Samail STP was of good quality, and most of the parameters are within class A category in Oman Standards for wastewater reuse and discharge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wastewater" title="wastewater">wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=STP" title=" STP"> STP</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=processes" title=" processes"> processes</a> </p> <a href="https://publications.waset.org/abstracts/119536/evaluation-of-the-effectiveness-of-a-sewage-treatment-plant-in-oman-samail-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119536.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">961</span> Assessment of Cobalt Concentrations in Wastewater and Vegetable Samples Grown along Kubanni Stream Channels in Zaria, Kaduna State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20D.%20Saeed">M. D. Saeed</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20O.%20Oladeji"> S. O. Oladeji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The level of cobalt was determined in wastewater and vegetable (carrot, lettuce, onion, spinach, cabbage, tomato and okro) samples collected on seasonal basis from December, 2012 to September 2014 along Kubanni stream channels in Zaria. The results showed cobalt concentrations in wastewater were in the range of 3.77 – 15.20 mg/L for the year 2013 and 4.74 – 15.20 mg/L in 2014 while the vegetable had concentrations in the range of 1.25 – 8.75 mg/Kg for the year 2013 and 2.76 – 12.45 mg/Kg in 2014. Statistical analysis revealed a significant difference in cobalt levels across the locations for wastewater and vegetables whereas seasons (harmattan, dry and rainy) showed no significant difference in wastewater and vegetables analyzed. Pearson correlation revealed substantial (r = 0.726) relationship between cobalt levels in wastewater for the year 2013 and 2014 likewise, substantial (r = 0.750) relationship was also obtained for vegetables cultivated in 2013 and 2014 respectively. Cobalt concentrations obtained in this study was higher than Maximum Contaminant Levels set by Standard Organization such as W.H.O. and F.A.O. for wastewater; however, vegetables indicated no contamination with cobalt metal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cobalt" title="cobalt">cobalt</a>, <a href="https://publications.waset.org/abstracts/search?q=concentration" title=" concentration"> concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetable" title=" vegetable"> vegetable</a> </p> <a href="https://publications.waset.org/abstracts/32711/assessment-of-cobalt-concentrations-in-wastewater-and-vegetable-samples-grown-along-kubanni-stream-channels-in-zaria-kaduna-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32711.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">960</span> Removal of Chloro-Compounds from Pulp and Paper Industry Wastewater Using Electrocoagulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chhaya%20Sharma">Chhaya Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Dushyant%20Kumar"> Dushyant Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work deals with the treatment of wastewater generated by paper industry by using aluminium as anode material. The quantitative and qualitative analyses of chloropenolics have been carried out by using primary clarifier effluent with the help of gas chromatography mass spectrometry. Sixteen chlorophenolics compounds have been identified and estimated. Results indicated that among 16 identified compounds, 7 are 100% removed and overall 66% reduction in chorophenolics compounds have been detected. Moreover, during the treatment, the biodegradability index of wastewater significantly increases, along with 70 % reduction in chemical oxygen demand and 99 % in color. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminium%20anode" title="aluminium anode">aluminium anode</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorophenolics" title=" chlorophenolics"> chlorophenolics</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocoagulation" title=" electrocoagulation"> electrocoagulation</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution%20load" title=" pollution load"> pollution load</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/71014/removal-of-chloro-compounds-from-pulp-and-paper-industry-wastewater-using-electrocoagulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">959</span> Preparation and Performance Evaluation of Green Chlorine-Free Coagulants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huihui%20Zhang">Huihui Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhongzhi%20Zhang"> Zhongzhi Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coagulation/flocculation is regarded a simple and effective wastewater treatment technology. Chlorine-containing coagulants may release chloride ions into the wastewater, causing corrosion. A green chlorine-free coagulant of polyaluminum ferric silicate (PSAF) was prepared by the copolymerization method to treat oily refractory