CINXE.COM
Zermelo–Fraenkel set theory - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Zermelo–Fraenkel set theory - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"f7a17f07-6183-4c15-8f11-695e09a1f989","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Zermelo–Fraenkel_set_theory","wgTitle":"Zermelo–Fraenkel set theory","wgCurRevisionId":1258622201,"wgRevisionId":1258622201,"wgArticleId":152214,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","Articles lacking in-text citations from February 2024","All articles lacking in-text citations","Use dmy dates from February 2024","All accuracy disputes","Articles with disputed statements from July 2023","Foundations of mathematics","Systems of set theory","Z notation"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext", "wgRelevantPageName":"Zermelo–Fraenkel_set_theory","wgRelevantArticleId":152214,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":50000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q191849","wgCheckUserClientHintsHeadersJsApi":["brands","architecture", "bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP", "ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Zermelo–Fraenkel set theory - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Zermelo%E2%80%93Fraenkel_set_theory"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Zermelo%E2%80%93Fraenkel_set_theory&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Zermelo%E2%80%93Fraenkel_set_theory"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Zermelo–Fraenkel_set_theory rootpage-Zermelo–Fraenkel_set_theory skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Zermelo%E2%80%93Fraenkel+set+theory" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Zermelo%E2%80%93Fraenkel+set+theory" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Zermelo%E2%80%93Fraenkel+set+theory" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Zermelo%E2%80%93Fraenkel+set+theory" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Formal_language" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Formal_language"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Formal language</span> </div> </a> <ul id="toc-Formal_language-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Axioms" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Axioms"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Axioms</span> </div> </a> <button aria-controls="toc-Axioms-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Axioms subsection</span> </button> <ul id="toc-Axioms-sublist" class="vector-toc-list"> <li id="toc-Axiom_of_extensionality" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Axiom_of_extensionality"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Axiom of extensionality</span> </div> </a> <ul id="toc-Axiom_of_extensionality-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Axiom_of_regularity_(also_called_the_axiom_of_foundation)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Axiom_of_regularity_(also_called_the_axiom_of_foundation)"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Axiom of regularity (also called the axiom of foundation)</span> </div> </a> <ul id="toc-Axiom_of_regularity_(also_called_the_axiom_of_foundation)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Axiom_schema_of_specification_(or_of_separation,_or_of_restricted_comprehension)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Axiom_schema_of_specification_(or_of_separation,_or_of_restricted_comprehension)"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Axiom schema of specification (or of separation, or of restricted comprehension)</span> </div> </a> <ul id="toc-Axiom_schema_of_specification_(or_of_separation,_or_of_restricted_comprehension)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Axiom_of_pairing" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Axiom_of_pairing"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>Axiom of pairing</span> </div> </a> <ul id="toc-Axiom_of_pairing-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Axiom_of_union" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Axiom_of_union"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.5</span> <span>Axiom of union</span> </div> </a> <ul id="toc-Axiom_of_union-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Axiom_schema_of_replacement" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Axiom_schema_of_replacement"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.6</span> <span>Axiom schema of replacement</span> </div> </a> <ul id="toc-Axiom_schema_of_replacement-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Axiom_of_infinity" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Axiom_of_infinity"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.7</span> <span>Axiom of infinity</span> </div> </a> <ul id="toc-Axiom_of_infinity-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Axiom_of_power_set" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Axiom_of_power_set"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.8</span> <span>Axiom of power set</span> </div> </a> <ul id="toc-Axiom_of_power_set-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Axiom_of_well-ordering_(choice)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Axiom_of_well-ordering_(choice)"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.9</span> <span>Axiom of well-ordering (choice)</span> </div> </a> <ul id="toc-Axiom_of_well-ordering_(choice)-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Motivation_via_the_cumulative_hierarchy" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Motivation_via_the_cumulative_hierarchy"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Motivation via the cumulative hierarchy</span> </div> </a> <ul id="toc-Motivation_via_the_cumulative_hierarchy-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Metamathematics" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Metamathematics"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Metamathematics</span> </div> </a> <button aria-controls="toc-Metamathematics-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Metamathematics subsection</span> </button> <ul id="toc-Metamathematics-sublist" class="vector-toc-list"> <li id="toc-Virtual_classes" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Virtual_classes"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Virtual classes</span> </div> </a> <ul id="toc-Virtual_classes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Finite_axiomatization" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Finite_axiomatization"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Finite axiomatization</span> </div> </a> <ul id="toc-Finite_axiomatization-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Consistency" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Consistency"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Consistency</span> </div> </a> <ul id="toc-Consistency-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Independence" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Independence"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.4</span> <span>Independence</span> </div> </a> <ul id="toc-Independence-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Proposed_additions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Proposed_additions"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.5</span> <span>Proposed additions</span> </div> </a> <ul id="toc-Proposed_additions-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Criticisms" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Criticisms"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Criticisms</span> </div> </a> <ul id="toc-Criticisms-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bibliography" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Bibliography"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Bibliography</span> </div> </a> <ul id="toc-Bibliography-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Zermelo–Fraenkel set theory</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 30 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-30" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">30 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-als mw-list-item"><a href="https://als.wikipedia.org/wiki/Zermelo-Fraenkel-Mengenlehre" title="Zermelo-Fraenkel-Mengenlehre – Alemannic" lang="gsw" hreflang="gsw" data-title="Zermelo-Fraenkel-Mengenlehre" data-language-autonym="Alemannisch" data-language-local-name="Alemannic" class="interlanguage-link-target"><span>Alemannisch</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%86%D8%B8%D8%B1%D9%8A%D8%A9_%D8%A7%D9%84%D9%85%D8%AC%D9%85%D9%88%D8%B9%D8%A7%D8%AA_%D8%AD%D8%B3%D8%A8_%D8%AA%D8%B3%D9%8A%D8%B1%D9%85%D9%8A%D9%84%D9%88-%D9%81%D8%B1%D8%A7%D9%86%D9%83%D9%84" title="نظرية المجموعات حسب تسيرميلو-فرانكل – Arabic" lang="ar" hreflang="ar" data-title="نظرية المجموعات حسب تسيرميلو-فرانكل" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-zh-min-nan mw-list-item"><a href="https://zh-min-nan.wikipedia.org/wiki/Zermelo%E2%80%93Fraenkel_Chi%CC%8Dp-ha%CC%8Dp-l%C5%ABn" title="Zermelo–Fraenkel Chi̍p-ha̍p-lūn – Minnan" lang="nan" hreflang="nan" data-title="Zermelo–Fraenkel Chi̍p-ha̍p-lūn" data-language-autonym="閩南語 / Bân-lâm-gú" data-language-local-name="Minnan" class="interlanguage-link-target"><span>閩南語 / Bân-lâm-gú</span></a></li><li class="interlanguage-link interwiki-ca badge-Q70894304 mw-list-item" title=""><a href="https://ca.wikipedia.org/wiki/Teoria_de_conjunts_de_Zermelo-Fraenkel" title="Teoria de conjunts de Zermelo-Fraenkel – Catalan" lang="ca" hreflang="ca" data-title="Teoria de conjunts de Zermelo-Fraenkel" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Zermelova%E2%80%93Fraenkelova_teorie_mno%C5%BEin" title="Zermelova–Fraenkelova teorie množin – Czech" lang="cs" hreflang="cs" data-title="Zermelova–Fraenkelova teorie množin" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Damcaniaeth_setiau_Zermelo%E2%80%93Fraenkel" title="Damcaniaeth setiau Zermelo–Fraenkel – Welsh" lang="cy" hreflang="cy" data-title="Damcaniaeth setiau Zermelo–Fraenkel" data-language-autonym="Cymraeg" data-language-local-name="Welsh" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Zermelo-Fraenkels_aksiomer" title="Zermelo-Fraenkels aksiomer – Danish" lang="da" hreflang="da" data-title="Zermelo-Fraenkels aksiomer" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Zermelo-Fraenkel-Mengenlehre" title="Zermelo-Fraenkel-Mengenlehre – German" lang="de" hreflang="de" data-title="Zermelo-Fraenkel-Mengenlehre" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Zermelo-Fraenkeli_aksiomaatika" title="Zermelo-Fraenkeli aksiomaatika – Estonian" lang="et" hreflang="et" data-title="Zermelo-Fraenkeli aksiomaatika" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Axiomas_de_Zermelo-Fraenkel" title="Axiomas de Zermelo-Fraenkel – Spanish" lang="es" hreflang="es" data-title="Axiomas de Zermelo-Fraenkel" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Th%C3%A9orie_des_ensembles_de_Zermelo-Fraenkel" title="Théorie des ensembles de Zermelo-Fraenkel – French" lang="fr" hreflang="fr" data-title="Théorie des ensembles de Zermelo-Fraenkel" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%B2%B4%EB%A5%B4%EB%A9%9C%EB%A1%9C-%ED%94%84%EB%A0%9D%EC%BC%88_%EC%A7%91%ED%95%A9%EB%A1%A0" title="체르멜로-프렝켈 집합론 – Korean" lang="ko" hreflang="ko" data-title="체르멜로-프렝켈 집합론" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Zermelo%E2%80%93Fraenkelova_teorija_skupova" title="Zermelo–Fraenkelova teorija skupova – Croatian" lang="hr" hreflang="hr" data-title="Zermelo–Fraenkelova teorija skupova" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Teoria_degli_insiemi_di_Zermelo-Fraenkel" title="Teoria degli insiemi di Zermelo-Fraenkel – Italian" lang="it" hreflang="it" data-title="Teoria degli insiemi di Zermelo-Fraenkel" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Axiomata_Zermelo-Fraenkel" title="Axiomata Zermelo-Fraenkel – Latin" lang="la" hreflang="la" data-title="Axiomata Zermelo-Fraenkel" data-language-autonym="Latina" data-language-local-name="Latin" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Zermelo-Frenkelio_aibi%C5%B3_teorija" title="Zermelo-Frenkelio aibių teorija – Lithuanian" lang="lt" hreflang="lt" data-title="Zermelo-Frenkelio aibių teorija" data-language-autonym="Lietuvių" data-language-local-name="Lithuanian" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Zermelo-Fraenkel-verzamelingenleer" title="Zermelo-Fraenkel-verzamelingenleer – Dutch" lang="nl" hreflang="nl" data-title="Zermelo-Fraenkel-verzamelingenleer" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%84%E3%82%A7%E3%83%AB%E3%83%A1%E3%83%AD%EF%BC%9D%E3%83%95%E3%83%AC%E3%83%B3%E3%82%B1%E3%83%AB%E9%9B%86%E5%90%88%E8%AB%96" title="ツェルメロ=フレンケル集合論 – Japanese" lang="ja" hreflang="ja" data-title="ツェルメロ=フレンケル集合論" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Aksjomaty_Zermela-Fraenkla" title="Aksjomaty Zermela-Fraenkla – Polish" lang="pl" hreflang="pl" data-title="Aksjomaty Zermela-Fraenkla" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Axiomas_de_Zermelo-Fraenkel" title="Axiomas de Zermelo-Fraenkel – Portuguese" lang="pt" hreflang="pt" data-title="Axiomas de Zermelo-Fraenkel" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Sistemul_axiomatic_Zermelo-Fraenkel" title="Sistemul axiomatic Zermelo-Fraenkel – Romanian" lang="ro" hreflang="ro" data-title="Sistemul axiomatic Zermelo-Fraenkel" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A1%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0_%D0%A6%D0%B5%D1%80%D0%BC%D0%B5%D0%BB%D0%BE_%E2%80%94_%D0%A4%D1%80%D0%B5%D0%BD%D0%BA%D0%B5%D0%BB%D1%8F" title="Система Цермело — Френкеля – Russian" lang="ru" hreflang="ru" data-title="Система Цермело — Френкеля" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Zermelo%E2%80%93Fraenkel_set_theory" title="Zermelo–Fraenkel set theory – Simple English" lang="en-simple" hreflang="en-simple" data-title="Zermelo–Fraenkel set theory" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%A6%D0%B5%D1%80%D0%BC%D0%B5%D0%BB%D0%BE-%D0%A4%D1%80%D0%B5%D0%BD%D0%BA%D0%B5%D0%BB_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%98%D0%B0_%D1%81%D0%BA%D1%83%D0%BF%D0%BE%D0%B2%D0%B0" title="Цермело-Френкел теорија скупова – Serbian" lang="sr" hreflang="sr" data-title="Цермело-Френкел теорија скупова" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Zermelo%E2%80%93Fraenkels_m%C3%A4ngdteori" title="Zermelo–Fraenkels mängdteori – Swedish" lang="sv" hreflang="sv" data-title="Zermelo–Fraenkels mängdteori" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Zermelo-Fraenkel_k%C3%BCme_teorisi" title="Zermelo-Fraenkel küme teorisi – Turkish" lang="tr" hreflang="tr" data-title="Zermelo-Fraenkel küme teorisi" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D1%96%D1%8F_%D0%BC%D0%BD%D0%BE%D0%B6%D0%B8%D0%BD_%D0%A6%D0%B5%D1%80%D0%BC%D0%B5%D0%BB%D0%BE_%E2%80%94_%D0%A4%D1%80%D0%B5%D0%BD%D0%BA%D0%B5%D0%BB%D1%8F" title="Теорія множин Цермело — Френкеля – Ukrainian" lang="uk" hreflang="uk" data-title="Теорія множин Цермело — Френкеля" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/L%C3%BD_thuy%E1%BA%BFt_t%E1%BA%ADp_h%E1%BB%A3p_Zermelo%E2%80%93Fraenkel" title="Lý thuyết tập hợp Zermelo–Fraenkel – Vietnamese" lang="vi" hreflang="vi" data-title="Lý thuyết tập hợp Zermelo–Fraenkel" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/Zermelo-Fraenkel%E9%9B%86%E5%90%88%E8%AB%96" title="Zermelo-Fraenkel集合論 – Cantonese" lang="yue" hreflang="yue" data-title="Zermelo-Fraenkel集合論" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E7%AD%96%E6%A2%85%E6%B4%9B-%E5%BC%97%E5%85%B0%E5%85%8B%E5%B0%94%E9%9B%86%E5%90%88%E8%AE%BA" title="策梅洛-弗兰克尔集合论 – Chinese" lang="zh" hreflang="zh" data-title="策梅洛-弗兰克尔集合论" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q191849#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Zermelo%E2%80%93Fraenkel_set_theory" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Zermelo%E2%80%93Fraenkel_set_theory" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Zermelo%E2%80%93Fraenkel_set_theory"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Zermelo%E2%80%93Fraenkel_set_theory&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Zermelo%E2%80%93Fraenkel_set_theory&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Zermelo%E2%80%93Fraenkel_set_theory"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Zermelo%E2%80%93Fraenkel_set_theory&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Zermelo%E2%80%93Fraenkel_set_theory&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Zermelo%E2%80%93Fraenkel_set_theory" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Zermelo%E2%80%93Fraenkel_set_theory" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Zermelo%E2%80%93Fraenkel_set_theory&oldid=1258622201" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Zermelo%E2%80%93Fraenkel_set_theory&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Zermelo%E2%80%93Fraenkel_set_theory&id=1258622201&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FZermelo%25E2%2580%2593Fraenkel_set_theory"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FZermelo%25E2%2580%2593Fraenkel_set_theory"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Zermelo%E2%80%93Fraenkel_set_theory&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Zermelo%E2%80%93Fraenkel_set_theory&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-wikibooks mw-list-item"><a href="https://en.wikibooks.org/wiki/Set_Theory/Zermelo-Fraenkel_(ZF)_Axioms" hreflang="en"><span>Wikibooks</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q191849" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Standard system of axiomatic set theory</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">"ZFC" redirects here. For other uses, see <a href="/wiki/ZFC_(disambiguation)" class="mw-disambig" title="ZFC (disambiguation)">ZFC (disambiguation)</a>.</div> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-More_footnotes_needed plainlinks metadata ambox ambox-style ambox-More_footnotes_needed" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Text_document_with_red_question_mark.svg/40px-Text_document_with_red_question_mark.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Text_document_with_red_question_mark.svg/60px-Text_document_with_red_question_mark.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Text_document_with_red_question_mark.svg/80px-Text_document_with_red_question_mark.svg.png 2x" data-file-width="48" data-file-height="48" /></span></span></div></td><td class="mbox-text"><div class="mbox-text-span">This article includes a list of <a href="/wiki/Wikipedia:Citing_sources#General_references" title="Wikipedia:Citing sources">general references</a>, but <b>it lacks sufficient corresponding <a href="/wiki/Wikipedia:Citing_sources#Inline_citations" title="Wikipedia:Citing sources">inline citations</a></b>.<span class="hide-when-compact"> Please help to <a href="/wiki/Wikipedia:WikiProject_Reliability" title="Wikipedia:WikiProject Reliability">improve</a> this article by <a href="/wiki/Wikipedia:When_to_cite" title="Wikipedia:When to cite">introducing</a> more precise citations.</span> <span class="date-container"><i>(<span class="date">February 2024</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <p> In <a href="/wiki/Set_theory" title="Set theory">set theory</a>, <b>Zermelo–Fraenkel set theory</b>, named after mathematicians <a href="/wiki/Ernst_Zermelo" title="Ernst Zermelo">Ernst Zermelo</a> and <a href="/wiki/Abraham_Fraenkel" title="Abraham Fraenkel">Abraham Fraenkel</a>, is an <a href="/wiki/Axiomatic_system" title="Axiomatic system">axiomatic system</a> that was proposed in the early twentieth century in order to formulate a <a href="/wiki/Theory_of_sets" class="mw-redirect" title="Theory of sets">theory of sets</a> free of paradoxes such as <a href="/wiki/Russell%27s_paradox" title="Russell's paradox">Russell's paradox</a>. Today, Zermelo–Fraenkel set theory, with the historically controversial <a href="/wiki/Axiom_of_choice" title="Axiom of choice">axiom of choice</a> (AC) included, is the standard form of <a href="/wiki/Axiomatic_set_theory" class="mw-redirect" title="Axiomatic set theory">axiomatic set theory</a> and as such is the most common <a href="/wiki/Foundations_of_mathematics" title="Foundations of mathematics">foundation of mathematics</a>. Zermelo–Fraenkel set theory with the axiom of choice included is abbreviated <b>ZFC</b>, where C stands for "choice",<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> and <b>ZF</b> refers to the axioms of Zermelo–Fraenkel set theory with the axiom of choice excluded. </p><p>Informally,<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> Zermelo–Fraenkel set theory is intended to formalize a single primitive notion, that of a <a href="/wiki/Hereditary_set" title="Hereditary set">hereditary</a> <a href="/wiki/Well-founded" class="mw-redirect" title="Well-founded">well-founded</a> <a href="/wiki/Set_(mathematics)" title="Set (mathematics)">set</a>, so that all <a href="https://en.wiktionary.org/wiki/entity" class="extiw" title="wikt:entity">entities</a> in the <a href="/wiki/Universe_of_discourse" class="mw-redirect" title="Universe of discourse">universe of discourse</a> are such sets. Thus the <a href="/wiki/Axiom" title="Axiom">axioms</a> of Zermelo–Fraenkel set theory refer only to <a href="/wiki/Pure_set" class="mw-redirect" title="Pure set">pure sets</a> and prevent its <a href="/wiki/Model_theory" title="Model theory">models</a> from containing <a href="/wiki/Urelement" title="Urelement">urelements</a> (elements that are not themselves sets). Furthermore, <a href="/wiki/Proper_class" class="mw-redirect" title="Proper class">proper classes</a> (collections of <a href="/wiki/Mathematical_object" title="Mathematical object">mathematical objects</a> defined by a property shared by their members where the collections are too big to be sets) can only be treated indirectly. Specifically, Zermelo–Fraenkel set theory does not allow for the existence of a <a href="/wiki/Universal_set" title="Universal set">universal set</a> (a set containing all sets) nor for <a href="/wiki/Unrestricted_comprehension" class="mw-redirect" title="Unrestricted comprehension">unrestricted comprehension</a>, thereby avoiding Russell's paradox. <a href="/wiki/Von_Neumann%E2%80%93Bernays%E2%80%93G%C3%B6del_set_theory" title="Von Neumann–Bernays–Gödel set theory">Von Neumann–Bernays–Gödel set theory</a> (NBG) is a commonly used <a href="/wiki/Conservative_extension" title="Conservative extension">conservative extension</a> of Zermelo–Fraenkel set theory that does allow explicit treatment of proper classes. </p><p>There are many equivalent formulations of the axioms of Zermelo–Fraenkel set theory. Most of the axioms state the existence of particular sets defined from other sets. For example, the <a href="/wiki/Axiom_of_pairing" title="Axiom of pairing">axiom of pairing</a> says that given any two sets <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> there is a new set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{a,b\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{a,b\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8127b44bf0e5a64fdc9301e188852ab9b97a1fe8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.586ex; height:2.843ex;" alt="{\displaystyle \{a,b\}}"></span> containing exactly <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span>. Other axioms describe properties of set membership. A goal of the axioms is that each axiom should be true if interpreted as a statement about the collection of all sets in the <a href="/wiki/Von_Neumann_universe" title="Von Neumann universe">von Neumann universe</a> (also known as the cumulative hierarchy). </p><p>The <a href="/wiki/Metamathematics" title="Metamathematics">metamathematics</a> of Zermelo–Fraenkel set theory has been extensively studied. Landmark results in this area established the <a href="/wiki/Independence_(mathematical_logic)" title="Independence (mathematical logic)">logical independence</a> of the axiom of choice from the remaining Zermelo-Fraenkel axioms and of the <a href="/wiki/Continuum_hypothesis" title="Continuum hypothesis">continuum hypothesis</a> from ZFC. The <a href="/wiki/Consistency" title="Consistency">consistency</a> of a theory such as ZFC cannot be proved within the theory itself, as shown by <a href="/wiki/G%C3%B6del%27s_second_incompleteness_theorem" class="mw-redirect" title="Gödel's second incompleteness theorem">Gödel's second incompleteness theorem</a>. </p> <style data-mw-deduplicate="TemplateStyles:r1141322084">@media all and (max-width:720px){.mw-parser-output .tocleft{width:100%!important}}@media all and (min-width:720px){.mw-parser-output .tocleft{float:left;clear:left;width:auto;margin:0 1em 0.5em 0}body.skin-vector-2022 .mw-parser-output .tocleft{margin:0}.mw-parser-output .tocleft-clear-both{clear:both}.mw-parser-output .tocleft-clear-none{clear:none}}</style><div class="tocleft" style="width: 35%;"><meta property="mw:PageProp/toc" /></div> <div style="clear:both;" class=""></div> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zermelo%E2%80%93Fraenkel_set_theory&action=edit&section=1" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/History_of_set_theory" class="mw-redirect" title="History of set theory">History of set theory</a></div> <p>The modern study of <a href="/wiki/Set_theory" title="Set theory">set theory</a> was initiated by <a href="/wiki/Georg_Cantor" title="Georg Cantor">Georg Cantor</a> and <a href="/wiki/Richard_Dedekind" title="Richard Dedekind">Richard Dedekind</a> in the 1870s. However, the discovery of <a href="/wiki/Paradoxes_of_set_theory" title="Paradoxes of set theory">paradoxes</a> in <a href="/wiki/Naive_set_theory" title="Naive set theory">naive set theory</a>, such as <a href="/wiki/Russell%27s_paradox" title="Russell's paradox">Russell's paradox</a>, led to the desire for a more rigorous form of set theory that was free of these paradoxes. </p><p>In 1908, <a href="/wiki/Ernst_Zermelo" title="Ernst Zermelo">Ernst Zermelo</a> proposed the first <a href="/wiki/Axiomatic_set_theory" class="mw-redirect" title="Axiomatic set theory">axiomatic set theory</a>, <a href="/wiki/Zermelo_set_theory" title="Zermelo set theory">Zermelo set theory</a>. However, as first pointed out by <a href="/wiki/Abraham_Fraenkel" title="Abraham Fraenkel">Abraham Fraenkel</a> in a 1921 letter to Zermelo, this theory was incapable of proving the existence of certain sets and <a href="/wiki/Cardinal_number" title="Cardinal number">cardinal numbers</a> whose existence was taken for granted by most set theorists of the time, notably the cardinal number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \aleph _{\omega }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">ℵ<!-- ℵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ω<!-- ω --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \aleph _{\omega }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fab056732a610ab69363c5e2bd54dfe0217d1883" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.675ex; height:2.509ex;" alt="{\displaystyle \aleph _{\omega }}"></span> and the set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{Z_{0},{\mathcal {P}}(Z_{0}),{\mathcal {P}}({\mathcal {P}}(Z_{0})),{\mathcal {P}}({\mathcal {P}}({\mathcal {P}}(Z_{0}))),...\},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo fence="false" stretchy="false">}</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{Z_{0},{\mathcal {P}}(Z_{0}),{\mathcal {P}}({\mathcal {P}}(Z_{0})),{\mathcal {P}}({\mathcal {P}}({\mathcal {P}}(Z_{0}))),...\},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c72984dc323e2a7c211332fdacaa66a0dd3b783c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:41.854ex; height:2.843ex;" alt="{\displaystyle \{Z_{0},{\mathcal {P}}(Z_{0}),{\mathcal {P}}({\mathcal {P}}(Z_{0})),{\mathcal {P}}({\mathcal {P}}({\mathcal {P}}(Z_{0}))),...\},}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Z_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bfcd49ab63d30163ac54e60a8e24ff9ccd7bcd44" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.642ex; height:2.509ex;" alt="{\displaystyle Z_{0}}"></span> is any infinite set and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {P}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {P}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10d6ec962de5797ba4f161c40e66dca74ae95cc6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.704ex; height:2.176ex;" alt="{\displaystyle {\mathcal {P}}}"></span> is the <a href="/wiki/Power_set" title="Power set">power set</a> operation.<sup id="cite_ref-FOOTNOTEEbbinghaus2007136_3-0" class="reference"><a href="#cite_note-FOOTNOTEEbbinghaus2007136-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> Moreover, one of Zermelo's axioms invoked a concept, that of a "definite" property, whose operational meaning was not clear. In 1922, Fraenkel and <a href="/wiki/Thoralf_Skolem" title="Thoralf Skolem">Thoralf Skolem</a> independently proposed operationalizing a "definite" property as one that could be formulated as a well-formed formula in a <a href="/wiki/First-order_logic" title="First-order logic">first-order logic</a> whose <a href="/wiki/Atomic_formula" title="Atomic formula">atomic formulas</a> were limited to set membership and identity. They also independently proposed replacing the <a href="/wiki/Axiom_schema_of_specification" title="Axiom schema of specification">axiom schema of specification</a> with the <a href="/wiki/Axiom_schema_of_replacement" title="Axiom schema of replacement">axiom schema of replacement</a>. Appending this schema, as well as the <a href="/wiki/Axiom_of_regularity" title="Axiom of regularity">axiom of regularity</a> (first proposed by <a href="/wiki/John_von_Neumann" title="John von Neumann">John von Neumann</a>),<sup id="cite_ref-FOOTNOTEHalbeisen201162–63_4-0" class="reference"><a href="#cite_note-FOOTNOTEHalbeisen201162–63-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> to Zermelo set theory yields the theory denoted by <i>ZF</i>. Adding to ZF either the <a href="/wiki/Axiom_of_choice" title="Axiom of choice">axiom of choice</a> (AC) or a statement that is equivalent to it yields ZFC. </p> <div class="mw-heading mw-heading2"><h2 id="Formal_language">Formal language</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zermelo%E2%80%93Fraenkel_set_theory&action=edit&section=2" title="Edit section: Formal language"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Formal_language" title="Formal language">Formal language</a></div> <p>Formally, ZFC is a <a href="/wiki/Many-sorted_first-order_logic" class="mw-redirect" title="Many-sorted first-order logic">one-sorted theory</a> in <a href="/wiki/First-order_logic" title="First-order logic">first-order logic</a>. The equality symbol can be treated as either a primitive logical symbol or a high-level abbreviation for having exactly the same elements. The former approach is the most common. The <a href="/wiki/Signature_(mathematical_logic)" class="mw-redirect" title="Signature (mathematical logic)">signature</a> has a single predicate symbol, usually denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \in }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∈<!-- ∈ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \in }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6fe4d5b0a594c1da89b5e78e7dfbeed90bdcc32f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:1.843ex;" alt="{\displaystyle \in }"></span>, which is a predicate symbol of arity 2 (a binary relation symbol). This symbol symbolizes a <a href="/wiki/Set_membership" class="mw-redirect" title="Set membership">set membership</a> relation. For example, the <a href="/wiki/Well-formed_formula" title="Well-formed formula">formula</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\in b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>∈<!-- ∈ --></mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\in b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ac799f2a48fad4f92375610c33cbae9efab7030" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.068ex; height:2.176ex;" alt="{\displaystyle a\in b}"></span> means that <em><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> is an element of the set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span></em> (also read as <em><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> is a member of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span></em>). </p><p>There are different ways to formulate the formal language. Some authors may choose a different set of connectives or quantifiers. For example, the logical connective NAND alone can encode the other connectives, a property known as <a href="/wiki/Functional_completeness" title="Functional completeness">functional completeness</a>. This section attempts to strike a balance between simplicity and intuitiveness. </p><p>The language's alphabet consists of: </p> <ul><li>A countably infinite amount of variables used for representing sets</li> <li>The logical connectives <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lnot }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">¬<!-- ¬ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lnot }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/099107443792f5fec9bebe39b919a690db7198c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.204ex; margin-bottom: -0.376ex; width:1.55ex; height:1.176ex;" alt="{\displaystyle \lnot }"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \land }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∧<!-- ∧ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \land }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6823e5a222eb3ca49672818ac3d13ec607052c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \land }"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lor }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∨<!-- ∨ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lor }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab47f6b1f589aedcf14638df1d63049d233d851a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \lor }"></span></li> <li>The quantifier symbols <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∀<!-- ∀ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bfc1a1a9c4c0f8d5df989c98aa2773ed657c5937" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.293ex; height:2.176ex;" alt="{\displaystyle \forall }"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \exists }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∃<!-- ∃ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \exists }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77ed842b6b90b2fdd825320cf8e5265fa937b583" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.293ex; height:2.176ex;" alt="{\displaystyle \exists }"></span></li> <li>The equality symbol <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle =}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle =}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/505a4ceef454c69dffd23792c84b90f488543743" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.307ex; margin-bottom: -0.478ex; width:1.808ex; height:1.343ex;" alt="{\displaystyle =}"></span></li> <li>The set membership symbol <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \in }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∈<!-- ∈ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \in }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6fe4d5b0a594c1da89b5e78e7dfbeed90bdcc32f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:1.843ex;" alt="{\displaystyle \in }"></span></li> <li>Brackets ( )</li></ul> <p>With this alphabet, the recursive rules for forming <a href="/wiki/Well-formed_formulae" class="mw-redirect" title="Well-formed formulae">well-formed formulae</a> (wff) are as follows: </p> <ul><li>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> be <a href="/wiki/Metavariable" title="Metavariable">metavariables</a> for any variables. These are the two ways to build <a href="/wiki/Atomic_formula" title="Atomic formula">atomic formulae</a> (the simplest wffs):</li></ul> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/409a91214d63eabe46ec10ff3cbba689ab687366" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.584ex; height:2.009ex;" alt="{\displaystyle x=y}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6cc7f83e27a1edabb433ab7572889455c9985df0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.326ex; height:2.176ex;" alt="{\displaystyle x\in y}"></span></dd></dl> <ul><li>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ϕ<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72b1f30316670aee6270a28334bdf4f5072cdde4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.385ex; height:2.509ex;" alt="{\displaystyle \phi }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ψ<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45e5789e5d9c8f7c79744f43ecaaf8ba42a8553a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.513ex; height:2.509ex;" alt="{\displaystyle \psi }"></span> be metavariables for any wff, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> be a metavariable for any variable. These are valid wff constructions:</li></ul> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lnot \phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mi>ϕ<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lnot \phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dbee468759b489b9639ad4cd30aa566ac89b2096" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.936ex; height:2.509ex;" alt="{\displaystyle \lnot \phi }"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\phi \land \psi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>ϕ<!-- ϕ --></mi> <mo>∧<!-- ∧ --></mo> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\phi \land \psi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a3d1def2daaadfa3b46a885a87ff1483cdf4f084" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.29ex; height:2.843ex;" alt="{\displaystyle (\phi \land \psi )}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\phi \lor \psi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>ϕ<!-- ϕ --></mi> <mo>∨<!-- ∨ --></mo> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\phi \lor \psi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9d0435f657d3bc697ac42734f2289781203420a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.29ex; height:2.843ex;" alt="{\displaystyle (\phi \lor \psi )}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall x\phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>x</mi> <mi>ϕ<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall x\phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b721e756915251f883168f1fa658f892aa5f238" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.008ex; height:2.509ex;" alt="{\displaystyle \forall x\phi }"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \exists x\phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∃<!-- ∃ --></mi> <mi>x</mi> <mi>ϕ<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \exists x\phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a8b2c37eff9c9af103fcc436e938373e652a2202" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.008ex; height:2.509ex;" alt="{\displaystyle \exists x\phi }"></span></dd></dl> <p>A well-formed formula can be thought as a syntax tree. The leaf nodes are always atomic formulae. Nodes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \land }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∧<!-- ∧ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \land }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6823e5a222eb3ca49672818ac3d13ec607052c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \land }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lor }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∨<!-- ∨ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lor }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab47f6b1f589aedcf14638df1d63049d233d851a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \lor }"></span> have exactly two child nodes, while nodes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lnot }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">¬<!-- ¬ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lnot }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/099107443792f5fec9bebe39b919a690db7198c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.204ex; margin-bottom: -0.376ex; width:1.55ex; height:1.176ex;" alt="{\displaystyle \lnot }"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a3fa2fb002baecbc5038bd3dd42bab57448b315" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.622ex; height:2.176ex;" alt="{\displaystyle \forall x}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \exists x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∃<!-- ∃ --></mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \exists x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab833914405cde960b3b9af3feaa9e4fef96ffa9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.622ex; height:2.176ex;" alt="{\displaystyle \exists x}"></span> have exactly one. There are countably infinitely many wffs, however, each wff has a finite number of nodes. </p> <div class="mw-heading mw-heading2"><h2 id="Axioms">Axioms</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zermelo%E2%80%93Fraenkel_set_theory&action=edit&section=3" title="Edit section: Axioms"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Axiom" title="Axiom">Axiom</a></div> <p>There are many equivalent formulations of the ZFC axioms.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> The following particular axiom set is from <a href="#CITEREFKunen1980">Kunen (1980)</a>. The axioms in order below are expressed in a mixture of <a href="/wiki/First_order_logic" class="mw-redirect" title="First order logic">first order logic</a> and high-level abbreviations. </p><p>Axioms 1–8 form ZF, while the axiom 9 turns ZF into ZFC. Following <a href="#CITEREFKunen1980">Kunen (1980)</a>, we use the equivalent <a href="/wiki/Well-ordering_theorem" title="Well-ordering theorem">well-ordering theorem</a> in place of the <a href="/wiki/Axiom_of_choice" title="Axiom of choice">axiom of choice</a> for axiom 9. </p><p>All formulations of ZFC imply that at least one set exists. Kunen includes an axiom that directly asserts the existence of a set, although he notes that he does so only "for emphasis".<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> Its omission here can be justified in two ways. First, in the standard semantics of first-order logic in which ZFC is typically formalized, the <a href="/wiki/Domain_of_discourse" title="Domain of discourse">domain of discourse</a> must be nonempty. Hence, it is a logical theorem of first-order logic that something exists — usually expressed as the assertion that something is identical to itself, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \exists x(x=x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∃<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>=</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \exists x(x=x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/732c00eda064b43b4e1232ba221220728fc04ae1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.189ex; height:2.843ex;" alt="{\displaystyle \exists x(x=x)}"></span>. Consequently, it is a theorem of every first-order theory that something exists. However, as noted above, because in the intended semantics of ZFC, there are only sets, the interpretation of this logical theorem in the context of ZFC is that some <i>set</i> exists. Hence, there is no need for a separate axiom asserting that a set exists. Second, however, even if ZFC is formulated in so-called <a href="/wiki/Free_logic" title="Free logic">free logic</a>, in which it is not provable from logic alone that something exists, the axiom of infinity asserts that an <i>infinite</i> set exists. This implies that <i>a</i> set exists, and so, once again, it is superfluous to include an axiom asserting as much. </p> <div class="mw-heading mw-heading3"><h3 id="Axiom_of_extensionality">Axiom of extensionality</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zermelo%E2%80%93Fraenkel_set_theory&action=edit&section=4" title="Edit section: Axiom of extensionality"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Axiom_of_extensionality" title="Axiom of extensionality">Axiom of extensionality</a></div> <p>Two sets are equal (are the same set) if they have the same elements. </p> <div style="margin-left:1.6em;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall x\forall y[\forall z(z\in x\Leftrightarrow z\in y)\Rightarrow x=y].}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>x</mi> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>y</mi> <mo stretchy="false">[</mo> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>z</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo>∈<!-- ∈ --></mo> <mi>x</mi> <mo stretchy="false">⇔<!-- ⇔ --></mo> <mi>z</mi> <mo>∈<!-- ∈ --></mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">⇒<!-- ⇒ --></mo> <mi>x</mi> <mo>=</mo> <mi>y</mi> <mo stretchy="false">]</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall x\forall y[\forall z(z\in x\Leftrightarrow z\in y)\Rightarrow x=y].}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d7b175ec36a59df864706ac6cfa8976c10e71d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:34.355ex; height:2.843ex;" alt="{\displaystyle \forall x\forall y[\forall z(z\in x\Leftrightarrow z\in y)\Rightarrow x=y].}"></span></div> <p>The converse of this axiom follows from the substitution property of <a href="/wiki/Equality_(mathematics)" title="Equality (mathematics)">equality</a>. ZFC is constructed in first-order logic. Some formulations of first-order logic include identity; others do not. If the variety of first-order logic in which you are constructing set theory does not include equality "<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle =}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle =}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/505a4ceef454c69dffd23792c84b90f488543743" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.307ex; margin-bottom: -0.478ex; width:1.808ex; height:1.343ex;" alt="{\displaystyle =}"></span>", <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/409a91214d63eabe46ec10ff3cbba689ab687366" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.584ex; height:2.009ex;" alt="{\displaystyle x=y}"></span> may be defined as an abbreviation for the following formula:<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall z[z\in x\Leftrightarrow z\in y]\land \forall w[x\in w\Leftrightarrow y\in w].}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>z</mi> <mo stretchy="false">[</mo> <mi>z</mi> <mo>∈<!-- ∈ --></mo> <mi>x</mi> <mo stretchy="false">⇔<!-- ⇔ --></mo> <mi>z</mi> <mo>∈<!-- ∈ --></mo> <mi>y</mi> <mo stretchy="false">]</mo> <mo>∧<!-- ∧ --></mo> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>w</mi> <mo stretchy="false">[</mo> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>w</mi> <mo stretchy="false">⇔<!-- ⇔ --></mo> <mi>y</mi> <mo>∈<!-- ∈ --></mo> <mi>w</mi> <mo stretchy="false">]</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall z[z\in x\Leftrightarrow z\in y]\land \forall w[x\in w\Leftrightarrow y\in w].}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28ec7c38a3b54bb4f585088d0e4c34702260db15" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:40.22ex; height:2.843ex;" alt="{\displaystyle \forall z[z\in x\Leftrightarrow z\in y]\land \forall w[x\in w\Leftrightarrow y\in w].}"></span> </p><p>In this case, the axiom of extensionality can be reformulated as </p> <div style="margin-left:1.6em;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall x\forall y[\forall z(z\in x\Leftrightarrow z\in y)\Rightarrow \forall w(x\in w\Leftrightarrow y\in w)],}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>x</mi> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>y</mi> <mo stretchy="false">[</mo> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>z</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo>∈<!-- ∈ --></mo> <mi>x</mi> <mo stretchy="false">⇔<!-- ⇔ --></mo> <mi>z</mi> <mo>∈<!-- ∈ --></mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">⇒<!-- ⇒ --></mo> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>w</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>w</mi> <mo stretchy="false">⇔<!-- ⇔ --></mo> <mi>y</mi> <mo>∈<!-- ∈ --></mo> <mi>w</mi> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall x\forall y[\forall z(z\in x\Leftrightarrow z\in y)\Rightarrow \forall w(x\in w\Leftrightarrow y\in w)],}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/495f2c3ac705bdec3a4a80d2191742e8d5a7c844" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:48.646ex; height:2.843ex;" alt="{\displaystyle \forall x\forall y[\forall z(z\in x\Leftrightarrow z\in y)\Rightarrow \forall w(x\in w\Leftrightarrow y\in w)],}"></span></div> <p>which says that if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> have the same elements, then they belong to the same sets.