wastewaters. Results showed that the highest removal efficiency of turbidity and chemical oxygen demand (COD) achieved 97.4% and 93.0% at a dosage of 700 mg/L, respectively. After PSAF coagulation, the chloride ion concentration was also almost the same as that in the raw wastewater. Thus, the chlorine-free coagulant is highly efficient and does not introduce additional chloride ions into the wastewater, avoiding corrosion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coagulation" title="coagulation">coagulation</a>, <a href="https://publications.waset.org/abstracts/search?q=chloride-free%20coagulant" title=" chloride-free coagulant"> chloride-free coagulant</a>, <a href="https://publications.waset.org/abstracts/search?q=oily%20refractory%20wastewater" title=" oily refractory wastewater"> oily refractory wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=coagulation%20performance" title=" coagulation performance"> coagulation performance</a> </p> <a href="https://publications.waset.org/abstracts/138079/preparation-and-performance-evaluation-of-green-chlorine-free-coagulants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">958</span> Use of Microbial Fuel Cell for Metal Recovery from Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surajbhan%20Sevda">Surajbhan Sevda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal containing wastewater is generated in large quintiles due to rapid industrialization. Generally, the metal present in wastewater is not biodegradable and can be accumulated in living animals, humans and plant tissue, causing disorder and diseases. The conventional metal recovery methods include chemical, physical and biological methods, but these are chemical and energy intensive. The recent development in microbial fuel cell (MFC) technology provides a new approach for metal recovery; this technology offers a flexible platform for both reduction and oxidation reaction oriented process. The use of MFCs will be a new platform for more efficient and low energy approach for metal recovery from the wastewater. So far metal recover was extensively studied using chemical, physical and biological methods. The MFCs present a new and efficient approach for removing and recovering metals from different wastewater, suggesting the use of different electrode for metal recovery can be a new efficient and effective approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20recovery" title="metal recovery">metal recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20fuel%20cell" title=" microbial fuel cell"> microbial fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=bioelectricity" title=" bioelectricity"> bioelectricity</a> </p> <a href="https://publications.waset.org/abstracts/78731/use-of-microbial-fuel-cell-for-metal-recovery-from-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78731.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">957</span> Desodesmus sp.: A Potential Micro Alga to Treat the Textile Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thirunavoukkarasu%20Manikkannan">Thirunavoukkarasu Manikkannan</a>, <a href="https://publications.waset.org/abstracts/search?q=Karpanai%20Selvan%20Balasubramanian"> Karpanai Selvan Balasubramanian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Textile industry is the one of the most important industrial sector in India. It accounts for 5% of total Gross Domestic Product (GDP) in the country. A Textile industry consumes large quantities of water (~250 m3/ton of product) and they generate almost ~90% of wastewater from its consumption. The problem is alarming and requires proper treatment process to acquire dual benefit of Zero Liquid Discharge and no contamination to the environment. Here we describe the process by which the textile wastewater can be reused. We have collected the textile wastewater in and around Ayyampettai area of Tamilnadu, India. Among different microalgal strains used, Desodesmus sp. collected at Manali, Chennai, Tamilnadu, India was able to lessen the colour of the waste water in 12-15 hrs of its growth, COD around 81.7%, Dissolved solid reduction was 28 ± 0.5 %, Suspended solid was reduced to 40.5 ± 0.3 %, Dye degradation was 50-78%. Further, Desodesmus sp. able to achieve the biomass of 0.9 ± 0.2 g/L (dry weight) in two weeks’ time, the Chl a content was 11 mg/L. It infers that this algal strain able to utilize the textile wastewater as source for growth and algal biomass production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Desodesmus%20sp." title="Desodesmus sp.">Desodesmus sp.</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgae" title=" microalgae"> microalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=textile" title=" textile"> textile</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/85485/desodesmus-sp-a-potential-micro-alga-to-treat-the-textile-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85485.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">956</span> Harnessing the Potential of Renewable Energy Sources to Reduce Fossil Energy Consumption in the Wastewater Treatment Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hen%20Friman">Hen Friman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Various categories of aqueous solutions are discharged within residential, institutional, commercial, and industrial structures. To safeguard public health and preserve the environment, it is imperative to subject wastewater to treatment processes that eliminate pathogens (such as bacteria and viruses), nutrients (such as nitrogen and phosphorus), and other compounds. Failure to address untreated sewage accumulation can result in an array of adverse consequences. Israel exemplifies a special case in wastewater management. Appropriate wastewater treatment significantly benefits sectors such as agriculture, tourism, horticulture, and industry. Nevertheless, untreated sewage in settlements lacking proper sewage collection or transportation networks remains an ongoing and substantial threat. Notably, the process of wastewater treatment entails substantial energy consumption. Consequently, this study explores the integration of solar energy as a renewable power source within the wastewater treatment framework. By incorporating renewable energy sources into the process, costs can be minimized, and decentralized facilities can be established even in areas lacking adequate infrastructure for traditional treatment methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title="renewable energy">renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=innovative" title=" innovative"> innovative</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment" title=" wastewater treatment"> wastewater treatment</a> </p> <a href="https://publications.waset.org/abstracts/168354/harnessing-the-potential-of-renewable-energy-sources-to-reduce-fossil-energy-consumption-in-the-wastewater-treatment-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">955</span> Numerical Investigation of Wastewater ‎Rheological Characteristics on Flow Field ‎Inside a Sewage Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed-Mohammad-Kazem%20Emami">Seyed-Mohammad-Kazem Emami</a>, <a href="https://publications.waset.org/abstracts/search?q=Behrang%20Saki"> Behrang Saki</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Mohammadian"> Majid Mohammadian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The wastewater flow field inside a sewage network including pipe and ‎manhole was investigated using a Computational Fluid Dynamics ‎‎(CFD) model. The numerical model is developed by incorporating a ‎rheological model to calculate the viscosity of wastewater fluid by ‎means of open source toolbox OpenFOAM. The rheological ‎properties of prepared wastewater fluid suspensions are first measured ‎using a BrookField LVDVII Pro+ viscometer with an enhanced UL ‎adapter and then correlated the suitable rheological viscosity model ‎values from the measured rheological properties. The results show the ‎significant effects of rheological characteristics of wastewater fluid on ‎the flow domain of sewer system. Results were compared and ‎discussed with the commonly used Newtonian model to evaluate the ‎differences for velocity profile, pressure and shear stress. ‎ <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Non-Newtonian%20flows" title="Non-Newtonian flows">Non-Newtonian flows</a>, <a href="https://publications.waset.org/abstracts/search?q=Wastewater" title=" Wastewater"> Wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=Numerical%20simulation" title=" Numerical simulation"> Numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=Rheology" title=" Rheology"> Rheology</a>, <a href="https://publications.waset.org/abstracts/search?q=Sewage%20Network" title=" Sewage Network"> Sewage Network</a> </p> <a href="https://publications.waset.org/abstracts/124723/numerical-investigation-of-wastewater-rheological-characteristics-on-flow-field-inside-a-sewage-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">954</span> Valorisation of a Bioflocculant and Hydroxyapatites as Coagulation-Flocculation Adjuvants in Wastewater Treatment of the Steppe in the Wilaya of Saida</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatima%20Zohra%20Choumane">Fatima Zohra Choumane</a>, <a href="https://publications.waset.org/abstracts/search?q=Belkacem%20Benguella"> Belkacem Benguella</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouhana%20Maachou"> Bouhana Maachou</a>, <a href="https://publications.waset.org/abstracts/search?q=Nacera%20Saadi"> Nacera Saadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pollution caused by wastewater is a serious problem in Algeria. This pollution has certainly harmful effects on the environment. In order to reduce the bad effects of these pollutants, many wastewater treatment processes, mainly physicochemical, are implemented. This study consists in using two flocculants; the first one is a biodegradable natural bioflocculant, i.e. Cactaceaeou ficus-indica cactus juice, and