<sup id="cite_ref-FOOTNOTEFraenkelBar-HillelLévy1973_8-0" class="reference"><a href="#cite_note-FOOTNOTEFraenkelBar-HillelLévy1973-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Axiom_of_regularity_(also_called_the_axiom_of_foundation)"><span id="Axiom_of_regularity_.28also_called_the_axiom_of_foundation.29"></span>Axiom of regularity (also called the axiom of foundation)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zermelo%E2%80%93Fraenkel_set_theory&action=edit&section=5" title="Edit section: Axiom of regularity (also called the axiom of foundation)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Axiom_of_regularity" title="Axiom of regularity">Axiom of regularity</a></div> <p>Every non-empty set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> contains a member <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> are <a href="/wiki/Disjoint_sets" title="Disjoint sets">disjoint sets</a>. </p> <div style="margin-left:1.6em;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall x[\exists a(a\in x)\Rightarrow \exists y(y\in x\land \lnot \exists z(z\in y\land z\in x))].}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">[</mo> <mi mathvariant="normal">∃<!-- ∃ --></mi> <mi>a</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>∈<!-- ∈ --></mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">⇒<!-- ⇒ --></mo> <mi mathvariant="normal">∃<!-- ∃ --></mi> <mi>y</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo>∈<!-- ∈ --></mo> <mi>x</mi> <mo>∧<!-- ∧ --></mo> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mi mathvariant="normal">∃<!-- ∃ --></mi> <mi>z</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo>∈<!-- ∈ --></mo> <mi>y</mi> <mo>∧<!-- ∧ --></mo> <mi>z</mi> <mo>∈<!-- ∈ --></mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall x[\exists a(a\in x)\Rightarrow \exists y(y\in x\land \lnot \exists z(z\in y\land z\in x))].}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1b6c90db2cd7d252b1db2f1fe02872154da6efa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:48.74ex; height:2.843ex;" alt="{\displaystyle \forall x[\exists a(a\in x)\Rightarrow \exists y(y\in x\land \lnot \exists z(z\in y\land z\in x))].}"></span><sup id="cite_ref-FOOTNOTEShoenfield2001239_9-0" class="reference"><a href="#cite_note-FOOTNOTEShoenfield2001239-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup></div> <p>or in modern notation: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall x\,(x\neq \varnothing \Rightarrow \exists y(y\in x\land y\cap x=\varnothing )).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>x</mi> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mi>x</mi> <mo>≠<!-- ≠ --></mo> <mi class="MJX-variant">∅<!-- ∅ --></mi> <mo stretchy="false">⇒<!-- ⇒ --></mo> <mi mathvariant="normal">∃<!-- ∃ --></mi> <mi>y</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo>∈<!-- ∈ --></mo> <mi>x</mi> <mo>∧<!-- ∧ --></mo> <mi>y</mi> <mo>∩<!-- ∩ --></mo> <mi>x</mi> <mo>=</mo> <mi class="MJX-variant">∅<!-- ∅ --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall x\,(x\neq \varnothing \Rightarrow \exists y(y\in x\land y\cap x=\varnothing )).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d3b50970f308a6555cbd01fa6d045cb0f3c4ac9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:37.456ex; height:2.843ex;" alt="{\displaystyle \forall x\,(x\neq \varnothing \Rightarrow \exists y(y\in x\land y\cap x=\varnothing )).}"></span> </p><p>This (along with the axioms of pairing and union) implies, for example, that no set is an element of itself and that every set has an <a href="/wiki/Ordinal_number" title="Ordinal number">ordinal</a> <a href="/wiki/Rank_(set_theory)" class="mw-redirect" title="Rank (set theory)">rank</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Axiom_schema_of_specification_(or_of_separation,_or_of_restricted_comprehension)"><span id="Axiom_schema_of_specification_.28or_of_separation.2C_or_of_restricted_comprehension.29"></span>Axiom schema of specification (or of separation, or of restricted comprehension)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zermelo%E2%80%93Fraenkel_set_theory&action=edit&section=6" title="Edit section: Axiom schema of specification (or of separation, or of restricted comprehension)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Axiom_schema_of_specification" title="Axiom schema of specification">Axiom schema of specification</a></div> <p>Subsets are commonly constructed using <a href="/wiki/Set_builder_notation" class="mw-redirect" title="Set builder notation">set builder notation</a>. For example, the even integers can be constructed as the subset of the integers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} }"></span> satisfying the <a href="/wiki/Congruence_modulo_n" class="mw-redirect" title="Congruence modulo n">congruence modulo</a> predicate <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\equiv 0{\pmod {2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>≡<!-- ≡ --></mo> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mspace width="1em" /> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em" /> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\equiv 0{\pmod {2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0bbe471bc06d6495644a360185ffcf192e10bb58" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.437ex; height:2.843ex;" alt="{\displaystyle x\equiv 0{\pmod {2}}}"></span>: </p> <div style="margin-left:1.6em;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{x\in \mathbb {Z} :x\equiv 0{\pmod {2}}\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo>:</mo> <mi>x</mi> <mo>≡<!-- ≡ --></mo> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mspace width="1em" /> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em" /> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{x\in \mathbb {Z} :x\equiv 0{\pmod {2}}\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/473e71d2ca0d3a1518842305d3cc4fe2130b7cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.067ex; height:2.843ex;" alt="{\displaystyle \{x\in \mathbb {Z} :x\equiv 0{\pmod {2}}\}.}"></span></div> <p>In general, the subset of a set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span> obeying a formula <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi (x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi (x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4c4046f1f2de7df04bde418ba2bc4d3898ac2385" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.659ex; height:2.843ex;" alt="{\displaystyle \varphi (x)}"></span> with one free variable <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> may be written as: </p> <div style="margin-left:1.6em;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{x\in z:\varphi (x)\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>z</mi> <mo>:</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{x\in z:\varphi (x)\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15e5f3aa875131885b23bce68b3c57284b318741" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.827ex; height:2.843ex;" alt="{\displaystyle \{x\in z:\varphi (x)\}.}"></span></div> <p>The axiom schema of specification states that this subset always exists (it is an <a href="/wiki/Axiom_schema" title="Axiom schema">axiom <i>schema</i></a> because there is one axiom for each <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>φ<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span>). Formally, let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>φ<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> be any formula in the language of ZFC with all free variables among <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x,z,w_{1},\ldots ,w_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>,</mo> <mi>z</mi> <mo>,</mo> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x,z,w_{1},\ldots ,w_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e255471ef8843b4847aa39d4d7805bde95639f22" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:15.265ex; height:2.009ex;" alt="{\displaystyle x,z,w_{1},\ldots ,w_{n}}"></span> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> is not free in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>φ<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span>). Then: </p> <div style="margin-left:1.6em;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall z\forall w_{1}\forall w_{2}\ldots \forall w_{n}\exists y\forall x[x\in y\Leftrightarrow ((x\in z)\land \varphi (x,w_{1},w_{2},...,w_{n},z))].}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>z</mi> <mi mathvariant="normal">∀<!-- ∀ --></mi> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi mathvariant="normal">∀<!-- ∀ --></mi> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>…<!-- … --></mo> <mi mathvariant="normal">∀<!-- ∀ --></mi> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mi mathvariant="normal">∃<!-- ∃ --></mi> <mi>y</mi> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">[</mo> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>y</mi> <mo stretchy="false">⇔<!-- ⇔ --></mo> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>∧<!-- ∧ --></mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall z\forall w_{1}\forall w_{2}\ldots \forall w_{n}\exists y\forall x[x\in y\Leftrightarrow ((x\in z)\land \varphi (x,w_{1},w_{2},...,w_{n},z))].}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/566c5c9d8fa45d1685a55347337bbb682b2d21d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:67.823ex; height:2.843ex;" alt="{\displaystyle \forall z\forall w_{1}\forall w_{2}\ldots \forall w_{n}\exists y\forall x[x\in y\Leftrightarrow ((x\in z)\land \varphi (x,w_{1},w_{2},...,w_{n},z))].}"></span></div> <p>Note that the axiom schema of specification can only construct subsets and does not allow the construction of entities of the more general form: </p> <div style="margin-left:1.6em;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{x:\varphi (x)\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>x</mi> <mo>:</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{x:\varphi (x)\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81c14b0250c2161d657b6831e73e4dc3ca2bbafb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.898ex; height:2.843ex;" alt="{\displaystyle \{x:\varphi (x)\}.}"></span></div> <p>This restriction is necessary to avoid <a href="/wiki/Russell%27s_paradox" title="Russell's paradox">Russell's paradox</a> (let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=\{x:x\notin x\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>x</mi> <mo>:</mo> <mi>x</mi> <mo>∉<!-- ∉ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=\{x:x\notin x\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b69a7bb7820857983d5034c4316d2a2a15ef8ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.346ex; height:2.843ex;" alt="{\displaystyle y=\{x:x\notin x\}}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y\in y\Leftrightarrow y\notin y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>∈<!-- ∈ --></mo> <mi>y</mi> <mo stretchy="false">⇔<!-- ⇔ --></mo> <mi>y</mi> <mo>∉<!-- ∉ --></mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y\in y\Leftrightarrow y\notin y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a3a36088301ac8e9f426715915f21d7feaa9d1f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.917ex; height:2.676ex;" alt="{\displaystyle y\in y\Leftrightarrow y\notin y}"></span>) and its variants that accompany naive set theory with <a href="/wiki/Unrestricted_comprehension" class="mw-redirect" title="Unrestricted comprehension">unrestricted comprehension</a> (since under this restriction <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> only refers to sets <b><i>within</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span></b> that don't belong to themselves, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y\in z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>∈<!-- ∈ --></mo> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y\in z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3af2478b948ca8279c41fcde98355887e039c87" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.084ex; height:2.176ex;" alt="{\displaystyle y\in z}"></span> has <i><b>not</b></i> been established, even though <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y\subseteq z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>⊆<!-- ⊆ --></mo> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y\subseteq z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/457739bc881e9fc801b5ccfd9b80f429dc5e8e9e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.342ex; height:2.343ex;" alt="{\displaystyle y\subseteq z}"></span> is the case, so <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> stands in a separate position from which it can't refer to or comprehend itself; therefore, in a certain sense, this axiom schema is saying that in order to build a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> on the basis of a formula <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi (x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi (x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4c4046f1f2de7df04bde418ba2bc4d3898ac2385" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.659ex; height:2.843ex;" alt="{\displaystyle \varphi (x)}"></span>, we need to previously restrict the sets <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> will regard within a set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span> that leaves <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> outside so <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> can't refer to itself; or, in other words, sets shouldn't refer to themselves). </p><p>In some other axiomatizations of ZF, this axiom is redundant in that it follows from the <a href="/wiki/Axiom_schema_of_replacement" title="Axiom schema of replacement">axiom schema of replacement</a> and the <a href="/wiki/Axiom_of_the_empty_set" class="mw-redirect" title="Axiom of the empty set">axiom of the empty set</a>. </p><p>On the other hand, the axiom schema of specification can be used to prove the existence of the <a href="/wiki/Empty_set" title="Empty set">empty set</a>, denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varnothing }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi class="MJX-variant">∅<!-- ∅ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varnothing }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/00595c5e33692e724937fdcc8870496acce1ac74" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:2.009ex;" alt="{\displaystyle \varnothing }"></span>, once at least one set is known to exist. One way to do this is to use a property <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>φ<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> which no set has. For example, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>w</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88b1e0c8e1be5ebe69d18a8010676fa42d7961e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.664ex; height:1.676ex;" alt="{\displaystyle w}"></span> is any existing set, the empty set can be constructed as </p> <div style="margin-left:1.6em;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varnothing =\{u\in w\mid (u\in u)\land \lnot (u\in u)\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi class="MJX-variant">∅<!-- ∅ --></mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>u</mi> <mo>∈<!-- ∈ --></mo> <mi>w</mi> <mo>∣<!-- ∣ --></mo> <mo stretchy="false">(</mo> <mi>u</mi> <mo>∈<!-- ∈ --></mo> <mi>u</mi> <mo stretchy="false">)</mo> <mo>∧<!-- ∧ --></mo> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo>∈<!-- ∈ --></mo> <mi>u</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varnothing =\{u\in w\mid (u\in u)\land \lnot (u\in u)\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd1d49da9640e3c2d224df8ac2c99644939b453d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:34.402ex; height:2.843ex;" alt="{\displaystyle \varnothing =\{u\in w\mid (u\in u)\land \lnot (u\in u)\}.}"></span></div> <p>Thus, the <a href="/wiki/Axiom_of_the_empty_set" class="mw-redirect" title="Axiom of the empty set">axiom of the empty set</a> is implied by the nine axioms presented here. The axiom of extensionality implies the empty set is unique (does not depend on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>w</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88b1e0c8e1be5ebe69d18a8010676fa42d7961e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.664ex; height:1.676ex;" alt="{\displaystyle w}"></span>). It is common to make a <a href="/wiki/Definitional_extension" class="mw-redirect" title="Definitional extension">definitional extension</a> that adds the symbol "<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varnothing }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi class="MJX-variant">∅<!-- ∅ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varnothing }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/00595c5e33692e724937fdcc8870496acce1ac74" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:2.009ex;" alt="{\displaystyle \varnothing }"></span>" to the language of ZFC. </p> <div class="mw-heading mw-heading3"><h3 id="Axiom_of_pairing">Axiom of pairing</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zermelo%E2%80%93Fraenkel_set_theory&action=edit&section=7" title="Edit section: Axiom of pairing"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Axiom_of_pairing" title="Axiom of pairing">Axiom of pairing</a></div> <p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> are sets, then there exists a set which contains <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> as elements, for example if x = {1,2} and y = {2,3} then z will be {{1,2},{2,3}} </p> <div style="margin-left:1.6em;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall x\forall y\exists z((x\in z)\land (y\in z)).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>x</mi> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>y</mi> <mi mathvariant="normal">∃<!-- ∃ --></mi> <mi>z</mi> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>∧<!-- ∧ --></mo> <mo stretchy="false">(</mo> <mi>y</mi> <mo>∈<!-- ∈ --></mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall x\forall y\exists z((x\in z)\land (y\in z)).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75195c47bef12f847379450e3cf73e7e9f9e4bae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.451ex; height:2.843ex;" alt="{\displaystyle \forall x\forall y\exists z((x\in z)\land (y\in z)).}"></span></div> <p>The axiom schema of specification must be used to reduce this to a set with exactly these two elements. The axiom of pairing is part of Z, but is redundant in ZF because it follows from the axiom schema of replacement if we are given a set with at least two elements. The existence of a set with at least two elements is assured by either the <a href="/wiki/Axiom_of_infinity" title="Axiom of infinity">axiom of infinity</a>, or by the <span class="cleanup-needed-content" style="padding-left:0.1em; padding-right:0.1em; color:var(--color-subtle, #54595d); border:1px solid var(--border-color-subtle, #c8ccd1);">axiom schema of specification</span><sup class="noprint Inline-Template" style="margin-left:0.1em; white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Disputed_statement" class="mw-redirect" title="Wikipedia:Disputed statement"><span title="The material near this tag is possibly inaccurate or nonfactual. (July 2023)">dubious</span></a> – <a href="/wiki/Talk:Zermelo%E2%80%93Fraenkel_set_theory#axiom_schema_of_specification" title="Talk:Zermelo–Fraenkel set theory">discuss</a></i>]</sup> and the <a href="/wiki/Axiom_of_the_power_set" class="mw-redirect" title="Axiom of the power set">axiom of the power set</a> applied twice to any set. </p> <div class="mw-heading mw-heading3"><h3 id="Axiom_of_union">Axiom of union</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zermelo%E2%80%93Fraenkel_set_theory&action=edit&section=8" title="Edit section: Axiom of union"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Axiom_of_union" title="Axiom of union">Axiom of union</a></div> <p>The <a href="/wiki/Union_(set_theory)" title="Union (set theory)">union</a> over the elements of a set exists. For example, the union over the elements of the set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{\{1,2\},\{2,3\}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mo fence="false" stretchy="false">{</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo fence="false" stretchy="false">}</mo> <mo>,</mo> <mo fence="false" stretchy="false">{</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo fence="false" stretchy="false">}</mo> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{\{1,2\},\{2,3\}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e99128791bb4bead6e58a0494deb0a71aec29e51" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.726ex; height:2.843ex;" alt="{\displaystyle \{\{1,2\},\{2,3\}\}}"></span> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{1,2,3\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{1,2,3\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/800a83c311f50e2f0aa21d0027dd98bd880f72bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.527ex; height:2.843ex;" alt="{\displaystyle \{1,2,3\}.}"></span> </p><p>The axiom of union states that for any set of sets <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/205d4b91000d9dcf1a5bbabdfa6a8395fa60b676" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.927ex; height:2.176ex;" alt="{\displaystyle {\mathcal {F}}}"></span>, there is a set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> containing every element that is a member of some member of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/205d4b91000d9dcf1a5bbabdfa6a8395fa60b676" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.927ex; height:2.176ex;" alt="{\displaystyle {\mathcal {F}}}"></span>: </p> <div style="margin-left:1.6em;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall {\mathcal {F}}\,\exists A\,\forall Y\,\forall x[(x\in Y\land Y\in {\mathcal {F}})\Rightarrow x\in A].}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mspace width="thinmathspace" /> <mi mathvariant="normal">∃<!-- ∃ --></mi> <mi>A</mi> <mspace width="thinmathspace" /> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>Y</mi> <mspace width="thinmathspace" /> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">[</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>Y</mi> <mo>∧<!-- ∧ --></mo> <mi>Y</mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">⇒<!-- ⇒ --></mo> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>A</mi> <mo stretchy="false">]</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall {\mathcal {F}}\,\exists A\,\forall Y\,\forall x[(x\in Y\land Y\in {\mathcal {F}})\Rightarrow x\in A].}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e141c03ab505e1b3a747497a2a883e7ad82e6175" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:41.448ex; height:2.843ex;" alt="{\displaystyle \forall {\mathcal {F}}\,\exists A\,\forall Y\,\forall x[(x\in Y\land Y\in {\mathcal {F}})\Rightarrow x\in A].}"></span></div> <p>Although this formula doesn't directly assert the existence of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cup {\mathcal {F}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∪<!-- ∪ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cup {\mathcal {F}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c7bc5334d1214ead725150846c780a88d229932" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.477ex; height:2.176ex;" alt="{\displaystyle \cup {\mathcal {F}}}"></span>, the set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cup {\mathcal {F}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∪<!-- ∪ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cup {\mathcal {F}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c7bc5334d1214ead725150846c780a88d229932" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.477ex; height:2.176ex;" alt="{\displaystyle \cup {\mathcal {F}}}"></span> can be constructed from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> in the above using the axiom schema of specification: </p> <div style="margin-left:1.6em;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cup {\mathcal {F}}=\{x\in A:\exists Y(x\in Y\land Y\in {\mathcal {F}})\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∪<!-- ∪ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>A</mi> <mo>:</mo> <mi mathvariant="normal">∃<!-- ∃ --></mi> <mi>Y</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>Y</mi> <mo>∧<!-- ∧ --></mo> <mi>Y</mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cup {\mathcal {F}}=\{x\in A:\exists Y(x\in Y\land Y\in {\mathcal {F}})\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3bf39a3cef15ff8f6164f00dad27e84f3d4e0a67" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:37.34ex; height:2.843ex;" alt="{\displaystyle \cup {\mathcal {F}}=\{x\in A:\exists Y(x\in Y\land Y\in {\mathcal {F}})\}.}"></span></div> <div class="mw-heading mw-heading3"><h3 id="Axiom_schema_of_replacement">Axiom schema of replacement</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zermelo%E2%80%93Fraenkel_set_theory&action=edit&section=9" title="Edit section: Axiom schema of replacement"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Axiom_schema_of_replacement" title="Axiom schema of replacement">Axiom schema of replacement</a> and <a href="/wiki/Uniqueness_quantification" title="Uniqueness quantification">uniqueness quantification</a></div> <p>The axiom schema of replacement asserts that the <a href="/wiki/Image_(mathematics)" title="Image (mathematics)">image</a> of a set under any definable <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> will also fall inside a set. </p><p>Formally, let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>φ<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> be any <a href="/wiki/Well-formed_formula" title="Well-formed formula">formula</a> in the language of ZFC whose <a href="/wiki/Free_variable" class="mw-redirect" title="Free variable">free variables</a> are among <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x,y,A,w_{1},\dotsc ,w_{n},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>A</mi> <mo>,</mo> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x,y,A,w_{1},\dotsc ,w_{n},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26bf548ee9a30ac4adf6fc6100cae5a493a91b88" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.756ex; height:2.509ex;" alt="{\displaystyle x,y,A,w_{1},\dotsc ,w_{n},}"></span> so that in particular <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> is not free in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>φ<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span>. Then: </p> <div style="margin-left:1.6em;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall A\forall w_{1}\forall w_{2}\ldots \forall w_{n}{\bigl [}\forall x(x\in A\Rightarrow \exists !y\,\varphi )\Rightarrow \exists B\ \forall x{\bigl (}x\in A\Rightarrow \exists y(y\in B\land \varphi ){\bigr )}{\bigr ]}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>A</mi> <mi mathvariant="normal">∀<!-- ∀ --></mi> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi mathvariant="normal">∀<!-- ∀ --></mi> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>…<!-- … --></mo> <mi mathvariant="normal">∀<!-- ∀ --></mi> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">[</mo> </mrow> </mrow> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>A</mi> <mo stretchy="false">⇒<!-- ⇒ --></mo> <mi mathvariant="normal">∃<!-- ∃ --></mi> <mo>!</mo> <mi>y</mi> <mspace width="thinmathspace" /> <mi>φ<!-- φ --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">⇒<!-- ⇒ --></mo> <mi mathvariant="normal">∃<!-- ∃ --></mi> <mi>B</mi> <mtext> </mtext> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>A</mi> <mo stretchy="false">⇒<!-- ⇒ --></mo> <mi mathvariant="normal">∃<!-- ∃ --></mi> <mi>y</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo>∈<!-- ∈ --></mo> <mi>B</mi> <mo>∧<!-- ∧ --></mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">]</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall A\forall w_{1}\forall w_{2}\ldots \forall w_{n}{\bigl [}\forall x(x\in A\Rightarrow \exists !y\,\varphi )\Rightarrow \exists B\ \forall x{\bigl (}x\in A\Rightarrow \exists y(y\in B\land \varphi ){\bigr )}{\bigr ]}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0dde1449291975ff9ba216e891a5fb7d3cae4c2e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:75.928ex; height:3.176ex;" alt="{\displaystyle \forall A\forall w_{1}\forall w_{2}\ldots \forall w_{n}{\bigl [}\forall x(x\in A\Rightarrow \exists !y\,\varphi )\Rightarrow \exists B\ \forall x{\bigl (}x\in A\Rightarrow \exists y(y\in B\land \varphi ){\bigr )}{\bigr ]}.}"></span></div> <p>(The unique existential quantifier <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \exists !}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∃<!-- ∃ --></mi> <mo>!</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \exists !}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3aab884c076b7332eab3860c2f32086012df840b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.939ex; height:2.176ex;" alt="{\displaystyle \exists !}"></span> denotes the existence of exactly one element such that it follows a given statement.) </p><p>In other words, if the relation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>φ<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> represents a definable function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> represents its <a href="/wiki/Domain_of_a_function" title="Domain of a function">domain</a>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span> is a set for every <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in A,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>A</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in A,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c649021f8a56d0234bfa3eae952bcab3edad556" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.56ex; height:2.509ex;" alt="{\displaystyle x\in A,}"></span> then the <a href="/wiki/Range_of_a_function" title="Range of a function">range</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> is a subset of some set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span>. The form stated here, in which <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> may be larger than strictly necessary, is sometimes called the <a href="/wiki/Axiom_schema_of_replacement#Axiom_schema_of_collection" title="Axiom schema of replacement">axiom schema of collection</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Axiom_of_infinity">Axiom of infinity</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zermelo%E2%80%93Fraenkel_set_theory&action=edit&section=10" title="Edit section: Axiom of infinity"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Axiom_of_infinity" title="Axiom of infinity">Axiom of infinity</a></div> <table class="floatright" style="background-color: #f8f9fa; border: 1px solid #a2a9b1; margin: 0.5em 0 0.5em 1em; padding: 0.2em; color:black;"> <caption>First several von Neumann ordinals </caption> <tbody><tr> <th scope="row">0 </th> <td>=</td> <td>{} </td> <td>=</td> <td>∅ </td></tr> <tr> <th scope="row">1 </th> <td>=</td> <td>{0} </td> <td>=</td> <td>{∅} </td></tr> <tr> <th scope="row">2 </th> <td>=</td> <td>{0,1} </td> <td>=</td> <td>{∅,{∅}} </td></tr> <tr> <th scope="row">3 </th> <td>=</td> <td>{0,1,2} </td> <td>=</td> <td>{∅,{∅},{∅,{∅}}} </td></tr> <tr> <th scope="row">4 </th> <td>=</td> <td>{0,1,2,3} </td> <td>=</td> <td>{∅,{∅},{∅,{∅}},{∅,{∅},{∅,{∅}}}} </td></tr></tbody></table> <p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S(w)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo stretchy="false">(</mo> <mi>w</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S(w)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b5e06f92daf08da52ce46e6d4628a5bb0d6fd09" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.973ex; height:2.843ex;" alt="{\displaystyle S(w)}"></span> abbreviate <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w\cup \{w\},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>w</mi> <mo>∪<!-- ∪ --></mo> <mo fence="false" stretchy="false">{</mo> <mi>w</mi> <mo fence="false" stretchy="false">}</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w\cup \{w\},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/14e8c97f26f75e28dc9382498150f8d65ea6498a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.883ex; height:2.843ex;" alt="{\displaystyle w\cup \{w\},}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>w</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88b1e0c8e1be5ebe69d18a8010676fa42d7961e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.664ex; height:1.676ex;" alt="{\displaystyle w}"></span> is some set. (We can see that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{w\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>w</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{w\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99b47071f8ab137b0b94e336f84edd2be27f874b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.989ex; height:2.843ex;" alt="{\displaystyle \{w\}}"></span> is a valid set by applying the axiom of pairing with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=y=w}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mi>y</mi> <mo>=</mo> <mi>w</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=y=w}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a199dab78fbebbbb1f162e369e7d1320903dea2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.346ex; height:2.009ex;" alt="{\displaystyle x=y=w}"></span> so that the set <span class="texhtml mvar" style="font-style:italic;">z</span> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{w\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>w</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{w\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99b47071f8ab137b0b94e336f84edd2be27f874b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.989ex; height:2.843ex;" alt="{\displaystyle \{w\}}"></span>). Then there exists a set <span class="texhtml mvar" style="font-style:italic;">X</span> such that the empty set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varnothing }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi class="MJX-variant">∅<!-- ∅ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varnothing }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/00595c5e33692e724937fdcc8870496acce1ac74" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:2.009ex;" alt="{\displaystyle \varnothing }"></span>, defined axiomatically, is a member of <span class="texhtml mvar" style="font-style:italic;">X</span> and, whenever a set <span class="texhtml mvar" style="font-style:italic;">y</span> is a member of <span class="texhtml mvar" style="font-style:italic;">X</span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S(y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S(y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7dd5b2a59aefd6e04e81166dfd687e0073cbddd7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.464ex; height:2.843ex;" alt="{\displaystyle S(y)}"></span> is also a member of <span class="texhtml mvar" style="font-style:italic;">X</span>. </p> <div style="margin-left:1.6em;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \exists X\left[\exists e(\forall z\,\neg (z\in e)\land e\in X)\land \forall y(y\in X\Rightarrow S(y)\in X)\right].}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∃<!-- ∃ --></mi> <mi>X</mi> <mrow> <mo>[</mo> <mrow> <mi mathvariant="normal">∃<!-- ∃ --></mi> <mi>e</mi> <mo stretchy="false">(</mo> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>z</mi> <mspace width="thinmathspace" /> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo>∈<!-- ∈ --></mo> <mi>e</mi> <mo stretchy="false">)</mo> <mo>∧<!-- ∧ --></mo> <mi>e</mi> <mo>∈<!-- ∈ --></mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>∧<!-- ∧ --></mo> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>y</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo>∈<!-- ∈ --></mo> <mi>X</mi> <mo stretchy="false">⇒<!-- ⇒ --></mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>∈<!-- ∈ --></mo> <mi>X</mi> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \exists X\left[\exists e(\forall z\,\neg (z\in e)\land e\in X)\land \forall y(y\in X\Rightarrow S(y)\in X)\right].}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/97fc6000c6c230fe64595d64e224d3e162723dd2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:55.514ex; height:2.843ex;" alt="{\displaystyle \exists X\left[\exists e(\forall z\,\neg (z\in e)\land e\in X)\land \forall y(y\in X\Rightarrow S(y)\in X)\right].}"></span></div> <p>or in modern notation: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \exists X\left[\varnothing \in X\land \forall y(y\in X\Rightarrow S(y)\in X)\right].}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∃<!-- ∃ --></mi> <mi>X</mi> <mrow> <mo>[</mo> <mrow> <mi class="MJX-variant">∅<!-- ∅ --></mi> <mo>∈<!-- ∈ --></mo> <mi>X</mi> <mo>∧<!-- ∧ --></mo> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>y</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo>∈<!-- ∈ --></mo> <mi>X</mi> <mo stretchy="false">⇒<!-- ⇒ --></mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>∈<!-- ∈ --></mo> <mi>X</mi> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \exists X\left[\varnothing \in X\land \forall y(y\in X\Rightarrow S(y)\in X)\right].}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd396541416f002cb2d9c916604004b292815d41" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:38.331ex; height:2.843ex;" alt="{\displaystyle \exists X\left[\varnothing \in X\land \forall y(y\in X\Rightarrow S(y)\in X)\right].}"></span> </p><p>More colloquially, there exists a set <span class="texhtml mvar" style="font-style:italic;">X</span> having infinitely many members. (It must be established, however, that these members are all different because if two elements are the same, the sequence will loop around in a finite cycle of sets. The axiom of regularity prevents this from happening.) The minimal set <span class="texhtml mvar" style="font-style:italic;">X</span> satisfying the axiom of infinity is the <a href="/wiki/Von_Neumann_ordinal" class="mw-redirect" title="Von Neumann ordinal">von Neumann ordinal</a> <span class="texhtml mvar" style="font-style:italic;">ω</span> which can also be thought of as the set of <a href="/wiki/Natural_numbers" class="mw-redirect" title="Natural numbers">natural numbers</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {N} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {N} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/682f44bd6a1ea39ecf1e21a8290b9d5b2f504505" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.325ex; height:2.176ex;" alt="{\displaystyle \mathbb {N} .}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Axiom_of_power_set">Axiom of power set</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zermelo%E2%80%93Fraenkel_set_theory&action=edit&section=11" title="Edit section: Axiom of power set"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Axiom_of_power_set" title="Axiom of power set">Axiom of power set</a></div> <p>By definition, a set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span> is a <a href="/wiki/Subset" title="Subset">subset</a> of a set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> if and only if every element of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span> is also an element of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>: </p> <div style="margin-left:1.6em;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (z\subseteq x)\Leftrightarrow (\forall q(q\in z\Rightarrow q\in x)).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>z</mi> <mo>⊆<!-- ⊆ --></mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">⇔<!-- ⇔ --></mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>q</mi> <mo stretchy="false">(</mo> <mi>q</mi> <mo>∈<!-- ∈ --></mo> <mi>z</mi> <mo stretchy="false">⇒<!-- ⇒ --></mo> <mi>q</mi> <mo>∈<!-- ∈ --></mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (z\subseteq x)\Leftrightarrow (\forall q(q\in z\Rightarrow q\in x)).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eb8e36c29323065ef23bb556025535dd143ee0e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.419ex; height:2.843ex;" alt="{\displaystyle (z\subseteq x)\Leftrightarrow (\forall q(q\in z\Rightarrow q\in x)).}"></span></div> <p>The Axiom of power set states that for any set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>, there is a set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> that contains every subset of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>: </p> <div style="margin-left:1.6em;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall x\exists y\forall z(z\subseteq x\Rightarrow z\in y).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>x</mi> <mi mathvariant="normal">∃<!-- ∃ --></mi> <mi>y</mi> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>z</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo>⊆<!-- ⊆ --></mo> <mi>x</mi> <mo stretchy="false">⇒<!-- ⇒ --></mo> <mi>z</mi> <mo>∈<!-- ∈ --></mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall x\exists y\forall z(z\subseteq x\Rightarrow z\in y).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4dca4099c86970338c6b368695272b102faca2bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.122ex; height:2.843ex;" alt="{\displaystyle \forall x\exists y\forall z(z\subseteq x\Rightarrow z\in y).}"></span></div> <p>The axiom schema of specification is then used to define the <a href="/wiki/Power_set" title="Power set">power set</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {P}}(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {P}}(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dcde29bc2e45577cf48fce37eace431df129adf0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.843ex; height:2.843ex;" alt="{\displaystyle {\mathcal {P}}(x)}"></span> as the subset of such a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> containing the subsets of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> exactly: </p> <div style="margin-left:1.6em;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {P}}(x)=\{z\in y:z\subseteq x\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>z</mi> <mo>∈<!-- ∈ --></mo> <mi>y</mi> <mo>:</mo> <mi>z</mi> <mo>⊆<!-- ⊆ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {P}}(x)=\{z\in y:z\subseteq x\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57cf028a170787a31b7baf21f30ae19e30f02459" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.451ex; height:2.843ex;" alt="{\displaystyle {\mathcal {P}}(x)=\{z\in y:z\subseteq x\}.}"></span></div> <p>Axioms <i>1–8</i> define ZF. Alternative forms of these axioms are often encountered, some of which are listed in <a href="#CITEREFJech2003">Jech (2003)</a>. Some ZF axiomatizations include an axiom asserting that the <a href="/wiki/Axiom_of_empty_set" title="Axiom of empty set">empty set exists</a>. The axioms of pairing, union, replacement, and power set are often stated so that the members of the set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> whose existence is being asserted are just those sets which the axiom asserts <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> must contain. </p><p>The following axiom is added to turn ZF into ZFC: </p> <div class="mw-heading mw-heading3"><h3 id="Axiom_of_well-ordering_(choice)"><span id="Axiom_of_well-ordering_.28choice.29"></span>Axiom of well-ordering (choice)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zermelo%E2%80%93Fraenkel_set_theory&action=edit&section=12" title="Edit section: Axiom of well-ordering (choice)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Axiom_of_choice" title="Axiom of choice">Axiom of choice</a>, <a href="/wiki/Well-ordering_theorem" title="Well-ordering theorem">Well-ordering theorem</a>, and <a href="/wiki/Zorn%27s_lemma" title="Zorn's lemma">Zorn's lemma</a></div> <p>The last axiom, commonly known as the <a href="/wiki/Axiom_of_choice" title="Axiom of choice">axiom of choice</a>, is presented here as a property about <a href="/wiki/Well-order" title="Well-order">well-orders</a>, as in <a href="#CITEREFKunen1980">Kunen (1980)</a>. For any set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>, there exists a <a href="/wiki/Binary_relation" title="Binary relation">binary relation</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> which <a href="/wiki/Well-order" title="Well-order">well-orders</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>. This means <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> is a <a href="/wiki/Linear_order" class="mw-redirect" title="Linear order">linear order</a> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> such that every nonempty <a href="/wiki/Subset" title="Subset">subset</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> has a <a href="/wiki/Least_element" class="mw-redirect" title="Least element">least element</a> under the order <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span>. </p> <div style="margin-left:1.6em;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall X\exists R(R\;{\mbox{well-orders}}\;X).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>X</mi> <mi mathvariant="normal">∃<!-- ∃ --></mi> <mi>R</mi> <mo stretchy="false">(</mo> <mi>R</mi> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>well-orders</mtext> </mstyle> </mrow> <mspace width="thickmathspace" /> <mi>X</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall X\exists R(R\;{\mbox{well-orders}}\;X).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0918c117b1c158b0238d494d9889f312e35e65b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.825ex; height:2.843ex;" alt="{\displaystyle \forall X\exists R(R\;{\mbox{well-orders}}\;X).}"></span></div> <p>Given axioms <i>1</i> – <i>8</i>, many statements are provably equivalent to axiom <i>9</i>. The most common of these goes as follows. Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> be a set whose members are all nonempty. Then there exists a function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> to the union of the members of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>, called a "<a href="/wiki/Choice_function" title="Choice function">choice function</a>", such that for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y\in X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> <mo>∈<!-- ∈ --></mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y\in X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40e3a25638fdb980820f99fc1e0f952a7d597300" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.594ex; height:2.176ex;" alt="{\displaystyle Y\in X}"></span> one has <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(Y)\in Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>∈<!-- ∈ --></mo> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(Y)\in Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a1cef089fbc818761bcd73559f15f9bf5a5e564f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.475ex; height:2.843ex;" alt="{\displaystyle f(Y)\in Y}"></span>. A third version of the axiom, also equivalent, is <a href="/wiki/Zorn%27s_lemma" title="Zorn's lemma">Zorn's lemma</a>. </p><p>Since the existence of a choice function when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is a <a href="/wiki/Finite_set" title="Finite set">finite set</a> is easily proved from axioms <i>1–8</i>, AC only matters for certain <a href="/wiki/Infinite_set" title="Infinite set">infinite sets</a>. AC is characterized as <a href="/wiki/Constructive_mathematics" class="mw-redirect" title="Constructive mathematics">nonconstructive</a> because it asserts the existence of a choice function but says nothing about how this choice function is to be "constructed". </p> <div class="mw-heading mw-heading2"><h2 id="Motivation_via_the_cumulative_hierarchy">Motivation via the cumulative hierarchy</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zermelo%E2%80%93Fraenkel_set_theory&action=edit&section=13" title="Edit section: Motivation via the cumulative hierarchy"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Von_Neumann_universe" title="Von Neumann universe">Von Neumann universe</a></div> <p>One motivation for the ZFC axioms is <a href="/wiki/The_cumulative_hierarchy" class="mw-redirect" title="The cumulative hierarchy">the cumulative hierarchy</a> of sets introduced by <a href="/wiki/John_von_Neumann" title="John von Neumann">John von Neumann</a>.