the second is the synthetic hydroxyapatite, in a physico-chemical process through coagulation-flocculation, using two coagulants, i.e. ferric chloride and aluminum sulfate, to treat wastewater collected at the entrance of the treatment plant, in the town of Saida. The influence of various experimental parameters, such as the amounts of coagulants and flocculants used, pH, turbidity, COD and BOD5, was investigated. The coagulation - flocculation jar tests of wastewater reveal that ferric chloride, containing a mass of 0.3 g – hydroxyapatite, treated for 1 hour through calcination, is the most effective adjuvant in clarifying the wastewater, with turbidity equal to 98.16 %. In the presence of the two bioflocculants, Cactaceae juice and aluminum sulphate, with a dose of 0.2 g, flocculation is good, with turbidity equal to 95.61 %. Examination of the key reaction parameters, following the flocculation tests of wastewater, shows that the degree of pollution decreases. This is confirmed by the COD and turbidity values obtained. Examination of these results suggests the use of these flocculants in wastewater treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wastewater" title="wastewater">wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=cactus%20ficus-indica" title=" cactus ficus-indica"> cactus ficus-indica</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxyapatite" title=" hydroxyapatite"> hydroxyapatite</a>, <a href="https://publications.waset.org/abstracts/search?q=coagulation%20-%20flocculation" title=" coagulation - flocculation"> coagulation - flocculation</a> </p> <a href="https://publications.waset.org/abstracts/43194/valorisation-of-a-bioflocculant-and-hydroxyapatites-as-coagulation-flocculation-adjuvants-in-wastewater-treatment-of-the-steppe-in-the-wilaya-of-saida" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">953</span> Divalent Iron Oxidative Process for Degradation of Carbon and Nitrogen Based Pollutants from Dye Intermediate Industrial Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nibedita%20Pani">Nibedita Pani</a>, <a href="https://publications.waset.org/abstracts/search?q=Vishnu%20Tejani"> Vishnu Tejani</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20S.%20Anantha%20Singh"> T. S. Anantha Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water pollution resulting from discharge of partial/not treated textile wastewater containing high carbon and nitrogen pollutants pose a huge threat to the environment, ecosystem, and human health. It is essential to remove carbon- and nitrogen-based organic pollutants more effectively from industrial wastewater before discharging. The present study focuses on removal of carbon-based pollutant in particular COD (chemical oxygen demand) and nitrogen-based pollutants, in particular, ammoniacal nitrogen by Fenton oxidation process using Fe²⁺ and H₂O₂ as reagents. The study was carried out with high strength wastewater containing initial COD 5632 mg/L and NH⁴⁺-N 1372 mg/L. The major operating condition like pH was varied between 1.0 to 4.0. The maximum degradation was obtained at pH 3.0 taking the molar ratio of Fe²⁺/H₂O₂ as 1:1. At this pH, the removal efficiencies of COD and ammoniacal nitrogen were found to be 77.27% and 74.9%, respectively. The Fenton process can be the best alternative for the simultaneous removal of COD and NH4+-N from industrial wastewater. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ammoniacal%20nitrogen" title="ammoniacal nitrogen">ammoniacal nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=COD" title=" COD"> COD</a>, <a href="https://publications.waset.org/abstracts/search?q=Fenton%20oxidation" title=" Fenton oxidation"> Fenton oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20wastewater" title=" industrial wastewater"> industrial wastewater</a> </p> <a href="https://publications.waset.org/abstracts/92225/divalent-iron-oxidative-process-for-degradation-of-carbon-and-nitrogen-based-pollutants-from-dye-intermediate-industrial-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=olive-mill%20wastewater&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=olive-mill%20wastewater&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=olive-mill%20wastewater&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=olive-mill%20wastewater&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=olive-mill%20wastewater&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=olive-mill%20wastewater&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=olive-mill%20wastewater&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=olive-mill%20wastewater&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=olive-mill%20wastewater&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=olive-mill%20wastewater&amp;page=32">32</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=olive-mill%20wastewater&amp;page=33">33</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=olive-mill%20wastewater&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10