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> In this viewpoint, the universe of set theory is built up in stages, with one stage for each <a href="/wiki/Ordinal_number" title="Ordinal number">ordinal number</a>. At stage 0, there are no sets yet. At each following stage, a set is added to the universe if all of its elements have been added at previous stages. Thus the empty set is added at stage 1, and the set containing the empty set is added at stage 2.<sup id="cite_ref-FOOTNOTEHinman2005467_11-0" class="reference"><a href="#cite_note-FOOTNOTEHinman2005467-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> The collection of all sets that are obtained in this way, over all the stages, is known as <i>V</i>. The sets in <i>V</i> can be arranged into a hierarchy by assigning to each set the first stage at which that set was added to <i>V</i>. </p><p>It is provable that a set is in <i>V</i> if and only if the set is <a href="/wiki/Pure_set" class="mw-redirect" title="Pure set">pure</a> and <a href="/wiki/Well-founded_set" class="mw-redirect" title="Well-founded set">well-founded</a>. And <i>V</i> satisfies all the axioms of ZFC if the class of ordinals has appropriate reflection properties. For example, suppose that a set <i>x</i> is added at stage α, which means that every element of <i>x</i> was added at a stage earlier than α. Then, every subset of <i>x</i> is also added at (or before) stage α, because all elements of any subset of <i>x</i> were also added before stage α. This means that any subset of <i>x</i> which the axiom of separation can construct is added at (or before) stage α, and that the powerset of <i>x</i> will be added at the next stage after α.<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> </p><p>The picture of the universe of sets stratified into the cumulative hierarchy is characteristic of ZFC and related axiomatic set theories such as <a href="/wiki/Von_Neumann%E2%80%93Bernays%E2%80%93G%C3%B6del_set_theory" title="Von Neumann–Bernays–Gödel set theory">Von Neumann–Bernays–Gödel set theory</a> (often called NBG) and <a href="/wiki/Morse%E2%80%93Kelley_set_theory" title="Morse–Kelley set theory">Morse–Kelley set theory</a>. The cumulative hierarchy is not compatible with other set theories such as <a href="/wiki/New_Foundations" title="New Foundations">New Foundations</a>. </p><p>It is possible to change the definition of <i>V</i> so that at each stage, instead of adding all the subsets of the union of the previous stages, subsets are only added if they are definable in a certain sense. This results in a more "narrow" hierarchy, which gives the <a href="/wiki/Constructible_universe" title="Constructible universe">constructible universe</a> <i>L</i>, which also satisfies all the axioms of ZFC, including the axiom of choice. It is independent from the ZFC axioms whether <i>V</i> = <i>L</i>. Although the structure of <i>L</i> is more regular and well behaved than that of <i>V</i>, few mathematicians argue that <i>V</i> = <i>L</i> should be added to ZFC as an additional "<a href="/wiki/Axiom_of_constructibility" title="Axiom of constructibility">axiom of constructibility</a>". </p> <div class="mw-heading mw-heading2"><h2 id="Metamathematics">Metamathematics</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zermelo%E2%80%93Fraenkel_set_theory&action=edit&section=14" title="Edit section: Metamathematics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Virtual_classes">Virtual classes</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zermelo%E2%80%93Fraenkel_set_theory&action=edit&section=15" title="Edit section: Virtual classes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Proper classes (collections of mathematical objects defined by a property shared by their members which are too big to be sets) can only be treated indirectly in ZF (and thus ZFC). An alternative to proper classes while staying within ZF and ZFC is the <i>virtual class</i> notational construct introduced by <a href="#CITEREFQuine1969">Quine (1969)</a>, where the entire construct <i>y</i> ∈ { <i>x</i> | F<i>x</i> } is simply defined as F<i>y</i>.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> This provides a simple notation for classes that can contain sets but need not themselves be sets, while not committing to the ontology of classes (because the notation can be syntactically converted to one that only uses sets). Quine's approach built on the earlier approach of <a href="#CITEREFBernaysFraenkel1958">Bernays & Fraenkel (1958)</a>. Virtual classes are also used in <a href="#CITEREFLevy2002">Levy (2002)</a>, <a href="#CITEREFTakeutiZaring1982">Takeuti & Zaring (1982)</a>, and in the <a href="/wiki/Metamath" title="Metamath">Metamath</a> implementation of ZFC. </p> <div class="mw-heading mw-heading3"><h3 id="Finite_axiomatization">Finite axiomatization</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zermelo%E2%80%93Fraenkel_set_theory&action=edit&section=16" title="Edit section: Finite axiomatization"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Von_Neumann%E2%80%93Bernays%E2%80%93G%C3%B6del_set_theory" title="Von Neumann–Bernays–Gödel set theory">Von Neumann–Bernays–Gödel set theory</a></div> <p>The axiom schemata of replacement and separation each contain infinitely many instances. <a href="#CITEREFMontague1961">Montague (1961)</a> included a result first proved in his 1957 Ph.D. thesis: if ZFC is consistent, it is impossible to axiomatize ZFC using only finitely many axioms. On the other hand, <a href="/wiki/Von_Neumann%E2%80%93Bernays%E2%80%93G%C3%B6del_set_theory" title="Von Neumann–Bernays–Gödel set theory">von Neumann–Bernays–Gödel set theory</a> (NBG) can be finitely axiomatized. The ontology of NBG includes <a href="/wiki/Class_(set_theory)" title="Class (set theory)">proper classes</a> as well as sets; a set is any class that can be a member of another class. NBG and ZFC are equivalent set theories in the sense that any <a href="/wiki/Theorem" title="Theorem">theorem</a> not mentioning classes and provable in one theory can be proved in the other. </p> <div class="mw-heading mw-heading3"><h3 id="Consistency">Consistency</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zermelo%E2%80%93Fraenkel_set_theory&action=edit&section=17" title="Edit section: Consistency"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/G%C3%B6del%27s_second_incompleteness_theorem" class="mw-redirect" title="Gödel's second incompleteness theorem">Gödel's second incompleteness theorem</a> says that a recursively axiomatizable system that can interpret <a href="/wiki/Robinson_arithmetic" title="Robinson arithmetic">Robinson arithmetic</a> can prove its own consistency only if it is inconsistent. Moreover, Robinson arithmetic can be interpreted in <a href="/wiki/General_set_theory" title="General set theory">general set theory</a>, a small fragment of ZFC. Hence the <a href="/wiki/Consistency_proof" class="mw-redirect" title="Consistency proof">consistency</a> of ZFC cannot be proved within ZFC itself (unless it is actually inconsistent). Thus, to the extent that ZFC is identified with ordinary mathematics, the consistency of ZFC cannot be demonstrated in ordinary mathematics. The consistency of ZFC does follow from the existence of a weakly <a href="/wiki/Inaccessible_cardinal" title="Inaccessible cardinal">inaccessible cardinal</a>, which is unprovable in ZFC if ZFC is consistent. Nevertheless, it is deemed unlikely that ZFC harbors an unsuspected contradiction; it is widely believed that if ZFC were inconsistent, that fact would have been uncovered by now. This much is certain — ZFC is immune to the classic paradoxes of <a href="/wiki/Naive_set_theory" title="Naive set theory">naive set theory</a>: <a href="/wiki/Russell%27s_paradox" title="Russell's paradox">Russell's paradox</a>, the <a href="/wiki/Burali-Forti_paradox" title="Burali-Forti paradox">Burali-Forti paradox</a>, and <a href="/wiki/Cantor%27s_paradox" title="Cantor's paradox">Cantor's paradox</a>. </p><p><a href="#CITEREFAbianLaMacchia1978">Abian & LaMacchia (1978)</a> studied a <a href="/wiki/Subtheory" class="mw-redirect" title="Subtheory">subtheory</a> of ZFC consisting of the axioms of extensionality, union, powerset, replacement, and choice. Using <a href="/wiki/Model_theory" title="Model theory">models</a>, they proved this subtheory consistent, and proved that each of the axioms of extensionality, replacement, and power set is independent of the four remaining axioms of this subtheory. If this subtheory is augmented with the axiom of infinity, each of the axioms of union, choice, and infinity is independent of the five remaining axioms. Because there are non-well-founded models that satisfy each axiom of ZFC except the axiom of regularity, that axiom is independent of the other ZFC axioms. </p><p>If consistent, ZFC cannot prove the existence of the <a href="/wiki/Inaccessible_cardinal" title="Inaccessible cardinal">inaccessible cardinals</a> that <a href="/wiki/Category_theory" title="Category theory">category theory</a> requires. Huge sets of this nature are possible if ZF is augmented with <a href="/wiki/Tarski%E2%80%93Grothendieck_set_theory" title="Tarski–Grothendieck set theory">Tarski's axiom</a>.<sup id="cite_ref-FOOTNOTETarski1939_14-0" class="reference"><a href="#cite_note-FOOTNOTETarski1939-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> Assuming that axiom turns the axioms of <a href="/wiki/Axiom_of_infinity" title="Axiom of infinity">infinity</a>, <a href="/wiki/Axiom_of_power_set" title="Axiom of power set">power set</a>, and <a href="/wiki/Axiom_of_choice" title="Axiom of choice">choice</a> (<i>7</i> – <i>9</i> above) into theorems. </p> <div class="mw-heading mw-heading3"><h3 id="Independence">Independence</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zermelo%E2%80%93Fraenkel_set_theory&action=edit&section=18" title="Edit section: Independence"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Many important statements are <a href="/wiki/Logical_independence" class="mw-redirect" title="Logical independence">independent</a> <a href="/wiki/List_of_statements_independent_of_ZFC" title="List of statements independent of ZFC">of ZFC</a>. The independence is usually proved by <a href="/wiki/Forcing_(mathematics)" title="Forcing (mathematics)">forcing</a>, whereby it is shown that every countable transitive <a href="/wiki/Model_theory" title="Model theory">model</a> of ZFC (sometimes augmented with <a href="/wiki/Large_cardinal_axiom" class="mw-redirect" title="Large cardinal axiom">large cardinal axioms</a>) can be expanded to satisfy the statement in question. A different expansion is then shown to satisfy the negation of the statement. An independence proof by forcing automatically proves independence from arithmetical statements, other concrete statements, and large cardinal axioms. Some statements independent of ZFC can be proven to hold in particular <a href="/wiki/Inner_model" title="Inner model">inner models</a>, such as in the <a href="/wiki/Constructible_universe" title="Constructible universe">constructible universe</a>. However, some statements that are true about constructible sets are not consistent with hypothesized large cardinal axioms. </p><p>Forcing proves that the following statements are independent of ZFC: </p> <ul><li><a href="/wiki/Axiom_of_constructibility" title="Axiom of constructibility">Axiom of constructibility (V=L)</a> (which is also not a ZFC axiom)</li> <li><a href="/wiki/Continuum_hypothesis" title="Continuum hypothesis">Continuum hypothesis</a></li> <li><a href="/wiki/Diamondsuit" class="mw-redirect" title="Diamondsuit">Diamond principle</a></li> <li><a href="/wiki/Martin%27s_axiom" title="Martin's axiom">Martin's axiom</a> (which is not a ZFC axiom)</li> <li><a href="/wiki/Suslin%27s_problem" title="Suslin's problem">Suslin hypothesis</a></li></ul> <p>Remarks: </p> <ul><li>The consistency of V=L is provable by <a href="/wiki/Inner_model" title="Inner model">inner models</a> but not forcing: every model of ZF can be trimmed to become a model of ZFC + V=L.</li> <li>The diamond principle implies the continuum hypothesis and the negation of the Suslin hypothesis.</li> <li>Martin's axiom plus the negation of the continuum hypothesis implies the Suslin hypothesis.</li> <li>The <a href="/wiki/Constructible_universe" title="Constructible universe">constructible universe</a> satisfies the <a href="/wiki/Generalized_Continuum_Hypothesis" class="mw-redirect" title="Generalized Continuum Hypothesis">generalized continuum hypothesis</a>, the diamond principle, Martin's axiom and the Kurepa hypothesis.</li> <li>The failure of the <a href="/wiki/Kurepa_tree" title="Kurepa tree">Kurepa hypothesis</a> is equiconsistent with the existence of a <a href="/wiki/Strongly_inaccessible_cardinal" class="mw-redirect" title="Strongly inaccessible cardinal">strongly inaccessible cardinal</a>.</li></ul> <p>A variation on the method of <a href="/wiki/Forcing_(mathematics)" title="Forcing (mathematics)">forcing</a> can also be used to demonstrate the consistency and unprovability of the <a href="/wiki/Axiom_of_choice" title="Axiom of choice">axiom of choice</a>, i.e., that the axiom of choice is independent of ZF. The consistency of choice can be (relatively) easily verified by proving that the inner model L satisfies choice. (Thus every model of ZF contains a submodel of ZFC, so that Con(ZF) implies Con(ZFC).) Since forcing preserves choice, we cannot directly produce a model contradicting choice from a model satisfying choice. However, we can use forcing to create a model which contains a suitable submodel, namely one satisfying ZF but not C. </p><p>Another method of proving independence results, one owing nothing to forcing, is based on Gödel's second incompleteness theorem. This approach employs the statement whose independence is being examined, to prove the existence of a set model of ZFC, in which case Con(ZFC) is true. Since ZFC satisfies the conditions of Gödel's second theorem, the consistency of ZFC is unprovable in ZFC (provided that ZFC is, in fact, consistent). Hence no statement allowing such a proof can be proved in ZFC. This method can prove that the existence of <a href="/wiki/Large_cardinals" class="mw-redirect" title="Large cardinals">large cardinals</a> is not provable in ZFC, but cannot prove that assuming such cardinals, given ZFC, is free of contradiction. </p> <div class="mw-heading mw-heading3"><h3 id="Proposed_additions">Proposed additions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zermelo%E2%80%93Fraenkel_set_theory&action=edit&section=19" title="Edit section: Proposed additions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The project to unify set theorists behind additional axioms to resolve the continuum hypothesis or other meta-mathematical ambiguities is sometimes known as "Gödel's program".<sup id="cite_ref-FOOTNOTEFeferman1996_15-0" class="reference"><a href="#cite_note-FOOTNOTEFeferman1996-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> Mathematicians currently debate which axioms are the most plausible or "self-evident", which axioms are the most useful in various domains, and about to what degree usefulness should be traded off with plausibility; some "<a href="/wiki/Multiverse_(set_theory)" title="Multiverse (set theory)">multiverse</a>" set theorists argue that usefulness should be the sole ultimate criterion in which axioms to customarily adopt. One school of thought leans on expanding the "iterative" concept of a set to produce a set-theoretic universe with an interesting and complex but reasonably tractable structure by adopting forcing axioms; another school advocates for a tidier, less cluttered universe, perhaps focused on a "core" inner model.<sup id="cite_ref-FOOTNOTEWolchover2013_16-0" class="reference"><a href="#cite_note-FOOTNOTEWolchover2013-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Criticisms">Criticisms</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zermelo%E2%80%93Fraenkel_set_theory&action=edit&section=20" title="Edit section: Criticisms"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Projective_determinacy" class="mw-redirect" title="Projective determinacy">projective determinacy</a></div> <p>ZFC has been criticized both for being excessively strong and for being excessively weak, as well as for its failure to capture objects such as proper classes and the <a href="/wiki/Universal_set" title="Universal set">universal set</a>. </p><p>Many mathematical theorems can be proven in much weaker systems than ZFC, such as <a href="/wiki/Peano_arithmetic" class="mw-redirect" title="Peano arithmetic">Peano arithmetic</a> and <a href="/wiki/Second-order_arithmetic" title="Second-order arithmetic">second-order arithmetic</a> (as explored by the program of <a href="/wiki/Reverse_mathematics" title="Reverse mathematics">reverse mathematics</a>). <a href="/wiki/Saunders_Mac_Lane" title="Saunders Mac Lane">Saunders Mac Lane</a> and <a href="/wiki/Solomon_Feferman" title="Solomon Feferman">Solomon Feferman</a> have both made this point. Some of "mainstream mathematics" (mathematics not directly connected with axiomatic set theory) is beyond Peano arithmetic and second-order arithmetic, but still, all such mathematics can be carried out in ZC (<a href="/wiki/Zermelo_set_theory" title="Zermelo set theory">Zermelo set theory</a> with choice), another theory weaker than ZFC. Much of the power of ZFC, including the axiom of regularity and the axiom schema of replacement, is included primarily to facilitate the study of the set theory itself. </p><p>On the other hand, among <a href="/wiki/Axiomatic_set_theories" class="mw-redirect" title="Axiomatic set theories">axiomatic set theories</a>, ZFC is comparatively weak. Unlike <a href="/wiki/New_Foundations" title="New Foundations">New Foundations</a>, ZFC does not admit the existence of a universal set. Hence the <a href="/wiki/Universe_(mathematics)" title="Universe (mathematics)">universe</a> of sets under ZFC is not closed under the elementary operations of the <a href="/wiki/Algebra_of_sets" title="Algebra of sets">algebra of sets</a>. Unlike <a href="/wiki/Von_Neumann%E2%80%93Bernays%E2%80%93G%C3%B6del_set_theory" title="Von Neumann–Bernays–Gödel set theory">von Neumann–Bernays–Gödel set theory</a> (NBG) and <a href="/wiki/Morse%E2%80%93Kelley_set_theory" title="Morse–Kelley set theory">Morse–Kelley set theory</a> (MK), ZFC does not admit the existence of <a href="/wiki/Proper_class" class="mw-redirect" title="Proper class">proper classes</a>. A further comparative weakness of ZFC is that the <a href="/wiki/Axiom_of_choice" title="Axiom of choice">axiom of choice</a> included in ZFC is weaker than the <a href="/wiki/Axiom_of_global_choice" title="Axiom of global choice">axiom of global choice</a> included in NBG and MK. </p><p>There are numerous <a href="/wiki/List_of_statements_undecidable_in_ZFC" class="mw-redirect" title="List of statements undecidable in ZFC">mathematical statements independent of ZFC</a>. These include the <a href="/wiki/Continuum_hypothesis" title="Continuum hypothesis">continuum hypothesis</a>, the <a href="/wiki/Whitehead_problem" title="Whitehead problem">Whitehead problem</a>, and the <a href="/wiki/Moore_space_(topology)" title="Moore space (topology)">normal Moore space conjecture</a>. Some of these conjectures are provable with the addition of axioms such as <a href="/wiki/Martin%27s_axiom" title="Martin's axiom">Martin's axiom</a> or <a href="/wiki/Large_cardinal_axiom" class="mw-redirect" title="Large cardinal axiom">large cardinal axioms</a> to ZFC. Some others are decided in ZF+AD where AD is the <a href="/wiki/Axiom_of_determinacy" title="Axiom of determinacy">axiom of determinacy</a>, a strong supposition incompatible with choice. One attraction of large cardinal axioms is that they enable many results from ZF+AD to be established in ZFC adjoined by some large cardinal axiom. The <a href="/wiki/Mizar_system" title="Mizar system">Mizar system</a> and <a href="/wiki/Metamath" title="Metamath">metamath</a> have adopted <a href="/wiki/Tarski%E2%80%93Grothendieck_set_theory" title="Tarski–Grothendieck set theory">Tarski–Grothendieck set theory</a>, an extension of ZFC, so that proofs involving <a href="/wiki/Grothendieck_universe" title="Grothendieck universe">Grothendieck universes</a> (encountered in category theory and algebraic geometry) can be formalized. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zermelo%E2%80%93Fraenkel_set_theory&action=edit&section=21" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Foundations_of_mathematics" title="Foundations of mathematics">Foundations of mathematics</a></li> <li><a href="/wiki/Inner_model" title="Inner model">Inner model</a></li> <li><a href="/wiki/Large_cardinal_axiom" class="mw-redirect" title="Large cardinal axiom">Large cardinal axiom</a></li></ul> <p>Related <a href="/wiki/Axiomatic_set_theories" class="mw-redirect" title="Axiomatic set theories">axiomatic set theories</a>: </p> <ul><li><a href="/wiki/Morse%E2%80%93Kelley_set_theory" title="Morse–Kelley set theory">Morse–Kelley set theory</a></li> <li><a href="/wiki/Von_Neumann%E2%80%93Bernays%E2%80%93G%C3%B6del_set_theory" title="Von Neumann–Bernays–Gödel set theory">Von Neumann–Bernays–Gödel set theory</a></li> <li><a href="/wiki/Tarski%E2%80%93Grothendieck_set_theory" title="Tarski–Grothendieck set theory">Tarski–Grothendieck set theory</a></li> <li><a href="/wiki/Constructive_set_theory" title="Constructive set theory">Constructive set theory</a></li> <li><a href="/wiki/Internal_set_theory" title="Internal set theory">Internal set theory</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zermelo%E2%80%93Fraenkel_set_theory&action=edit&section=22" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><a href="#CITEREFCiesielski1997">Ciesielski 1997</a>, p. 4: "Zermelo-Fraenkel axioms (abbreviated as ZFC where C stands for the axiom of Choice)"</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><a href="#CITEREFKunen2007">Kunen 2007</a>, p. 10</span> </li> <li id="cite_note-FOOTNOTEEbbinghaus2007136-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEEbbinghaus2007136_3-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFEbbinghaus2007">Ebbinghaus 2007</a>, p. 136.</span> </li> <li id="cite_note-FOOTNOTEHalbeisen201162–63-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEHalbeisen201162–63_4-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFHalbeisen2011">Halbeisen 2011</a>, pp. 62–63.</span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><a href="#CITEREFFraenkelBar-HillelLévy1973">Fraenkel, Bar-Hillel & Lévy 1973</a></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><a href="#CITEREFKunen1980">Kunen 1980</a>, p. 10.</span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><a href="#CITEREFHatcher1982">Hatcher 1982</a>, p. 138, def. 1.</span> </li> <li id="cite_note-FOOTNOTEFraenkelBar-HillelLévy1973-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEFraenkelBar-HillelLévy1973_8-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFFraenkelBar-HillelLévy1973">Fraenkel, Bar-Hillel & Lévy 1973</a>.</span> </li> <li id="cite_note-FOOTNOTEShoenfield2001239-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEShoenfield2001239_9-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFShoenfield2001">Shoenfield 2001</a>, p. 239.</span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><a href="#CITEREFShoenfield1977">Shoenfield 1977</a>, section 2.</span> </li> <li id="cite_note-FOOTNOTEHinman2005467-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEHinman2005467_11-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFHinman2005">Hinman 2005</a>, p. 467.</span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text">For a complete argument that <i>V</i> satisfies ZFC see <a href="#CITEREFShoenfield1977">Shoenfield (1977)</a>.</span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><a href="#CITEREFLink2014">Link 2014</a></span> </li> <li id="cite_note-FOOTNOTETarski1939-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTETarski1939_14-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFTarski1939">Tarski 1939</a>.</span> </li> <li id="cite_note-FOOTNOTEFeferman1996-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEFeferman1996_15-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFFeferman1996">Feferman 1996</a>.</span> </li> <li id="cite_note-FOOTNOTEWolchover2013-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEWolchover2013_16-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFWolchover2013">Wolchover 2013</a>.</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="Bibliography">Bibliography</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zermelo%E2%80%93Fraenkel_set_theory&action=edit&section=23" title="Edit section: Bibliography"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239549316">.mw-parser-output .refbegin{margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li{margin-left:0;padding-left:3.2em;text-indent:-3.2em}.mw-parser-output .refbegin-hanging-indents ul,.mw-parser-output .refbegin-hanging-indents ul li{list-style:none}@media(max-width:720px){.mw-parser-output .refbegin-hanging-indents>ul>li{padding-left:1.6em;text-indent:-1.6em}}.mw-parser-output .refbegin-columns{margin-top:0.3em}.mw-parser-output .refbegin-columns ul{margin-top:0}.mw-parser-output .refbegin-columns li{page-break-inside:avoid;break-inside:avoid-column}@media screen{.mw-parser-output .refbegin{font-size:90%}}</style><div class="refbegin refbegin-columns references-column-width" style="column-width: 30em"> <ul><li><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFAbian1965" class="citation book cs1"><a href="/wiki/Alexander_Abian" title="Alexander Abian">Abian, Alexander</a> (1965). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/theoryofsetstran00abia"><i>The Theory of Sets and Transfinite Arithmetic</i></a></span>. W B Saunders.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Theory+of+Sets+and+Transfinite+Arithmetic&rft.pub=W+B+Saunders&rft.date=1965&rft.aulast=Abian&rft.aufirst=Alexander&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Ftheoryofsetstran00abia&rfr_id=info%3Asid%2Fen.wikipedia.org%3AZermelo%E2%80%93Fraenkel+set+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAbianLaMacchia1978" class="citation journal cs1">———; LaMacchia, Samuel (1978). <a rel="nofollow" class="external text" href="https://doi.org/10.1305%2Fndjfl%2F1093888220">"On the Consistency and Independence of Some Set-Theoretical Axioms"</a>. <i>Notre Dame Journal of Formal Logic</i>. <b>19</b>: 155–58. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1305%2Fndjfl%2F1093888220">10.1305/ndjfl/1093888220</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Notre+Dame+Journal+of+Formal+Logic&rft.atitle=On+the+Consistency+and+Independence+of+Some+Set-Theoretical+Axioms&rft.volume=19&rft.pages=155-58&rft.date=1978&rft_id=info%3Adoi%2F10.1305%2Fndjfl%2F1093888220&rft.aulast=Abian&rft.aufirst=Alexander&rft.au=LaMacchia%2C+Samuel&rft_id=https%3A%2F%2Fdoi.org%2F10.1305%252Fndjfl%252F1093888220&rfr_id=info%3Asid%2Fen.wikipedia.org%3AZermelo%E2%80%93Fraenkel+set+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBernaysFraenkel1958" class="citation book cs1">Bernays, Paul; Fraenkel, A.A. (1958). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/axiomaticsettheo0000bern"><i>Axiomatic Set Theory</i></a></span>. Amsterdam: North Holland.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Axiomatic+Set+Theory&rft.place=Amsterdam&rft.pub=North+Holland&rft.date=1958&rft.aulast=Bernays&rft.aufirst=Paul&rft.au=Fraenkel%2C+A.A.&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Faxiomaticsettheo0000bern&rfr_id=info%3Asid%2Fen.wikipedia.org%3AZermelo%E2%80%93Fraenkel+set+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCiesielski1997" class="citation book cs1">Ciesielski, Krzysztof (1997). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=tTEaMFvzhDAC"><i>Set Theory for the Working Mathematician</i></a>. Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-521-59441-3" title="Special:BookSources/0-521-59441-3"><bdi>0-521-59441-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Set+Theory+for+the+Working+Mathematician&rft.pub=Cambridge+University+Press&rft.date=1997&rft.isbn=0-521-59441-3&rft.aulast=Ciesielski&rft.aufirst=Krzysztof&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DtTEaMFvzhDAC&rfr_id=info%3Asid%2Fen.wikipedia.org%3AZermelo%E2%80%93Fraenkel+set+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDevlin1996" class="citation book cs1"><a href="/wiki/Keith_Devlin" title="Keith Devlin">Devlin, Keith</a> (1996) [First published 1984]. <i>The Joy of Sets</i>. <a href="/wiki/Springer_Science%2BBusiness_Media" title="Springer Science+Business Media">Springer</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Joy+of+Sets&rft.pub=Springer&rft.date=1996&rft.aulast=Devlin&rft.aufirst=Keith&rfr_id=info%3Asid%2Fen.wikipedia.org%3AZermelo%E2%80%93Fraenkel+set+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEbbinghaus2007" class="citation book cs1"><a href="/wiki/Heinz-Dieter_Ebbinghaus" title="Heinz-Dieter Ebbinghaus">Ebbinghaus, Heinz-Dieter</a> (2007). <i>Ernst Zermelo: An Approach to His Life and Work</i>. Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-540-49551-2" title="Special:BookSources/978-3-540-49551-2"><bdi>978-3-540-49551-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Ernst+Zermelo%3A+An+Approach+to+His+Life+and+Work&rft.pub=Springer&rft.date=2007&rft.isbn=978-3-540-49551-2&rft.aulast=Ebbinghaus&rft.aufirst=Heinz-Dieter&rfr_id=info%3Asid%2Fen.wikipedia.org%3AZermelo%E2%80%93Fraenkel+set+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFeferman1996" class="citation book cs1"><a href="/wiki/Solomon_Feferman" title="Solomon Feferman">Feferman, Solomon</a> (1996). <a rel="nofollow" class="external text" href="https://projecteuclid.org/euclid.lnl/1235417011">"Gödel's program for new axioms: why, where, how and what?"</a>. In <a href="/wiki/Petr_H%C3%A1jek" title="Petr Hájek">Hájek, Petr</a> (ed.). <a rel="nofollow" class="external text" href="https://projecteuclid.org/euclid.lnl/1235417007"><i>Gödel '96: Logical foundations of mathematics, computer science and physics–Kurt Gödel's legacy</i></a>. Springer-Verlag. pp. 3–22. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/3-540-61434-6" title="Special:BookSources/3-540-61434-6"><bdi>3-540-61434-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=G%C3%B6del%27s+program+for+new+axioms%3A+why%2C+where%2C+how+and+what%3F&rft.btitle=G%C3%B6del+%2796%3A+Logical+foundations+of+mathematics%2C+computer+science+and+physics%E2%80%93Kurt+G%C3%B6del%27s+legacy&rft.pages=3-22&rft.pub=Springer-Verlag&rft.date=1996&rft.isbn=3-540-61434-6&rft.aulast=Feferman&rft.aufirst=Solomon&rft_id=https%3A%2F%2Fprojecteuclid.org%2Feuclid.lnl%2F1235417011&rfr_id=info%3Asid%2Fen.wikipedia.org%3AZermelo%E2%80%93Fraenkel+set+theory" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFraenkelBar-HillelLévy1973" class="citation book cs1"><a href="/wiki/Abraham_Fraenkel" title="Abraham Fraenkel">Fraenkel, Abraham</a>; <a href="/wiki/Yehoshua_Bar-Hillel" title="Yehoshua Bar-Hillel">Bar-Hillel, Yehoshua</a>; <a href="/wiki/Azriel_L%C3%A9vy" title="Azriel Lévy">Lévy, Azriel</a> (1973) [First published 1958]. <i>Foundations of Set Theory</i>. <a href="/wiki/North-Holland_Publishing_Company" class="mw-redirect" title="North-Holland Publishing Company">North-Holland</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Foundations+of+Set+Theory&rft.pub=North-Holland&rft.date=1973&rft.aulast=Fraenkel&rft.aufirst=Abraham&rft.au=Bar-Hillel%2C+Yehoshua&rft.au=L%C3%A9vy%2C+Azriel&rfr_id=info%3Asid%2Fen.wikipedia.org%3AZermelo%E2%80%93Fraenkel+set+theory" class="Z3988"></span> Fraenkel's final word on ZF and ZFC.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHalbeisen2011" class="citation book cs1">Halbeisen, Lorenz J. (2011). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=NZVb54INnywC&pg=PA62"><i>Combinatorial Set Theory: With a Gentle Introduction to Forcing</i></a>. Springer. pp. 62–63. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4471-2172-5" title="Special:BookSources/978-1-4471-2172-5"><bdi>978-1-4471-2172-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Combinatorial+Set+Theory%3A+With+a+Gentle+Introduction+to+Forcing&rft.pages=62-63&rft.pub=Springer&rft.date=2011&rft.isbn=978-1-4471-2172-5&rft.aulast=Halbeisen&rft.aufirst=Lorenz+J.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DNZVb54INnywC%26pg%3DPA62&rfr_id=info%3Asid%2Fen.wikipedia.org%3AZermelo%E2%80%93Fraenkel+set+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHatcher1982" class="citation book cs1">Hatcher, William (1982) [First published 1968]. <i>The Logical Foundations of Mathematics</i>. <a href="/wiki/Pergamon_Press" title="Pergamon Press">Pergamon Press</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Logical+Foundations+of+Mathematics&rft.pub=Pergamon+Press&rft.date=1982&rft.aulast=Hatcher&rft.aufirst=William&rfr_id=info%3Asid%2Fen.wikipedia.org%3AZermelo%E2%80%93Fraenkel+set+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFvan_Heijenoort1967" class="citation book cs1">van Heijenoort, Jean (1967). <i>From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931</i>. <a href="/wiki/Harvard_University_Press" title="Harvard University Press">Harvard University Press</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=From+Frege+to+G%C3%B6del%3A+A+Source+Book+in+Mathematical+Logic%2C+1879%E2%80%931931&rft.pub=Harvard+University+Press&rft.date=1967&rft.aulast=van+Heijenoort&rft.aufirst=Jean&rfr_id=info%3Asid%2Fen.wikipedia.org%3AZermelo%E2%80%93Fraenkel+set+theory" class="Z3988"></span> Includes annotated English translations of the classic articles by <a href="/wiki/Zermelo" class="mw-redirect" title="Zermelo">Zermelo</a>, <a href="/wiki/Abraham_Fraenkel" title="Abraham Fraenkel">Fraenkel</a>, and <a href="/wiki/Skolem" class="mw-redirect" title="Skolem">Skolem</a> bearing on <b>ZFC</b>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHinman2005" class="citation book cs1">Hinman, Peter (2005). <i>Fundamentals of Mathematical Logic</i>. <a href="/wiki/A_K_Peters" title="A K Peters">A K Peters</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-56881-262-5" title="Special:BookSources/978-1-56881-262-5"><bdi>978-1-56881-262-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Fundamentals+of+Mathematical+Logic&rft.pub=A+K+Peters&rft.date=2005&rft.isbn=978-1-56881-262-5&rft.aulast=Hinman&rft.aufirst=Peter&rfr_id=info%3Asid%2Fen.wikipedia.org%3AZermelo%E2%80%93Fraenkel+set+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJech2003" class="citation book cs1"><a href="/wiki/Thomas_Jech" title="Thomas Jech">Jech, Thomas</a> (2003). <i>Set Theory: The Third Millennium Edition, Revised and Expanded</i>. Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/3-540-44085-2" title="Special:BookSources/3-540-44085-2"><bdi>3-540-44085-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Set+Theory%3A+The+Third+Millennium+Edition%2C+Revised+and+Expanded&rft.pub=Springer&rft.date=2003&rft.isbn=3-540-44085-2&rft.aulast=Jech&rft.aufirst=Thomas&rfr_id=info%3Asid%2Fen.wikipedia.org%3AZermelo%E2%80%93Fraenkel+set+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKunen1980" class="citation book cs1"><a href="/wiki/Kenneth_Kunen" title="Kenneth Kunen">Kunen, Kenneth</a> (1980). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/settheoryintrodu0000kune"><i>Set Theory: An Introduction to Independence Proofs</i></a></span>. <a href="/wiki/Elsevier" title="Elsevier">Elsevier</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-444-86839-9" title="Special:BookSources/0-444-86839-9"><bdi>0-444-86839-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Set+Theory%3A+An+Introduction+to+Independence+Proofs&rft.pub=Elsevier&rft.date=1980&rft.isbn=0-444-86839-9&rft.aulast=Kunen&rft.aufirst=Kenneth&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fsettheoryintrodu0000kune&rfr_id=info%3Asid%2Fen.wikipedia.org%3AZermelo%E2%80%93Fraenkel+set+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKunen2007" class="citation book cs1"><a href="/wiki/Kenneth_Kunen" title="Kenneth Kunen">Kunen, Kenneth</a> (29 October 2007). <a rel="nofollow" class="external text" href="https://people.math.wisc.edu/~awmille1/old/m771-10/kunen770.pdf"><i>The Foundations of Mathematics</i></a> <span class="cs1-format">(PDF)</span>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230907154421/https://people.math.wisc.edu/~awmille1/old/m771-10/kunen770.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 7 September 2023.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Foundations+of+Mathematics&rft.date=2007-10-29&rft.aulast=Kunen&rft.aufirst=Kenneth&rft_id=https%3A%2F%2Fpeople.math.wisc.edu%2F~awmille1%2Fold%2Fm771-10%2Fkunen770.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AZermelo%E2%80%93Fraenkel+set+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLevy2002" class="citation book cs1">Levy, Azriel (2002). <i>Basic Set Theory</i>. Dover Publications. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/048642079-5" title="Special:BookSources/048642079-5"><bdi>048642079-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Basic+Set+Theory&rft.pub=Dover+Publications&rft.date=2002&rft.isbn=048642079-5&rft.aulast=Levy&rft.aufirst=Azriel&rfr_id=info%3Asid%2Fen.wikipedia.org%3AZermelo%E2%80%93Fraenkel+set+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLink2014" class="citation book cs1">Link, Godehard (2014). <i>Formalism and Beyond: On the Nature of Mathematical Discourse</i>. Walter de Gruyter GmbH & Co KG. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-61451-829-7" title="Special:BookSources/978-1-61451-829-7"><bdi>978-1-61451-829-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Formalism+and+Beyond%3A+On+the+Nature+of+Mathematical+Discourse&rft.pub=Walter+de+Gruyter+GmbH+%26+Co+KG&rft.date=2014&rft.isbn=978-1-61451-829-7&rft.aulast=Link&rft.aufirst=Godehard&rfr_id=info%3Asid%2Fen.wikipedia.org%3AZermelo%E2%80%93Fraenkel+set+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMontague1961" class="citation book cs1"><a href="/wiki/Richard_Montague" title="Richard Montague">Montague, Richard</a> (1961). "Semantical closure and non-finite axiomatizability". <i>Infinistic Methods</i>. London: Pergamon Press. pp. 45–69.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Semantical+closure+and+non-finite+axiomatizability&rft.btitle=Infinistic+Methods&rft.place=London&rft.pages=45-69&rft.pub=Pergamon+Press&rft.date=1961&rft.aulast=Montague&rft.aufirst=Richard&rfr_id=info%3Asid%2Fen.wikipedia.org%3AZermelo%E2%80%93Fraenkel+set+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFQuine1969" class="citation book cs1">Quine, Willard van Orman (1969). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/settheoryitslogi0000quin_j8m3"><i>Set Theory and Its Logic</i></a></span> (Revised ed.). Cambridge, Massachusetts and London, England: The Belknap Press of Harvard University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-674-80207-1" title="Special:BookSources/0-674-80207-1"><bdi>0-674-80207-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Set+Theory+and+Its+Logic&rft.place=Cambridge%2C+Massachusetts+and+London%2C+England&rft.edition=Revised&rft.pub=The+Belknap+Press+of+Harvard+University+Press&rft.date=1969&rft.isbn=0-674-80207-1&rft.aulast=Quine&rft.aufirst=Willard+van+Orman&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fsettheoryitslogi0000quin_j8m3&rfr_id=info%3Asid%2Fen.wikipedia.org%3AZermelo%E2%80%93Fraenkel+set+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShoenfield1977" class="citation book cs1"><a href="/wiki/Joseph_R._Shoenfield" title="Joseph R. Shoenfield">Shoenfield, Joseph R.</a> (1977). "Axioms of set theory". In <a href="/wiki/Jon_Barwise" title="Jon Barwise">Barwise, K. J.</a> (ed.). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/handbookofmathem0090unse"><i>Handbook of Mathematical Logic</i></a></span>. North-Holland Publishing Company. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-7204-2285-X" title="Special:BookSources/0-7204-2285-X"><bdi>0-7204-2285-X</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Axioms+of+set+theory&rft.btitle=Handbook+of+Mathematical+Logic&rft.pub=North-Holland+Publishing+Company&rft.date=1977&rft.isbn=0-7204-2285-X&rft.aulast=Shoenfield&rft.aufirst=Joseph+R.&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fhandbookofmathem0090unse&rfr_id=info%3Asid%2Fen.wikipedia.org%3AZermelo%E2%80%93Fraenkel+set+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShoenfield2001" class="citation book cs1"><a href="/wiki/Joseph_R._Shoenfield" title="Joseph R. Shoenfield">Shoenfield, Joseph R.</a> (2001) [First published 1967]. <i>Mathematical Logic</i> (2nd ed.). <a href="/wiki/A_K_Peters" title="A K Peters">A K Peters</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-56881-135-2" title="Special:BookSources/978-1-56881-135-2"><bdi>978-1-56881-135-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Mathematical+Logic&rft.edition=2nd&rft.pub=A+K+Peters&rft.date=2001&rft.isbn=978-1-56881-135-2&rft.aulast=Shoenfield&rft.aufirst=Joseph+R.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AZermelo%E2%80%93Fraenkel+set+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSuppes1972" class="citation book cs1"><a href="/wiki/Patrick_Suppes" title="Patrick Suppes">Suppes, Patrick</a> (1972) [First published 1960]. <i>Axiomatic Set Theory</i>. Dover reprint.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Axiomatic+Set+Theory&rft.pub=Dover+reprint&rft.date=1972&rft.aulast=Suppes&rft.aufirst=Patrick&rfr_id=info%3Asid%2Fen.wikipedia.org%3AZermelo%E2%80%93Fraenkel+set+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTakeutiZaring1971" class="citation book cs1"><a href="/wiki/Gaisi_Takeuti" title="Gaisi Takeuti">Takeuti, Gaisi</a>; Zaring, W M (1971). <i>Introduction to Axiomatic Set Theory</i>. <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Introduction+to+Axiomatic+Set+Theory&rft.pub=Springer-Verlag&rft.date=1971&rft.aulast=Takeuti&rft.aufirst=Gaisi&rft.au=Zaring%2C+W+M&rfr_id=info%3Asid%2Fen.wikipedia.org%3AZermelo%E2%80%93Fraenkel+set+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTakeutiZaring1982" class="citation book cs1">Takeuti, Gaisi; Zaring, W M (1982). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/introductiontoax00take"><i>Introduction to Axiomatic Set Theory</i></a></span>. Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9780387906836" title="Special:BookSources/9780387906836"><bdi>9780387906836</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Introduction+to+Axiomatic+Set+Theory&rft.pub=Springer&rft.date=1982&rft.isbn=9780387906836&rft.aulast=Takeuti&rft.aufirst=Gaisi&rft.au=Zaring%2C+W+M&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fintroductiontoax00take&rfr_id=info%3Asid%2Fen.wikipedia.org%3AZermelo%E2%80%93Fraenkel+set+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTarski1939" class="citation journal cs1"><a href="/wiki/Alfred_Tarski" title="Alfred Tarski">Tarski, Alfred</a> (1939). <a rel="nofollow" class="external text" href="https://doi.org/10.4064%2Ffm-32-1-176-783">"On well-ordered subsets of any set"</a>. <i><a href="/wiki/Fundamenta_Mathematicae" title="Fundamenta Mathematicae">Fundamenta Mathematicae</a></i>. <b>32</b>: 176–83. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4064%2Ffm-32-1-176-783">10.4064/fm-32-1-176-783</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Fundamenta+Mathematicae&rft.atitle=On+well-ordered+subsets+of+any+set&rft.volume=32&rft.pages=176-83&rft.date=1939&rft_id=info%3Adoi%2F10.4064%2Ffm-32-1-176-783&rft.aulast=Tarski&rft.aufirst=Alfred&rft_id=https%3A%2F%2Fdoi.org%2F10.4064%252Ffm-32-1-176-783&rfr_id=info%3Asid%2Fen.wikipedia.org%3AZermelo%E2%80%93Fraenkel+set+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTiles1989" class="citation book cs1">Tiles, Mary (1989). <i>The Philosophy of Set Theory</i>. Dover reprint.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Philosophy+of+Set+Theory&rft.pub=Dover+reprint&rft.date=1989&rft.aulast=Tiles&rft.aufirst=Mary&rfr_id=info%3Asid%2Fen.wikipedia.org%3AZermelo%E2%80%93Fraenkel+set+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTourlakis2003" class="citation book cs1">Tourlakis, George (2003). <i>Lectures in Logic and Set Theory, Vol. 2</i>. <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Lectures+in+Logic+and+Set+Theory%2C+Vol.+2&rft.pub=Cambridge+University+Press&rft.date=2003&rft.aulast=Tourlakis&rft.aufirst=George&rfr_id=info%3Asid%2Fen.wikipedia.org%3AZermelo%E2%80%93Fraenkel+set+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWolchover2013" class="citation magazine cs1">Wolchover, Natalie (2013). <a rel="nofollow" class="external text" href="https://www.quantamagazine.org/to-settle-infinity-question-a-new-law-of-mathematics-20131126">"To Settle Infinity Dispute, a New Law of Logic"</a>. <i><a href="/wiki/Quanta_Magazine" title="Quanta Magazine">Quanta Magazine</a></i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Quanta+Magazine&rft.atitle=To+Settle+Infinity+Dispute%2C+a+New+Law+of+Logic&rft.date=2013&rft.aulast=Wolchover&rft.aufirst=Natalie&rft_id=https%3A%2F%2Fwww.quantamagazine.org%2Fto-settle-infinity-question-a-new-law-of-mathematics-20131126&rfr_id=info%3Asid%2Fen.wikipedia.org%3AZermelo%E2%80%93Fraenkel+set+theory" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZermelo1908" class="citation journal cs1"><a href="/wiki/Ernst_Zermelo" title="Ernst Zermelo">Zermelo, Ernst</a> (1908). <a rel="nofollow" class="external text" href="http://gdz.sub.uni-goettingen.de/index.php?id=11&PPN=PPN235181684_0065&DMDID=DMDLOG_0018&L=1">"Untersuchungen über die Grundlagen der Mengenlehre I"</a>. <i><a href="/wiki/Mathematische_Annalen" title="Mathematische Annalen">Mathematische Annalen</a></i>. <b>65</b> (2): 261–281. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01449999">10.1007/BF01449999</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:120085563">120085563</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Mathematische+Annalen&rft.atitle=Untersuchungen+%C3%BCber+die+Grundlagen+der+Mengenlehre+I&rft.volume=65&rft.issue=2&rft.pages=261-281&rft.date=1908&rft_id=info%3Adoi%2F10.1007%2FBF01449999&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A120085563%23id-name%3DS2CID&rft.aulast=Zermelo&rft.aufirst=Ernst&rft_id=http%3A%2F%2Fgdz.sub.uni-goettingen.de%2Findex.php%3Fid%3D11%26PPN%3DPPN235181684_0065%26DMDID%3DDMDLOG_0018%26L%3D1&rfr_id=info%3Asid%2Fen.wikipedia.org%3AZermelo%E2%80%93Fraenkel+set+theory" class="Z3988"></span> English translation in <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHeijenoort1967" class="citation book cs1"><a href="/wiki/Jean_van_Heijenoort" title="Jean van Heijenoort">Heijenoort, Jean van</a> (1967). "Investigations in the foundations of set theory". <i>From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931</i>. Source Books in the History of the Sciences. Harvard University Press. pp. 199–215. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-674-32449-7" title="Special:BookSources/978-0-674-32449-7"><bdi>978-0-674-32449-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Investigations+in+the+foundations+of+set+theory&rft.btitle=From+Frege+to+G%C3%B6del%3A+A+Source+Book+in+Mathematical+Logic%2C+1879%E2%80%931931&rft.series=Source+Books+in+the+History+of+the+Sciences&rft.pages=199-215&rft.pub=Harvard+University+Press&rft.date=1967&rft.isbn=978-0-674-32449-7&rft.aulast=Heijenoort&rft.aufirst=Jean+van&rfr_id=info%3Asid%2Fen.wikipedia.org%3AZermelo%E2%80%93Fraenkel+set+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZermelo1930" class="citation journal cs1"><a href="/wiki/Ernst_Zermelo" title="Ernst Zermelo">Zermelo, Ernst</a> (1930). <a rel="nofollow" class="external text" href="https://doi.org/10.4064%2Ffm-16-1-29-47">"Über Grenzzahlen und Mengenbereiche"</a>. <i><a href="/wiki/Fundamenta_Mathematicae" title="Fundamenta Mathematicae">Fundamenta Mathematicae</a></i>. <b>16</b>: 29–47. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4064%2Ffm-16-1-29-47">10.4064/fm-16-1-29-47</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0016-2736">0016-2736</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Fundamenta+Mathematicae&rft.atitle=%C3%9Cber+Grenzzahlen+und+Mengenbereiche&rft.volume=16&rft.pages=29-47&rft.date=1930&rft_id=info%3Adoi%2F10.4064%2Ffm-16-1-29-47&rft.issn=0016-2736&rft.aulast=Zermelo&rft.aufirst=Ernst&rft_id=https%3A%2F%2Fdoi.org%2F10.4064%252Ffm-16-1-29-47&rfr_id=info%3Asid%2Fen.wikipedia.org%3AZermelo%E2%80%93Fraenkel+set+theory" class="Z3988"></span></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zermelo%E2%80%93Fraenkel_set_theory&action=edit&section=24" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=AAJB9l-HAZs&t=1h51m55s"><span class="plainlinks">Axioms of set Theory - Lec 02 - Frederic Schuller</span></a> on <a href="/wiki/YouTube_video_(identifier)" class="mw-redirect" title="YouTube video (identifier)">YouTube</a></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=ZFC">"ZFC"</a>, <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a>, 2001 [1994]</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=ZFC&rft.btitle=Encyclopedia+of+Mathematics&rft.pub=EMS+Press&rft.date=2001&rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DZFC&rfr_id=info%3Asid%2Fen.wikipedia.org%3AZermelo%E2%80%93Fraenkel+set+theory" class="Z3988"></span></li> <li><a href="/wiki/Stanford_Encyclopedia_of_Philosophy" title="Stanford Encyclopedia of Philosophy">Stanford Encyclopedia of Philosophy</a> articles by <a href="/wiki/Joan_Bagaria" title="Joan Bagaria">Joan Bagaria</a>: <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBagaria2023" class="citation encyclopaedia cs1"><a href="/wiki/Joan_Bagaria" title="Joan Bagaria">Bagaria, Joan</a> (31 January 2023). <a rel="nofollow" class="external text" href="https://plato.stanford.edu/entries/set-theory/">"Set Theory"</a>. In <a href="/wiki/Edward_N._Zalta" title="Edward N. Zalta">Zalta, Edward N.</a> (ed.). <i><a href="/wiki/Stanford_Encyclopedia_of_Philosophy" title="Stanford Encyclopedia of Philosophy">Stanford Encyclopedia of Philosophy</a></i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Set+Theory&rft.btitle=Stanford+Encyclopedia+of+Philosophy&rft.date=2023-01-31&rft.aulast=Bagaria&rft.aufirst=Joan&rft_id=https%3A%2F%2Fplato.stanford.edu%2Fentries%2Fset-theory%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AZermelo%E2%80%93Fraenkel+set+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBagaria2023" class="citation encyclopaedia cs1">— (31 January 2023). <a rel="nofollow" class="external text" href="https://plato.stanford.edu/entries/set-theory/ZF.html">"Axioms of Zermelo–Fraenkel Set Theory"</a>. In — (ed.). <i><a href="/wiki/Stanford_Encyclopedia_of_Philosophy" title="Stanford Encyclopedia of Philosophy">Stanford Encyclopedia of Philosophy</a></i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Axioms+of+Zermelo%E2%80%93Fraenkel+Set+Theory&rft.btitle=Stanford+Encyclopedia+of+Philosophy&rft.date=2023-01-31&rft.aulast=Bagaria&rft.aufirst=Joan&rft_id=https%3A%2F%2Fplato.stanford.edu%2Fentries%2Fset-theory%2FZF.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AZermelo%E2%80%93Fraenkel+set+theory" class="Z3988"></span></li></ul></li> <li><a rel="nofollow" class="external text" href="http://us.metamath.org/mpegif/mmset.html#staxioms">Metamath version of the ZFC axioms</a> — A concise and nonredundant axiomatization. The background <a href="/wiki/First_order_logic" class="mw-redirect" title="First order logic">first order logic</a> is defined especially to facilitate machine verification of proofs. <ul><li>A <a rel="nofollow" class="external text" href="http://us.metamath.org/mpegif/axsep.html">derivation</a> in <a href="/wiki/Metamath" title="Metamath">Metamath</a> of a version of the separation schema from a version of the replacement schema.</li></ul></li> <li><span class="citation mathworld" id="Reference-Mathworld-Zermelo-Fraenkel_Set_Theory"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs1"><a href="/wiki/Eric_W._Weisstein" title="Eric W. Weisstein">Weisstein, Eric W.</a> <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/Zermelo-FraenkelSetTheory.html">"Zermelo-Fraenkel Set Theory"</a>. <i><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=MathWorld&rft.atitle=Zermelo-Fraenkel+Set+Theory&rft.au=Weisstein%2C+Eric+W.&rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FZermelo-FraenkelSetTheory.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AZermelo%E2%80%93Fraenkel+set+theory" class="Z3988"></span></span></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"></div><div role="navigation" class="navbox" aria-labelledby="Set_theory" style="padding:3px"><table class="nowraplinks mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="3"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Set_theory" title="Template:Set theory"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Set_theory" title="Template talk:Set theory"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Set_theory" title="Special:EditPage/Template:Set theory"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Set_theory" style="font-size:114%;margin:0 4em"><a href="/wiki/Set_theory" title="Set theory">Set theory</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Overview</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Set_(mathematics)" title="Set (mathematics)">Set (mathematics)</a></li></ul> </div></td><td class="noviewer navbox-image" rowspan="8" style="width:1px;padding:0 0 0 2px"><div><span typeof="mw:File"><a href="/wiki/Venn_diagram" title="Venn diagram"><img alt="Venn diagram of set intersection" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6d/Venn_A_intersect_B.svg/100px-Venn_A_intersect_B.svg.png" decoding="async" width="100" height="71" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6d/Venn_A_intersect_B.svg/150px-Venn_A_intersect_B.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/6d/Venn_A_intersect_B.svg/200px-Venn_A_intersect_B.svg.png 2x" data-file-width="350" data-file-height="250" /></a></span></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Axiom" title="Axiom">Axioms</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Axiom_of_adjunction" title="Axiom of adjunction">Adjunction</a></li> <li><a href="/wiki/Axiom_of_choice" title="Axiom of choice">Choice</a> <ul><li><a href="/wiki/Axiom_of_countable_choice" title="Axiom of countable choice">countable</a></li> <li><a href="/wiki/Axiom_of_dependent_choice" title="Axiom of dependent choice">dependent</a></li> <li><a href="/wiki/Axiom_of_global_choice" title="Axiom of global choice">global</a></li></ul></li> <li><a href="/wiki/Axiom_of_constructibility" title="Axiom of constructibility">Constructibility (V=L)</a></li> <li><a href="/wiki/Axiom_of_determinacy" title="Axiom of determinacy">Determinacy</a> <ul><li><a href="/wiki/Axiom_of_projective_determinacy" title="Axiom of projective determinacy">projective</a></li></ul></li> <li><a href="/wiki/Axiom_of_extensionality" title="Axiom of extensionality">Extensionality</a></li> <li><a href="/wiki/Axiom_of_infinity" title="Axiom of infinity">Infinity</a></li> <li><a href="/wiki/Axiom_of_limitation_of_size" title="Axiom of limitation of size">Limitation of size</a></li> <li><a href="/wiki/Axiom_of_pairing" title="Axiom of pairing">Pairing</a></li> <li><a href="/wiki/Axiom_of_power_set" title="Axiom of power set">Power set</a></li> <li><a href="/wiki/Axiom_of_regularity" title="Axiom of regularity">Regularity</a></li> <li><a href="/wiki/Axiom_of_union" title="Axiom of union">Union</a></li> <li><a href="/wiki/Martin%27s_axiom" title="Martin's axiom">Martin's axiom</a></li></ul> <ul><li><a href="/wiki/Axiom_schema" title="Axiom schema">Axiom schema</a> <ul><li><a href="/wiki/Axiom_schema_of_replacement" title="Axiom schema of replacement">replacement</a></li> <li><a href="/wiki/Axiom_schema_of_specification" title="Axiom schema of specification">specification</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Set_(mathematics)#Basic_operations" title="Set (mathematics)">Operations</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cartesian_product" title="Cartesian product">Cartesian product</a></li> <li><a href="/wiki/Complement_(set_theory)" title="Complement (set theory)">Complement</a> (i.e. set difference)</li> <li><a href="/wiki/De_Morgan%27s_laws" title="De Morgan's laws">De Morgan's laws</a></li> <li><a href="/wiki/Disjoint_union" title="Disjoint union">Disjoint union</a></li> <li><a href="/wiki/List_of_set_identities_and_relations" title="List of set identities and relations">Identities</a></li> <li><a href="/wiki/Intersection_(set_theory)" title="Intersection (set theory)">Intersection</a></li> <li><a href="/wiki/Power_set" title="Power set">Power set</a></li> <li><a href="/wiki/Symmetric_difference" title="Symmetric difference">Symmetric difference</a></li> <li><a href="/wiki/Union_(set_theory)" title="Union (set theory)">Union</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><div class="hlist"><ul><li>Concepts</li><li>Methods</li></ul></div></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Almost" title="Almost">Almost</a></li> <li><a href="/wiki/Cardinality" title="Cardinality">Cardinality</a></li> <li><a href="/wiki/Cardinal_number" title="Cardinal number">Cardinal number</a> (<a href="/wiki/Large_cardinal" title="Large cardinal">large</a>)</li> <li><a href="/wiki/Class_(set_theory)" title="Class (set theory)">Class</a></li> <li><a href="/wiki/Constructible_universe" title="Constructible universe">Constructible universe</a></li> <li><a href="/wiki/Continuum_hypothesis" title="Continuum hypothesis">Continuum hypothesis</a></li> <li><a href="/wiki/Cantor%27s_diagonal_argument" title="Cantor's diagonal argument">Diagonal argument</a></li> <li><a href="/wiki/Element_(mathematics)" title="Element (mathematics)">Element</a> <ul><li><a href="/wiki/Ordered_pair" title="Ordered pair">ordered pair</a></li> <li><a href="/wiki/Tuple" title="Tuple">tuple</a></li></ul></li> <li><a href="/wiki/Family_of_sets" title="Family of sets">Family</a></li> <li><a href="/wiki/Forcing_(mathematics)" title="Forcing (mathematics)">Forcing</a></li> <li><a href="/wiki/Bijection" title="Bijection">One-to-one correspondence</a></li> <li><a href="/wiki/Ordinal_number" title="Ordinal number">Ordinal number</a></li> <li><a href="/wiki/Set-builder_notation" title="Set-builder notation">Set-builder notation</a></li> <li><a href="/wiki/Transfinite_induction" title="Transfinite induction">Transfinite induction</a></li> <li><a href="/wiki/Venn_diagram" title="Venn diagram">Venn diagram</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Set_(mathematics)" title="Set (mathematics)">Set</a> types</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Amorphous_set" title="Amorphous set">Amorphous</a></li> <li><a href="/wiki/Countable_set" title="Countable set">Countable</a></li> <li><a href="/wiki/Empty_set" title="Empty set">Empty</a></li> <li><a href="/wiki/Finite_set" title="Finite set">Finite</a> (<a href="/wiki/Hereditarily_finite_set" title="Hereditarily finite set">hereditarily</a>)</li> <li><a href="/wiki/Filter_(set_theory)" title="Filter (set theory)">Filter</a> <ul><li><a href="/wiki/Filter_(set_theory)" title="Filter (set theory)">base</a></li> <li><a href="/wiki/Filter_(set_theory)#Filters_and_prefilters" title="Filter (set theory)">subbase</a></li> <li><a href="/wiki/Ultrafilter_on_a_set" title="Ultrafilter on a set">Ultrafilter</a></li></ul></li> <li><a href="/wiki/Fuzzy_set" title="Fuzzy set">Fuzzy</a></li> <li><a href="/wiki/Infinite_set" title="Infinite set">Infinite</a> (<a href="/wiki/Dedekind-infinite_set" title="Dedekind-infinite set">Dedekind-infinite</a>)</li> <li><a href="/wiki/Computable_set" title="Computable set">Recursive</a></li> <li><a href="/wiki/Singleton_(mathematics)" title="Singleton (mathematics)">Singleton</a></li> <li><a href="/wiki/Subset" title="Subset">Subset <b>·</b> Superset</a></li> <li><a href="/wiki/Transitive_set" title="Transitive set">Transitive</a></li> <li><a href="/wiki/Uncountable_set" title="Uncountable set">Uncountable</a></li> <li><a href="/wiki/Universal_set" title="Universal set">Universal</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Theories</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Alternative_set_theory" class="mw-redirect" title="Alternative set theory">Alternative</a></li> <li><a href="/wiki/Set_theory#Formalized_set_theory" title="Set theory">Axiomatic</a></li> <li><a href="/wiki/Naive_set_theory" title="Naive set theory">Naive</a></li> <li><a href="/wiki/Cantor%27s_theorem" title="Cantor's theorem">Cantor's theorem</a></li></ul> <ul><li><a href="/wiki/Zermelo_set_theory" title="Zermelo set theory">Zermelo</a> <ul><li><a href="/wiki/General_set_theory" title="General set theory">General</a></li></ul></li> <li><i><a href="/wiki/Principia_Mathematica" title="Principia Mathematica">Principia Mathematica</a></i> <ul><li><a href="/wiki/New_Foundations" title="New Foundations">New Foundations</a></li></ul></li> <li><a class="mw-selflink selflink">Zermelo–Fraenkel </a> <ul><li><a href="/wiki/Von_Neumann%E2%80%93Bernays%E2%80%93G%C3%B6del_set_theory" title="Von Neumann–Bernays–Gödel set theory">von Neumann–Bernays–Gödel </a> <ul><li><a href="/wiki/Morse%E2%80%93Kelley_set_theory" title="Morse–Kelley set theory">Morse–Kelley</a></li></ul></li> <li><a href="/wiki/Kripke%E2%80%93Platek_set_theory" title="Kripke–Platek set theory">Kripke–Platek</a></li> <li><a href="/wiki/Tarski%E2%80%93Grothendieck_set_theory" title="Tarski–Grothendieck set theory">Tarski–Grothendieck</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><div class="hlist"><ul><li><a href="/wiki/Paradoxes_of_set_theory" title="Paradoxes of set theory">Paradoxes</a></li><li>Problems</li></ul></div></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Russell%27s_paradox" title="Russell's paradox">Russell's paradox</a></li> <li><a href="/wiki/Suslin%27s_problem" title="Suslin's problem">Suslin's problem</a></li> <li><a href="/wiki/Burali-Forti_paradox" title="Burali-Forti paradox">Burali-Forti paradox</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Category:Set_theorists" title="Category:Set theorists">Set theorists</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Paul_Bernays" title="Paul Bernays">Paul Bernays</a></li> <li><a href="/wiki/Georg_Cantor" title="Georg Cantor">Georg Cantor</a></li> <li><a href="/wiki/Paul_Cohen" title="Paul Cohen">Paul Cohen</a></li> <li><a href="/wiki/Richard_Dedekind" title="Richard Dedekind">Richard Dedekind</a></li> <li><a href="/wiki/Abraham_Fraenkel" title="Abraham Fraenkel">Abraham Fraenkel</a></li> <li><a href="/wiki/Kurt_G%C3%B6del" title="Kurt Gödel">Kurt Gödel</a></li> <li><a href="/wiki/Thomas_Jech" title="Thomas Jech">Thomas Jech</a></li> <li><a href="/wiki/John_von_Neumann" title="John von Neumann">John von Neumann</a></li> <li><a href="/wiki/Willard_Van_Orman_Quine" title="Willard Van Orman Quine">Willard Quine</a></li> <li><a href="/wiki/Bertrand_Russell" title="Bertrand Russell">Bertrand Russell</a></li> <li><a href="/wiki/Thoralf_Skolem" title="Thoralf Skolem">Thoralf Skolem</a></li> <li><a href="/wiki/Ernst_Zermelo" title="Ernst Zermelo">Ernst Zermelo</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Mathematical_logic" style="padding:3px"><table class="nowraplinks mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Mathematical_logic" title="Template:Mathematical logic"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Mathematical_logic" title="Template talk:Mathematical logic"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Mathematical_logic" title="Special:EditPage/Template:Mathematical logic"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Mathematical_logic" style="font-size:114%;margin:0 4em"><a href="/wiki/Mathematical_logic" title="Mathematical logic">Mathematical logic</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">General</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Axiom" title="Axiom">Axiom</a> <ul><li><a href="/wiki/List_of_axioms" title="List of axioms">list</a></li></ul></li> <li><a href="/wiki/Cardinality" title="Cardinality">Cardinality</a></li> <li><a href="/wiki/First-order_logic" title="First-order logic">First-order logic</a></li> <li><a href="/wiki/Formal_proof" title="Formal proof">Formal proof</a></li> <li><a href="/wiki/Formal_semantics_(logic)" class="mw-redirect" title="Formal semantics (logic)">Formal semantics</a></li> <li><a href="/wiki/Foundations_of_mathematics" title="Foundations of mathematics">Foundations of mathematics</a></li> <li><a href="/wiki/Information_theory" title="Information theory">Information theory</a></li> <li><a href="/wiki/Lemma_(mathematics)" title="Lemma (mathematics)">Lemma</a></li> <li><a href="/wiki/Logical_consequence" title="Logical consequence">Logical consequence</a></li> <li><a href="/wiki/Structure_(mathematical_logic)" title="Structure (mathematical logic)">Model</a></li> <li><a href="/wiki/Theorem" title="Theorem">Theorem</a></li> <li><a href="/wiki/Theory_(mathematical_logic)" title="Theory (mathematical logic)">Theory</a></li> <li><a href="/wiki/Type_theory" title="Type theory">Type theory</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Theorems (<a href="/wiki/Category:Theorems_in_the_foundations_of_mathematics" title="Category:Theorems in the foundations of mathematics">list</a>)<br /> and <a href="/wiki/Paradoxes_of_set_theory" title="Paradoxes of set theory">paradoxes</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/G%C3%B6del%27s_completeness_theorem" title="Gödel's completeness theorem">Gödel's completeness</a> and <a href="/wiki/G%C3%B6del%27s_incompleteness_theorems" title="Gödel's incompleteness theorems">incompleteness theorems</a></li> <li><a href="/wiki/Tarski%27s_undefinability_theorem" title="Tarski's undefinability theorem">Tarski's undefinability</a></li> <li><a href="/wiki/Banach%E2%80%93Tarski_paradox" title="Banach–Tarski paradox">Banach–Tarski paradox</a></li> <li>Cantor's <a href="/wiki/Cantor%27s_theorem" title="Cantor's theorem">theorem,</a> <a href="/wiki/Cantor%27s_paradox" title="Cantor's paradox">paradox</a> and <a href="/wiki/Cantor%27s_diagonal_argument" title="Cantor's diagonal argument">diagonal argument</a></li> <li><a href="/wiki/Compactness_theorem" title="Compactness theorem">Compactness</a></li> <li><a href="/wiki/Halting_problem" title="Halting problem">Halting problem</a></li> <li><a href="/wiki/Lindstr%C3%B6m%27s_theorem" title="Lindström's theorem">Lindström's</a></li> <li><a href="/wiki/L%C3%B6wenheim%E2%80%93Skolem_theorem" title="Löwenheim–Skolem theorem">Löwenheim–Skolem</a></li> <li><a href="/wiki/Russell%27s_paradox" title="Russell's paradox">Russell's paradox</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Logic" title="Logic">Logics</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th id="Traditional" scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Term_logic" title="Term logic">Traditional</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Classical_logic" title="Classical logic">Classical logic</a></li> <li><a href="/wiki/Logical_truth" title="Logical truth">Logical truth</a></li> <li><a href="/wiki/Tautology_(logic)" title="Tautology (logic)">Tautology</a></li> <li><a href="/wiki/Proposition" title="Proposition">Proposition</a></li> <li><a href="/wiki/Inference" title="Inference">Inference</a></li> <li><a href="/wiki/Logical_equivalence" title="Logical equivalence">Logical equivalence</a></li> <li><a href="/wiki/Consistency" title="Consistency">Consistency</a> <ul><li><a href="/wiki/Equiconsistency" title="Equiconsistency">Equiconsistency</a></li></ul></li> <li><a href="/wiki/Argument" title="Argument">Argument</a></li> <li><a href="/wiki/Soundness" title="Soundness">Soundness</a></li> <li><a href="/wiki/Validity_(logic)" title="Validity (logic)">Validity</a></li> <li><a href="/wiki/Syllogism" title="Syllogism">Syllogism</a></li> <li><a href="/wiki/Square_of_opposition" title="Square of opposition">Square of opposition</a></li> <li><a href="/wiki/Venn_diagram" title="Venn diagram">Venn diagram</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Propositional_calculus" title="Propositional calculus">Propositional</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Boolean_algebra" title="Boolean algebra">Boolean algebra</a></li> <li><a href="/wiki/Boolean_function" title="Boolean function">Boolean functions</a></li> <li><a href="/wiki/Logical_connective" title="Logical connective">Logical connectives</a></li> <li><a href="/wiki/Propositional_calculus" title="Propositional calculus">Propositional calculus</a></li> <li><a href="/wiki/Propositional_formula" title="Propositional formula">Propositional formula</a></li> <li><a href="/wiki/Truth_table" title="Truth table">Truth tables</a></li> <li><a href="/wiki/Many-valued_logic" title="Many-valued logic">Many-valued logic</a> <ul><li><a href="/wiki/Three-valued_logic" title="Three-valued logic">3</a></li> <li><a href="/wiki/Finite-valued_logic" title="Finite-valued logic">finite</a></li> <li><a href="/wiki/Infinite-valued_logic" title="Infinite-valued logic">∞</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Predicate_logic" class="mw-redirect" title="Predicate logic">Predicate</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/First-order_logic" title="First-order logic">First-order</a> <ul><li><a href="/wiki/List_of_first-order_theories" title="List of first-order theories"><span style="font-size:85%;">list</span></a></li></ul></li> <li><a href="/wiki/Second-order_logic" title="Second-order logic">Second-order</a> <ul><li><a href="/wiki/Monadic_second-order_logic" title="Monadic second-order logic">Monadic</a></li></ul></li> <li><a href="/wiki/Higher-order_logic" title="Higher-order logic">Higher-order</a></li> <li><a href="/wiki/Fixed-point_logic" title="Fixed-point logic">Fixed-point</a></li> <li><a href="/wiki/Free_logic" title="Free logic">Free</a></li> <li><a href="/wiki/Quantifier_(logic)" title="Quantifier (logic)">Quantifiers</a></li> <li><a href="/wiki/Predicate_(mathematical_logic)" title="Predicate (mathematical logic)">Predicate</a></li> <li><a href="/wiki/Monadic_predicate_calculus" title="Monadic predicate calculus">Monadic predicate calculus</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Set_theory" title="Set theory">Set theory</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><td colspan="2" class="navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a class="mw-selflink selflink">Set</a> <ul><li><a href="/wiki/Hereditary_set" title="Hereditary set">hereditary</a></li></ul></li> <li><a href="/wiki/Class_(set_theory)" title="Class (set theory)">Class</a></li> <li>(<a href="/wiki/Urelement" title="Urelement">Ur-</a>)<a href="/wiki/Element_(mathematics)" title="Element (mathematics)">Element</a></li> <li><a href="/wiki/Ordinal_number" title="Ordinal number">Ordinal number</a></li> <li><a href="/wiki/Extensionality" title="Extensionality">Extensionality</a></li> <li><a href="/wiki/Forcing_(mathematics)" title="Forcing (mathematics)">Forcing</a></li> <li><a href="/wiki/Relation_(mathematics)" title="Relation (mathematics)">Relation</a> <ul><li><a href="/wiki/Equivalence_relation" title="Equivalence relation">equivalence</a></li> <li><a href="/wiki/Partition_of_a_set" title="Partition of a set">partition</a></li></ul></li> <li>Set operations: <ul><li><a href="/wiki/Intersection_(set_theory)" title="Intersection (set theory)">intersection</a></li> <li><a href="/wiki/Union_(set_theory)" title="Union (set theory)">union</a></li> <li><a href="/wiki/Complement_(set_theory)" title="Complement (set theory)">complement</a></li> <li><a href="/wiki/Cartesian_product" title="Cartesian product">Cartesian product</a></li> <li><a href="/wiki/Power_set" title="Power set">power set</a></li> <li><a href="/wiki/List_of_set_identities_and_relations" title="List of set identities and relations">identities</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Types of <a href="/wiki/Set_(mathematics)" title="Set (mathematics)">sets</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Countable_set" title="Countable set">Countable</a></li> <li><a href="/wiki/Uncountable_set" title="Uncountable set">Uncountable</a></li> <li><a href="/wiki/Empty_set" title="Empty set">Empty</a></li> <li><a href="/wiki/Inhabited_set" title="Inhabited set">Inhabited</a></li> <li><a href="/wiki/Singleton_(mathematics)" title="Singleton (mathematics)">Singleton</a></li> <li><a href="/wiki/Finite_set" title="Finite set">Finite</a></li> <li><a href="/wiki/Infinite_set" title="Infinite set">Infinite</a></li> <li><a href="/wiki/Transitive_set" title="Transitive set">Transitive</a></li> <li><a href="/wiki/Ultrafilter_(set_theory)" class="mw-redirect" title="Ultrafilter (set theory)">Ultrafilter</a></li> <li><a href="/wiki/Recursive_set" class="mw-redirect" title="Recursive set">Recursive</a></li> <li><a href="/wiki/Fuzzy_set" title="Fuzzy set">Fuzzy</a></li> <li><a href="/wiki/Universal_set" title="Universal set">Universal</a></li> <li><a href="/wiki/Universe_(mathematics)" title="Universe (mathematics)">Universe</a> <ul><li><a href="/wiki/Constructible_universe" title="Constructible universe">constructible</a></li> <li><a href="/wiki/Grothendieck_universe" title="Grothendieck universe">Grothendieck</a></li> <li><a href="/wiki/Von_Neumann_universe" title="Von Neumann universe">Von Neumann</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Map_(mathematics)" title="Map (mathematics)">Maps</a> and <a href="/wiki/Cardinality" title="Cardinality">cardinality</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Function_(mathematics)" title="Function (mathematics)">Function</a>/<a href="/wiki/Map_(mathematics)" title="Map (mathematics)">Map</a> <ul><li><a href="/wiki/Domain_of_a_function" title="Domain of a function">domain</a></li> <li><a href="/wiki/Codomain" title="Codomain">codomain</a></li> <li><a href="/wiki/Image_(mathematics)" title="Image (mathematics)">image</a></li></ul></li> <li><a href="/wiki/Injective_function" title="Injective function">In</a>/<a href="/wiki/Surjective_function" title="Surjective function">Sur</a>/<a href="/wiki/Bijection" title="Bijection">Bi</a>-jection</li> <li><a href="/wiki/Schr%C3%B6der%E2%80%93Bernstein_theorem" title="Schröder–Bernstein theorem">Schröder–Bernstein theorem</a></li> <li><a href="/wiki/Isomorphism" title="Isomorphism">Isomorphism</a></li> <li><a href="/wiki/G%C3%B6del_numbering" title="Gödel numbering">Gödel numbering</a></li> <li><a href="/wiki/Enumeration" title="Enumeration">Enumeration</a></li> <li><a href="/wiki/Large_cardinal" title="Large cardinal">Large cardinal</a> <ul><li><a href="/wiki/Inaccessible_cardinal" title="Inaccessible cardinal">inaccessible</a></li></ul></li> <li><a href="/wiki/Aleph_number" title="Aleph number">Aleph number</a></li> <li><a href="/wiki/Operation_(mathematics)" title="Operation (mathematics)">Operation</a> <ul><li><a href="/wiki/Binary_operation" title="Binary operation">binary</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Set theories</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a class="mw-selflink selflink">Zermelo–Fraenkel</a> <ul><li><a href="/wiki/Axiom_of_choice" title="Axiom of choice">axiom of choice</a></li> <li><a href="/wiki/Continuum_hypothesis" title="Continuum hypothesis">continuum hypothesis</a></li></ul></li> <li><a href="/wiki/General_set_theory" title="General set theory">General</a></li> <li><a href="/wiki/Kripke%E2%80%93Platek_set_theory" title="Kripke–Platek set theory">Kripke–Platek</a></li> <li><a href="/wiki/Morse%E2%80%93Kelley_set_theory" title="Morse–Kelley set theory">Morse–Kelley</a></li> <li><a href="/wiki/Naive_set_theory" title="Naive set theory">Naive</a></li> <li><a href="/wiki/New_Foundations" title="New Foundations">New Foundations</a></li> <li><a href="/wiki/Tarski%E2%80%93Grothendieck_set_theory" title="Tarski–Grothendieck set theory">Tarski–Grothendieck</a></li> <li><a href="/wiki/Von_Neumann%E2%80%93Bernays%E2%80%93G%C3%B6del_set_theory" title="Von Neumann–Bernays–Gödel set theory">Von Neumann–Bernays–Gödel</a></li> <li><a href="/wiki/Ackermann_set_theory" title="Ackermann set theory">Ackermann</a></li> <li><a href="/wiki/Constructive_set_theory" title="Constructive set theory">Constructive</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Formal_system" title="Formal system">Formal systems</a> (<a href="/wiki/List_of_formal_systems" title="List of formal systems"><span style="font-size:85%;">list</span></a>),<br /><a href="/wiki/Formal_language" title="Formal language">language</a> and <a href="/wiki/Syntax_(logic)" title="Syntax (logic)">syntax</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><td colspan="2" class="navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Alphabet_(formal_languages)" title="Alphabet (formal languages)">Alphabet</a></li> <li><a href="/wiki/Arity" title="Arity">Arity</a></li> <li><a href="/wiki/Automata_theory" title="Automata theory">Automata</a></li> <li><a href="/wiki/Axiom_schema" title="Axiom schema">Axiom schema</a></li> <li><a href="/wiki/Expression_(mathematics)" title="Expression (mathematics)">Expression</a> <ul><li><a href="/wiki/Ground_expression" title="Ground expression">ground</a></li></ul></li> <li><a href="/wiki/Extension_by_new_constant_and_function_names" title="Extension by new constant and function names">Extension</a> <ul><li><a href="/wiki/Extension_by_definitions" title="Extension by definitions">by definition</a></li> <li><a href="/wiki/Conservative_extension" title="Conservative extension">conservative</a></li></ul></li> <li><a href="/wiki/Finitary_relation" title="Finitary relation">Relation</a></li> <li><a href="/wiki/Formation_rule" title="Formation rule">Formation rule</a></li> <li><a href="/wiki/Formal_grammar" title="Formal grammar">Grammar</a></li> <li><a href="/wiki/Well-formed_formula" title="Well-formed formula">Formula</a> <ul><li><a href="/wiki/Atomic_formula" title="Atomic formula">atomic</a></li> <li><a href="/wiki/Sentence_(mathematical_logic)" title="Sentence (mathematical logic)">closed</a></li> <li><a href="/wiki/Ground_formula" class="mw-redirect" title="Ground formula">ground</a></li> <li><a href="/wiki/Open_formula" title="Open formula">open</a></li></ul></li> <li><a href="/wiki/Free_variables_and_bound_variables" title="Free variables and bound variables">Free/bound variable</a></li> <li><a href="/wiki/Formal_language" title="Formal language">Language</a></li> <li><a href="/wiki/Metalanguage" title="Metalanguage">Metalanguage</a></li> <li><a href="/wiki/Logical_connective" title="Logical connective">Logical connective</a> <ul><li><a href="/wiki/Negation" title="Negation">¬</a></li> <li><a href="/wiki/Logical_disjunction" title="Logical disjunction">∨</a></li> <li><a href="/wiki/Logical_conjunction" title="Logical conjunction">∧</a></li> <li><a href="/wiki/Material_conditional" title="Material conditional">→</a></li> <li><a href="/wiki/Logical_biconditional" title="Logical biconditional">↔</a></li> <li><a href="/wiki/Logical_equality" title="Logical equality">=</a></li></ul></li> <li><a href="/wiki/Predicate_(mathematical_logic)" title="Predicate (mathematical logic)">Predicate</a> <ul><li><a href="/wiki/Functional_predicate" title="Functional predicate">functional</a></li> <li><a href="/wiki/Predicate_variable" title="Predicate variable">variable</a></li> <li><a href="/wiki/Propositional_variable" title="Propositional variable">propositional variable</a></li></ul></li> <li><a href="/wiki/Formal_proof" title="Formal proof">Proof</a></li> <li><a href="/wiki/Quantifier_(logic)" title="Quantifier (logic)">Quantifier</a> <ul><li><a href="/wiki/Existential_quantification" title="Existential quantification">∃</a></li> <li><a href="/wiki/Uniqueness_quantification" title="Uniqueness quantification">!</a></li> <li><a href="/wiki/Universal_quantification" title="Universal quantification">∀</a></li> <li><a href="/wiki/Quantifier_rank" title="Quantifier rank">rank</a></li></ul></li> <li><a href="/wiki/Sentence_(mathematical_logic)" title="Sentence (mathematical logic)">Sentence</a> <ul><li><a href="/wiki/Atomic_sentence" title="Atomic sentence">atomic</a></li> <li><a href="/wiki/Spectrum_of_a_sentence" title="Spectrum of a sentence">spectrum</a></li></ul></li> <li><a href="/wiki/Signature_(logic)" title="Signature (logic)">Signature</a></li> <li><a href="/wiki/String_(formal_languages)" class="mw-redirect" title="String (formal languages)">String</a></li> <li><a href="/wiki/Substitution_(logic)" title="Substitution (logic)">Substitution</a></li> <li><a href="/wiki/Symbol_(formal)" title="Symbol (formal)">Symbol</a> <ul><li><a href="/wiki/Uninterpreted_function" title="Uninterpreted function">function</a></li> <li><a href="/wiki/Logical_constant" title="Logical constant">logical/constant</a></li> <li><a href="/wiki/Non-logical_symbol" title="Non-logical symbol">non-logical</a></li> <li><a href="/wiki/Variable_(mathematics)" title="Variable (mathematics)">variable</a></li></ul></li> <li><a href="/wiki/Term_(logic)" title="Term (logic)">Term</a></li> <li><a href="/wiki/Theory_(mathematical_logic)" title="Theory (mathematical logic)">Theory</a> <ul><li><a href="/wiki/List_of_mathematical_theories" title="List of mathematical theories"><span style="font-size:85%;">list</span></a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><span class="nowrap">Example <a href="/wiki/Axiomatic_system" title="Axiomatic system">axiomatic<br />systems</a> <span style="font-size:85%;">(<a href="/wiki/List_of_first-order_theories" title="List of first-order theories">list</a>)</span></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li>of <a href="/wiki/True_arithmetic" title="True arithmetic">arithmetic</a>: <ul><li><a href="/wiki/Peano_axioms" title="Peano axioms">Peano</a></li> <li><a href="/wiki/Second-order_arithmetic" title="Second-order arithmetic">second-order</a></li> <li><a href="/wiki/Elementary_function_arithmetic" title="Elementary function arithmetic">elementary function</a></li> <li><a href="/wiki/Primitive_recursive_arithmetic" title="Primitive recursive arithmetic">primitive recursive</a></li> <li><a href="/wiki/Robinson_arithmetic" title="Robinson arithmetic">Robinson</a></li> <li><a href="/wiki/Skolem_arithmetic" title="Skolem arithmetic">Skolem</a></li></ul></li> <li>of the <a href="/wiki/Construction_of_the_real_numbers" title="Construction of the real numbers">real numbers</a> <ul><li><a href="/wiki/Tarski%27s_axiomatization_of_the_reals" title="Tarski's axiomatization of the reals">Tarski's axiomatization</a></li></ul></li> <li>of <a href="/wiki/Axiomatization_of_Boolean_algebras" class="mw-redirect" title="Axiomatization of Boolean algebras">Boolean algebras</a> <ul><li><a href="/wiki/Boolean_algebras_canonically_defined" title="Boolean algebras canonically defined">canonical</a></li> <li><a href="/wiki/Minimal_axioms_for_Boolean_algebra" title="Minimal axioms for Boolean algebra">minimal axioms</a></li></ul></li> <li>of <a href="/wiki/Foundations_of_geometry" title="Foundations of geometry">geometry</a>: <ul><li><a href="/wiki/Euclidean_geometry" title="Euclidean geometry">Euclidean</a>: <ul><li><a href="/wiki/Euclid%27s_Elements" title="Euclid's Elements"><i>Elements</i></a></li> <li><a href="/wiki/Hilbert%27s_axioms" title="Hilbert's axioms">Hilbert's</a></li> <li><a href="/wiki/Tarski%27s_axioms" title="Tarski's axioms">Tarski's</a></li></ul></li> <li><a href="/wiki/Non-Euclidean_geometry" title="Non-Euclidean geometry">non-Euclidean</a></li></ul></li></ul> <ul><li><i><a href="/wiki/Principia_Mathematica" title="Principia Mathematica">Principia Mathematica</a></i></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Proof_theory" title="Proof theory">Proof theory</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Formal_proof" title="Formal proof">Formal proof</a></li> <li><a href="/wiki/Natural_deduction" title="Natural deduction">Natural deduction</a></li> <li><a href="/wiki/Logical_consequence" title="Logical consequence">Logical consequence</a></li> <li><a href="/wiki/Rule_of_inference" title="Rule of inference">Rule of inference</a></li> <li><a href="/wiki/Sequent_calculus" title="Sequent calculus">Sequent calculus</a></li> <li><a href="/wiki/Theorem" title="Theorem">Theorem</a></li> <li><a href="/wiki/Formal_system" title="Formal system">Systems</a> <ul><li><a href="/wiki/Axiomatic_system" title="Axiomatic system">axiomatic</a></li> <li><a href="/wiki/Deductive_system" class="mw-redirect" title="Deductive system">deductive</a></li> <li><a href="/wiki/Hilbert_system" title="Hilbert system">Hilbert</a> <ul><li><a href="/wiki/List_of_Hilbert_systems" class="mw-redirect" title="List of Hilbert systems">list</a></li></ul></li></ul></li> <li><a href="/wiki/Complete_theory" title="Complete theory">Complete theory</a></li> <li><a href="/wiki/Independence_(mathematical_logic)" title="Independence (mathematical logic)">Independence</a> (<a href="/wiki/List_of_statements_independent_of_ZFC" title="List of statements independent of ZFC">from ZFC</a>)</li> <li><a href="/wiki/Proof_of_impossibility" title="Proof of impossibility">Proof of impossibility</a></li> <li><a href="/wiki/Ordinal_analysis" title="Ordinal analysis">Ordinal analysis</a></li> <li><a href="/wiki/Reverse_mathematics" title="Reverse mathematics">Reverse mathematics</a></li> <li><a href="/wiki/Self-verifying_theories" title="Self-verifying theories">Self-verifying theories</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Model_theory" title="Model theory">Model theory</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Interpretation_(logic)" title="Interpretation (logic)">Interpretation</a> <ul><li><a href="/wiki/Interpretation_function" class="mw-redirect" title="Interpretation function">function</a></li> <li><a href="/wiki/Interpretation_(model_theory)" title="Interpretation (model theory)">of models</a></li></ul></li> <li><a href="/wiki/Structure_(mathematical_logic)" title="Structure (mathematical logic)">Model</a> <ul><li><a href="/wiki/Elementary_equivalence" title="Elementary equivalence">equivalence</a></li> <li><a href="/wiki/Finite_model_theory" title="Finite model theory">finite</a></li> <li><a href="/wiki/Saturated_model" title="Saturated model">saturated</a></li> <li><a href="/wiki/Spectrum_of_a_theory" title="Spectrum of a theory">spectrum</a></li> <li><a href="/wiki/Substructure_(mathematics)" title="Substructure (mathematics)">submodel</a></li></ul></li> <li><a href="/wiki/Non-standard_model" title="Non-standard model">Non-standard model</a> <ul><li><a href="/wiki/Non-standard_model_of_arithmetic" title="Non-standard model of arithmetic">of arithmetic</a></li></ul></li> <li><a href="/wiki/Diagram_(mathematical_logic)" title="Diagram (mathematical logic)">Diagram</a> <ul><li><a href="/wiki/Elementary_diagram" title="Elementary diagram">elementary</a></li></ul></li> <li><a href="/wiki/Categorical_theory" title="Categorical theory">Categorical theory</a></li> <li><a href="/wiki/Model_complete_theory" title="Model complete theory">Model complete theory</a></li> <li><a href="/wiki/Satisfiability" title="Satisfiability">Satisfiability</a></li> <li><a href="/wiki/Semantics_of_logic" title="Semantics of logic">Semantics of logic</a></li> <li><a href="/wiki/Strength_(mathematical_logic)" title="Strength (mathematical logic)">Strength</a></li> <li><a href="/wiki/Theories_of_truth" class="mw-redirect" title="Theories of truth">Theories of truth</a> <ul><li><a href="/wiki/Semantic_theory_of_truth" title="Semantic theory of truth">semantic</a></li> <li><a href="/wiki/Tarski%27s_theory_of_truth" class="mw-redirect" title="Tarski's theory of truth">Tarski's</a></li> <li><a href="/wiki/Kripke%27s_theory_of_truth" class="mw-redirect" title="Kripke's theory of truth">Kripke's</a></li></ul></li> <li><a href="/wiki/T-schema" title="T-schema">T-schema</a></li> <li><a href="/wiki/Transfer_principle" title="Transfer principle">Transfer principle</a></li> <li><a href="/wiki/Truth_predicate" title="Truth predicate">Truth predicate</a></li> <li><a href="/wiki/Truth_value" title="Truth value">Truth value</a></li> <li><a href="/wiki/Type_(model_theory)" title="Type (model theory)">Type</a></li> <li><a href="/wiki/Ultraproduct" title="Ultraproduct">Ultraproduct</a></li> <li><a href="/wiki/Validity_(logic)" title="Validity (logic)">Validity</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Computability_theory" title="Computability theory">Computability theory</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Church_encoding" title="Church encoding">Church encoding</a></li> <li><a href="/wiki/Church%E2%80%93Turing_thesis" title="Church–Turing thesis">Church–Turing thesis</a></li> <li><a href="/wiki/Computably_enumerable_set" title="Computably enumerable set">Computably enumerable</a></li> <li><a href="/wiki/Computable_function" title="Computable function">Computable function</a></li> <li><a href="/wiki/Computable_set" title="Computable set">Computable set</a></li> <li><a href="/wiki/Decision_problem" title="Decision problem">Decision problem</a> <ul><li><a href="/wiki/Decidability_(logic)" title="Decidability (logic)">decidable</a></li> <li><a href="/wiki/Undecidable_problem" title="Undecidable problem">undecidable</a></li> <li><a href="/wiki/P_(complexity)" title="P (complexity)">P</a></li> <li><a href="/wiki/NP_(complexity)" title="NP (complexity)">NP</a></li> <li><a href="/wiki/P_versus_NP_problem" title="P versus NP problem">P versus NP problem</a></li></ul></li> <li><a href="/wiki/Kolmogorov_complexity" title="Kolmogorov complexity">Kolmogorov complexity</a></li> <li><a href="/wiki/Lambda_calculus" title="Lambda calculus">Lambda calculus</a></li> <li><a href="/wiki/Primitive_recursive_function" title="Primitive recursive function">Primitive recursive function</a></li> <li><a href="/wiki/Recursion" title="Recursion">Recursion</a></li> <li><a href="/wiki/Recursive_set" class="mw-redirect" title="Recursive set">Recursive set</a></li> <li><a href="/wiki/Turing_machine" title="Turing machine">Turing machine</a></li> <li><a href="/wiki/Type_theory" title="Type theory">Type theory</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Abstract_logic" title="Abstract logic">Abstract logic</a></li> <li><a href="/wiki/Algebraic_logic" title="Algebraic logic">Algebraic logic</a></li> <li><a href="/wiki/Automated_theorem_proving" title="Automated theorem proving">Automated theorem proving</a></li> <li><a href="/wiki/Category_theory" title="Category theory">Category theory</a></li> <li><a href="/wiki/Concrete_category" title="Concrete category">Concrete</a>/<a href="/wiki/Category_(mathematics)" title="Category (mathematics)">Abstract category</a></li> <li><a href="/wiki/Category_of_sets" title="Category of sets">Category of sets</a></li> <li><a href="/wiki/History_of_logic" title="History of logic">History of logic</a></li> <li><a href="/wiki/History_of_mathematical_logic" class="mw-redirect" title="History of mathematical logic">History of mathematical logic</a> <ul><li><a href="/wiki/Timeline_of_mathematical_logic" title="Timeline of mathematical logic">timeline</a></li></ul></li> <li><a href="/wiki/Logicism" title="Logicism">Logicism</a></li> <li><a href="/wiki/Mathematical_object" title="Mathematical object">Mathematical object</a></li> <li><a href="/wiki/Philosophy_of_mathematics" title="Philosophy of mathematics">Philosophy of mathematics</a></li> <li><a href="/wiki/Supertask" title="Supertask">Supertask</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div><b><span class="nowrap"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/16px-Nuvola_apps_edu_mathematics_blue-p.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/24px-Nuvola_apps_edu_mathematics_blue-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/32px-Nuvola_apps_edu_mathematics_blue-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span> </span><a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics portal</a></b></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐api‐ext.eqiad.main‐76b7c58d6d‐wh5l8 Cached time: 20241125134015 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.716 seconds Real time usage: 1.055 seconds Preprocessor visited node count: 4919/1000000 Post‐expand include size: 158337/2097152 bytes Template argument size: 3228/2097152 bytes Highest expansion depth: 16/100 Expensive parser function count: 25/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 120950/5000000 bytes Lua time usage: 0.358/10.000 seconds Lua memory usage: 7857029/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 698.582 1 -total 23.96% 167.355 26 Template:Cite_book 17.11% 119.516 5 Template:Navbox 12.27% 85.708 1 Template:Set_theory 11.74% 81.995 1 Template:Short_description 7.92% 55.323 2 Template:Pagetype 7.55% 52.773 8 Template:Sfn 7.06% 49.302 1 Template:More_footnotes_needed 6.26% 43.750 1 Template:Ambox 4.26% 29.786 1 Template:Mathematical_logic --> <!-- Saved in parser cache with key enwiki:pcache:idhash:152214-0!canonical and timestamp 20241125134015 and revision id 1258622201. Rendering was triggered because: unknown --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Zermelo–Fraenkel_set_theory&oldid=1258622201">https://en.wikipedia.org/w/index.php?title=Zermelo–Fraenkel_set_theory&oldid=1258622201</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Foundations_of_mathematics" title="Category:Foundations of mathematics">Foundations of mathematics</a></li><li><a href="/wiki/Category:Systems_of_set_theory" title="Category:Systems of set theory">Systems of set theory</a></li><li><a href="/wiki/Category:Z_notation" title="Category:Z notation">Z notation</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Articles_lacking_in-text_citations_from_February_2024" title="Category:Articles lacking in-text citations from February 2024">Articles lacking in-text citations from February 2024</a></li><li><a href="/wiki/Category:All_articles_lacking_in-text_citations" title="Category:All articles lacking in-text citations">All articles lacking in-text citations</a></li><li><a href="/wiki/Category:Use_dmy_dates_from_February_2024" title="Category:Use dmy dates from February 2024">Use dmy dates from February 2024</a></li><li><a href="/wiki/Category:All_accuracy_disputes" title="Category:All accuracy disputes">All accuracy disputes</a></li><li><a href="/wiki/Category:Articles_with_disputed_statements_from_July_2023" title="Category:Articles with disputed statements from July 2023">Articles with disputed statements from July 2023</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 20 November 2024, at 18:44<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Zermelo%E2%80%93Fraenkel_set_theory&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-6b8d669998-tkssm","wgBackendResponseTime":238,"wgPageParseReport":{"limitreport":{"cputime":"0.716","walltime":"1.055","ppvisitednodes":{"value":4919,"limit":1000000},"postexpandincludesize":{"value":158337,"limit":2097152},"templateargumentsize":{"value":3228,"limit":2097152},"expansiondepth":{"value":16,"limit":100},"expensivefunctioncount":{"value":25,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":120950,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 698.582 1 -total"," 23.96% 167.355 26 Template:Cite_book"," 17.11% 119.516 5 Template:Navbox"," 12.27% 85.708 1 Template:Set_theory"," 11.74% 81.995 1 Template:Short_description"," 7.92% 55.323 2 Template:Pagetype"," 7.55% 52.773 8 Template:Sfn"," 7.06% 49.302 1 Template:More_footnotes_needed"," 6.26% 43.750 1 Template:Ambox"," 4.26% 29.786 1 Template:Mathematical_logic"]},"scribunto":{"limitreport-timeusage":{"value":"0.358","limit":"10.000"},"limitreport-memusage":{"value":7857029,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFAbian1965\"] = 1,\n [\"CITEREFAbianLaMacchia1978\"] = 1,\n [\"CITEREFBagaria2023\"] = 2,\n [\"CITEREFBernaysFraenkel1958\"] = 1,\n [\"CITEREFCiesielski1997\"] = 1,\n [\"CITEREFDevlin1996\"] = 1,\n [\"CITEREFEbbinghaus2007\"] = 1,\n [\"CITEREFFeferman1996\"] = 1,\n [\"CITEREFFraenkelBar-HillelLévy1973\"] = 1,\n [\"CITEREFHalbeisen2011\"] = 1,\n [\"CITEREFHatcher1982\"] = 1,\n [\"CITEREFHeijenoort1967\"] = 1,\n [\"CITEREFHinman2005\"] = 1,\n [\"CITEREFJech2003\"] = 1,\n [\"CITEREFKunen1980\"] = 1,\n [\"CITEREFKunen2007\"] = 1,\n [\"CITEREFLevy2002\"] = 1,\n [\"CITEREFLink2014\"] = 1,\n [\"CITEREFMontague1961\"] = 1,\n [\"CITEREFQuine1969\"] = 1,\n [\"CITEREFShoenfield1977\"] = 1,\n [\"CITEREFShoenfield2001\"] = 1,\n [\"CITEREFSuppes1972\"] = 1,\n [\"CITEREFTakeutiZaring1971\"] = 1,\n [\"CITEREFTakeutiZaring1982\"] = 1,\n [\"CITEREFTarski1939\"] = 1,\n [\"CITEREFTiles1989\"] = 1,\n [\"CITEREFTourlakis2003\"] = 1,\n [\"CITEREFWolchover2013\"] = 1,\n [\"CITEREFZermelo1908\"] = 1,\n [\"CITEREFZermelo1930\"] = 1,\n [\"CITEREFvan_Heijenoort1967\"] = 1,\n}\ntemplate_list = table#1 {\n [\"1,2\"] = 1,\n [\"Cite SEP\"] = 1,\n [\"Cite book\"] = 26,\n [\"Cite encyclopedia\"] = 1,\n [\"Cite journal\"] = 4,\n [\"Cite magazine\"] = 1,\n [\"Clear\"] = 1,\n [\"DEFAULTSORT:Zermelo-Fraenkel Set Theory\"] = 1,\n [\"Dubious span\"] = 1,\n [\"Further\"] = 1,\n [\"Harvnb\"] = 7,\n [\"Harvtxt\"] = 11,\n [\"Main\"] = 11,\n [\"MathWorld\"] = 1,\n [\"Mathematical logic\"] = 1,\n [\"More footnotes needed\"] = 1,\n [\"Mvar\"] = 9,\n [\"Not a typo\"] = 1,\n [\"Redirect\"] = 1,\n [\"Refbegin\"] = 1,\n [\"Refend\"] = 1,\n [\"Reflist\"] = 1,\n [\"See also\"] = 3,\n [\"Set theory\"] = 1,\n [\"Sfn\"] = 8,\n [\"Short description\"] = 1,\n [\"Springer\"] = 1,\n [\"TOC left\"] = 1,\n [\"Use dmy dates\"] = 1,\n [\"YouTube\"] = 1,\n}\narticle_whitelist = table#1 {\n}\ntable#1 {\n [\"size\"] = \"tiny\",\n}\n"},"cachereport":{"origin":"mw-api-ext.eqiad.main-76b7c58d6d-wh5l8","timestamp":"20241125134015","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Zermelo\u2013Fraenkel set theory","url":"https:\/\/en.wikipedia.org\/wiki\/Zermelo%E2%80%93Fraenkel_set_theory","sameAs":"http:\/\/www.wikidata.org\/entity\/Q191849","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q191849","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2002-11-27T03:34:39Z","dateModified":"2024-11-20T18:44:20Z","headline":"standard form of axiomatic set theory"}</script> </body> </html>